WO2018168461A1 - シアネートエステル樹脂組成物およびプリプレグ - Google Patents

シアネートエステル樹脂組成物およびプリプレグ Download PDF

Info

Publication number
WO2018168461A1
WO2018168461A1 PCT/JP2018/007445 JP2018007445W WO2018168461A1 WO 2018168461 A1 WO2018168461 A1 WO 2018168461A1 JP 2018007445 W JP2018007445 W JP 2018007445W WO 2018168461 A1 WO2018168461 A1 WO 2018168461A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyanate ester
ester resin
mass
resin composition
parts
Prior art date
Application number
PCT/JP2018/007445
Other languages
English (en)
French (fr)
Inventor
岩田 充宏
幸弘 上村
伊藤 友裕
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to KR1020197022993A priority Critical patent/KR102065367B1/ko
Priority to ES18767255T priority patent/ES2902728T3/es
Priority to CN201880017931.9A priority patent/CN110431187B/zh
Priority to US16/494,281 priority patent/US10723880B2/en
Priority to EP18767255.5A priority patent/EP3597703B1/en
Priority to CA3056553A priority patent/CA3056553C/en
Priority to AU2018233882A priority patent/AU2018233882B2/en
Publication of WO2018168461A1 publication Critical patent/WO2018168461A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • C08K5/3155Dicyandiamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2421/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a cyanate ester resin composition and a prepreg.
  • Patent Document 1 discloses an epoxy resin composition containing an epoxy resin as a matrix, a thermoplastic resin for viscosity adjustment, a filler, and a curing agent.
  • a prepreg obtained by combining is disclosed. Such prepregs are used in a wide range of fields such as structural materials such as aircraft and vehicles, reinforcement of concrete structures, golf clubs, tennis rackets, fishing rods and other sports fields because of their light weight and excellent mechanical properties.
  • Cyanate ester resin is mentioned as resin which can substitute for an epoxy resin. Cyanate ester resins have better heat resistance than epoxy resins and can withstand heat up to, for example, around 300 ° C. However, the cyanate ester resin is difficult to dissolve the thermoplastic resin for adjusting the viscosity, and it is difficult to adjust the viscosity of the resin composition. is there. Due to this problem, when the prepreg is heated and cured, the resin composition flows out from the reinforcing fibers, resulting in a resin deficiency in the obtained fiber-reinforced composite material, resulting in uneven thickness.
  • the object of the present invention is to suppress the resin flow at the time of heat curing without adding a thermoplastic resin for viscosity adjustment, to eliminate resin deficiency and uneven thickness, and to have excellent workability.
  • An object of the present invention is to provide an ester resin composition and a prepreg using the same.
  • the present inventor adds a curing agent or a curing accelerator, silica fine particles and core-shell rubber particles to the cyanate ester resin, and specifies the compounding ratio of the silica fine particles and the core-shell rubber particles to the cyanate ester resin.
  • the present invention is as follows.
  • Ester resin composition. 3. The cyanate ester resin composition according to 1, wherein the (A) cyanate ester resin is a novolac-type cyanate ester resin. 4). 2. The cyanate ester resin composition according to 1, wherein the amount of the silica fine particles (C) is 2 to 4 parts by mass with respect to 100 parts by mass of the (A) cyanate ester resin. 5). 2. The cyanate ester resin composition according to 1 above, wherein the amount of the (D) core-shell rubber particles based on 100 parts by mass of the (A) cyanate ester resin is 4 to 8 parts by mass. 6). 2.
  • a prepreg comprising the cyanate ester resin composition according to any one of 1 to 6 above and a reinforcing fiber. 8). 8. The prepreg as described in 7 above, wherein the content of the cyanate ester resin composition in the prepreg is 30 to 60% by mass.
  • (B) a curing agent or curing accelerator, (C) silica fine particles and (D) core-shell rubber particles are added to (A) cyanate ester resin, and (C) (C) for cyanate ester resin. Since the blending ratio of silica fine particles and (D) core-shell rubber particles is specified, the resin flow during heat curing can be suppressed without adding a thermoplastic resin for viscosity adjustment, resulting in resin defects and uneven thickness. Can be provided, and a cyanate ester resin composition having excellent workability can be provided.
  • the cyanate ester resin composition of the present invention has a tan ⁇ of 1% strain of less than 1 and a tan ⁇ of 100% strain of 1 or more when viscoelasticity is measured on a parallel plate at a temperature of 70 ° C. and a frequency of 1 Hz. Is particularly excellent in suppression of resin flow during heat curing, elimination of resin deficiency and uneven thickness, and workability.
  • the prepreg composed of the cyanate ester resin composition and the reinforcing fiber is excellent in heat resistance and also excellent in mechanical strength since resin deficiency and thickness nonuniformity are suppressed.
  • (A) Cyanate ester resin The (A) cyanate ester resin used in the present invention is not particularly limited. Generally, cyanate ester resin is represented by the following formula. R— (O—C ⁇ N) n (In the formula, R represents a divalent or higher valent organic group having an aromatic ring, and n represents an integer of 2 or higher.) Examples of such cyanate ester resins include novolak type, bisphenol A type, bisphenol E type, and bisphenol F type cyanate ester resins. Among these, novolak-type cyanate ester resins are preferable. As the novolak type cyanate resin, commercially available ones can be used, and examples thereof include Lima Japan Co., Ltd., Primaset PT-30, Primaset PT-60 and the like.
  • the (B) curing agent or curing accelerator used in the present invention is not particularly limited as long as it can accelerate the thermal curing of the cyanate ester resin.
  • cobalt, copper And metal complexes such as alcohols, acids, amines and bases.
  • Silica fine particles used in the present invention are preferably hydrophilic silica fine particles, and amorphous synthetic silica such as precipitated silica, gel silica, pyrolysis silica, and fused silica. Crystalline synthetic silica; natural silica and the like.
  • the average primary particle diameter of the silica fine particles is preferably 5 nm to 100 nm.
  • Core-shell rubber particles used in the present invention are known.
  • a shell different from the core component is formed on the surface of a particulate core component mainly composed of a crosslinked rubber-like polymer. Particles obtained by graft polymerization of component polymers can be used.
  • the core component include butadiene rubber, acrylic rubber, silicone rubber, butyl rubber, NBR, SBR, IR, EPR, and the like.
  • the shell component include a polymer obtained by polymerizing a monomer selected from an acrylic ester monomer, a methacrylic ester monomer, an aromatic vinyl monomer, and the like.
  • the average particle diameter of the core-shell rubber particles is, for example, 10 nm to 10 ⁇ m, preferably 100 nm to 500 nm.
  • the cyanate ester resin composition of the present invention comprises (C) 1 to 5 parts by mass of silica fine particles and (D) 2 to 10 parts by mass of core-shell rubber particles with respect to 100 parts by mass of (A) cyanate ester resin.
  • the mass ratio of silica fine particles and (D) core-shell rubber particles is required to be 1/1 to 1/5 as (C) / (D).
  • the blending ratio of (C) silica fine particles is less than 1 part by mass or (D) the blending ratio of core-shell rubber particles is less than 2 parts by weight, the resin flow is not sufficiently suppressed, and the effects of the present invention can be achieved. Can not.
  • the blending amount of (C) silica fine particles is more preferably 2 to 4 parts by weight with respect to 100 parts by weight of (A) cyanate ester resin, and (D) the blending amount of core-shell rubber particles is 4 to 8 parts by weight. More preferably, the mass ratio of (C) silica fine particles and (D) core-shell rubber particles is more preferably 1 / 1.5 to 1/4 as (C) / (D).
  • the cyanate ester resin composition of the present invention has a strain of 1% tan ⁇ of less than 1 and a strain of 100% tan ⁇ of 1 or more when viscoelasticity is measured on a parallel plate at a temperature of 70 ° C. and a frequency of 1 Hz.
  • the viscoelasticity can be measured by using a trade name ARES manufactured by TA Instruments Inc.
  • the viscoelasticity can be achieved by appropriately setting the blending amounts of (C) silica fine particles and (D) core-shell rubber particles with respect to (A) cyanate ester resin as described above.
  • the cyanate ester resin composition of the present invention can contain other additives as necessary.
  • additives include fillers, anti-aging agents, solvents, flame retardants, reaction retarders, antioxidants, pigments (dyes), plasticizers, thixotropic agents, ultraviolet absorbers, and surfactants (leveling agents). ), Dispersants, dehydrating agents, adhesion-imparting agents, antistatic agents, and the like.
  • the prepreg of the present invention comprises the cyanate ester resin composition of the present invention and a reinforcing fiber.
  • the prepreg of the present invention is obtained by impregnating reinforcing fibers with the cyanate ester resin composition of the present invention.
  • the reinforcing fiber used in the prepreg of the present invention is not particularly limited, and examples thereof include conventionally known fibers. Especially, it is preferable that it is at least 1 sort (s) chosen from the group which consists of carbon fiber, glass fiber, and an aramid fiber from a viewpoint of intensity
  • the form of the fiber is not particularly limited, and examples thereof include roving, roving aligned in one direction, woven fabric, nonwoven fabric, knitted fabric, and tulle.
  • the production method of the prepreg of the present invention is not particularly limited. Examples thereof include a wet method using a solvent and a hot melt method which is a solventless method. From the viewpoint of shortening the drying time, the amount of the solvent used is preferably 80 to 200 parts by mass with respect to 100 parts by mass of the solid content of the cyanate ester resin composition.
  • the content of the cyanate ester resin composition is preferably 30 to 60% by mass in the prepreg from the viewpoint of the mechanical properties of the fiber-reinforced composite material obtained.
  • the use of the prepreg of the present invention is not particularly limited.
  • a conventionally known fiber reinforced composite material can be obtained.
  • aircraft parts such as fairings, flaps, leading edges, floor panels, propellers, fuselage; motorcycle parts such as motorcycle frames, cowls, fenders; doors, bonnets, tailgates, side fenders, side panels, Auto parts such as fender, energy absorbing member, trunk lid, hard top, side mirror cover, spoiler, diffuser, ski carrier, engine cylinder cover, engine hood, chassis, air spoiler, propeller shaft; leading vehicle nose, roof, side panel, Vehicle outer panels such as doors, bogie covers, side skirts; railway vehicle parts such as luggage racks and seats; interior, wing inner panels, outer panels, roofs, floors, etc.
  • Aero parts such as side skirts to be mounted on moving vehicles and single vehicles; Cases for notebook PCs, mobile phones, etc .; Medical uses such as X-ray cassettes and top plates; Applications for acoustic products such as flat speaker panels and speaker cones; Golf heads, Sports plate applications such as faceplates, snowboards, surfboards, protectors, etc .; general industrial applications such as leaf springs, windmill blades, elevators ( ⁇ panels, doors).
  • a fiber reinforced composite material can be produced by laminating the prepreg of the present invention and another member (for example, a honeycomb core).
  • another member for example, a honeycomb core.
  • the fiber reinforced composite material that can be produced by laminating the prepreg of the present invention and other members include a honeycomb sandwich panel.
  • each material was kneaded at 70 ° C. using a kneader to prepare various cyanate ester resin compositions. The following measurement was performed with respect to the obtained various cyanate ester resin compositions.
  • Viscoelasticity tan ⁇ at a strain of 1% or 100% was measured under the conditions of a temperature of 70 ° C. and a frequency of 1 Hz using ARES manufactured by TA Instruments.
  • Molding cyanate ester resin composition film of the prepreg (resin weight 104 g / m 2) impregnated into a glass fiber fabric (fiber basis weight 156 g / m 2) was molded prepreg.
  • the cyanate ester resin composition in the molded prepreg is 40% by mass.
  • the cyanate ester resin composition of each Example in which the blending ratio of silica fine particles and (D) core-shell rubber particles is specified in the range specified in the present invention is heat-cured without adding a thermoplastic resin for viscosity adjustment. It has been found that the resin flow at the time can be suppressed, the resin deficiency and the uneven thickness are eliminated, and the workability is excellent.
  • the cyanate ester resin composition of each example has a tan ⁇ of 1% strain of less than 1 and a tan ⁇ of 100% strain of 1 or more when viscoelasticity measurement is performed on a parallel plate at a temperature of 70 ° C. and a frequency of 1 Hz. Therefore, it is low strain and solid (tan ⁇ ⁇ 1), can suppress the resin flow during heat curing, and is high strain and liquid (tan ⁇ ⁇ 1). Property is improved.
  • the comparative example 1 did not add the (D) core shell rubber particle, the result of the resin flow and dimensional stability deteriorated.
  • Comparative Example 2 since (C) silica fine particles were not added, the results of resin flow and dimensional stability were deteriorated.
  • Comparative Example 3 since the blending amount of (D) core-shell rubber particles was less than the lower limit specified in the present invention, the results of resin flow and dimensional stability were deteriorated. In Comparative Example 4, since the blending amount of (C) silica fine particles and the blending amount of (D) core-shell rubber particles exceeded the upper limit defined in the present invention, workability deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本発明では、粘度調整のための熱可塑性樹脂を添加せずとも、加熱硬化時の樹脂フローを抑制でき、樹脂欠損や厚みの不均一を解消し、かつ優れた作業性を有するシアネートエステル樹脂組成物を提供するため、(A)シアネートエステル樹脂、(B)硬化剤もしくは硬化促進剤、(C)シリカ微粒子、および(D)コアシェルゴム粒子を配合し、前記(A)シアネートエステル樹脂100質量部に対し、前記(C)シリカ微粒子が1~5質量部でありかつ前記(D)コアシェルゴム粒子が2~10質量部であり、前記(C)シリカ微粒子と前記(D)コアシェルゴム粒子の質量比を(C)/(D)として1/1~1/5とした。

Description

シアネートエステル樹脂組成物およびプリプレグ
 本発明は、シアネートエステル樹脂組成物およびプリプレグに関する。
 エポキシ樹脂をはじめとする熱硬化性樹脂をマトリックスとした繊維強化複合材料が知られている。例えば特許文献1には、マトリックスとしてのエポキシ樹脂と、粘度調整のための熱可塑性樹脂と、フィラーと、硬化剤とを含有するエポキシ樹脂組成物が開示され、また該組成物と強化繊維とを複合させて得られるプリプレグが開示されている。このようなプリプレグは、軽量性と優れた力学特性から航空機や車両などの構造材料、コンクリート構造物の補強、ゴルフクラブ、テニスラケット、釣り竿などのスポーツ分野などをはじめ幅広い分野で使用されている。
 かかる用途に用いられるプリプレグに要求される特性の一つとして、耐熱性が挙げられる。そのため、エポキシ樹脂よりも耐熱性の高い樹脂をマトリックスとした繊維強化複合材料が種々検討されている。
特開2011-99094号公報
 エポキシ樹脂の代替となりうる樹脂としては、シアネートエステル樹脂が挙げられる。シアネートエステル樹脂は、エポキシ樹脂よりも耐熱性に優れ、例えば300℃付近までの熱に耐えることができる。
 しかし、シアネートエステル樹脂は、粘度調整のための熱可塑性樹脂が溶解しにくく、樹脂組成物の粘度調整が困難であり、室温では高い粘度を有するものの硬化加熱時に低粘度化してしまうという問題点がある。この問題点によって、プリプレグを加熱硬化する時に樹脂組成物が強化繊維から流れ出てしまい、得られた繊維強化複合材料に樹脂欠損が生じ、厚みが不均一となる。硬化時の樹脂流れを抑制するためには、樹脂組成物の粘度をより高くする必要があるが、この場合、室温時の樹脂組成物の粘度が高くなりすぎるため、プリプレグ成型時の作業性が悪化してしまう。
 したがって本発明の目的は、粘度調整のための熱可塑性樹脂を添加せずとも、加熱硬化時の樹脂フローを抑制でき、樹脂欠損や厚みの不均一を解消し、かつ優れた作業性を有するシアネートエステル樹脂組成物およびこれを用いたプリプレグを提供することにある。
 本発明者は鋭意研究を重ねた結果、シアネートエステル樹脂に硬化剤もしくは硬化促進剤、シリカ微粒子およびコアシェルゴム粒子を添加し、シアネートエステル樹脂に対するシリカ微粒子およびコアシェルゴム粒子の配合割合を特定化することにより、前記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち本発明は以下の通りである。
 1.(A)シアネートエステル樹脂、(B)硬化剤もしくは硬化促進剤、(C)シリカ微粒子、および(D)コアシェルゴム粒子を含有し、前記(A)シアネートエステル樹脂100質量部に対し、前記(C)シリカ微粒子を1~5質量部および前記(D)コアシェルゴム粒子を2~10質量部含み、前記(C)シリカ微粒子と前記(D)コアシェルゴム粒子の質量比が(C)/(D)として1/1~1/5である、ことを特徴とするシアネートエステル樹脂組成物。
 2.平行板にて温度70℃、周波数1Hzで粘弾性測定した際、歪1%のtanδが1未満であり、かつ歪100%のtanδが1以上であることを特徴とする前記1に記載のシアネートエステル樹脂組成物。
 3.前記(A)シアネートエステル樹脂が、ノボラック型のシアネートエステル樹脂である、前記1に記載のシアネートエステル樹脂組成物。
 4.前記(A)シアネートエステル樹脂100質量部に対する前記(C)シリカ微粒子の配合量が、2~4質量部である、前記1に記載のシアネートエステル樹脂組成物。
 5.前記(A)シアネートエステル樹脂100質量部に対する前記(D)コアシェルゴム粒子の配合量が、4~8質量部である、前記1に記載のシアネートエステル樹脂組成物。
 6.前記(C)シリカ微粒子と前記(D)コアシェルゴム粒子の質量比が、(C)/(D)として1/1.5~1/4である、前記1に記載のシアネートエステル樹脂組成物。
 7.前記1~6のいずれかに記載のシアネートエステル樹脂組成物と強化繊維とからなるプリプレグ。
 8.前記プリプレグ中の前記シアネートエステル樹脂組成物の含有量が、30~60質量%である、前記7に記載のプリプレグ。
 本発明によれば、(A)シアネートエステル樹脂に、(B)硬化剤もしくは硬化促進剤、(C)シリカ微粒子および(D)コアシェルゴム粒子を添加し、(A)シアネートエステル樹脂に対する(C)シリカ微粒子および(D)コアシェルゴム粒子の配合割合を特定化しているので、粘度調整のための熱可塑性樹脂を添加せずとも、加熱硬化時の樹脂フローを抑制でき、樹脂欠損や厚みの不均一を解消し、かつ優れた作業性を有するシアネートエステル樹脂組成物を提供することができる。
 また、平行板にて温度70℃、周波数1Hzで粘弾性測定した際、歪1%のtanδが1未満であり、かつ歪み100%のtanδが1以上である本発明の前記シアネートエステル樹脂組成物は、加熱硬化時の樹脂フローの抑制性、樹脂欠損や厚みの不均一の解消、並びに作業性にとくに優れたものとなる。
 また、前記シアネートエステル樹脂組成物と強化繊維とからなるプリプレグは、耐熱性に優れ、また、樹脂欠損や厚みの不均一も抑制されていることから、機械的強度にも優れる。
 以下、本発明の実施形態についてさらに詳細に説明する。
(A)シアネートエステル樹脂
 本発明で使用される(A)シアネートエステル樹脂はとくに制限されない。一般的にシアネートエステル樹脂は、下記式で示される。
  R-(O-C≡N)n
(式中、Rは芳香環を有する2価以上の有機基を表し、nは2以上の整数を表す。)
 このようなシアネートエステル樹脂としては、ノボラック型、ビスフェノールA型、ビスフェノールE型、ビスフェノールF型のシアネートエステル樹脂等が挙げられる。これらの中でも、ノボラック型のシアネートエステル樹脂が好ましい。
 ノボラック型シアネート樹脂としては、市販されているものを利用でき、例えばロンザジャパン株式会社製、プリマセットPT-30、プリマセットPT-60等が挙げられる。
(B)硬化剤もしくは硬化促進剤
 本発明で使用される(B)硬化剤もしくは硬化促進剤としては、シアネートエステル樹脂の熱硬化を促進できるものであればとくに制限されないが、例えば、コバルト、銅等の金属錯体、アルコール類、酸、アミン、塩基等が挙げられる。
(C)シリカ微粒子
 本発明で使用される(C)シリカ微粒子としては、親水性のシリカ微粒子が好ましく、沈殿法シリカ、ゲル法シリカ、熱分解法シリカ、溶融シリカのような非晶質合成シリカ;結晶合成シリカ;天然シリカ等が挙げられる。
 (C)シリカ微粒子の平均一次粒子径は、5nm~100nmが好ましい。
(D)コアシェルゴム粒子
 本発明で使用される(D)コアシェルゴム粒子は公知であり、例えば架橋されたゴム状ポリマーを主成分とする粒子状コア成分の表面に、コア成分とは異種のシェル成分ポリマーをグラフト重合した粒子であることができる。
 コア成分としては、例えばブタジエンゴム、アクリルゴム、シリコーンゴム、ブチルゴム、NBR、SBR、IR、EPR等が挙げられる。
 シェル成分としては、例えばアクリル酸エステル系モノマー、メタクリル酸エステル系モノマー、芳香族系ビニルモノマー等から選択されたモノマーを重合させた重合体が挙げられる。
 (D)コアシェルゴム粒子の平均粒子径は、例えば10nm~10μmであり、100nm~500nmが好ましい。
(配合割合)
 本発明のシアネートエステル樹脂組成物は、(A)シアネートエステル樹脂100質量部に対し、(C)シリカ微粒子を1~5質量部および(D)コアシェルゴム粒子を2~10質量部含み、(C)シリカ微粒子と(D)コアシェルゴム粒子の質量比が(C)/(D)として1/1~1/5であることが必要である。
 (C)シリカ微粒子の前記配合割合が1質量部未満または(D)コアシェルゴム粒子の前記配合割合が2質量部未満では、樹脂フローの抑制が不十分であり、本発明の効果を奏することができない。
 (C)シリカ微粒子の前記配合割合が5質量部を超える、または(D)コアシェルゴム粒子の前記配合割合が10質量部を超えると、樹脂組成物の粘度が上昇し、作業性が悪化し、また、硬化物の機械的特性(主に弾性率)が低下する。
 (C)シリカ微粒子と(D)コアシェルゴム粒子の質量比が(C)/(D)として1/1を超える場合、すなわち(C)成分に対して(D)成分の配合量が少ない場合、樹脂フローの抑制が不十分であり、本発明の効果を奏することができない。
 (C)シリカ微粒子と(D)コアシェルゴム粒子の質量比が(C)/(D)として1/5未満の場合、すなわち(C)成分に対して(D)成分の配合量が多すぎる場合、樹脂フロー抑制効果が高くなりすぎるため、プリプレグ成型時の作業性が悪化する。
 本発明において、(A)シアネートエステル樹脂100質量部に対する(C)シリカ微粒子の配合量は、2~4質量部がさらに好ましく、(D)コアシェルゴム粒子の配合量は、4~8質量部がさらに好ましく、(C)シリカ微粒子と(D)コアシェルゴム粒子の質量比は、(C)/(D)として1/1.5~1/4がさらに好ましい。
 本発明のシアネートエステル樹脂組成物は、平行板にて温度70℃、周波数1Hzで粘弾性測定した際、歪1%のtanδが1未満であり、かつ歪み100%のtanδが1以上であることにより、加熱硬化時の樹脂フローが抑制され、樹脂欠損や厚みの不均一が生じにくくなり、作業性もとくに優れたものとなる。なお、粘弾性の測定は、ティー・エー・インスツルメント社製、商品名ARES等を用いることにより測定できる。また該粘弾性は、(A)シアネートエステル樹脂に対する(C)シリカ微粒子および(D)コアシェルゴム粒子の配合量を上記のように適切に設定することにより達成できる。
 本発明のシアネートエステル樹脂組成物は、必要に応じてその他の添加剤を含有することができる。添加剤としては、例えば、充填剤、老化防止剤、溶剤、難燃剤、反応遅延剤、酸化防止剤、顔料(染料)、可塑剤、揺変性付与剤、紫外線吸収剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、接着付与剤、帯電防止剤等が挙げられる。
  本発明のプリプレグは、前記本発明のシアネートエステル樹脂組成物と強化繊維とからなる。
  具体的には、本発明のプリプレグは、本発明のシアネートエステル樹脂組成物を強化繊維に含浸させることにより得られるものである。
  本発明のプリプレグに使用される強化繊維は、特に制限されず、例えば、従来公知のものが挙げられる。なかでも、強度の観点から、炭素繊維、ガラス繊維及びアラミド繊維からなる群から選ばれる少なくとも1種であるのが好ましい。
  繊維は、その形態について特に制限されず、ロービング、ロービングを一方向に引きそろえたもの、織物、不織布、編物、チュールなどが挙げられる。
  本発明のプリプレグは、その製造方法について特に制限されない。例えば、溶剤を使用するウェット法、無溶剤法であるホットメルト法が挙げられる。溶剤の使用量は、乾燥時間を短縮しうるという観点から、シアネートエステル樹脂組成物の固形分100質量部に対して、80~200質量部であるのが好ましい。
  本発明のプリプレグにおいて、シアネートエステル樹脂組成物の含有量は、得られる繊維強化複合材料の機械的性質の観点から、プリプレグ中の30~60質量%であるのが好ましい。
 本発明のプリプレグは、その用途について特に制限されない。本発明のプリプレグを硬化させることによって、例えば、従来公知の繊維強化複合材料を得ることができる。具体的には、例えば、フェアリング、フラップ、リーディングエッジ、フロアパネル、プロペラ、胴体などの航空機部品;オートバイフレーム、カウル、フェンダー等の二輪車部品;ドア、ボンネット、テールゲート、サイドフェンダー、側面パネル、フェンダー、エネルギー吸収部材、トランクリッド、ハードップ、サイドミラーカバー、スポイラー、ディフューザー、スキーキャリアー、エンジンシリンダーカバー、エンジンフード、シャシー、エアースポイラー、プロペラシャフト等の自動車部品;先頭車両ノーズ、ルーフ、サイドパネル、ドア、台車カバー、側スカートなどの車輌用外板;荷物棚、座席等の鉄道車輌部品;インテリア、ウイングトラックにおけるウイングのインナーパネル、アウターパネル、ルーフ、フロアー等、自動車や単車に装着するサイドスカートなどのエアロパーツ;ノートパソコン、携帯電話等の筐体用途;X線カセッテ、天板等のメディカル用途;フラットスピーカーパネル、スピーカーコーン等の音響製品用途;ゴルフヘッド、フェースプレート、スノーボード、サーフィンボード、プロテクター等のスポーツ用品用途;板バネ、風車ブレード、エレベーター(籠パネル、ドア)のような一般産業用途が挙げられる。
 また、本発明のプリプレグと他の部材(例えば、ハニカムコア)とを積層して繊維強化複合材料を作製することができる。本発明のプリプレグと他の部材とを積層して作製することができる繊維強化複合材料としては、例えば、ハニカムサンドイッチパネルが挙げられる。
 以下、本発明を実施例および比較例によりさらに説明するが、本発明は下記例に制限されるものではない。
 下記例では、以下の材料を使用した。
 (A)シアネートエステル樹脂:ロンザジャパン株式会社製、プリマセットPT-30、プリマセットPT-60(ノボラック型のシアネートエステル樹脂)
 (B)硬化剤または硬化促進剤:三菱化学株式会社製DICY-15(ジシアンジアミド)
 (C)シリカ微粒子:キャボット社製CAB-O-SIL M5(親水性ヒュームドシリカ)
 (D)コアシェルゴム粒子:株式会社カネカ製MX-154(エポキシ樹脂/コアシェルゴム粒子マスターバッチ;ブタジエン系コアシェルゴム粒子を40質量%含む)
 下記表1に示す配合割合(質量部)にしたがい、各材料をニーダーを用いて70℃で混練し、各種シアネートエステル樹脂組成物を調製した。
 得られた各種シアネートエステル樹脂組成物に対し、次の測定を行った。
 粘弾性:ティー・エー・インスツルメント社製、ARESを用い、平行板にて温度70℃、周波数1Hzの条件下、歪1%または100%でのtanδを測定した。
 プリプレグの成型
 シアネートエステル樹脂組成物フィルム(樹脂重量104g/m2)をガラス繊維織物(繊維目付量156g/m2)に含浸させてプリプレグを成型した。成型したプリプレグ中のシアネートエステル樹脂組成物は、40質量%である。
 樹脂フロー:100mm×100mmに裁断したプリプレグを4枚積層し、温度180℃、圧力3kgf/cm2で30分プレスした後、繊維からはみ出した樹脂硬化物重量を測定し、下式により樹脂フローを算出した。
樹脂フロー(%) = (はみ出した樹脂硬化物重量)/ (プレス前の積層物重量)×100
 作業性:シアネートエステル樹脂組成物フィルム作製時およびガラス繊維織物への含浸時における作業性を、下記評価基準により評価した。
 ○:フィルム作製が良好かつガラス繊維織物への含浸性良好
 ×:フィルム作製が困難のため、プリプレグの成型ができない
 寸法安定性:300mm×300mmに裁断したプリプレグを10枚積層し、オートクレーブにて180℃にて2時間硬化させて得られた繊維強化複合材料の厚さを測定し、最大厚さと最小厚さの差が最大厚さの5%以下である場合、寸法安定性は良好と判断した。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、(A)シアネートエステル樹脂に、(B)硬化剤もしくは硬化促進剤、(C)シリカ微粒子および(D)コアシェルゴム粒子を添加し、(A)シアネートエステル樹脂に対する(C)シリカ微粒子および(D)コアシェルゴム粒子の配合割合を本発明で規定する範囲に特定化した各実施例のシアネートエステル樹脂組成物は、粘度調整のための熱可塑性樹脂を添加せずとも、加熱硬化時の樹脂フローを抑制でき、樹脂欠損や厚みの不均一を解消し、かつ優れた作業性を有することが判明した。また、各実施例のシアネートエステル樹脂組成物は、平行板にて温度70℃、周波数1Hzで粘弾性測定した際、歪1%のtanδが1未満であり、かつ歪み100%のtanδが1以上であることから、低歪で固形的(tanδ<1)であり、加熱硬化時の樹脂フローを抑制でき、また高歪で液体的(tanδ≧1)であり、フィルム塗工や含浸時の作業性が良好となる。
 これに対し、比較例1は、(D)コアシェルゴム粒子を添加していないので、樹脂フローおよび寸法安定性の結果が悪化した。
 比較例2は、(C)シリカ微粒子を添加していないので、樹脂フローおよび寸法安定性の結果が悪化した。
 比較例3は、(D)コアシェルゴム粒子の配合量が本発明で規定する下限未満であるので、樹脂フローおよび寸法安定性の結果が悪化した。
 比較例4は、(C)シリカ微粒子の配合量および(D)コアシェルゴム粒子の配合量ともに本発明で規定する上限を超えているので、作業性が悪化した。

Claims (8)

  1. (A)シアネートエステル樹脂、
    (B)硬化剤もしくは硬化促進剤、
    (C)シリカ微粒子、および
    (D)コアシェルゴム粒子を含有し、
     前記(A)シアネートエステル樹脂100質量部に対し、前記(C)シリカ微粒子を1~5質量部および前記(D)コアシェルゴム粒子を2~10質量部含み、
     前記(C)シリカ微粒子と前記(D)コアシェルゴム粒子の質量比が(C)/(D)として1/1~1/5である、
     ことを特徴とするシアネートエステル樹脂組成物。
  2.  平行板にて温度70℃、周波数1Hzで粘弾性測定した際、歪1%のtanδが1未満であり、かつ歪100%のtanδが1以上であることを特徴とする請求項1に記載のシアネートエステル樹脂組成物。
  3.  前記(A)シアネートエステル樹脂が、ノボラック型のシアネートエステル樹脂である、請求項1に記載のシアネートエステル樹脂組成物。
  4.  前記(A)シアネートエステル樹脂100質量部に対する前記(C)シリカ微粒子の配合量が、2~4質量部である、請求項1に記載のシアネートエステル樹脂組成物。
  5.  前記(A)シアネートエステル樹脂100質量部に対する前記(D)コアシェルゴム粒子の配合量が、4~8質量部である、請求項1に記載のシアネートエステル樹脂組成物。
  6.  前記(C)シリカ微粒子と前記(D)コアシェルゴム粒子の質量比が、(C)/(D)として1/1.5~1/4である、請求項1に記載のシアネートエステル樹脂組成物。
  7.  請求項1~6のいずれかに記載のシアネートエステル樹脂組成物と強化繊維とからなるプリプレグ。
  8.  前記プリプレグ中の前記シアネートエステル樹脂組成物の含有量が、30~60質量%である、請求項7に記載のプリプレグ。
PCT/JP2018/007445 2017-03-13 2018-02-28 シアネートエステル樹脂組成物およびプリプレグ WO2018168461A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020197022993A KR102065367B1 (ko) 2017-03-13 2018-02-28 시아네이트 에스테르 수지 조성물 및 프리프레그
ES18767255T ES2902728T3 (es) 2017-03-13 2018-02-28 Composición de resina de éster de cianato y material preimpregnado
CN201880017931.9A CN110431187B (zh) 2017-03-13 2018-02-28 氰酸酯树脂组合物及预浸料
US16/494,281 US10723880B2 (en) 2017-03-13 2018-02-28 Cyanate ester resin composition and prepreg
EP18767255.5A EP3597703B1 (en) 2017-03-13 2018-02-28 Cyanate ester resin composition and prepreg
CA3056553A CA3056553C (en) 2017-03-13 2018-02-28 Cyanate ester resin composition and prepreg
AU2018233882A AU2018233882B2 (en) 2017-03-13 2018-02-28 Cyanate ester resin composition and prepreg

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017046905A JP6354884B1 (ja) 2017-03-13 2017-03-13 シアネートエステル樹脂組成物およびプリプレグ
JP2017-046905 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018168461A1 true WO2018168461A1 (ja) 2018-09-20

Family

ID=62843762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007445 WO2018168461A1 (ja) 2017-03-13 2018-02-28 シアネートエステル樹脂組成物およびプリプレグ

Country Status (10)

Country Link
US (1) US10723880B2 (ja)
EP (1) EP3597703B1 (ja)
JP (1) JP6354884B1 (ja)
KR (1) KR102065367B1 (ja)
CN (1) CN110431187B (ja)
AU (1) AU2018233882B2 (ja)
CA (1) CA3056553C (ja)
ES (1) ES2902728T3 (ja)
TW (1) TWI671342B (ja)
WO (1) WO2018168461A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187453A1 (ja) * 2020-03-19 2021-09-23 三菱ケミカル株式会社 樹脂組成物、プリプレグ、成形品、及びプリプレグの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989561B1 (en) 2008-05-29 2015-03-24 Rovi Guides, Inc. Systems and methods for alerting users of the postponed recording of programs
CN111375359A (zh) * 2018-12-27 2020-07-07 上海元颉新材料科技有限公司 单分散核壳结构有机-无机复合纳米橡胶颗粒及其制备方法和用途
CN109943072A (zh) * 2019-02-26 2019-06-28 南亚新材料科技股份有限公司 一种热固性树脂组合物
JP6904441B1 (ja) * 2020-01-30 2021-07-14 横浜ゴム株式会社 プリプレグ用エポキシ樹脂組成物およびプリプレグ
CN112680864B (zh) * 2020-12-11 2022-05-10 江苏恒力化纤股份有限公司 一种织物增强型的后视镜及其制备方法
CN112680868B (zh) * 2020-12-11 2022-05-10 江苏恒力化纤股份有限公司 一种复合材料制成的汽车引擎盖及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146927A (ja) * 1985-12-20 1987-06-30 Mitsubishi Rayon Co Ltd 複合材料用中間材
JP2009013254A (ja) * 2007-07-03 2009-01-22 Mitsubishi Rayon Co Ltd 繊維強化複合材料用マトリックス樹脂およびプリプレグ
JP2011099094A (ja) 2009-10-05 2011-05-19 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物、これを用いるプリプレグおよびハニカムサンドイッチパネル
JP2013064136A (ja) * 2009-03-27 2013-04-11 Hitachi Chemical Co Ltd 熱硬化性樹脂組成物、並びにこれを用いたプリプレグ、積層板及び多層プリント配線板
WO2016060166A1 (ja) * 2014-10-16 2016-04-21 三菱レイヨン株式会社 樹脂組成物およびそのプレス成形体
JP2016210993A (ja) * 2009-12-14 2016-12-15 味の素株式会社 樹脂組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160841A (ja) * 1988-12-13 1990-06-20 Yokohama Rubber Co Ltd:The プリプレグ
JP5024205B2 (ja) * 2007-07-12 2012-09-12 三菱瓦斯化学株式会社 プリプレグ及び積層板
CN101397404B (zh) * 2008-11-07 2011-06-15 西北工业大学 一种氰酸酯类电子封装材料及其微波固化制备方法
WO2010110433A1 (ja) 2009-03-27 2010-09-30 日立化成工業株式会社 熱硬化性樹脂組成物、並びにこれを用いたプリプレグ、支持体付絶縁フィルム、積層板及びプリント配線板
WO2011010672A1 (ja) * 2009-07-24 2011-01-27 住友ベークライト株式会社 樹脂組成物、樹脂シート、プリプレグ、金属張積層板、プリント配線板及び半導体装置
GB2472423B (en) * 2009-08-05 2012-01-11 Gurit Uk Ltd Fire-retardant composite materials
GB0922599D0 (en) * 2009-12-23 2010-02-10 Cytec Tech Corp Modified resin systems for liquid resin infusion applications, prepreg autoclave applications and hybrids thereof
WO2011108524A1 (ja) * 2010-03-02 2011-09-09 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、および積層板
TWI429709B (zh) * 2011-01-07 2014-03-11 Elite Material Co Ltd Resin composition
KR101877089B1 (ko) * 2011-05-27 2018-07-10 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그 및 적층판
CN103724998A (zh) * 2013-05-30 2014-04-16 广东生益科技股份有限公司 一种氰酸酯树脂组合物及其用途
CN105308506B (zh) * 2013-07-04 2020-10-27 味之素株式会社 感光性树脂组合物
EP3112419B1 (de) * 2015-06-30 2020-11-18 Airbus Defence and Space GmbH Flammefeste und hochtemperaturbeständige duromere auf der grundlage von naphthalin-basierten epoxidharzen und cyanatestern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146927A (ja) * 1985-12-20 1987-06-30 Mitsubishi Rayon Co Ltd 複合材料用中間材
JP2009013254A (ja) * 2007-07-03 2009-01-22 Mitsubishi Rayon Co Ltd 繊維強化複合材料用マトリックス樹脂およびプリプレグ
JP2013064136A (ja) * 2009-03-27 2013-04-11 Hitachi Chemical Co Ltd 熱硬化性樹脂組成物、並びにこれを用いたプリプレグ、積層板及び多層プリント配線板
JP2011099094A (ja) 2009-10-05 2011-05-19 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物、これを用いるプリプレグおよびハニカムサンドイッチパネル
JP2016210993A (ja) * 2009-12-14 2016-12-15 味の素株式会社 樹脂組成物
WO2016060166A1 (ja) * 2014-10-16 2016-04-21 三菱レイヨン株式会社 樹脂組成物およびそのプレス成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187453A1 (ja) * 2020-03-19 2021-09-23 三菱ケミカル株式会社 樹脂組成物、プリプレグ、成形品、及びプリプレグの製造方法

Also Published As

Publication number Publication date
US20200071524A1 (en) 2020-03-05
ES2902728T3 (es) 2022-03-29
KR20190095532A (ko) 2019-08-14
CA3056553A1 (en) 2018-09-20
AU2018233882B2 (en) 2020-03-05
EP3597703B1 (en) 2021-10-06
KR102065367B1 (ko) 2020-01-13
US10723880B2 (en) 2020-07-28
AU2018233882A1 (en) 2019-09-26
CN110431187A (zh) 2019-11-08
JP6354884B1 (ja) 2018-07-11
TWI671342B (zh) 2019-09-11
CN110431187B (zh) 2021-01-08
EP3597703A1 (en) 2020-01-22
CA3056553C (en) 2020-11-17
TW201837094A (zh) 2018-10-16
EP3597703A4 (en) 2021-01-20
JP2018150445A (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6354884B1 (ja) シアネートエステル樹脂組成物およびプリプレグ
TWI754688B (zh) 纖維強化複合材料及纖維強化複合材料之製造方法
JP5796287B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物、これを用いるプリプレグおよびハニカムサンドイッチパネル
TWI787405B (zh) 纖維強化複合材料用環氧樹脂組成物、預浸體及纖維強化複合材料
JP2019056040A (ja) 繊維強化複合材料用シアネートエステル樹脂組成物、プリプレグおよび繊維強化複合材料
JP6904441B1 (ja) プリプレグ用エポキシ樹脂組成物およびプリプレグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022993

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018233882

Country of ref document: AU

Date of ref document: 20180228

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018767255

Country of ref document: EP

Effective date: 20191014