WO2016059780A1 - 湿度検出装置および防霜装置 - Google Patents

湿度検出装置および防霜装置 Download PDF

Info

Publication number
WO2016059780A1
WO2016059780A1 PCT/JP2015/005111 JP2015005111W WO2016059780A1 WO 2016059780 A1 WO2016059780 A1 WO 2016059780A1 JP 2015005111 W JP2015005111 W JP 2015005111W WO 2016059780 A1 WO2016059780 A1 WO 2016059780A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
heater
windshield
heat
detection
Prior art date
Application number
PCT/JP2015/005111
Other languages
English (en)
French (fr)
Inventor
浩司 太田
大島 久純
アウン 太田
中村 真一郎
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015178896A external-priority patent/JP6575248B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015004685.2T priority Critical patent/DE112015004685B4/de
Publication of WO2016059780A1 publication Critical patent/WO2016059780A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/66Investigating or analyzing materials by the use of thermal means by investigating moisture content by investigating dew-point
    • G01N25/68Investigating or analyzing materials by the use of thermal means by investigating moisture content by investigating dew-point by varying the temperature of a condensing surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating

Definitions

  • the present disclosure relates to a humidity detection device that detects the humidity inside the vehicle interior of the windshield in order to detect clouding of the windshield of the vehicle.
  • the present disclosure also relates to an anti-fogging device for clearing the windshield from fogging. More particularly, the present invention relates to an anti-fogging device for clearing the fog of a vehicle windshield.
  • the vehicular anti-fogging device disclosed in Patent Document 1 suppresses a decrease in heating capacity while suppressing the occurrence of fogging of the windshield. For this reason, the antifogging device for vehicles disclosed in Patent Document 1 determines whether or not the windshield is easily fogged based on the relative humidity of the windshield. When the humidity sensor detects window fogging, the vehicle air conditioner constituting the vehicle antifogging device is set to the DEF mode, and control is performed to clear the window fogging.
  • the windshield in the vehicle antifogging device disclosed in Patent Document 2 has a transparent base material that is a resin or glass body.
  • the metal pattern which comprises a heating wire is arrange
  • the metal pattern is thinned to about 3 microns to ensure visibility.
  • the metal pattern is covered with the primer layer and the hard coat layer so as to cover all the unevenness of the metal pattern.
  • An adhesive layer is provided between the transparent substrate and the metal pattern.
  • the reference value when the humidity sensor detects fogging is delicately considered in consideration of an error in the humidity detection value and a difference in the shape or material of the windshield for each vehicle.
  • the window fog could not be detected with certainty unless adjusted.
  • the heat flow from the metal pattern of Patent Document 2 passes not only to the moisture on the vehicle interior side, but also to the absorption and accumulation of the metal pattern itself, and the adhesive layer and the transparent substrate side.
  • the transparent base material is glass and the outside of the passenger compartment is at a low temperature, not only window fogging is likely to occur, but also the amount of heat escaping from the transparent base material side to the outside of the passenger compartment increases.
  • This disclosure aims to obtain a humidity detection device that can more easily detect window fogging.
  • Another object of the present disclosure is to obtain an anti-fogging device that can reduce the amount of heat that escapes from the transparent substrate side to the outside of the passenger compartment and that can reduce the amount of electric power that is required to clear window fogging.
  • a humidity detection apparatus includes a detection unit that is attached to a vehicle interior side of a windshield serving as a window of a vehicle and detects fogging of the window, and constitutes a part of the windshield and is disposed outside the windshield. And a heat insulating part that constitutes a part of the wind seal and covers at least a part of the vehicle interior side surface of the outer surface part.
  • the heat insulating part has a first heat insulating part located between the detection part and the outer surface part and a second heat insulating part other than the first heat insulating part, and the first heat insulating part is a second heat insulating part.
  • the thermal conductivity is higher than the part.
  • the detection portion since the heat conduction of the first heat insulating portion is higher than the heat conductivity of the second heat insulating portion, when the outer surface portion is cooled by the outside air, the detection portion is cooled by the outside air. Therefore, it becomes easy for the detection unit to detect humidity. Therefore, it becomes easy for the detection unit to reliably detect the humidity before or immediately after the start of fogging before significant clouding occurs on the second heat insulating unit side. Therefore, even if there is some variation in the humidity detection in the detection unit, it becomes easy for the detection unit to reliably detect the humidity that causes the clouding before the field of view of the occupant in the vehicle deteriorates due to the clouding.
  • An antifogging device includes an outer surface portion that constitutes a part of a windshield that serves as a window of a vehicle and is positioned outside the windshield, and a part of the windshield that constitutes an outer surface portion.
  • a heat insulating part that covers at least a part of the vehicle interior side surface of the vehicle, and a transparent thin film or linear shape that is provided on the vehicle interior side of the heat insulating part and includes any of carbon nanotubes, metal particles, carbon particles, and metal oxide particles
  • the heater section and an energizing section for energizing power from a battery mounted on the vehicle in the heater section, and the heat insulating section is configured to have a greater thickness in the vehicle interior and exterior directions than the heater section.
  • the heater unit is configured as a transparent thin film or linear heater including any of carbon nanotubes, metal particles, carbon particles, and metal oxide particles.
  • any of the carbon nanotubes, metal particles, carbon particles, and metal oxide particles is fine and has a small heat capacity, the amount of heat generated and accumulated in the heater portion is small. As a result, it is possible to efficiently evaporate the water that causes fogging that adheres to the vehicle interior side of the heater portion due to the heat generated by the heater portion.
  • the heat insulation part is comprised thicker in the vehicle inside / outside direction than the heater part. Accordingly, the amount of heat escaping from the outer surface side serving as the transparent substrate to the outside of the passenger compartment is small, and the amount of electric power required to clear window fogging can be reduced.
  • the thickness in the vehicle inside / outside direction is a thickness along a line connecting the inside and the outside of the vehicle, and the thickness of the windshield usually means the thickness in the vehicle inside / outside direction.
  • FIG. 10 is a partially enlarged explanatory view of the humidity detection device of FIG. 9.
  • FIG. 1 It is a partially abbreviated sectional view showing a state where an anti-fogging device according to a sixth embodiment is provided on a windshield serving as a windshield. It is an electrical circuit diagram of the anti-fogging device of FIG. It is a partially abbreviate
  • a humidity detection device 100 includes a windshield 30 serving as a vehicle window, and a detection unit 10 that is attached to the vehicle interior side of the windshield 30 to detect fogging of the window.
  • This detection part 10 is a sensor part of a humidity detection apparatus.
  • the windshield 30 is also called a windscreen, and has an outer surface portion 31 made of glass or resin located outside the window, and a heat insulating portion 34 made of a heat insulating film that covers the surface of the outer surface portion 31. ing.
  • the heat insulation part 34 is located between the detection part 10 and the outer surface part 31, and is a part other than the first heat insulation part 34a as a heat insulation part within the detection range of the detection part 10 and the first heat insulation part 34a. And a second heat insulating part 34b as a heat insulating part outside the detection range.
  • the outer surface portion of the windshield 30 is made of glass, and the lower surface side in FIG. 1 is an inner surface 30a facing the vehicle interior, and the upper surface side is an outer surface 30b facing the vehicle interior.
  • the position of the first heat insulating part 34a and the detecting part 10 is set to a position where the first heat insulating part 34a overlaps with 100% of the bottom area of the detecting part 10 in FIG.
  • the 1st heat insulation part 34a may shift
  • the heat conduction of the first heat insulating part 34a is set to be better than the heat conduction of the second heat insulating part 34b.
  • the 1st heat insulation part 34a is set so that heat conductivity may become higher than the 2nd heat insulation part 34b.
  • the heat conduction of the first heat insulating portion 34a is increased. 2 It can set so that it may be better than the heat conduction of the heat insulation part 34b (that is, heat conductivity is high). That is, in this case, the material of the first heat insulating part 34a and the material of the second heat insulating part 34b are different, and the second heat insulation in which the heat conduction of the first heat insulating part 34a that becomes the low heat insulating part becomes the high heat insulating part. It is better than the heat conduction of the portion 34b. That is, at least half or more of the window fogging detection range corresponding to the width W1 of the detection unit 10 is configured to overlap with the first heat insulating unit 34a having low heat insulating properties.
  • the heat conduction of the 1st heat insulation part 34a is better than the heat conduction of the 2nd heat insulation part 34b.
  • metal powder or filler that improves heat conduction is mixed in the first heat insulating portion 34a.
  • carbon nanotubes also referred to as CNT having good thermal conductivity may be mixed.
  • a transparent foamed resin may be used as the first heat insulating part 34a and the second heat insulating part 34b, and the total amount of foam voids in the first heat insulating part 34a may be smaller than that of the second heat insulating part 34b in order to improve heat conduction.
  • the first heat insulating portion 34a has fewer foam voids that hinder heat conduction and has a higher resin density, heat conduction can be improved.
  • nanocell foaming is known in which nano-sized bubbles (nanocells) having a diameter smaller than 1 micron are filled in the film.
  • the thermal conductivity related to the heat conduction defines the size of the heat flux carried along the gradient when there is a temperature gradient in the medium in the heat conduction from the outside of the window to the vehicle interior side. It is a physical quantity.
  • the difference in heat conduction is that the material of the first heat insulating part 34a and the material of the second heat insulating part 34b are different, and the heat conductivity of the first heat insulating part 34a is higher than the heat conductivity of the second heat insulating part 34b. Based on being big.
  • the thickness of the 1st heat insulation part 34a and the thickness of the 2nd heat insulation part 34b can be made the same, and a level
  • a heater portion 35 that covers the heat insulating portion 34 is provided on the lower right side in FIG. 1, which is the vehicle interior side of the heat insulating portion 34, and the detection unit 10 is further attached to the vehicle interior side of the heater portion 35. ing. When the clouding is detected based on the signal from the detection unit 10, the heater unit 35 is energized to remove the clouding of the window.
  • An example of the heater part 35 is formed by vapor-depositing a transparent conductive film on a glass or resin film surface at a high temperature.
  • Silver paste is provided as an electrode on both ends of the transparent conductive film, and current is passed through the transparent conductive film to generate heat.
  • These transparent conductive film and silver paste can be further covered with a glass cover.
  • the transparent conductive film is mainly formed of indium oxide.
  • the surface resistance of the transparent conductive film is changed depending on the blending ratio of the components constituting the transparent conductive film. For example, when the silver content is reduced, the surface resistance increases, and the amount of heat generation decreases even when the same voltage is applied.
  • the heater unit 35 includes a first heater unit 35a that is installed so as to overlap 50% or more of the bottom area of the width W1 of the detection unit 10, and a second heater unit 35b that is the remaining heater unit 35 other than the first heater unit 35a. including.
  • the heater unit 35 may be configured by installing a plurality of thin heat rays that do not significantly obstruct the field of view in the transparent member.
  • the density of the heat rays is higher in the second heater portion 35b than in the first heater portion 35a.
  • the heater part 35 has a high temperature part and a low temperature part, and at least half of the window fogging detection range (width W1) of the detection part 10 is a low temperature part.
  • the anti-fogging device can be configured by using the DEF mode of the existing vehicle air conditioner together with the heater unit 35 or instead of the heater unit 35.
  • FIG. 2 shows an anti-fogging device in which the detection unit 10 is attached to the upper part of the windshield, and hot air is blown out from the defroster outlet 37 of the vehicle interior air conditioning unit 360 in the vehicle air conditioner to prevent fogging or to remove fogging. The structure of is shown.
  • the heater part 35 and the warm air from the defroster outlet 37 of the vehicle interior air conditioning unit 360 are used to prevent fogging.
  • the detection unit 10 detects clouding, warm air is blown toward the windshield 30 to remove the clouding of the window, but only the vehicle interior air conditioning unit 360 or the heater unit You may comprise an anti-fog apparatus only by 35.
  • the windshield 30 is obtained by bonding the outer surface portion 31, the heat insulating portion 34, and the heater portion 35 shown in FIGS. 1 and 2.
  • the heater unit 35 may be omitted.
  • the detection unit 10 includes a case 11 that is formed of resin or the like and is divided into an upper case 11 a and a lower case 11 b.
  • the case 11 has a thin rectangular parallelepiped shape with a low height, and a plurality of ventilation slits 10s are provided on the side wall portion of the upper case 11a so that the vehicle interior air in the installation environment flows inside.
  • the outer surface portion 31 of the windshield 30 is the front (front) glass of the vehicle as in FIG. 1, the upper surface side of FIG. 3 is the inner surface 30a facing the vehicle interior, and the lower surface side is the outer surface 30b facing the vehicle interior.
  • the detection part 10 is affixed and fixed to the inner surface 30a of the windshield 30 with the adhesive sheet 13 on the upper part of the rear-view mirror etc. which are not shown in figure, for example.
  • the adhesive sheet 13 is a double-sided adhesive sheet having a thickness of about 0.5 mm, and bonds the lower case 11b and the windshield 30 together.
  • the circuit board 14 is installed in parallel with the surface of the windshield 30. More specifically, the circuit board 14 is fastened and fixed to the lower case 11 b by three screws 24.
  • a glass temperature sensor 23 is mounted on the surface of the circuit board 14 on the lower case 11b side. Further, a humidity sensor 17, an air temperature sensor 18, an arithmetic circuit (IC) 20, a connector 22, and an amplifier and a communication circuit (not shown) are mounted on the surface on the upper case 11a side.
  • the humidity sensor 17 is installed at a corner near the periphery of the circuit board 14, and an arithmetic circuit 20 is installed at a portion near the periphery on the diagonal side of the humidity sensor 17. This is because the arithmetic circuit 20 generates heat due to the operation, but the heat generation of the arithmetic circuit 20 affects the humidity environment detected by the humidity sensor 17 by installing the circuit board 14 as far away as possible in the circuit board 14. Is to prevent.
  • the humidity sensor 17 is installed so as to bridge over the through hole 14b opened in the circuit board 14 in order to improve ventilation. At the same time, the circuit board 14 around the humidity sensor 17 has a slit 14a for preventing heat from being transmitted from the board.
  • the humidity sensor 17 is of a capacitance change type in which the dielectric constant of the moisture sensitive film changes according to the relative humidity of the air, whereby the capacitance changes according to the relative humidity of the air. Is used.
  • the air temperature sensor 18 and the glass temperature sensor 23 are installed in the central portion of the circuit board 14 so as to be as close to the humidity sensor 17 as possible, and are installed substantially coaxially on the front and back of the circuit board 14. . This is because the typical air humidity on the inner surface of the windshield and the typical temperature on the inner surface of the windshield are detected under the same environmental conditions as much as possible.
  • the temperature sensors 18 and 23 are thermistors whose resistance values change according to the temperature.
  • the circuit board 14 between the air temperature sensor 18 and the glass temperature sensor 23 and the arithmetic circuit 20 has a slit 14a for preventing heat transfer through the board.
  • the slit 14a may be installed so as to surround the temperature sensor unit.
  • the connector 22 is fastened and fixed to the circuit board 14 with screws 25.
  • terminals of the connector 22 are soldered to the conductor circuit portion of the circuit board 14, and the electric circuit portion including the amplifier, arithmetic circuit and communication circuit of the circuit board 14, the air conditioning control device 26 of FIG. Is electrically connected to an external circuit.
  • a metal member 16 having a high thermal conductivity is integrated by insert molding at a portion corresponding to the glass temperature sensor 23 of the lower case 11b.
  • a copper plate having a thickness of 2 mm is used as the metal member 16.
  • the heat conductive member 15 having good heat conductivity is attached to both sides of the metal member 16.
  • the heat conducting member 15 is a member such as a heat conducting sheet, a heat conducting gel, or a heat conducting grease. More specifically, a glass-side heat conductive member 15a having a thickness of 0.6 mm is provided on the glass side surface of the metal member 16, and a sensor-side heat conductive member having a thickness of 0.8 mm is provided on the sensor side surface of the metal member 16. (Second heat conducting member) 15b is provided.
  • the glass temperature sensor 23 When the circuit board 14 is fastened and fixed to the lower case 11b, the glass temperature sensor 23 is pressed against the sensor-side heat conduction member 15b to a certain extent. Further, the glass-side heat conductive member 15 a is slightly thicker than the surrounding adhesive sheet 13. Therefore, it slightly protrudes from the opening windows 13a1 and 13a2 of the adhesive sheet 13. As a result, when the detection part 10 is affixed on the windshield inner surface 30a, the glass side heat conductive member 15a is reliably pressed against the glass surface.
  • the outer surface portion 31 may be made of resin instead of glass.
  • the windshield 30 is simply illustrated in one layer in FIG. 3, it actually has a three-layer structure of an outer surface portion 31, a heat insulating portion 34, and a heater portion 35 as shown in FIG. 1.
  • the temperature of the windshield 30 is detected by conducting heat transfer from the glass side heat conducting member 15a to the metal member 16 to the sensor side heat conducting member 15b to the glass temperature sensor 23.
  • the upper case 11a is fitted to the lower case 11b while pressing the circuit board 14, and is locked and fixed by a locking claw (not shown) provided at the lower end of the side wall of the upper case 11a.
  • FIG. 4 mainly shows an electrical block of the detection unit 10 of FIG.
  • the output signals of the sensors 17, 18, and 23 are amplified by the respective amplifiers 19a to 19c (19) and input to the arithmetic circuits 20a to 20c (20).
  • the glass surface relative humidity is calculated by the glass surface relative humidity calculation circuit 20d based on the calculated values of the relative humidity calculation circuit 20a, the air temperature calculation circuit 20b, and the glass temperature calculation circuit 20c.
  • the calculated value of the calculation circuit 20d is output to the air conditioning control device 26 through the communication circuit 21.
  • the vehicular air-conditioning unit 360 shown in FIG. 2 has a dashboard (instrument panel) and a vehicle compartment at the foremost part of the vehicle interior, although most of the explanation is omitted because the vehicle air-conditioner controlled by the air-conditioning control device 26 is well known. It is disposed on the inner side.
  • the vehicle interior air conditioning unit 360 has a case, and an air passage through which air is blown toward the vehicle interior.
  • An inside / outside air switching box is installed at the most upstream part of the air passage of this case, and the inside / outside air inlet or the outside air inlet is switched as an air inlet by the inside / outside air switching door (inside / outside air switching means).
  • An electric blower that blows air toward the passenger compartment is provided on the downstream side of the inside / outside air switching box.
  • This blower drives a multiblade centrifugal blower fan by a blower motor.
  • An evaporator for cooling the blown air is installed on the downstream side of the blower.
  • This evaporator is one of the elements constituting the refrigeration cycle apparatus, and the blown air is cooled by the low-temperature and low-pressure refrigerant absorbing heat from the blown air and evaporating.
  • the refrigeration cycle apparatus is a well-known one, and the refrigerant circulates from the discharge side of the compressor to the evaporator through an expansion valve that constitutes a condenser, a liquid receiver, and a decompression unit.
  • the outside air is blown to the condenser by an electric cooling fan.
  • the compressor is driven by an electric motor for driving the compressor.
  • a heater core for heating the air flowing in the case is installed downstream of the evaporator in the indoor air conditioning unit.
  • This heater core is a heat exchanger for heating that heats the air (cold air) that has passed through the evaporator using hot water (engine cooling water) of the vehicle running engine as a heat source.
  • a bypass passage is formed on the side of the heater core, and the bypass air of the heater core flows through the bypass passage.
  • an air mix door is installed between the evaporator and the heater core to form a temperature adjusting means.
  • the air mix door is driven by a servo motor, and its rotational position (opening) can be continuously adjusted.
  • the ratio of the amount of air passing through the heater core (warm air amount) and the amount of air passing through the bypass passage and bypassing the heater core (cold air amount) is adjusted according to the opening of the air mix door, thereby blowing out into the passenger compartment.
  • the temperature of the air is adjusted.
  • a defroster outlet 37 is provided at the most downstream part of the air passage of the case for blowing air-conditioned air toward the front windshield 30 of the vehicle.
  • a face air outlet for blowing air-conditioned air toward the passenger's head and chest and a foot air outlet for blowing air-conditioned air toward the feet of the passenger are provided. ing.
  • the air conditioning control device 26 stores a control program for air conditioning control in its ROM. In addition to the calculation value of the detection unit 10 described above, a detection signal from a well-known air conditioning sensor group and various operation signals from the air conditioning operation panel are input to the air conditioning control device 26.
  • the temperature-controlled conditioned air is blown into the vehicle interior from one or more of the defroster air outlet 37, the face air outlet and the foot air outlet located at the most downstream portion of the air passage of the case, Air-conditioning in the passenger compartment and fogging of the windshield 30 of the vehicle are removed.
  • FIG. 5 is a flowchart of the arithmetic processing executed by the arithmetic circuit 20 shown in FIG. First, the output values of the sensors 17, 18, and 23 in FIG. 3 (actually the output values amplified by the amplifiers 19a to 19c) are read (S10).
  • the relative humidity RH of the air in the passenger compartment near the windshield 30 is calculated (S20). That is, a predetermined arithmetic expression for converting the output value V of the humidity sensor 17 into the relative humidity RH is set in advance, and the relative humidity RH is calculated by applying the output value V to this arithmetic expression.
  • the following formula 1 is a specific example of this humidity calculation formula.
  • the vehicle interior air temperature near the windshield is calculated by applying the output value of the air temperature sensor 18 to a predetermined arithmetic expression set in advance (S30).
  • the windshield temperature that becomes the glass vehicle indoor side surface temperature is calculated (S40).
  • the windshield surface relative humidity that is, the relative humidity RHw of the windshield vehicle interior side surface is calculated (S50). That is, by using the wet air diagram, the windshield surface relative humidity RHw can be calculated from the relative humidity RH, the air temperature, and the windshield temperature.
  • the obtained value of the windshield surface relative humidity RHw is output to the air conditioning controller 26.
  • the air conditioning control device 26 when the windshield surface relative humidity RHw rises above a predetermined target windshield surface relative humidity TRHw that is a reference value, the outside air mode is set, and the windshield surface relative humidity RHw is higher than (TRHw-a). When it falls, it becomes shy mode.
  • the target windshield surface relative humidity TRHw is, for example, about 85% relative humidity at a level that can sufficiently prevent windshield fogging.
  • the target windshield surface relative humidity TRHw is set near the upper limit humidity at which windshield fogging does not occur, so that the inside / outside ratio is always increased within the range where windshield fogging does not occur.
  • the air suction mode can be controlled. Thereby, by raising the inside air ratio at the start of heating in winter, it is possible to reduce the ventilation heat loss and promote the startup of the vehicle interior heating effect. On the other hand, when it is highly necessary to prevent the windshield from being fogged, the windshield is fogged.
  • the inside / outside air suction mode is forcibly switched to the outside air mode, the blower level of the air blower for air conditioning is increased, and the blowout mode is switched to the defroster mode.
  • warm air heated by introducing low-humidity outside air is blown out from the defroster outlet 37 to the inner surface of the windshield 30.
  • the windshield surface relative humidity RHw can be quickly lowered to remove the clouding of the windshield 30.
  • the windshield 30 is heated by energizing the heater portion 35.
  • the detection unit 10 is attached to the vehicle interior side of the windshield 30 of the vehicle and detects cloudiness.
  • the windshield 30 includes an outer surface portion 31 located outside the windshield 30 and a heat insulating portion 34 that covers the vehicle interior side surface of the outer surface portion 31.
  • the heat insulating part 34 includes a first heat insulating part 34a located between the detection part 10 and the outer surface part 31, and a second heat insulating part 34b other than the first heat insulating part. And the heat conduction of the 1st heat insulation part 34a is better than the heat conduction of the 2nd heat insulation part 34b.
  • the heat conduction of the first heat insulating part 34a is better than the heat conduction of the second heat insulating part 34b. Therefore, when the outer surface portion 31 is cooled by the outside air, the detection unit 10 is well cooled by the outside air. Therefore, the detection unit 10 reliably detects the humidity exceeding the reference value before significant clouding occurs on the second heat insulating unit 34b side. Therefore, even if the detection unit 10 has some variation in humidity detection, the detection unit 10 can more reliably detect the humidity exceeding the reference value to prevent fogging before the occupant's field of view in the vehicle deteriorates due to fogging. Can do.
  • the material of the first heat insulating part 34a is different from the material of the second heat insulating part 34b. According to this, the heat conduction of the 1st heat insulation part 34a is easily set better than the heat conduction of the 2nd heat insulation part 34b by changing the material of the 1st heat insulation part 34a and the material of the 2nd heat insulation part 34b. it can.
  • the heater unit 35 that covers the heat insulating unit 34 is provided on the vehicle interior side of the heat insulating unit 34, and the detection unit 10 is further attached to the vehicle interior side of the heater unit 35. And when the detection part 10 detects the cloudiness exceeding a reference value, it supplies with electricity to the heater part 35 and the cloudiness of a window is removed.
  • the detection unit 10 is cooled well by the outside air. Therefore, the detection unit 10 detects humidity exceeding the reference value before significant clouding occurs on the second heat insulating unit 34b side. Therefore, even if the difference in the shape material of the windshield 30 for each vehicle is not taken into account, the detection unit 10 can more reliably detect the humidity exceeding the reference value to prevent fogging. Further, when fogging occurs, the heater unit 35 is heated, so that the fogging can be removed with less energy consumption.
  • the heater part 35 includes a first heater part 35a located between the detection part 10 and the outer surface part 31, and a second heater part 35b other than the first heater part. And when the detection part 10 detects fogging, it supplies with electricity to the heater part 35 and the fogging of a window is removed. In this case, the second heater part 35b is controlled to generate heat at a higher temperature than the first heater part 35a.
  • the heater 35 is energized to remove the fogging of the window.
  • the temperature of the second heater portion 35b is higher than that of the first heater portion 35a. Therefore, when the detection unit 10 detects fogging, the heater unit 35 is energized, and the window fogging that affects the occupant's field of view is more reliably removed.
  • the thickness of the first heat insulating portion 34a is made relatively thin so that the thickness of the first heat insulating portion 34a is different from the thickness of the second heat insulating portion 34b. Thereby, the heat conduction of the first heat insulating portion 34a is made better than the heat conduction of the second heat insulating portion 34b.
  • the thickness of the 1st heat insulation part 34a is made relatively thin, and the thickness of the 1st heat insulation part 34a and the thickness of the 2nd heat insulation part 34b are changed. Therefore, even if the 1st heat insulation part 34a and the 2nd heat insulation part 34b are the same materials, the heat conduction of the 1st heat insulation part 34a can be easily set better than the heat conduction of the 2nd heat insulation part 34b.
  • the 1st heat insulation part 34a has the area
  • the portion of the hole 36 is not a mere air-containing cavity having no heat insulating material, but is filled with a filler containing a large amount of metal powder and carbon nanotubes that have good heat conduction, so that the heat conduction is Good (high thermal conductivity). Therefore, as a whole, the first heat insulating portion 34 a in which the hole 36 is partially formed has better heat conduction than the second heat insulating portion 34 b without the hole 36.
  • heat conduction is good (thermal conductivity) affects not only the difference in thermal conductivity depending on the material, but also the shape and dimensions.
  • the material concentration distribution for example, the filler concentration distribution, that is, the distribution region of the heat conduction portion, also affects the heat conductivity.
  • the hole 36 may be filled with heat conductive gel or heat conductive grease. If a plurality of holes 36 are provided to reduce the inner diameter of the hole 36, the heat conductive gel or the heat conductive grease can be held in the hole 36 without flowing out by capillary action.
  • a foamed resin may be used as the material of the first heat insulating part 34a and the second heat insulating part 34b, and the resin density of the foamed resin may be changed to make a difference in heat conduction.
  • the resin density of the foamed resin of the first heat insulating portion 34a is increased, and the ratio of the amount of foam voids in the resin is reduced.
  • a foamed resin for the second heat insulating part 34b When using a foamed resin for the second heat insulating part 34b, it is desirable to use a transparent foamed resin using nanocell foaming that fills the film with nano-order bubbles (nanocells) having a diameter smaller than 1 micron. According to this, since the 1st heat insulation part 34a has few foaming space
  • the vehicle windshield 30 includes a front windshield 30f, a side windshield 30s, and a rear windshield 30r.
  • the front windshield 30f that is most problematic when the windshield 30 is clouded. Therefore, the anti-fogging effect accompanying energy consumption is most enhanced in the front windshield 30f, leading to energy saving.
  • an anti-fogging device using the heater unit 35 is provided in any of the front windshield 30f, the side windshield 30s, and the rear windshield 30r.
  • the amount of heat generated by the heater portion 35 in the front windshield 30f is set to be larger than the amount of heat generated by the heater portion 35 in the other side windshield 30s and the rear windshield 30r.
  • the surface resistance of the transparent conductive film is reduced by the mixing ratio of the components constituting the transparent conductive film of the heater part 35. For example, when the silver content is increased, the surface resistance decreases, and the amount of heat generated increases even when the same voltage is applied.
  • the heater unit 35 is constituted by a plurality of heat wires installed in a transparent member, the amount of heat generated even if the same voltage is applied by increasing the number of heat wires per unit area, which is the density of the heat rays. Will increase.
  • the amount of heat generated when the heater portion 35 of the front windshield 30f is fogged is set larger than the amount of heat generated when the heater portion 35 of the other side windshield 30s and rear windshield 30r is fogged.
  • the front windshield 30f is preferentially anti-fogged, so that limited vehicle energy can be used to improve vehicle safety.
  • the detection unit 10 includes a case 11 that is formed of resin or the like and is divided into an upper case 11a and a lower case 11b. Therefore, since the driver looks at the detection unit 10, the installation position becomes difficult. In other words, the detection unit 10 must be provided so that the forward field of view is not hindered and unobtrusive.
  • a structure is provided in which the detection unit 10 does not obstruct the front view and does not obstruct the eyes.
  • the detection part 10 is comprised from the thin film
  • the humidity detection device 100 includes a windshield 30 serving as a vehicle window, and a detection unit 10 that is attached to the vehicle interior side of the windshield 30 to detect fogging of the window.
  • This detection part 10 comprises the sensor part of a humidity detection apparatus.
  • the windshield 30 is also called a windscreen, and has an outer surface portion 31 made of glass or resin located outside the window, and a heat insulating portion 34 composed of a heat insulating film covering the surface of the outer surface portion 31. ing.
  • the heat insulation part 34 is a first heat insulation part 34a which is a heat insulation part within the detection part range located between the detection part 10 and the outer surface part 31, and a heat insulation part outside the detection part range other than the first heat insulation part 34a. 2 heat insulation part 34b is included.
  • the driver in the vehicle compartment permeates most of the second heat insulating portion 34 b and visually recognizes the external state of the vehicle.
  • the outer surface portion of the windshield 30 is made of glass, and the lower surface side of FIG. 9 is an inner surface 30a facing the vehicle interior, and the upper surface side is an outer surface 30b facing the vehicle interior.
  • the positions of the first heat insulation part 34a and the detection part 10 are set so that the first heat insulation part 34a overlaps 100% of the bottom area of the detection part 10 as shown in FIG.
  • the first heat insulating portion 34 a exists between the detection portion 10 and the outer surface portion 31 and is positioned so as to face the detection portion 10 by 100% of the bottom area of the detection portion 10.
  • the first heat insulating portion 34a may be positioned so as to be opposed between the detecting portion 10 and the outer surface portion 31 by overlapping 50% or more of the bottom area of the detecting portion 10. That is, the 1st heat insulation part 34a does not need to completely oppose the detection part 10, and may shift
  • the first heat insulating part 34a overlaps with at least 50% of the area of the detecting part 10. Further, the heat conduction of the first heat insulating part 34a is better than the heat conduction of the second heat insulating part 34b (the heat conductivity is high).
  • the heat conduction of the first heat insulating portion 34a is the heat of the second heat insulating portion 34b. It can be set to be better than conduction.
  • the material of the first heat insulating part 34a is different from the material of the second heat insulating part 34b, and the thermal conductivity of the first heat insulating part 34a serving as the low heat insulating part is the second heat insulating part. It is larger than the thermal conductivity of the heat insulating part 34b. That is, at least half or more of the window fogging detection range corresponding to the width W1 of the detection unit 10 in FIG. 9 is configured to overlap the first heat insulation unit 34a having low heat insulation properties.
  • the thermal conductivity related to the heat conduction defines the size of the heat flux carried along the gradient when there is a temperature gradient in the medium in the heat conduction from the outside of the window to the vehicle interior side. It is a physical quantity, and the reciprocal of thermal conductivity is thermal resistivity.
  • the difference in heat conduction is that the material of the first heat insulating part 34a and the material of the second heat insulating part 34b are different, and the heat conductivity of the first heat insulating part 34a is higher than the heat conductivity of the second heat insulating part 34b.
  • the thickness of the 1st heat insulation part 34a and the thickness of the 2nd heat insulation part 34b can be made the same, and a level
  • all of the first heat insulating portions 34a may not have a region having a higher thermal conductivity than the second heat insulating portion 34b.
  • a heater portion 35 that covers the heat insulating portion 34 is provided on the lower right side that is the vehicle compartment side of the heat insulating portion 34, and the detection portion 10 is further provided on the vehicle interior side of the heater portion 35.
  • a vehicle anti-fogging device is configured in which the heater unit 35 is energized to remove the fog on the window.
  • An example of the heater unit 35 is obtained by depositing a transparent conductive film on a glass or resin film surface at a high temperature.
  • Silver paste is provided as an electrode on both ends of the transparent conductive film, and heat is generated by passing a current through the transparent conductive film.
  • These transparent conductive film and silver paste may be further covered with a glass cover.
  • the transparent conductive film is formed of a rare metal mainly composed of indium oxide. The surface resistance of the transparent conductive film varies depending on the blending ratio of the components constituting the transparent conductive film.
  • the heater part 35 includes a first heater part 35a installed so as to overlap 50% or more with respect to the bottom area having the width W1 of the detection part 10.
  • the heater unit 35 may be configured by installing a thin heat ray made of carbon nanotubes or the like that does not significantly obstruct the field of view in the transparent member.
  • the carbon nanotube here is a carbon crystal having a hollow cylindrical structure, which is a tube-shaped substance having a diameter of 0.7 to 70 nm, about one tenth of a thousandth of hair, and a length of several tens of micrometers or less.
  • Carbon nanotubes are characterized by a large surface area of 100 to 1000 square meters per gram due to their high aspect ratio. Transparent conductive films or transparent planar heaters using these carbon nanotubes are already on the market.
  • the density of the heat rays is higher in the second heater part 35b than in the first heater part 35a.
  • the heater part 35 has a high temperature part and a low temperature part, and at least half of the window fogging detection range (width W1) of the detection part 10 is a low temperature part.
  • the anti-fogging device can be configured by using the DEF mode of the existing vehicle air conditioner together with the heater unit 35 or instead of the heater unit 35.
  • the detection unit 10 is attached to the upper part of the windshield, and hot air is blown out from the defroster outlet 37 of the vehicle interior air conditioning unit 360 in the vehicle air conditioner to prevent fogging or to remove fogging.
  • the structure of the fogging device is shown.
  • the heater portion 35 and the warm air from the defroster outlet 37 of the vehicle interior air conditioning unit 360 are used to prevent fogging.
  • the detection unit 10 detects clouding, warm air is blown toward the windshield 30 to remove the clouding of the window, but only the vehicle interior air conditioning unit 360 or the heater unit
  • the anti-fogging device may be constituted by 35 alone.
  • the substrate unit 101 of the detection unit 10 is bonded to the first heater unit 35a at a position where the detection unit 10 contacts the first heater unit 35a.
  • a carbon nanotube layer 102 is formed on the vehicle interior side (upper side of FIG. 10) of the substrate 101, and a moisture permeable film 103 is further formed on the vehicle interior side (upper side of FIG. 10).
  • the moisture permeable membrane 103 allows moisture to permeate, and if moisture adheres to the vehicle interior side (upper side of FIG. 10) of the moisture permeable membrane 103 due to window fogging, the moisture reaches the carbon nanotube layer 102.
  • the resistance of the carbon nanotube layer 102 that has absorbed moisture increases. The relationship between the moisture content and the resistance value is linear.
  • the substrate unit 101 can be made of translucent alumina ceramics.
  • the moisture permeable membrane 103 and the carbon nanotube layer 102 are generally called moisture sensitive membranes, and various types can be adopted. As an example, a dispersion of carbon nanotubes is applied in a band shape on a transparent insulating substrate and dried to connect the electrodes 104 and 105, and then a moisture permeable film 103 made of cellophane is placed thereon.
  • the moisture permeable film 103 can protect the carbon nanotube layer 102, but is not essential, and moisture may be directly attached to the carbon nanotube layer 102. Further, as in the first embodiment, the density of the heat rays is higher in the second heater portion 35b.
  • the heater part 35 has a high temperature part and a low temperature part, and at least half or more of the window fogging detection range (width W1) of the detection part 10 is opposed to the low temperature part.
  • the windshield 30 is obtained by bonding an outer surface portion 31, a heat insulating portion 34, and a heater portion 35 together.
  • the heater unit 35 may be omitted. That is, the anti-fogging effect by the air-conditioning wind may be used instead of the anti-fogging by the heat generation of the heater.
  • the outer surface portion 31 of the windshield 30 is a front (front) glass of the vehicle, the upper side in FIG. 10 is an inner surface 30a facing the vehicle interior, and the lower side is an outer surface 30b facing the vehicle interior.
  • the detection unit 10 is installed on the inner surface 30 a of the windshield 30. Since the whole detection part 10 has translucency, a visual field is not disturbed and it does not become obstructive. In addition, since the electrodes 104 and 105 are thin metal wires, they do not disturb the field of view and do not obstruct the eyes.
  • the measurement unit 106 may manufacture a fine circuit on the glass substrate so as not to be obstructive, but when it is obstructive, it is formed at the corner of the windshield 30 to convert moisture into an electrical signal. The converted electrical signal is amplified as necessary and guided to an air conditioning control device called an air conditioner ECU.
  • the vehicular air conditioning unit 360 controlled by the air conditioning control device 26 is well known and therefore will not be described.
  • the vehicle interior air conditioning unit 360 of FIG. 2 to be used is located inside the instrument panel (instrument panel) at the forefront of the vehicle interior. It is arranged in the part.
  • the vehicle interior air conditioning unit 360 has a case, and an air passage through which air is blown toward the vehicle interior is formed in the case.
  • An inside / outside air switching box is installed in the uppermost stream part of the air passage of this case, and the inside / outside air inlet and the outside air inlet are switched by an inside / outside air switching door (inside / outside air switching means).
  • This inside / outside air switching door is driven by a servo motor.
  • An electric blower that blows air toward the passenger compartment is installed downstream of the inside / outside air switching box.
  • This blower drives a multiblade centrifugal blower fan by a blower motor.
  • An evaporator (cooling heat exchanger) for cooling the blown air is installed on the downstream side of the blower.
  • This evaporator is one of the elements constituting the refrigeration cycle apparatus, and cools the blown air by the low-temperature and low-pressure refrigerant absorbing heat from the blown air and evaporating.
  • the refrigeration cycle apparatus is well known and is configured such that the refrigerant circulates from the discharge side of the compressor to the evaporator through an expansion valve that forms a condenser, a liquid receiver, and a decompression unit.
  • the outside air (cooling air) is blown to the condenser by an electric cooling fan.
  • This cooling fan is driven by a motor.
  • the compressor In the refrigeration cycle apparatus, the compressor is driven by a compressor driving motor.
  • a heater core is installed downstream of the evaporator in the indoor air conditioning unit.
  • This heater core heats the air (cold air) that has passed through the evaporator using hot water (engine cooling water) of the vehicle running engine as a heat source.
  • a bypass passage is formed on the side of the heater core, and air bypassing the heater core flows through the bypass passage.
  • an air mix door forming a temperature adjusting means is rotatably installed between the evaporator and the heater core.
  • This air mix door is driven by a servo motor, and its rotational position (opening) can be continuously adjusted.
  • the ratio of the amount of air passing through the heater core (warm air amount) and the amount of air passing through the bypass passage and bypassing the heater core (cold air amount) is adjusted according to the opening of the air mix door, thereby blowing out into the passenger compartment.
  • the temperature of the air is adjusted.
  • a defroster outlet 37 is provided at the most downstream part of the air passage of the case. Further, in the most downstream part of the air passage of the case, there are a total of 3 face air outlets for blowing air-conditioned air toward the passenger's head and chest, and foot air outlets for blowing air-conditioned air toward the passenger's feet. There are various types of outlets.
  • the air conditioning control device 26 stores a control program for air conditioning control in its ROM, and performs various arithmetic processes based on the control program. And the calculated value of the above-mentioned detection part 10 is input into the air-conditioning control apparatus 26.
  • the temperature-controlled conditioned air is blown into the vehicle interior from one or more of the defroster air outlet 37, the face air outlet and the foot air outlet located at the most downstream portion of the air passage of the case, Air conditioning in the passenger compartment and anti-fogging of the windshield 30 of the vehicle are performed.
  • the output value of the measurement unit represents a resistance value proportional to the amount of moisture, and is input to the air conditioning control device 26.
  • the air conditioning control device 26 when the moisture content WRHw on the windshield surface is higher than a predetermined target windshield moisture content WTRHw serving as a reference value, the outside air mode is set. Then, when the predetermined amount a is set to a and the water content WRHw on the windshield surface is lower than (WTRHw-a), the inside air mode is set.
  • the target windshield moisture amount WTRHw is obtained in advance by experiments as a moisture amount at a level that can sufficiently prevent windshield fogging.
  • the target windshield moisture amount WTRHw is set near the upper limit moisture amount at which windshield fogging does not occur, so that the inside / outside air ratio is constantly increased within the range where windshield fogging does not occur.
  • the air suction mode can be controlled. Thereby, by raising the inside air ratio at the start of heating in winter, it is possible to reduce the ventilation heat loss and promote the start of the vehicle interior heating effect. On the other hand, when it is highly necessary to prevent the windshield from being fogged, the windshield is subjected to fog prevention control.
  • the inside / outside air suction mode is forcibly switched to the outside air mode, the blower level of the electric blower for air conditioning is increased, and the blowing mode is set to the defroster mode. Accordingly, warm air heated by introducing low humidity outside air is blown out from the defroster outlet 37. At the same time, by increasing the amount of warm air blown out, the amount of water on the surface of the windshield can be quickly reduced to remove the fogging of the windshield 30. Furthermore, the windshield 30 is heated by energizing the heater unit 35.
  • the windshield 30 is cloudy due to condensation.
  • the outer surface is cooled by the outside air and the air in contact with the inner surface of the windscreen is cooled and exceeds the saturated water vapor amount, the remaining water vapor becomes water droplets and cloudiness occurs. Therefore, it is preferable to detect the amount of water exceeding the reference value, which is the limit, immediately before or immediately after clouding occurs.
  • the detection unit 10 is provided on the vehicle interior side of the windshield 30 of the vehicle and detects the moisture content.
  • the windshield 30 includes an outer surface portion 31 located outside the windshield 30 and a heat insulating portion 34 that covers the vehicle interior side surface of the outer surface portion 31.
  • the heat insulating portion 34 includes a first heat insulating portion 34a that is located substantially opposite between the detecting portion 10 and the outer surface portion 31, and a second heat insulating portion 34b other than the first heat insulating portion 34a.
  • the detection unit 10 when the outer surface portion 31 is cooled by the outside air, the detection unit 10 is well cooled by the outside air. Therefore, it is easy for the detection unit 10 to reliably detect the amount of moisture exceeding the reference value before significant clouding occurs on the second heat insulating unit 34b side. Therefore, even if the detection unit 10 has some variation in the detection of the moisture content, the detection unit 10 more reliably detects and prevents the moisture content exceeding the reference value before the occupant's view in the vehicle becomes worse due to clouding. Can be cloudy. In other words, external cold air is transmitted to the inner surface of the windshield 30 through the first heat insulating portion 34a having a relatively high thermal conductivity.
  • the inner surface of the windshield 30 corresponding to the 1st heat insulation part 34a is actively cooled compared with the inner surface of the windshield 30 corresponding to the 2nd heat insulation part 34b.
  • dew condensation proceeds relatively quickly on the inner surface of the windshield 30 corresponding to the first heat insulating portion 34a, and the detection unit 10 detects the amount of moisture exceeding the reference value. That is, before the fogging occurs on the inner surface of the windshield 30 corresponding to the second heat insulating part 34b, the detection unit 10 detects the amount of water exceeding the reference ground, so that the entire windshield 30 is prevented from being fogged in advance. Can do.
  • the material of the 1st heat insulation part 34a differs from the material of the 2nd heat insulation part 34b, and the heat conduction of the 1st heat insulation part 34a is better than the heat conduction of the 2nd heat insulation part 34b (thermal conductivity). Is high).
  • the heat conduction of the first heat insulating part 34a can be easily set better than the heat conduction of the second heat insulating part 34b.
  • the heater unit 35 that covers the heat insulating unit 34 is provided on the vehicle interior side of the heat insulating unit 34, and the detection unit 10 is provided further on the vehicle interior side of the heater unit 35. And when the detection part 10 detects the cloudiness which exceeds a reference value, it supplies with electricity to the heater part 35 and the fogging of a window is removed.
  • the detection unit 10 is cooled by the outside air. Therefore, the detection unit 10 can reliably detect the humidity exceeding the reference value before significant clouding occurs on the second heat insulating unit 34b side. Therefore, the detection part 10 can detect the humidity exceeding a reference value more reliably and can prevent fogging. Moreover, when cloudiness arises, the heater part 35 is heated.
  • the heater part 35 includes a first heater part 35a located between the detection part 10 and the outer surface part 31, and a second heater part 35b other than the first heater part 35a.
  • the heater unit 35 is energized. In this case, the temperature of the second heater portion 35b is higher than that of the first heater portion 35a.
  • the second heater portion 35b is more easily clouded than the first heater portion 35a. Therefore, when the detection unit 10 detects the amount of water that causes fogging, the heater unit 35 is energized, and the fogging of the window that affects the sight of the occupant is more reliably removed.
  • the heater unit 35 is provided in the windshield 30 for anti-fogging, the heater unit 35 may not be provided. In this case, warm air may be blown from the vehicle air conditioner so that the fogging of the windows is removed. In other words, in a vehicle antifogging device using a humidity detecting device, when the detection unit detects clouding, warm air may be blown toward the windshield to remove the clouding of the window.
  • the heat insulating part 34 includes a first heat insulating part 34a located between the detection part 10 and the outer surface part 31, and a second heat insulating part 34b other than the first heat insulating part 34a. And heat conduction of the 1st heat insulation part 34a was made better than heat conduction of the 2nd heat insulation part 34b.
  • the 1st heat insulation part 34a with favorable heat conduction was used for the part which opposes the detection part 10, like this FIG. 7, in this 1st heat insulation part 34a, the packing with favorable heat conduction is used. You may provide hollow parts, such as a hole which contains inside.
  • the fifth embodiment disclosed a device that uses a new material called carbon nanotubes for the detection part, is transparent, and can measure the moisture content.
  • carbon nanotubes can also be used for the heater unit 35.
  • a carbon nanotube heater wire formed in the shape of a thin wire instead of a thin metal wire is stretched around the inside or the surface of the resin of the heater portion 35, and the carbon nanotube can be energized to generate heat.
  • the heater using this carbon nanotube is lightweight and fine and does not hinder transparency.
  • the heat capacity of the heater itself can be reduced.
  • the calorific value can be effectively used for removing moisture.
  • the 1st heat insulation part 34a has the area
  • region is formed by the difference in distribution of the amount of materials and the amount of metal fillers mixed in. did.
  • carbon nanotubes can be mixed into the resin to form the first heat insulating portion 34a having a region with good heat conduction.
  • the carbon nanotube is fine and has good heat conduction, the first heat insulating portion 34a having high transparency can be formed.
  • the anti-fogging device has a windshield 30 that serves as a window of the vehicle. Further, a heater part 35 is provided above the synthetic resin heat insulating part 34 in the vehicle compartment side in FIG. 11, and a heater part protective film 35 c that becomes a part of the heater part 35 on the vehicle compartment side of the heater part 35. Is provided.
  • the anti-fogging device includes a detection unit 10 that changes an electrical signal in response to moisture adhering to the vehicle interior side of the heater unit 35 or humidity inside the vehicle interior. As the detection unit 10, the detection unit 10 described in the first to fifth embodiments can be used.
  • the heat insulating part 34 is configured to be thicker in the vehicle inside / outside direction than the heater part 35. Naturally, the heat insulating part 34 is configured to be thicker in the vehicle interior / exterior direction than the heater part protective film 35c. As other configurations of the heat insulating portion 34, the configurations of the heat insulating portion 34 described in the first to fifth embodiments can be appropriately applied. That is, the heat insulating part 34 according to the sixth embodiment also includes the first heat insulating part 34a positioned between the detection part 10 and the outer surface part 31, and the second heat insulating part 34b other than the first heat insulating part 34a. (See FIG. 1). And the heat insulation of the 1st heat insulation part 34a is set better than the 2nd heat insulation part 34b (namely, heat conductivity is high).
  • the first heat insulating part 34 a located between the detection part 10 and the outer surface part 31 is located between the detection part 10 and the outer surface part 31 so as to face at least a part of the detection part 10. (See FIG. 1). Specifically, the first heat insulating portion 34 a is positioned so as to overlap 50% or more of the bottom area of the detecting portion 10. At this time, as described in the third embodiment, the first heat insulating portion 34a may have a hollow portion having a hole 36 containing a filler for improving heat conduction (see FIG. 7). Moreover, you may improve the thermal conductivity of the 1st heat insulation part 34a because the material of the 1st heat insulation part 34a and the material of the 2nd heat insulation part 34b differ.
  • the thickness of the first heat insulating portion 34a in the vehicle inside / outside direction to be thinner than the thickness of the second heat insulating portion 34b in the vehicle inside / outside direction. You may improve the heat conductivity of the heat insulation part 34a (refer FIG. 6).
  • the heater portion protective film 35c can be omitted.
  • the heater unit 35 is a layer including a linear heater unit including any of carbon nanotubes (also referred to as CNT), metal particles, carbon particles, and metal oxide particles. Specifically, it is composed of a plurality of line-shaped heating lines using a wire 35d formed using carbon nanotubes. However, you may comprise the heater part 35 as a metal vapor deposition film.
  • a wire 35d formed using carbon nanotubes is formed by arranging a plurality of line segments laid in the direction indicated by the arrow Y35 shown in FIG. Similarly, a current flows in parallel in the direction of the arrow Y35 in each line segment of the plurality of wires 35d. For this purpose, a DC voltage is applied to the electrodes connected to both ends of the wire segment 35d.
  • the sealing portions 35c1 at both ends may be integrated with the heater portion protective film 35c.
  • FIG. 12 shows this electric circuit.
  • the voltage of the battery 43 mounted on the vehicle is applied to the electrodes 41 and 42 via the energization unit 44 having a relay or switch.
  • the energization unit 44 is electrically connected to the detection unit 10, and an electrical signal corresponding to moisture or humidity detected by the detection unit 10 is output to the energization unit 44.
  • the energization unit 44 energizes the heater unit 35 with the electric power of the battery 43 when the moisture or humidity detected by the detection unit 10 is greater than a predetermined amount. As a result, a current flows in the direction of the arrow Y35 through the wire 35d formed using the carbon nanotubes and generates heat.
  • the carbon nanotube here is a carbon crystal having a hollow cylindrical structure, which is a tube-shaped substance having a diameter of 0.7 to 70 nm, about one tenth of a thousandth of hair, and a length of several tens of ⁇ m or less.
  • Carbon nanotubes have a large surface area of 100 to 1000 square meters per gram due to their high aspect ratio, and their heat capacity is small and they do not accumulate heat. Therefore, it has a great feature advantageous for solving the problem of the present embodiment that it can be effectively used for removing moisture whose heating value causes clouding.
  • the heater part 35 is the 1st heater part 35a located in the part facing the detection part 10 between the detection part 10 and the outer surface part 31, similarly to the heater part 35 demonstrated in 1st Embodiment, You may have the 2nd heater part 35b which is the remaining heater parts 35 other than this 1st heater part 35a (refer FIG. 1). And when the detection part 10 detects cloudiness, you may make it the 2nd heater part 35b be heated rather than the 1st heater part 35a.
  • the heater portion protection film 35c protects the wire 35d from external force or the like.
  • the heater part 35 including the heater part protective film 35 c is made thinner than the thickness of the heat insulating part 34.
  • the heat insulating part 34 has a sufficient thickness so that the heat generated by the heater part 35 does not escape outside the passenger compartment due to poor heat conduction.
  • the heat insulating part 34 can be made of foamed resin or the like.
  • the heat conduction referred to here is a physical quantity that regulates the size of the heat flux carried along the gradient when there is a temperature gradient in the medium in the heat conduction from the vehicle interior side to the vehicle exterior side of the window.
  • the reciprocal of thermal conductivity is called thermal resistivity.
  • the difference in heat conduction is affected by the type and material of the resin of the heat insulating portion 34, the voids inside the resin, the presence and amount of metal particles in the resin, the amount of filler, and the thickness dimension of the heat insulating portion 34.
  • the thermal conductivity varies depending on the type of synthetic resin used for the heat insulating portion 34.
  • a transparent foamed resin may be used as the heat insulating part 34, and the total amount of foam voids in the heat insulating part 34 may be increased in order to increase the thermal resistivity.
  • nanocell foaming is known in which nano-sized bubbles (nanocells) having a diameter smaller than 1 micron are filled in the film. If voids or bubbles are present, the thermal conductivity of the voids or bubbles is poor, and thermal impedance is increased when heat propagates through the boundary between the resin and the voids or bubbles, thereby increasing the thermal resistivity.
  • the anti-fogging device automatically energizes the heater unit 35 via the energization unit 44 of FIG. 12 in response to a signal from the detection unit 10 when window fogging occurs in the windshield 30 serving as a vehicle window.
  • a DC voltage of 12 volts or 48 volts from the battery 43 is applied to the electrodes 41 and 42 at both ends of the heater unit 35.
  • a current flows through the heater unit 35 and is heated. Since the heater portion 35 includes carbon nanotubes, the heat capacity is small.
  • the generated heat is rarely accumulated in the heater unit 35 itself. In addition, it is unlikely that heat passes through the heat insulating portion 34 and escapes out of the passenger compartment. As a result, the generated heat heats the moisture 45 that causes fogging that adheres to the surface of the heater portion protective film 35c on the vehicle interior side through the thin layer of the heater portion protective film 35c. As a result, the moisture 45 can be efficiently evaporated and the cloudiness can be cleared, so that the power consumption is small. This is particularly preferable for electric vehicles and hybrid vehicles that run on the electric power of the battery 43.
  • the heater unit 35 of the anti-fogging device is formed by arranging carbon nanotubes configured in a thread shape or a wire shape so that a net shape or a plurality of lines are arranged.
  • the energized carbon nanotube generates heat in a net shape or a plurality of line segments.
  • the heater portion protective film 35c can be omitted.
  • the heater unit 35 has a configuration in which thread-like or wire-like carbon nanotubes are arranged so as to form a net or a plurality of lines.
  • the heater unit 35 is configured as a planar heating element 35f in which any of carbon nanotubes, metal particles, carbon particles, and metal oxide particles are dispersed.
  • the heater unit 35 may be configured as a transparent planar heating element 35f in which carbon nanotubes are dispersed in a resin serving as a binder. This makes it possible to evaporate the water that causes the clouding that adheres to the heater portion protective film 35c that heats the heater portion 35 in a planar shape and covers the vehicle interior side in a wide range.
  • the energization unit 44 energizes the heater unit 35 when the moisture or humidity detected by the detection unit 10 exceeds a predetermined amount.
  • the timing at which the energization unit 44 energizes the heater unit 35 is, for example, when the driver operates an operation button (not shown) when window fogging occurs in the windshield 30, May be performed. In this case, the detection unit 10 is not always necessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 湿度検出装置(100)は、車両の窓となるウインドシールド(30)の車両室内側に張り付けてウインドシールド(30)の曇りを検出する検出部(10)を備える。湿度検出装置は、ウインドシールド(30)の外側に位置する外表面部(31)と、外表面部(31)の車両室内側表面を覆う断熱部(34)とを含む。断熱部(34)は、検出部(10)と外表面部(31)の間に位置する第1断熱部(34a)と、該第1断熱部(34a)以外の第2断熱部(34b)とを有する。第1断熱部(34a)の熱伝導率が第2断熱部(34b)の熱伝導率よりも高くなっている。

Description

湿度検出装置および防霜装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年10月16日に出願された日本特許出願2014-211949号、2015年9月10日に出願された日本特許出願2015-178895号、および2015年9月10日に出願された日本特許出願2015-178896号を基にしている。
 本開示は、車両のウインドシールドの曇りを検出するために、ウインドシールドにおける車両室内側の湿度を検出する湿度検出装置に関するものである。また、本開示は、ウインドシールドの曇りを晴らすための防曇装置に関するものである。特には車両のウインドシールドの曇りを晴らすための防曇装置に関するものである。
 特許文献1に開示された車両用防曇装置は、ウインドシールドの曇りの発生を押さえつつ、暖房能力の低下を抑えるものである。このために、特許文献1に開示された車両用防曇装置は、ウインドシールドの相対湿度に基づいて、ウインドシールドが曇り易いか否かを判定している。そして、湿度センサが窓曇りを検知した場合、車両用防曇装置を構成する車両用空調装置をDEFモードにし、窓曇りを晴らすように制御している。
 一方、特許文献2に開示された車両用防曇装置におけるウインドシールドは、樹脂又はガラスの本体となる透明基材を有する。この透明基材の車両室内側表面に発熱線を構成する金属パターンを配置している。金属パターンは視界を確保するために厚みが3ミクロン程度に細く構成されている。金属パターンは、金属パターンの凹凸を全て覆う形態でプライマー層とハードコート層によって覆われる。透明基材と金属パターンとの間に接着層を設けている。このような金属パターンに通電することによりハードコート層の車室内側表面に付着した窓曇りの原因となる水分を加熱して曇りを除去している。
特開2007-8449号公報 特開2014-218103号公報
 しかし、特許文献1の前記車両用防曇装置では、湿度検出値の誤差、及び車両ごとのウインドシールドの形状又は材質の違いを考慮して、湿度センサが曇りを検出するときの基準値を微妙に調整しなければ確実に窓曇りを検出することができなかった。
 また、特許文献2の金属パターンからの熱の流れは、車両室内側の水分に向かうものばかりでなく、金属パターン自体に吸収蓄積されるもの、及び接着層と透明基材側とを通過して車室外に至るものも存在する。そのため金属パターンを加熱するための電力の一部が水分蒸発に直接関わらないため無駄になる。特に透明基材がガラスであり車室外が低温の時には窓曇りが発生し易いだけでなく、透明基材側から車室外に逃げる熱量も多くなる。
 本開示は、より確実に窓曇りを検出し易い湿度検出装置を得ることを目的とする。また、本開示は、透明基材側から車室外に逃げる熱量が少なく、窓曇りを晴らすために必要な電力量を少なくできる防曇装置を得ることを目的とする。
 従来技術として列挙された特許文献の記載内容は、この明細書に記載された技術的要素の説明として、参照によって導入ないし援用することができる。
 本開示の第1の態様に係る湿度検出装置は、車両の窓となるウインドシールドの車両室内側に取り付けて窓の曇りを検出する検出部と、ウインドシールドの一部を構成しウインドシールドの外側に位置する外表面部と、ウインドシールの一部を構成し外表面部の車両室内側表面の少なくとも一部を覆う断熱部とを備えている。また、断熱部は、検出部と外表面部の間に位置する第1断熱部と、この第1断熱部以外の第2断熱部とを有し、第1断熱部の方が、第2断熱部よりも熱伝導率が高くなっている。
 第1の態様によれば、第1断熱部の熱伝導が第2断熱部の熱伝導率よりも高くなっているから、外表面部が外気によって冷やされると、検出部が外気によって冷やされる。そのため検出部が湿度を検出しやすくなる。よって、第2断熱部側に重大な曇りが発生する前に検出部が確実に曇りの開始前又は開始直後の湿度を検出し易くなる。よって、検出部における湿度検出にばらつきが多少あっても、車両内の乗員の視界が曇りによって悪くなる前に、検出部が曇りを生じさせる湿度を確実に検出し易くなる。
 本開示の第2の態様に係る防曇装置は、車両の窓となるウインドシールドの一部を構成しウインドシールドの外側に位置する外表面部と、ウインドシールドの一部を構成し外表面部の車両室内側表面の少なくとも一部を覆う断熱部と、該断熱部の車両室内側に設けられカーボンナノチューブ、金属粒子、カーボン粒子、及び金属酸化物粒子のいずれかを含む透明薄膜状又は線状のヒータ部と、ヒータ部に車両に搭載されたバッテリからの電力を通電する通電部とを備え、断熱部は、ヒータ部よりも車両内外方向の厚さが厚く構成されている。
 これによれば、ウインドシールドの一部を構成し外表面部の車両室内側表面の少なくとも一部を覆う断熱部を有するため、第1に、ヒータ部が発生した熱が断熱部に遮られて車室外に逃げるのを抑制できる。第2に、ヒータ部は、カーボンナノチューブ、金属粒子、カーボン粒子、及び金属酸化物粒子のいずれかを含む透明薄膜状又は線状のヒータとして構成される。かつカーボンナノチューブ、金属粒子、カーボン粒子、及び金属酸化物粒子のいずれかは、微細であり、熱容量が小さいから、ヒータ部で発生した熱が吸収蓄積される量が少ない。これによって、該ヒータ部が発生した熱によってヒータ部の車両室内側に付着した曇りの原因となる水分を効率良く蒸発させることができる。また、断熱部は、ヒータ部よりも車両内外方向の厚さが厚く構成されている。従って透明基材となる外表面部側から車室外に逃げる熱量が少なく、窓曇りを晴らすために必要な電力量を少なくできる。なお、車両内外方向の厚さとは、車両の内側と外側とを結ぶ線に沿う厚さであり、通常、フロントガラスの厚さは車両内外方向の厚さを言う。
第1実施形態における湿度検出装置がウインドシールドとなるフロントガラスに設けられた状態を示す一部断面図である。 第1実施形態における湿度検出装置と車両用防曇装置とを車両内に取り付けた状態を示す説明図である。 第1実施形態における湿度検出装置の内部構成を示す一部断面図である。 第1実施形態における湿度検出装置を使用して空調制御装置に制御信号を出力する状態を説明するブロック図である。 第1実施形態における図4の制御信号を生成するまでの制御を説明するフローチャートである。 第2実施形態における湿度検出装置をウインドシールドにとりつけた状態を示す一部断面図である。 第3実施形態における湿度検出装置をウインドシールドにとりつけた状態を示す一部断面図である。 第4実施形態における湿度検出装置を複数のウインドシールドの一つに取り付けた状態を示す車両の平面図である。 第5実施形態における湿度検出装置がウインドシールドとなるフロントガラスに設けられた状態を示す一部断面図である。 図9の湿度検出装置の一部拡大説明図である。 第6実施形態における防曇装置がウインドシールドとなるフロントガラスに設けられた状態を示す一部省略断面図である。 図11の防曇装置の電気回路図である。 第6実施形態の変形例における防曇装置がウインドシールドとなるフロントガラスに設けられた状態を示す一部省略断面図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部を説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。
 各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくても実施形態同士を部分的に組合せることも可能である。
 (第1実施形態)
 以下、第1実施形態について図1ないし図5を用いて詳細に説明する。図1において湿度検出装置100は、車両の窓となるウインドシールド30と、このウインドシールド30の車両室内側に張り付けて窓の曇りを検出する検出部10とを有している。この検出部10は、湿度検出装置のセンサ部分である。ウインドシールド30は、ウインドスクリーンとも呼ばれ、窓の外側に位置するガラス又は樹脂よりなる外表面部31と、この外表面部31の表面を覆う断熱フィルムから構成された断熱部34とを有している。
 断熱部34は、検出部10と外表面部31の間に位置して、検出部10の検出範囲内の断熱部としての第1断熱部34aと、該第1断熱部34a以外の部分であって、検出範囲外の断熱部としての第2断熱部34bとを有する。
 図1及び図2のように、車両室内の運転者は、第2断熱部34bの多くを透過して外部状態を視認する。ウインドシールド30の外表面部は、ガラスから成り、図1の下面側が車室内に面する内面30aであり、上面側が車室外に面する外面30bである。
 第1断熱部34aと検出部10との位置は、図1において、第1断熱部34aが検出部10の底部面積の100%と対向して重なる位置に設定されている。但し、第1断熱部34aが、検出部10に多少ずれていても良い。しかし、第1断熱部34aが、少なくとも検出部10の底部面積の50%以上対向して重なっていることが望ましい。また、第1断熱部34aの熱伝導が第2断熱部34bの熱伝導よりも良好であるように設定されている。換言すれば、第1断熱部34aは、第2断熱部34bよりも熱伝導率が高くなるように設定されている。
 例えば、第1断熱部34a内の熱伝導性に寄与する銀、アルミニウム等の金属粒子又はフィラーの含有量を第2断熱部34bよりも多くすることで、第1断熱部34aの熱伝導が第2断熱部34bの熱伝導よりも良好(すなわち、熱伝導率が高く)であるように設定できる。つまり、この場合は、第1断熱部34aの材質と第2断熱部34bの材質とが相違しており、低断熱部となる第1断熱部34aの熱伝導が高断熱部となる第2断熱部34bの熱伝導よりも良い。すなわち、検出部10の幅W1に相当する窓曇り検出範囲の少なくとも半分以上が、低断熱性を有する第1断熱部34aと対向して重なる構成である。
 第1断熱部34aの熱伝導が第2断熱部34bの熱伝導よりも良好であるように設定する。このために、第1断熱部34aの材質と第2断熱部34bの材質とを相違させる具体的構造としては、例えば、第1断熱部34aに熱伝導を良好にする金属粉末又はフィラーを混入する。その他、熱伝導が良いカーボンナノチューブ(CNTとも言う)を混入しても良い。また第1断熱部34aおよび第2断熱部34bとして透明発泡樹脂を使用し、熱伝導を良くするために第1断熱部34aの発泡空隙総量を第2断熱部34bよりも少なくしても良い。
 これによれば第1断熱部34aの方が、熱伝導を阻害する発泡空隙が少なく樹脂密度が大きいため、熱伝導を良好にすることができる。透明発泡樹脂としては、直径が1ミクロンよりも小さいナノオーダーの気泡(ナノセル)をフィルム内部に充満させるナノセル発泡が知られている。
 この熱伝導に関係する熱伝導率とは、窓の外側から車両室内側に向かう熱伝導において、媒質中に温度勾配がある場合に、その勾配に沿って運ばれる熱流束の大きさを規定する物理量である。
 この熱伝導の相違は、第1断熱部34aの材質と第2断熱部34bの材質とが相違しており、第1断熱部34aの熱伝導率が第2断熱部34bの熱伝導率よりも大きいことに基因する。第1実施形態では、第1断熱部34aの厚さと第2断熱部34bの厚さを同一にすることができ、ウインドシールドの車両室内側に段差が生じない。なお、第1断熱部34aのすべてが第2断熱部34bよりも熱伝導率の高い領域を有している必要はない。
 更に、図1において、断熱部34の車両室内側である図1の右下側に、断熱部34を覆うヒータ部35有し、検出部10は、ヒータ部35の更に車両室内側に取り付けられている。検出部10の信号に基づき、曇りを検出したときに、ヒータ部35に通電されて、窓の曇りが除去される。
 ヒータ部35の一例は、ガラス又は樹脂フィルムの表面に透明導電膜を高温で蒸着して形成される。透明導電膜の両端には電極として銀ペーストが設けられ透明導電膜に電流が流されて発熱する。これらの透明導電膜と銀ペーストを更にガラスカバーで覆うこともできる。透明導電膜は酸化インジウムを主として形成される。透明導電膜を構成する成分の配合割合によって透明導電膜の表面抵抗を変化させている。例えば、銀の配合割合を少なくすると表面抵抗が増加し、同じ電圧を印加しても発熱量が減少する。
 ヒータ部35は、検出部10の幅W1の底部面積の50%以上重なって設置された第1ヒータ部35aと、第1ヒータ部35a以外の残りのヒータ部35である第2ヒータ部35bとを含む。
 ヒータ部35の他の例は、透明部材内に視界を著しく遮らない程度の細い熱線を複数設置したものから構成することもできる。この場合は、第1ヒータ部35aよりも第2ヒータ部35bの方が熱線の密度が高くされている。換言すれば、低温部となる第1ヒータ部35aの発熱量が少なく、高温部となる第2ヒータ部35bの発熱量が多い。このようにヒータ部35は、高温部と低温部があり、検出部10の窓曇り検出範囲(幅W1)の少なくとも半分以上は低温部となる。
 このようなヒータ部35と共に、あるいはヒータ部35の代わりに、既存の車両用空調装置のDEFモードを活用して防曇装置を構成することもできる。図2は、フロントガラスの上部に検出部10をとりつけ、車両用空調装置における車室内空調ユニット360のデフロスタ吹出口37から温風を吹き出して曇りを防止したり曇りを除去したりする防曇装置の構成を示している。
 この第1実施形態では、ヒータ部35と共に車室内空調ユニット360のデフロスタ吹出口37からの温風も利用して防曇している。そして、検出部10が曇りを検出したときに、ウインドシールド30に向けて温風が吹出されて、窓の曇りが除去されるようにしているが、車室内空調ユニット360だけ、あるいは、ヒータ部35だけで防曇装置を構成しても良い。
 次に、図3~図5に基づいて、検出部10における湿度の検出と防曇装置の制御装置への制御信号の送信について詳しく説明する。以下において、ウインドシールド30とは、図1及び図2に示した外表面部31と断熱部34とヒータ部35とを張り合わせたものである。なお、ヒータ部35は省略しても良い。
 図3において、検出部10は、樹脂などによって成形され、上ケース11aと下ケース11bとに分割構成されたケース11を有している。このケース11は、高さの低い薄型の直方体状であり、上ケース11aの側壁部には、設置環境の車室内空気が内部に流通するよう、複数の通風スリット10sが設けられている。
 ウインドシールド30の外表面部31は、図1と同じく車両の前面(フロント)ガラスであり、図3の上面側が車室内に面する内面30aであり、下面側が車室外に面する外面30bである。そして、検出部10は、ウインドシールド30の内面30aに、例えば図示しないルームミラー上側部などに、接着シート13にて貼り付けて固定されている。接着シート13は、厚さ0.5mm程度の両面接着シートで、下ケース11bとウインドシールド30とを接着する。
 ケース11の内部空間、即ち上ケース11aと下ケース11bとの間には、回路基板14がウインドシールド30の面と平行に設置されている。より具体的には、回路基板14が3本の螺子24にて下ケース11bに締結固定されている。
 回路基板14のうち、下ケース11b側の表面には、ガラス温度センサ23が実装されている。また、上ケース11a側の表面には、湿度センサ17、空気温度センサ18、演算回路(IC)20、コネクタ22及び図示しない増幅器や通信回路などが実装されている。
 湿度センサ17は、回路基板14の周縁に近い角部に設置されており、この湿度センサ17に対して対角側の周縁に近い部分に、演算回路20が設置されている。これは、演算回路20が作動によって熱を発するが、回路基板14内で極力、両者を遠ざけた設置とすることにより、演算回路20の発熱が湿度センサ17で検出する湿度環境に影響を及ぼすのを防ぐためである。
 湿度センサ17は、通気を良くするために、回路基板14に開けられたスルーホール14bの上に橋渡しするように設置されている。それと共に、湿度センサ17まわりの回路基板14には、基板から熱が伝わるのを防ぐためのスリット14aが切られている。
 なお、この実施形態では、湿度センサ17として、感湿膜の誘電率が空気の相対湿度に応じて変化し、それにより、静電容量が空気の相対湿度に応じて変化する容量変化型のものを用いている。
 空気温度センサ18とガラス温度センサ23とは、できるだけ湿度センサ17に近づけるようにして、回路基板14の中央部に設置されていると共に、回路基板14の表裏にて略同軸上に設置されている。これは、ウインドシールド内面の代表的な空気の湿度と、ウインドシールド内面の代表的な温度とを、極力同じ環境条件の下で検出するためである。なお、両温度センサ18、23には、温度に応じて抵抗値が変化するサーミスタを用いている。
 また、空気温度センサ18及びガラス温度センサ23と演算回路20との間の回路基板14には、基板を通した伝熱を防ぐためのスリット14aが切られている。このスリット14aは、温度センサ部を取り囲むように設置しても良い。コネクタ22は、螺子25にて回路基板14に締結固定されている。
 更に、コネクタ22の端子が回路基板14の導体回路部と半田接合されており、回路基板14の増幅器、演算回路、及び通信回路を含む電気回路部と、図4の空調制御装置26、車両電源などの外部回路との間を電気的に接続している。
 下ケース11bのガラス温度センサ23に対応する部分には、熱伝導率の高い金属部材16が、インサート成形により一体化されている。本実施形態では、この金属部材16として、厚さ2mmの銅板を用いている。また、その金属部材16の両面側に熱伝導良好な(熱伝導率:3~10W/m・K)熱伝導部材15が貼着されている。
 この熱伝導部材15は、熱伝導シート、熱伝導ゲル、熱伝導グリスなどの部材である。より具体的には、金属部材16のガラス側面には、厚さ0.6mmのガラス側熱伝導部材15aが、そして金属部材16のセンサ側面には、厚さ0.8mmのセンサ側熱伝導部材(第2熱伝導部材)15bが設けられている。
 そして、下ケース11bに回路基板14を締結固定すると、ガラス温度センサ23が、センサ側熱伝導部材15bに若干めり込む程度に押し当たる構造となっている。また、ガラス側熱伝導部材15aは、周りの接着シート13よりも僅かに厚くなっている。そのため、接着シート13の開口窓13a1、13a2から僅かに浮き出るようになっている。その結果、検出部10をウインドシールド内面30aに貼り付けた際、ガラス側熱伝導部材15aが確実にガラス面に押し付けられている。なおガラスと称したが外表面部31がガラス製でなく樹脂製でも良いことは勿論である。
 ウインドシールド30は、図3では単純に一層で図示しているが、実際には図1に示したように、外表面部31と、断熱部34と、ヒータ部35の3層構造である。
 これらにより、ウインドシールド30の温度は、ガラス側熱伝導部材15a→金属部材16→センサ側熱伝導部材15b→ガラス温度センサ23と伝熱して検出されるようになっている。なお、上ケース11aは、回路基板14を押えながら下ケース11bと嵌合され、上ケース11aの側壁部下端に設けられた図示されない係止爪にて係止固定される。
 次に、図4により、電気制御のためのシステム構成を説明する。図4は、主として図1の検出部10の電気的ブロックを示している。各センサ17、18、23の出力信号は、夫々の増幅器19a~19c(19)で増幅されて、各演算回路20a~20c(20)に入力される。
 そして、相対湿度演算回路20a、空気温度演算回路20b、及びガラス温度演算回路20cの夫々の演算値に基づいて、ガラス表面相対湿度がガラス表面相対湿度演算回路20dにより演算される。この演算回路20dの演算値は、通信回路21を通して、空調制御装置26に出力されるようになっている。
 空調制御装置26により制御される車両用空調装置は周知であるため説明の大半を省略するが、図2の車室内空調ユニット360は、車室内最前部の計器盤(インストルメントパネル)や車両室内側部などに配設される。この車室内空調ユニット360は、ケースを有し、このケース内に車室内へ向かって空気が送風される空気通路を有する。
 このケースの空気通路の最上流部には、内外気切換箱が設置されており、内気導入口又は外気導入口が内外気切換ドア(内外気切換手段)によって空気導入口として切換られる。
 内外気切換箱の下流側には、車室内に向かって空気を送風する電動式の送風機が設けられている。この送風機は、多翼遠心式の送風ファンを送風モータによって駆動する。送風機の下流側には、送風空気を冷却する蒸発器が設置されている。
 この蒸発器は、冷凍サイクル装置を構成する要素の一つであり、低温低圧の冷媒が送風空気から吸熱して蒸発することにより送風空気が冷却される。なお、冷凍サイクル装置は、周知のものであり、圧縮機の吐出側から、凝縮器、受液器及び減圧手段を成す膨張弁を介して蒸発器に冷媒が循環する。
 凝縮器には、電動式の冷却ファンによって車外空気が送風される。また、冷凍サイクル装置において、圧縮機は圧縮機駆動用電動機によって駆動される。
 一方、室内空調ユニットにおいて蒸発器の下流側には、ケース内を流れる空気を加熱するヒータコアが設置されている。このヒータコアは、車両走行用エンジンの温水(エンジン冷却水)を熱源として、蒸発器通過後の空気(冷風)を加熱する暖房用熱交換器である。ヒータコアの側方にはバイパス通路が形成され、このバイパス通路をヒータコアのバイパス空気が流れる。
 また、蒸発器とヒータコアとの間には、温度調整手段を成すエアミックスドアが設置されている。このエアミックスドアは、サーボモータによって駆動され、その回転位置(開度)が連続的に調整可能となっている。このエアミックスドアの開度によって、ヒータコアを通る空気量(温風量)と、バイパス通路を通過してヒータコアをバイパスする空気量(冷風量)との割合を調節し、これにより、車室内に吹き出す空気の温度が調整されるようになっている。
 ケースの空気通路の最下流部には、車両の前面ウインドシールド30に向けて空調風を吹き出すためのデフロスタ吹出口37が設けられている。また、ケースの空気通路の最下流部には、乗員の頭胸部に向けて空調風を吹き出すためのフェイス吹出口、及び乗員の足元部に向けて空調風を吹き出すためのフット吹出口が設けられている。
 図4の空調制御装置26は、空調ECUとも呼ばれる。この空調制御装置26は、そのROM内に空調制御のための制御プログラムを記憶している。そして、空調制御装置26には、上記した検出部10の演算値が入力される他に、周知の空調用センサ群からの検出信号、及び空調操作パネルからの各種操作信号が入力される。
 温度調整された空調風が、ケースの空気通路の最下流部に位置するデフロスタ吹出口37、フェイス吹出口及びフット吹出口のうち、いずれか1つ又は複数の吹出口から車室内へ吹き出して、車室内の空調及び車両のウインドシールド30の曇りが除去される。
 次に、この第1実施形態による検出部10の作動を、図5に基づいて説明する。図5は、図4に示す演算回路20によって実行される演算処理のフローチャートである。まず、図3の各センサ17、18、23の出力値(実際には増幅器19a~19cで増幅された出力値)を読み込む(S10)。
 次に、湿度センサ17の出力値Vに基づいて、ウインドシールド30付近の車室内空気の相対湿度RHを演算する(S20)。すなわち、湿度センサ17の出力値Vを相対湿度RHに変換するための所定の演算式が予め設定されており、この演算式に出力値Vを適用することにより、相対湿度RHを演算する。下記の数式1は、この湿度演算式の具体例である。
 (数1)RH=αV+β
 但し、αは制御係数で、βは定数である。
 次に、空気温度センサ18の出力値を、予め設定された所定の演算式に適用することにより、ウインドシールド付近の車室内空気温度を演算する(S30)。次に、ガラス温度センサ23の出力値を、予め設定された所定の演算式に適用することにより、ガラス車両室内側表面温度となるウインドシールド温度を演算する(S40)。
 次に、上記各ステップS20~S40で演算された相対湿度RH、空気温度及びウインドシールド温度に基づいて、ウインドシールド表面相対湿度つまりウインドシールド車両室内側表面の相対湿度RHwを演算する(S50)。すなわち、湿り空気線図を用いることにより、相対湿度RHと空気温度とウインドシールド温度とからウインドシールド表面相対湿度RHwを演算できる。そして、ステップS60では、得られたウインドシールド表面相対湿度RHwの値を空調制御装置26に出力する。
 空調制御装置26では、ウインドシールド表面相対湿度RHwが、基準値となる所定の目標ウインドシールド表面相対湿度TRHwよりも上昇すると、外気モードとし、ウインドシールド表面相対湿度RHwが(TRHw-a)よりも低下すると内気モードにする。なお、目標ウインドシールド表面相対湿度TRHwは例えば、85%程度の、ウインドシールド曇りを十分防止できるレベルの相対湿度である。
 この内外気吸込モード制御において、目標ウインドシールド表面相対湿度TRHwは、ウインドシールドの曇りが生じない上限湿度付近に設定するから、ウインドシールドの曇りが生じない範囲で常に内気比率が高くなるように内外気吸込モードを制御できる。これにより、冬期の暖房始動時に内気比率を上昇することにより換気熱損失を低減して、車室内暖房効果の立ち上げを促進できる。一方、ウインドシールドの曇り止めの必要性が高いときは、ウインドシールドの防曇を行う。
 すなわち、内外気吸込モードを強制的に外気モードに切り換え、空調用電動送風機のブロワレベルを増加し、吹出モードをデフロスタモードに切り換える。これにより低湿度の外気を導入して加熱した温風をデフロスタ吹出口37からウインドシールド30の内面に吹き出す。それと共に、この温風の吹出風量を増加することにより、ウインドシールド表面相対湿度RHwを速やかに引き下げてウインドシールド30の曇りを除去できる。更に、ヒータ部35に通電されてウインドシールド30が加熱される。
 (第1実施形態の作用効果)
 水蒸気として空気の中に入ることができる水分の量には限度があり、温度が高いほど限度は大きい。限度を超えると、余った水蒸気が結露する。空気が水蒸気を含むことができる限界の量を飽和水蒸気量という。この飽和水蒸気量は気温が下がるにつれて減っていく。外表面部が外気に冷やされてウインドスクリーンの内面に接する空気が冷えて、飽和水蒸気量を越えてしまうと、余った水蒸気は、空気中に存在することができないため、水滴となって、曇りが生じる。よって、曇りが生じる直前又は直後に、限度である基準値を超える湿度を検出することが好ましい。
 第1実施形態においては、検出部10が、車両のウインドシールド30の車両室内側に張り付けられて曇りを検出する。ウインドシールド30は、このウインドシールド30の外側に位置する外表面部31と、外表面部31の車両室内側表面を覆う断熱部34とを有する。この断熱部34は、検出部10と外表面部31の間に位置する第1断熱部34aと、この第1断熱部以外の第2断熱部34bとを含む。そして、第1断熱部34aの熱伝導が第2断熱部34bの熱伝導よりも良好である。
 これによれば、第1断熱部34aの熱伝導が第2断熱部34bの熱伝導よりも良好である。故に、外表面部31が外気によって冷やされると、検出部10が外気によって良好に冷やされる。よって、第2断熱部34b側に重大な曇りが発生する前に、検出部10が基準値を超える湿度を確実に検出するようになっている。よって、検出部10が湿度検出にばらつきが多少あっても、車両内の乗員の視界が曇りによって悪くなる前に、検出部10が基準値を超える湿度をより確実に検出して防曇することができる。換言すれば、熱伝導率が相対的に高い第1断熱部34aを介してウインドシールド30の内側表面に外部の冷気が伝達される。これにより、第1断熱部34aに対応するウインドシールド30の内側表面が、第2断熱部34bに対応するウインドシールド30の内側表面に比べて積極的に冷却される。その結果、第1断熱部34aに対応するウインドシールド30の内側表面において結露が相対的に速く進行し、検出部10が基準値を超える水分量を検知することとなる。すなわち、第2断熱部34bに対応するウインドシールド30の内側表面に曇りが生ずる前に、検出部10が基準地を超える水分量を検出するので、ウインドシールド30の全体が曇るのを事前に抑制し得る。
 また、第1断熱部34aの材質と第2断熱部34bの材質とが相違している。これによれば、第1断熱部34aの材質と第2断熱部34bの材質とを変えることにより、容易に第1断熱部34aの熱伝導を第2断熱部34bの熱伝導よりも良好に設定できる。
 次に、断熱部34の車両室内側において断熱部34を覆うヒータ部35を有し、検出部10は、ヒータ部35の更に車両室内側に取り付けられている。そして、検出部10が基準値を超える曇りを検出したときに、ヒータ部35に通電されて、窓の曇りが除去される。
 これによれば、検出部10が外気によって良好に冷やされる。よって、第2断熱部34b側に重大な曇りが発生する前に、検出部10が基準値を超える湿度を検出する。そのため、車両毎のウインドシールド30の形状材質の違いをあまり考慮しないでも、検出部10が基準値を超える湿度をより確実に検出して防曇することができる。また、曇りが生じたときは、ヒータ部35を加熱することで、少ない消費エネルギーで曇りの除去を実現できる。
 次に、ヒータ部35は、検出部10と外表面部31の間に位置する第1ヒータ部35aと、この第1ヒータ部以外の第2ヒータ部35bとを有する。そして、検出部10が曇りを検出したときに、ヒータ部35に通電されて、窓の曇りが除去される。この場合に、第1ヒータ部35aよりも第2ヒータ部35bの方が高温に発熱するように制御される。
 これによれば、ヒータ部35に通電されて、窓の曇りが除去される。この場合に、第1ヒータ部35aよりも第2ヒータ部35bの方が高温になる。従って、検出部10が曇りを検出したときに、ヒータ部35に通電されて、乗員の視界に影響する窓の曇りがより確実に除去される。
 (第2実施形態)
 次に、第2実施形態について説明する。なお、以降の各実施形態においては、第1実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成について説明する。なお、第2実施形態以下については、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明が援用される。図6において、第1断熱部34aの車両内外方向の厚さと第2断熱部34bの車両内外方向の厚さとが相違しており、第1断熱部34aの熱伝導が、第2断熱部34bの熱伝導よりも良好(すなわち、熱伝導率が高い)である。
 つまり、第1断熱部34aの厚さを相対的に薄くして、第1断熱部34aの厚さと第2断熱部34bの厚さとが相違させている。これによって、第1断熱部34aの熱伝導が第2断熱部34bの熱伝導よりも良好にされている。
 これによれば、第1断熱部34aの厚さを相対的に薄くして、第1断熱部34aの厚さと第2断熱部34bの厚さとを変えている。故に、第1断熱部34aと第2断熱部34bとが同一材質であっても、容易に第1断熱部34aの熱伝導を第2断熱部34bの熱伝導よりも良好に設定できる。
 (第3実施形態)
 次に、第3実施形態について説明する。図7において、第1断熱部34aが第2断熱部34bよりも熱伝導の良好な領域を有しており、この領域は、第1断熱部34aに形成された穴36を含み、穴36内に熱伝導が良好となる金属粉末やカーボンナノチューブを多く含む充填物が充填されている。
 これによれば、穴36の部分は、断熱材が無い単なる空気を含む空洞部ではなく、熱伝導が良好となる金属粉末やカーボンナノチューブを多く含む充填物が充填されているから、熱伝導が良い(熱伝導率が高い)。従って、全体的に、穴36が一部に形成された第1断熱部34aが、穴36の無い第2断熱部34bよりも熱伝導が良好となる。熱伝導が良好か否か(熱伝導性)は、材質による熱伝導率の違いだけでなく、形状及び寸法も影響する。また材質が均一でないときは材質の濃度分布、例えば、フィラーの充填濃度分布つまり熱伝導部分の分布領域も熱伝導性に影響する。
 熱伝導が良好か否かは、同一の熱容量の低温部材を、第1断熱部34aの外側と第2断熱部34bの外側とに押し当てて、第1断熱部34aの車両室内側と、第2断熱部34bの車両室内側との温度低下の様子を観察することで判明する。第1断熱部34aが、第2断熱部34bよりも熱伝導が良好な場合は、第1断熱部34aの車両室内側の方が、第2断熱部34bの車両室内側よりも先に温度が低下する。
 (第3実施形態の変形例)
 穴36中に熱伝導ゲル又は熱伝導グリスを充填しても良い。穴36を複数設けて穴36の内径を小さくすれば、毛細管現象により穴36中に熱伝導ゲル又は熱伝導グリスを流出することなく保持できる。
 一方、空隙があると熱伝導が阻害される。従って、第1断熱部34aと第2断熱部34bの材質として、発泡樹脂を使用し、発泡樹脂の樹脂密度を変えて熱伝導に差をつけても良い。この場合、第1断熱部34aの発泡樹脂の樹脂密度の方が大きくされ、樹脂中の発泡空隙量の割合が少なくされる。
 第2断熱部34bに発泡樹脂を使用する場合は、直径が1ミクロンよりも小さいナノオーダーの気泡(ナノセル)をフィルム内部に充満させるナノセル発泡を用いた透明発泡樹脂を使用することが望ましい。これによれば第1断熱部34aの方が、熱伝導を阻害する発泡空隙が少なく樹脂密度が大きいため、熱伝導を良好にすることができる。
 (第3実施形態の作用効果)
 第3実施形態によれば、充填剤を詰めた穴から成る空洞部は、熱伝導が良くなるから、外表面部31が外気によって冷やされると、検出部10が外気によって良好に冷やされる。よって、第2断熱部34b側に重大な曇りが発生する前に検出部10が確実に基準値を超える湿度を検出し易くなる。従って、検出部10における湿度検出にばらつきが多少あっても、車両内の乗員の視界が曇りによって悪くなる前に防曇作用を発揮させることができる。
 (第4実施形態)
 次に、第4実施形態について説明する。図8において、車両となる特に自動車を上側から見て図示している。この車両のウインドシールド30は、フロントウインドシールド30f、サイドウインドシールド30s、リヤウインドシールド30rを含んでいる。
 このうちウインドシールド30が曇るともっとも困るのはフロントウインドシールド30fである。従って、エネルギー消費を伴う防曇作用もフロントウインドシールド30fにおいて最も強化するのが省エネルギー化につながる。
 この第4実施形態においては、図1と同じく、ヒータ部35を使用した防曇装置が、フロントウインドシールド30f、サイドウインドシールド30s、リヤウインドシールド30rのいずれにも設けられている。その上で、フロントウインドシールド30fにおけるヒータ部35の発熱量が、他のサイドウインドシールド30s、リヤウインドシールド30rにおけるヒータ部35の発熱量よりも大きく設定されている。
 ヒータ部35の防曇時の発熱量を大きくするには、ヒータ部35の透明導電膜を構成する成分の配合割合によって透明導電膜の表面抵抗を小さくする。例えば、銀の配合割合を多くすると表面抵抗が減少し、同じ電圧を印加しても発熱量が増加する。
 またヒータ部35として透明部材内に熱線を複数設置したものから構成している場合は、熱線の密度である単位面積当たりの熱線の本数が多くされることにより同じ電圧を印加しても発熱量が増加する。
 このように、フロントウインドシールド30fにおけるヒータ部35の防曇時の発熱量が、他のサイドウインドシールド30s、リヤウインドシールド30rにおけるヒータ部35の防曇時の発熱量よりも大きく設定されている。このことにより、フロントウインドシールド30fを優先して防曇するため、限られたエネルギーを使用して、車両走行の安全性を高めることができる。
 (第4実施形態の作用効果)
 この第4実施形態においては、上記構成により、フロントウインドシールド30fでないウインドシールドにおけるヒータ部35の温度は、フロントウインドシールド30fのヒータ部35の温度よりも低くしている。このため省電力化が達成でき、万一曇ってもフロントウインドシールド30fではないため問題が少ない。
 防曇用のヒータ部35の温度を低くした低温部を構成するためには、材質の変更によりヒータ部35の電気抵抗を高くするとか電気伝導部となるたとえば熱線の密度を低くすると良い。
 (第5実施形態)
 次に、第5実施形態について説明する。上記第1実施形態等においては、検出部10は、樹脂などによって成形され、上ケース11aと下ケース11bとに分割構成されたケース11を有している。従って、運転者が検出部10を目視してしまうため設置位置に苦慮することになる。つまり、前方視界が妨げられず、かつ、目障りにならないように検出部10を設けなければならない。この第5実施形態では、検出部10が前方視界を妨げず、かつ、目障りにならない構造を提供する。
 図9及び図9の一部を拡大した図10において第5実施形態を説明する。図9において検出部10は、全体として透過性のある薄い膜と、電極と、電極の先にある測定部とから構成されている。
 湿度検出装置100は、車両の窓となるウインドシールド30と、このウインドシールド30の車両室内側に張り付けて窓の曇りを検出する検出部10とを有している。この検出部10は、湿度検出装置のセンサ部分を構成する。ウインドシールド30は、ウインドスクリーンとも呼ばれ、窓の外側に位置するガラス又は樹脂よりなる外表面部31、及び、この外表面部31の表面を覆う断熱フィルムから構成された断熱部34を有している。
 断熱部34は、検出部10と外表面部31の間に位置する検出部範囲内断熱部である第1断熱部34a、及び該第1断熱部34a以外の検出部範囲外断熱部である第2断熱部34bを含む。
 援用する図2のように、車両室内の運転者は、第2断熱部34bの多くを透過して車両の外部状態を視認する。ウインドシールド30の外表面部は、ガラスから成り、図9の下面側が車室内に面する内面30aであり、上面側が車室外に面する外面30bである。
 第1断熱部34aと検出部10との位置は、図9に示すように、第1断熱部34aが検出部10の底部面積の100%重なるように設定される。つまり、第1断熱部34aは、検出部10と外表面部31の間に存在し、かつ検出部10に対して、検出部10の底部面積の100%対向するように位置している。しかし、第1断熱部34aは、検出部10と外表面部31の間において、検出部10の底部面積の50%以上重なって対向するように位置していてもよい。つまり、第1断熱部34aが検出部10に完全に対向していなくても良く、多少ずれていても良い。しかし、第1断熱部34aは、少なくとも検出部10の50%の面積と対向して重なっていることが望ましい。また、第1断熱部34aの熱伝導が第2断熱部34bの熱伝導よりも良好である(熱伝導率が高い)。
 例えば、第1断熱部34a内の熱伝導に寄与する金属粒子又はフィラーの含有量を第2断熱部34bよりも多くすることで、第1断熱部34aの熱伝導が第2断熱部34bの熱伝導よりも良好であるように設定できる。つまり、この場合は、第1断熱部34aの材質と第2断熱部34bの材質とが相違しており、低断熱部となる第1断熱部34aの熱伝導率が高断熱部となる第2断熱部34bの熱伝導率よりも大きい。すなわち、図9における検出部10の幅W1に相当する窓曇り検出範囲の少なくとも半分以上が、低断熱性を有する第1断熱部34aと対向して重なる構成である。
 この熱伝導に関係する熱伝導率とは、窓の外側から車両室内側に向かう熱伝導において、媒質中に温度勾配がある場合に、その勾配に沿って運ばれる熱流束の大きさを規定する物理量であり、熱伝導率の逆数が熱抵抗率である。
 この熱伝導の相違は、第1断熱部34aの材質と第2断熱部34bの材質とが相違しており、第1断熱部34aの熱伝導率が第2断熱部34bの熱伝導率よりも大きいことに基づく。第5実施形態では、第1断熱部34aの厚さと第2断熱部34bの厚さを同一にすることができ、ウインドシールドの車両室内側に段差が生じない。なお、第1断熱部34aのすべてが第2断熱部34bよりも熱伝導率の高い領域を有していなくても良い。
 更に、図9において、断熱部34の車両室内側である右下側に、断熱部34を覆うヒータ部35有し、検出部10は、ヒータ部35の更に車両室内側に設けられている。検出部10の信号に基づき、曇りを検出したときに、ヒータ部35に通電されて、窓の曇りが除去される車両用防曇装置が構成されている。
 ヒータ部35の一例は、ガラス又は樹脂フィルムの表面に透明導電膜を高温で蒸着したものである。透明導電膜の両端には電極として銀ペーストが設けられ透明導電膜に電流が流されることにより発熱する。これらの透明導電膜と銀ペーストを更にガラスカバーで覆っても良い。透明導電膜は酸化インジウムを主としたレアメタルで形成される。透明導電膜を構成する成分の配合割合によって透明導電膜の表面抵抗が変化する。
 ヒータ部35は、検出部10の幅W1を持つ底部面積に対して50%以上重なって設置された第1ヒータ部35aを含む。
 ヒータ部35の他の例は、透明部材内に視界を著しく遮らない程度のカーボンナノチューブ等から成る細い熱線を設置したものから構成することもできる。ここで言うカーボンナノチューブとは、中空円筒の構造をした炭素の結晶で、直径0.7~70nmと髪の毛の約数万分の一、長さが数十マイクロメートル以下のチューブ形状の物質である。カーボンナノチューブは、高いアスペクト比から、1グラムあたり100~1000平方メートルとされる広大な表面積を持つことが大きな特徴とされている。このカーボンナノチューブを使用した透明導電膜ないし透明面状ヒータは既に市販されている。
 第1ヒータ部35aよりも第2ヒータ部35bの方が熱線の密度が高くされている。このようにヒータ部35は、高温部と低温部があり、検出部10の窓曇り検出範囲(幅W1)の少なくとも半分以上は低温部となる構成をとる。
 このようなヒータ部35と共に、あるいはヒータ部35の代わりに、既存の車両用空調装置のDEFモードを活用して防曇装置を構成できる。援用する図2は、フロントガラスの上部に検出部10をとりつけ、車両用空調装置における車室内空調ユニット360のデフロスタ吹出口37から温風を吹き出して曇りを防止したり曇りを除去したりする防曇装置の構成を示している。
 この第5実施形態では、ヒータ部35と共に車室内空調ユニット360のデフロスタ吹出口37からの温風も利用して防曇している。そして、検出部10が曇りを検出したときに、ウインドシールド30に向けて温風が吹出されて、窓の曇りが除去されるようにしているが、車室内空調ユニット360だけ、あるいは、ヒータ部35だけで防曇装置を構成しても良いことは勿論である。
 次に、検出部10における湿度の検出と防曇装置の制御装置への制御信号の送信について説明する。検出部10は、図10のように、第1ヒータ部35aと接触する位置に検出部10の基板部101が接着剤により接合されている。基板部101の車両室内側(図10上方)にはカーボンナノチューブの層102が形成され、更にその車両室内側(図10上方)には、透湿膜103が形成されている。透湿膜103は水分を透過させるため透湿膜103の車両室内側(図10上方)に窓曇りのため水分が付着すると、この水分は、カーボンナノチューブの層102に至る。水分を吸ったカーボンナノチューブの層102は、抵抗値が増加する。水分量と抵抗値の関係は線形的関係にある。
 従って、カーボンナノチューブの層102の両端に接続された電極104、105の先にある測定部106にてカーボンナノチューブの層102の両端の抵抗値を測定することで、窓の車両内側に付着した曇り量を測定することができる。基板部101は、透光性アルミナセラミックスにて構成することができる。
 透湿膜103とカーボンナノチューブの層102とは全体で感湿膜とも呼ばれ種々のものを採用できる。一例としては、カーボンナノチューブの分散液を透明絶縁基板上に帯状に塗布し乾燥させ電極104、105を接続した上で、その上にセロファンから成る透湿膜103を被せる。なお、透湿膜103はカーボンナノチューブの層102を保護できるが、必須ではなく、直接、カーボンナノチューブの層102に水分を付着させても良い。また、第1実施形態と同様に、第2ヒータ部35bの方が熱線の密度が高くされている。換言すれば、低温部となる第1ヒータ部35aの発熱が小さく、高温部となる第2ヒータ部35bの発熱が大きい。このようにヒータ部35は、高温部と低温部があり、検出部10の窓曇り検出範囲(幅W1)の少なくとも半分以上は低温部に対向する構成をとる。
 ウインドシールド30は、外表面部31と断熱部34とヒータ部35とを張り合わせたものである。なお、ヒータ部35は省略しても良い。つまりヒータの発熱による防曇でなく空調風による防曇作用でも良い。
 ウインドシールド30の外表面部31は、車両の前面(フロント)ガラスであり、図10の上側が車室内に面する内面30aであり、下側が車室外に面する外面30bである。そして、検出部10は、ウインドシールド30の内面30aに、設置される。検出部10の全体が透光性を有するため視界を妨げることが無く、目障りになることもない。また電極104、105は、金属細線であるため視界を妨げることが無く、目障りになることもない。測定部106はガラス基板上に目障りにならないように微細回路を製作してもよいが、目障りになる場合は、ウインドシールド30の隅部に形成されて水分を電気信号に変換する。変換された電気信号は必要に応じて増幅されエアコンECUと呼ばれる空調制御装置に導かれる。
 空調制御装置26により制御される車両用空調装置は周知であるため説明の大半を省略するが、援用する図2の車室内空調ユニット360は、車室内最前部の計器盤(インストルメントパネル)内側部などに配設される。この車室内空調ユニット360は、ケースを有し、このケース内に車室内へ向かって空気が送風される空気通路が構成されている。
 このケースの空気通路の最上流部には、内外気切換箱が設置されており、内気導入口及び外気導入口が内外気切換ドア(内外気切換手段)によって切換開閉される。この内外気切換ドアは、サーボモータによって駆動される。
 内外気切換箱の下流側には、車室内に向かって空気を送風する電動式の送風機が設置されている。この送風機は、多翼遠心式の送風ファンを送風モータによって駆動するようになっている。送風機の下流側には、送風空気を冷却する蒸発器(冷房用熱交換器)が設置されている。
 この蒸発器は、冷凍サイクル装置を構成する要素の一つであり、低温低圧の冷媒が送風空気から吸熱して蒸発することにより送風空気を冷却する。なお、冷凍サイクル装置は、周知のものであり、圧縮機の吐出側から、凝縮器、受液器及び減圧手段を成す膨張弁を介して蒸発器に冷媒が循環するように構成されている。
 凝縮器には、電動式の冷却ファンによって車外空気(冷却空気)が送風される。この冷却ファンは、モータによって駆動される。また、冷凍サイクル装置において、圧縮機は圧縮機駆動用電動機で駆動される。
 一方、室内空調ユニットにおいて蒸発器の下流側には、ヒータコアが設置されている。このヒータコアは、車両走行用エンジンの温水(エンジン冷却水)を熱源として、蒸発器通過後の空気(冷風)を加熱する。ヒータコアの側方にはバイパス通路が形成され、このバイパス通路にヒータコアをバイパスした空気が流れる。
 また、蒸発器とヒータコアとの間には、温度調整手段を成すエアミックスドアが回転自在に設置されている。このエアミックスドアは、サーボモータによって駆動され、その回転位置(開度)が連続的に調整可能である。このエアミックスドアの開度によって、ヒータコアを通る空気量(温風量)と、バイパス通路を通過してヒータコアをバイパスする空気量(冷風量)との割合を調節し、これにより、車室内に吹き出す空気の温度が調整される。
 ケースの空気通路の最下流部には、デフロスタ吹出口37が設けられている。また、ケースの空気通路の最下流部には、乗員の頭胸部に向けて空調風を吹き出すためのフェイス吹出口、及び乗員の足元部に向けて空調風を吹き出すためのフット吹出口の計3種類の吹出口が設けられている。
 図4の空調制御装置26は、空調ECUとも呼ばれ、CPU、ROM及びRAMなどを含む周知のマイクロコンピュータと、その周辺回路とから構成されている。この空調制御装置26は、そのROM内に空調制御のための制御プログラムを記憶しており、その制御プログラムに基づいて各種演算処理を行う。そして、空調制御装置26には、上記した検出部10の演算値が入力される。
 温度調整された空調風が、ケースの空気通路の最下流部に位置するデフロスタ吹出口37、フェイス吹出口及びフット吹出口のうち、いずれか1つ又は複数の吹出口から車室内へ吹き出して、車室内の空調及び車両のウインドシールド30の曇り止めを行う。
 次に、測定部の出力値は、水分量に比例した抵抗値を表し、空調制御装置26に入力される。空調制御装置26では、ウインドシールド表面の水分量WRHwが、基準値となる所定の目標ウインドシールド水分量WTRHwよりも上昇すると、外気モードとする。そして、予め定めた所定量をaとしたときウインドシールド表面の水分量WRHwが(WTRHw-a)よりも低下すると、内気モードにする。なお、目標ウインドシールド水分量WTRHwはウインドシールド曇りを十分防止できるレベルの水分量として予め実験により求められている。
 この内外気吸込モード制御において、目標ウインドシールド水分量WTRHwは、ウインドシールドの曇りが生じない上限水分量付近に設定するから、ウインドシールドの曇りが生じない範囲で常に内気比率が高くなるように内外気吸込モードを制御できる。これにより、冬期の暖房始動時に内気比率を上昇することにより換気熱損失を低減して、車室内暖房効果の立ち上げを促進することができる。一方、ウインドシールドの曇り止めの必要性が高いときは、ウインドシールドの防曇制御を行う。
 すなわち、内外気吸込モードを強制的に外気モードに切り換え、空調用電動送風機のブロワレベルを増加し、吹出モードをデフロスタモードとする。これにより低湿度の外気を導入して加熱した温風をデフロスタ吹出口37から吹き出す。それと共に、この温風の吹出風量を増加することにより、ウインドシールド表面の水分量を速やかに引き下げてウインドシールド30の曇りを除去できる。更に、ヒータ部35に通電されてウインドシールド30の加熱が行われる。
 (第5実施形態の作用効果)
 ウインドシールド30が曇るのは結露による。水蒸気として空気の中に入ることができる水分の量には限度がある。温度が高いほど限度は大きい。限度を超えると、余った水蒸気が結露になる。飽和水蒸気量は気温が下がるにつれて減少する。外表面部が外気に冷やされてウインドスクリーンの内面に接する空気が冷えて、飽和水蒸気量を越えてしまうと、余った水蒸気は水滴となり、曇りが生じる。よって、曇りが生じる直前又は直後に、限度である基準値を超える水分量を検出することが好ましい。
 第5実施形態においては、検出部10が、車両のウインドシールド30の車両室内側に設けられて水分量を検出する。ウインドシールド30は、このウインドシールド30の外側に位置する外表面部31と、外表面部31の車両室内側表面を覆う断熱部34とを含む。この断熱部34は、検出部10と外表面部31の間に実質的に対向して位置する第1断熱部34aと、この第1断熱部34a以外の第2断熱部34bとを有する。
 故に、外表面部31が外気によって冷やされると、検出部10が外気によって良好に冷やされる。よって、第2断熱部34b側に重大な曇りが発生する前に、検出部10が確実に基準値を超える水分量を検出しやすい。よって、検出部10が水分量の検出にばらつきが多少あっても、車両内の乗員の視界が曇りによって悪くなる前に、検出部10が基準値を超える水分量をより確実に検出して防曇することができる。換言すれば、熱伝導率が相対的に高い第1断熱部34aを介してウインドシールド30の内側表面に外部の冷気が伝達される。これにより、第1断熱部34aに対応するウインドシールド30の内側表面が、第2断熱部34bに対応するウインドシールド30の内側表面に比べて積極的に冷却される。その結果、第1断熱部34aに対応するウインドシールド30の内側表面において結露が相対的に速く進行し、検出部10が基準値を超える水分量を検知することとなる。すなわち、第2断熱部34bに対応するウインドシールド30の内側表面に曇りが生ずる前に、検出部10が基準地を超える水分量を検出するので、ウインドシールド30の全体が曇るのを事前に抑制し得る。
 また、第1断熱部34aの材質と第2断熱部34bの材質とが相違しており、第1断熱部34aの熱伝導が第2断熱部34bの熱伝導よりも良好である(熱伝導率が高い)。このように、第1断熱部34aの材質と第2断熱部34bの材質とを変えることにより、容易に第1断熱部34aの熱伝導を第2断熱部34bの熱伝導よりも良好に設定できる。
 次に、断熱部34の車両室内側において断熱部34を覆うヒータ部35を有し、検出部10は、ヒータ部35の更に車両室内側に設けられる。そして、検出部10が基準値を超える曇りを検出したときに、ヒータ部35に通電されて、窓の曇りの除去が行われる。
 これによれば、検出部10が外気によって冷やされる。よって、第2断熱部34b側に重大な曇りが発生する前に、検出部10が確実に基準値を超える湿度を検出できる。そのため、検出部10が基準値を超える湿度をより確実に検出して防曇することができる。また、曇りが生じたときは、ヒータ部35を加熱する。
 次に、ヒータ部35は、検出部10と外表面部31の間に位置する第1ヒータ部35aと、該第1ヒータ部35a以外の第2ヒータ部35bとを含む。そして、検出部10が曇りを検出したときに、ヒータ部35に通電される。この場合に、第1ヒータ部35aよりも第2ヒータ部35bの方が高温になる。
 故に、第2ヒータ部35bの方が第1ヒータ部35aよりも曇りが晴れ易い。従って、検出部10が曇りに至る水分量を検出したときに、ヒータ部35に通電されて、乗員の視界に影響する窓の曇りがより確実に除去される。
 (第1~第5実施形態の変更例)
 防曇のためにヒータ部35をウインドシールド30に併設したが、ヒータ部35はなくても良い。この場合は、車両用空調装置から温風が吹出されて、窓の曇りが除去されるようにすれば良い。つまり、湿度検出装置を使用した車両用防曇装置において、検出部が曇りを検出したときに、ウインドシールドに向けて温風が吹出されて、窓の曇りが除去されるようにすれば良い。
 また、外表面部31の車両室内側表面を覆う断熱部34を設けている。この断熱部34は、検出部10と外表面部31の間に位置する第1断熱部34aと、この第1断熱部34a以外の第2断熱部34bとを有する。そして第1断熱部34aの熱伝導が第2断熱部34bの熱伝導よりも良好であるようにした。
 このように、検出部10に対向する部分に、熱伝導が良好な第1断熱部34aを使用したが、図7と同様に、この第1断熱部34aの中に、熱伝導の良い充填物を内部に含む穴等の空洞部を設けても良い。
 空気中の湿度が多くなると温度の低いガラス部分に曇りが生じることが知られている。従って、上記のようにすれば、外表面部31から検出部10に向けての熱伝導が良好になり、速やかに外気の変化に伴う窓曇りの検出が可能となり、レスポンスが向上する。換言すれば、第1断熱部34aの空洞部は、熱伝導が第2断熱部34bの熱伝導よりも良好である。故に、外表面部31が外気によって冷やされると、検出部10が外気によって良好にすぐに冷やされる。そのため、検出部10が空気中の湿度を検出し易い。よって、第2断熱部34b側に重大な曇りが発生する前に、検出部10が確実に基準値を超える湿度を検出し易くなる。よって、検出部10において湿度検出にばらつきが多少あっても、車両内の乗員の視界が曇りによって悪くなる前に、検出部10が基準値を超える湿度をより確実に検出し易い。また、図1においては、第1断熱部34aの全域を第2断熱部34bよりも熱伝導率の高い領域としたが、この熱伝導率の高い領域は、全域でなくてもよい。
 次に、第5実施形態においては検出部にカーボンナノチューブという新素材を使用し、透明であり、かつ水分量を測定できる装置を開示した。この場合において、防曇のためにヒータ部35をウインドシールド30に併設する場合は、ヒータ部35にもカーボンナノチューブを使用することができる。金属細線の代わりに細線状に形成されたカーボンナノチューブのヒータ線をヒータ部35の樹脂の内部又は表面に張り巡らし、カーボンナノチューブに通電して発熱させることができる。
 このカーボンナノチューブを使用したヒータは軽量微細であり透明性を阻害することが無い。かつ、ヒータ自体の熱容量を小さくできる。その結果、発熱量を有効に水分の除去に活用できる。
 更に第1断熱部34aが、第2断熱部34bよりも熱伝導の良好な領域を有している場合、この熱伝導の良好な領域は、材質や金属フィラーの混入量の分布の相違によって形成した。しかし、金属フィラーの代わりにカーボンナノチューブを樹脂中に混入して熱伝導の良好な領域を持つ第1断熱部34aを形成することができる。また、カーボンナノチューブは、微細であり、かつ、熱伝導が良いから、透明性の高い第1断熱部34aを形成することができる。かくして、ヒータ部、断熱部、検出部の夫々にカーボンナノチューブを活用して軽量で透明性が高く、曇り除去作用の優れた防曇装置を提供できる。
 (第6実施形態)
 以下、第6実施形態について図11ないし図12を用いて詳細に説明する。図11において防曇装置は、車両の窓となるウインドシールド30を有する。更に、合成樹脂製の断熱部34の車両室内側である図11の上方にはヒータ部35が設けられ、このヒータ部35の車両室内側にヒータ部35の一部となるヒータ部保護膜35cが設けられている。防曇装置は、ヒータ部35の車両室内側に付着した水分又は車両室内側の湿度に反応して電気信号が変化する検出部10を備える。この検出部10としては、前述した第1~第5実施形態で説明した検出部10を用いることができる。
 断熱部34は、ヒータ部35よりも車両内外方向の厚さが厚く構成されている。当然、断熱部34は、ヒータ部保護膜35cよりも車両内外方向の厚さが厚く構成されている。断熱部34の他の構成は、前述した第1~第5実施形態で説明した断熱部34の構成を適宜適用し得る。すなわち、第6実施形態に係る断熱部34についても、検出部10と外表面部31の間に位置する第1断熱部34aと、この第1断熱部34a以外の第2断熱部34bとを有している(図1参照)。そして、第1断熱部34aの方が、第2断熱部34bよりも熱伝導が良好に設定されている(すなわち、熱伝導率が高い)。
 ここで、検出部10と外表面部31の間に位置する第1断熱部34aは、検出部10と外表面部31の間において、検出部10の少なくとも一部と対向するように位置している(図1参照)。具体的には、第1断熱部34aは、検出部10の底部面積の50%以上と重なるように位置している。このとき、第1断熱部34aは、第3実施形態で説明したように、熱伝導を良くするための充填剤を含む穴36を持つ空洞部を有していてもよい(図7参照)。また、第1断熱部34aの材質と第2断熱部34bの材質とが相違していることで、第1断熱部34aの熱伝導性を高めてもよい。もしくは、第2実施形態で説明したように、第1断熱部34aの車両内外方向の厚さを、第2断熱部34bの車両内外方向の厚さよりも薄くなるように設定することで、第1断熱部34aの熱伝導性を高めてもよい(図6参照)。なお、ヒータ部保護膜35cは、省略することも可能である。
 ヒータ部35は、カーボンナノチューブ(CNTとも呼ばれる)、金属粒子、カーボン粒子、及び金属酸化物粒子のいずれかを含む線状のヒータ部を含む層である。具体的には、カーボンナノチューブを用いて形成したワイヤ35dを用いた複数の線分状の発熱線によって構成されている。但し、ヒータ部35を、金属蒸着膜として構成しても良い。カーボンナノチューブを用いて形成したワイヤ35dは、図12に示す矢印Y35が指す方向に敷設された線分が複数並列に並べられたものである。この複数のワイヤ35dの各線分には同じく矢印Y35方向に電流が並列に流される。このために、線分状のワイヤ35dの両端に接続された電極には直流電圧が印加される。両端の封止部35c1は、ヒータ部保護膜35cと一体でも良い。
 図12は、この電気回路を示す。車両に搭載されたバッテリ43の電圧はリレー又はスイッチを有する通電部44を介して電極41、42に印加される。この通電部44は、検出部10に電気的に接続されており、検出部10が検出した水分または湿度に応じた電気信号が通電部44に出力されるようになっている。そして、通電部44は、検出部10が検出した水分または湿度が予め設定した所定量よりも多い場合に、通電部44はバッテリ43の電力をヒータ部35に通電する。それによってカーボンナノチューブを用いて形成したワイヤ35dには矢印Y35方向に電流が流れて発熱する。ヒータ部35は透明である必要があるため、ワイヤ35dの線径は、数ミクロン程度に制限される。ここで言うカーボンナノチューブとは、中空円筒の構造をした炭素の結晶で、直径0.7~70nmと髪の毛の約数万分の一、長さが数十μm以下のチューブ形状の物質である。カーボンナノチューブは、高いアスペクト比から、1グラムあたり100~1000平方メートルとされる広大な表面積を持つこと及び熱容量が小さく発熱した熱量が自身に蓄積されない。従って、発熱量が曇りの原因になる水分の除去に有効に使用できるという本実施形態の課題解決に有利な大きな特徴を有する。
 なお、ヒータ部35は、第1実施形態で説明したヒータ部35と同様に、検出部10と外表面部31の間の、検出部10に対向する部分に位置する第1ヒータ部35aと、この第1ヒータ部35a以外の残りのヒータ部35である第2ヒータ部35bとを有していてもよい(図1参照)。そして、検出部10が曇りを検出したときに、第1ヒータ部35aよりも第2ヒータ部35bの方が高温に加熱されるようにしてもよい。
 図11のヒータ部保護膜35cもPET等の樹脂にて作ることができる。ヒータ部保護膜35cは、ワイヤ35dを外力等から保護する。ヒータ部保護膜35cを含むヒータ部35は、断熱部34の厚さよりも薄くされる。換言すれば、断熱部34は熱伝導が悪くヒータ部35が発生した熱を車室外に逃がさないように十分な厚さを有する。断熱部34は、発泡樹脂等にて作ることができる。
 (第6実施形態の作用効果)
 ここで言う熱伝導とは、窓の車両室内側から車室外に向かう熱伝導において、媒質中に温度勾配がある場合に、その勾配に沿って運ばれる熱流束の大きさを規定する物理量であり、熱伝導率の逆数を熱抵抗率という。
 この熱伝導の相違は、断熱部34の樹脂の種類、材質、樹脂内部の空隙、樹脂内の金属粒子、フィラーの有無及び量と断熱部34の厚さ寸法の影響を受ける。断熱部34に使用される合成樹脂の種類によって熱伝導率が異なる。また断熱部34として透明発泡樹脂を使用し、熱抵抗率を大きくするために断熱部34の発泡空隙総量多くしても良い。透明発泡樹脂としては、直径が1ミクロンよりも小さいナノオーダーの気泡(ナノセル)をフィルム内部に充満させるナノセル発泡が知られている。空隙又は気泡が存在すると空隙又は気泡の熱伝導が悪いことに加え、樹脂と空隙又は気泡との境界部を熱が伝搬するときのサーマルインピーダンスが増加し熱抵抗率が増加する。
 防曇装置は、車両の窓となるウインドシールド30に窓曇りが発生したとき、検出部10からの信号により自動で図12の通電部44を介してヒータ部35に通電する。この場合、バッテリ43からの12ボルト、又は、48ボルトの直流電圧がヒータ部35の両端の電極41、42に印加される。それによって、ヒータ部35に電流が流れて加熱される。このヒータ部35はカーボンナノチューブを含んで構成されているため熱容量が少ない。
 このため、発生した熱は、ヒータ部35自体に蓄積されることが少ない。また熱が断熱部34を通過して車室外に逃げてしまうことも少ない。この結果、発生した熱は、ヒータ部保護膜35cの薄い層を通してヒータ部保護膜35cの車両室内側の表面に付着した曇りの原因となる水分45を加熱する。これによって効率的に水分45を蒸発させ曇りを晴らすことができるため電力消費が少ない。このことはバッテリ43の電力で走行する電気自動車やハイブリッド自動車には特に好ましい。
 以下第6実施形態の構成並びに作用効果をまとめると次の通りである。
 防曇装置のヒータ部35は、糸状又はワイヤ状に構成されたカーボンナノチューブがネット状又は複数の線が並ぶように配置されて形成されている。
 これによれば、通電されたカーボンナノチューブがネット状又は複数の線分状に発熱する。この結果、車両室内側を覆うヒータ部保護膜35cに付着した曇りの原因となる水分を広い範囲において蒸発させることができる。なお、ヒータ部保護膜35cは、省略することも可能である。
 (第6実施形態の変形例)
 第6実施形態では、ヒータ部35が、糸状またはワイヤ状のカーボンナノチューブがネット状または複数の線が並ぶように配置された構成とした。これに対して、図13に示す変形例のように、ヒータ部35を透明薄膜状に構成してもよい。例えば、ヒータ部35は、カーボンナノチューブ、金属粒子、カーボン粒子、及び金属酸化物粒子のいずれかが分散された面状発熱体35fとして構成される。より具体的には、ヒータ部35は、カーボンナノチューブがバインダとなる樹脂内に分散された透明な面状発熱体35fとして構成してもよい。これによれば、ヒータ部35が面状に発熱して車両室内側を覆うヒータ部保護膜35cに付着した曇りの原因となる水分を広い範囲において蒸発させることができる。
 第6実施形態では、検出部10が検出した水分または湿度が所定量を超えた場合に、通電部44がヒータ部35に通電するようにした。しかしながら、通電部44がヒータ部35に通電を行うタイミングとしては、例えば、ウインドシールド30に窓曇りが発生した際に、運転者が図示しない操作ボタンを操作することで、ヒータ部35への通電が行われるようにしてもよい。この場合、検出部10は必ずしも必要ではない。

 

Claims (38)

  1.  車両の窓となるウインドシールド(30)の車両室内側に取り付けて前記窓の曇りを検出する検出部(10)と、
     前記ウインドシールドの一部を構成し前記ウインドシールドの外側に位置する外表面部(31)と、
     前記ウインドシールドの一部を構成し前記外表面部の車両室内側表面の少なくとも一部を覆う断熱部(34)とを備え、
     前記断熱部は、前記検出部および前記外表面部の間に位置する第1断熱部(34a)と、この第1断熱部以外の第2断熱部(34b)とを有し、
     前記第1断熱部の方が、前記第2断熱部よりも熱伝導率が高くなっている湿度検出装置。
  2.  前記第1断熱部は、前記検出部および前記外表面部の間の、前記検出部の一部が対向する部分に位置する請求項1に記載の湿度検出装置。
  3.  前記第1断熱部は、前記検出部および前記外表面部の間において、前記検出部の底部面積の50%以上と対向するよう位置している請求項1又は2に記載の湿度検出装置。
  4.  前記第1断熱部は、充填剤を含む空洞部を有する請求項1ないし3のいずれか一項に記載の湿度検出装置。
  5.  前記第1断熱部の材質と前記第2断熱部の材質とが相違している請求項1ないし4のいずれか一項に記載の湿度検出装置。
  6.  前記第1断熱部の車両内外方向の厚さは、前記第2断熱部の車両内外方向の厚さよりも薄くなっている請求項1ないし5のいずれか一項に記載の湿度検出装置。
  7.  前記断熱部の車両室内側において前記ウインドシールドの一部を構成し前記断熱部の少なくとも一部を覆うヒータ部(35)を更に有し、
     前記検出部は、前記ヒータ部よりも更に車両室内側に取り付けられており、
     前記検出部が曇りを検出したときに、前記ヒータ部が通電されて、前記ウインドシールドの曇りが除去される請求項1ないし6のいずれか一項に記載の湿度検出装置。
  8.  前記ヒータ部は、前記検出部および前記外表面部の間の、前記検出部に対向する部分に位置する第1ヒータ部(35a)と、この第1ヒータ部以外の残りの前記ヒータ部である第2ヒータ部(35b)とを有し、
     前記検出部が曇りを検出したときに、前記ヒータ部に通電されて、前記ウインドシールドの曇りが除去され、前記第2ヒータ部は、前記第1ヒータ部よりも高温に発熱する請求項7に記載の湿度検出装置。
  9.  前記第1断熱部が前記第2断熱部よりも熱伝導率の高い領域を有している請求項1ないし8のいずれか一項に記載の湿度検出装置。
  10.  前記領域は、前記第1断熱部に形成された複数の穴と、前記穴の中に充填された充填物とを含む請求項9に記載の湿度検出装置。
  11.  前記充填物として、熱伝導ゲル又は熱伝導グリスが充填されている請求項10に記載の湿度検出装置。
  12.  車両の窓となるウインドシールド(30)の車両室内側に取り付けて前記窓の曇りを検出する検出部(10)と、
     前記ウインドシールドの一部を構成し前記ウインドシールドの外側に位置する外表面部(31)と、
     前記ウインドシールドの一部を構成し前記外表面部の車両室内側表面の少なくとも一部を覆う断熱部(34)とを備え、
     前記断熱部(34)は、前記検出部および前記外表面部の間に位置する第1断熱部(34a)と、この第1断熱部以外の第2断熱部(34b)とを有し、
     前記第1断熱部の方が、前記第2断熱部よりも熱伝導率が高く、
     前記検出部は、前記ウインドシールドの車両室内側に設けられたカーボンナノチューブの層(102)と、このカーボンナノチューブの層の電気抵抗を測定する測定部(106)とを含む湿度検出装置。
  13.  前記第1断熱部は、前記検出部および前記外表面部の間において、前記第1断熱部の一部が前記検出部に対向するように位置している請求項12に記載の湿度検出装置。
  14.  前記第1断熱部は、前記検出部および前記外表面部の間において、前記検出部の底部面積の50%以上と対向して重なるように位置している請求項12又は13に記載の湿度検出装置。
  15.  前記第1断熱部は、充填剤を含む空洞部を有する請求項12ないし14のいずれか一項に記載の湿度検出装置。
  16.  前記第1断熱部の材質と前記第2断熱部の材質とが相違している請求項12ないし15のいずれか一項に記載の湿度検出装置。
  17.  前記第1断熱部の車両内外方向の厚さは、前記第2断熱部の車両内外方向の厚さよりも薄い請求項12ないし16のいずれか一項に記載の湿度検出装置。
  18.  前記断熱部の車両室内側において前記ウインドシールドの一部を構成し前記断熱部の少なくとも一部を覆うヒータ部(35)を更に有し、
     前記検出部は、前記ヒータ部の更に車両室内側に取り付けられており、
     前記検出部が曇りを検出したときに、前記ヒータ部に通電されて、前記ウインドシールドの曇りが除去される請求項12ないし17のいずれか一項に記載の湿度検出装置。
  19.  前記ヒータ部は、前記検出部および前記外表面部の間の前記検出部に対向する部分に位置する第1ヒータ部(35a)と、この第1ヒータ部以外の残りの前記ヒータ部である第2ヒータ部(35b)とを有し、
     前記検出部が曇りを検出したときに、前記ヒータ部(35)に通電されて、前記ウインドシールド(30)の曇りが除去され、前記第2ヒータ部(35b)は、前記第1ヒータ部(35a)よりも高温に発熱する請求項18に記載の湿度検出装置。
  20.  前記第1断熱部(34a)が前記第2断熱部(34b)よりも熱伝導率の高い領域を有している請求項12ないし19のいずれか一項に記載の湿度検出装置。
  21.  前記熱伝導率の高い領域は、前記第1断熱部に形成された複数の穴(36)と、前記穴の中に充填された充填物とを含む請求項20に記載の湿度検出装置。
  22.  前記充填物として、熱伝導ゲル又は熱伝導グリスが充填されている請求項21に記載の湿度検出装置。
  23.  車両の窓となるウインドシールド(30)の一部を構成し前記ウインドシールドの外側に位置する外表面部(31)と、
     前記ウインドシールドの一部を構成し前記外表面部の車両室内側表面の少なくとも一部を覆う断熱部(34)と、
     該断熱部の車両室内側に設けられカーボンナノチューブ、金属粒子、カーボン粒子、及び金属酸化物粒子のいずれかを含む透明薄膜状又は線状のヒータ部(35)と、
     前記ヒータ部に車両に搭載されたバッテリ(43)からの電力を通電する通電部(44)とを備え、
     前記断熱部は、前記ヒータ部よりも車両内外方向の厚さが厚く構成されている防曇装置。
  24.  線状の前記ヒータ部は、糸状又はワイヤ状に構成された前記カーボンナノチューブがネット状又は複数の線が並ぶように配置されて形成されている請求項23に記載の防曇装置。
  25.  薄膜状の前記ヒータ部は、前記カーボンナノチューブがバインダとなる樹脂内に分散された透明面状発熱体として構成されている請求項23に記載の防曇装置。
  26.  前記ヒータ部の前記車両室内側に付着した水分又は前記車両室内側の湿度に反応して電気信号が変化する検出部を更に備え、
     前記通電部は、該検出部が検出した前記水分又は前記湿度が予め設定した所定量より多い場合に前記ヒータ部に前記バッテリからの電力を使用して通電する請求項23ないし25のいずれか一項に記載の防曇装置。
  27.  前記断熱部は、前記検出部と前記外表面部の間に位置する第1断熱部(34a)と、この第1断熱部以外の第2断熱部(34b)とを有し、
     前記第1断熱部の方が、前記第2断熱部よりも熱伝導率が高くなっている請求項26に記載の防曇装置。
  28.  前記検出部と前記外表面部の間に位置する前記第1断熱部は、前記検出部と前記外表面部の間において、前記検出部の少なくとも一部と対向するように位置することを特徴とする請求項27に記載の防曇装置。
  29.  前記第1断熱部は、前記検出部および前記外表面部の間において、前記検出部の底部面積の50%以上と重なるように位置することを特徴とする請求項28に記載の防曇装置。
  30.  前記第1断熱部は、熱伝導率を高めるための充填剤を含む穴(36)を持つ空洞部を有することを特徴とする請求項27ないし29のいずれか一項に記載の防曇装置。
  31.  前記第1断熱部の材質と前記第2断熱部の材質とが相違していることを特徴とする請求項27ないし30のいずれか一項に記載の防曇装置。
  32.  前記第1断熱部の車両内外方向の厚さは、前記第2断熱部の車両内外方向の厚さよりも薄いことを特徴とする請求項27ないし31のいずれか一項に記載の防曇装置。
  33.  前記検出部は、該ヒータ部の一部を構成しこのヒータ部の更に車両室内側を覆うヒータ部保護膜(35c)の車両室内側に取り付けられており、
     前記検出部が曇りを検出したときに、前記ヒータ部が通電されて、前記ウインドシールドの曇りが除去されることを特徴とする請求項26ないし32のいずれか一項に記載の防曇装置。
  34.  前記ヒータ部は、前記検出部と前記外表面部の間において、前記検出部に対向する部分に位置する第1ヒータ部(35a)と、この第1ヒータ部以外の残りの前記ヒータ部である第2ヒータ部(35b)とを有し、
     前記検出部が曇りを検出したときに、前記第1ヒータ部よりも前記第2ヒータ部の方が高温に加熱されることを特徴とする請求項33に記載の防曇装置。
  35.  前記第1断熱部が前記第2断熱部よりも熱伝導率の高い領域を有していることを特徴とする請求項27ないし32のいずれか一項に記載の防曇装置。
  36.  前記熱伝導率の高い領域は、前記第1断熱部に形成された複数の穴とこの穴の中に充填された充填物とを含むことを特徴とする請求項35に記載の防曇装置。
  37.  前記充填物として、熱伝導ゲル又は熱伝導グリスが充填されていることを特徴とする請求項36に記載の防曇装置。
  38.  前記検出部は、前記ウインドシールドの車両室内側に設けられたカーボンナノチューブを含む層(102)と、このカーボンナノチューブを含む層の電気抵抗を測定する測定部(106)とを含むことを特徴とする請求項26ないし37のいずれか一項に記載の防曇装置。
PCT/JP2015/005111 2014-10-16 2015-10-08 湿度検出装置および防霜装置 WO2016059780A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015004685.2T DE112015004685B4 (de) 2014-10-16 2015-10-08 Luftfeuchtigkeitserfassungsvorrichtung und Beschlagschutzvorrichtung

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014211949 2014-10-16
JP2014-211949 2014-10-16
JP2015-178896 2015-09-10
JP2015178896A JP6575248B2 (ja) 2014-10-16 2015-09-10 防曇装置
JP2015-178895 2015-09-10
JP2015178895A JP2016080690A (ja) 2014-10-16 2015-09-10 湿度検出装置

Publications (1)

Publication Number Publication Date
WO2016059780A1 true WO2016059780A1 (ja) 2016-04-21

Family

ID=55746342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005111 WO2016059780A1 (ja) 2014-10-16 2015-10-08 湿度検出装置および防霜装置

Country Status (1)

Country Link
WO (1) WO2016059780A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106369882A (zh) * 2016-08-25 2017-02-01 安徽江淮松芝空调有限公司 一种蒸发器双层保温结构
EP3355661A1 (en) * 2017-01-25 2018-08-01 Toyota Jidosha Kabushiki Kaisha Windshield heating device for onboard camera
CN111619310A (zh) * 2020-06-05 2020-09-04 梁雪芽 一种新能源电动汽车空调的远程控制系统及远程控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390423A (ja) * 1986-10-01 1988-04-21 Hitachi Ltd 車両窓くもり予測検知装置
JPS6490847A (en) * 1987-10-01 1989-04-07 Asahi Glass Co Ltd Electrical defroster for windshield glass
JP2000266664A (ja) * 1999-03-15 2000-09-29 Yazaki Corp 曇り検出装置
JP2004238229A (ja) * 2003-02-04 2004-08-26 Denso Corp 車両用導電性透明部材
JP2010199071A (ja) * 2009-02-26 2010-09-09 Tesa Se 加熱平面要素
JP2011515808A (ja) * 2008-06-13 2011-05-19 エルジー・ケム・リミテッド 発熱体およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390423A (ja) * 1986-10-01 1988-04-21 Hitachi Ltd 車両窓くもり予測検知装置
JPS6490847A (en) * 1987-10-01 1989-04-07 Asahi Glass Co Ltd Electrical defroster for windshield glass
JP2000266664A (ja) * 1999-03-15 2000-09-29 Yazaki Corp 曇り検出装置
JP2004238229A (ja) * 2003-02-04 2004-08-26 Denso Corp 車両用導電性透明部材
JP2011515808A (ja) * 2008-06-13 2011-05-19 エルジー・ケム・リミテッド 発熱体およびその製造方法
JP2010199071A (ja) * 2009-02-26 2010-09-09 Tesa Se 加熱平面要素

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106369882A (zh) * 2016-08-25 2017-02-01 安徽江淮松芝空调有限公司 一种蒸发器双层保温结构
CN106369882B (zh) * 2016-08-25 2019-02-22 安徽江淮松芝空调有限公司 一种蒸发器双层保温结构
EP3355661A1 (en) * 2017-01-25 2018-08-01 Toyota Jidosha Kabushiki Kaisha Windshield heating device for onboard camera
US10736183B2 (en) 2017-01-25 2020-08-04 Toyota Jidosha Kabushiki Kaisha Windshield heating device for onboard camera
CN111619310A (zh) * 2020-06-05 2020-09-04 梁雪芽 一种新能源电动汽车空调的远程控制系统及远程控制方法

Similar Documents

Publication Publication Date Title
JP6575248B2 (ja) 防曇装置
JP4858305B2 (ja) 湿度検出装置および車両用空調装置
CN109305126B (zh) 车辆的防雾装置
WO2016059780A1 (ja) 湿度検出装置および防霜装置
US7798658B2 (en) A/C system side view mirror and side glass DE-ICER
JP5135469B2 (ja) 湿度センサ付きフィルタエレメントを具備した車載空調装置、ならびにその運転方法
CN107923862B (zh) 湿度检测装置
US20060289458A1 (en) Fogging detecting system for an automotive vehicle and method for controlling the system
KR20070101164A (ko) 유리 온도 검출 시스템, 윈도우 포그 검출 시스템, 차량용공기 조절 시스템, 및 윈도우 포그 검출 방법
JP6493465B2 (ja) 車両の防曇制御装置
US10618376B2 (en) Automatic vehicular defogging system
JP2016141378A (ja) 車両用防曇解氷装置
JP6610624B2 (ja) 車両の防曇制御装置
JP2010036592A (ja) 車両用フロントウインドのヒータ装置
JP4682930B2 (ja) 車両用空調装置
JP4784573B2 (ja) 車両用空調装置本発明は、車両用空調装置に関する。
JP2004322849A (ja) 車両用空調装置
JP5012451B2 (ja) 車両用空調装置
JP6897351B2 (ja) 車両用防曇装置
JP2009040138A (ja) 車両用空調装置
JP2005335527A (ja) 車両用空調装置
JP4915212B2 (ja) 車両用空調装置
JP7511129B2 (ja) 窓ガラスシステム
JP4082124B2 (ja) 車両用曇り止め装置、結露推定方法
JP2004035331A (ja) 温度センサ付き合わせガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015004685

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849913

Country of ref document: EP

Kind code of ref document: A1