WO2016056331A1 - 無灰炭配合量決定方法及び高炉用コークスの製造方法 - Google Patents

無灰炭配合量決定方法及び高炉用コークスの製造方法 Download PDF

Info

Publication number
WO2016056331A1
WO2016056331A1 PCT/JP2015/074939 JP2015074939W WO2016056331A1 WO 2016056331 A1 WO2016056331 A1 WO 2016056331A1 JP 2015074939 W JP2015074939 W JP 2015074939W WO 2016056331 A1 WO2016056331 A1 WO 2016056331A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
ashless
coke
ashless coal
blending amount
Prior art date
Application number
PCT/JP2015/074939
Other languages
English (en)
French (fr)
Inventor
濱口 眞基
祥平 和田
裕子 西端
一秀 石田
貴洋 宍戸
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201580052420.7A priority Critical patent/CN106715652B/zh
Priority to KR1020177008854A priority patent/KR101887320B1/ko
Publication of WO2016056331A1 publication Critical patent/WO2016056331A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition

Definitions

  • the present invention relates to a method for determining the amount of ashless coal and a method for producing coke for blast furnace.
  • Coke used in ironmaking in a blast furnace has a function as a reducing agent for iron ore (iron oxide), a function as a heat source (fuel), and a breathability in the furnace that can withstand the load between the coke itself and iron ore.
  • Three functions are expected for the function as a filler for ensuring the resistance.
  • the coke is required to have a certain strength and reactivity (reducibility and combustibility).
  • coke is produced by steaming coal at a high temperature of 1000 ° C. or higher (hereinafter sometimes referred to as “dry distillation”).
  • dry distillation When obtaining coke with high strength, so-called strong caking coal having high caking properties is used, but such caking coal is relatively expensive. Therefore, for the purpose of reducing the production cost of coke, in addition to weakly caking coal, which has lower caking properties than strongly caking coal, slightly caking coal with poor caking properties or non-caking coal with almost no caking properties.
  • non-caking coal a combination of slightly caking coal and non-caking coal may be referred to as “non-caking coal”.
  • the mechanism by which high-strength coke is generated has been clarified to a considerable extent, and various methods for efficiently obtaining high-strength coke have been proposed (see, for example, International Publication No. 2010/103828).
  • FIG. 1A is a diagram schematically showing this change
  • the left side shows a state in which coal particles before carbonization (strongly caking coal particles 1 and non-slightly caking coal particles 2) are present in the furnace body 10.
  • the right side shows a state in which the continuous phase 1a formed by expansion of the strongly caking coal particles 1 after dry distillation and the altered component 2a of the non-fine caking coal particles 2 are present.
  • the strongly caking coal particles 1 are melted during the dry distillation process, expand by containing the generated gas, and combine with the adjacent caking coal particles 1 to form a continuous phase 1a containing bubbles A.
  • the ratio of the strong caking coal is a certain level or more and the ratio of the non-minor caking coal is small, the non-minor caking coal particles 2 are taken into the caking coal during the above-described continuous phase formation process, so that defects are hardly generated.
  • the ratio of non-slightly caking coal is high as shown in FIG. 1A, adhesion between the strongly caking coal particles 1 is inhibited, and low-strength coke having coarse defects B inside is generated.
  • the strength of coke is improved by dispersing and blending the ashless coal particles 4 into the raw coal particles (strongly caking coal particles 1 and non-caking coal particles 2).
  • the ashless coal particles 4 begin to flow at a lower temperature than the raw coal particles in the coke oven, and the continuous phase 4a derived from the ashless coal particles 4 including the center portion of the coke oven where the temperature rise is slow is provided. It is formed substantially uniformly.
  • the preferred blending amount of ashless coal is determined by conducting a small-scale dry distillation test and repeating trial and error. It has been decided. For this reason, it takes time to determine a suitable blending amount of ashless coal, and an increase in efficiency is desired.
  • the present invention has been made based on the circumstances as described above, an efficient ashless coal blending amount determination method in the production of blast furnace coke, and a blast furnace coke production method using this determination method,
  • the purpose is to provide.
  • the present inventors are able to determine a suitable amount of ashless coal in the production of blast furnace coke, based on the void amount of raw coal, the expandability of ashless coal, and the true specific gravity of ashless coal.
  • the present invention was completed.
  • the invention made to solve the above problems is a method for determining the amount of ashless coal in the production of coke for blast furnace containing ashless coal obtained by solvent extraction treatment of coal and raw coal,
  • the reference value W calculated by the following formula (1) using the porosity index Pv [volume%] of the raw coal, the expansibility index D [volume%] of the ashless coal, and the true specific gravity ⁇ of the ashless coal.
  • the blending amount of the ashless coal with respect to the blended coal is determined by [% by mass].
  • W (Pv / D) ⁇ ⁇ ⁇ 100 (1)
  • the ashless coal blending amount determination method is suitable for ashless coal in the production of blast furnace coke by measuring the void amount of raw coal, the expandability of ashless coal and the true specific gravity of ashless coal in advance. The blending amount can be calculated. For this reason, the ashless coal blending amount determination method can efficiently determine the blending amount of ashless coal with respect to the blended coal without repeating trial and error by the dry distillation test. As a result, high strength coke can be generated easily and reliably by using the ashless coal blending amount determination method.
  • the blending amount of the ashless coal with respect to the blended coal is preferably 0.29 W [mass%] or more and 1.00 W [mass%] or less.
  • the present invention is a method for producing coke for blast furnace comprising a step of blending ashless coal obtained by solvent extraction treatment of coal with raw coal, and a step of dry distillation of the blended coal, in the blending step,
  • a method for producing coke for a blast furnace is included, wherein the blending amount of the ashless coal relative to the blended coal is determined using an ash coal blending amount determination method.
  • the blast furnace coke manufacturing method efficiently determines the blending amount of ashless coal using the ashless coal blending amount determination method, so that high-strength coke can be generated easily and reliably while reducing manufacturing costs. .
  • the “true specific gravity ⁇ of ashless coal” is a value measured in accordance with JIS-Z8807: 2012.
  • the “porosity index Pv [volume%]” means that the packing bulk density of the raw coal in the coke oven (dry coal equivalent mass standard) is d [kg / m 3 ], and the true specific gravity of the raw coal is ⁇ c. Is a value calculated by the following equation (2).
  • the true specific gravity ⁇ of ashless coal varies slightly depending on the type of raw coal (that is, coal for obtaining ashless coal) and production conditions, and the true specific gravity ⁇ c of raw material coal varies slightly depending on the coal mining site.
  • the true specific gravity ⁇ of ashless coal and the true specific gravity ⁇ c of raw coal can be approximately 1.3 (see Fuel Analysis Test Method, Nankodo, p. 130).
  • Pv ⁇ 1- (d / 1000) / ⁇ c ⁇ ⁇ 100 (2)
  • “Expansion index D [volume%] of ashless coal” is a value measured by the following method. First, a quartz test tube having an inner diameter of 15 mm is filled with 1.8 g of anthracite pulverized to a particle size of 2 mm or less and 0.2 g of ashless coal pulverized to a particle size of 200 ⁇ m or less, and heat-treated at 3 ° C./min to 500 ° C. The expansion coefficient V10% [volume%] is obtained from the ratio of the height of the sample after heating to the height of the sample before heating.
  • the reason why the expansive index D of ashless coal is not measured in accordance with the expansibility test method of JIS-M8801: 2004 is that ashless coal has significantly higher fluidity in the molten state than ordinary coal. This is because the expansion coefficient measurement by the JIS method cannot be applied.
  • the reason for using anthracite in the said measuring method is as follows. Anthracite coal has the highest degree of coalification among coals, and is often used as a part of raw material coal for producing iron-making coke, but has no caking or fluidity. This is the reason why anthracite is used in the above measurement method, that is, since anthracite does not melt or expand during the carbonization process, ashless coal is mixed with coal particles and carbonized. This is because it is expected that the expansion rate in the process can be estimated with higher accuracy.
  • the ashless coal blending amount determination method of the present invention can efficiently determine the blending amount of ashless coal in the production of blast furnace coke, the blast furnace using this ashless coal blending amount determination method
  • the manufacturing method for coke can easily and reliably produce high-strength coke while reducing the production cost.
  • the method for producing blast furnace coke includes a step of blending ashless coal obtained by solvent extraction of coal with raw coal (blending step) and a step of dry distillation of the blended coal (dry distillation step).
  • ⁇ Mixing process> In the blending step, ashless coal is blended with raw coal, which is a raw material for coke, to obtain blended coal.
  • the raw coal used as a raw material for coke in the method for producing coke for blast furnace is not particularly limited, and strong caking coal, semi-caking coal, weak caking coal, slightly caking coal, non-caking coal, etc. are obtained by dry distillation. They can be used in combination at an appropriate ratio that enables fusion of the entire coal.
  • the raw coal preferably contains strong caking coal and non-caking caking coal.
  • the lower limit of the ratio of strongly caking coal in the raw coal is preferably 20% by mass, and more preferably 30% by mass.
  • an upper limit of the ratio of the strong caking coal in raw material coal 50 mass% is preferable from a viewpoint of manufacturing high quality coke more cheaply, and 40 mass% is more preferable.
  • the ratio of strong caking coal is less than the said minimum, there exists a possibility that the intensity
  • the ratio of strong caking coal exceeds the said upper limit, there exists a possibility that the manufacturing cost of coke may increase.
  • the raw material coal is preferably made into finely pulverized particles.
  • average particle diameter D20 of raw material coal 3 mm or less is preferable.
  • average particle diameter D20 exceeds the said upper limit, there exists a possibility that the mixability with ashless coal and the intensity
  • the “average particle size D20” is the average particle size of the particles remaining on the sieve when all the particles are sieved in order from the largest mesh sieve using a metal mesh sieve defined in JIS-Z8801-1: 2006. It means the size of the sieve mesh when the cumulative volume is 20% of the total particle volume.
  • the raw coal may be dry coal by air drying or the like, but may be one containing moisture.
  • Ashless coal (Hypercoal, HPC) is a type of modified coal obtained by modifying coal, and is a modified coal obtained by removing as much ash and insoluble components as possible from coal using a solvent.
  • the ashless coal may contain ash as long as the fluidity and expansibility of the ashless coal are not significantly impaired.
  • coal contains ash content of 7% by mass or more and 20% by mass or less, but ashless coal used in the method for producing the blast furnace coke may contain ash content of about 2%, and in some cases, about 5%.
  • “Ash” means a value measured in accordance with JIS-M8812: 2004.
  • Such ashless coal is a solvent extraction process in which coal is mixed with a solvent having a high affinity with the coal to obtain an extract from which components insoluble in solvents such as ash are separated, and the solvent is removed from the extract. Can be obtained.
  • the solvent extraction treatment for example, the method disclosed in Japanese Patent No. 4405229 can be used.
  • Ashless coal obtained by such solvent extraction treatment is substantially free of ash, contains many organic substances that are soluble in the solvent and exhibit softening and melting properties, and has two or three condensed aromatic rings structurally. From a relatively low molecular weight component to a high molecular weight component having about 5 or 6 condensed aromatic rings. Therefore, ashless coal exhibits high fluidity under heating and generally melts at 150 ° C.
  • ashless coal expands while producing a large amount of volatile components in the initial stage of dry distillation at about 300 ° C. or more and 500 ° C. or less.
  • the water content is about 0.2% by mass or more and 3% by mass or less and has a sufficient calorific value.
  • the quality of the coal used as the raw material for the ashless coal used in the method for producing the blast furnace coke is not particularly limited.
  • the ashless coal is preferably in the form of particles having a small particle size from the viewpoint of increasing dispersibility and increasing the strength of coke.
  • the upper limit of the maximum diameter of ashless coal particles is preferably 1 mm. When the maximum diameter of the ashless coal particles exceeds the above upper limit, the above-described coal particle connection effect cannot be obtained sufficiently, and the strength of the coke may be insufficient.
  • the maximum diameter of the ashless coal particles means the maximum length (maximum distance between two points) of the outer shape of the ashless coal particles taken with an electron microscope or the like, for example.
  • the blending amount of ashless coal with respect to blended coal is the porosity index Pv [volume%] of the raw coal, the expansibility index D [volume%] of the ashless coal, and the above
  • the true specific gravity ⁇ of ashless coal is used to determine the reference value W [mass%] calculated by the following formula (1).
  • W (Pv / D) ⁇ ⁇ ⁇ 100 (1)
  • the porosity index Pv of raw coal, the expansive index D of ashless coal, and the true specific gravity ⁇ of ashless coal are all considered to be determined by the types of raw coal and ashless coal and dry distillation conditions. Therefore, it is possible to calculate in advance. Therefore, the reference value W used in the ashless coal blending amount determination method can be calculated without repeating trial and error in the dry distillation test.
  • the lower limit of the blending amount of the ashless coal with respect to the blended coal is preferably 0.29 W [mass%], more preferably 0.31 W [mass%], and still more preferably 0.45 W [mass%]. Moreover, as an upper limit of the compounding quantity of the said ashless coal with respect to the said coal blend, 1.00 W [mass%] is preferable and 0.80 W [mass%] is more preferable. Ashless coal expands with the inclusion of gas in the carbonization process described later, and is crushed as the temperature rises and the carbonization proceeds to form an adhesive layer between the coal particles.
  • the blending amount of the ashless coal with respect to the blended coal is less than the lower limit, filling of voids between the coal particles with the ashless coal may be insufficient, and sufficient adhesive strength may not be obtained.
  • the blending amount of the ashless coal with respect to the blended coal exceeds the upper limit, the ashless coal that does not contribute to the filling of the voids only by increasing the thickness of the adhesive layer is increased, and the production cost of coke may be increased. .
  • strength of coke may fall.
  • the blending amount of ashless coal with respect to blended coal can be determined using the reference value W [mass%].
  • the value Pv / D ⁇ 100 [volume%] obtained by dividing the porosity index Pv [volume%] of raw coal by the expansive index D [volume%] of ashless coal at the reference value W is the void of the raw coal. It is thought to represent the volume of ashless coal needed to fill. Since ashless coal particles have high fluidity when heated and can fill the gaps in the raw coal almost uniformly, blend the raw coal with the volume of ashless coal necessary to fill the gaps in the raw coal. Thus, it is considered that the voids between the coal particles can be efficiently filled with ashless coal. Accordingly, a value obtained by multiplying the Pv / D ⁇ 100 by the true specific gravity ⁇ of ashless coal can be used as a reference value for determining the blending amount [mass%] of ashless coal.
  • the lower limit of the logarithm (log MF) of the maximum fluidity of blended coal in which ashless coal is blended with raw coal is preferably 1.8, more preferably 2, and even more preferably 2.1.
  • the upper limit of the log MF of the coal blend is preferably 3, more preferably 2.5, and even more preferably 2.3.
  • the maximum fluidity MF mainly indicates the thermal fluidity
  • the log MF of the blended coal means a value obtained by weighted averaging of the log MFs of all coal and ashless coal contained in the raw coal.
  • the upper limit of the average maximum reflectance Ro of the blended coal is preferably 1.3, and more preferably 1.2.
  • the average maximum reflectance Ro mainly indicates the degree of coalification, and Ro of blended coal means a value obtained by weighted averaging of Ro of all coal and ashless coal contained in raw coal.
  • the blending method of the ashless coal to the raw coal is not particularly limited, and for example, a method in which the raw coal and the ashless coal are respectively introduced into a known mixer from a hopper and stirred while being pulverized by a conventional method can be used. .
  • the secondary particles in which ashless coal is agglomerated can be pulverized, and the raw material coal can be pulverized into particles.
  • a binder other than ashless coal may be added to the raw coal, but in the method for producing the coke, coal particles are connected by ashless coal as described above, so it is necessary to add a binder. There is no. Therefore, it is preferable that blended coal does not contain binders other than ashless coal from a viewpoint of cost reduction.
  • coke is obtained by charging the blended coal into a coke oven and performing carbonization.
  • a coke oven for example, one having a furnace body capable of charging about 30 tons per gate can be used.
  • the lower limit of the filling bulk density d of instrumentation Nyutoki to coke ovens coal blend preferably 720kg / m 3, 730kg / m 3 and more preferably.
  • 850 kg / m ⁇ 3 > is preferable and 800 kg / m ⁇ 3 > is more preferable.
  • the filling bulk density d is less than the said minimum, there exists a possibility that the intensity
  • the filling bulk density d exceeds the above upper limit, the pressure applied to the furnace body is increased, the furnace body may be damaged, and the production cost of coke may be increased by the work of improving the filling density of the blended coal. .
  • 950 ° C As a lower limit of the dry distillation temperature of the blended coal, 950 ° C is preferable, and 1000 ° C is more preferable. Moreover, as an upper limit of dry distillation temperature, 1200 degreeC is preferable and 1050 degreeC is more preferable. When the dry distillation temperature is less than the above lower limit, coal may not be sufficiently melted and coke strength may be reduced. On the other hand, when the dry distillation temperature exceeds the above upper limit, the production cost may increase from the viewpoint of heat resistance of the furnace body and fuel consumption.
  • the carbonization time of the blended coal 8 hours is preferable and 10 hours is more preferable.
  • an upper limit of dry distillation time 24 hours are preferable and 20 hours are more preferable.
  • the carbonization time is less than the above lower limit, the coal is not sufficiently melted and the strength of the coke may be reduced.
  • the carbonization time exceeds the above upper limit, the production cost may increase from the viewpoint of fuel consumption.
  • the ashless coal blending amount determination method is suitable for ashless coal in the production of blast furnace coke by measuring the void amount of raw coal, the expandability of ashless coal and the true specific gravity of ashless coal in advance. The blending amount can be calculated. For this reason, the ashless coal blending amount determination method can efficiently determine the blending amount of ashless coal with respect to the blended coal without repeating trial and error by the dry distillation test. As a result, high strength coke can be generated easily and reliably by using the ashless coal blending amount determination method.
  • Ashless coal was produced by the following method using a hypercall continuous production facility (Bench Scale Unit).
  • Australian bituminous coal is used as ashless coal raw coal (ie, coal for obtaining ashless coal), 5 kg (dry coal equivalent mass) of this raw coal (ie, coal for obtaining ashless coal), A 4-fold amount (20 kg) of 1-methylnaphthalene (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) as a solvent was mixed to prepare a slurry.
  • This slurry was put into a batch type autoclave having an internal volume of 30 L, nitrogen was introduced, the pressure was increased to 1.2 MPa, and the mixture was heated at 370 ° C. for 1 hour.
  • the slurry is separated into a supernatant and a solid concentrate in the gravity settling tank maintaining the above temperature and pressure, and the solvent is separated and recovered from the supernatant by distillation to obtain 2.7 kg of ashless Charcoal X was obtained.
  • the ash content and expansibility index D of the obtained ashless coal X were as shown in Table 1.
  • the ashless coal X was pulverized so that all (100% by mass) had a maximum diameter of 3 mm or less.
  • ashless coal Y was obtained in the same manner as the method of obtaining ashless coal X described above. Further, 4.5 kg of no ash coal X is obtained in the same manner as the method for obtaining the ashless coal X except that the gravity sedimentation time is different from the gravity sedimentation time when the ashless coal X and the ashless coal Y are obtained.
  • Ash coal Z was obtained.
  • the ash content and expansibility index D of the obtained ashless coals Y and Z were as shown in Table 1.
  • the ashless coals Y and Z were pulverized so that all of them (100% by mass) had a maximum diameter of 3 mm or less.
  • Examples 1 to 5 Using the ashless coal X of the ashless coal produced as described above, blast furnace cokes of Examples 1 to 5 were produced by the following procedure.
  • the reference value W with respect to the ashless coal X of the raw coal when the filling bulk density of the raw coal was 740 kg / m 3 was 10.2% by mass.
  • the true specific gravity of the raw coal and ashless coal was 1.3.
  • the blending amount V [mass%] of ashless coal relative to the blended coal was determined as shown in Table 3, and the raw coal and ashless coal X were mixed to obtain blended coal.
  • the blended coal was put in a steel retort, and the retort was vibrated to adjust the filling bulk density to 740 kg / m 3 , and then placed in a double-sided heating electric furnace and dry-distilled in a nitrogen stream. As the dry distillation conditions, the temperature was raised at 3 ° C./min and then heated at 1000 ° C. for 20 minutes. After dry distillation, the retort was removed from the electric furnace and allowed to cool naturally to obtain blast furnace coke.
  • Examples 6 to 8 Except for the ashless coal Y used in Table 1, the raw coal and ashless Y were blended in the same amount as shown in Table 3 in the same procedure as in Examples 1 to 5, Blast furnace coke of Examples 6 to 8 was obtained by dry distillation. The standard value W with respect to the ashless coal Y of the raw material coal was 17.5% by mass.
  • Examples 9 and 10 The raw coal and ashless coal Z were blended in the blending amounts shown in Table 3 in the same procedure as in Examples 1 to 5, except that the ashless coal used was changed to ashless coal Z in Table 1. Blast furnace coke of Examples 9 and 10 was obtained by dry distillation. The reference value W for the ashless coal Z of the raw material coal was 32.9% by mass.
  • the drum strength index DI of the blast furnace coke of Examples 1 to 10 and Comparative Examples 1 and 2 was measured. Specifically, in accordance with JIS-K2151: 2004, blast furnace coke is rotated 150 times with a drum, and then sorted with a metal plate sieve having an opening of 15 mm as defined in JIS-Z8801-2: 2000. The mass ratio (DI150 15) of the remaining blast furnace coke was determined. Further, this strength was determined according to the following criteria. A: DI> 84.5%, and the strength is extremely excellent. B: DI> 83.3%, and the strength is excellent. C: DI ⁇ 83.3% and the strength is inferior.
  • the production costs of the blast furnace coke of Examples 1 to 10 and Comparative Examples 1 and 2 were determined according to the following criteria.
  • the strength of coke obtained is higher than in Comparative Example 2 in which ashless coal is not blended and in Example 5 in which the blending amount of ashless coal exceeds 1.00 W [mass%]. .
  • the blending amount of the ashless coal is preferably 0.29 W [mass%] or more and 1.00 W [mass%] or less.
  • Examples 1 to 3, Example 7, Example 8 and Example 10 in which the blending amount of ashless coal is 0.31 W [mass%] or more and 0.80 W [mass%] or less use the same coal-free coal distribution.
  • the strength of coke is higher than that of the other examples, and the strength is equivalent to that of Comparative Example 1 in which the blending amount of non-slightly caking coal is small. From this, it turns out that the intensity
  • a method for determining the amount of ashless coal in the production of coke for blast furnace containing ashless coal obtained by solvent extraction treatment of coal and raw coal The reference value W calculated by the following formula (1) using the porosity index Pv [volume%] of the raw coal, the expansibility index D [volume%] of the ashless coal, and the true specific gravity ⁇ of the ashless coal.
  • An ashless coal blending amount determining method wherein the blending amount of the ashless coal with respect to the blended coal is determined by [mass%].
  • Aspect 2 The ashless coal blending amount determination method according to aspect 1, wherein the blending amount of the ashless coal with respect to the blended coal is 0.29 W [mass%] or more and 1.00 W [mass%] or less.
  • a method for producing coke for a blast furnace comprising a step of blending ashless coal obtained by solvent extraction treatment of coal with raw coal, and a step of dry distillation of the blended coal,
  • the compounding quantity of the said ashless coal with respect to the said blended coal is determined using the ashless coal compounding amount determination method of the aspect 1 or the aspect 2, The manufacturing method of the coke for blast furnaces characterized by the above-mentioned.
  • the ashless coal blending amount determination method of the present invention can efficiently determine the blending amount of ashless coal in the production of blast furnace coke, the blast furnace using this ashless coal blending amount determination method
  • the manufacturing method for coke can easily and reliably produce high-strength coke while reducing the production cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)

Abstract

 高炉用コークスの製造の際の効率的な無灰炭配合量決定方法とこの決定方法を用いた高炉用コークスの製造方法との提供を目的とする。本発明は、石炭の溶剤抽出処理により得られる無灰炭と原料石炭とを含む高炉用コークスの製造の際の無灰炭配合量決定方法であって、上記原料石炭の空隙率指数Pv[体積%]、上記無灰炭の膨張性指数D[体積%]及び上記無灰炭の真比重ρを用いて下記式(1)で算出される基準値W[質量%]により、上記配合炭に対する上記無灰炭の配合量を決定する。上記配合炭に対する上記無灰炭の配合量としては、0.29W[質量%]以上1.00W[質量%]以下が好ましい。 W=(Pv/D)×ρ×100 ・・・(1)

Description

無灰炭配合量決定方法及び高炉用コークスの製造方法
 本発明は、無灰炭配合量決定方法及び高炉用コークスの製造方法に関する。
 高炉での製鉄で使用されるコークスには、鉄鉱石(酸化鉄)の還元材としての機能、熱源(燃料)としての機能、及びコークス自体と鉄鉱石との荷重に耐えて炉内の通気性を確保するための充填材としての機能の大きくは3つの機能が期待される。これらの機能を果たすため、上記コークスには一定の強度と反応性(還元性及び燃焼性)とが求められる。
 一般に、コークスは石炭を1000℃ないしそれ以上の高温で蒸し焼きにする(以下、「乾留する」ということがある。)ことにより製造される。強度の高いコークスを得る場合、粘結性の高い、いわゆる強粘結炭が使用されるが、このような強粘結炭は比較的高価である。そのため、コークスの製造コストの低減を目的として、強粘結炭よりも粘結性の低い弱粘結炭に加え、粘結性に乏しい微粘結炭または粘結性のほとんどない非粘結炭(以下、微粘結炭と非粘結炭とをあわせて「非微粘結炭」ということがある。)もコークス原料として一定量配合される。高強度のコークスが生成するメカニズムはかなりの程度明らかになっており、高強度コークスを効率的に得るための方法が種々提案されている(例えば、国際公開第2010/103828号公報参照)。
 ここで、乾留過程での石炭粒子の変化について説明する。図1Aはこの変化を模式的に表現した図であり、左側が乾留前の石炭粒子(強粘結炭粒子1及び非微粘結炭粒子2)が炉体10の中に存在する状態を示し、右側が乾留後に強粘結炭粒子1が膨張して形成された連続相1aと非微粘結炭粒子2の変質成分2aとが存在する状態を示す。強粘結炭粒子1は乾留過程で溶融し、発生するガスを内包して膨張し、隣接する強粘結炭粒子1と結合することで気泡Aを含む連続相1aを形成する。強粘結炭の割合が一定以上で非微粘結炭の割合が小さい場合には、非微粘結炭粒子2は上記連続相形成過程で強粘結炭に取り込まれるため、欠陥は生じにくい。ところが、図1Aのように非微粘結炭の割合が高い場合、強粘結炭粒子1同士の接着が阻害され、内部に粗大欠陥Bを持つ強度の低いコークスが生成する。
 これに対し、コークスの強度を高める方策の一つとして、石炭の溶剤抽出処理により得られる無灰炭を粘結性補填材として利用する方法が知られている(例えば、特開2014-43583号公報参照)。この方法では、図1Bに示すように無灰炭粒子4を原料石炭粒子(強粘結炭粒子1及び非微粘結炭粒子2)に分散配合することで、コークスの強度を改善する。具体的には、コークス炉内で無灰炭粒子4が原料石炭粒子よりも低い温度で流動し始め、温度上昇の遅いコークス炉中心部も含めて無灰炭粒子4に由来する連続相4aが略均一に形成される。これにより、強粘結炭粒子1に由来する連続相1a及び非微粘結炭粒子2の変質成分2aが連結され、粒子間の空隙が充填される。さらに無灰炭は膨張性が強粘結炭よりも高いために、無灰炭粒子4が膨張することで石炭粒子が連結し粒子間の空隙が充填され、高強度コークスが生成できる。
 ところが、無灰炭の性状は、原料とする石炭の種類や無灰炭の製造条件に依存するため、無灰炭の好適な配合量は小規模の乾留試験を行い、試行錯誤を繰り返すことによって決定されている。このため、無灰炭の好適な配合量決定には時間を要しており、その効率化が望まれている。
国際公開第2010/103828号公報 特開2014-43583号公報
 本発明は、上述のような事情に基づいてなされたものであり、高炉用コークスの製造の際の効率的な無灰炭配合量決定方法とこの決定方法を用いた高炉用コークスの製造方法との提供を目的とする。
 本発明者らは、鋭意検討した結果、原料石炭の空隙量、無灰炭の膨張性及び無灰炭の真比重によって、高炉用コークスの製造の際の好適な無灰炭配合量を決定できることを見出し、本発明を完成させた。
 すなわち、上記課題を解決するためになされた発明は、石炭の溶剤抽出処理により得られる無灰炭と原料石炭とを含む高炉用コークスの製造の際の無灰炭配合量決定方法であって、上記原料石炭の空隙率指数Pv[体積%]、上記無灰炭の膨張性指数D[体積%]及び上記無灰炭の真比重ρを用いて下記式(1)で算出される基準値W[質量%]により、上記配合炭に対する上記無灰炭の配合量を決定することを特徴とする。
 W=(Pv/D)×ρ×100 ・・・(1)
 当該無灰炭配合量決定方法は、原料石炭の空隙量、無灰炭の膨張性及び無灰炭の真比重を予め計測することで、高炉用コークスの製造の際の無灰炭の好適な配合量を算出することができる。このため、当該無灰炭配合量決定方法は、乾留試験による試行錯誤を繰り返すことなく効率的に配合炭に対する無灰炭の配合量を決定することができる。その結果、当該無灰炭配合量決定方法を用いることで、高強度コークスを容易かつ確実に生成することができる。
 上記配合炭に対する上記無灰炭の配合量としては、0.29W[質量%]以上1.00W[質量%]以下が好ましい。このように上記配合炭に対する上記無灰炭の配合量を上記範囲内とすることで、石炭粒子間の空隙を無駄なくかつ確実に無灰炭で充填できる。
 本発明は、石炭の溶剤抽出処理により得られる無灰炭を原料石炭に配合する工程、及び上記配合炭を乾留する工程を備える高炉用コークスの製造方法であって、上記配合工程において、当該無灰炭配合量決定方法を用いて、上記配合炭に対する上記無灰炭の配合量を決定することを特徴とする高炉用コークスの製造方法を含む。当該高炉用コークスの製造方法は、当該無灰炭配合量決定方法を用いて無灰炭の配合量を効率よく決定するので、製造コストを低減しつつ、高強度コークスを容易かつ確実に生成できる。
 なお、「無灰炭の真比重ρ」は、JIS-Z8807:2012に準拠して測定される値である。また、「空隙率指数Pv[体積%]」とは、コークス炉内の原料石炭の充填嵩密度(乾燥炭換算質量基準)をd[kg/m ]、原料石炭の真比重をρc とするとき、下記式(2)により計算される値である。なお、無灰炭の真比重ρはその原料石炭(すなわち、無灰炭を得るための石炭)種や製造条件によって若干異なり、原料石炭の真比重ρc はその採炭地によって若干異なるが、実施上の簡便さを考慮して近似的に無灰炭の真比重ρ及び原料石炭の真比重ρc は1.3とできる(燃料分析試験法、南江堂、p.130参照)。
 Pv={1-(d/1000)/ρc }×100 ・・・(2)
 「無灰炭の膨張性指数D[体積%]」は、以下の方法で測定される値である。まず、内径15mmの石英試験管に、粒径2mm以下に粉砕した無煙炭1.8gと粒径200μm以下に粉砕した無灰炭0.2gとを詰め、3℃/minで500℃まで加熱処理し、加熱前の試料の高さに対する加熱後の試料の高さの比から膨張率V10% [体積%]を求める。つぎに、同じく内径15mmの石英試験管に、粒径2mm以下に粉砕した無煙炭1.6gと、粒径200μm以下に粉砕した無灰炭0.4gとを詰め、3℃/minで500℃まで加熱処理し、加熱前の試料の高さに対する加熱後の試料の高さの比から膨張率V20% [体積%]を求める。無灰炭の膨張性指数D[体積%]は下記式(3)で求められる。
 D=(V20% -V10% )/(20-10)×100[体積%] ・・・(3)
 ここで無灰炭の膨張性指数DをJIS-M8801:2004の膨張性試験法に準拠して測定しない理由は、無灰炭は溶融状態での流動性が通常の石炭に比べて著しく高いため、JIS法による膨張率測定が適用できないためである。また、上記測定方法で無煙炭を使用する理由は以下による。無煙炭は、石炭のうちでも石炭化度がもっとも高い部類のものであり、製鉄コークス製造用原料石炭の一部としてしばしば使用されるが、粘結性や流動性を全く持たない。上記測定方法で無煙炭を使用するのはまさにそれが理由であり、すなわち、無煙炭は乾留過程で溶融したり、膨張したりすることがないため、無灰炭が石炭粒子と混合されて乾留される過程での膨張率をより高い精度で推定できると期待されるからである。
 以上説明したように、本発明の無灰炭配合量決定方法は高炉用コークスの製造の際の無灰炭の配合量を効率よく決定できるので、この無灰炭配合量決定方法を用いた高炉用コークスの製法は、製造コストを低減しつつ高強度コークスを容易かつ確実に製造できる。
従来のコークスの製造方法における石炭の乾留前後の状態を説明する模式図で、無灰炭を用いない場合である。 従来のコークスの製造方法における石炭の乾留前後の状態を説明する模式図で、無灰炭を用いる場合である。
 以下、本発明に係る無灰炭配合量決定方法を用いた高炉用コークスの製造方法の実施形態について説明する。
 当該高炉用コークスの製造方法は、石炭の溶剤抽出処理により得られる無灰炭を原料石炭に配合する工程(配合工程)、及び上記配合炭を乾留する工程(乾留工程)を備える。
<配合工程>
 配合工程において、無灰炭をコークスの原料である原料石炭に配合し、配合炭を得る。
(原料石炭)
 当該高炉用コークスの製造方法でコークスの原料として用いる原料石炭は特に限定されず、強粘結炭、準強粘結炭、弱粘結炭、微粘結炭、非粘結炭等を乾留により石炭全体の融着が可能となる適度な割合で組み合わせて用いることができる。特に、原料石炭は強粘結炭及び非微粘結炭を含むことが好ましい。
 原料石炭における強粘結炭の割合の下限としては、20質量%が好ましく、30質量%がより好ましい。また、原料石炭における強粘結炭の割合の上限としては、より安価に高品質のコークスを製造する観点から、50質量%が好ましく、40質量%がより好ましい。強粘結炭の割合が上記下限未満の場合、得られるコークスの強度が不十分となるおそれがある。一方、強粘結炭の割合が上記上限を超える場合、コークスの製造コストが増大するおそれがある。
 原料石炭は、微細に粉砕された粒子状とすることが好ましい。原料石炭を粒子状とする場合、原料石炭の平均粒子径D20としては3mm以下が好ましい。平均粒子径D20が上記上限を超える場合、無灰炭との混合性や、得られるコークスの強度が不十分となるおそれがある。なお、「平均粒子径D20」とは、全粒子をJIS-Z8801-1:2006に規定される金属製網篩で目の大きな篩から順に篩分けした際に、篩の上に残った粒子の累積体積が全粒子の体積の20%になったときの篩の目の大きさを意味する。
 なお、原料石炭は、風乾等により乾燥炭としてもよいが、水分を含んだ状態のものを用いてもよい。
(無灰炭)
 無灰炭(ハイパーコール、HPC)は、石炭を改質した改質炭の一種であり、溶剤を用いて石炭から灰分と非溶解性成分とを可能な限り除去した改質炭である。しかしながら、無灰炭の流動性や膨張性を著しく損ねない範囲で、無灰炭は灰分を含んでもよい。一般に石炭は7質量%以上20質量%以下の灰分を含むが、当該高炉用コークスの製造方法に用いる無灰炭においては2%程度、場合によっては5%程度の灰分を含んでもよい。なお、「灰分」とは、JIS-M8812:2004に準拠して測定される値を意味する。
 このような無灰炭は、石炭をこの石炭と親和性の高い溶剤に混合し、灰分等の溶剤に不溶な成分を分離した抽出液を得て、この抽出液から溶剤を除去する溶剤抽出処理により得ることができる。溶剤抽出処理の具体的な方法としては、例えば特許第4045229号公報に開示された方法を用いることができる。このような溶剤抽出処理で得られる無灰炭は、実質的に灰分を含まず、溶剤に可溶で軟化溶融性を示す有機物を多く含有し、構造的には縮合芳香環が2又は3環の比較的低分子量の成分から縮合芳香環が5又は6環程度の高分子量の成分まで広い分子量分布を有する。そのため、無灰炭は、加熱下で高い流動性を示し、その原料とした石炭の品質に関わらず一般的に150℃以上300℃以下で溶融する。加えて、無灰炭は、300℃以上500℃以下程度の乾留初期過程で多量の揮発分を生成しながら膨張する。また、無灰炭は、石炭と溶剤との混合物(スラリー)の脱水を経て得られるため、水分が0.2質量%以上3質量%以下程度であり、発熱量を十分に有する。
 当該高炉用コークスの製造方法に用いる無灰炭の原料となる石炭については、特に品質を問わない。また、無灰炭は分散性を高めコークスの強度を大きくする観点から粒径の小さい粒子状であることが好ましい。無灰炭粒子の最大径の上限としては、1mmが好ましい。無灰炭粒子の最大径が上記上限を超える場合、上述した石炭粒子の連結効果が十分得られず、コークスの強度が不十分となるおそれがある。なお、無灰炭粒子の最大径とは、例えば電子顕微鏡等で撮影した無灰炭粒子の外形の最大長さ(2点間の最大距離)を意味する。
(無灰炭の配合量)
 配合炭(原料石炭と無灰炭との合計)に対する無灰炭の配合量は、上記原料石炭の空隙率指数Pv[体積%]、上記無灰炭の膨張性指数D[体積%]及び上記無灰炭の真比重ρを用いて下記式(1)で算出される基準値W[質量%]により決定する。
 W=(Pv/D)×ρ×100 ・・・(1)
 ここで、原料石炭の空隙率指数Pv、無灰炭の膨張性指数D及び無灰炭の真比重ρは、いずれも原料石炭及び無灰炭の種類や乾留条件によって決まる量であると考えられるので、予め算出しておくことが可能である。従って、当該無灰炭配合量決定方法に用いる基準値Wは乾留試験による試行錯誤を繰り返すことなく算出することができる。
 上記配合炭に対する上記無灰炭の配合量の下限としては、0.29W[質量%]が好ましく、0.31W[質量%]がより好ましく、0.45W[質量%]がさらに好ましい。また、上記配合炭に対する上記無灰炭の配合量の上限としては、1.00W[質量%]が好ましく、0.80W[質量%]がより好ましい。後述する乾留工程で無灰炭はガスを内包して膨張し、温度の上昇及び乾留の進行と共に潰れて、石炭粒子間に接着層を形成する。上記配合炭に対する上記無灰炭の配合量が上記下限未満の場合、石炭粒子間の空隙の無灰炭による充填が不足し、十分な接着力が得られないおそれがある。一方、上記配合炭に対する上記無灰炭の配合量が上記上限を超える場合、接着層が厚くなるのみで空隙の充填に寄与しない無灰炭が増加し、コークスの製造コストが増大するおそれがある。また、過剰に膨張した無灰炭が欠陥となるため、コークスの強度が低下するおそれがある。さらに、基準値Wの算出に用いる原料石炭の空隙率指数Pv、無灰炭の膨張性指数D及び無灰炭の真比重ρには測定誤差が含まれ得ることを加味すると、無灰炭の配合量を上記範囲内とすることで、石炭間の空隙を無灰炭で過不足なく充填することができ、コークスの強度を高めることができる。
 ここで基準値W[質量%]を用いて配合炭に対する無灰炭の配合量を決定できることを説明する。まず、基準値Wにおいて原料石炭の空隙率指数Pv[体積%]を無灰炭の膨張性指数D[体積%]で除した値Pv/D×100[体積%]は、原料石炭の空隙を埋めるために必要な無灰炭の体積量を表すと考えられる。無灰炭粒子は加熱した際の流動性が高く原料石炭の空隙を略均一に埋めることができることから、原料石炭の空隙を埋めるために必要な体積量の無灰炭を原料石炭に配合することで、石炭粒子間の空隙を無灰炭で効率的に充填することができると考えられる。従って、このPv/D×100に無灰炭の真比重ρを乗じたものを、無灰炭の配合量[質量%]を決定する基準値とすることができる。
(配合炭)
 原料石炭に無灰炭を配合した配合炭の最高流動度の対数(logMF)の下限としては、1.8が好ましく、2がより好ましく、2.1がさらに好ましい。一方、配合炭のlogMFの上限としては、3が好ましく、2.5がより好ましく、2.3がさらに好ましい。配合炭のlogMFが上記下限未満の場合、配合炭の流動度が不足し、得られるコークスの強度が不十分となるおそれがある。逆に、配合炭のlogMFが上記上限を超える場合、流動度が過剰となってコークス内に気泡が発生し易くなるおそれがある。なお、最高流動度MFは熱流動性の大きさを主に示し、配合炭のlogMFは、原料石炭に含まれる全石炭及び無灰炭のlogMFを加重平均した値を意味する。
 配合炭の平均最大反射率Roの下限としては、0.95が好ましく、1がより好ましい。一方、配合炭の平均最大反射率Roの上限としては、1.3が好ましく、1.2がより好ましい。配合炭の平均最大反射率Roが上記下限未満の場合、配合炭の石炭化度の低さに起因して原料石炭又は無灰炭の膨張及び融着が不十分となり、得られるコークスの強度が不十分となるおそれがある。逆に、配合炭の平均最大反射率Roが上記上限を超える場合、膨張率が高くなり過ぎ炉体に影響を与えるおそれがある。なお、平均最大反射率Roは石炭化度を主に示し、配合炭のRoは、原料石炭に含まれる全石炭及び無灰炭のRoを加重平均した値を意味する。
 原料石炭への無灰炭の配合方法は、特に限定されず、例えば公知のミキサーに原料石炭及び無灰炭をそれぞれホッパーから投入して、常法で粉砕しながら攪拌する方法を用いることができる。この方法を用いることで、無灰炭が凝集した二次粒子を粉砕すると共に、原料石炭を粒子状に粉砕することができる。また、予め粉砕した原料石炭及び無灰炭を混合してもよい。
 また、原料石炭に無灰炭以外の粘結剤を添加してもよいが、当該コークスの製造方法では上述のように無灰炭によって石炭粒子が連結されるため、粘結剤を入れる必要性がない。そのため、コスト低減の観点から配合炭が無灰炭以外の粘結剤を含まないことが好ましい。
<乾留工程>
 乾留工程において、上記配合炭をコークス炉に装入し乾留することでコークスを得る。このコークス炉としては例えば1門あたり30ton程度を装入可能な炉体を有するものを用いることができる。
 配合炭のコークス炉への装入時の充填嵩密度dの下限としては、720kg/m が好ましく、730kg/m がより好ましい。また、上記充填嵩密度dの上限としては、850kg/m が好ましく、800kg/m がより好ましい。上記充填嵩密度dが上記下限未満の場合、コークスの強度が不十分となるおそれがある。一方、上記充填嵩密度dが上記上限を超える場合、炉体に加わる圧力が高くなり炉体を損傷するおそれや、配合炭の充填密度を向上させる作業によりコークスの製造コストが上昇するおそれがある。
 配合炭の乾留温度の下限としては、950℃が好ましく、1000℃がより好ましい。また、乾留温度の上限としては、1200℃が好ましく、1050℃がより好ましい。乾留温度が上記下限未満の場合、石炭の溶融が不十分となりコークスの強度が低下するおそれがある。一方、乾留温度が上記上限を超える場合、炉体の耐熱性や燃料消費の観点から製造コストが上昇するおそれがある。
 配合炭の乾留時間の下限としては、8時間が好ましく、10時間がより好ましい。また、乾留時間の上限としては、24時間が好ましく、20時間がより好ましい。乾留時間が上記下限未満の場合、石炭の溶融が不十分となりコークスの強度が低下するおそれがある。一方、乾留時間が上記上限を超える場合、燃料消費の観点から製造コストが上昇するおそれがある。
<利点>
 当該無灰炭配合量決定方法は、原料石炭の空隙量、無灰炭の膨張性及び無灰炭の真比重を予め計測することで、高炉用コークスの製造の際の無灰炭の好適な配合量を算出することができる。このため、当該無灰炭配合量決定方法は、乾留試験による試行錯誤を繰り返すことなく効率的に配合炭に対する無灰炭の配合量を決定することができる。その結果、当該無灰炭配合量決定方法を用いることで、高強度コークスを容易かつ確実に生成することができる。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 ハイパーコール連続製造設備(Bench Scale Unit)を用い、以下の方法により無灰炭を製造した。まず、オーストラリア産瀝青炭を無灰炭の原料石炭(すなわち、無灰炭を得るための石炭)とし、この原料石炭(すなわち、無灰炭を得るための石炭)5kg(乾燥炭換算質量)と、溶剤としての4倍量(20kg)の1-メチルナフタレン(新日鉄住金化学社製)とを混合して、スラリーを調製した。このスラリーを内容積30Lのバッチ式オートクレーブ中に入れ窒素を導入して1.2MPaに加圧し、370℃で1時間加熱した。このスラリーを上述の温度及び圧力を維持した重力沈降槽内で上澄液と固形分濃縮液とに分離し、上澄液から蒸留法で溶剤を分離及び回収して、2.7kgの無灰炭Xを得た。得られた無灰炭Xの灰分及び膨張性指数Dは、表1に示す通りであった。この無灰炭Xをその全て(100質量%)が最大径3mm以下になるように粉砕した。
 重力沈降時間を変えた以外は、上述の無灰炭Xを得た方法と同様にして3.2kgの無灰炭Yを得た。また、上記無灰炭X及び無灰炭Yを得た際の重力沈降時間とは異なる重力沈降時間とした以外は、上述の無灰炭Xを得た方法と同様にして4.5kgの無灰炭Zを得た。得られた無灰炭Y、Zの灰分及び膨張性指数Dは、表1に示す通りであった。この無灰炭Y、Zをその全て(100質量%)が最大径3mm以下になるように粉砕した。
Figure JPOXMLDOC01-appb-T000001
<実施例1~5>
 上述のように製造した無灰炭のうち無灰炭Xを用いて、以下の手順で実施例1~5の高炉用コークスを製造した。
(配合工程)
 原料石炭として表2に示す特性の各種原料石炭A~Eをそれぞれ水分7.5質量%に調整し、乾燥炭基準で表2に示す混合比条件1の配合にて混合した。このとき、原料石炭はその全て(100質量%)が最大径3mm以下になるように粉砕したものを用いた。なお、表2に示す原料石炭及び無灰炭の最高流動度MF[dppm]は、JIS-M8801:2004に準拠しギーセラープラストメータ法にて測定した。また、平均最大反射率Ro[%]は、JIS-M8816:1992に準拠して測定し、膨張率[体積%]は、JIS-M8801:2004に準拠して測定した。
 この原料石炭の充填嵩密度を740kg/m としたときのこの原料石炭の無灰炭Xに対する基準値Wは、10.2質量%であった。ここで原料石炭及び無灰炭の真比重は1.3とした。この基準値Wを元に配合炭に対する無灰炭の配合量V[質量%]を表3のように決定し、原料石炭と無灰炭Xとを混合し配合炭を得た。
(乾留工程)
 上記配合炭を鋼製のレトルトに並べて入れて、このレトルトに振動を与え充填嵩密度を740kg/m に調整した後、両面加熱式電気炉に入れ、窒素気流中で乾留した。乾留条件は、3℃/分で昇温した後、1000℃で20分間加熱するものとした。乾留後、レトルトを電気炉から取り出して自然放冷し、高炉用コークスを得た。
<実施例6~8>
 用いた無灰炭を表1の無灰炭Yとした以外は実施例1~5と同様の手順で表3に示す配合量で原料石炭と無灰炭Yとを配合し、この配合炭を乾留することで実施例6~8の高炉用コークスを得た。上記原料石炭の無灰炭Yに対する基準値Wは、17.5質量%であった。
<実施例9、10>
 用いた無灰炭を表1の無灰炭Zとした以外は実施例1~5と同様の手順で表3に示す配合量で原料石炭と無灰炭Zとを配合し、この配合炭を乾留することで実施例9、10の高炉用コークスを得た。上記原料石炭の無灰炭Zに対する基準値Wは、32.9質量%であった。
<比較例1>
 原料石炭として表2に示す特性の各種原料石炭A~Eをそれぞれ水分7.5質量%に調整し、乾燥炭基準で表2に示す混合比条件2の配合にて混合し、原料石炭を準備した。このとき、原料石炭はその全て(100質量%)が最大径3mm以下になるように粉砕したものを用いた。次に、無灰炭を混合せず、この原料石炭のみを実施例1~5と同様の条件で乾留することで比較例1の高炉用コークスを得た。
<比較例2>
 実施例1~5と同様の原料石炭に無灰炭を混合せず、原料石炭のみを実施例1~5と同様の条件で乾留することで比較例2の高炉用コークスを得た。
Figure JPOXMLDOC01-appb-T000002
<評価>
 上記実施例1~10及び比較例1、2の高炉用コークスについて、ドラム強度指数DIを測定した。具体的には、JIS-K2151:2004に準拠し、高炉用コークスをドラムで150回転させた後にJIS-Z8801-2:2000に規定される目開き15mmの金属板篩で選別し、篩上に残存した高炉用コークスの質量比(DI150 15 )を求めた。また、この強度について以下の基準で判定を行った。
 A:DI>84.5%で、強度が極めて優れる。
 B:DI>83.3%で、強度が優れる。
 C:DI≦83.3%で、強度が劣る。
 さらに、上記実施例1~10及び比較例1、2の高炉用コークスの製造コストについて、以下の基準で判定を行った。
 A:非微粘結炭Eの配合量が10%以上あり、製造コストが低い。
 B:非微粘結炭Eの配合量が10%未満であり、製造コストが高い。
これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、基準値Wを用いて配合炭に対する無灰炭の配合量を決定した実施例1~10は、無灰炭が配合されておらず基準値Wを用いていない比較例2より無配炭の種類によらずコークスの強度が高められており、非微粘結炭Eの配合量が少ない比較例1よりも製造コストが低い。従って、当該高炉用コークスの製造方法は、当該無灰炭配合量決定方法を用いることで製造コストを低減しつつ高強度コークスを容易かつ確実に生成できることが分かる。
 また、表3から、基準値Wを用いて配合炭に対する無灰炭の配合量を0.29W[質量%]以上1.00W[質量%]以下とした実施例1~4、実施例6~7、実施例8~10は、無灰炭を配合しない比較例2、無灰炭の配合量が1.00W[質量%]を超える実施例5に比較して得られたコークスの強度が高い。このことから、上記無灰炭の配合量としては、0.29W[質量%]以上1.00W[質量%]以下が好ましいことが分かる。
 特に無灰炭の配合量が0.31W[質量%]以上0.80W[質量%]以下である実施例1~3、実施例7、実施例8及び実施例10は、同じ無配炭を用いた他の実施例よりもコークスの強度が高く、非微粘結炭の配合量が少ない比較例1と同等の強度を持つ。このことから、無灰炭の配合量を上記範囲内とすることで、さらにコークスの強度が高められることが分かる。
 本発明は、以下の態様を含む。
態様1:
 石炭の溶剤抽出処理により得られる無灰炭と原料石炭とを含む高炉用コークスの製造の際の無灰炭配合量決定方法であって、
 上記原料石炭の空隙率指数Pv[体積%]、上記無灰炭の膨張性指数D[体積%]及び上記無灰炭の真比重ρを用いて下記式(1)で算出される基準値W[質量%]により、上記配合炭に対する上記無灰炭の配合量を決定することを特徴とする無灰炭配合量決定方法。
 W=(Pv/D)×ρ×100 ・・・(1)

態様2:
 上記配合炭に対する上記無灰炭の配合量を0.29W[質量%]以上1.00W[質量%]以下とする態様1に記載の無灰炭配合量決定方法。

態様3:
 石炭の溶剤抽出処理により得られる無灰炭を原料石炭に配合する工程、及び
 上記配合炭を乾留する工程
 を備える高炉用コークスの製造方法であって、
 上記配合工程において、態様1又は態様2に記載の無灰炭配合量決定方法を用いて、上記配合炭に対する上記無灰炭の配合量を決定することを特徴とする高炉用コークスの製造方法。
 本出願は、出願日が2014年10月7日である日本国特許出願、特願第2014-206767号を基礎出願とする優先権主張と伴う。特願第2014-206767号は参照することにより本明細書に取り込まれる。
 以上説明したように、本発明の無灰炭配合量決定方法は高炉用コークスの製造の際の無灰炭の配合量を効率よく決定できるので、この無灰炭配合量決定方法を用いた高炉用コークスの製法は、製造コストを低減しつつ高強度コークスを容易かつ確実に製造できる。
1  強粘結炭粒子
1a 連続相
2 非微粘結炭粒子
2a 変質成分
4 無灰炭粒子
4a 連続相
10 炉体
A 気泡
B 粗大欠陥

Claims (3)

  1.  石炭の溶剤抽出処理により得られる無灰炭と原料石炭とを含む高炉用コークスの製造の際の無灰炭配合量決定方法であって、
     上記原料石炭の空隙率指数Pv[体積%]、上記無灰炭の膨張性指数D[体積%]及び上記無灰炭の真比重ρを用いて下記式(1)で算出される基準値W[質量%]により、上記配合炭に対する上記無灰炭の配合量を決定することを特徴とする無灰炭配合量決定方法。
     W=(Pv/D)×ρ×100 ・・・(1)
  2.  上記配合炭に対する上記無灰炭の配合量を0.29W[質量%]以上1.00W[質量%]以下とする請求項1に記載の無灰炭配合量決定方法。
  3.  石炭の溶剤抽出処理により得られる無灰炭を原料石炭に配合する工程、及び
     上記配合炭を乾留する工程
     を備える高炉用コークスの製造方法であって、
     上記配合工程において、請求項1に記載の無灰炭配合量決定方法を用いて、上記配合炭に対する上記無灰炭の配合量を決定することを特徴とする高炉用コークスの製造方法。
PCT/JP2015/074939 2014-10-07 2015-09-02 無灰炭配合量決定方法及び高炉用コークスの製造方法 WO2016056331A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580052420.7A CN106715652B (zh) 2014-10-07 2015-09-02 无灰煤调合量的决定方法和高炉用焦炭的制造方法
KR1020177008854A KR101887320B1 (ko) 2014-10-07 2015-09-02 무회탄 배합량 결정 방법 및 고로용 코크스의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014206767A JP6189811B2 (ja) 2014-10-07 2014-10-07 無灰炭配合量決定方法及び高炉用コークスの製造方法
JP2014-206767 2014-10-07

Publications (1)

Publication Number Publication Date
WO2016056331A1 true WO2016056331A1 (ja) 2016-04-14

Family

ID=55652954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074939 WO2016056331A1 (ja) 2014-10-07 2015-09-02 無灰炭配合量決定方法及び高炉用コークスの製造方法

Country Status (4)

Country Link
JP (1) JP6189811B2 (ja)
KR (1) KR101887320B1 (ja)
CN (1) CN106715652B (ja)
WO (1) WO2016056331A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174592A (ja) * 2007-01-16 2008-07-31 Kobe Steel Ltd コークスの製造方法、及び銑鉄の製造方法
JP2014015502A (ja) * 2012-07-06 2014-01-30 Kobe Steel Ltd コークスおよびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5280072B2 (ja) * 2008-03-10 2013-09-04 株式会社神戸製鋼所 コークスの製造方法
JP5438277B2 (ja) * 2008-03-11 2014-03-12 株式会社神戸製鋼所 コークスの製造方法、および銑鉄の製造方法
JP5402369B2 (ja) * 2009-02-16 2014-01-29 新日鐵住金株式会社 石炭配合方法
WO2010103828A1 (ja) 2009-03-10 2010-09-16 新日本製鐵株式会社 石炭の膨張率の測定方法、石炭の比容積の推定方法、空隙充填度の測定方法及び石炭配合方法
JP4660608B2 (ja) * 2009-06-22 2011-03-30 株式会社神戸製鋼所 炭素材料の製造方法
JP2011157606A (ja) * 2010-02-02 2011-08-18 Kobe Steel Ltd 炭素陽極の製造方法
CN101885976B (zh) * 2010-07-02 2013-07-24 神华集团有限责任公司 从煤直接液化残渣中提取重质液化油和中间相沥青类物质的方法以及其应用
CN102260511A (zh) * 2011-06-30 2011-11-30 首钢总公司 一种褐煤提取炼焦原料的生产方法
JP2014043583A (ja) 2013-11-06 2014-03-13 Kobe Steel Ltd コークス製造用原料炭の製造方法、コークスの製造方法、および銑鉄の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174592A (ja) * 2007-01-16 2008-07-31 Kobe Steel Ltd コークスの製造方法、及び銑鉄の製造方法
JP2014015502A (ja) * 2012-07-06 2014-01-30 Kobe Steel Ltd コークスおよびその製造方法

Also Published As

Publication number Publication date
JP2016074836A (ja) 2016-05-12
KR101887320B1 (ko) 2018-09-06
CN106715652A (zh) 2017-05-24
KR20170048512A (ko) 2017-05-08
CN106715652B (zh) 2019-06-14
JP6189811B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
WO2014007184A1 (ja) コークスおよびその製造方法
JP6265015B2 (ja) コークス製造方法
JP6227482B2 (ja) 高炉用コークスの製造方法及び高炉用コークス
JP6694161B2 (ja) 冶金用コークスの製造方法
JP6241336B2 (ja) 高炉用コークスの製造方法
KR101767800B1 (ko) 야금용 코크스의 제조 방법
JP5888539B2 (ja) 冶金用コークスの製造方法
JP6065510B2 (ja) 高炉用コークス原料の配合方法
JP6189811B2 (ja) 無灰炭配合量決定方法及び高炉用コークスの製造方法
JP6075354B2 (ja) コークスの製造方法
JP5011833B2 (ja) コークス製造方法
JP5163247B2 (ja) コークスの製造方法
JP6464912B2 (ja) コークスの製造方法
JP6241337B2 (ja) 高炉用コークスの製造方法
JP5833473B2 (ja) コークス製造用原料の作製方法および該作製方法により作製されたコークス製造用原料
JP2008120973A (ja) 高炉用コークスの製造方法
JP4917300B2 (ja) 製鉄用コークスの製造方法および製鉄用コークスの原料
JP2010144096A (ja) フェロコークスの製造方法
JP2004131739A (ja) コークスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177008854

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848225

Country of ref document: EP

Kind code of ref document: A1