WO2016056659A1 - 光学部品 - Google Patents

光学部品 Download PDF

Info

Publication number
WO2016056659A1
WO2016056659A1 PCT/JP2015/078830 JP2015078830W WO2016056659A1 WO 2016056659 A1 WO2016056659 A1 WO 2016056659A1 JP 2015078830 W JP2015078830 W JP 2015078830W WO 2016056659 A1 WO2016056659 A1 WO 2016056659A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
refractive index
optical
index difference
relative refractive
Prior art date
Application number
PCT/JP2015/078830
Other languages
English (en)
French (fr)
Inventor
正典 高橋
長谷川 淳一
八木 健
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2016513556A priority Critical patent/JP6089147B2/ja
Publication of WO2016056659A1 publication Critical patent/WO2016056659A1/ja
Priority to US15/470,282 priority patent/US10007073B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4216Packages, e.g. shape, construction, internal or external details incorporating polarisation-maintaining fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • G02B6/4243Mounting of the optical light guide into a groove
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres

Definitions

  • the present invention relates to an optical component.
  • ZrO 2 zirconia
  • PLC planar lightwave circuit
  • the relative refractive index difference between the core and the clad of the optical waveguide can be greatly increased as compared with the conventional optical waveguide in which GeO 2 is doped into the core. It becomes.
  • the minimum bend radius allowed for the core is reduced, and downsizing, cost reduction, and high-density integration of the PLC component including the optical waveguide can be expected.
  • one of the factors that cause connection loss between the optical element and the optical fiber is a pitch shift of the optical fiber array.
  • the specification values of the pitch deviation of the 8-fiber array (250 ⁇ m pitch), 16-fiber, and 32-fiber array (127 ⁇ m pitch) when using a normal single mode optical fiber are ⁇ 0.5 ⁇ m and ⁇ 1. 0 ⁇ m.
  • the connection loss may become very large. For this reason, an optical fiber array with a small pitch shift and a small connection loss with an optical element is required.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an optical component in which a connection loss between an optical element and an optical fiber that inputs / outputs light to / from the optical element is reduced. .
  • an optical component is provided with a high relative refractive index difference optical fiber, the high relative refractive index difference optical fiber, and the high relative refractive index difference optical fiber.
  • a single mode optical fiber having a larger mode field diameter at a wavelength of 1550 nm than that of the relative refractive index difference optical fiber, and an end face of the high relative refractive index difference optical fiber on the side not fused to the single mode optical fiber.
  • the core size of the optical element is 1.5 ⁇ m to 6.5 ⁇ m in both thickness and width, and the relative refractive index difference of the core with respect to the cladding of the optical element. Is not less than 2.5% and not more than 10%.
  • a mode field diameter of the high relative refractive index difference optical fiber at a wavelength of 1550 nm is 3.0 ⁇ m or more and 5.0 ⁇ m or less, and the high relative refractive index difference optical fiber and the optical fiber
  • the connection loss of the optical component at a wavelength of 1550 nm is 3.08 dB or less.
  • the optical component according to an aspect of the present invention is characterized in that the relative refractive index difference of the core with respect to the cladding of the high relative refractive index difference optical fiber is 2.0% or more and 3.0% or less.
  • An optical component according to an aspect of the present invention fixes a relative position of the high relative refractive index difference optical fiber to the optical element in order to optically couple the high relative refractive index difference optical fiber to the optical element.
  • the high relative refractive index difference optical fiber is fixed to the fixing member in a state in which the covering between the V-shaped groove provided on the fixing member and the upper plate is removed. It is characterized by that.
  • the fusion point where the high relative refractive index difference optical fiber and the single mode optical fiber are fusion spliced is substantially the same diameter as the coating of the single mode optical fiber. It is characterized by being fixed to the fixing member in a state of being coated.
  • the outer diameter of the fusion point at which the high relative refractive index difference optical fiber and the single mode optical fiber are fusion-bonded is the above-mentioned before and after the fusion point. It is characterized in that it is sandwiched between the V-shaped groove and the upper plate in a state of being processed to be thinner than the outer diameter of the high relative refractive index difference optical fiber and the single mode optical fiber.
  • the fusion point at which the high relative refractive index difference optical fiber and the single mode optical fiber are fusion-connected is outside the casing that houses the optical component. It is arranged.
  • the optical component according to one aspect of the present invention is characterized in that the high relative refractive index difference optical fiber and the single mode optical fiber are collectively covered with a plurality of each arranged in an array.
  • the optical component according to an aspect of the present invention is characterized in that a clad diameter of the high relative refractive index difference optical fibers arranged in the array is 50 ⁇ m or more and smaller than 125 ⁇ m.
  • the optical component according to an aspect of the present invention is characterized in that the high relative refractive index difference optical fiber and the single mode optical fiber are polarization maintaining optical fibers that propagate light while maintaining a polarization plane. To do.
  • an end surface of the high relative refractive index difference optical fiber on the optical element side is 16 with respect to a plane perpendicular to the optical axis of the high relative refractive index difference optical fiber. It is processed obliquely at an angle of less than or equal to degrees.
  • the optical component according to one aspect of the present invention is characterized in that zirconia is added to the core of the optical waveguide of the optical element.
  • the optical component according to an aspect of the present invention is configured so that the eccentric directions of the cores in the cross section perpendicular to the longitudinal direction of the high relative refractive index difference optical fiber are constant to each other.
  • a rate difference optical fiber is arranged.
  • the optical component according to one aspect of the present invention is characterized in that the plurality of high relative refractive index difference optical fibers are obtained by cutting one high relative refractive index difference optical fiber.
  • the high relative refractive index difference optical fiber is fixed to a V-shaped groove provided in the fixing member at a predetermined interval.
  • the plurality of high relative refractive index difference optical fibers arranged in a cross section perpendicular to the longitudinal direction at least the eccentric direction of the core of the high relative refractive index difference optical fiber in the vicinity of the central portion and at least the vicinity of the end portion.
  • the optical component according to the present invention has an effect of reducing the connection loss between the optical element and the optical fiber that inputs and outputs light with respect to the optical element.
  • FIG. 1 is a diagram schematically illustrating the configuration of the optical component according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the fixing member in the vertical direction including the optical axes of the high ⁇ optical fiber and the single mode optical fiber.
  • FIG. 3 is a diagram of the connection surface of the fixing member as viewed from the optical element.
  • FIG. 4 is a diagram schematically showing the configuration of the optical component according to the second embodiment.
  • FIG. 5 is a cross-sectional view of the fixing member in the vertical direction including the optical axes of the high ⁇ optical fiber and the single mode optical fiber.
  • FIG. 6 is a diagram of the connection surface of the fixing member as viewed from the optical element.
  • FIG. 7 is a diagram schematically showing the configuration of the optical component according to the third embodiment.
  • FIG. 8 is a diagram schematically showing the configuration of the optical component according to the fourth embodiment.
  • FIG. 9 is a schematic circuit diagram of an optical element functioning as a coherent mixer used for DP-QPSK coherent modulation.
  • FIG. 10 is a graph showing the relationship between the core diameter and the MFD.
  • FIG. 11 is a graph showing the relationship between the core diameter and the MFD.
  • FIG. 12 is a graph showing the relationship between the core diameter and the cutoff wavelength.
  • FIG. 13 is a graph showing the relationship between the core diameter and the cutoff wavelength.
  • FIG. 14 is a diagram schematically illustrating a configuration of an optical component according to the fifth embodiment.
  • FIG. 15 is a cross-sectional view taken along line BB in part A of FIG.
  • FIG. 16A is a cross-sectional view taken along the line CC of FIG.
  • FIG. 16B is an enlarged view of a portion D in FIG. 16A.
  • FIG. 17 is a diagram illustrating another arrangement of high ⁇ optical fibers.
  • FIG. 18 is a diagram illustrating a process of cutting a high ⁇ optical fiber into a short high ⁇ optical fiber.
  • FIG. 19 is a diagram showing a process of arranging short high ⁇ optical fibers into a tape.
  • FIG. 20 is a diagram showing an optical fiber array.
  • FIG. 21 is a cross-sectional view of a fixing member for an optical component according to the sixth embodiment.
  • FIG. 22A is a diagram showing another arrangement of high ⁇ optical fibers.
  • FIG. 22B is a diagram showing another arrangement of high ⁇ optical fibers.
  • FIG. 23A is a diagram schematically illustrating a configuration of an optical component according to another embodiment.
  • FIG. 23B is a diagram schematically illustrating a configuration of an optical component according to another embodiment.
  • FIG. 24 is a diagram illustrating a configuration of the optical switch.
  • FIG. 25 is a diagram showing the configuration of the optical component.
  • FIG. 26 is a diagram illustrating connection loss of each port.
  • the cutoff wavelength is ITU-T (International Telecommunication Union) This is the cut-off wavelength according to the 22m method defined by 650.1. For other terms not specifically defined in this specification, ITU-T G. The definition and measurement method in 650.1 shall be followed as appropriate.
  • FIG. 1 is a diagram schematically showing an optical component 100 according to the first embodiment.
  • the optical component 100 includes an optical element 110, optical fibers 120a and 120b, fixing members 130a and 130b, and a housing 101.
  • the housing 101 accommodates the optical element 110 and the fixing members 130 a and 130 b, and the optical fibers 120 a and 120 b are drawn from the housing 101.
  • the optical element 110 is, for example, a PLC (Planar Lightwave Circuit) element, and includes a core that is a region where light is confined and guided, and a clad that is formed on the outer periphery of the core and has a refractive index smaller than that of the core.
  • the relative refractive index difference between the core and the clad is 2.5% to 10%.
  • such a relative refractive index difference is realized by adding ZrO 2 to the core of the PLC element.
  • the core has a thickness of 1.5 ⁇ m to 6.5 ⁇ m and a width of 1.5 ⁇ m to 6.5 ⁇ m.
  • Such an optical element 110 has a spot size of 1.0 ⁇ m to 6.5 ⁇ m at a wavelength of 1550 nm, for example.
  • the spot size is the diameter at which the intensity is 5% of the maximum intensity in the NFP (Near-Field Pattern) of the light propagating through the waveguide or the optical fiber core.
  • the spot size is an ellipse, the spot size is different between the major axis and the minor axis.
  • the optical element 110 includes, for example, a Mach-Zehnder interferometer (MZI), an arrayed-waveguide grating (AWG), and a polarization quaternary phase modulation (DP-QPSK: Dual Polarization Quadrature).
  • MZI Mach-Zehnder interferometer
  • AWG arrayed-waveguide grating
  • DP-QPSK Dual Polarization Quadrature
  • This is a coherent mixer used for a demodulator in a coherent modulation system such as Phase Shift Keying).
  • Optical fibers 120a and 120b are spliced to optical fibers 121a and 121b (hereinafter abbreviated as high ⁇ optical fibers) having a large relative refractive index difference between the core and the clad and normal single mode optical fibers 122a and 122b. Configured.
  • the relative refractive index difference between the core and the clad is 2.0% or more and 3.0% or less
  • the mode field diameter at 1550 nm is, for example, 3.0 ⁇ m or more and 5.0 ⁇ m or less.
  • the normal single mode optical fibers 122a and 122b are ITU-T G.264.
  • the relative refractive index difference between the core and the cladding is about 0.3%, and the mode field diameter at 1550 nm is 10 to 11 ⁇ m.
  • n c1 is the maximum refractive index of the core
  • n c is the refractive index of the cladding.
  • the high ⁇ optical fibers 121a and 121b and the single mode optical fibers 122a and 122b are fused so as to smooth the step of the mode field diameter at the connection point and to keep the connection loss low by devising the heating condition at the time of fusion splicing. It is worn.
  • the connection loss between the high ⁇ optical fibers 121a and 121b and the single mode optical fibers 122a and 122b is preferably reduced to 0.1 dB or less.
  • the optical fibers 120a and 120b are for inputting / outputting light to / from the optical element 110.
  • the ends of the high ⁇ optical fibers 121a and 121b are optically coupled to the optical element 110, and the ends of the single mode optical fibers 122a and 122b are led out of the optical component 100.
  • the end face on the optical element 110 side on the high ⁇ optical fibers 121a and 121b side is larger than 0 degree with respect to a plane perpendicular to the optical axis of the high ⁇ optical fibers 121a and 121b in order to suppress reflection of light on the end faces. It is preferable to be processed obliquely at an angle of 16 degrees or less.
  • the high ⁇ optical fibers 121a and 121b and the single mode optical fibers 122a and 122b can be polarization maintaining optical fibers that propagate light while maintaining the polarization plane.
  • the fixing members 130a and 130b fix the high ⁇ optical fibers 121a and 121b so that the cores of the high ⁇ optical fibers 121a and 121b and the optical element 110 are aligned, and the optical elements 110 and the high ⁇ optical fibers 121a and 121b are fixed.
  • 121b is a member for optically coupling with 121b.
  • the fixing members 130a and 130b are glass blocks made of quartz-based glass, and those having physical properties close to those of the optical element 110 are employed so as not to apply unnecessary stress to the optical element 110. ing.
  • FIG. 2 and 3 are diagrams showing the arrangement of the high ⁇ optical fiber 121b and the single mode optical fiber 122b with respect to the fixing member 130b.
  • 2 is a cross-sectional view of the fixing member 130b in the vertical direction including the optical axes of the high ⁇ optical fiber 121b and the single mode optical fiber 122b
  • FIG. 3 is a diagram of the connection surface of the fixing member 130b as viewed from the optical element 110. It is. Since the fixing member 130a has the same configuration as the fixing member 130b, the fixing member 130b is taken as a representative example here.
  • the fixing member 130b includes a main body 131b and an upper plate 132b.
  • the main body 131b is provided with a V-shaped groove 133b, and the high ⁇ optical fiber 121b disposed in the V-shaped groove 133b is sandwiched between the V-shaped groove 133b and the upper plate 132b.
  • the fusion point 123b between the high ⁇ optical fiber 121b and the single mode optical fiber 122b is located within the V-shaped groove 133b.
  • the fusion point 123b is sandwiched between the V-shaped groove 133b and the upper plate 132b.
  • the high ⁇ optical fiber 121b and the single mode optical fiber 122b in the region sandwiched between the V-shaped groove 133b and the upper plate 132b are in a state where the coating is peeled off, and the high ⁇ optical fiber 121b and the single mode optical fiber 122b The glass part is directly sandwiched.
  • the gaps between the high ⁇ optical fiber 121b and the single mode optical fiber 122b, the V-shaped groove 133b, and the upper plate 132b are filled with an adhesive 134b.
  • the single mode optical fiber 122b in the region not sandwiched between the V-shaped groove 133b and the upper plate 132b is fixed to the main body 131b from above the coating 124b with an adhesive 134b.
  • the outer diameter of the fusion point 123b is preferably configured to be smaller than the outer diameters of the high ⁇ optical fiber 121b and the single mode optical fiber 122b before and after that.
  • the fusion point 123b since the fusion point 123b is sandwiched between the V-shaped groove 133b and the upper plate 132b, the fusion point 123b may receive stress from the V-shaped groove 133b and the upper plate 132b. When the fusion point 123b receives stress, the connection loss at the fusion point 123b is deteriorated.
  • the fusion point 123b becomes the V-shaped groove 133b and the upper plate. The stress received from 132b is relieved.
  • the mechanical reliability may be lost due to the fusion point 123b coming into contact with the upper plate 132b.
  • the outer diameter of the fusion point 123b By configuring the outer diameter of the fusion point 123b to be smaller than the outer diameters of the high ⁇ optical fiber 121b and the single mode optical fiber 122b before and after the fusion point 123b, the possibility that this mechanical reliability is lost is reduced. Can do.
  • a method of controlling the outer diameter of the fusion point 123b a method of controlling the pushing amount and the return amount of both optical fibers when the high ⁇ optical fiber 121b and the single mode optical fiber 122b are fusion-bonded, A method of etching the fusion point of the optical fiber later can be used.
  • the optical component 100 having the above configuration is processed so that the outer diameter of the fusion point 123b between the high ⁇ optical fiber 121b and the single mode optical fiber 122b is smaller than the outer diameter of the optical fiber before and after the fusion point 123b.
  • the stress that the fusion point 123b receives from the V-shaped groove 133b and the upper plate 132b can be relaxed.
  • FIG. 4 is a diagram schematically showing the configuration of the optical component 200 according to the second embodiment.
  • the optical component 200 includes an optical element 210, optical fibers 220a and 220b, fixing members 230a and 230b, and a housing 201.
  • the housing 201 accommodates the optical element 210 and the fixing members 230a and 230b, and the optical fibers 220a and 220b are drawn from the housing 201.
  • the optical element 210 is formed with an optical waveguide having a large relative refractive index difference between the core and the clad.
  • the optical element 210 is configured so that the relative refractive index difference between the core and the clad is 2.5% or more and 10% or less by adding ZrO 2 to the core of the PLC element.
  • the optical fibers 220a and 220b are similar to the first embodiment in that the high ⁇ optical fibers 221a and 221b and the single mode optical fibers 222a and 222b are smoothed in the mode field diameter step at the connection point, and the connection loss is kept low. Thus, it is configured to be fused.
  • the relative refractive index difference with respect to the cladding of the core in the high ⁇ optical fibers 221a and 221b is 2.0% or more and 3.0% or less.
  • the connection loss between the high ⁇ optical fibers 221a and 221b and the single mode optical fibers 222a and 222b is preferably reduced to 0.1 dB or less.
  • the optical fibers 220a and 220b are for inputting / outputting light to / from the optical element 210.
  • the end portions on the high ⁇ optical fibers 221 a and 221 b side are optically coupled to the optical element 210, and the end portions on the single mode optical fibers 222 a and 222 b side are led out of the optical component 200.
  • the end face on the optical element 210 side on the high ⁇ optical fibers 221a and 221b side is larger than 0 degree with respect to a plane perpendicular to the optical axis of the high ⁇ optical fibers 221a and 221b in order to suppress reflection of light on the end faces.
  • the high ⁇ optical fibers 221a and 221b and the single mode optical fibers 222a and 222b can be polarization maintaining optical fibers that propagate light while maintaining the polarization plane.
  • the fixing members 230a and 230b fix the high ⁇ optical fibers 221a and 221b so that the cores of the high ⁇ optical fibers 221a and 221b and the optical element 210 are aligned, and the optical elements 210 and the high ⁇ optical fibers 221a and 221a
  • FIG. 5 and 6 are diagrams showing the arrangement of the high ⁇ optical fiber 221b and the single mode optical fiber 222b with respect to the fixing member 230b.
  • 5 is a cross-sectional view of the fixing member 230b in the vertical direction including the optical axes of the high ⁇ optical fiber 221b and the single mode optical fiber 222b
  • FIG. 6 is a view of the connection surface of the fixing member 230b as viewed from the optical element 210. is there. Since the fixing member 230a has the same configuration as the fixing member 230b, the fixing member 230b is taken as a representative example here.
  • the fixing member 230b includes a main body portion 231b and an upper plate 232b.
  • the main body 231b is provided with a V-shaped groove 233b, and the high ⁇ optical fiber 221b disposed in the V-shaped groove 233b is sandwiched between the V-shaped groove 233b and the upper plate 232b.
  • the fusion point 223b between the high ⁇ optical fiber 221b and the single mode optical fiber 222b is not included in the V-shaped groove 233b. That is, the region sandwiched between the V-shaped groove 233b and the upper plate 232b is only the high ⁇ optical fiber 221b. Therefore, the fusion point 223b does not receive stress from the V-shaped groove 233b and the upper plate 232b.
  • the fusion point 223b is so-called recoated.
  • the coating 224b in the vicinity of the fusion point 223b is peeled off.
  • the recoating means that a coating 225b having the same diameter as the coating of the single mode optical fiber 222b is applied in the vicinity of the fusion point 223b after the fusion splicing.
  • the gap between the high ⁇ optical fiber 221b, the V-shaped groove 233b, and the upper plate 232b is filled with an adhesive 234b.
  • the high ⁇ optical fiber 221b and the single mode optical fiber 222b in the region not sandwiched between the V-shaped groove 233b and the upper plate 232b are fixed to the main body portion 231b with an adhesive 234b from above the coatings 224b and 225b. ing.
  • the fusion point 223b between the high ⁇ optical fiber 221b and the single mode optical fiber 222b is applied to the fixing member 230b in a state in which a coating having substantially the same diameter as the coating of the single mode optical fiber 222b is applied. Since it is fixed, it can be handled as one optical fiber substantially. Therefore, a separate member such as a reinforcing sleeve is not required for handling the fusion point 223b.
  • FIG. 7 is a diagram schematically showing an optical component 300 according to the third embodiment.
  • the optical component 300 includes an optical element 310, optical fibers 320a and 320b, fixing members 330a and 330b, and a housing 301.
  • the housing 301 accommodates the optical element 310 and the fixing members 330 a and 330 b, and the optical fibers 320 a and 320 b are drawn from the housing 301.
  • the optical element 310 is formed with an optical waveguide having a large relative refractive index difference between the core and the clad.
  • the optical element 310 is configured so that the relative refractive index difference between the core and the clad is 2.5% or more and 10% or less by adding ZrO 2 to the core of the PLC element.
  • the high ⁇ optical fibers 321a and 321b and the single mode optical fibers 322a and 322b are smoothed in the step of the mode field diameter at the connection point as in the first embodiment, and the connection loss is kept low. Thus, it is configured to be fused.
  • the relative refractive index difference with respect to the cladding of the core in the high ⁇ optical fibers 321a and 321b is 2.0% or more and 3.0% or less.
  • the connection loss between the high ⁇ optical fibers 321a and 321b and the single mode optical fibers 322a and 322b is preferably reduced to 0.1 dB or less.
  • the optical fibers 320a and 320b are for inputting / outputting light to / from the optical element 310.
  • the ends of the high ⁇ optical fibers 321a and 321b are optically coupled to the optical element 310, and the ends of the single mode optical fibers 322a and 322b are led out of the optical component 300.
  • the end face on the optical element 310 side on the high ⁇ optical fibers 321a and 321b side is larger than 0 degree with respect to a plane perpendicular to the optical axis of the high ⁇ optical fibers 321a and 321b in order to suppress reflection of light on the end faces.
  • the high ⁇ optical fibers 321a and 321b and the single mode optical fibers 322a and 322b can be polarization maintaining optical fibers that propagate light while maintaining the polarization plane.
  • the fixing members 330a and 330b are made of quartz glass for fixing the high ⁇ optical fibers 321a and 321b to the optical element 310 and optically coupling the optical element 310 and the high ⁇ optical fibers 321a and 321b. It is a member.
  • the fusion points 323 a and 323 b obtained by fusing the high ⁇ optical fibers 321 a and 321 b and the single mode optical fibers 322 a and 322 b are disposed outside the housing 301 of the optical component 300.
  • the fusion points 323a and 323b are coated with the same diameter as that of the single mode optical fibers 322a and 322b after the fusion splicing.
  • the high ⁇ optical fibers 321a and 321b and the single mode optical fibers 322a and 322b can be handled substantially as one optical fiber. Therefore, a separate member such as a reinforcing sleeve is not required to handle the fusion points 323a and 323b.
  • the high ⁇ optical fibers 321a and 321b have lower bending loss than the single mode optical fibers 322a and 322b, only the high ⁇ optical fibers 321a and 321b are accommodated in the housing 301 of the optical component 300.
  • the bending radius allowed for the optical fiber in the housing 301 is reduced, which is effective for reducing the size of the optical component 300.
  • the high ⁇ optical fibers 321a and 321b whose clad diameter is smaller than the standard cladding diameter of 125 ⁇ m (for example, 50 ⁇ m or more and less than 125 ⁇ m, preferably 80 ⁇ m or less), the high ⁇ optical fibers 321a and 321b themselves are used.
  • the mechanical strength reliability is improved by reducing the volume and the bending strain applied to the high ⁇ optical fibers 321a and 321b. This also makes it possible to reduce the bending radius allowed for the optical fiber in the housing 301, which is effective for reducing the size of the optical component 300.
  • the fusion points 323a and 323b between the high ⁇ optical fibers 321a and 321b and the single mode optical fibers 322a and 322b are disposed outside the housing 301. It is effective for conversion.
  • the fusion points 323a and 323b are disposed outside the housing 301, but the fusion points 323a and 323b may be located near the optical fiber insertion port of the housing 301. For example, the same effect can be obtained even if the fusion points 323 a and 323 b are arranged in the housing 301.
  • FIG. 8 is a diagram schematically showing an optical component 400 according to the fourth embodiment.
  • the optical component 400 includes an optical element 410, array-type optical fibers 420a and 420b, fixing members 430a and 430b, and a housing 401.
  • the housing 401 accommodates the optical element 410 and the fixing members 430 a and 430 b, and the array type optical fibers 420 a and 420 b are drawn from the housing 401.
  • the optical element 410 is a PLC element that functions as a coherent mixer used for DP-QPSK coherent modulation.
  • the relative refractive index difference between the core and the clad is 2.5% or more and 10% or less.
  • such a relative refractive index difference is realized by adding ZrO 2 to the core of the PLC element.
  • the array type optical fibers 420a and 420b are so-called optical fiber ribbons formed by covering a plurality of optical fibers arranged in an array at once.
  • each of the optical fibers includes a high ⁇ optical fiber 421a and 421b and a single mode optical fiber 422a and 422b, as in the first embodiment, to smooth the step of the mode field diameter at the connection point. It is configured to be fused so as to keep the connection loss low.
  • the number of optical fibers constituting the array type optical fibers 420a and 420b depends on the type of the optical element 410, but is preferably eight or more, for example.
  • the clad diameter of each of the array type optical fibers 420a and 420b is 50 ⁇ m or more and 125 ⁇ m or less.
  • the array interval is 52 ⁇ m.
  • the clad diameter is 125 ⁇ m, The spacing between the arrays is 127 ⁇ m.
  • the relative refractive index difference between the core and the cladding in each of the high ⁇ optical fibers 421a and 421b is 2.0% or more and 3.0% or less.
  • the connection loss between the high ⁇ optical fibers 421a and 421b and the single mode optical fibers 422a and 422b is preferably reduced to 0.1 dB or less.
  • the array type optical fibers 420 a and 420 b are for inputting / outputting light to / from the optical element 410.
  • the ends of the high ⁇ optical fibers 421a and 421b are optically coupled to the optical element 410, and the ends of the single mode optical fibers 422a and 422b are led out of the optical component 400.
  • the end face on the optical element 410 side on the high ⁇ optical fibers 421a and 421b side is greater than 0 degree with respect to the plane perpendicular to the optical axis of the high ⁇ optical fibers 421a and 421b in order to suppress reflection of light on the end faces.
  • the high ⁇ optical fibers 421a and 421b and the single mode optical fibers 422a and 422b are polarization maintaining optical fibers that propagate light while maintaining the polarization plane.
  • the fixing members 430a and 430b are made of quartz glass for fixing the high ⁇ optical fibers 421a and 421b to the optical element 410 and optically coupling the optical element 410 and the high ⁇ optical fibers 421a and 421b. It is a member.
  • a method of fixing the high ⁇ optical fibers 421a and 421b to the fixing members 430a and 430b the method described in any of the first to third embodiments described above can be employed.
  • FIG. 9 is a schematic circuit diagram of the optical element 410 functioning as a coherent mixer used for DP-QPSK coherent modulation. Note that the circuit schematic diagram shown in FIG. 9 is an example of a circuit used for the optical element 410, and the present embodiment is not limited to the circuit.
  • the optical element 410 includes two signal ports (S1, S2), a local oscillation light port (LO), and eight output ports (P.1 to 8).
  • the two signal ports (S1, S2) and the local oscillation light port (LO) are ports for inputting light from the array type optical fiber 420a, and the eight output ports (P.1 to 8) are array type. This is a port for outputting light to the optical fiber 420a.
  • two signal lights that have been polarization-separated in advance and whose polarization plane is adjusted to TM polarization are respectively transmitted from the two signal ports (S1, S2) to the optical waveguides 411a and 411c. Entered.
  • the signal light input to the optical waveguide 411a is guided to the 90-degree hybrid element 413a, and the signal light input to the optical waveguide 411c is guided to the 90-degree hybrid element 413b.
  • TM-polarized local oscillation light is input to the optical waveguide 411b from the local oscillation light port (LO).
  • the local oscillation light input to the optical waveguide 411b is branched into two by the power splitter 412, and guided to the 90-degree hybrid elements 413a and 413b, respectively.
  • the signal light and the local oscillation light interfere to be separated into I-channel component signal light and Q-channel component signal light, and the output light is divided into eight output ports (P.1 to P.1). 8).
  • a plurality of high ⁇ optical fibers 421a and 421b and single mode optical fibers 422a and 422b having a cladding diameter of 50 ⁇ m are arranged in an array at intervals of 52 ⁇ m. It is highly compatible with a PLC element in which a waveguide is wired, and is advantageous for downsizing the entire optical component 400.
  • connection loss is that the difference in the relative refractive index between the optical waveguide of the optical element and the single mode optical fiber causes a large difference in the beam diameter (spot size or mode field diameter) of the light propagating through the two. In the point. Therefore, a single-mode optical fiber having a relative refractive index difference of 0.3% relative to the cladding of a normal core and a 3 ⁇ m ⁇ 3 ⁇ m core having a relative refractive index difference of 5.5% relative to the cladding is a ZrO 2 -added PLC device.
  • the connection loss in the case of direct optical coupling was calculated by simulation. It is assumed that there is no center position shift between the cores of both.
  • connection loss was calculated from the overlap of the electric field distribution when the centers were overlapped. Since the electric field distribution is greatly different between the single mode optical fiber and the PLC element, the connection loss was 4.91 dB / facet.
  • dB / facet is used as a unit indicating a connection loss for each connection face (facet).
  • the design of the optical fiber is changed to obtain a high ⁇ optical fiber having a relative refractive index difference with respect to the cladding of the core of 2.0% to 3.0%.
  • Table 1 shows the parameters of the refractive index profile of the high ⁇ optical fiber used in the study.
  • Fibers 1 to 3 are high ⁇ optical fibers having a W-type profile
  • Fibers 4 to 6 are high ⁇ optical fibers having a single-peak type profile.
  • the optical fiber having a W-type profile is an optical fiber having a central core and an outer peripheral core formed on the outer periphery of the central core and having a refractive index lower than that of the cladding. It is assumed that there is no center position shift between the cores of both.
  • ⁇ 1 is a relative refractive index difference with respect to the clad of the core (or the central core)
  • ⁇ 2 is a relative refractive index difference with respect to the clad of the outer core
  • Ra is a ratio of the outer diameter of the outer peripheral core to the diameter of the central core
  • the diameter of the central core is the diameter at the boundary between the central core and the outer peripheral core
  • MFD is the mode field diameter.
  • is a parameter relating to the refractive index profile shown below.
  • n 2 (r) n core 2 ⁇ ⁇ 1-2 ⁇ ( ⁇ / 100) ⁇ (r / a) ⁇ ⁇ (However, 0 ⁇ r ⁇ a)
  • r represents the position in the radial direction from the center of the core (or the central core)
  • n (r) is the refractive index at the position r
  • a is the radius of the core (or the central core).
  • the symbol “ ⁇ ” is a symbol representing a power.
  • Tables 2 to 4 show the simulation results.
  • Table 2 is a table showing the connection loss between a PLC element having a core having a relative refractive index difference of 3.0% and a thickness of 3.5 ⁇ m and various optical fibers
  • Table 3 shows a relative refractive index difference of 5
  • Table 4 shows the connection loss between a PLC element having a core of .5% and a thickness of 3.0 ⁇ m and various optical fibers
  • Table 4 shows a relative refractive index difference of 10.0% and a thickness of 1
  • the calculation is performed by changing the core width of the PLC element.
  • the spot size of these PLC elements becomes smaller within a range of 10% or less than the height and width of the core, and both spot sizes are 1.0 ⁇ m or more and 6.5 ⁇ m or less in both the height direction and the width direction. .
  • the connection loss can be significantly reduced by using a high ⁇ optical fiber of 0% or less as compared with a single mode optical fiber. Furthermore, it can be seen that the connection loss can be reduced by optimizing the waveguide width of the PLC element.
  • the wavelength 1550 nm connection loss between the high ⁇ optical fiber and the PLC element is 3.08 dB at the maximum
  • the connection loss between the high ⁇ optical fiber and the single mode optical fiber is Even 0.1 dB is smaller than 4.91 dB, which is a connection loss when a single mode optical fiber and a PLC element are directly connected.
  • the connection loss of another example in the above verification is significantly smaller than the maximum value of 3.08 dB. In many cases, even if the loss increase due to the shift of the core center position described later is taken into account, the PLC element and the high ⁇ light The total connection loss between the fiber and the single mode optical fiber can be suppressed to 1 dB or less.
  • the upper limit of the core diameter is set to a core diameter with a cut-off wavelength of 1500 nm or less. .
  • the MFD decreases.
  • the lower limit of the core diameter is a core diameter that is smaller than the core diameter at which the MFD is the minimum value, and that the MFD is 10% larger than the minimum value.
  • Table 5 is a table showing the relationship between ⁇ and the upper and lower limits of the core diameter defined as described above.
  • FIGS. are graph showing the relationship between the core diameter and the MFD and the relationship between the core diameter and the cutoff wavelength.
  • FIG. 10 is a graph showing the relationship between the core diameter and the MFD in Fiber 2
  • FIG. 11 is a graph showing the relationship between the core diameter and the MFD in Fiber 5.
  • FIG. 12 is a graph showing the relationship between the core diameter and cut-off wavelength in Fiber 2
  • FIG. 13 is a graph showing the relationship between the core diameter and cut-off wavelength in Fiber 5.
  • the high ⁇ optical fiber having a relative refractive index difference of 2.0% or more and 3.0% or less with respect to the cladding of the core has a core having a relative refractive index difference of 2.5% or more and 10% or less.
  • the connection loss between the high ⁇ optical fiber and the optical element can be kept low.
  • the connection loss between the optical element and the high ⁇ optical fiber is low.
  • the connection loss is 0.1 dB or less. It is possible to reduce it.
  • an optical element having a core having a relative refractive index difference of 2.5% to 10% and a spot size of 1.0 ⁇ m to 6.5 ⁇ m, and a relative refractive index difference of 2.0 to 2.0 for the core cladding. It is shown that when the optical fiber is optically coupled to a high ⁇ optical fiber of not less than 30% and not more than 3.0%, the connection loss is remarkably reduced as compared with direct optical coupling of a normal single mode optical fiber to the optical element. In particular, when the spot size of the PLC element is 3.0 ⁇ m or more and 5.0 ⁇ m or less, the connection loss is significantly reduced.
  • connection loss at the wavelength of 1550 nm between the high ⁇ optical fiber and the single mode optical fiber and the connection loss at the wavelength of 1550 nm between the high ⁇ optical fiber and the optical element are used.
  • the sum of the above and the total is significantly smaller than the connection loss at a wavelength of 1550 nm when the single mode optical fiber and the optical element are directly connected.
  • FIG. 14 is a diagram schematically illustrating a configuration of an optical component 500 according to the fifth embodiment.
  • the optical component 500 has a connection structure in which an optical element 510 having a high relative refractive index difference and a single mode optical fiber 522 are indirectly connected via a high ⁇ optical fiber 521.
  • the optical element 510 having a high relative refractive index difference is, for example, a multicast switch.
  • the optical element 510 having a high relative refractive index difference is a so-called ultra-high ⁇ optical element in which a plurality of cores are provided inside and the relative refractive index difference of the core with respect to the cladding is 2.5% to 10%.
  • a relative refractive index difference is realized by adding ZrO 2 to the core.
  • the core has a thickness of 1.5 ⁇ m to 6.5 ⁇ m and a width of 1.5 ⁇ m to 6.5 ⁇ m.
  • Such an optical element 510 has a spot size of 1.0 ⁇ m to 6.5 ⁇ m at a wavelength of 1550 nm, for example.
  • the spot size is a diameter of a point that becomes 5% of the maximum intensity in NFP (Near-Field Pattern) of light propagating through the waveguide or the core of the optical fiber.
  • NFP Near-Field Pattern
  • the spot size is an ellipse, the spot size is different between the major axis and the minor axis.
  • the high ⁇ optical fiber 521 is an optical fiber having a core relative refractive index difference of 2.0% or more and 3.0% or less, and a mode field diameter at 1550 nm is, for example, 3.0 ⁇ m or more and 5.0 ⁇ m or less.
  • a mode field diameter at 1550 nm is, for example, 3.0 ⁇ m or more and 5.0 ⁇ m or less.
  • the refractive index profile for example, a single-peak type or a W type having a central core and an outer peripheral core formed on the outer periphery of the central core and having a refractive index lower than that of the cladding can be used.
  • Each parameter is adjusted so that the mode field diameter is, for example, 3.0 ⁇ m or more and 5.0 ⁇ m or less.
  • a plurality of high ⁇ optical fibers 521 are taped to form a tape core.
  • Each high ⁇ optical fiber 521 is fixed to the fixing member 530 at a predetermined interval. That is, the optical element 510 having a high relative refractive index difference and the optical fiber array in which the high ⁇ optical fiber 521 is fixed to the fixing member 530 are connected. Details of the optical fiber array will be described later.
  • the other end of the tape core in which the high ⁇ optical fiber 521 is taped is connected to the tape core in which the single mode optical fiber 522 is taped.
  • the individual high ⁇ optical fiber 521 and the single mode optical fiber 522 are fused so as to smooth the step of the mode field diameter at the connection point and to keep the connection loss low by devising the heating condition at the time of fusion splicing.
  • the connection loss can be suppressed to about 0.1 dB / facet.
  • the optical element 510 having a high relative refractive index difference and the single mode optical fiber 522 are directly connected by a conventional method, there is a possibility that a connection loss of about 5 dB / facet is caused.
  • the total connection loss can be reduced.
  • the connection loss between the high relative refractive index difference optical element 510 and the high ⁇ optical fiber 521 can be suppressed to about 0.4 dB / facet, the high relative refractive index difference optical element 510 and the single mode optical fiber 522 The total connection loss can be suppressed to about 0.5 dB.
  • the connection between the optical element 510 having a high relative refractive index difference and the high ⁇ optical fiber 521 will be described in detail.
  • FIG. 15 is a cross-sectional view taken along line BB in part A of FIG. 14, and shows the longitudinal direction of the high ⁇ optical fiber 521 in the vicinity of the connection between the optical element 510 having a high relative refractive index difference and the high ⁇ optical fiber 521. It is sectional drawing.
  • a waveguide 513 core and clad
  • the fixing member 530 includes a main body portion 531 and an upper plate 532, and a high ⁇ optical fiber 521 is sandwiched therebetween.
  • the waveguide 513 and the high ⁇ optical fiber 521 are optically connected.
  • the bonding interface between the fixing member 530 and the optical element 510 having a high relative refractive index difference is formed obliquely to prevent reflection, and is bonded to each other with an adhesive.
  • FIG. 16A is a cross-sectional view taken along the line CC of FIG. 14, and is a cross-sectional view of the high ⁇ optical fiber 521 fixed to the fixing member 530 with respect to a direction perpendicular to the longitudinal direction of the high ⁇ optical fiber 521.
  • V-shaped grooves 533 are formed at a predetermined pitch in the main body portion 531 of the fixing member 530, and high ⁇ optical fibers 521 are disposed in the respective V-shaped grooves 533. That is, the high ⁇ optical fibers 521 are arranged at a predetermined pitch.
  • FIG. 16B is an enlarged view of a portion D in FIG. 16A.
  • the high ⁇ optical fiber 521 has a clad 521a and a core 521b.
  • the core 521b may be eccentric from the center of the clad 521a (F in the figure, black circle).
  • the high ⁇ optical fibers 521 are arranged so that the eccentric directions of the cores 521b are fixed to each other.
  • the directions in which the directions are fixed to each other need not be completely the same direction.
  • they may be arranged in the same direction with respect to the center line E passing through the center F of the clad 521a.
  • the cores 521b are all arranged on the upper side in the figure with respect to the center line E parallel to the arrangement direction of the high ⁇ optical fibers 521. That is, as long as the cores are aligned so as to be located within a range (180 °) in the same direction with respect to the center line E, there may be a slight angular deviation.
  • the eccentric direction may not be the arrangement direction of the high ⁇ optical fibers 521 or the direction perpendicular to the arrangement direction.
  • the eccentric direction of the core 521b of each high ⁇ optical fiber 521 is The eccentric direction may be any direction as long as it is arranged in a certain direction (upper right side in the figure) with respect to each center line G.
  • one high ⁇ optical fiber 521 is cut into a plurality of short high ⁇ optical fibers 521.
  • a mark 523 by coloring or the like is formed on a part of the outer peripheral surface of the high ⁇ optical fiber 521 in a straight line along the longitudinal direction.
  • the number of short high ⁇ optical fibers 521 is the same as the number of optical fibers constituting the fiber array.
  • the length of the short high ⁇ optical fiber 521 is, for example, about 2 to 50 mm.
  • the cut out short high ⁇ optical fibers 521 are arranged to form a tape.
  • the marks 523 are aligned so as to face substantially the same direction.
  • a short high ⁇ optical fiber 521 is arranged and taped so that all the marks 523 can be seen on the upper surface.
  • the mark 523 is formed straight in the longitudinal direction of the high ⁇ optical fiber 521, the positional relationship between the eccentric direction of the core in the cross section perpendicular to the longitudinal direction of the short high ⁇ optical fiber 521 and the circumferential direction of the mark 523 is , All become substantially constant. Further, since the short high ⁇ optical fiber 521 is sufficiently short, twisting and the like hardly occur. For this reason, the eccentric direction can be easily aligned in a substantially constant direction without confirming the eccentric direction of the core of the short high ⁇ optical fiber 521 from the end face.
  • a single-mode optical fiber 522 is separately arranged on one end of a tape core obtained by tape-forming a short high ⁇ optical fiber 521, and the tape-cored tape is connected.
  • the connection between the high ⁇ optical fiber 521 and the single mode optical fiber 522 is fused so as to smooth the step of the mode field diameter at the connection point and keep the connection loss low.
  • the end of the tape core wire on the high ⁇ optical fiber 521 side is fixed to the fixing member 530.
  • the optical fiber array 540 is formed.
  • the cause of the pitch deviation of the optical fiber array may be the cutting accuracy of the fixing members constituting the optical fiber array, the positional deviation of the optical fiber during assembly, the core eccentricity of the optical fiber, and the variation in the outer diameter of the cladding. .
  • the deviation of the core eccentricity and the outer diameter of the cladding are dominant in the pitch deviation of the optical fiber array, and the optical fiber obtained by the normal manufacturing method is known to have a variation of about ⁇ 0.3 ⁇ m. Yes.
  • the pitch deviation can be reduced by aligning the core eccentric directions of the high ⁇ optical fibers 521.
  • the pitch deviation cannot be sufficiently suppressed if the eccentric amounts of the high ⁇ optical fibers 521 are different.
  • the core center position may be shifted by a maximum of 0.3 ⁇ m even if the eccentric directions are matched. It becomes.
  • the plurality of high ⁇ optical fibers 521 fixed to the fixing member 530 are composed of short high ⁇ optical fibers 521 cut out from one optical fiber. For example, even if 100 short 10 mm high ⁇ optical fibers are cut out from one high ⁇ optical fiber, the necessary short high ⁇ optical fiber can be taken out from the high ⁇ optical fiber of about 1 m.
  • the pitch deviation can be minimized by using the short high- ⁇ optical fiber obtained in this way to configure the optical fiber array with the core eccentric direction aligned. For this reason, the connection loss accompanying the pitch shift between the optical element 510 having a high relative refractive index difference and the optical fiber array 540 (high ⁇ optical fiber 521) can be reduced to 0.4 dB / facet or less.
  • the core eccentricity amount and the cladding outer diameter of each short high ⁇ optical fiber 521 are used. There is almost no variation.
  • the optical fiber array 540 is configured by aligning the core eccentric directions of the respective short high ⁇ optical fibers 521, the pitch deviation hardly occurs. For this reason, the connection loss between the optical element 510 having a high relative refractive index difference and the optical fiber array 540 can be reduced. For this reason, the optical element 510 having a high relative refractive index difference and the single mode optical fiber 522 can be efficiently connected.
  • the optical element 510 having a high relative refractive index difference and the single mode optical fiber 522 are connected via the high ⁇ optical fiber 521, the optical element 510 having the high relative refractive index difference and the single mode optical fiber 522 are directly connected. Compared with the case of connection, the total connection loss can be reduced.
  • the short high ⁇ optical fibers 521 are fixed to the fixing member 530, the short high ⁇ optical fibers 521 can be surely arranged at a predetermined pitch.
  • the circumferential direction of the optical fiber can be specified by forming a mark 523 by coloring or the like in a straight line along the longitudinal direction on a part of the outer peripheral surface of the high ⁇ optical fiber 521.
  • the method for specifying the circumferential direction of the optical fiber is not limited to this.
  • the outer shape of the optical fiber may be a shape other than a circle (an ellipse, a rectangle, or a shape obtained by cutting a part of a circle into a straight line).
  • a marker may be embedded in the optical fiber.
  • FIG. 21 is a cross-sectional view of a fixing member 630 for an optical component according to the sixth embodiment. Note that, in the following description, overlapping description is omitted for configurations having the same functions as those of the fifth embodiment.
  • the fixing member 630 includes a main body portion 631 provided with a V-shaped groove 633 and an upper plate 632.
  • the main body 631 and the upper plate 632 are bonded with, for example, an adhesive.
  • the fixing member 630 may be warped as the adhesive is cured (H in the figure). Specifically, both sides of the fixing member 630 may be deformed upward (or downward).
  • FIG. 22A is a conceptual diagram showing an arrangement state of the high ⁇ optical fibers 621 when the fixing member 630 is warped in a cross section perpendicular to the longitudinal direction of the high ⁇ optical fibers 621.
  • a range K in the figure shows the high ⁇ optical fiber 621 near the center with respect to the arrangement direction
  • a range L in the figure shows the high ⁇ optical fiber 621 near both ends with respect to the arrangement direction.
  • the center line I connecting the centers F of the respective high ⁇ optical fibers 621 deviates from the ideal center line J in the ideal state. Specifically, in the range K, the center line I is located below the ideal center line J, and in the range L, the center line I is located above the ideal center line J. That is, in the range K and the range L, the positional relationship between the center line I and the ideal center line J with respect to the direction perpendicular to the arrangement direction of the high ⁇ optical fibers 621 is opposite to each other.
  • the eccentric direction of the core 621b is not aligned in a constant direction, but is changed according to the position where the high ⁇ optical fiber 621 is arranged.
  • the core of the core 621b of the central high ⁇ optical fiber 621 is turned upward, and the high ⁇ optical fiber 621 is rotated by a predetermined angle toward the end side, so that the core of the outermost high ⁇ optical fiber 621 is rotated.
  • the eccentric direction of 621b is directed downward. That is, the high ⁇ optical fiber 621 is rotated by 180 ° between the central high ⁇ optical fiber 621 and the endmost high ⁇ optical fiber 621.
  • the eccentricity of the core of the high ⁇ optical fiber 621 is rotated from the vicinity of the center portion to the vicinity of both end portions so as to be opposite to each other.
  • the position of the core 621b can be brought close to the ideal center line J. That is, the influence of pitch deviation due to warpage can be reduced.
  • the arranged high ⁇ optical fibers 621 are not rotated and arranged little by little, but as shown in FIG. 22B, the core eccentricity is all in a certain direction (upward in the figure) within the range K. In the range L, the core eccentricity may be aligned in the opposite direction (downward in the figure). That is, at least the eccentric direction of the high ⁇ optical fiber 621 near the center and the eccentric direction of the high ⁇ optical fiber 621 at least near the end are opposite to each other in a direction substantially perpendicular to the arrangement direction of the high ⁇ optical fibers 621. As a result, the influence of pitch deviation due to warping can be reduced.
  • the position of the core 621b is confirmed from the end face, and the core is arranged so as to be eccentric in a predetermined direction.
  • the rotation angle (orientation) of 621 may be adjusted with reference to the aforementioned mark with respect to the central high ⁇ optical fiber 621.
  • the influence of the warp of the fixing member 630 can be reduced, and the connection loss between the optical element having a high relative refractive index difference and the optical fiber array can be reduced. For this reason, an optical element having a high relative refractive index difference and a single mode optical fiber can be efficiently connected.
  • an embodiment in which an optical element having a high relative refractive index difference and a single mode optical fiber are connected via a high ⁇ optical fiber is used.
  • the implementation of the present invention is not limited to this.
  • an optical element 710 having a high relative refractive index difference and a single mode optical fiber 722 are connected without using a high ⁇ optical fiber.
  • a short single-mode optical fiber 721 is cut out from one single-mode optical fiber, a tape core wire in which these single-mode optical files 721 are arranged is created, and high relative refraction is performed via the tape core wire.
  • the optical element 710 of the rate difference and the original single-mode optical fiber 722 tape core wire are connected. Even in this case, since the amount of core eccentricity and the outer diameter of the clad between the single mode optical fibers 722 are substantially the same, the optical element 710 having a high relative refractive index difference and the single mode optical fiber 722 can be obtained only by aligning the core eccentric direction. Can be connected efficiently.
  • the fixing member 730 is not always necessary.
  • the optical element 810 having a high relative refractive index difference and the high ⁇ optical fiber 821 may be fused and connected by a laser or the like. Even in this case, since the core eccentricity and the clad outer diameter of the high ⁇ optical fibers 821 constituting the tape core are substantially the same, the optical element 810 having a high relative refractive index difference can be obtained only by aligning the core eccentric direction. The single mode optical fiber 822 can be efficiently connected.
  • FIG. 24 is a diagram showing a configuration of a tree-type 8 ⁇ 1 optical switch 911.
  • the optical switch 911 has one common port 912 at one end and eight branch ports 913 at the other end.
  • the optical switch 911 has a plurality of MZI (Mach-Zehnder interferometers) 914. Between the input / output ports of the MZI 914, couplers 914a and 914b and two waveguides 914c and 914d sandwiched between 914a and 914b are provided.
  • One waveguide 914d is provided with a heater 914e which is a heating means.
  • the optical switch 911 can change the path of the optical signal by turning on / off the heater 914e of each MZI 914.
  • a chip in which four arrays of this optical switch 911 are arranged was fabricated using PLC fabrication process technology such as FHD (Frame Hydrolysis Deposition) method, photolithography, reactive ion etching, and the like. After forming the waveguide, a heater, an electrode, and an insulating film were formed, and finally a contact hole was formed in the electrode pad portion by etching.
  • the relative refractive index difference ⁇ was 5%, and the chip size was 18 ⁇ 6 mm.
  • FIG. 25 is a diagram showing a configuration of the optical component 900 used in the experiment.
  • Optical fiber arrays were connected to both ends of the produced 4 array 8 ⁇ 1 switch (optical element 910 having a high relative refractive index difference).
  • the optical fiber array was manufactured as follows. First, 36 ⁇ 10 mm high ⁇ optical fibers 921a and 921b were cut out from one high ⁇ optical fiber. At that time, marks were formed in the longitudinal direction on the original high ⁇ optical fiber.
  • the high ⁇ optical fibers 921a and 921b are those having a relative refractive index difference of ⁇ 2.9%.
  • the high ⁇ optical fibers 921a and 921b were taped to form a tape core. At this time, the above-described marks were arranged in the same direction.
  • the length of the tape core wire was 10 mm.
  • the high ⁇ optical fiber 921a has four cores, and the high ⁇ optical fiber 921b has 32 cores. That is, the number of cores of the input and output fiber arrays is 32 and 4, respectively.
  • single-mode optical fibers 922a and 922b were fused to one end of the tape cores of the high ⁇ optical fibers 921a and 921b so as to smooth the step of the mode field diameter at the connection point and to keep the connection loss low. Further, the other ends of the tape core wires of the high ⁇ optical fibers 921a and 921b were fixed by fixing members 930a and 930b, and connected to an optical element 910 having a high relative refractive index difference.
  • FIG. 26 is a diagram showing the connection loss of each port in the optical component 900 shown in FIG.
  • the horizontal axis of the graph shown in FIG. 26 shows the respective ports of 32 cores, and the vertical axis shows the connection loss for each port.
  • a loss of 0.7 dB or less which is 1 dB or less in total, can be realized in all ports. From this result, it was found that the configuration of the optical component 900 can sufficiently suppress the pitch shift of the fiber array and has practicality.
  • this invention is not limited by the said embodiment.
  • an optical element that makes light incident on the end face of the high relative refractive index difference optical fiber for example, a spot size converter composed of a PLC element, a spatial coupling system, or the like may be used. What was comprised combining each component mentioned above suitably is also contained under the category of the present invention. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • Optical component 110 210, 310, 410, 510, 710, 810, 910

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 高比屈折率差光ファイバと、前記高比屈折率差光ファイバと融着接続され、前記高比屈折率差光ファイバよりも波長1550nmにおけるモードフィールド径が大きいシングルモード光ファイバと、前記シングルモード光ファイバと融着接続されていない側の前記高比屈折率差光ファイバの端面に接続された光学素子と、を備え、前記高比屈折率差光ファイバと前記シングルモード光ファイバとの間における波長1550nmの接続損失と、前記高比屈折率差光ファイバと前記光学素子との間における波長1550nmの接続損失と、の合計は、前記シングルモード光ファイバと前記光学素子とを直接接続した場合の波長1550nmにおける接続損失よりも小さいことを特徴とする光学部品。

Description

光学部品
 本発明は、光学部品に関する。
 石英系ガラスを材料とする平面光波回路(Planar Lightwave Circuit:PLC)素子を構成する光導波路において、屈折率を高めるドーパントとして、ジルコニア(ZrO)を使う技術が知られている(例えば特許文献1参照)。ZrOは、ゲルマニア(GeO)と比較して屈折率が高く、熱膨張係数が小さい材料である。そのため、PLC素子やこれを備える光学部品等を小型化しつつ、導波路に残る応力を低減できる材料として期待されている。
特開2013-210623号公報
 ZrOを光導波路のコアにドーパントとすることで、従来のGeOをコアにドーパントした光導波路と比較して、光導波路のコアとクラッドとの比屈折率差を大幅に大きくすることが可能となる。これにより、コアに許容される最小曲げ半径が小さくなり、当該光導波路を備えるPLC部品等の小型化、低コスト化、および高密度集積化が期待できる。
 しかしながら、光導波路のコアとクラッドとの比屈折率差が大きくなると、コアへの光の閉じ込めが強くなるので、シングルモード伝搬を実現するためのコアのサイズが小さくなり、これに伴ってコアを伝搬する光のビーム径が小さくなる。これにより、当該光導波路が形成された光学素子と当該光学素子に対して光を入出力する光ファイバとの間の接続損失が大きくなるという問題が発生する。
 また、光学素子と光ファイバとの間において接続損失が生じる要因の1つとして、光ファイバアレイのピッチずれもある。例えば、通常のシングルモード光ファイバを用いた場合の8心ファイバアレイ(250μmピッチ)と16心、32心ファイバアレイ(127μmピッチ)のピッチずれの仕様値は、それぞれ±0.5μmと±1.0μmである。しかしながら、このような範囲のピッチずれを有する光ファイバアレイとコアとクラッドとの比屈折率差が大きい光学素子を接続すると、接続損失が非常に大きくなってしまう場合がある。このため、ピッチずれが小さく、光学素子との接続損失の小さな光ファイバアレイが求められている。
 本発明は上記に鑑みてなされたものであって、光学素子と当該光学素子に対して光を入出力する光ファイバとの間の接続損失が低減された光学部品を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る光学部品は、高比屈折率差光ファイバと、前記高比屈折率差光ファイバと融着接続され、前記高比屈折率差光ファイバよりも波長1550nmにおけるモードフィールド径が大きいシングルモード光ファイバと、前記シングルモード光ファイバと融着接続されていない側の前記高比屈折率差光ファイバの端面に接続された光学素子と、を備え、前記高比屈折率差光ファイバと前記シングルモード光ファイバとの間における波長1550nmの接続損失と、前記高比屈折率差光ファイバと前記光学素子との間における波長1550nmの接続損失と、の合計は、前記シングルモード光ファイバと前記光学素子とを直接接続した場合の波長1550nmにおける接続損失よりも小さいことを特徴とする。
 また、本発明の一態様に係る光学部品は、前記光学素子のコアのサイズは、厚さおよび幅がともに1.5μm~6.5μmであり、前記光学素子のクラッドに対するコアの比屈折率差は、2.5%以上10%以下であることを特徴とする。
 また、本発明の一態様に係る光学部品は、前記高比屈折率差光ファイバの波長1550nmにおけるモードフィールド径が3.0μm以上5.0μm以下であり、前記高比屈折率差光ファイバと前記光学部品の波長1550nmにおける接続損失は、3.08dB以下であることを特徴とする。
 また、本発明の一態様に係る光学部品は、前記高比屈折率差光ファイバのクラッドに対するコアの比屈折率差が2.0%以上3.0%以下であることを特徴とする。
 また、本発明の一態様に係る光学部品は、前記光学素子に前記高比屈折率差光ファイバを光学結合するために、前記高比屈折率差光ファイバの前記光学素子に対する相対的位置を固定する固定部材をさらに備え、前記高比屈折率差光ファイバは、前記固定部材に設けられたV字溝と上板とに挟持される部分の被覆が除去された状態で、前記固定部材に固定される、ことを特徴とする。
 また、本発明の一態様に係る光学部品は、前記高比屈折率差光ファイバと前記シングルモード光ファイバとが融着接続された融着点は、前記シングルモード光ファイバの被覆と略同径の被覆が施された状態で前記固定部材に固定されていることを特徴とする。
 また、本発明の一態様に係る光学部品は、前記高比屈折率差光ファイバと前記シングルモード光ファイバとが融着接続された融着点の外径は、当該融着点の前後における前記高比屈折率差光ファイバおよび前記シングルモード光ファイバの外径よりも細くなるように加工された状態で、前記V字溝と前記上板との間に挟持されていることを特徴とする。
 また、本発明の一態様に係る光学部品は、前記高比屈折率差光ファイバと前記シングルモード光ファイバとが融着接続された融着点は、当該光学部品を収容する筐体の外に配置されていることを特徴とする。
 また、本発明の一態様に係る光学部品は、前記高比屈折率差光ファイバおよび前記シングルモード光ファイバは、複数の各々がアレイ状に配列された状態で一括に被覆されていることを特徴とする。
 また、本発明の一態様に係る光学部品は、前記アレイ状に配列された前記高比屈折率差光ファイバのクラッド径が50μm以上であり125μmより小さいことを特徴とする。
 また、本発明の一態様に係る光学部品は、前記高比屈折率差光ファイバおよび前記シングルモード光ファイバは、偏波面を保持しながら光を伝搬する偏波保持光ファイバであることを特徴とする。
 また、本発明の一態様に係る光学部品は、前記高比屈折率差光ファイバの前記光学素子の側の端面は、該高比屈折率差光ファイバの光軸に垂直な面に対して16度以下の角度で斜めに加工されていることを特徴とする。
 また、本発明の一態様に係る光学部品は、前記光学素子の光導波路のコアにはジルコニアが添加されていることを特徴とする。
 また、本発明の一態様に係る光学部品は、前記高比屈折率差光ファイバの長手方向に垂直な断面における、それぞれのコアの偏心方向が互いに一定の方向となるように、前記高比屈折率差光ファイバが配列されることを特徴とする。
 また、本発明の一態様に係る光学部品は、複数の前記高比屈折率差光ファイバは、1本の高比屈折率差光ファイバを切断して得られるものであることを特徴とする。
 また、本発明の一態様に係る光学部品は、前記高比屈折率差光ファイバは、前記固定部材に設けられたV字溝に所定の間隔で固定され、前記高比屈折率差光ファイバの長手方向に垂直な断面において、配列される複数の前記高比屈折率差光ファイバの内、少なくとも中央部近傍の前記高比屈折率差光ファイバのコアの偏心方向と、少なくとも端部近傍の前記高比屈折率差光ファイバのコアの偏心方向とが、前記高比屈折率差光ファイバの配列方向に略垂直な方向に対して、互いに逆方向となるように前記高比屈折率差光ファイバが配置されることを特徴とする。
 本発明に係る光学部品は、光学素子と当該光学素子に対して光を入出力する光ファイバとの間の接続損失が低減されるという効果を奏する。
図1は、第1実施形態に係る光学部品の構成を模式的に示した図である。 図2は、高Δ光ファイバおよびシングルモード光ファイバの光軸を含む垂直方向における固定部材の断面図である。 図3は、光学素子から見た固定部材の接続面の図である。 図4は、第2実施形態に係る光学部品の構成を模式的に示した図である。 図5は、高Δ光ファイバおよびシングルモード光ファイバの光軸を含む垂直方向における固定部材の断面図である。 図6は、光学素子から見た固定部材の接続面の図である。 図7は、第3実施形態に係る光学部品の構成を模式的に示した図である。 図8は、第4実施形態に係る光学部品の構成を模式的に示した図である。 図9は、DP-QPSK方式のコヒーレント変調に使用されるコヒーレントミキサとして機能する光学素子の回路模式図である。 図10は、コア径とMFDとの関係を示すグラフである。 図11は、コア径とMFDとの関係を示すグラフである。 図12は、コア径とカットオフ波長との関係を示すグラフである。 図13は、コア径とカットオフ波長との関係を示すグラフである。 図14は、第5実施形態に係る光学部品の構成を模式的に示した図である。 図15は、図14のA部におけるB-B線断面図である。 図16Aは、図14のC-C線断面図である。 図16Bは、図16AのD部拡大図である。 図17は、高Δ光ファイバの他の配列を示す図である。 図18は、高Δ光ファイバを切断して短尺の高Δ光ファイバとする工程を示す図である。 図19は、短尺の高Δ光ファイバを配列してテープ化する工程を示す図である。 図20は、光ファイバアレイを示す図である。 図21は、第6実施形態に係る光学部品の固定部材の断面図である。 図22Aは、高Δ光ファイバの他の配列を示す図である。 図22Bは、高Δ光ファイバの他の配列を示す図である。 図23Aは、その他の実施形態に係る光学部品の構成を模式的に示した図である。 図23Bは、その他の実施形態に係る光学部品の構成を模式的に示した図である。 図24は、光スイッチの構成を示す図である。 図25は、光学部品の構成を示す図である。 図26は、各ポートの接続損失を示す図である。
 以下、本発明に係る光学部品の実施形態について、図面を参照しながら説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付している。さらに、図面は模式的なものであり、各要素の寸法の関係や比率などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、本明細書においては、カットオフ波長とは、ITU-T(国際電気通信連合)G.650.1で定義する22m法によるカットオフ波長をいう。また、その他、本明細書で特に定義しない用語についてはITU-T G.650.1における定義、測定方法に適宜従うものとする。
〔第1実施形態〕
 図1は、第1実施形態に係る光学部品100を模式的に示した図である。図1に示すように、光学部品100は、光学素子110と光ファイバ120a,120bと固定部材130a,130bと筐体101とを備えている。筐体101は、光学素子110と固定部材130a,130bとを収容し、光ファイバ120a,120bは筐体101から引き出されている。
 光学素子110は、例えばPLC(Planar Lightwave Circuit)素子であり、光が閉じ込められて導波する領域であるコアと、コアの外周に形成されコアより屈折率が小さいクラッドとを有する。コアとクラッドとの比屈折率差は2.5%以上10%以下である。例えば、このような比屈折率差はPLC素子のコアにZrOを添加することによって実現される。また、コアのサイズはたとえば厚さが1.5μm~6.5μmであり、幅が1.5μm~6.5μmである。このような光学素子110は、たとえば波長1550nmにおいて1.0μm~6.5μmのスポットサイズを有する。
 ここで、スポットサイズは、導波路もしくは光ファイバのコアを伝搬する光のNFP(Near-Field Pattern)において、最大強度の5%の強度となる点の直径とする。なお、スポットサイズが楕円の場合は長径と短径でそれぞれスポットサイズが異なることになる。
 光学素子110は、例えばマッハツェンダ光干渉計(Mach-Zehnder interferometer:MZI)やアレイ導波路回折格子(Arrayed-Waveguide Grating:AWG)、さらに、偏波多重四値位相変調(DP-QPSK:Dual Polarization Quadrature Phase Shift Keying)方式などのコヒーレント変調方式における復調器に使用されるコヒーレントミキサである。
 光ファイバ120a,120bは、コアとクラッドとの比屈折率差が大きい光ファイバ121a,121b(以下、これを高Δ光ファイバと略す)と通常のシングルモード光ファイバ122a,122bとを融着接続して構成されている。高Δ光ファイバ121a,121bにおいてコアのクラッドに対する比屈折率差は2.0%以上3.0%以下であり、1550nmにおけるモードフィールド径は例えば3.0μm以上5.0μm以下である。通常のシングルモード光ファイバ122a,122bとは、ITU-T G.652に準拠する、1.3μm帯にゼロ分散波長を持つ光ファイバである。通常のシングルモード光ファイバにおいて、コアのクラッドに対する比屈折率差は約0.3%であり、1550nmにおけるモードフィールド径は10~11μmである。
 なお、比屈折率差とは、以下で定まる数値である。
 Δ={(nc1-nc)/nc1}×100
ここで、nc1はコアの最大屈折率、ncはクラッドの屈折率である。
 高Δ光ファイバ121a,121bとシングルモード光ファイバ122a,122bとは、融着接続時の加熱条件を工夫することで接続点におけるモードフィールド径の段差を滑らかにし、接続損失を低く抑えるように融着されている。高Δ光ファイバ121a,121bとシングルモード光ファイバ122a,122bとの間の接続損失は、0.1dB以下に低減することが好ましい。
 光ファイバ120a,120bは、光学素子110に光を入出力するためのものである。光ファイバ120a,120bのうち高Δ光ファイバ121a,121b側の端部が光学素子110に光学結合され、シングルモード光ファイバ122a,122b側の端部は、光学部品100の外部へ導出されている。なお、高Δ光ファイバ121a,121b側の光学素子110側の端面は、端面における光の反射を抑制するために高Δ光ファイバ121a,121bの光軸に垂直な面に対して0度より大きく16度以下の角度で斜めに加工されていることが好ましい。また、高Δ光ファイバ121a,121bおよびシングルモード光ファイバ122a,122bは、偏波面を保持しながら光を伝搬する偏波保持光ファイバとすることができる。
 固定部材130a,130bは、高Δ光ファイバ121a,121bを高Δ光ファイバ121a,121bのコアと光学素子110のコアとの位置が合うように固定し、光学素子110と高Δ光ファイバ121a,121bとを光学結合させるための部材である。固定部材130a,130bは、石英系のガラスを材料としたガラスブロックであり、光学素子110に対しして不要な応力を加えないように、光学素子110に物性的な特性が近いものを採用している。
 図2および図3は、固定部材130bに対する高Δ光ファイバ121bおよびシングルモード光ファイバ122bの配置を示した図である。図2は、高Δ光ファイバ121bおよびシングルモード光ファイバ122bの光軸を含む垂直方向における固定部材130bの断面図であり、図3は、光学素子110から見た固定部材130bの接続面の図である。なお、固定部材130aは固定部材130bと同様の構成であるので、ここでは固定部材130bを代表例として取り上げる。
 図2および図3に示すように、固定部材130bは、本体部131bと上板132bとを備えている。本体部131bにはV字溝133bが設けられており、V字溝133bに配置された高Δ光ファイバ121bは、V字溝133bと上板132bとの間で挟持される。
 図2に示されるように、高Δ光ファイバ121bとシングルモード光ファイバ122bとの融着点123bは、V字溝133bの内部に含まれる位置となっている。言い換えると、融着点123bは、V字溝133bと上板132bとの間で挟持されている。V字溝133bと上板132bとの間で挟持される領域の高Δ光ファイバ121bおよびシングルモード光ファイバ122bは、被覆が剥された状態で、高Δ光ファイバ121bおよびシングルモード光ファイバ122bのガラス部分が直接挟持されている。
 また、高Δ光ファイバ121bおよびシングルモード光ファイバ122bとV字溝133bおよび上板132bとの隙間は、接着剤134bによって充填されている。さらに、V字溝133bと上板132bとの間で挟持されない領域のシングルモード光ファイバ122bは、被覆124bの上から本体部131bに対して接着剤134bで固定されている。
 上記構成において、融着点123bの外径は、その前後の高Δ光ファイバ121bおよびシングルモード光ファイバ122bの外径よりも細くなるように構成することが好ましい。上述のように、融着点123bがV字溝133bと上板132bとの間で挟持されているので、融着点123bがV字溝133bおよび上板132bから応力を受ける可能性がある。そして、融着点123bが応力を受けると、融着点123bにおける接続損失が悪化してしまう。そこで、前後の高Δ光ファイバ121bおよびシングルモード光ファイバ122bの外径よりも、融着点123bの外径が細くなるように加工することにより、融着点123bがV字溝133bおよび上板132bから受ける応力を緩和する。
 また、融着点123bが上板132bに接触することで、機械的信頼性が失われるおそれがある。融着点123bの外径をその前後の高Δ光ファイバ121bおよびシングルモード光ファイバ122bの外径よりも細くなるように構成することにより、この機械的信頼性が失われる可能性を低減することができる。
 融着点123bの外径を制御する方法としては、高Δ光ファイバ121bおよびシングルモード光ファイバ122bを融着接続時に両光ファイバの押し込み量と引き戻り量とを制御する方法や、融着接続後の光ファイバの融着点をエッチングする方法を利用することができる。
 上記構成の光学部品100は、高Δ光ファイバ121bとシングルモード光ファイバ122bとの融着点123bの外径が、融着点123bの前後の光ファイバの外径よりも細くなるよう加工された状態で、V字溝133bと上板132bとの間に挟持されているので、融着点123bがV字溝133bおよび上板132bから受ける応力を緩和することができる。
〔第2実施形態〕
 図4は、第2実施形態に係る光学部品200の構成を模式的に示した図である。図4に示すように、光学部品200は、光学素子210と光ファイバ220a,220bと固定部材230a,230bと筐体201とを備えている。筐体201は、光学素子210と固定部材230a,230bとを収容し、光ファイバ220a,220bは筐体201から引き出されている。
 第1実施形態と同様に、光学素子210は、コアとクラッドとの比屈折率差が大きい光導波路が形成されている。例えば、光学素子210は、PLC素子のコアにZrOを添加することによって、コアとクラッドとの比屈折率差が2.5%以上10%以下となるように構成されている。
 光ファイバ220a,220bは、高Δ光ファイバ221a,221bとシングルモード光ファイバ222a,222bとを、第1実施形態と同様に、接続点におけるモードフィールド径の段差を滑らかにし、接続損失を低く抑えるように融着して構成されている。高Δ光ファイバ221a,221bにおけるコアのクラッドに対する比屈折率差は2.0%以上3.0%以下である。高Δ光ファイバ221a,221bとシングルモード光ファイバ222a,222bとの間の接続損失は、0.1dB以下に低減することが好ましい。
 光ファイバ220a,220bは、光学素子210に光を入出力するためのものである。光ファイバ220a,220bのうち高Δ光ファイバ221a,221b側の端部が光学素子210に光学結合され、シングルモード光ファイバ222a,222b側の端部は、光学部品200の外部へ導出されている。なお、高Δ光ファイバ221a,221b側の光学素子210側の端面は、端面における光の反射を抑制するために高Δ光ファイバ221a,221bの光軸に垂直な面に対して0度より大きく16度以下の角度で斜めに加工されていることが好ましい。また、高Δ光ファイバ221a,221bおよびシングルモード光ファイバ222a,222bは、偏波面を保持しながら光を伝搬する偏波保持光ファイバとすることができる。
 固定部材230a,230bは、高Δ光ファイバ221a,221bを高Δ光ファイバ221a,221bのコアと光学素子210のコアとの位置が合うように固定し、光学素子210と高Δ光ファイバ221a,221bとを光学結合させるための、石英系のガラスを材料とした部材である。
 図5および図6は、固定部材230bに対する高Δ光ファイバ221bおよびシングルモード光ファイバ222bの配置を示した図である。図5は、高Δ光ファイバ221bおよびシングルモード光ファイバ222bの光軸を含む垂直方向における固定部材230bの断面図であり、図6は、光学素子210からみた固定部材230bの接続面の図である。なお、固定部材230aは固定部材230bと同様の構成であるので、ここでは固定部材230bを代表例として取り上げる。
 図5および図6に示すように、固定部材230bは、本体部231bと上板232bとを備えている。本体部231bにはV字溝233bが設けられており、V字溝233bに配置された高Δ光ファイバ221bは、V字溝233bと上板232bとの間で挟持される。
 図5に示されるように、高Δ光ファイバ221bとシングルモード光ファイバ222bとの融着点223bは、V字溝233bの内部に含まれない位置となっている。すなわち、V字溝233bと上板232bとの間で挟持される領域は、高Δ光ファイバ221bのみとなる。したがって、融着点223bは、V字溝233bおよび上板232bから応力を受けることがない。
 一方、図5に示されるように、融着点223bは、いわゆるリコートが施されている。高Δ光ファイバ221bとシングルモード光ファイバ222bとを融着接続する際には、融着点223bの近傍の被覆224bを剥ぐことになる。リコートとは、融着接続後の融着点223bの近傍に、シングルモード光ファイバ222bの被覆と略同径の被覆225bを施すことである。
 また、高Δ光ファイバ221bとV字溝233bおよび上板232bとの隙間は、接着剤234bによって充填されている。さらに、V字溝233bと上板232bとの間で挟持されない領域の高Δ光ファイバ221bおよびシングルモード光ファイバ222bは被覆224b,225bの上から、本体部231bに対して接着剤234bで固定されている。
 上記構成の光学部品200は、高Δ光ファイバ221bとシングルモード光ファイバ222bとの融着点223bが、シングルモード光ファイバ222bの被覆と略同径の被覆が施された状態で固定部材230bに固定されているので、実質的に1つの光ファイバとして取り扱うことができる。したがって、融着点223bを取り扱うために、例えば補強スリーブのような別途の部材を必要としない。
〔第3実施形態〕
 図7は、第3実施形態に係る光学部品300を模式的に示した図である。図7に示すように、光学部品300は、光学素子310と光ファイバ320a,320bと固定部材330a,330bと筐体301とを備えている。筐体301は、光学素子310と固定部材330a,330bとを収容し、光ファイバ320a,320bは筐体301から引き出されている。
 第1実施形態と同様に、光学素子310は、コアとクラッドとの比屈折率差が大きい光導波路が形成されている。例えば、光学素子310は、PLC素子のコアにZrOを添加することによって、コアとクラッドとの比屈折率差が2.5%以上10%以下となるように構成されている。
 光ファイバ320a,320bは、高Δ光ファイバ321a,321bとシングルモード光ファイバ322a,322bとを、第1実施形態と同様に、接続点におけるモードフィールド径の段差を滑らかにし、接続損失を低く抑えるように融着して構成されている。高Δ光ファイバ321a,321bにおけるコアのクラッドに対する比屈折率差は2.0%以上3.0%以下である。高Δ光ファイバ321a,321bとシングルモード光ファイバ322a,322bとの間の接続損失は、0.1dB以下に低減することが好ましい。
 光ファイバ320a,320bは、光学素子310に光を入出力するためのものである。光ファイバ320a,320bのうち高Δ光ファイバ321a,321b側の端部が光学素子310に光学結合され、シングルモード光ファイバ322a,322b側の端部は、光学部品300の外部へ導出されている。なお、高Δ光ファイバ321a,321b側の光学素子310側の端面は、端面における光の反射を抑制するために高Δ光ファイバ321a,321bの光軸に垂直な面に対して0度より大きく16度以下の角度で斜めに加工されていることが好ましい。また、高Δ光ファイバ321a,321bおよびシングルモード光ファイバ322a,322bは、偏波面を保持しながら光を伝搬する偏波保持光ファイバとすることができる。
 固定部材330a,330bは、高Δ光ファイバ321a,321bを光学素子310に対して固定し、光学素子310と高Δ光ファイバ321a,321bとを光学結合させるための、石英系のガラスを材料とした部材である。
 図7に示すように、高Δ光ファイバ321a,321bとシングルモード光ファイバ322a,322bとを融着した融着点323a,323bは、光学部品300の筐体301の外に配置されている。なお、融着点323a,323bは、融着接続後、シングルモード光ファイバ322a,322bの被覆と略同径の被覆が施されている。
 本構成であっても、高Δ光ファイバ321a,321bとシングルモード光ファイバ322a,322bとが実質的に1つの光ファイバとして取り扱うことができる。したがって、融着点323a,323bを取り扱うために、例えば補強スリーブのような別途の部材を必要としない。
 また、高Δ光ファイバ321a,321bは、シングルモード光ファイバ322a,322bと比較して曲げ損失が低いので、光学部品300の筐体301内に高Δ光ファイバ321a,321bのみを収納することにより、筐体301内における光ファイバに許容される曲げ半径が小さくなり、光学部品300の小型化に有効である。
 また、クラッド径が標準のクラッド径である125μmよりも細径(たとえば、50μm以上125μm未満、好ましくは80μm以下)の高Δ光ファイバ321a,321bを使用することで高Δ光ファイバ321a,321b自体の体積の低減、および高Δ光ファイバ321a,321bに加わる曲げ歪の低減により機械強度信頼性が向上する。このことからも、筐体301内における光ファイバに許容される曲げ半径を小さくできるので、光学部品300の小型化に有効である。
 上記構成の光学部品300は、高Δ光ファイバ321a,321bとシングルモード光ファイバ322a,322bとの融着点323a,323bが、筐体301の外に配置されているので、光学部品300の小型化に有効である。なお、本実施形態においては、融着点323a,323bが筐体301の外に配置されているが、融着点323a,323bが筐体301の光ファイバ挿入口に近い場所に位置していれば、融着点323a,323bを筐体301内に配置しても同様の効果が得られる。
〔第4実施形態〕
 図8は、第4実施形態に係る光学部品400を模式的に示した図である。図8に示すように、光学部品400は、光学素子410とアレイ型光ファイバ420a,420bと固定部材430a,430bと筐体401とを備えている。筐体401は、光学素子410と固定部材430a,430bとを収容し、アレイ型光ファイバ420a,420bは筐体401から引き出されている。
 光学素子410は、DP-QPSK方式のコヒーレント変調に使用されるコヒーレントミキサとして機能するPLC素子である。PLC素子に形成される光導波路において、コアとクラッドとの比屈折率差は2.5%以上10%以下である。例えば、このような比屈折率差はPLC素子のコアにZrOを添加することによって実現される。
 アレイ型光ファイバ420a,420bは、アレイ状に配列された状態の複数の光ファイバが一括で被覆されて構成されている、いわゆる光ファイバテープ心線と呼ばれるものである。アレイ型光ファイバ420a,420bにおいて、各光ファイバは、高Δ光ファイバ421a,421bとシングルモード光ファイバ422a,422bとが第1実施形態と同様に、接続点におけるモードフィールド径の段差を滑らかにし、接続損失を低く抑えるように融着されて構成されている。アレイ型光ファイバ420a,420bを構成する光ファイバは、光学素子410の種類にも依存するが、例えば8本以上であることが好ましい。例えば、アレイ型光ファイバ420a,420bの各々のクラッド径は50μm以上125μm以下であり、クラッド径が50μmの場合、アレイ状の配列の間隔は52μmであり、クラッド径が125μmの場合、アレイ状の配列の間隔は127μmである。
 また、各高Δ光ファイバ421a,421bにおけるコアのクラッドに対する比屈折率差は2.0%以上3.0%以下である。高Δ光ファイバ421a,421bとシングルモード光ファイバ422a,422bとの間の接続損失は、0.1dB以下に低減することが好ましい。
 アレイ型光ファイバ420a,420bは、光学素子410に光を入出力するためのものである。アレイ型光ファイバ420a,420bのうち高Δ光ファイバ421a,421b側の端部が光学素子410に光学結合され、シングルモード光ファイバ422a,422b側の端部は、光学部品400の外部へ導出されている。なお、高Δ光ファイバ421a,421b側の光学素子410側の端面は、端面における光の反射を抑制するために高Δ光ファイバ421a,421bの光軸に垂直な面に対して0度より大きく16度以下の角度で斜めに加工されていることが好ましい。また、高Δ光ファイバ421a,421bおよびシングルモード光ファイバ422a,422bは、偏波面を保持しながら光を伝搬する偏波保持光ファイバとする。
 固定部材430a,430bは、高Δ光ファイバ421a,421bを光学素子410に対して固定し、光学素子410と高Δ光ファイバ421a,421bとを光学結合させるための、石英系のガラスを材料とした部材である。なお、高Δ光ファイバ421a,421bを固定部材430a,430bに固定する方法は、先述の第1~3実施形態の何れかに記載の方法を採用することができる。
 図9は、DP-QPSK方式のコヒーレント変調に使用されるコヒーレントミキサとして機能する光学素子410の回路模式図である。なお、図9に示される回路模式図は、光学素子410に用いられる回路の1例であり、本実施形態が当該回路に限定されるものではない。
 図9に示すように、光学素子410は、2つのシグナルポート(S1,S2)と局所発振光ポート(LO)と8つの出力ポート(P.1~8)を備える。2つのシグナルポート(S1,S2)および局所発振光ポート(LO)は、アレイ型光ファイバ420aから光を入力するためのポートであり、8つの出力ポート(P.1~8)は、アレイ型光ファイバ420aへ光を出力するためのポートである。
 図9に示される光学素子410では、事前に偏波分離され、TM偏波に偏波面が調整された2つの信号光が、それぞれ2つのシグナルポート(S1,S2)から光導波路411a、411cに入力される。光導波路411aに入力された信号光は、90度ハイブリッド素子413aに導かれ、光導波路411cに入力された信号光は、90度ハイブリッド素子413bに導かれる。
 一方、局所発振光ポート(LO)から、TM偏波の局所発振光が光導波路411bに入力される。光導波路411bに入力された局所発振光はパワースプリッタ412で2分岐され、それぞれ90度ハイブリッド素子413a,413bに導かれる。
 90度ハイブリッド素子413a,413bでは、信号光と局所発振光が干渉することによってIチャネル成分の信号光とQチャネル成分の信号光とに分離され、出力光が8つの出力ポート(P.1~8)から出力される。
 上記構成の光学部品400は、クラッド径が50μmである複数の高Δ光ファイバ421a,421bおよびシングルモード光ファイバ422a,422bが、52μmの間隔でアレイ状に配列されているので、高密度に導波路が配線されたPLC素子と適合性が高く、光学部品400全体の小型化に有利である。
〔効果の検証〕
 次に、上記説明した実施形態で利用した光学素子と光ファイバとの光学結合における接続損失の検証を行う。
 接続損失が発生する主な原因は、光学素子の光導波路とシングルモード光ファイバの比屈折率差が異なることで両者を伝搬する光のビーム径(スポットサイズまたはモードフィールド径)に大きな差異が生じる点にある。そこで、通常のコアのクラッドに対する比屈折率差が0.3%のシングルモード光ファイバと、クラッドに対する比屈折率差が5.5%である3μm×3μmのコアを有するZrO添加のPLC素子とを直接光学結合した場合の接続損失をシミュレーションにより算出した。なお、両者のコアの中心位置ずれはないものとしている。
 シミュレーションではシングルモード光ファイバとPLC素子との出射端における波長1550nmにおけるフィールド形状を計算し、それらの中心を重ね合わせた際の電界分布の重なりから接続損失を算出した。シングルモード光ファイバとPLC素子では電界分布が大きく異なるため、接続損失は4.91dB/facetであった。ここで、dB/facetは、接続面(facet)毎の接続損失であることを表す単位として使用している。
 次に、接続損失を低減するために、光ファイバの設計を変更してコアのクラッドに対する比屈折率差が2.0%以上3.0%以下の高Δ光ファイバとすることで、電界分布をPLC素子と近づける検討を行った。検討に使用した高Δ光ファイバの屈折率プロファイルの各パラメータを表にしたものを表1に示す。なお、表1における、Fiber1~3は、W型プロファイルを有する高Δ光ファイバであり、Fiber4~6は、単峰型プロファイルを有する高Δ光ファイバである。ここで、W型プロファイルを有する光ファイバとは、中心コアと、中心コアの外周に形成され、クラッドの屈折率よりも屈折率が低い外周コアを有する光ファイバである。なお、両者のコアの中心位置ずれはないものとしている。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中に現れる記号は以下のとおりである。Δ1は、コア(または中心コア)のクラッドに対する比屈折率差であり、Δ2は、外周コアのクラッドに対する比屈折率差である。Raは、外周コアの外径と中心コアの直径の比であり、中心コアの直径は、中心コアと外周コアとの境界部における直径とする。MFDは、モードフィールド径である。また、αの定義は以下に示される屈折率プロファイルに関するパラメータである。
 n2(r)=ncore 2×{1-2×(Δ/100)×(r/a)^α}
 (但し、0<r<a)
ただし、rはコア(または中心コア)の中心からの半径方向の位置を示し、n(r)は位置rにおける屈折率、ncoreはコア(または中心コア)のr=0における屈折率、Δは比屈折率差、aはコア(または中心コア)の半径を表している。また、記号「^」はべき乗を表す記号である。
 表2~表4にシミュレーション結果を示す。表2は、比屈折率差3.0%であり厚さが3.5μmのコアを有するPLC素子と各種光ファイバとの接続損失を示した表であり、表3は、比屈折率差5.5%であり厚さが3.0μmのコアを有するPLC素子と各種光ファイバとの接続損失を示した表であり、表4は、比屈折率差10.0%であり厚さが1.5μmのコアを有するPLC素子と各種光ファイバとの接続損失を示した表である。なお、表2~表4のシミュレーションでは、PLC素子のコアの幅を変化させて計算を行っている。なお、これらのPLC素子のスポットサイズは、コアの高さ、幅よりも10%以下の範囲で小さくなり、いずれもスポットサイズが高さ方向、幅方向ともに1.0μm以上6.5μm以下である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2~表4に示されるように、比屈折率差が2.5%以上10%以下のコアを有するPLC素子に対して、コアのクラッドに対する比屈折率差が2.0%以上3.0%以下の高Δ光ファイバを使用することで、シングルモード光ファイバと比較して大幅に接続損失を低減可能なことが分かる。さらに、PLC素子の導波路幅を最適化することで、接続損失を低減可能なことが分かる。具体的には、上記検証では、高Δ光ファイバとPLC素子との間における波長1550nm接続損失は、最大でも3.08dBであり、高Δ光ファイバとシングルモード光ファイバとの間の接続損失を0.1dBとしても、シングルモード光ファイバとPLC素子とを直接接続した場合の接続損失である4.91dBよりも小さい。そして、上記検証における他例の接続損失は、最大値である3.08dBよりも顕著に小さく、多くの場合、後述するコアの中心位置ずれによる損失増加を考慮してもPLC素子と高Δ光ファイバとシングルモード光ファイバとのトータルの接続損失を1dB以下に抑えることができる。
 次に、屈折率プロファイルに関するパラメータであるαと各種高Δ光ファイバのコア径との関係について検討する。
 コアのクラッドに対する比屈折率差が2%~3%の高Δ光ファイバを製造する場合、径方向の屈折率プロファイルを完全な矩形にすることは難しく、一般的にはαが3~6程度の屈折率プロファイルとなる。そこで、Fiber1~6について、他のパラメータはそのままで、αのみ3~6の範囲で変化させた屈折率プロファイルを有するコアを使用した場合、コア径の上限と下限をシミュレーションにより算出した。なお、コア径の上限と下限は以下のように定義した。
 コア径が大きくなるとカットオフ波長が長波長側にシフトする。信号光のシングルモード伝搬のためにはカットオフ波長は波長1530nm~1625nmの通信波長帯よりも短波長である必要があるため、コア径の上限はカットオフ波長が1500nm以下となるコア径とした。コア径が小さくなるとMFDは小さくなる。しかし、臨界値以上にコア径が小さくなると光をコアに閉じ込める作用が小さくなり、MFDが拡大する。よって、コア径の下限は、MFDが最小値となるコア径よりも小さいコア径であって、MFDが最小値よりも10%大きくなるコア径とした。
 表5は、以上のように規定したコア径の上限および下限とαとの関係を示す表である。また、代表例としてFiber2およびFiber5について、コア径とMFDとの関係およびコア径とカットオフ波長との関係を図10~図13に示す。図10は、Fiber2におけるコア径とMFDとの関係を示すグラフであり、図11は、Fiber5におけるコア径とMFDとの関係を示すグラフである。図12は、Fiber2におけるコア径とカットオフ波長との関係を示すグラフであり、図13は、Fiber5におけるコア径とカットオフ波長との関係を示すグラフである。
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、コアのクラッドに対する比屈折率差が2.0%以上3.0%以下の高Δ光ファイバは、比屈折率差が2.5%以上10%以下のコアを有し、波長1550nmにおいてスポットサイズが1.0μm以上6.5μm以下のPLC素子との光のフィールドのミスマッチが少なくなっており、高Δ光ファイバと光学素子との接続損失は低く抑えられる。
 以上のように、比屈折率差が2.5%以上10%以下のコアを有する光導波路が形成された光学素子と、コアのクラッドに対する比屈折率差が2.0%以上3.0%以下の高Δ光ファイバと光学結合した場合、当該光学素子と高Δ光ファイバとの接続損失が低い。さらに、先述のように、接続点におけるモードフィールド径の段差を滑らかにし、接続損失を低く抑えるように高Δ光ファイバとシングルモード光ファイバとを融着接続すれば、接続損失を0.1dB以下に低減することが可能である。
 以上を組み合わせると、比屈折率差が2.5%以上10%以下のコアを有するスポットサイズが1.0μm以上6.5μm以下の光学素子と、コアのクラッドに対する比屈折率差が2.0%以上3.0%以下の高Δ光ファイバと光学結合した場合、通常のシングルモード光ファイバを当該光学素子に直接光学結合するよりも接続損失が顕著に小さくなることが示されている。なお、特にPLC素子のスポットサイズが3.0μm以上5.0μm以下の場合、接続損失が顕著に小さくなる。
 以上の結果を言い換えると、本実施形態の構成では、高Δ光ファイバとシングルモード光ファイバとの間における波長1550nmの接続損失と、高Δ光ファイバと光学素子との間における波長1550nmの接続損失と、の合計は、シングルモード光ファイバと光学素子とを直接接続した場合の波長1550nmにおける接続損失よりも顕著に小さいことになる。
〔第5実施形態〕
 次に、第5実施形態に係る光学部品500について説明する。図14は、第5実施形態に係る光学部品500の構成を模式的に示した図である。光学部品500は、高比屈折率差の光学素子510とシングルモード光ファイバ522とが、高Δ光ファイバ521を介して、間接的に接続された接続構造を有している。
 高比屈折率差の光学素子510は、例えばマルチキャストスイッチである。高比屈折率差の光学素子510は、内部に複数のコアが設けられた、クラッドに対するコアの比屈折率差が2.5%以上10%以下のいわゆる超高Δ光学素子である。例えば、このような比屈折率差は、コアにZrOを添加することによって実現される。また、コアのサイズはたとえば厚さが1.5μm~6.5μmであり、幅が1.5μm~6.5μmである。
 このような光学素子510は、たとえば波長1550nmにおいて1.0μm~6.5μmのスポットサイズを有する。ここで、スポットサイズは、導波路もしくは光ファイバのコアを伝搬する光のNFP(Near-Field Pattern)において、最大強度の5%の強度となる点の直径とする。なお、スポットサイズが楕円の場合は長径と短径でそれぞれスポットサイズが異なることになる。
 高Δ光ファイバ521は、クラッドに対するコアの比屈折率差が2.0%以上3.0%以下の光ファイバであり、1550nmにおけるモードフィールド径は例えば3.0μm以上5.0μm以下である。屈折率プロファイルは、たとえば単峰型や、中心コアと、中心コアの外周に形成されクラッドの屈折率よりも屈折率が低い外周コアを有するW型などを用いることができ、各屈折率プロファイルの各パラメータは、モードフィールド径が例えば3.0μm以上5.0μm以下になるように調整される。複数本の高Δ光ファイバ521はテープ化されてテープ心線を構成する。それぞれの高Δ光ファイバ521は、所定の間隔で固定部材530に固定される。すなわち、高比屈折率差の光学素子510と、固定部材530に高Δ光ファイバ521が固定された光ファイバアレイとが接続される。なお、光ファイバアレイの詳細は後述する。
 高Δ光ファイバ521がテープ化されたテープ心線の他端には、シングルモード光ファイバ522がテープ化されたテープ心線が接続される。なお、個々の高Δ光ファイバ521とシングルモード光ファイバ522は、融着接続時の加熱条件を工夫することで接続点におけるモードフィールド径の段差を滑らかにし、接続損失を低く抑えるように融着されており、例えば接続損失を0.1dB/facet程度に抑えることができる。
 なお、高比屈折率差の光学素子510とシングルモード光ファイバ522とを、従来の方法で直接接続すると、5dB/facet程度の接続損失となる可能性がある。これに対し、高Δ光ファイバ521を介して両者を接続することで、接続箇所が増えたとしても、トータルの接続損失を低減することができる。例えば、高比屈折率差の光学素子510と高Δ光ファイバ521との接続損失を0.4dB/facet程度に抑えることができれば、高比屈折率差の光学素子510とシングルモード光ファイバ522とのトータルの接続損失を0.5dB程度に抑えることができる。以下に、高比屈折率差の光学素子510と高Δ光ファイバ521との接続部について詳細を説明する。
 図15は、図14のA部におけるB-B線断面図であり、高比屈折率差の光学素子510と高Δ光ファイバ521との接続部近傍における、高Δ光ファイバ521の長手方向の断面図である。高比屈折率差の光学素子510は、上下のリッド511、基板512の間に導波路513(コアおよびクラッド)が形成される。固定部材530は、本体部531と上板532とを備え、間に高Δ光ファイバ521が挟み込まれる。導波路513と高Δ光ファイバ521とは光接続される。
 なお、固定部材530と高比屈折率差の光学素子510との接合界面は、反射防止のため斜めに形成され、互いに接着剤で接着される。
 図16Aは、図14のC-C線断面図であり、高Δ光ファイバ521の長手方向に垂直な方向に対する、固定部材530に固定された高Δ光ファイバ521の断面図である。固定部材530の本体部531には、所定のピッチでV字溝533が形成され、それぞれのV字溝533に高Δ光ファイバ521が配置される。すなわち、高Δ光ファイバ521が所定のピッチで配列される。
 図16Bは、図16AのD部拡大図である。高Δ光ファイバ521は、クラッド521aとコア521bとを有する。前述した様に、コア521bは、クラッド521aの中心(図中Fであり黒丸)から偏心する可能性がある。本実施形態では、コア521bの偏心方向が互いに一定の方向となるように、高Δ光ファイバ521が配列される。
 ここで、互いに一定の方向になるとは、完全に同一方向でなくてもよく、例えば、クラッド521aの中心Fを通る中心線Eに対して、全て同一の方向に配置されればよい。図16Bに示した例では、高Δ光ファイバ521の配列方向に平行な中心線Eに対して、全て図中上方側にコア521bが偏心するように配置される。すなわち、中心線Eに対して同一方向となる範囲内(180°)にコアが位置するように揃えられれば、多少の角度ずれはあってもよい。
 また、偏心方向は、高Δ光ファイバ521の配列方向または配列方向に垂直な方向でなくてもよい。例えば、図17に示すように、それぞれの高Δ光ファイバ521の中心Fを通る、互いに平行な任意の中心線Gを想定した際に、それぞれの高Δ光ファイバ521のコア521bの偏心方向が、それぞれの中心線Gに対して一定の方向(図では右上側)に配置されれば、偏心方向はいずれの方向であってもよい。
 次に、本実施形態に係る高比屈折率差の光学素子510とシングルモード光ファイバ522との接続方法について説明する。まず、図18に示すように、1本の高Δ光ファイバ521を複数本の短尺の高Δ光ファイバ521に切断する。この際、高Δ光ファイバ521の外周面の一部に、長手方向に沿って一直線に着色等によるマーク523を形成しておく。なお、短尺の高Δ光ファイバ521の本数は、ファイバアレイを構成する光ファイバの心数と同じである。また、短尺の高Δ光ファイバ521の長さは、例えば、2~50mm程度である。
 次に、図19に示すように、切り出された短尺の高Δ光ファイバ521を配列させてテープ化する。この際、マーク523が略同一方向に向くように整列させる。例えば、マーク523がすべて上面に見えるように短尺の高Δ光ファイバ521を配列してテープ化する。
 マーク523は、高Δ光ファイバ521の長手方向にまっすぐに形成されるため、短尺の高Δ光ファイバ521の長手方向に垂直な断面におけるコアの偏心方向と、マーク523の周方向の位置関係は、全て略一定となる。また、短尺の高Δ光ファイバ521は十分に短いので、捻じれなども生じにくい。このため、短尺の高Δ光ファイバ521のコアの偏心方向を端面から確認することなく、容易に略一定の方向に偏心方向を揃えることができる。
 次に、図20に示すように、短尺の高Δ光ファイバ521をテープ化して得られたテープ心線の一端に、別途シングルモード光ファイバ522を配列してテープ化したテープ心線を接続する。前述した様に、高Δ光ファイバ521とシングルモード光ファイバ522の接続は、接続点におけるモードフィールド径の段差を滑らかにし、接続損失を低く抑えるように融着される。
 次に、高Δ光ファイバ521側のテープ心線の端を固定部材530に固定する。以上により、光ファイバアレイ540が形成される。得られた光ファイバアレイ540を高比屈折率差の光学素子510に接続することで、高比屈折率差の光学素子510とシングルモード光ファイバ522とが接続される。
 ここで、光ファイバアレイのピッチずれの原因としては、光ファイバアレイを構成する固定部材の切削精度、組立時の光ファイバの位置ずれ、光ファイバのコア偏心およびクラッド外径のばらつき等が考えられる。特に、光ファイバアレイのピッチずれで支配的なのは、コア偏心およびクラッド外径のばらつきであり、通常の製造方法で得られる光ファイバでは、それぞれ±0.3μm程度のばらつきが生じることが知られている。
 光接続されるコア同士の中心位置が例えば0.3μmずれると、高Δ光ファイバ521と高比屈折率差の光学素子との接続を想定した場合、この中心位置ずれ(ピッチずれ)に伴う接続損失は0.7dB/facet程度と見込まれる。このため、この偏心ずれを抑制する必要がある。
 これに対し、図16Bや図17に示すように、それぞれの高Δ光ファイバ521のコア偏心方向を揃えて配列することで、ピッチずれを低減することができる。しかし、それぞれの高Δ光ファイバ521のコアの偏心方向を揃えたとしても、それぞれの高Δ光ファイバ521の偏心量が異なれば、十分にピッチずれを抑制することはできない。例えば、偏心量が0μm~0.3μmの範囲で異なる複数の光ファイバを配列すれば、互いの偏心方向を合わせたとしても、最大でコア中心位置(ピッチ)が0.3μmのずれを生じることとなる。
 そこで、本発明では、固定部材530に固定される複数の高Δ光ファイバ521が、1本の光ファイバから切り出された短尺の高Δ光ファイバ521で構成される。例えば、1本の高Δ光ファイバから、10mmの短尺の高Δ光ファイバを100本切り出したとしても、1m程度の高Δ光ファイバから必要な短尺の高Δ光ファイバを取り出すことができる。
 通常、コア偏心量の変化やクラッド外径ばらつきは、高Δ光ファイバの長さ方向に対して緩やかに変動する。このため、数m程度の長さの範囲内であれば、コア偏心量およびクラッド外径はほとんど変動しない。具体的には、数m程度の長さの高Δ光ファイバであれば、コア偏心量のばらつきもクラッド外径のばらつきも±0.05μm未満に抑えることができる。したがって、所定長さの高Δ光ファイバ521から切り出された短尺の高Δ光ファイバのコア偏心量およびクラッド外径のばらつきはほとんどない。
 このようにして得られた短尺の高Δ光ファイバを用いて、コア偏心方向を揃えて光ファイバアレイを構成することで、ピッチずれを最小化することができる。このため、高比屈折率差の光学素子510と光ファイバアレイ540(高Δ光ファイバ521)とのピッチずれに伴う接続損失を、0.4dB/facet以下に低減することができる。
 以上、本実施形態によれば、1本の高Δ光ファイバ521から切り出された短尺の高Δ光ファイバ521を用いるため、それぞれの短尺の高Δ光ファイバ521のコア偏心量およびクラッド外径のばらつきがほとんどない。また、それぞれの短尺の高Δ光ファイバ521のコア偏心方向を揃えて光ファイバアレイ540を構成するため、ピッチずれがほとんど生じることがない。このため、高比屈折率差の光学素子510と光ファイバアレイ540との接続損失を低減することができる。このため、高比屈折率差の光学素子510とシングルモード光ファイバ522とを効率よく接続することができる。
 特に、高比屈折率差の光学素子510とシングルモード光ファイバ522とが高Δ光ファイバ521を介して接続されるため、高比屈折率差の光学素子510とシングルモード光ファイバ522とを直接接続する場合と比較して、トータルの接続損失を低減することができる。
 また、短尺の高Δ光ファイバ521を固定部材530に固定するため、確実に所定のピッチで短尺の高Δ光ファイバ521を配列することができる。
 なお、本実施形態においては、高Δ光ファイバ521の外周面の一部に、長手方向に沿って一直線に着色等によるマーク523を形成することで、光ファイバの円周方向を特定できるようにしたが、光ファイバの円周方向を特定方法はこれには限定されない。たとえば、光ファイバの外形を円形以外の形状(楕円形、四角形、円の一部を直線状に切とった形状)としておいてもよい。あるいは光ファイバの内部にマーカを埋め込んでおいてもよい。
〔第6実施形態〕
 次に、第6実施形態に係る光学部品について説明する。図21は、第6実施形態に係る光学部品の固定部材630の断面図である。なお、以下の説明において、第5の実施形態と同様の機能を奏する構成については、重複する説明を省略する。
 固定部材630は、V字溝633が設けられた本体部631と上板632とを備える。本体部631と上板632とは例えば接着剤で接着される。この際、接着剤の硬化等に伴い、固定部材630に反りが発生することがある(図中H)。具体的には、固定部材630の両側方が上方(または下方)に変形する可能性がある。
 図22Aは、高Δ光ファイバ621の長手方向に垂直な断面において、固定部材630に反りが生じた際の高Δ光ファイバ621の配列状態を示す概念図である。図中の範囲Kは、配列方向に対する中央部近傍の高Δ光ファイバ621を示し、図中の範囲Lは、配列方向に対する両端部近傍の高Δ光ファイバ621を示す。
 固定部材630に反りが生じると、それぞれの高Δ光ファイバ621の中心Fを結ぶ中心線Iが、理想状態の理想中心線Jからずれる。具体的には、範囲Kでは、中心線Iが理想中心線Jの下方に位置し、範囲Lでは、中心線Iが理想中心線Jの上方に位置する。すなわち、範囲Kと範囲Lとでは、高Δ光ファイバ621の配列方向に垂直な方向に対する中心線Iと理想中心線Jの位置関係が、互いに逆方向となる。
 本実施形態では、コア621bの偏心方向を、全て一定の方向に揃えるのではなく、高Δ光ファイバ621の配置される位置によって変化させる。例えば、中央の高Δ光ファイバ621のコア621bの偏心方向を上方に向け、端部側に行くにつれて所定角度ずつ高Δ光ファイバ621を回転させて、最端部の高Δ光ファイバ621のコア621bの偏心方向が下方に向くようにする。すなわち、中央の高Δ光ファイバ621から最端部の高Δ光ファイバ621までの間に、高Δ光ファイバ621を180°回転させる。
 このように、高Δ光ファイバ621の長手方向に垂直な断面において、中央部近傍から両端部近傍に向けて、高Δ光ファイバ621のコアの偏心方向が逆方向となるように回転させて配置することで、コア621bの位置を、理想の中心線Jに近づけることができる。すなわち、反りによるピッチずれの影響を小さくすることができる。
 なお、本実施形態において、配列される高Δ光ファイバ621を少しずつ回転させて配置するのではなく、図22Bに示すように、範囲K内ではすべて一定の方向(図中上方)にコア偏心を揃え、範囲L内では、すべて逆方向に(図中下方)にコア偏心を揃えてもよい。すなわち、少なくとも中央部近傍の高Δ光ファイバ621の偏心方向と、少なくとも端部近傍の高Δ光ファイバ621の偏心方向とが、高Δ光ファイバ621の配列方向に略垂直な方向に互いに逆方向となることで、反りによるピッチずれの影響を小さくすることができる。
 なお、このように配置するためには、中央の高Δ光ファイバ621については、端面からコア621bの位置を確認し、所定の方向にコアが偏心するように配置し、その他の高Δ光ファイバ621の回転角度(向き)は、中央の高Δ光ファイバ621に対して、前述したマークを見ながら調節すればよい。
 第6実施形態によれば、固定部材630の反りの影響を小さくすることができ、高比屈折率差の光学素子と光ファイバアレイとの接続損失を低減することができる。このため、高比屈折率差の光学素子とシングルモード光ファイバとを効率よく接続することができる。
〔その他の実施形態〕
 上述の説明では、高比屈折率差の光学素子とシングルモード光ファイバとが高Δ光ファイバを介して接続される実施形態を用いたが、本発明の実施はこれに限られない。例えば、図23Aに示す光学部品700では、高Δ光ファイバを用いずに、高比屈折率差の光学素子710とシングルモード光ファイバ722とが接続される。
 光学部品700では、1本のシングルモード光ファイバから短尺のシングルモード光ファイバ721を切り出して、これらシングルモード光ファイル721を配列したテープ心線を作成し、当該テープ心線を介して高比屈折率差の光学素子710と本来のシングルモード光ファイバ722のテープ心線とが接続される。この場合でも、各シングルモード光ファイバ722同士のコア偏心量やクラッド外径が略同一であるため、コア偏心方向を揃えるのみで、高比屈折率差の光学素子710とシングルモード光ファイバ722とを効率よく接続することができる。
 また、固定部材730は必ずしも必要ではない。例えば、図23Bに示す光学部品800のように、高比屈折率差の光学素子810と高Δ光ファイバ821とをレーザ等により融着して接続してもよい。この場合でも、テープ心線を構成する各高Δ光ファイバ821同士のコア偏心量やクラッド外径が略同一であるため、コア偏心方向を揃えるのみで、高比屈折率差の光学素子810とシングルモード光ファイバ822とを効率よく接続することができる。
〔効果の検証〕
 次に、上記実施形態に係る光学部品を実際に製作して、接続損失を測定した結果を説明する。図24はツリー型の8×1の光スイッチ911の構成を示す図である。光スイッチ911は、一端に1つの共通ポート912と、他端に8つの分岐ポート913を有する。光スイッチ911は、複数のMZI(マッハツェンダ型干渉計)914を有する。MZI914の入力/出力ポートの間にはカプラ914a、914bと、914a、914bで挟まれた二つの導波路914c、914dが設けられる。一方の導波路914dには、加熱手段であるヒータ914eが設けられる。光スイッチ911は、各MZI914のヒータ914eのオン/オフによって、光信号の通る経路を変更することができる。
 この光スイッチ911を4アレイ配置したチップをFHD(Flame Hydrolysis Deposition)法、フォトリソグラフィー、反応性イオンエッチング等のPLC作製プロセス技術を用いて作製した。導波路形成後、ヒータ、電極、絶縁膜を形成し、最後にエッチングにて電極パッド部にコンタクトホールを形成させた。比屈折率差Δは5%とし、チップサイズは18×6mmとした。
 図25は、実験に用いた光学部品900の構成を示す図である。作製した4アレイ8×1スイッチ(高比屈折率差の光学素子910)の両端には、それぞれ光ファイバアレイを接続した。光ファイバアレイは、以下のようにして製作した。まず、1本の高Δ光ファイバから36本×10mmの高Δ光ファイバ921a、921bを切り出した。その際、元の高Δ光ファイバには、長手方向にマークを形成した。なお、高Δ光ファイバ921a、921bには、比屈折率差Δ2.9%のものを使用した。
 次に、高Δ光ファイバ921a、921bをテープ化してテープ心線を形成した。この際、前述したマークが同一方向に向くように配置した。なお、テープ心線の長さは10mmとした。また、高Δ光ファイバ921aのテープ心線は4心とし、高Δ光ファイバ921bのテープ心線は32心とした。すなわち、入力と出力のファイバアレイの心数はそれぞれ32心と4心である。
 次に、高Δ光ファイバ921a、921bのテープ心線のそれぞれの一端にシングルモード光ファイバ922a、922bを接続点におけるモードフィールド径の段差を滑らかにし、接続損失を低く抑えるように融着した。さらに、高Δ光ファイバ921a、921bのテープ心線の他端を固定部材930a、930bで固定し、高比屈折率差の光学素子910に接続した。
 図26は、図25に示した光学部品900における各ポートの接続損失を示す図である。図26に示されるグラフの横軸は、32心のそれぞれのポートを示し、縦軸にはポートごとの接続損失を示している。図26に示される検証実験では、すべてのポートにおいて、トータルで1dB以下である0.7dB以下の損失を実現できている。この結果から、光学部品900の構成は、ファイバアレイのピッチずれを十分抑制でき、実用性があることがわかった。
 以上、本発明を実施形態に基づいて説明してきたが、上記実施形態により本発明が限定されるものではない。例えば高比屈折率差光ファイバの端面に光線を入射する光学素子としては、例えばPLC素子で構成されたスポットサイズコンバータや、空間結合系などでも良い。上述した各構成要素を適宜組み合わせて構成したものも本発明の範疇に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
 100,200,300,400,500,700,800,900 光学部品
 110,210,310,410,510,710,810,910 光学素子
 120a,120b,220a,220b,320a,320b 光ファイバ
 121a,121b,221a,221b,321a,321b,421a,421b,521,621 高Δ光ファイバ
 122a,122b,222a,222b,322a,322b,422a,422b,522,721,722,822,922a,922b シングルモード光ファイバ
 123b,223b,323a,323b 融着点
 124b,224b,225b 被覆
 130a,130b,230a,230b,330a,330b,430a,430b,530,630,730,930a,930b 固定部材
 131b,231b,531,631 本体部
 132b,232b,532,632 上板
 133b,233b,533,633 V字溝
 134b,234b 接着剤
 411a,411b,411c 光導波路
 413a,413b 90度ハイブリッド素子
 420a,420b アレイ型光ファイバ
 511 リッド
 512 基板
 513,914c,914d 導波路
 521a,621a クラッド
 521b,621b コア
 523 マーク
 540 光ファイバアレイ
 911 光スイッチ
 912 共通ポート
 914 MZ1
 914a カプラ
 914e ヒータ

Claims (16)

  1.  高比屈折率差光ファイバと、
     前記高比屈折率差光ファイバと融着接続され、前記高比屈折率差光ファイバよりも波長1550nmにおけるモードフィールド径が大きいシングルモード光ファイバと、
     前記シングルモード光ファイバと融着接続されていない側の前記高比屈折率差光ファイバの端面に接続された光学素子と、
     を備え、
     前記高比屈折率差光ファイバと前記シングルモード光ファイバとの間における波長1550nmの接続損失と、前記高比屈折率差光ファイバと前記光学素子との間における波長1550nmの接続損失と、の合計は、前記シングルモード光ファイバと前記光学素子とを直接接続した場合の波長1550nmにおける接続損失よりも小さいことを特徴とする光学部品。
  2.  前記光学素子のコアのサイズは、厚さおよび幅がともに1.5μm~6.5μmであり、
     前記光学素子のクラッドに対するコアの比屈折率差は、2.5%以上10%以下であることを特徴とする請求項1に記載の光学部品。
  3.  前記高比屈折率差光ファイバの波長1550nmにおけるモードフィールド径が3.0μm以上5.0μm以下であり、前記高比屈折率差光ファイバと前記光学部品の波長1550nmにおける接続損失は、3.08dB以下であることを特徴とする請求項1または2に記載の光学部品。
  4.  前記高比屈折率差光ファイバのクラッドに対するコアの比屈折率差が2.0%以上3.0%以下であることを特徴とする請求項3に記載の光学部品。
  5.  前記光学素子に前記高比屈折率差光ファイバを光学結合するために、前記高比屈折率差光ファイバの前記光学素子に対する相対的位置を固定する固定部材をさらに備え、
     前記高比屈折率差光ファイバは、前記固定部材に設けられたV字溝と上板とに挟持される部分の被覆が除去された状態で、前記固定部材に固定される、
     ことを特徴とする請求項1~4の何れか1つに記載の光学部品。
  6.  前記高比屈折率差光ファイバと前記シングルモード光ファイバとが融着接続された融着点は、前記シングルモード光ファイバの被覆と略同径の被覆が施された状態で前記固定部材に固定されていることを特徴とする請求項5に記載の光学部品。
  7.  前記高比屈折率差光ファイバと前記シングルモード光ファイバとが融着接続された融着点の外径は、当該融着点の前後における前記高比屈折率差光ファイバおよび前記シングルモード光ファイバの外径よりも細くなるように加工された状態で、前記V字溝と前記上板との間に挟持されていることを特徴とする請求項5に記載の光学部品。
  8.  前記高比屈折率差光ファイバと前記シングルモード光ファイバとが融着接続された融着点は、当該光学部品を収容する筐体の外に配置されていることを特徴とする請求項5に記載の光学部品。
  9.  前記高比屈折率差光ファイバおよび前記シングルモード光ファイバは、複数の各々がアレイ状に配列された状態で一括に被覆されていることを特徴とする請求項5~8の何れか1つに記載の光学部品。
  10.  前記アレイ状に配列された前記高比屈折率差光ファイバのクラッド径が50μm以上であり125μmより小さいことを特徴とする請求項7に記載の光学部品。
  11.  前記高比屈折率差光ファイバおよび前記シングルモード光ファイバは、偏波面を保持しながら光を伝搬する偏波保持光ファイバであることを特徴とする請求項1~10の何れか1つに記載の光学部品。
  12.  前記高比屈折率差光ファイバの前記光学素子の側の端面は、該高比屈折率差光ファイバの光軸に垂直な面に対して16度以下の角度で斜めに加工されていることを特徴とする請求項1~11の何れか1つに記載の光学部品。
  13.  前記光学素子の光導波路のコアにはジルコニアが添加されていることを特徴とする請求項1~12の何れか1つに記載の光学部品。
  14.  前記高比屈折率差光ファイバの長手方向に垂直な断面における、それぞれのコアの偏心方向が互いに一定の方向となるように、前記高比屈折率差光ファイバが配列されることを特徴とする請求項9または10に記載の光学部品。
  15.  複数の前記高比屈折率差光ファイバは、1本の高比屈折率差光ファイバを切断して得られるものであることを特徴とする請求項14記載の光学部品。
  16.  前記高比屈折率差光ファイバは、前記固定部材に設けられたV字溝に所定の間隔で固定され、
     前記高比屈折率差光ファイバの長手方向に垂直な断面において、配列される複数の前記高比屈折率差光ファイバの内、少なくとも中央部近傍の前記高比屈折率差光ファイバのコアの偏心方向と、少なくとも端部近傍の前記高比屈折率差光ファイバのコアの偏心方向とが、前記高比屈折率差光ファイバの配列方向に略垂直な方向に対して、互いに逆方向となるように前記高比屈折率差光ファイバが配置されることを特徴とする請求項14または15に記載の光学部品。
PCT/JP2015/078830 2014-10-10 2015-10-09 光学部品 WO2016056659A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016513556A JP6089147B2 (ja) 2014-10-10 2015-10-09 光学部品
US15/470,282 US10007073B2 (en) 2014-10-10 2017-03-27 Optical component including a high-relative-refractive-index-index-difference optical fiber a single-mode optical fiber an optical device and a fixing member to fix a relative opsition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-209448 2014-10-10
JP2014209448 2014-10-10
JP2015020354 2015-02-04
JP2015-020354 2015-02-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/470,282 Continuation US10007073B2 (en) 2014-10-10 2017-03-27 Optical component including a high-relative-refractive-index-index-difference optical fiber a single-mode optical fiber an optical device and a fixing member to fix a relative opsition

Publications (1)

Publication Number Publication Date
WO2016056659A1 true WO2016056659A1 (ja) 2016-04-14

Family

ID=55653263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078830 WO2016056659A1 (ja) 2014-10-10 2015-10-09 光学部品

Country Status (3)

Country Link
US (1) US10007073B2 (ja)
JP (1) JP6089147B2 (ja)
WO (1) WO2016056659A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221589A1 (ja) * 2017-05-30 2018-12-06 古河電気工業株式会社 光ファイバ端末構造、光素子接続構造および光ファイバ端末構造の製造方法
JP2019040131A (ja) * 2017-08-28 2019-03-14 株式会社フジクラ 光ファイバ、光デバイス、及び、光デバイスの製造方法
JPWO2021070567A1 (ja) * 2019-10-08 2021-04-15
WO2022003880A1 (ja) * 2020-07-01 2022-01-06 日本電信電話株式会社 光部品
US11333828B2 (en) 2018-03-29 2022-05-17 Furukawa Electric Co., Ltd. Optical connection component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998855B2 (ja) 2018-10-31 2022-01-18 古河電気工業株式会社 光学接続部品

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360106A (ja) * 1991-06-07 1992-12-14 Nippon Telegr & Teleph Corp <Ntt> 光ファイバの整列治具およびその方法
JPH0713036A (ja) * 1993-06-15 1995-01-17 Hitachi Cable Ltd ピッグテールファイバ付光デバイス及びその製造方法
JP2001066438A (ja) * 1999-08-27 2001-03-16 Hitachi Koki Co Ltd 光ファイバアレイ素子
JP2003149491A (ja) * 2001-11-15 2003-05-21 Furukawa Electric Co Ltd:The 光導波回路モジュール
JP2003156662A (ja) * 2001-11-21 2003-05-30 Ngk Insulators Ltd 光ファイバアレイ及びその製造方法
JP2004126563A (ja) * 2002-09-02 2004-04-22 Seiko Instruments Inc レンズ一体型光ファイバとその製造方法
WO2006078007A1 (ja) * 2005-01-24 2006-07-27 Sumitomo Electric Industries, Ltd. 光ファイバモジュール
JP2013210623A (ja) * 2012-02-28 2013-10-10 Furukawa Electric Co Ltd:The 光導波路素子およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256489B2 (ja) * 1998-04-23 2002-02-12 日本電気株式会社 光結合構造、光デバイス、それらの製造方法及び製造装置
US6607933B2 (en) * 2001-08-07 2003-08-19 Agere Systems Optoelectronics Guardian Corp. Double layer beam expander for device-to-fiber coupling
JP4137515B2 (ja) * 2002-05-17 2008-08-20 日本電信電話株式会社 分散シフト光ファイバ
US7346258B2 (en) * 2002-07-09 2008-03-18 Fujikura Ltd. Optical fiber and optical fiber coupler, erbium-doped optical fiber amplifier, and optical waveguide using the same
JP4268115B2 (ja) * 2004-10-28 2009-05-27 古河電気工業株式会社 シングルモード光ファイバ
JP5228038B2 (ja) * 2008-04-30 2013-07-03 古河電気工業株式会社 光ファイバおよび光学デバイス
US8776321B2 (en) * 2011-10-19 2014-07-15 Sidestix Ventures Inc. Ergonomic, shock-absorbing hand grip
US10371890B2 (en) 2013-02-26 2019-08-06 Furukawa Electric Co., Ltd. Optical waveguide element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360106A (ja) * 1991-06-07 1992-12-14 Nippon Telegr & Teleph Corp <Ntt> 光ファイバの整列治具およびその方法
JPH0713036A (ja) * 1993-06-15 1995-01-17 Hitachi Cable Ltd ピッグテールファイバ付光デバイス及びその製造方法
JP2001066438A (ja) * 1999-08-27 2001-03-16 Hitachi Koki Co Ltd 光ファイバアレイ素子
JP2003149491A (ja) * 2001-11-15 2003-05-21 Furukawa Electric Co Ltd:The 光導波回路モジュール
JP2003156662A (ja) * 2001-11-21 2003-05-30 Ngk Insulators Ltd 光ファイバアレイ及びその製造方法
JP2004126563A (ja) * 2002-09-02 2004-04-22 Seiko Instruments Inc レンズ一体型光ファイバとその製造方法
WO2006078007A1 (ja) * 2005-01-24 2006-07-27 Sumitomo Electric Industries, Ltd. 光ファイバモジュール
JP2013210623A (ja) * 2012-02-28 2013-10-10 Furukawa Electric Co Ltd:The 光導波路素子およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221589A1 (ja) * 2017-05-30 2018-12-06 古河電気工業株式会社 光ファイバ端末構造、光素子接続構造および光ファイバ端末構造の製造方法
JP2018205347A (ja) * 2017-05-30 2018-12-27 古河電気工業株式会社 光ファイバ端末構造、光素子接続構造および光ファイバ端末構造の製造方法
US10935728B2 (en) 2017-05-30 2021-03-02 Furukawa Electric Co., Ltd. Optical fiber terminal structure, optical element connection structure, and method for manufacturing optical fiber terminal structure
JP2019040131A (ja) * 2017-08-28 2019-03-14 株式会社フジクラ 光ファイバ、光デバイス、及び、光デバイスの製造方法
US11333828B2 (en) 2018-03-29 2022-05-17 Furukawa Electric Co., Ltd. Optical connection component
JPWO2021070567A1 (ja) * 2019-10-08 2021-04-15
JP7197722B2 (ja) 2019-10-08 2022-12-27 株式会社フジクラ 光ファイバ固定構造及びレーザ装置
US11703647B2 (en) 2019-10-08 2023-07-18 Fujikura Ltd. Optical fiber securing structure and laser device
WO2022003880A1 (ja) * 2020-07-01 2022-01-06 日本電信電話株式会社 光部品

Also Published As

Publication number Publication date
JPWO2016056659A1 (ja) 2017-04-27
US10007073B2 (en) 2018-06-26
US20170199341A1 (en) 2017-07-13
JP6089147B2 (ja) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6089147B2 (ja) 光学部品
JP6706859B2 (ja) 光学モジュール
JP2014052405A (ja) シングルモードのポリマー導波路アレイコネクターを形成する方法
JP2016194658A (ja) 光学デバイス、光処理デバイス、光学デバイスを作製する方法
JP4385168B2 (ja) 回折格子及び分散補償回路
US10101535B2 (en) Single-mode polymer waveguide connector
US9417404B1 (en) Single-mode polymer waveguide connector
JP6678510B2 (ja) 光導波路素子
WO2017169711A1 (ja) 光導波路構造および光導波路回路
US11333828B2 (en) Optical connection component
WO2007086206A1 (ja) 光モジュール及び光モジュールの製造方法
Wlodawski et al. A new generation of ultra-dense optical I/O for silicon photonics
JP7107194B2 (ja) 光接続構造
JP6998855B2 (ja) 光学接続部品
JP6345153B2 (ja) Siフォトニクス光波回路及びその製造方法
JP2002182062A (ja) コネクター型光合分波器
JP7244788B2 (ja) 光ファイバ接続構造
JP4792422B2 (ja) 平面光波回路
JP2007178602A (ja) 光部品及びその製造方法
JP4303096B2 (ja) 平面光回路部品
JP2005173213A (ja) 光コリメータおよびこれを用いた光部品
JP2024016306A (ja) 光デバイスおよび光デバイスの製造方法
JP3897231B2 (ja) 光分岐器
JP2020079862A (ja) 光コネクタ部、光接続構造体、及び、光接続構造体の製造方法
JP2006317545A (ja) 光導波路構造

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016513556

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848960

Country of ref document: EP

Kind code of ref document: A1