WO2016052750A1 - 熱疲労特性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品 - Google Patents

熱疲労特性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品 Download PDF

Info

Publication number
WO2016052750A1
WO2016052750A1 PCT/JP2015/078228 JP2015078228W WO2016052750A1 WO 2016052750 A1 WO2016052750 A1 WO 2016052750A1 JP 2015078228 W JP2015078228 W JP 2015078228W WO 2016052750 A1 WO2016052750 A1 WO 2016052750A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast steel
resistant cast
heat
exhaust system
thermal fatigue
Prior art date
Application number
PCT/JP2015/078228
Other languages
English (en)
French (fr)
Inventor
浩文 木村
友徳 波戸
進 桂木
淳二 早川
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2016552192A priority Critical patent/JP6481692B2/ja
Priority to US15/515,651 priority patent/US10815555B2/en
Priority to KR1020177009956A priority patent/KR102453685B1/ko
Priority to CA2963369A priority patent/CA2963369C/en
Priority to CN201580052132.1A priority patent/CN107075633B/zh
Priority to EP15846497.4A priority patent/EP3202939B1/en
Priority to MX2017004302A priority patent/MX2017004302A/es
Priority to BR112017006063-9A priority patent/BR112017006063B1/pt
Publication of WO2016052750A1 publication Critical patent/WO2016052750A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust system part for automobiles, and more particularly to an austenitic heat-resistant cast steel excellent in thermal fatigue characteristics suitable for a turbine housing and the like, and an exhaust system part comprising the same.
  • exhaust system parts such as turbine housings and exhaust manifolds used in automobiles are manufactured by castings with a high degree of freedom due to their complicated shapes, and the use conditions are severe at high temperatures.
  • Heat-resistant cast iron such as spheroidal graphite cast iron and Ni-resist cast iron (Ni-Cr austenitic cast iron), ferritic heat-resistant cast steel, austenitic heat-resistant cast steel and the like are used.
  • the surface temperature of the exhaust system component is 900 ° C. or higher, ferritic heat-resistant cast steel or austenitic heat-resistant cast steel is used as the material of the exhaust system component.
  • ferritic heat-resistant cast steel usually has a problem that it is inferior in high-temperature strength at 900 ° C. or higher, it is difficult to adopt in a temperature range exceeding 950 ° C.
  • Austenitic heat-resistant cast steel is a material that can withstand higher temperatures than ferritic heat-resistant cast steel.
  • WO 2005/103314 is based on weight: C: 0.2 to 1.0%, Si: 3% or less, Mn: 2% or less, Cr: 15 to 30%, Ni: 6 to 30%, W and / or Mo: Contains 0.5-6% (as W + 2Mo), Nb: 0.5-5%, Al: 0.23% or less, N: 0.01-0.5%, S: 0.5% or less, and O: 0.07% or less, with the balance being substantially Fe And we have proposed high Cr high Ni austenitic heat-resistant cast steel consisting of inevitable impurities.
  • This austenitic heat-resistant cast steel has high high-temperature proof stress, oxidation resistance, and room temperature elongation, and is particularly excellent in thermal fatigue characteristics when exposed to high-temperature exhaust gas of 1000 ° C or higher. Suitable for parts and the like.
  • the exhaust system parts are required to cope with severe use conditions in addition to the temperature rise and oxidation caused by the gas discharged from the engine.
  • the catalyst is heated and activated early when the engine is started, or the exhaust gas is removed from the catalyst or filter. It is necessary to improve the purification performance by supplying evenly throughout.
  • the exhaust system parts In order to activate the catalyst early, it is necessary to reduce the temperature drop of the exhaust gas passing through the exhaust system parts, that is, to prevent the exhaust gas from being deprived of heat as much as possible. Therefore, in order to reduce the heat mass (heat capacity) of the exhaust passage, the exhaust system parts are required to be thin. However, as the exhaust system parts become thinner, the temperature rise due to the exhaust gas increases.
  • the amount of intake gas increases due to turbocharging, etc.
  • An increase in the amount of exhaust gas results in an increase in the heat flow applied to the exhaust system parts, which increases the temperature rise (temperature increase rate) per unit time of the exhaust system parts.
  • the exhaust system part has a complicated shape including a thin part and a thick part and includes a part where the exhaust gas contacts and a part where it does not contact, a temperature difference occurs in the exhaust system part through which the exhaust gas passes.
  • a thermal stress is generated in a metal member due to a temperature difference, that is, a temperature gradient, the tendency of cracks and cracks increases.
  • automotive exhaust system parts must cope with temperature rise and oxidation due to exhaust gas, temperature rise due to thinning and heat mass reduction, and temperature gradient expansion due to increased heat flow.
  • exhaust system parts may be exposed to exhaust gas at a high temperature of 950 to 1100 ° C, but when exposed to such high temperature exhaust gas, the exhaust system part itself is 900 to 1050 ° C and around 1000 ° C. To rise.
  • the exhaust system parts must have excellent heat resistance and durability in such a high temperature range.
  • the materials constituting the exhaust system parts are required to have excellent thermal fatigue characteristics, oxidation resistance, high temperature strength, ductility (elongation), and the like.
  • the austenitic heat-resistant cast steel of WO 2005/103314 is assumed to be used for exhaust system parts exposed to exhaust gas of 1000 ° C or higher, but is used for exhaust system parts exposed to the above severe conditions Is not sufficient, and there is room for improvement in thermal fatigue properties.
  • an object of the present invention is to provide an austenitic heat-resistant cast steel excellent in thermal fatigue characteristics near 1000 ° C. and an exhaust system component such as a turbine housing made of the austenitic heat-resistant cast steel.
  • the present inventors set the content of main alloy elements such as C, Cr, Ni and Nb within an appropriate range. By limiting, it was discovered that an austenitic heat-resistant cast steel with greatly improved thermal fatigue characteristics was obtained, and the present invention was conceived.
  • the austenitic heat-resistant cast steel of the present invention preferably further contains 0.005 to 0.5% by mass of Zr.
  • the number of Zr nitride particles having an equivalent circle diameter of 1.5 ⁇ m or more in the structure is preferably 20 to 150 per field area 0.25 mm 2 .
  • the austenitic heat-resistant cast steel of the present invention is measured by a high-temperature low-cycle fatigue test in which strain is added and subtracted by tension and compression at a test temperature of 900 ° C, a strain amplitude of 0.5%, a strain rate of 0.1% / second, and a compression holding time of 1 minute.
  • the fatigue life is preferably 1500 cycles or more.
  • the exhaust system part of the present invention is characterized by comprising austenitic heat-resistant cast steel having excellent thermal fatigue characteristics.
  • the exhaust system parts include a turbine housing, an exhaust manifold, a turbine housing integrated exhaust manifold, a catalyst case, a catalyst case integrated exhaust manifold, and an exhaust outlet.
  • the austenitic heat-resistant cast steel of the present invention has excellent heat resistance and durability, and has high thermal fatigue characteristics near 1000 ° C, so exhaust system parts such as turbine housings are severe at high temperatures near 1000 ° C. It can be used under conditions.
  • FIG. 2 is an electron micrograph of a test piece of Example 35.
  • Austenitic heat-resistant cast steel The structure of the austenitic heat-resistant cast steel of the present invention will be described in detail below. In addition, unless otherwise indicated, content of each element which comprises heat-resistant cast steel is shown by the mass%.
  • C improves the fluidity of the molten metal, that is, the castability, strengthens some of the matrix by solid solution strengthening, and forms carbides to improve the high temperature strength. In order to effectively exhibit such actions, the C content needs to be 0.3% or more. However, if C exceeds 0.6%, the amount of carbide increases, and the thermal fatigue characteristics and machinability of the heat-resistant cast steel deteriorate, and the ductility decreases. Therefore, the C content is set to 0.3 to 0.6%.
  • the lower limit of the C content is preferably 0.35%, more preferably 0.4%. Further, the upper limit of the C content is preferably 0.55%, more preferably 0.5%.
  • Si 0.5-3%
  • Si is an element effective for improving oxidation resistance and improving thermal fatigue characteristics resulting from this.
  • the Si content needs to be 0.5% or more.
  • excessive Si destabilizes the austenite structure, deteriorates the castability of the heat-resistant cast steel, and further deteriorates the machinability by hardening. Therefore, the Si content is 3% or less. Therefore, the Si content is 0.5 to 3%.
  • the lower limit of the Si content is preferably 0.8%, more preferably 1%.
  • the upper limit of the Si content is preferably 2%, more preferably 1.6%.
  • S In order to obtain this effect, S must be 0.01% or more.
  • the S content is set to 0.01 to 0.5%.
  • the lower limit of the S content is preferably 0.05%, more preferably 0.1%.
  • the upper limit of the S content is preferably 0.3%, more preferably 0.2%.
  • Mn manganese
  • MnS manganese
  • the Mn content needs to be 0.5% or more.
  • the Mn content is 2% or less.
  • the Mn content is set to 0.5 to 2%.
  • the lower limit of the Mn content is preferably 0.7%, and the upper limit of the Mn content is preferably 1.3%.
  • Cr 15-30% Cr is an element effective for enhancing the heat resistance (high-temperature strength and oxidation resistance) of heat-resistant cast steel by austenitizing the structure of heat-resistant cast steel together with Ni described later.
  • Cr needs to be 15% or more in order to exert the effect of heat resistance in a high temperature range around 1000 ° C.
  • Cr is an element that crystallizes Cr carbide mainly composed of Cr 23 C 6 and Cr 7 C 3 . Since Cr carbide is misfit with an austenite base in terms of crystal structure, the eutectic interface between Cr carbide and austenite is fragile and becomes a crack propagation path.
  • the Cr content exceeds 30%, the crystallization of Cr carbide increases, and the tendency for the propagation of cracks to increase is increased, and the thermal fatigue properties and ductility of the heat-resistant cast steel are significantly reduced.
  • the Cr content is 15-30%.
  • the lower limit of the Cr content is preferably 20%, more preferably 24%.
  • the upper limit of the Cr content is preferably 28%, more preferably 26%.
  • Ni is an austenite-forming element that stabilizes the austenite structure of heat-resistant cast steel, improves the high-temperature strength and oxidation resistance of heat-resistant cast steel together with Cr, and improves the castability of thin-walled and complex-shaped exhaust system parts.
  • the Ni content needs to be 6% or more.
  • the solid solubility limit of C in the base decreases as the amount of Ni dissolved in the base increases, resulting in excessive crystallization of Cr carbide and heat resistance. Reduces thermal fatigue properties of cast steel.
  • the Ni content is 6-30%.
  • the lower limit of the Ni content is preferably 10%, more preferably 11%.
  • the upper limit of the Ni content is preferably 25%, more preferably 22%.
  • Nb (Niobium): 0.6-5% Nb combines with C preferentially over Cr to form fine Nb carbides. This suppresses the crystallization of Cr carbide and indirectly improves the high-temperature strength and thermal fatigue characteristics of the heat-resistant cast steel. Furthermore, since Nb forms a eutectic carbide of austenite and Nb carbide, it improves the castability, which is important when producing a thin, complex-shaped casting such as an exhaust system part. For this purpose, Nb needs to be 0.6% or more.
  • the Nb content is 0.6 to 5%.
  • the lower limit of the Nb content is preferably 0.8%.
  • the upper limit of the Nb content is preferably 3%, more preferably 2.2%.
  • N nitrogen
  • N is a strong austenite-forming element that stabilizes the austenite base of heat-resistant cast steel and improves high-temperature strength.
  • N is also an element effective for refining crystal grains of a cast product having a complicated shape that cannot be forged or rolled for crystal grain refining. By containing N, the crystal grains are refined, thereby improving the ductility and machinability of the heat-resistant cast steel. Further, since N slows the diffusion rate of C, it delays agglomeration of precipitated carbides to suppress coarsening of the carbides, thereby effectively preventing embrittlement. In order to obtain such an effect, the N content needs to be 0.01% or more.
  • N is set to 0.01 to 0.5%.
  • the lower limit of the N content is preferably 0.05%, more preferably 0.06%.
  • the upper limit of the N content is preferably 0.4%, more preferably 0.2%.
  • C / N 4-7 Optimization of the C / N content ratio (C / N) is a means of controlling the crystallization of carbonitrides.
  • Both the interstitial elements C and N are dissolved in the base to stabilize the austenite base and improve the high temperature strength.
  • C and N are fixed by dissolving in the matrix, carbonitrides that combine with these and crystallize at the grain boundaries at the end of solidification are reduced, thereby suppressing deterioration in thermal fatigue characteristics.
  • plate-like or network-like Cr carbides mainly composed of Cr 23 C 6 and Cr 7 C 3 crystallize at the grain boundaries, and the thermal fatigue characteristics are remarkably deteriorated.
  • C / N If C is relatively small with respect to N (C / N is small), the solid solution of N in the base increases and the solid solubility limit of C is lowered, so the crystallization of Cr carbide increases. Reduces thermal fatigue properties. In order to obtain good thermal fatigue properties, C / N needs to be 4 or more. On the other hand, if C is relatively large relative to N (C / N is large), the solid solution of C in the base increases and the solid solubility limit of N is lowered. Since N has a higher effect of stabilizing the austenite base than C, the high temperature strength is reduced when solid solution of N is suppressed. In order to obtain good high-temperature strength, C / N needs to be 7 or less. From the above, C / N is 4-7. C / N is preferably 5-6.
  • a / B 0.6-1.7
  • the ratio A / B of Cr carbide formation index A and Nb carbide formation index B represented by the following formulas (1) and (2) is 0.6 to 1.7. It is preferable to satisfy.
  • A 8.5C-Nb + 0.05Cr + 0.65Ni-5 (1)
  • B 7.8Nb ... (2) [However, the element symbol in each formula indicates the content (mass%). ]
  • the Cr carbide formation index A which indicates the tendency of Cr carbide to crystallize, increases as the content of C, Cr and Ni increases (the crystallization of Cr carbide increases), and the content of Nb increases. The larger the number, the smaller (Cr carbide crystallization decreases).
  • the Nb carbide formation index B indicating the crystallization tendency of Nb carbide increases in proportion to the Nb content (the crystallization of Nb carbide increases).
  • a / B is preferably 0.6 to 1.7, more preferably 0.7 to 1.3, and most preferably 0.8 to 1.2.
  • the Nb content is desirably 0.6 to 1%, and when the Ni content is about 13%, the Nb content is desirably 0.75 to 1.2%.
  • the Nb content is preferably 1.3-2%.
  • the austenitic heat-resistant cast steel of the present invention has a structure in which Cr carbide particles, Nb carbide particles, sulfide particles such as MnS, and Zr nitride particles are dispersed in a base made of austenite whose crystal grains are refined due to the inclusion of Zr. Have. In particular, when there are 20 to 150 Zr nitride particles having an equivalent circle diameter of 1.5 ⁇ m or more per 0.25 mm 2 viewing area, the base of the heat-resistant cast steel is strengthened and the thermal fatigue characteristics of the heat-resistant cast steel are improved.
  • Oxides, nitrides, and carbides such as ZrO 2 , ZrN, and ZrC that are generated by the inclusion of Zr are dispersed in the base of the heat-resistant cast steel and become a nucleus of formation of sulfides such as Nb carbide and MnS. Therefore, Nb carbide and MnS Such sulfides are finely dispersed.
  • Cr carbides crystallized at the end of solidification are not produced nuclei such as ZrO 2 , ZrN, ZrC, etc., but indirectly due to fine dispersion of Nb carbides crystallized in the early stage of solidification and refinement of austenite crystal grains. Presumed to be finely dispersed.
  • Nb carbide particles are produced in a large amount due to the eutectic carbide of Nb carbide and austenite densely in a colony or lamellar shape.
  • Nb carbides having a strong oxidation tendency are densely crystallized, the Nb carbide particles are too close to each other, and oxidation is likely to proceed.
  • the oxidation resistance of the heat-resistant cast steel of the heat-resistant cast steel is lowered, and the thermal fatigue characteristics are also lowered.
  • the Nb carbide becomes a lump and is finely dispersed. As a result, the distance between the Nb carbide particles is increased, the oxidation tendency is reduced, and the thermal fatigue characteristics of the heat-resistant cast steel are improved.
  • Zr combines with N not only to produce ZrN which functions as a nucleation of sulfides such as Nb carbide and MnS, but also crystallizes single finely dispersed Zr nitride separately from the nuclei. To strengthen. As a result, the thermal fatigue characteristics of the heat-resistant cast steel are improved.
  • Zr is preferably 0.005% or more.
  • the content is made 0.005 to 0.5%.
  • the lower limit of the Zr content is preferably 0.01%, more preferably 0.03%, and most preferably 0.04%.
  • the upper limit of the Zr content is preferably 0.3%, more preferably 0.2%, and most preferably 0.1%.
  • the inevitable impurities contained in the austenitic heat-resistant cast steel of the present invention are mainly P, Al, W and Mo mixed from raw materials and / or deoxidizers.
  • P is preferably as small as possible because it segregates at the grain boundaries and significantly reduces the toughness, and is preferably 0.06% or less.
  • Al produces inclusions such as slag and noro made of Al 2 O 3 to promote casting defects and worsen the casting yield, and hard and brittle AlN to reduce ductility and machinability. Therefore, the smaller the amount of Al, the better, and 0.05% or less is desirable.
  • W and Mo produce carbides and reduce ductility.
  • W and Mo are dissolved in the base to reduce the amount of Cr dissolved in the base, thereby reducing the oxidation resistance of the base and promoting the crystallization of Cr carbide to improve the thermal fatigue characteristics. Since it deteriorates, the smaller the amount, the better.
  • W and Mo are each preferably 0.5% or less, and more preferably 0.5% or less in total.
  • the austenitic heat-resistant cast steel of the present invention preferably contains 20 to 150 Zr nitride particles having an equivalent circle diameter of 1.5 ⁇ m or more per visual field area of 0.25 mm 2 by containing Zr. If there are 20 or more Zr nitride particles with an equivalent circle diameter of 1.5 ⁇ m or more per viewing area of 0.25 mm 2 , the base is strengthened and the thermal fatigue characteristics of the heat-resistant cast steel are improved. In addition, since the effect of improving thermal fatigue properties is not large with Zr nitride particles having an equivalent circle diameter of less than 1.5 ⁇ m, the number of Zr nitride particles having an equivalent circle diameter of 1.5 ⁇ m or more is defined in the present invention.
  • the number of Zr nitride particles having an equivalent circle diameter of 1.5 ⁇ m or more per field area 0.25 mm 2 is more preferably 30 to 100.
  • the finer the Zr nitride particles the better.
  • the size of the Zr nitride particles is preferably 1.5 to 10 ⁇ m, more preferably 1.5 to 5 ⁇ m, and most preferably 1.5 to 3 ⁇ m in terms of the average equivalent circle diameter.
  • Thermal fatigue characteristics Exhaust system parts are required to have a long thermal fatigue life against repeated engine operation (heating) and shutdown (cooling).
  • the thermal fatigue life is one of the indices indicating superiority or inferiority of thermal fatigue characteristics. As the number of cycles until thermal fatigue failure is increased due to cracks and deformation caused by repeated heating and cooling in the thermal fatigue test, the thermal fatigue life is longer and the thermal fatigue characteristics are superior.
  • Thermal fatigue tests for evaluating thermal fatigue life include: (a) By constraining materials and repeatedly applying temperature amplitudes due to heating and cooling, mechanical expansion and contraction due to heating and cooling is mechanically constrained to cause thermal fatigue failure.
  • TMF evaluates the thermal fatigue life due to heating and cooling, and can be said to be a test close to an actual engine, for example, a cooling lower limit temperature of 150 ° C, a heating upper limit temperature of 1000 ° C and a temperature amplitude of 850 ° C, a heating time of 2 minutes, Because the test repeats the heating / cooling cycle with a holding time of 1 minute and a cooling time of 4 minutes for a total of 7 minutes, the time required for the test is enormous. Since necking occurs, the thermal fatigue life may not be evaluated accurately.
  • LCF is a test that repeats a tensile / compression cycle with a total of 1 minute and 10 seconds (70 seconds) with a strain addition of 10 seconds and a compression hold of 1 minute, so the test time is short and the test temperature is constant. Therefore, there is no necking due to material expansion / contraction, so thermal fatigue life can be evaluated with higher accuracy than TMF. Therefore, thermal fatigue tests of both TMF and LCF were conducted, and thermal fatigue characteristics of heat-resistant cast steel were evaluated by LCF. TMF was used as a reference.
  • the austenitic heat-resistant cast steel of the present invention is a high temperature low cycle fatigue test (LCF) that adds and removes strain by tension and compression at a test temperature of 900 ° C, a strain amplitude of 0.5%, a strain rate of 0.1% / second, and a compression holding time of 1 minute.
  • the fatigue life measured by (1) is preferably 1500 cycles or more. If the thermal fatigue life by LCF is 1500 cycles or more, it can be said that the austenitic heat-resistant cast steel has excellent thermal fatigue characteristics, and the exhaust gas is exposed to exhaust gas at 950 to 1100 ° C and its temperature rises to around 1000 ° C. Suitable for system parts.
  • the thermal fatigue life by LCF is more preferably 1800 cycles or more, further preferably 1900 cycles or more, most preferably 2000 cycles or more, and particularly preferably 2200 cycles or more.
  • the thermal fatigue life by LCF can be 2000 cycles or more by setting A / B to 0.6 to 1.7 and the Zr content to 0.005 to 0.5%.
  • the exhaust system parts of the present invention comprise the austenitic heat-resistant cast steel.
  • Preferred examples of the exhaust system parts include a turbine housing, an exhaust manifold, a turbine housing integrated exhaust manifold in which the turbine housing and the exhaust manifold are integrally cast, a catalyst case, and a catalyst case integrated exhaust manifold in which the catalyst case and the exhaust manifold are integrally cast. And exhaust outlets, but of course not limited.
  • the exhaust system parts of the present invention exhibit high heat resistance and durability even when they reach 900 to 1050 ° C when exposed to exhaust gas at 950 to 1100 ° C. In other words, since the exhaust system parts of the present invention can cope with severe usage conditions at high temperatures, it is possible to apply technology for improving engine performance and fuel efficiency to popular vehicles, purifying automobile exhaust gas and improving fuel efficiency. Is expected to contribute.
  • Examples 1 to 25 and Comparative Examples 1 to 33 The chemical compositions, C / N and A / B of the austenitic heat-resistant cast steels of Examples 1 to 25 are shown in Table 1-1 and Table 1-2.
  • the chemical compositions of the heat-resistant cast steels of Comparative Examples 1 to 33, C / N and A / B is shown in Table 2-1 and Table 2-2.
  • Comparative Examples 1 to 33 at least one of the chemical composition, C / N and A / B is outside the scope of the present invention.
  • Comparative Example 33 is an example of a high Cr high Ni austenitic heat-resistant cast steel described in WO 2005/103314, and contains 2.8% by mass of W. Except for W in Comparative Example 33, as inevitable impurities in each heat-resistant cast steel, P was 0.02% or less, Al was 0.03% or less, W was 0.1% or less, and Mo was 0.1% or less.
  • Example 1 to 25 and Comparative Examples 1 to 33 were melted in the air using a 100 kg kg high-frequency melting furnace (basic lining), then heated at 1550 to 1600 ° C. and immediately at 1500 to 1550 ° C.
  • the cast material for each cast steel was obtained by pouring into a mold for inch Y block. A test piece was cut out from each sample material and evaluated as follows.
  • Thermal fatigue properties were measured by thermal fatigue life test (TMF) and high temperature low cycle fatigue test (LCF).
  • TMF Thermal fatigue life test
  • EHF-ED10TF-20L EHF-ED10TF-20L with a restraint factor of 0.25, and for each test piece in the atmosphere, with a cooling lower limit temperature of 150 ° C, a heating upper limit temperature of 1000 ° C and a temperature amplitude of 850 ° C, one cycle with a heating time of 2 minutes,
  • the thermal fatigue life was measured by repeating a heating and cooling cycle with a holding time of 1 minute and a cooling time of 4 minutes for a total of 7 minutes, and mechanically restraining the expansion and contraction associated with heating and cooling to cause thermal fatigue failure.
  • the degree of mechanical restraint is expressed by a restraint rate defined by [(free thermal expansion / elongation ⁇ elongation under mechanical restraint) / (free thermal expansion / elongation)].
  • a constraint factor of 1.0 refers to a mechanical constraint condition that does not allow elongation at all when a test piece is heated from 150 ° C. to 1000 ° C.
  • a restraint factor of 0.5 means a mechanical restraint condition that allows only 1 mm of elongation where the free expansion and elongation extends, for example, 2 mm. Therefore, at a restraint factor of 0.5, a compressive load is applied during temperature rise and a tensile load is applied during temperature drop. Since the actual restraint rate of exhaust system parts for automobiles is about 0.1 to 0.5 that allows a certain degree of elongation, thermal fatigue characteristics were evaluated at a restraint rate of 0.25.
  • Judgment criteria for thermal fatigue life is each cycle with the maximum tensile load (generated at the lower limit of cooling temperature) in the second cycle as the standard (100%) in the load-temperature diagram obtained from the load change with repeated heating and cooling.
  • Tables 3 and 4 show the measurement results of thermal fatigue life by TMF in Examples 1 to 25 and Comparative Examples 1 to 33, respectively.
  • TMF thermal fatigue life measured by TMF heated and cooled under the conditions of heating upper limit temperature 1000 ° C, temperature amplitude 850 ° C and restraint ratio 0.25 in order to have sufficient heat resistance near 1000 ° C 900 cycles or more is preferable.
  • Exhaust system parts made of heat-resistant cast steel with a TMF thermal fatigue life of 900 cycles or more have a long life until thermal fatigue failure due to cracks and deformation caused by repeated heating and cooling of the engine.
  • the TMF thermal fatigue lives of Examples 1 to 25 were all 900 cycles or more. From this, the austenitic heat-resistant cast steel of the present invention is excellent in thermal fatigue characteristics, and when used for exhaust system parts that repeatedly heat and cool to temperatures around 1000 ° C, the exhaust system parts have sufficient heat resistance and durability. Expected to demonstrate. In contrast, all of the cast steels of Comparative Examples 1 to 33, except for Comparative Example 2, had a TMF thermal fatigue life of less than 900 cycles. In Comparative Example 2, the thermal fatigue life by LCF was short.
  • High temperature low cycle fatigue test (LCF) The high temperature low cycle fatigue test (LCF) is as follows in accordance with the “High Temperature Low Cycle Fatigue Test Method Standard (JSMS-SD-7-03)” issued by the Japan Society of Materials, June 2, 2003. Carried out. That is, cut out a test piece of a smooth round bar with a distance between gauge points of 25 mm and a diameter of 10 mm from each sample material of 1 inch Y block, and attach it to the same electro-hydraulic servo type material testing machine as TMF.
  • JSMS-SD-7-03 High Temperature Low Cycle Fatigue Test Method Standard
  • Judgment criteria for thermal fatigue life is based on the decrease in load (stress) caused by repeated tension and compression, until the tensile load drops to 75% from the extrapolated line of the change tendency of the tensile load before cracking. The number of tensile and compression cycles was used. Tables 3 and 4 show the thermal fatigue life measurement results by Examples 1 to 25 and Comparative Examples 1 to 33, respectively.
  • the fatigue life is preferably 1500 cycles or more.
  • Exhaust system parts made of heat-resistant cast steel with an LCF thermal fatigue life of 1500 cycles or more have a long life until thermal fatigue failure due to cracks and deformation caused by repeated heating and cooling of the engine.
  • the LCF thermal fatigue lives of Examples 1 to 25 were all 1500 cycles or more.
  • the LCF thermal fatigue life is 1800 cycles. That was all.
  • the austenitic heat-resistant cast steel of the present invention is excellent in thermal fatigue characteristics, and when used in exhaust system parts that repeat heating and cooling to temperatures close to 1000 ° C, the exhaust system parts have sufficient heat resistance and Expected to exhibit durability.
  • the cast steels of Comparative Examples 1 to 33 all had an LCF thermal fatigue life of less than 1500 cycles.
  • Oxidation loss An oxide film is formed on the surface of exhaust system parts exposed to exhaust gas (containing oxidizing gas such as sulfur oxide and nitrogen oxide) from 950 to 1100 ° C from the engine. As oxidation progresses, cracks start from the oxide film and oxidation progresses to the interior of the exhaust system parts. Finally, cracks penetrate from the front surface to the back surface of the exhaust system parts, causing exhaust gas leakage and exhaust system part cracks. Invite. Therefore, in order to evaluate the oxidation resistance of exhaust system components at 1050 ° C., the oxidation loss was determined by the following method.
  • a 10 mm diameter and 20 mm long round bar specimen was cut from each specimen of a 1 inch Y block, held in air at 1050 ° C for 200 hours, and then subjected to shot blasting to remove oxide scale.
  • the mass change per unit area before and after the oxidation test [oxidation loss (mg / cm 2 )] was determined.
  • Table 3 and Table 4 show the oxidation loss in Examples 1 to 25 and Comparative Examples 1 to 33, respectively.
  • the oxidation weight loss is preferably 30 mg / cm 2 or less, more preferably 20 mg / cm 2 or less, and 10 mg / cm 2 or less. Most preferably. As is apparent from Table 3, the oxidation weight loss of Examples 1 to 25 was less than 30 mg / cm 2 . From this, it can be seen that the austenitic heat-resistant cast steel of the present invention is excellent in oxidation resistance and exhibits sufficient oxidation resistance when used in exhaust system parts that reach temperatures around 1000 ° C.
  • Comparative Examples 7, 11 and 13 with too little Si, Cr, Ni or Nb content, and Comparative Examples 9 and 22 with too much Mn or Nb content are In both cases, the weight loss after oxidation exceeded 30 mg / cm 2 . This means that the cast steels of Comparative Examples 7, 9, 11, 13, and 22 cannot exhibit sufficient oxidation resistance when used for exhaust system parts that reach temperatures around 1000 ° C.
  • High-temperature proof stress Exhaust system parts are required to have heat-deformability that is unlikely to cause thermal deformation even when the engine is operated (heating) and stopped (cooling) repeatedly. In order to ensure sufficient heat distortion resistance, it is preferable to have high high-temperature strength.
  • High temperature strength can be evaluated by 0.2% yield strength (high temperature yield strength) at 1050 ° C. Cut a test piece with a smooth round bar with a gauge distance of 50 mm and a diameter of 10 mm from each 1-inch Y-block specimen, and attach it to the same electro-hydraulic servo type material testing machine as TMF. The 0.2% yield strength (MPa) at 1050 ° C. in the atmosphere was measured. Tables 3 and 4 show the high temperature proof stress of Examples 1 to 25 and Comparative Examples 1 to 33, respectively.
  • the 0.2% proof stress at 1050 ° C is preferably 20 MPa or more.
  • Exhaust system parts made of heat-resistant cast steel with a 0.2% proof stress of 20 MPa or more at 1050 ° C have sufficient strength to suppress the occurrence of cracks and cracks even when exposed to 950-1100 ° C under restraint.
  • the 0.2% proof stress at 1050 ° C. of the austenitic heat-resistant cast steel of the present invention is more preferably 30 MPa or more.
  • the high temperature proof stress of the test pieces of Examples 1 to 25 was 20 MPa or more. From this, it can be seen that the austenitic heat-resistant cast steel of the present invention is excellent in high-temperature proof stress and exhibits sufficient high-temperature strength when used in exhaust system parts that reach temperatures near 1000 ° C.
  • the austenitic heat-resistant cast steel of the present invention preferably has an elongation at room temperature of 2.0% or more.
  • Exhaust system parts made of heat-resistant cast steel with room temperature elongation of 2.0% or more are able to prevent deformation and cracks from occurring due to tensile stress that is converted from compressive stress generated at high temperature when cooled from high temperature to near room temperature. Has sufficient ductility. Further, the exhaust system parts can suppress cracks and cracks against mechanical vibration and impact applied during manufacture, assembly to the engine, start-up of the automobile, operation and the like.
  • the room temperature elongation of the austenitic heat-resistant cast steel of the present invention is more preferably 3.0% or more, and most preferably 4.0% or more.
  • the room temperature elongation of Examples 1 to 25 was all 2.0% or more. From this, it can be seen that the austenitic heat-resistant cast steel of the present invention is excellent in room temperature elongation and exhibits sufficient heat-resistant deformation when used in exhaust system parts that repeat heating / cooling.
  • Comparative Examples 10, 12, 22 and 24 having too much content of S, Cr, Nb, N or Zr had room temperature elongation of less than 2.0%. This means that the cast steels of Comparative Examples 10, 12, 22, and 24 have insufficient room temperature elongation and cannot exhibit sufficient heat deformation when used in exhaust system parts that repeat heating / cooling.
  • the austenitic heat-resistant cast steel of the present invention has not only the excellent thermal fatigue properties necessary for exhibiting the heat resistance and durability required for exhaust system parts reaching temperatures around 1000 ° C., but also acid resistance. It has been found that it also has chemical properties, high temperature strength and heat distortion resistance.
  • Tables 5-1 and 5-2 show the chemical compositions, C / N, and A / B of the austenitic heat-resistant cast steels of Examples 26 to 49 and the heat-resistant cast steel of Comparative Example 34.
  • P was 0.02% or less
  • Al was 0.03% or less
  • W was 0.1% or less
  • Mo was 0.1% or less.
  • Each heat-resistant cast steel of Examples 26-49 and Comparative Example 34 was produced in the same manner as in Examples 1-25, and thermal fatigue properties, oxidation loss, high temperature proof stress, room temperature elongation, and number of Zr nitride particles were measured. . Table 6 shows the measurement results.
  • the austenitic heat-resistant cast steel of the present invention containing Zr also has only the excellent thermal fatigue characteristics necessary for exhibiting the heat resistance and durability required for exhaust system parts reaching temperatures around 1000 ° C. It has also been found that it has oxidation resistance, high temperature strength and heat distortion resistance.
  • FIG. 1 is an electron micrograph.
  • the light gray part is the austenite phase 1
  • the white particles are massive Nb carbide 2
  • the horny gray white particles are Zr nitride 3
  • the dark gray particles are Cr carbide 4
  • the black particles Is sulfide particles 5 such as MnS.
  • Zr nitride particles were confirmed by analysis using an energy dispersive X-ray analyzer (EDS: EDAX Genesis manufactured by Ametech Co., Ltd.) attached to a field emission scanning electron microscope.
  • EDS energy dispersive X-ray analyzer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Silencers (AREA)
  • Supercharger (AREA)

Abstract

 質量基準で、C:0.3~0.6%、Si:0.5~3%、Mn:0.5~2%、Cr:15~30%、Ni:6~30%、Nb:0.6~5%、N:0.01~0.5%、S:0.01~0.5%を含有し、C/Nが4~7であり、残部Fe及び不可避的不純物からなり、かつ式(1):A=8.5C-Nb+0.05Cr+0.65Ni-5、及び式(2):B=7.8Nbにより表されるCr炭化物生成指数AとNb炭化物生成指数Bとの比率A/Bが0.6~1.7である熱疲労特性に優れたオーステナイト系耐熱鋳鋼。

Description

熱疲労特性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
 本発明は、自動車用の排気系部品、特にタービンハウジング等に適する熱疲労特性に優れたオーステナイト系耐熱鋳鋼、及びそれからなる排気系部品に関する。
 近年、地球規模での環境負荷の低減や環境保全が叫ばれ、自動車に対して、大気汚染物質の排出量を削減するための排ガスの浄化と、地球温暖化の一因であるCO2の排出量抑制のための燃費効率の向上(低燃費化)とが強く求められている。そのため、エンジン自体の高性能化及び低燃費化、排ガスの浄化、車両の軽量化、車体の空気抵抗の低減、エンジンから駆動系へのロスの少ない効率的な動力伝達等の様々な技術が開発され、実用化されてきた。
 エンジン自体の高性能化及び低燃費化のための技術として、燃料の直噴化、燃料噴射の高圧化、圧縮比の増大、ターボチャージャー(過給機)の採用による排気量の削減、エンジンの小型軽量化(ダウンサイジング)等が挙げられ、高級車に限らず大衆車にも導入されてきている。その結果、燃料をより高温高圧で燃焼させる傾向にあり、これに伴ってエンジンの燃焼室から排気系部品に排出される排ガスの温度も上昇傾向にある。例えば、大衆車でも排ガス温度は高級スポーツカー並みの1000℃以上となり、排気系部品の表面温度も900℃を超えることがある。このように高温の酸化性ガスに曝される排気系部品は、従来より厳しい酸化環境でエンジンの運転及び停止による加熱/冷却の繰り返し熱サイクルを受けるので、従来にも増して耐熱性や耐久性の向上が求められる。
 従来、自動車に用いるタービンハウジング、エキゾーストマニホルド等の排気系部品は、形状が複雑であることから形状自由度の高い鋳物により製造されており、しかも使用条件が高温で過酷であることから、高Si球状黒鉛鋳鉄、ニレジスト鋳鉄(Ni-Cr系オーステナイト鋳鉄)等の耐熱鋳鉄、フェライト系耐熱鋳鋼、オーステナイト系耐熱鋳鋼等が用いられている。特に排気系部品の表面温度が900℃以上となる場合には、排気系部品の材料としては、フェライト系耐熱鋳鋼又はオーステナイト系耐熱鋳鋼が用いられている。
 しかし、フェライト系耐熱鋳鋼は通常900℃以上での高温強度に劣るという問題があるため、950℃を超える温度域での採用は困難である。フェライト系耐熱鋳鋼より高温に耐える材料として、オーステナイト系耐熱鋳鋼がある。例えば、WO 2005/103314は、重量基準でC:0.2~1.0%、Si:3%以下、Mn:2%以下、Cr:15~30%、Ni:6~30%、W及び/又はMo:0.5~6%(W+2Moとして)、Nb:0.5~5%、Al:0.23%以下、N:0.01~0.5%、S:0.5%以下、及びO:0.07%以下を含有し、残部実質的にFe及び不可避的不純物からなる高Cr高Niオーステナイト系耐熱鋳鋼を提案している。このオーステナイト系耐熱鋳鋼は、高い高温耐力、耐酸化性及び室温伸びを有し、特に1000℃以上と高温の排ガスに曝されたときの熱疲労特性に優れているので、自動車用エンジンの排気系部品等に好適である。
 ところで、排気系部品には、エンジンから排出されるガスによる温度上昇や酸化への対応のほかにも過酷な使用条件への対応が求められている。例えば、排ガス浄化処理(排ガス浄化装置に内蔵した触媒やフィルタにより排ガス中の有害物質等を除去する処理)においては、エンジン始動時に触媒を早期に昇温し活性化させたり、排ガスを触媒やフィルタ全体に均等に供給したりして浄化性能を向上させる必要がある。触媒の早期活性化のためには、排気系部品を通過する排ガスの温度低下を少なく、すなわち排ガスの熱が極力奪われないようにしなければならない。従って、排気通路のヒートマス(熱容量)を小さくするために排気系部品には薄肉化が要求されている。しかし、排気系部品は薄肉化するほど排ガスによる温度上昇が大きくなる。
 近年のターボチャージャーの採用による排気量削減、エンジンの小型軽量化のトレンドは、排気系部品の使用環境を一層過酷なものとしている。すなわち、エンジンの小型化に伴って排気系部品も小型化する。上述した排ガス浄化処理のための排気系部品の薄肉化に加えて、排気系部品の小型化によって部品全体のヒートマスが小さくなるため、排気系部品は温度上昇が大きくなる。
 ターボチャージャー等の過給により吸気ガス量が増加すると、排ガス量も増加する。排ガス量の増加は、排気系部品に加わる熱流量の増大となり、これは排気系部品の単位時間当たりの温度上昇(昇温速度)を大きくする。排気系部品は、薄肉部や厚肉部を含み、かつ排ガスが接触する部位と接触しない部位を含む複雑形状を有するので、排ガスの通過した排気系部品内に温度差が生ずる。一般に、金属部材に温度差、即ち温度勾配により熱応力が発生すると、亀裂や割れの傾向が高まる。過給により熱流量が増大すると、排気系部品の昇温速度が大きくなり、排気系部品は部材内の温度勾配が拡大する。温度勾配が大きいと、発生する熱応力も高くなるため、排気系部品は亀裂や割れの傾向が高まる。排気系部品の温度勾配の拡大は、過給圧や過給効率が高くなるほど顕著となる。
 このように自動車用の排気系部品は、排ガスによる温度上昇及び酸化、薄肉化やヒートマス減少による温度上昇、熱流量増大による温度勾配の拡大等に対応しなければならない。具体的には、排気系部品は950~1100℃と高温の排ガスに曝されることもあるが、このような高温の排ガスに曝されると排気系部品自体は900~1050℃と1000℃付近まで上昇する。排気系部品はこのような高温域での優れた耐熱性や耐久性を有する必要がある。この要求に応えるために、排気系部品を構成する材料は、熱疲労特性、耐酸化性、高温強度、延性(伸び)等に優れていることが求められる。WO 2005/103314のオーステナイト系耐熱鋳鋼は、1000℃以上の排ガスに曝される排気系部品への使用を想定しているが、上記のような過酷な条件に曝される排気系部品に使用するには十分ではなく、特に熱疲労特性に改良の余地がある。
 従って本発明の目的は、1000℃付近での熱疲労特性に優れたオーステナイト系耐熱鋳鋼、及びこのオーステナイト系耐熱鋳鋼からなるタービンハウジング等の排気系部品を提供することである。
 オーステナイト系耐熱鋳鋼の耐熱性、特に熱疲労特性を向上できる組成範囲を見出すべく鋭意研究した結果、本発明者等は、C、Cr、Ni及びNb等の主要合金元素の含有量を適正範囲に限定することで、熱疲労特性が大幅に向上したオーステナイト系耐熱鋳鋼が得られることを発見し、本発明に想到した。
 すなわち、熱疲労特性に優れた本発明のオーステナイト系耐熱鋳鋼は、質量基準で、
C:0.3~0.6%、
Si:0.5~3%、
Mn:0.5~2%、
Cr:15~30%、
Ni:6~30%、
Nb:0.6~5%、
N:0.01~0.5%、及び
S:0.01~0.5%を含有し、
CとNの含有量比C/Nが4~7であり、
残部Fe及び不可避的不純物からなり、
かつ下記式(1) 及び(2) により表されるCr炭化物生成指数AとNb炭化物生成指数Bとの比率A/Bが0.6~1.7である
  A=8.5C-Nb+0.05Cr+0.65Ni-5・・・(1) 
  B=7.8Nb・・・(2) 
[ただし、各式中の元素記号はその含有量(質量%)を示す。]
ことを特徴とする。
 本発明のオーステナイト系耐熱鋳鋼はさらに0.005~0.5質量%のZrを含有するのが好ましい。Zrを含有する前記オーステナイト系耐熱鋳鋼は、組織中の円相当径1.5μm以上のZr窒化物粒子の数が視野面積0.25 mm2当たり20~150個であるのが好ましい。
 本発明のオーステナイト系耐熱鋳鋼は、試験温度900℃、ひずみ振幅0.5%、ひずみ速度0.1%/秒、及び圧縮保持時間1分の条件で引張・圧縮によりひずみを加除する高温低サイクル疲労試験により測定した疲労寿命が1500サイクル以上であるのが好ましい。
 本発明の排気系部品は、上記熱疲労特性に優れたオーステナイト系耐熱鋳鋼からなることを特徴とする。この排気系部品の例として、タービンハウジング、エキゾーストマニホルド、タービンハウジング一体エキゾーストマニホルド、触媒ケース、触媒ケース一体エキゾーストマニホルド、及びエキゾーストアウトレットが挙げられる。
 本発明のオーステナイト系耐熱鋳鋼は優れた耐熱性や耐久性を有するとともに、1000℃付近で高い熱疲労特性を有するので、それからなるタービンハウジング等の排気系部品は1000℃付近での高温で過酷な条件で使用可能である。
実施例35の試験片の電子顕微鏡写真である。
[1] オーステナイト系耐熱鋳鋼
 本発明のオーステナイト系耐熱鋳鋼の構成について以下詳細に説明する。なお、耐熱鋳鋼を構成する各元素の含有量は、特に断りのない限り質量%で示す。
(A) 組成
(1) C(炭素):0.3~0.6%
 Cは溶湯の流動性、すなわち鋳造性を良くするとともに、一部基地を固溶強化し、また炭化物を形成して高温強度を向上させる。このような作用を有効に発揮するために、Cの含有量は0.3%以上必要である。しかし、Cが0.6%を超えると炭化物が多くなり過ぎ、耐熱鋳鋼の熱疲労特性及び被削性が低下するとともに、延性が低下する。従って、Cの含有量は0.3~0.6%とする。Cの含有量の下限は好ましくは0.35%であり、より好ましくは0.4%である。また、Cの含有量の上限は好ましくは0.55%であり、より好ましくは0.5%である。
(2) Si(ケイ素):0.5~3%
 Siは溶湯の脱酸剤としての役割を有するほか、耐酸化性の向上と、これに起因する熱疲労特性の改善に有効な元素である。このような作用を得るためにSiの含有量は0.5%以上必要である。しかし、過剰なSiはオーステナイト組織を不安定にし、耐熱鋳鋼の鋳造性を劣化させ、さらに硬化により被削性を悪化させる。このためSiの含有量は3%以下とする。従って、Siの含有量は0.5~3%とする。Siの含有量の下限は好ましくは0.8%であり、より好ましくは1%である。また、Siの含有量の上限は好ましくは2%であり、より好ましくは1.6%である。
(3) S(硫黄):0.01~0.5%
 SはMnやCrと結合してMnS、(Mn/Cr)S等の硫化物を形成し、硫化物の潤滑作用により耐熱鋳鋼の被削性を向上させる。この効果を得るには、Sは0.01%以上必要である。しかし、Sが0.5%を超えると、耐熱鋳鋼の高温強度や延性の劣化傾向が高まるとともに、硫化物が過剰に生成して耐熱鋳鋼の熱疲労特性を悪化させる。そのため、Sの含有量は0.01~0.5%とする。Sの含有量の下限は好ましくは0.05%であり、より好ましくは0.1%である。また、Sの含有量の上限は好ましくは0.3%であり、より好ましくは0.2%である。
(4) Mn(マンガン):0.5~2%
 Mnは、Siと同様に溶湯の脱酸剤として有効であるほか、Sと結合してMnS等の硫化物を形成することにより耐熱鋳鋼の被削性を改善する。これらの効果を発揮させるために、Mnの含有量は0.5%以上必要である。しかし、過剰なMnは耐熱鋳鋼の耐酸化性を劣化させるので、Mnの含有量は2%以下とする。このためMnの含有量は0.5~2%とする。Mnの含有量の下限は好ましくは0.7%であり、Mnの含有量の上限は好ましくは1.3%である。
(5) Cr(クロム):15~30%
 Crは、後述のNiとともに耐熱鋳鋼の組織をオーステナイト化することにより、耐熱鋳鋼の耐熱性(高温強度及び耐酸化性)を高めるのに有効な元素である。特に1000℃付近の高温域での耐熱性の効果を発揮させるためには、Crは15%以上必要である。しかし、Crは、Cr23C6及びCr7C3を主体とするCr炭化物を晶出させる元素である。Cr炭化物は結晶構造的にオーステナイト基地とミスフィットであるため、Cr炭化物とオーステナイトとの共晶界面は脆弱であり、亀裂の伝播経路となる。Crの含有量が30%を超えるとCr炭化物の晶出が多くなり、亀裂の伝播が促進される傾向が高まって、耐熱鋳鋼の熱疲労特性及び延性を著しく低下させる。また、Crは過剰に含有すると、組織中にフェライトが晶出して高温強度が低下してしまう。このため、Cr含有量は15~30%とする。Crの含有量の下限は好ましくは20%であり、より好ましくは24%である。また、Crの含有量の上限は好ましくは28%であり、より好ましくは26%である。
(6) Ni(ニッケル):6~30%
 Niはオーステナイト生成元素であり、耐熱鋳鋼のオーステナイト組織を安定化するとともに、Crとともに耐熱鋳鋼の高温強度及び耐酸化性を高めるほか、薄肉で複雑形状の排気系部品の鋳造性を高める。このような作用を発揮するために、Niの含有量は6%以上である必要がある。しかし、30%を超えてNiを含有すると、基地中へのNiの固溶量の増加にともなって、基地のCの固溶限を低下させ、Cr炭化物の晶出が過剰となって、耐熱鋳鋼の熱疲労特性を低下させる。また、Niは30%を超えて含有しても上記特性の向上効果は飽和するとともに、高価な元素のため経済的に不利である。このため、Ni含有量は6~30%とする。Niの含有量の下限は好ましくは10%であり、より好ましくは11%である。また、Niの含有量の上限は好ましくは25%であり、より好ましくは22%である。
(7) Nb(ニオブ):0.6~5%
 NbはCrより優先的にCと結合し、微細なNb炭化物を形成する。これによりCr炭化物の晶出を抑制して間接的に耐熱鋳鋼の高温強度及び熱疲労特性を向上させる。さらに、NbはオーステナイトとNb炭化物との共晶炭化物を形成するため、排気系部品のような薄肉で複雑形状の鋳物を製造する際に重要な鋳造性を向上させる。このような目的で、Nbは0.6%以上必要である。一方、Nbが5%を超えると、結晶粒界に生成する硬質の共晶炭化物が多くなって、かえって耐熱鋳鋼の高温強度及び熱疲労特性が低下し、また脆化して延性が著しく低下する。さらに過剰なNbは、粒径の小さなNb炭化物とオーステナイトとの共晶炭化物をコロニー状に密集して生成し、酸化傾向を助長するため、耐熱鋳鋼の耐酸化性を低下させる。従って、Nb含有量は0.6~5%とする。Nbの含有量の下限は好ましくは0.8%である。また、Nbの含有量の上限は好ましくは3%であり、より好ましくは2.2%である。
(8) N(窒素):0.01~0.5%
 Nは強力なオーステナイト生成元素であり、耐熱鋳鋼のオーステナイト基地を安定化して高温強度を向上させる。Nはまた、結晶粒微細化のための鍛造又は圧延を行うことができない複雑形状の鋳造品の結晶粒を微細化させるのに有効な元素である。Nを含有することにより結晶粒が微細化し、もって耐熱鋳鋼の延性及び被削性が向上する。またNはCの拡散速度を遅らせるので、析出炭化物の凝集を遅らせて炭化物の粗大化を抑制し、もって脆化を有効に防止する。このような効果を得るために、Nの含有量は0.01%以上必要である。しかし、0.5%超のNは、Niと同様に、基地のCの固溶限を低下させて、Cr炭化物の晶出が過剰となって、耐熱鋳鋼の熱疲労特性を低下させる。またNは0.5%を超えて多量に含有すると、基地中へのNの固溶量が増加して、耐熱鋳鋼が硬化するとともに、Cr及びAlと結合してCr2N、AlN等の硬くて脆い窒化物を多量に析出させ、耐熱鋳鋼の高温強度及び延性を悪化させる。さらに、過剰なNは、鋳造時にピンホールやブローホール等のガス欠陥の発生を助長し、鋳造歩留りを悪化させる。そのため、Nの含有量は0.01~0.5%とする。Nの含有量の下限は好ましくは0.05%であり、より好ましくは0.06%である。また、Nの含有量の上限は好ましくは0.4%であり、より好ましくは0.2%である。
(9) C/N:4~7
 CとNの含有量比(C/N)の最適化は、炭窒化物の晶出を制御するための一手段である。侵入型元素であるCとNは、いずれも基地中に固溶してオーステナイト基地を安定にして高温強度を向上する。またC及びNは基地に固溶することで固定されるので、これらと結合して凝固末期に粒界に晶出する炭窒化物が減少して熱疲労特性の低下が抑制される。特に、Cr含有量の多い本発明の耐熱鋳鋼においては、Cr23C6及びCr7C3を主体とする板状又は網目状のCr炭化物が粒界に晶出して熱疲労特性を著しく悪化させるので、Cはできるだけ基地中に固溶させるのが望ましい。Cを基地に固溶するためにはNの含有量を極力低減させることも考えられるが、本発明の耐熱鋳鋼においては、Nはオーステナイト結晶粒の微細化による延性及び被削性の向上、並びに析出炭化物の粗大化抑制による脆化防止にも有効に作用するために適量必要となる。CとNを適量含有したうえで、基地中へのCの固溶を促進するためには、C/Nを最適化することが有効である。C/Nの最適化によって、N含有の効果を享受しつつ、Cの固溶限を大きくすることができる。
 Nに対してCが相対的に少ない(C/Nが小さい)と、基地中へのNの固溶が多くなって、Cの固溶限を下げるので、Cr炭化物の晶出が多くなって熱疲労特性を低下させる。良好な熱疲労特性を得るためには、C/Nは4以上必要である。一方、Nに対してCが相対的に多い(C/Nが大きい)と、基地中へのCの固溶が多くなって、Nの固溶限を下げる。CよりNの方がオーステナイト基地を安定化する効果が高いため、Nの固溶が抑制されると高温強度を低下させる。良好な高温強度を得るためには、C/Nは7以下である必要がある。以上から、C/Nは4~7とする。C/Nは好ましくは5~6である。
(10) A/B:0.6~1.7
 本発明では、各元素が上記組成範囲を満足した上で、さらに下記式(1) 及び(2) で表されるCr炭化物生成指数AとNb炭化物生成指数Bの比率A/Bが0.6~1.7を満たすのが好ましい。
  A=8.5C-Nb+0.05Cr+0.65Ni-5・・・(1) 
  B=7.8Nb・・・(2) 
[ただし、各式中の元素記号はその含有量(質量%)を示す。]
 式(1) について、Cr炭化物の晶出傾向を示すCr炭化物生成指数Aは、C、Cr及びNiの含有量が多くなると大きくなり(Cr炭化物の晶出が多くなり)、Nbの含有量が多くなると小さくなる(Cr炭化物の晶出が少なくなる)。式(2) について、Nb炭化物の晶出傾向を示すNb炭化物生成指数Bは、Nbの含有量に比例して大きくなる(Nb炭化物の晶出が多くなる)。
 C、Cr、Ni及びNbの含有量によりCr炭化物及びNb炭化物の晶出量が変化し、かつ両者の晶出量がほぼ同量のとき、熱疲労特性が最大化する。従って、A/Bが大きいと、NbによるCの固定が少なく、Cr炭化物の晶出が多くなって熱疲労特性及び延性が低下する。一方、A/Bが小さいと、Cr炭化物の晶出は少なくなるもののNb炭化物の晶出が多くなって熱疲労特性、高温強度及び延性が低下する。良好な熱疲労特性を得るためには、A/Bは0.6~1.7が好ましく、0.7~1.3がより好ましく、0.8~1.2が最も好ましい。
 A/Bを所望の範囲とするために、Ni含有量に応じてNb含有量を調整するのが好ましい。例えば、Ni含有量が10%程度の場合、Nb含有量は0.6~1%にするのが望ましく、Ni含有量が13%程度の場合、Nb含有量は0.75~1.2%にするのが望ましく、Ni含有量が20%程度の場合、Nb含有量は1.3~2%にするのが望ましい。
(11) Zr(ジルコニウム):0.005~0.5%
 本発明のオーステナイト系耐熱鋳鋼は、Zrの含有により、結晶粒の微細化したオーステナイトからなる基地に、Cr炭化物粒子、Nb炭化物粒子、MnS等の硫化物粒子及びZr窒化物粒子が分散した組織を有する。特に、円相当径が1.5μm以上のZr窒化物粒子が視野面積0.25 mm2当たり20~150個有すると、耐熱鋳鋼の基地が強化され、耐熱鋳鋼の熱疲労特性が向上する。
 Zrの含有により生成するZrO2、ZrN、ZrC等の酸化物、窒化物及び炭化物は耐熱鋳鋼の基地に分散して、Nb炭化物及びMnS等の硫化物の生成核となるので、Nb炭化物及びMnS等の硫化物は微細分散する。なお、凝固の末期に晶出するCr炭化物は、ZrO2、ZrN、ZrC等の生成核ではなく、凝固の初期に晶出するNb炭化物の微細分散及びオーステナイト結晶粒の微細化により、間接的に微細分散すると推察される。
 Zrを含有しない場合、Nb炭化物粒子はNb炭化物とオーステナイトとの共晶炭化物がコロニー状又はラメラー状に密集して多量に生成する。酸化傾向が強いNb炭化物が密集して晶出すると、Nb炭化物粒子同士が接近し過ぎ、酸化が進行しやすくなる。その結果、耐熱鋳鋼の耐熱鋳鋼の耐酸化性は低下し、もって熱疲労特性も低下する。Zrの含有により、Nb炭化物は塊状になるとともに微細分散する。その結果、Nb炭化物粒子同士の距離が大きくなって酸化傾向を低減して、耐熱鋳鋼の熱疲労特性が向上する。
 さらに、ZrはNと結合してNb炭化物及びMnS等の硫化物の生成核として機能するZrNを生成するのみならず、生成核とは別に単独の微細に分散したZr窒化物を晶出し、基地を強化する。その結果、耐熱鋳鋼の熱疲労特性を向上する。
 上述の効果を得るためにZrを含有させる場合、Zrは0.005%以上が好ましい。一方、Zrが0.5%を超えてもそれに応じた効果の増大は得られず、ZrNやZrC等の炭窒化物が過剰に晶出して脆化し、高温強度、延性及び被削性を低下させるとともに、高価な元素のため経済的に不利となる。そのため、Zrを含有させる場合には、その含有量は0.005~0.5%とする。Zrの含有量の下限は好ましくは0.01%であり、より好ましくは0.03%であり、最も好ましくは0.04%である。また、Zrの含有量の上限は好ましくは0.3%であり、より好ましくは0.2%であり、最も好ましくは0.1%である。
(12) 不可避的不純物
 本発明のオーステナイト系耐熱鋳鋼に含有される不可避的不純物は主に、原材料及び/又は脱酸剤から混入するP、Al、W及びMoである。Pは結晶粒界に偏析して靭性を著しく低下させるので少ないほど好ましく、0.06%以下とするのが望ましい。AlはAl2O3からなるスラグやノロといった介在物を生成して鋳造欠陥を助長して鋳造歩留りを悪化させ、また硬くて脆いAlNを生成して、延性及び被削性を低下させる。そのため、Alは少ないほど好ましく、0.05%以下とするのが望ましい。W及びMoは炭化物を生成して延性を低下させる。さらにW及びMoは、基地に固溶してCrの基地への固溶量を減少させることで、基地の耐酸化性を低下させ、かつCr炭化物の晶出を促進することで熱疲労特性を悪化させるので、少ないほど好ましく、W及びMoを各々0.5%以下とするのが好ましく、合計でも0.5%以下とするのがより好ましい。
(B) 組織
 本発明のオーステナイト系耐熱鋳鋼は、Zrを含有することにより、組織中に円相当径1.5μm以上のZr窒化物粒子を視野面積0.25 mm2当たり20~150個有するのが好ましい。円相当径1.5μm以上のZr窒化物粒子が視野面積0.25 mm2当たり20個以上存在すれば、基地が強化され、耐熱鋳鋼の熱疲労特性が向上する。なお、円相当径1.5μm未満のZr窒化物粒子では熱疲労特性の向上効果が大きくないので、本発明では円相当径1.5μm以上のZr窒化物粒子の数を規定した。一方、Zr窒化物粒子は硬くて脆いため、視野面積0.25 mm2当たりのZr窒化物粒子の数が150個を超えると、耐熱鋳鋼の延性及び被削性を低下させる。視野面積0.25 mm2当たりの円相当径1.5μm以上のZr窒化物粒子の数は30~100個であるのがより好ましい。なお、耐熱鋳鋼の延性及び被削性を向上するために、Zr窒化物粒子は微細なほど好ましい。具体的には、Zr窒化物粒子のサイズは平均円相当径で1.5~10μmが好ましく、1.5~5μmがより好ましく、1.5~3μmが最も好ましい。
(C) 熱疲労特性
 排気系部品には、エンジンの運転(加熱)と停止(冷却)の繰り返しに対する熱疲労寿命が長いことが要求される。熱疲労寿命は、熱疲労特性の優劣を表す指標の1つである。熱疲労試験での加熱冷却の繰り返しで生じる亀裂や変形により、熱疲労破壊に至るまでのサイクル数が多いほど熱疲労寿命が長く、熱疲労特性に優れている。熱疲労寿命を評価するための熱疲労試験には、(a) 材料を拘束して加熱と冷却による温度振幅を繰り返し与えることで、加熱冷却に伴う伸縮を機械的に拘束して熱疲労破壊を起こさせる熱疲労寿命試験(TMF:Thermo-Mechanical Fatigue)と、(b) 材料を一定温度及び一定ひずみ振幅で引張・圧縮により繰り返しひずみを加除することで熱疲労破壊を起こさせる高温低サイクル疲労試験(LCF:Low-Cycle Fatigue)とがある。
 TMFは、加熱冷却による熱疲労寿命を評価するもので、実際のエンジンに近い試験といえるが、例えば冷却下限温度150℃、加熱上限温度1000℃及び温度振幅850℃で、昇温時間2分、保持時間1分及び冷却時間4分の合計7分を1サイクルとする加熱冷却サイクルを繰り返す試験のため、試験に要する時間が膨大であるうえに、加熱冷却による膨張・収縮で試験中に材料がネッキングするため、精度良く熱疲労寿命を評価できないことがある。一方、LCFは、ひずみの加除10秒及び圧縮保持1分で合計1分10秒(70秒)を1サイクルとする引張・圧縮サイクルを繰り返す試験のため、試験時間が短く、また試験温度が一定のため材料の膨張・収縮によるネッキングが起こらないため、TMFに比較して精度よく熱疲労寿命を評価できる。従って、TMF及びLCFの両方の熱疲労試験を実施し、LCFにより耐熱鋳鋼の熱疲労特性を評価し、TMFは参考とした。
 本発明のオーステナイト系耐熱鋳鋼は、試験温度900℃、ひずみ振幅0.5%、ひずみ速度0.1%/秒、及び圧縮保持時間1分の条件で引張・圧縮によりひずみを加除する高温低サイクル疲労試験(LCF)により測定した疲労寿命が1500サイクル以上であるのが好ましい。LCFによる熱疲労寿命が1500サイクル以上であれば、オーステナイト系耐熱鋳鋼は優れた熱疲労特性を有するということができ、950~1100℃の排ガスに曝されて、1000℃付近まで温度が上昇する排気系部品に好適である。LCFによる熱疲労寿命は1800サイクル以上がより好ましく、1900サイクル以上が更に好ましく、2000サイクル以上が最も好ましく、2200サイクル以上が特に好ましい。
 本発明のオーステナイト系耐熱鋳鋼において、A/Bを0.6~1.7とし、かつZr含有量を0.005~0.5%とすることで、LCFによる熱疲労寿命を2000サイクル以上とすることができる。
[2] 排気系部品
 本発明の排気系部品は上記オーステナイト系耐熱鋳鋼からなる。排気系部品の好ましい例は、タービンハウジング、エキゾーストマニホルド、タービンハウジングとエキゾーストマニホルドとを一体に鋳造したタービンハウジング一体エキゾーストマニホルド、触媒ケース、触媒ケースとエキゾーストマニホルドとを一体に鋳造した触媒ケース一体エキゾーストマニホルド、及びエキゾーストアウトレットであるが、勿論限定的でない。
 本発明の排気系部品は、950~1100℃の排ガスに曝されて900~1050℃に達しても高い耐熱性及び耐久性を発揮する。つまり本発明の排気系部品は、高温で過酷な使用条件に対応できるので、エンジンの高性能化及び低燃費化の技術を大衆車にも適用することを可能とし、自動車の排ガス浄化や燃費改善に貢献することが期待される。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。ここでも、オーステナイト系耐熱鋳鋼を構成する各元素の含有量は、特に断りがない限り「質量%」で表す。
実施例1~25、及び比較例1~33
 実施例1~25のオーステナイト系耐熱鋳鋼の化学組成、C/N及びA/Bを表1-1及び表1-2に示し、比較例1~33の耐熱鋳鋼の化学組成、C/N及びA/Bを表2-1及び表2-2に示す。比較例1~33は、化学組成、C/N及びA/Bの少なくとも1つが本発明の範囲外である。比較例33はWO 2005/103314に記載の高Cr高Niオーステナイト系耐熱鋳鋼の一例であり、2.8質量%のWを含有する。なお、比較例33のWを除き、各耐熱鋳鋼中の不可避的不純物として、Pは0.02%以下、Alは0.03%以下、Wは0.1%以下、及びMoは0.1%以下であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~25及び比較例1~33の各原料を、100 kgの高周波溶解炉(塩基性ライニング)を用いて大気溶解した後、1550~1600℃で出湯し、直ちに1500~1550℃で1インチYブロック用鋳型に注湯して各鋳鋼の供試材を得た。各供試材から試験片を切り出して、以下の評価を行った。
(1) 熱疲労特性
 熱疲労特性として、熱疲労寿命試験(TMF)及び高温低サイクル疲労試験(LCF)により熱疲労寿命を測定した。
(a) 熱疲労寿命試験(TMF)
 1インチYブロックの各供試材から標点間距離25 mm及び直径10 mmの平滑丸棒試験片を切り出し、これを電気-油圧サーボ式材料試験機(株式会社島津製作所製、商品名サーボパルサーEHF-ED10TF-20L)に拘束率0.25で取り付け、各試験片に対して大気中で、冷却下限温度150℃、加熱上限温度1000℃及び温度振幅850℃で、1サイクルを昇温時間2分、保持時間1分及び冷却時間4分の合計7分とする加熱冷却サイクルを繰り返し、加熱冷却に伴う伸縮を機械的に拘束して熱疲労破壊を起こさせることにより、熱疲労寿命を測定した。
 機械的な拘束の程度は、[(自由熱膨張伸び-機械的拘束下での伸び)/(自由熱膨張伸び)]で定義される拘束率で表す。例えば、拘束率1.0とは、試験片が150℃から1000℃まで加熱されたときに、全く伸びを許さない機械的拘束条件をいう。また拘束率0.5とは、自由膨張伸びが、例えば2 mm伸びるところを1 mmの伸びしか許さない機械的拘束条件をいう。従って拘束率0.5では、昇温中には圧縮荷重がかかり、降温中には引張荷重がかかる。実際の自動車用の排気系部品の拘束率は、ある程度伸びを許容する0.1~0.5程度であるので、熱疲労特性を拘束率0.25で評価した。
 熱疲労寿命の判定基準は、加熱冷却の繰り返しに伴う荷重の変化から求まる荷重-温度線図において、2サイクル目の最大引張荷重(冷却下限温度で発生)を基準(100%)として、各サイクルで測定される最大引張荷重が75%に低下するまでの加熱冷却サイクル数とした。実施例1~25及び比較例1~33のTMFによる熱疲労寿命の測定結果をそれぞれ表3及び表4に示す。
 1000℃付近で十分な耐熱性を有するために、加熱上限温度1000℃、温度振幅850℃及び拘束率0.25の条件で加熱冷却するTMFにより測定した熱疲労寿命(以下、TMF熱疲労寿命という)は、900サイクル以上であるのが好ましい。TMF熱疲労寿命が900サイクル以上の耐熱鋳鋼からなる排気系部品は、エンジンの加熱冷却の繰り返しにより生ずる亀裂や変形によって熱疲労破壊に至るまでの寿命が長い。
 表3及び表4から明らかなように、実施例1~25のTMF熱疲労寿命は全て900サイクル以上であった。これから、本発明のオーステナイト系耐熱鋳鋼は熱疲労特性に優れ、1000℃付近の温度までの加熱と冷却とを繰り返す排気系部品に使用した場合に、排気系部品が十分な耐熱性及び耐久性を発揮することが期待される。これに対して、比較例1~33の鋳鋼は、比較例2を除いていずれもTMF熱疲労寿命が900サイクル未満であった。なお、比較例2はLCFによる熱疲労寿命が短かった。
(b) 高温低サイクル疲労試験(LCF)
 高温低サイクル疲労試験(LCF)は、2003年6月2日(社)日本材料学会発行の「高温低サイクル疲労試験法標準(JSMS-SD-7-03)」に準拠して、以下の通り実施した。すなわち、1インチYブロックの各供試材から標点間距離25 mm及び直径10 mmの平滑丸棒つばつき試験片を切り出し、これをTMFと同じ電気-油圧サーボ式材料試験機に取り付け、各試験片に対して大気中で、900℃の一定温度で、ひずみ波形を圧縮保持とし、ひずみ振幅0.5%、ひずみ速度0.1%/秒、及び圧縮保持時間1分の条件で、1サイクルを引張による0.25%のひずみ加除を5秒、圧縮による0.25%のひずみ加除を5秒、及び圧縮による0.25%のひずみ保持を60秒の合計70秒とする引張・圧縮によりひずみの加除を繰り返した。なお、ひずみ振幅を0.5%としたのは、実際の自動車用の排気系部品で亀裂を発生する部位でのひずみ量が約0.5%と推定されるためであり、ひずみ速度を0.1%/秒としたのは、「高温低サイクル疲労試験法標準(JSMS-SD-7-03)」で推奨するひずみ速度が0.1%/秒であるからである。
 熱疲労寿命の判定基準は、引張・圧縮の繰り返しに伴う荷重(応力)の低下を基準として、引張荷重が、亀裂発生以前の引張荷重の変化傾向の外挿線から75%に低下するまでの引張圧縮サイクル数とした。実施例1~25及び比較例1~33のLCFによる熱疲労寿命の測定結果をそれぞれ表3及び表4に示す。
 1000℃付近で十分な耐熱性を有するために、試験温度900℃、ひずみ振幅0.5%、ひずみ速度0.1%/秒、及び圧縮保持時間1分の条件で引張・圧縮によりひずみを加除するLCFにより測定した疲労寿命(LCF熱疲労寿命)は、1500サイクル以上であるのが好ましい。LCF熱疲労寿命が1500サイクル以上の耐熱鋳鋼からなる排気系部品は、エンジンの加熱冷却の繰り返しにより生ずる亀裂や変形によって熱疲労破壊に至るまでの寿命が長い。
 表3から明らかなように、実施例1~25のLCF熱疲労寿命は全て1500サイクル以上であった。中でも、Cr含有量を24~26%、Ni含有量を11~22%、及びA/Bを0.7~1.3とした実施例9~13、15~21及び23では、LCF熱疲労寿命は1800サイクル以上であった。
 以上の結果から、本発明のオーステナイト系耐熱鋳鋼は熱疲労特性に優れ、1000℃付近の温度までの加熱と冷却とを繰り返す排気系部品に使用した場合に、排気系部品が十分な耐熱性及び耐久性を発揮することが期待される。これに対して、表4から明らかなように、比較例1~33の鋳鋼はいずれもLCF熱疲労寿命が1500サイクル未満であった。
(2) 酸化減量
 エンジンからの950~1100℃の排ガス(硫黄酸化物、窒素酸化物等の酸化性ガスを含有する)に曝される排気系部品の表面には、酸化膜が形成される。酸化が進行すると酸化膜を起点に亀裂が入り、排気系部品内部まで酸化が進展し、最終的には排気系部品の表面から裏面まで亀裂が貫通して排ガスの漏洩や排気系部品の割れを招く。そのため、排気系部品の1050℃における耐酸化性を評価するために、以下の方法により酸化減量を求めた。すなわち、1インチYブロックの各供試材から直径10 mm及び長さ20 mm丸棒試験片を切り出し、これを大気中1050℃に200時間保持した後、ショットブラスト処理を施して酸化スケールを除去し、酸化試験前後の単位面積当たりの質量変化[酸化減量(mg/cm2)]を求めた。実施例1~25及び比較例1~33における酸化減量をそれぞれ表3及び表4に示す。
 1000℃付近で十分な耐熱性を発揮するためには、酸化減量は30 mg/cm2以下であるのが好ましく、20 mg/cm2以下であるのがより好ましく、10 mg/cm2以下であるのが最も好ましい。表3から明らかなように、実施例1~25の酸化減量は全て30 mg/cm2未満であった。これから、本発明のオーステナイト系耐熱鋳鋼は耐酸化性に優れ、1000℃付近の温度に到達する排気系部品に使用した場合に十分な耐酸化性を発揮することが分る。これに対して、表4から明らかなように、Si、Cr、Ni又はNbの含有量の少なすぎる比較例7、11及び13、及びMn又はNbの含有量の多すぎる比較例9及び22は、いずれも酸化減量が30 mg/cm2を超えていた。これは、比較例7、9、11、13及び22の鋳鋼は1000℃付近の温度に到達する排気系部品に使用した場合に十分な耐酸化性を発揮できないことを意味する。
(3) 高温耐力
 排気系部品には、エンジンの運転(加熱)と停止(冷却)の繰り返しによっても熱変形を生じにくい耐熱変形性が要求される。十分な耐熱変形性を確保するためには、高い高温強度を有するのが好ましい。高温強度は、1050℃における0.2%耐力(高温耐力)により評価できる。1インチYブロックの各供試材から標点間距離50 mm及び直径10 mmの平滑丸棒つばつき試験片を切り出し、これをTMFと同じ電気-油圧サーボ式材料試験機に取り付け、各試験片について大気中1050℃での0.2%耐力(MPa)を測定した。実施例1~25及び比較例1~33の高温耐力をそれぞれ表3及び表4に示す。
 1000℃付近で十分な耐熱性を発揮するために、1050℃における0.2%耐力は20 MPa以上であるのが好ましい。1050℃における0.2%耐力が20 MPa以上の耐熱鋳鋼からなる排気系部品は、拘束下で950~1100℃に曝されても亀裂及び割れの発生を抑制するのに十分な強度を有する。本発明のオーステナイト系耐熱鋳鋼の1050℃における0.2%耐力は30 MPa以上がより好ましい。
 表3から明らかなように、実施例1~25の試験片の高温耐力は20 MPa以上であった。これから、本発明のオーステナイト系耐熱鋳鋼は高温耐力に優れ、1000℃付近の温度に到達する排気系部品に使用した場合に十分な高温強度を発揮することが分る。これに対して、表4から明らかなように、Nの含有量が少なすぎる比較例23、及びC、Si、S、Cr、Nb、N又はZrの含有量の多すぎる比較例6、8、10、12、22及び24はいずれも高温耐力が20 MPa未満であった。これは、比較例6、8、10、12及び22~24の鋳鋼は高温耐力が不十分であり、1000℃付近の温度に到達する排気系部品に使用した場合に十分な高温強度を発揮できないことを意味する。
(4) 室温伸び
 排気系部品には、エンジンの運転(加熱)と停止(冷却)の繰り返しによっても熱変形を生じにくい耐熱変形性が要求される。十分な耐熱変形性を確保するためには、高い高温耐力の他に高い延性を有するのが好ましい。延性を評価するために、1インチYブロックの各供試材から標点間距離50 mm及び直径10 mmの平滑丸棒つばつき試験片を切り出し、これをTMFと同じ電気-油圧サーボ式材料試験機に取り付け、各試験片の大気中25℃での室温伸び(%)を測定した。実施例1~25及び比較例1~33の室温伸びをそれぞれ表3及び表4に示す。
 本発明のオーステナイト系耐熱鋳鋼は室温における伸びが2.0%以上であるのが好ましい。室温伸びが2.0%以上の耐熱鋳鋼からなる排気系部品は、高温から室温付近まで冷却されたときに、高温で発生した圧縮応力から転じた引張応力により変形及び亀裂が発生するのを抑制するに十分な延性を有する。また、排気系部品は、製造中、エンジンへの組み付け中、自動車の始動時や運転中等に加わる機械的な振動及び衝撃に抗して、亀裂及び割れを抑制できる。本発明のオーステナイト系耐熱鋳鋼の室温伸びは3.0%以上であるのがより好ましく、4.0%以上であるのが最も好ましい。
 表3から明らかなように、実施例1~25の室温伸びは全て2.0%以上であった。これから、本発明のオーステナイト系耐熱鋳鋼は室温伸びに優れ、また加熱/冷却を繰り返す排気系部品に使用した場合に十分な耐熱変形性を発揮することが分る。これに対して、表4から明らかなように、S、Cr、Nb、N又はZrの含有量の多すぎる比較例10、12、22及び24は、室温伸びが2.0%未満であった。これは、比較例10、12、22及び24の鋳鋼は室温伸びが不十分であり、また加熱/冷却を繰り返す排気系部品に使用した場合に十分な耐熱変形性を発揮できないことを意味する。
 上記の通り、本発明のオーステナイト系耐熱鋳鋼は、1000℃付近の温度に到達する排気系部品に要求される耐熱性及び耐久性を発揮するために必要な優れた熱疲労特性のみならず、耐酸化性、高温強度及び耐熱変形性も有することが分った。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
実施例26~49、及び比較例34
 実施例26~49のオーステナイト系耐熱鋳鋼、及び比較例34の耐熱鋳鋼の化学組成、C/N及びA/Bを表5-1及び表5-2に示す。なお、各耐熱鋳鋼中の不可避的不純物として、Pは0.02%以下、Alは0.03%以下、Wは0.1%以下、及びMoは0.1%以下であった。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 実施例1~25と同じ方法で、実施例26~49及び比較例34の各耐熱鋳鋼を製造し、熱疲労特性、酸化減量、高温耐力、室温伸び、及びZr窒化物粒子の数を測定した。測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000009
(1) 熱疲労特性
 表6から明らかなように、実施例26~49のTMF熱疲労寿命は全て1000サイクル以上であり、LCF熱疲労寿命は全て2000サイクル以上であった。これから、本発明のオーステナイト系耐熱鋳鋼は熱疲労特性に優れ、1000℃付近の温度までの加熱と冷却とを繰り返す排気系部品に使用した場合に、排気系部品が十分な耐熱性及び耐久性を発揮することが期待される。これに対して、Nb含有量が少なすぎ、C/Nが小さい比較例34の鋳鋼はTMF熱疲労寿命が900サイクル未満であり、LCF熱疲労寿命が1500サイクル未満であった。
(2) 酸化減量
 表6から明らかなように、実施例26~49の酸化減量は全て30 mg/cm2未満であった。これから、本発明のオーステナイト系耐熱鋳鋼は耐酸化性に優れ、1000℃付近の温度に到達する排気系部品に使用した場合に十分な耐酸化性を発揮することが分る。これに対して、Nb含有量が少なすぎ、C/Nが小さい比較例34の鋳鋼は、酸化減量が30 mg/cm2を超えていた。これは、比較例34の鋳鋼は1000℃付近の温度に到達する排気系部品に使用した場合に十分な耐酸化性を発揮できないことを意味する。
(3) 高温耐力
 表6から明らかなように、実施例26~49の高温耐力は20 MPa以上であった。これから、本発明のオーステナイト系耐熱鋳鋼は高温耐力に優れ、1000℃付近の温度に到達する排気系部品に使用した場合に十分な高温強度を発揮することが分る。
(4) 室温伸び
 表6から明らかなように、実施例26~49の室温伸びは全て2.0%以上であった。これから、本発明のオーステナイト系耐熱鋳鋼は室温伸びに優れ、また加熱/冷却を繰り返す排気系部品に使用した場合に十分な耐熱変形性を発揮することが分る。
 上記の通り、Zrを含有する本発明のオーステナイト系耐熱鋳鋼も、1000℃付近の温度に到達する排気系部品に要求される耐熱性及び耐久性を発揮するために必要な優れた熱疲労特性のみならず、耐酸化性、高温強度及び耐熱変形性も有することが分った。
(5) Zr窒化物粒子の数
 実施例35の供試材の1インチYブロックの底部から切り出した組織観察用試験片を鏡面研磨し、腐食なしで、電界放出型走査電子顕微鏡(FE-SEM:株式会社日立ハイテクノロジーズ製のSU-70)を用いて、158μm×119μmの視野の電子顕微鏡写真を撮った。図1は電子顕微鏡写真の一枚である。図1において、薄い灰色部分はオーステナイト相1であり、白色粒子は塊状のNb炭化物2であり、角状の灰白色粒子はZr窒化物3であり、濃い灰色粒子はCr炭化物4であり、黒色粒子はMnS等の硫化物粒子5である。Zr窒化物粒子は、電界放出型走査電子顕微鏡に装着されたエネルギー分散型X線分析装置(EDS:アメテック株式会社製のEDAX Genesis)を用いた分析により確認した。
 各供試材から組織観察用試験片を切り出し、500μm×500μm(0.25 mm2)の任意の3視野の電子顕微鏡写真を撮り、各視野について、画像解析により円相当径1.5μm以上のZr窒化物粒子の数をカウントし、3視野について平均した。実施例26~49及び比較例34の結果を表6に示す。表6から明らかなように、Zrを含有する実施例26~49の耐熱鋳鋼では、組織中の円相当径1.5μm以上のZr窒化物粒子の数は視野面積0.25 mm2当たり20~150個であった。

Claims (6)

  1.  質量基準で、
    C:0.3~0.6%、
    Si:0.5~3%、
    Mn:0.5~2%、
    Cr:15~30%、
    Ni:6~30%、
    Nb:0.6~5%、
    N:0.01~0.5%、及び
    S:0.01~0.5%を含有し、
    CとNの含有量比C/Nが4~7であり、
    残部Fe及び不可避的不純物からなり、
    かつ下記式(1) 及び(2) により表されるCr炭化物生成指数AとNb炭化物生成指数Bとの比率A/Bが0.6~1.7である
      A=8.5C-Nb+0.05Cr+0.65Ni-5・・・(1) 
      B=7.8Nb・・・(2) 
    [ただし、各式中の元素記号はその含有量(質量%)を示す。]
    ことを特徴とする熱疲労特性に優れたオーステナイト系耐熱鋳鋼。
  2.  請求項1に記載のオーステナイト系耐熱鋳鋼において、さらに0.005~0.5質量%のZrを含有することを特徴とするオーステナイト系耐熱鋳鋼。
  3.  請求項2に記載のオーステナイト系耐熱鋳鋼において、組織中の円相当径1.5μm以上のZr窒化物粒子の数が視野面積0.25 mm2当たり20~150個であることを特徴とするオーステナイト系耐熱鋳鋼。
  4.  請求項1~3のいずれかに記載のオーステナイト系耐熱鋳鋼において、試験温度900℃、ひずみ振幅0.5%、ひずみ速度0.1%/秒、及び圧縮保持時間1分の条件で引張・圧縮によりひずみを加除する高温低サイクル疲労試験により測定した疲労寿命が1500サイクル以上であることを特徴とするオーステナイト系耐熱鋳鋼。
  5.  請求項1~4のいずれかに記載のオーステナイト系耐熱鋳鋼からなることを特徴とする排気系部品。
  6.  請求項5に記載の排気系部品において、タービンハウジング、エキゾーストマニホルド、タービンハウジング一体エキゾーストマニホルド、触媒ケース、触媒ケース一体エキゾーストマニホルド、又はエキゾーストアウトレットであることを特徴とする排気系部品。
PCT/JP2015/078228 2014-10-03 2015-10-05 熱疲労特性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品 WO2016052750A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016552192A JP6481692B2 (ja) 2014-10-03 2015-10-05 熱疲労特性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
US15/515,651 US10815555B2 (en) 2014-10-03 2015-10-05 Heat-resistant, austenitic cast steel having excellent thermal fatigue properties, and exhaust member made thereof
KR1020177009956A KR102453685B1 (ko) 2014-10-03 2015-10-05 열피로 특성이 우수한 오스테나이트계 내열 주강 및 그것으로 이루어지는 배기계 부품
CA2963369A CA2963369C (en) 2014-10-03 2015-10-05 Heat-resistant, austenitic cast steel having excellent thermal fatigue properties, and exhaust member made thereof
CN201580052132.1A CN107075633B (zh) 2014-10-03 2015-10-05 热疲劳特性优异的奥氏体系耐热铸钢和包含其的排气系统部件
EP15846497.4A EP3202939B1 (en) 2014-10-03 2015-10-05 Austenitic heat-resistant cast steel having excellent thermal fatigue characteristics, and exhaust system component comprising same
MX2017004302A MX2017004302A (es) 2014-10-03 2015-10-05 Acero fundido austenítico, resistente al calor que tiene propiedades de fatiga térmica excelentes y elemento de escape hecho del mismo.
BR112017006063-9A BR112017006063B1 (pt) 2014-10-03 2015-10-05 Aço inoxidável austenítico, resistente ao aquecimento, possuindo excelentes propriedades de fadiga térmica e componentes de exaustão feitos com o mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014204840 2014-10-03
JP2014-204840 2014-10-03

Publications (1)

Publication Number Publication Date
WO2016052750A1 true WO2016052750A1 (ja) 2016-04-07

Family

ID=55630770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078228 WO2016052750A1 (ja) 2014-10-03 2015-10-05 熱疲労特性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品

Country Status (9)

Country Link
US (1) US10815555B2 (ja)
EP (1) EP3202939B1 (ja)
JP (1) JP6481692B2 (ja)
KR (1) KR102453685B1 (ja)
CN (1) CN107075633B (ja)
BR (1) BR112017006063B1 (ja)
CA (1) CA2963369C (ja)
MX (1) MX2017004302A (ja)
WO (1) WO2016052750A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070900A (ja) * 2016-10-24 2018-05-10 トヨタ自動車株式会社 オーステナイト系耐熱鋳鋼
WO2018160515A1 (en) * 2017-03-03 2018-09-07 Borgwarner Inc. Nickel and chrome based iron alloy having enhanced high temperature oxidation resistance
WO2019130876A1 (ja) * 2017-12-28 2019-07-04 株式会社Ihi 耐熱鋳鋼及び過給機部品
JPWO2021009807A1 (ja) * 2019-07-12 2021-01-21

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393176B (zh) * 2022-02-17 2024-06-07 天津水泥工业设计研究院有限公司 一种低镍的全奥氏体耐热钢及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729562A (en) * 1980-07-28 1982-02-17 Nippon Stainless Steel Co Ltd Heat resistant cast steel with excellent high temperature strength
JP2000096192A (ja) * 1998-09-25 2000-04-04 Kubota Corp 耐肌荒れ性等にすぐれた耐熱鋳鋼
WO2005103314A1 (ja) * 2004-04-19 2005-11-03 Hitachi Metals, Ltd. 高Cr高Niオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP2011219801A (ja) * 2010-04-07 2011-11-04 Toyota Motor Corp オーステナイト系耐熱鋳鋼
JP2014210293A (ja) * 2013-04-17 2014-11-13 日立ツール株式会社 オーステナイト系耐熱鋳鋼の切削方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350150A (ja) * 1990-12-11 1992-12-04 Toyota Motor Corp オーステナイト系耐熱鋳鋼
JP3486713B2 (ja) * 1998-02-25 2004-01-13 株式会社クボタ 可逆式熱間圧延機のファーネスコイラードラム鋳造用高温強度・耐熱疲労特性にすぐれた耐熱鋳鋼
JP2001262287A (ja) * 2000-03-22 2001-09-26 Nippon Steel Corp 表面品質に優れたオーステナイト系ステンレス鋼
ES2395726T3 (es) 2003-10-20 2013-02-14 Kubota Corporation Acero colado termo-resistente para tubo de reacción de producción de hidrógeno siende excelente en cuanto a ductilidad frente al envejecimiento y resistencia frente a la ruptura por deformación plástica
CN104321453B (zh) * 2012-05-10 2016-08-24 日立金属株式会社 被削性优异的奥氏体系耐热铸钢和由其构成的排气系统零件
CN103834876B (zh) * 2014-02-28 2016-04-20 西峡县内燃机进排气管有限责任公司 一种奥氏体耐热铸钢排气歧管及其铸造工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729562A (en) * 1980-07-28 1982-02-17 Nippon Stainless Steel Co Ltd Heat resistant cast steel with excellent high temperature strength
JP2000096192A (ja) * 1998-09-25 2000-04-04 Kubota Corp 耐肌荒れ性等にすぐれた耐熱鋳鋼
WO2005103314A1 (ja) * 2004-04-19 2005-11-03 Hitachi Metals, Ltd. 高Cr高Niオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP2011219801A (ja) * 2010-04-07 2011-11-04 Toyota Motor Corp オーステナイト系耐熱鋳鋼
JP2014210293A (ja) * 2013-04-17 2014-11-13 日立ツール株式会社 オーステナイト系耐熱鋳鋼の切削方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202939A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070900A (ja) * 2016-10-24 2018-05-10 トヨタ自動車株式会社 オーステナイト系耐熱鋳鋼
WO2018160515A1 (en) * 2017-03-03 2018-09-07 Borgwarner Inc. Nickel and chrome based iron alloy having enhanced high temperature oxidation resistance
CN110520551A (zh) * 2017-03-03 2019-11-29 博格华纳公司 具有增强的高温抗氧化性的镍和铬基铁合金
CN110520551B (zh) * 2017-03-03 2022-01-07 博格华纳公司 具有增强的高温抗氧化性的镍和铬基铁合金
WO2019130876A1 (ja) * 2017-12-28 2019-07-04 株式会社Ihi 耐熱鋳鋼及び過給機部品
JPWO2019130876A1 (ja) * 2017-12-28 2020-12-03 株式会社Ihi 耐熱鋳鋼及び過給機部品
US11414735B2 (en) 2017-12-28 2022-08-16 Ihi Corporation Heat-resistant cast steel and turbocharger part
JPWO2021009807A1 (ja) * 2019-07-12 2021-01-21
WO2021009807A1 (ja) * 2019-07-12 2021-01-21 ヒノデホールディングス株式会社 オーステナイト系耐熱鋳鋼および排気系部品
JP7269590B2 (ja) 2019-07-12 2023-05-09 ヒノデホールディングス株式会社 オーステナイト系耐熱鋳鋼および排気系部品

Also Published As

Publication number Publication date
EP3202939A4 (en) 2018-04-11
KR102453685B1 (ko) 2022-10-12
US10815555B2 (en) 2020-10-27
JPWO2016052750A1 (ja) 2017-08-10
US20170298489A1 (en) 2017-10-19
JP6481692B2 (ja) 2019-03-13
CA2963369A1 (en) 2016-04-07
BR112017006063B1 (pt) 2021-06-01
EP3202939A1 (en) 2017-08-09
EP3202939B1 (en) 2020-01-01
MX2017004302A (es) 2017-07-14
CA2963369C (en) 2022-05-17
BR112017006063A2 (pt) 2017-12-19
CN107075633B (zh) 2019-11-26
CN107075633A (zh) 2017-08-18
KR20170063709A (ko) 2017-06-08

Similar Documents

Publication Publication Date Title
JP4985941B2 (ja) 高Cr高Niオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP6481692B2 (ja) 熱疲労特性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
KR101799844B1 (ko) 우수한 탕류성, 내가스 결함성, 인성 및 피삭성을 가지는 페라이트계 내열 주강, 및 이들로 이루어지는 배기계 부품
JP4825886B2 (ja) フェライト系球状黒鉛鋳鉄
KR20060033020A (ko) 오스테나이트계 내열 구형 흑연 주철
JP5488941B2 (ja) オーステナイト系鋳鉄、オーステナイト系鋳鉄鋳物およびその製造方法
JP5626338B2 (ja) 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP6160625B2 (ja) 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP6098637B2 (ja) 被削性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
KR20130130490A (ko) 배기계용 페라이트계 구상흑연주철
JP3700977B2 (ja) 安価で、鋳造性、高温強度、耐酸化性の良好なオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP5475380B2 (ja) オーステナイト系鋳鉄とその製造方法およびオーステナイト系鋳鉄鋳物
JP5483180B2 (ja) フェライト系球状黒鉛鋳鉄及びその製造方法、並びにこれを用いた自動車の排気系部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552192

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15515651

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2963369

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/004302

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017006063

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177009956

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015846497

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017006063

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170324