WO2016052674A1 - 熱可塑性樹脂膜及び合わせガラス - Google Patents

熱可塑性樹脂膜及び合わせガラス Download PDF

Info

Publication number
WO2016052674A1
WO2016052674A1 PCT/JP2015/077866 JP2015077866W WO2016052674A1 WO 2016052674 A1 WO2016052674 A1 WO 2016052674A1 JP 2015077866 W JP2015077866 W JP 2015077866W WO 2016052674 A1 WO2016052674 A1 WO 2016052674A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
layer
laminated glass
resin layer
film
Prior art date
Application number
PCT/JP2015/077866
Other languages
English (en)
French (fr)
Inventor
善永 林
成裕 乾
中村 岳博
晋治 河田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2015553962A priority Critical patent/JP6739939B2/ja
Publication of WO2016052674A1 publication Critical patent/WO2016052674A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties

Definitions

  • the present invention relates to a thermoplastic resin film in which a plurality of layers containing a thermoplastic resin are laminated.
  • the present invention also relates to a laminated glass using the thermoplastic resin film as an interlayer film for laminated glass.
  • Laminated glass is superior in safety even if it is damaged by an external impact and the amount of glass fragments scattered is small. For this reason, the said laminated glass is widely used as a window glass in a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc.
  • the laminated glass is manufactured by sandwiching an interlayer film for laminated glass between a pair of glass plates.
  • thermoplastic resin film in which a plurality of layers containing a thermoplastic resin are laminated is known.
  • Patent Documents 1 to 3 there is a multilayer film in which tear resistance is improved by employing a multilayer structure. By sticking this film on a window glass, breakage and scattering of the glass can be prevented.
  • Patent Document 4 discloses a laminated glass in which a multilayer film in which two or more kinds of resin intermediate films having different Young's moduli are stacked is inserted between glass plates and bonded and integrated. Patent Document 4 describes that impact resistance and peel resistance are improved.
  • the first thermoplastic resin includes a plurality of first thermoplastic resin layers including a thermoplastic resin and a plurality of second thermoplastic resin layers including a thermoplastic resin.
  • the layer and the second thermoplastic resin layer have a multilayer structure laminated in the thickness direction, and the number of layers in the thickness direction of the first thermoplastic resin layer and the second thermoplastic resin layer is The total is 5 layers or more, the tensile elastic modulus in one layer of the first thermoplastic resin layer exceeds 30 MPa, and the tensile elastic modulus in one layer of the second thermoplastic resin layer is 280 MPa or more.
  • a thermoplastic resin film in which the tensile elastic modulus in one layer of the second thermoplastic resin layer is larger than the tensile elastic modulus in one layer of the first thermoplastic resin layer.
  • thermoplastic resin contained in the first thermoplastic resin layer is a polyvinyl acetal resin.
  • thermoplastic resin contained in the second thermoplastic resin layer is a thermoplastic resin different from the polyvinyl acetal resin.
  • the absolute value of the difference in refractive index between the first thermoplastic resin layer and the second thermoplastic resin layer is less than 0.03.
  • the total number of laminated layers in the thickness direction of the first thermoplastic resin layer and the second thermoplastic resin layer is 160 layers or more.
  • the thickness of each of the second thermoplastic resin layers is 11 ⁇ m or less.
  • the ratio of the total thickness of the first thermoplastic resin layer to the total thickness of the second thermoplastic resin layer is 1.5 or more.
  • thermoplastic resin film according to the present invention is preferably used for obtaining laminated glass, and is preferably an interlayer film for laminated glass.
  • the first laminated glass member, the second laminated glass member, and the interlayer film for laminated glass that is the thermoplastic resin film described above, the first laminated glass member,
  • a laminated glass in which the interlayer film for laminated glass is disposed between the second laminated glass member.
  • the thermoplastic resin film according to the present invention includes a plurality of first thermoplastic resin layers containing a thermoplastic resin and a plurality of second thermoplastic resin layers containing a thermoplastic resin, and the first thermoplastic resin
  • the resin layer and the second thermoplastic resin layer have a multilayer structure laminated in the thickness direction, and the number of laminates in the thickness direction of the first thermoplastic resin layer and the second thermoplastic resin layer.
  • the total elastic modulus is 5 layers or more
  • the tensile elastic modulus in one layer of the first thermoplastic resin layer exceeds 30 MPa
  • the tensile elastic modulus in one layer of the second thermoplastic resin layer is 280 MPa or more.
  • the bending elastic modulus can be increased.
  • FIG. 1 is a schematic cross-sectional view showing a thermoplastic resin film according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a laminated glass provided with the thermoplastic resin film shown in FIG.
  • FIG. 3 is a schematic diagram for explaining the manufacturing process of the thermoplastic resin film.
  • FIG. 4 is a schematic diagram for explaining a manufacturing process of the thermoplastic resin film.
  • FIG. 5 is a schematic diagram for explaining a manufacturing process of the thermoplastic resin film.
  • FIG. 6 is a schematic diagram for explaining the manufacturing process of the thermoplastic resin film.
  • the thermoplastic resin film according to the present invention includes a plurality of first thermoplastic resin layers containing a thermoplastic resin and a plurality of second thermoplastic resin layers containing a thermoplastic resin.
  • the thermoplastic resin film according to the present invention has a multilayer structure in which the first thermoplastic resin layer and the second thermoplastic resin layer are laminated in the thickness direction.
  • the total number of laminated layers in the thickness direction of the first thermoplastic resin layer and the second thermoplastic resin layer is 5 or more.
  • the tensile elastic modulus in one layer of the first thermoplastic resin layer exceeds 30 MPa.
  • the tensile elastic modulus in one layer of the second thermoplastic resin layer is 280 MPa or more.
  • the tensile elastic modulus in one layer of the second thermoplastic resin layer is larger than the tensile elastic modulus in one layer of the first thermoplastic resin layer.
  • the flexural modulus can be increased. Therefore, in the present invention, wind pressure resistance can be improved. Furthermore, in this invention, the thermoplastic resin film and laminated glass suitable as an intermediate film for laminated glasses are obtained, without requiring a complicated process.
  • FIG. 1 is a schematic cross-sectional view showing a thermoplastic resin film according to an embodiment of the present invention.
  • the resin film 1 shown in FIG. 1 is a thermoplastic resin film.
  • the resin film 1 has a plurality of thermoplastic resin layers 11.
  • the resin film 1 includes a plurality of first thermoplastic resin layers 11A and a plurality of second thermoplastic resin layers 11B.
  • the first thermoplastic resin layer 11 ⁇ / b> A and the second thermoplastic resin layer 11 ⁇ / b> B are laminated in the thickness direction of the resin film 1.
  • the first thermoplastic resin layers 11 ⁇ / b> A and the second thermoplastic resin layers 11 ⁇ / b> B are alternately stacked in the thickness direction of the resin film 1.
  • the resin film 1 has a multilayer structure.
  • the first thermoplastic resin layer 11A contains a thermoplastic resin.
  • the second thermoplastic resin layer 11B includes a thermoplastic resin.
  • the total number of laminated layers in the thickness direction of the first thermoplastic resin layer 11A and the second thermoplastic resin layer 11B is five or more.
  • the tensile elastic modulus in one layer of the first thermoplastic resin layer 11A exceeds 30 MPa.
  • the tensile elastic modulus in one layer of the second thermoplastic resin layer is 280 MPa or more.
  • the ratio (T1 / T2) of the total thickness (T1) of the first thermoplastic resin layer to the total thickness (T2) of the second thermoplastic resin layer is preferably 0.1 or more, more preferably Is 0.3 or more, more preferably 0.5 or more, preferably 10 or less, more preferably 6 or less, still more preferably 3 or less, and particularly preferably 2 or less.
  • a bending elastic modulus becomes high effectively that the said ratio is more than the said minimum and below the said upper limit.
  • the ratio (L1 / L2) of the total number of laminated layers (L1) of the first thermoplastic resin layers to the total number of laminated layers (L2) of the second thermoplastic resin layers is preferably 0.9 or more, more Preferably it is 1 or more, preferably 1.2 or less, more preferably 1.1 or less.
  • the tensile elastic modulus in one layer of the first thermoplastic resin layer exceeds 30 MPa, preferably 50 MPa or more.
  • the tensile elastic modulus of the first thermoplastic resin layer satisfies the lower limit, the bending elastic modulus is effectively increased. Since the elongation increases moderately, the tensile elastic modulus in one layer of the first thermoplastic resin layer is preferably 200 MPa or less.
  • the tensile elastic modulus in one layer of the second thermoplastic resin layer is 280 MPa or more, preferably 1000 MPa or more.
  • the tensile elastic modulus of the second thermoplastic resin layer is not less than the above lower limit, the bending elastic modulus is effectively increased and the bending strength is further increased.
  • the tensile elastic modulus in one layer of the second thermoplastic resin layer is preferably 4000 MPa or less. .
  • the total number of laminated layers in the thickness direction of the first thermoplastic resin layer and the second thermoplastic resin layer is 5 layers or more, preferably 160 layers or more.
  • stacking number is not specifically limited, For example, it is 100,000 or less layers from a practical surface.
  • the first thermoplastic resin layer (A) and the second thermoplastic resin layer (B) may be alternately laminated as A / B / A / B.
  • the same thermoplastic resin layer may overlap like / A / A / B / A / ... and A / B / B / A / B / B /.
  • the thermoplastic resin film preferably has a laminated part of A / B / A / B, more preferably has a laminated part of A / B / A / B / A or B / A / B / A / B. preferable.
  • a resin layer other than the first thermoplastic resin layer and the second thermoplastic resin layer may be laminated.
  • the one surface layer in the thermoplastic resin layer is preferably the first thermoplastic resin layer, and the other surface layer is the first heat layer.
  • a plastic resin is preferred.
  • One or two of the first thermoplastic resin layers are preferably located on the outermost surface in the thermoplastic resin film.
  • each layer of the second thermoplastic resin layer is preferably 11 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 1 ⁇ m or less.
  • the thickness of each of the second thermoplastic resin layers is preferably 0.01 ⁇ m or more.
  • the absolute value of the difference in refractive index between the first thermoplastic resin layer and the second thermoplastic resin layer is desirably small, preferably less than 0.03, more preferably 0. 0.02, more preferably less than 0.01.
  • the absolute value of the difference in refractive index is less than or equal to the above upper limit, light reflection, refraction, scattering and the like are less likely to occur at the layer interface in the resin film, and the transparency is further enhanced.
  • the thermoplastic resin film may be stretched.
  • the stretching temperature is preferably 50 ° C or higher, more preferably 60 ° C or higher, still more preferably 64 ° C or higher, preferably lower than 90 ° C, more preferably lower than 70 ° C, still more preferably lower than 66 ° C.
  • the draw ratio is preferably 1.5 times or more, more preferably 2 times or more, and further preferably 3 times or more.
  • thermoplastic resin film is an interlayer film for laminated glass
  • the penetration resistance of the laminated glass provided with the interlayer film is increased by increasing the tear strength of the interlayer film. Therefore, it becomes possible to use a glass plate that is thinner than a conventional glass plate while maintaining equivalent penetration resistance performance, in order to obtain laminated glass, and the laminated glass can be reduced in weight.
  • thermoplastic resin film according to the present invention may be used as a composite film by laminating another thermoplastic resin film on the surface.
  • the surface of the thermoplastic resin film may be embossed.
  • the embossing method include an embossing roll method and a lip embossing method.
  • the embossing roll method is preferable because embossing can be performed so that a certain uneven pattern is quantitatively formed.
  • the ten-point average roughness Rz of the outer surface of the embossed resin film is preferably 0. .1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the ten-point average roughness Rz is measured according to JIS B0601: 1994.
  • thermoplastic resin contained in the thermoplastic resin layer examples include polyvinyl acetal resin, ethylene-vinyl acetate copolymer, polystyrene, acrylic resin, phenol resin, vinyl chloride resin, AS resin polycarbonate, polyester, ABS resin, acetal resin, polyamide resin, cellulose acetate, MS Examples thereof include resins, MBS resins, and SB resins. Thermoplastic resins other than these may be used.
  • the thermoplastic resin contained in the first thermoplastic resin layer is a polyvinyl acetal resin or an ethylene-vinyl acetate copolymer. It is preferable that it is a polyvinyl acetal resin. From the viewpoint of further improving the tensile strength, adhesive strength, penetration resistance and sound insulation properties in a balanced manner, the first thermoplastic resin layer more preferably contains a polyvinyl acetal resin and a plasticizer.
  • the thermoplastic resin contained in the second thermoplastic resin layer is appropriately selected in consideration of the flexural modulus.
  • the thermoplastic resin contained in the second thermoplastic resin layer is preferably a thermoplastic resin different from the polyvinyl acetal resin.
  • examples of the thermoplastic resin contained in the second thermoplastic resin layer include polystyrene, acrylic resin, phenol resin, vinyl chloride resin, AS resin, polycarbonate, polyester, ABS resin, acetal resin, polyamide resin, cellulose acetate, MS Examples thereof include resins, MBS resins, and SB resins. Thermoplastic resins other than these may be used.
  • the thermoplastic resin contained in the second thermoplastic resin layer is preferably an acrylic resin because the flexural modulus is further improved.
  • the acrylic resin is preferably a polymethyl methacrylate resin.
  • the polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol (PVA) with an aldehyde.
  • PVA polyvinyl alcohol
  • the polyvinyl acetal resin is preferably an acetalized product of polyvinyl alcohol.
  • the degree of saponification of PVA is generally in the range of 70-99.9 mol%.
  • the degree of polymerization of PVA for obtaining the polyvinyl acetal resin is preferably 200 or more, more preferably 500 or more, further preferably more than 1700, particularly preferably 2000 or more, preferably 5000 or less, more preferably 4000 or less, more More preferably, it is 3000 or less, More preferably, it is less than 3000, Most preferably, it is 2800 or less.
  • the polyvinyl acetal resin is preferably a polyvinyl acetal resin obtained by acetalizing PVA having a degree of polymerization of not less than the above lower limit and not more than the above upper limit. When the polymerization degree is equal to or higher than the lower limit, the penetration resistance of the laminated glass is further enhanced. When the degree of polymerization is not more than the above upper limit, the resin film can be easily molded.
  • the polymerization degree of PVA indicates an average polymerization degree.
  • the average degree of polymerization is determined by a method based on JIS K6726 “Testing method for polyvinyl alcohol”.
  • an aldehyde having 1 to 10 carbon atoms is preferably used as the aldehyde.
  • the aldehyde having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, Examples include n-nonyl aldehyde, n-decyl aldehyde, and benzaldehyde.
  • n-butyraldehyde n-hexylaldehyde or n-valeraldehyde is preferable, and n-butyraldehyde is more preferable.
  • the said aldehyde only 1 type may be used and 2 or more types may be used together.
  • the polyvinyl acetal resin contained in the resin film is preferably a polyvinyl butyral resin.
  • the adhesive force of the resin film to the laminated glass member is more appropriately expressed. Furthermore, the weather resistance of the resin film is further increased.
  • thermoplastic resin layer containing a polyvinyl acetal resin preferably contains a plasticizer.
  • plasticizer only 1 type may be used and 2 or more types may be used together.
  • plasticizer examples include organic acid ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and organic phosphate esters such as organic phosphate ester plasticizers and organic phosphite plasticizers. A plasticizer etc. are mentioned. Of these, organic acid ester plasticizers are preferred.
  • the plasticizer is preferably a liquid plasticizer.
  • the monobasic organic acid ester is not particularly limited.
  • examples include esters.
  • Examples of the glycol include triethylene glycol, tetraethylene glycol, and tripropylene glycol.
  • Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
  • polybasic organic acid ester examples include ester compounds of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
  • polybasic organic acid examples include adipic acid, sebacic acid, and azelaic acid.
  • organic ester plasticizer examples include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, Triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl Hexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-eth
  • organic phosphate plasticizer examples include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate, and the like.
  • the plasticizer is preferably a diester plasticizer represented by the following formula (1).
  • R1 and R2 each represent an organic group having 2 to 10 carbon atoms
  • R3 represents an ethylene group, an isopropylene group or an n-propylene group
  • p represents an integer of 3 to 10
  • R1 and R2 in the above formula (1) are each preferably an organic group having 5 to 10 carbon atoms, and more preferably an organic group having 6 to 10 carbon atoms.
  • the plasticizer is preferably triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH) or triethylene glycol di-2-ethylpropanoate. More preferred is triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and even more preferred is triethylene glycol di-2-ethylhexanoate.
  • 3GO triethylene glycol di-2-ethylhexanoate
  • GGH triethylene glycol di-2-ethylbutyrate
  • triethylene glycol di-2-ethylpropanoate More preferred is triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and even more preferred is triethylene glycol di-2-ethylhexanoate.
  • the amount of the plasticizer added to the polyvinyl acetal resin can be appropriately adjusted depending on the average degree of polymerization of PVA, the degree of acetalization and the degree of acetylation of the polyvinyl acetal resin.
  • the content of the plasticizer in the first thermoplastic resin layer is preferably 5 parts by weight or more, more preferably 10 parts by weight or more with respect to 100 parts by weight of the polyvinyl acetal resin in the first thermoplastic resin layer. , Preferably 60 parts by weight or less, more preferably 40 parts by weight or less.
  • the content of the plasticizer is not less than the above lower limit, the penetration resistance of the laminated glass is further enhanced.
  • the content of the plasticizer is not more than the above upper limit, the transparency of the resin film is further increased, and the flexural modulus of the resin film is effectively increased.
  • Each layer in the resin film is made of an ultraviolet absorber, an antioxidant, a light stabilizer, a flame retardant, an antistatic agent, a pigment, a dye, an adhesive force adjusting agent, a moisture-proofing agent, a fluorescent whitening agent, and an infrared ray as necessary.
  • An additive such as an absorbent may be included.
  • thermoplastic resin film examples include a wet lamination method, a dry lamination method, an extrusion coating method, a multilayer melt extrusion method, a hot melt lamination method, and a heat lamination method.
  • thermoplastic resin film which is easy to manufacture and has excellent tensile strength can be obtained
  • the above resin film is preferably obtained by a multilayer melt extrusion method.
  • the multilayer melt extrusion method include a multi-manifold method and a feed block method.
  • thermoplastic resin film according to the present invention is suitably used for obtaining laminated glass.
  • the thermoplastic resin film according to the present invention is preferably an interlayer film for laminated glass.
  • the laminated glass according to the present invention includes a first laminated glass member, a second laminated glass member, and an interlayer film for laminated glass that is the thermoplastic resin film.
  • the interlayer film for laminated glass is disposed between the first laminated glass member and the second laminated glass member.
  • FIG. 2 is a schematic cross-sectional view showing a laminated glass provided with the thermoplastic resin film shown in FIG.
  • a laminated glass 51 shown in FIG. 2 includes a first laminated glass member 52, a second laminated glass member 53, and a resin film 1.
  • the resin film 1 is disposed between the first laminated glass member 52 and the second laminated glass member 53 and is sandwiched.
  • the first laminated glass member 52 is laminated on the first surface 1 a of the resin film 1.
  • the second laminated glass member 53 is laminated on the second surface 1 b of the resin film 1. Therefore, the laminated glass 51 is configured by laminating the first laminated glass member 52, the resin film 1, and the second laminated glass member 53 in this order.
  • the laminated glass member examples include a glass plate, a polycarbonate film, a cycloolefin film, an acrylic film, and a polyester film.
  • Laminated glass includes not only laminated glass in which a resin film is sandwiched between two glass plates, but also laminated glass in which a resin film is sandwiched between a glass plate and a PET film or the like.
  • Laminated glass is a laminated body provided with a glass plate, and preferably at least one glass plate is used.
  • Each of the first laminated glass member and the second laminated glass member is preferably a glass plate or a PET film, and the laminated glass is glass as at least one of the first laminated glass member and the second laminated glass member. It is preferable to provide a plate.
  • the glass plate examples include inorganic glass and organic glass.
  • the inorganic glass examples include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, mold plate glass, netted plate glass, and lined plate glass.
  • the organic glass is a synthetic resin glass substituted for inorganic glass.
  • the organic glass examples include polycarbonate plates and poly (meth) acrylic resin plates.
  • the poly (meth) acrylic resin plate examples include a polymethyl (meth) acrylate plate.
  • the thickness of the laminated glass member is preferably 0.5 mm or more, more preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less. Moreover, when a laminated glass member is a glass plate, the thickness of this glass plate becomes like this. Preferably it is 1 mm or more, Preferably it is 3 mm or less. When the laminated glass member is a PET film, the thickness of the PET film is preferably 0.03 mm or more, and preferably 0.5 mm or less.
  • the method for producing the laminated glass is not particularly limited.
  • the first laminated glass member is sandwiched between a first laminated glass member and a second laminated glass member, passed through a pressing roll, or placed in a rubber bag and sucked under reduced pressure, to thereby form a first laminated glass. Air remaining between the member and the resin film and between the first laminated glass member and the resin film is degassed. Thereafter, it is pre-adhered at about 70 to 110 ° C. to obtain a laminate. Next, the laminate is put in an autoclave or pressed and pressed at about 120 to 150 ° C. and a pressure of 1 to 1.5 MPa. In this way, a laminated glass can be obtained. In the case where embossing is formed on the outer surface of the second layer opposite to the laminate side, between the first laminated glass member and the intermediate film, and between the second laminated glass member and the intermediate film The remaining air can be more effectively degassed.
  • Laminated glass can be used for automobiles, railway vehicles, aircraft, ships and buildings. Laminated glass can be used in addition to these.
  • the laminated glass is preferably laminated glass for buildings or vehicles, and more preferably laminated glass for buildings. In laminated glass for construction, a fairly high wind pressure resistance is required.
  • Laminated glass can be used for a windshield, side glass, rear glass, roof glass, or the like of an automobile.
  • the laminated glass can also be used as a functional laminated glass such as a sound insulating laminated glass having a sound insulating property by being laminated with another inorganic film or an organic film.
  • the laminated glass is particularly preferably a window glass.
  • the haze value of the laminated glass is preferably 3% or less, more preferably 2% or less, still more preferably 1% or less, still more preferably 0.5% or less, and particularly preferably 0.4% or less.
  • the haze value of the laminated glass can be measured according to JIS K6714.
  • each layer constituting the resin film preferably does not contain a filler.
  • thermoplastic resin film of the present invention can also be used as a damping material by laminating with a rigid body other than glass, for example, laminating with a metal or an inorganic material.
  • a thermoplastic resin film with a liquid crystal member it is possible to achieve both strength increase and scattering prevention.
  • Example 1 As a resin constituting the first thermoplastic resin layer, a polyvinyl butyral resin (average polymerization degree 1700, acetalization degree 69 mol%, acetylation degree 1 mol%, hydroxyl group content 30 mol%, manufactured by Sekisui Chemical Co., Ltd.) was prepared. . Triethylene glycol di-2-ethylhexanoate (3GO) was prepared as a plasticizer. As a resin constituting the second thermoplastic resin layer, acrylic resin (polymethyl methacrylate resin (PMMA), “MF001” manufactured by Mitsubishi Rayon Co., Ltd.), Vicat softening temperature 89 ° C.
  • PMMA polymethyl methacrylate resin
  • MF001 manufactured by Mitsubishi Rayon Co., Ltd.
  • melt flow rate 14.0 g / 10 min JIS K7210, 230 ° C., 37.3 N was prepared.
  • the polymethyl methacrylate resin was used after being dried at a temperature of 75 ° C. for 6 hours.
  • the square mixer has a flow path that can double the number of layers by dividing the molten resin that has passed through the flow path having a rectangular cross-section into two by a branch flow path, and stacking and joining them. It is the cylinder which has.
  • the number of layers is 40 by compressing the flow path in the direction of the arrow X1 so that the 40-layer laminate 21 shown in FIG. 3 is divided into two at the center as shown in FIG.
  • two compressed products having a thickness of 1 ⁇ 2 can be obtained.
  • a laminate 22 having 80 layers which is twice as many as shown in FIG.
  • a 160-layer laminate can be obtained.
  • a laminate of 640 layers can be obtained.
  • the 640-layer laminate thus obtained was supplied to a T-die and formed into a sheet shape, and then taken up by a take-up roll to obtain a 640-layer resin film having an average thickness of 380 ⁇ m. However, when used for evaluation, a portion having a thickness of 380 ⁇ m was selected for sampling.
  • Example 2 The molten resin extruded from the extruder 1 and the molten resin extruded from the extruder 2 were alternately laminated and joined together in a feed block in which 10 layers were laminated together to obtain a 10-layer laminate. Then, 10 layers of resin films were obtained in the same manner as in Example 1 except that they were not supplied to the square mixer.
  • Example 3 A 640-layer resin film was obtained in the same manner as in Example 1 except that the amount of plasticizer supplied was changed from 25 parts by weight to 20 parts by weight in order to form the first thermoplastic resin layer.
  • Example 1 A 640-layer resin film was obtained in the same manner as in Example 1 except that the amount of plasticizer supplied was changed from 25 parts by weight to 30 parts by weight in order to form the first thermoplastic resin layer.
  • the average value of the thickness of the center part of the obtained width direction of each layer was calculated
  • the ratio (T1 / T2) of the total thickness (T1) of all the first thermoplastic resin layers to the total thickness (T2) of all the second thermoplastic resin layers was determined.
  • thermoplastic resin layer and the second thermoplastic resin layer in Examples 1 to 3 and Comparative Example 1 were measured according to the following procedure.
  • the compositions for forming the first thermoplastic resin layer and the resin for forming the second thermoplastic resin layer in Examples 1 to 3 and Comparative Example 1 were each extruded as a single layer using an extruder.
  • a single-layer resin film having an average thickness of 380 ⁇ m was produced.
  • a test piece sampled in a strip shape having a width of 10 mm and a length of 150 mm was prepared.
  • the tensile elasticity modulus was measured at 23 degreeC by the method based on ASTM D882: 2012 using the universal testing machine RTC-1310A by Orientec.
  • the bending elastic modulus was measured by a method based on JIS K7171: 2008 except that the dimensions of the test piece used were changed.
  • the dimensions of the test piece were 25 mm in width, 250 mm in length, and 3 mm in thickness.
  • the distance between fulcrums was 180 mm, and the test speed was 1 mm / min.
  • Refractive index Using a sharp razor, a test piece sampled in a shape having a width of 10 mm and a length of 30 mm was prepared.
  • the refractive index was measured according to JIS K7142 using an Abbe refractometer ER-7MW manufactured by ERMA. At this time, the refractive index nD measured at 23 ° C. with a D-ray (wavelength 589.3 nm) was defined as the refractive index.
  • Refractive index result In Examples 1 to 3, the refractive index of the first thermoplastic resin layer is 1.481, the refractive index of the second thermoplastic resin layer is 1.496, and the first thermoplastic resin layer and the second thermoplastic resin layer have a refractive index of 1.496.
  • the absolute value of the difference in refractive index from the thermoplastic resin layer was 0.015.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

 曲げ弾性率を高めることができる熱可塑性樹脂膜を提供する。 本発明に係る熱可塑性樹脂膜は、熱可塑性樹脂を含む複数の第1の熱可塑性樹脂層と、熱可塑性樹脂を含む複数の第2の熱可塑性樹脂層とを備え、前記第1,第2の熱可塑性樹脂層が、厚み方向に積層された多層構造を有し、前記第1,第2の熱可塑性樹脂層の厚み方向の積層数の合計が5層以上であり、前記第1の熱可塑性樹脂層の1層での引張弾性率が30MPaを超え、前記第2の熱可塑性樹脂層の1層での引張弾性率が280MPa以上であり、前記第2の熱可塑性樹脂層の1層での引張弾性率が、前記第1の熱可塑性樹脂層の1層での引張弾性率よりも大きい。

Description

熱可塑性樹脂膜及び合わせガラス
 本発明は、熱可塑性樹脂を含む層が複数積層されている熱可塑性樹脂膜に関する。また、本発明は、上記熱可塑性樹脂膜を合わせガラス用中間膜として用いた合わせガラスに関する。
 合わせガラスは、外部衝撃を受けて破損してもガラスの破片の飛散量が少なく、安全性に優れている。このため、上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に、窓ガラスとして広く使用されている。上記合わせガラスは、一対のガラス板の間に合わせガラス用中間膜を挟み込むことにより、製造されている。
 また、熱可塑性樹脂を含む層が複数積層されている熱可塑性樹脂膜が知られている。例えば、下記の特許文献1~3に開示されているように、多層構造とすることで、耐引裂性を向上させた多層膜がある。このフィルムを、窓ガラスに貼ることでガラスの破損及び飛散を防ぐことができる。また、下記の特許文献4には、ヤング率の異なる2種類以上の樹脂製の中間膜を重ね合わせた多層膜を、ガラス板間に挿入して接着一体化した合わせガラスが開示されている。特許文献4では、耐衝撃性及び耐剥離性を向上させることが記載されている。
特開平6-190995号公報 特開平6-190997号公報 特開平10-76620号公報 特開2003-192402号公報
 近年、高層建築物が増えており、特に外壁をガラス張りにした高層建築物が増えている。このような高層建築物に用いられる窓ガラスや、外壁に用いられる窓ガラスには、高い耐風圧性が求められている。
 しかし、熱可塑性樹脂膜を用いた窓ガラスにおいて、熱可塑性樹脂膜の耐引裂性を高めても、窓ガラスの曲げ弾性率が低いと、耐風圧性が十分に発揮されない。特許文献1~4に記載のような従来の多層膜では、窓ガラスに用いた場合に得られた窓ガラスの曲げ弾性率が比較的低く、耐風圧性が十分に得られないことがある。
 本発明の目的は、曲げ弾性率を高めることができる熱可塑性樹脂膜を提供することである。また、本発明は、上記熱可塑性樹脂膜を合わせガラス用中間膜として用いた合わせガラスを提供することも目的とする。
 本発明の広い局面によれば、熱可塑性樹脂を含む複数の第1の熱可塑性樹脂層と、熱可塑性樹脂を含む複数の第2の熱可塑性樹脂層とを備え、前記第1の熱可塑性樹脂層と前記第2の熱可塑性樹脂層とが、厚み方向に積層された多層構造を有し、前記第1の熱可塑性樹脂層と前記第2の熱可塑性樹脂層との厚み方向の積層数の合計が5層以上であり、前記第1の熱可塑性樹脂層の1層での引張弾性率が30MPaを超え、前記第2の熱可塑性樹脂層の1層での引張弾性率が280MPa以上であり、前記第2の熱可塑性樹脂層の1層での引張弾性率が、前記第1の熱可塑性樹脂層の1層での引張弾性率よりも大きい、熱可塑性樹脂膜が提供される。
 本発明に係る熱可塑性樹脂膜のある特定の局面では、前記第1の熱可塑性樹脂層に含まれる前記熱可塑性樹脂が、ポリビニルアセタール樹脂である。
 本発明に係る熱可塑性樹脂膜のある特定の局面では、前記第2の熱可塑性樹脂層に含まれる前記熱可塑性樹脂が、ポリビニルアセタール樹脂とは異なる熱可塑性樹脂である。
 本発明に係る熱可塑性樹脂膜のある特定の局面では、前記第1の熱可塑性樹脂層と前記第2の熱可塑性樹脂層との屈折率の差の絶対値が0.03未満である。
 本発明に係る熱可塑性樹脂膜のある特定の局面では、前記第1の熱可塑性樹脂層と前記第2の熱可塑性樹脂層との厚み方向の積層数の合計が160層以上である。
 本発明に係る熱可塑性樹脂膜のある特定の局面では、前記第2の熱可塑性樹脂層のそれぞれの1層の厚みが11μm以下である。
 本発明に係る熱可塑性樹脂膜のある特定の局面では、前記第1の熱可塑性樹脂層の合計の厚みの、前記第2の熱可塑性樹脂層の合計の厚みに対する比が1.5以上である。
 本発明に係る熱可塑性樹脂膜は、合わせガラスを得るために好適に用いられ、合わせガラス用中間膜であることが好ましい。
 本発明の広い局面によれば、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した熱可塑性樹脂膜である合わせガラス用中間膜とを備え、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されている、合わせガラスが提供される。
 本発明に係る熱可塑性樹脂膜は、熱可塑性樹脂を含む複数の第1の熱可塑性樹脂層と、熱可塑性樹脂を含む複数の第2の熱可塑性樹脂層とを備え、上記第1の熱可塑性樹脂層と上記第2の熱可塑性樹脂層とが、厚み方向に積層された多層構造を有し、上記第1の熱可塑性樹脂層と上記第2の熱可塑性樹脂層との厚み方向の積層数の合計が5層以上であり、上記第1の熱可塑性樹脂層の1層での引張弾性率が30MPaを超え、上記第2の熱可塑性樹脂層の1層での引張弾性率が280MPa以上であり、上記第2の熱可塑性樹脂層の1層での引張弾性率が、上記第1の熱可塑性樹脂層の1層での引張弾性率よりも大きいので、曲げ弾性率を高めることができる。
図1は、本発明の一実施形態に係る熱可塑性樹脂膜を示す模式的な断面図である。 図2は、図1に示す熱可塑性樹脂膜を備えた合わせガラスを示す模式的な断面図である。 図3は、熱可塑性樹脂膜の製造過程を説明するための模式図である。 図4は、熱可塑性樹脂膜の製造過程を説明するための模式図である。 図5は、熱可塑性樹脂膜の製造過程を説明するための模式図である。 図6は、熱可塑性樹脂膜の製造過程を説明するための模式図である。
 以下、本発明の詳細を説明する。
 本発明に係る熱可塑性樹脂膜は、熱可塑性樹脂を含む複数の第1の熱可塑性樹脂層と、熱可塑性樹脂を含む複数の第2の熱可塑性樹脂層とを備える。本発明に係る熱可塑性樹脂膜は、上記第1の熱可塑性樹脂層と上記第2の熱可塑性樹脂層とが、厚み方向に積層された多層構造を有する。上記第1の熱可塑性樹脂層と上記第2の熱可塑性樹脂層との厚み方向の積層数の合計は5層以上である。上記第1の熱可塑性樹脂層の1層での引張弾性率は30MPaを超える。上記第2の熱可塑性樹脂層の1層での引張弾性率は280MPa以上である。上記第2の熱可塑性樹脂層の1層での引張弾性率が、上記第1の熱可塑性樹脂層の1層での引張弾性率よりも大きい。
 本発明では、上述した構成が備えられているので、曲げ弾性率を高めることができる。従って、本発明では、耐風圧性を高めることができる。さらに、本発明では、煩雑な工程を必要とせずに、合わせガラス用中間膜として好適な熱可塑性樹脂膜及び合わせガラスが得られる。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
 図1は、本発明の一実施形態に係る熱可塑性樹脂膜を示す模式的な断面図である。
 図1に示す樹脂膜1は、熱可塑性樹脂膜である。樹脂膜1は、複数の熱可塑性樹脂層11を有する。樹脂膜1は、複数の第1の熱可塑性樹脂層11Aと、複数の第2の熱可塑性樹脂層11Bとを有する。第1の熱可塑性樹脂層11Aと、第2の熱可塑性樹脂層11Bとは、樹脂膜1の厚み方向に積層されている。本実施形態では、第1の熱可塑性樹脂層11Aと、第2の熱可塑性樹脂層11Bとは、樹脂膜1の厚み方向に交互に積層されている。樹脂膜1は、多層構造を有する。
 第1の熱可塑性樹脂層11Aは熱可塑性樹脂を含む。第2の熱可塑性樹脂層11Bは熱可塑性樹脂を含む。第1の熱可塑性樹脂層11Aと第2の熱可塑性樹脂層11Bとの厚み方向の積層数の合計は5層以上である。第1の熱可塑性樹脂層11Aの1層での引張弾性率は30MPaを超える。上記第2の熱可塑性樹脂層の1層での引張弾性率は280MPa以上である。
 上記第1の熱可塑性樹脂層の合計の厚み(T1)の、上記第2の熱可塑性樹脂層の合計の厚み(T2)に対する比(T1/T2)は、好ましくは0.1以上、より好ましくは、0.3以上、更に好ましくは0.5以上、好ましくは10以下、より好ましくは6以下、更に好ましくは3以下、特に好ましくは2以下である。上記比が上記下限以上及び上記上限以下であると、曲げ弾性率が効果的に高くなる。
 上記第1の熱可塑性樹脂層の合計の積層数(L1)の上記第2の熱可塑性樹脂層の合計の積層数(L2)に対する比(L1/L2)は、好ましくは0.9以上、より好ましくは1以上、好ましくは1.2以下、より好ましくは1.1以下である。
 上記第1の熱可塑性樹脂層の1層での引張弾性率は、30MPaを超え、好ましくは50MPa以上である。上記第1の熱可塑性樹脂層の引張弾性率が上記下限値を満足すると、曲げ弾性率が効果的に高くなる。伸度が適度に大きくなることから、上記第1の熱可塑性樹脂層の1層での引張弾性率は、好ましくは200MPa以下である。
 上記第2の熱可塑性樹脂層の1層での引張弾性率は、280MPa以上であり、好ましくは1000MPa以上である。上記第2の熱可塑性樹脂層の引張弾性率が上記下限以上であると、曲げ弾性率が効果的に高くなり、曲げ強度がより一層高くなる。第2の熱可塑性樹脂層が硬くなりすぎず、かつ脆性的に破壊するのを抑える観点からは、上記第2の熱可塑性樹脂層の1層での引張弾性率は、好ましくは4000MPa以下である。
 本発明に係る熱可塑性樹脂膜では、上記第1の熱可塑性樹脂層と上記第2の熱可塑性樹脂層との厚み方向の積層数の合計が5層以上であり、好ましくは160層以上である。上記積層数の合計は、特に限定されないが、例えば実用面から100000層以下である。
 第1の熱可塑性樹脂層(A)と第2の熱可塑性樹脂層(B)とは、A/B/A/B・・・のようにそれぞれ交互に積層されていてもよく、A/B/A/A/B/A/・・・やA/B/B/A/B/B/・・・のように、同じ熱可塑性樹脂層が重なっていてもよい。上記熱可塑性樹脂膜は、A/B/A/Bの積層部分を有することが好ましく、A/B/A/B/A又はB/A/B/A/Bの積層部分を有することがより好ましい。また、上記第1の熱可塑性樹脂層及び上記第2の熱可塑性樹脂層以外の他の樹脂層を積層してもよい。合わせガラスにする際の貼り合わせの簡便さから、熱可塑性樹脂層における一方側の表面層は、上記第1の熱可塑性樹脂層であることが好ましく、他方側の表面層は上記第1の熱可塑性樹脂であることが好ましい。上記第1の熱可塑性樹脂層のうちの1つ又は2つは、熱可塑性樹脂膜において、最表面に位置していることが好ましい。
 上記第2の熱可塑性樹脂層のそれぞれの1層の厚みは好ましくは11μm以下、より好ましくは3μm以下、更に好ましくは1μm以下である。上記第2の熱可塑性樹脂層のそれぞれの1層の厚み上記上限以下であると、第2の熱可塑性樹脂層が破断する際に第1の熱可塑性樹脂層がより一層破断し難くなり、樹脂膜がより一層破断し難くなる。上記第2の熱可塑性樹脂層のそれぞれの1層の厚みは、好ましくは0.01μm以上である。
 透明性を高める観点から、上記第1の熱可塑性樹脂層と上記第2の熱可塑性樹脂層との屈折率の差の絶対値は小さいことが望ましく、好ましくは0.03未満、より好ましくは0.02未満、更に好ましくは0.01未満である。上記屈折率の差の絶対値が上記上限以下であると、樹脂膜内の層界面で光の反射、屈折及び散乱などが生じ難くなり、透明性がより一層高くなる。
 上記熱可塑性樹脂膜は、延伸されていてもよい。延伸温度は、好ましくは50℃以上、より好ましくは60℃以上、更に好ましくは64℃以上、好ましくは90℃未満、より好ましくは70℃未満、更に好ましくは66℃未満である。延伸温度が上記下限以上であると、樹脂の弾性による収縮が生じ難くなり、分子配向が効果的に発現する。延伸温度が上記上限以下又は上記上限未満であると、樹脂が流れるように変形し難くなり、分子配向が効果的に発現する。延伸倍率は、好ましくは1.5倍以上、より好ましくは2倍以上、更に好ましくは3倍以上である。
 上記の熱可塑性樹脂膜が合わせガラス用中間膜である場合に、中間膜の引裂強度を高めることで、該中間膜を備えた合わせガラスの耐貫通性が上昇する。よって、同等の耐貫通性能を維持したままで、従来のガラス板より薄いガラス板を、合わせガラスを得るために用いることが可能となり、合わせガラスの軽量化を図ることができる。
 本発明に係る熱可塑性樹脂膜は、表面に他の熱可塑性樹脂膜が積層されて、複合膜として用いられてもよい。
 上記の熱可塑性樹脂膜の表面は、エンボス加工されていてもよい。エンボス加工する方法としては、エンボスロール法及びリップエンボス法等が挙げられる。定量的に一定の凹凸模様が形成されるようにエンボス加工を行うことができることから、エンボスロール法が好ましい。
 合わせガラス部材との接着性をより一層高くし、合わせガラスの耐貫通性をより一層高める観点からは、上記エンボス加工された樹脂膜の外側の表面の十点平均粗さRzは、好ましくは0.1μm以上、より好ましくは1μm以上、好ましくは100μm以下、より好ましくは50μm以下である。上記十点平均粗さRzは、JIS B0601:1994に準拠して測定される。
 以下、本発明に係る樹脂膜に含まれる各成分の詳細を説明する。
 (熱可塑性樹脂層に含まれる熱可塑性樹脂)
 上記熱可塑性樹脂としては、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合体、ポリスチレン、アクリル樹脂、フェノール樹脂、塩化ビニル樹脂、AS樹脂ポリカーボネート、ポリエステル、ABS樹脂、アセタール樹脂、ポリアミド樹脂、酢酸セルロース、MS樹脂、MBS樹脂、及びSB樹脂等が挙げられる。これら以外の熱可塑性樹脂を用いてもよい。
 引張強度、接着力、耐貫通性及び遮音性をバランスよく良好にする観点からは、上記第1の熱可塑性樹脂層に含まれる上記熱可塑性樹脂は、ポリビニルアセタール樹脂又はエチレン-酢酸ビニル共重合体であることが好ましく、ポリビニルアセタール樹脂であることがより好ましい。引張強度、接着力、耐貫通性及び遮音性をバランスよくより一層良好にする観点からは、上記第1の熱可塑性樹脂層は、ポリビニルアセタール樹脂と可塑剤とを含むことがより好ましい。
 上記第2の熱可塑性樹脂層に含まれる上記熱可塑性樹脂は、曲げ弾性率を考慮して適宜選ばれる。上記第2の熱可塑性樹脂層に含まれる上記熱可塑性樹脂は、ポリビニルアセタール樹脂とは異なる熱可塑性樹脂であることが好ましい。上記第2の熱可塑性樹脂層に含まれる上記熱可塑性樹脂としては、ポリスチレン、アクリル樹脂、フェノール樹脂、塩化ビニル樹脂、AS樹脂、ポリカーボネート、ポリエステル、ABS樹脂、アセタール樹脂、ポリアミド樹脂、酢酸セルロース、MS樹脂、MBS樹脂、及びSB樹脂等が挙げられる。これら以外の熱可塑性樹脂を用いてもよい。上記第2の熱可塑性樹脂層に含まれる上記熱可塑性樹脂は、曲げ弾性率がより一層向上することから、アクリル樹脂であることが好ましい。上記アクリル樹脂は、ポリメチルメタクリレート樹脂であることが好ましい。
 上記ポリビニルアセタール樹脂は、例えば、ポリビニルアルコール(PVA)をアルデヒドによりアセタール化することにより製造できる。上記ポリビニルアセタール樹脂は、ポリビニルアルコールのアセタール化物であることが好ましい。PVAのけん化度は、一般に、70~99.9モル%の範囲内である。
 上記ポリビニルアセタール樹脂を得るためのPVAの重合度は、好ましくは200以上、より好ましくは500以上、更に好ましくは1700を超え、特に好ましくは2000以上、好ましくは5000以下、より好ましくは4000以下、より一層好ましくは3000以下、更に好ましくは3000未満、特に好ましくは2800以下である。上記ポリビニルアセタール樹脂は、重合度が上記下限以上及び上記上限以下であるPVAをアセタール化することにより得られるポリビニルアセタール樹脂であることが好ましい。上記重合度が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記重合度が上記上限以下であると、樹脂膜の成形が容易になる。
 PVAの重合度は平均重合度を示す。該平均重合度は、JIS K6726「ポリビニルアルコール試験方法」に準拠した方法により求められる。
 上記アルデヒドとして、一般には、炭素数が1~10のアルデヒドが好適に用いられる。上記炭素数が1~10のアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド及びベンズアルデヒド等が挙げられる。なかでも、n-ブチルアルデヒド、n-ヘキシルアルデヒド又はn-バレルアルデヒドが好ましく、n-ブチルアルデヒドがより好ましい。上記アルデヒドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 樹脂膜に含まれる上記ポリビニルアセタール樹脂は、ポリビニルブチラール樹脂であることが好ましい。ポリビニルブチラール樹脂の使用により、合わせガラス部材に対する樹脂膜の接着力がより一層適度に発現する。さらに、樹脂膜の耐候性等がより一層高くなる。
 (可塑剤)
 ポリビニルアセタール樹脂を含む熱可塑性樹脂層は、可塑剤を含むことが好ましい。上記可塑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記可塑剤としては、例えば、一塩基性有機酸エステル及び多塩基性有機酸エステルなどの有機酸エステル可塑剤、並びに有機リン酸エステル可塑剤及び有機亜リン酸エステル可塑剤などの有機リン酸エステル可塑剤等が挙げられる。なかでも、有機酸エステル可塑剤が好ましい。上記可塑剤は液状可塑剤であることが好ましい。
 上記一塩基性有機酸エステルとしては、特に限定されず、例えば、グリコールと一塩基性有機酸との反応によって得られたグリコールエステル、並びにトリエチレングリコール又はトリプロピレングリコールと一塩基性有機酸とのエステル等が挙げられる。上記グリコールとしては、トリエチレングリコール、テトラエチレングリコール及びトリプロピレングリコール等が挙げられる。上記一塩基性有機酸としては、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸及びデシル酸等が挙げられる。
 上記多塩基性有機酸エステルとしては、多塩基性有機酸と、炭素数4~8の直鎖又は分岐構造を有するアルコールとのエステル化合物等が挙げられる。上記多塩基性有機酸としては、アジピン酸、セバシン酸及びアゼライン酸等が挙げられる。
 上記有機エステル可塑剤としては、トリエチレングリコールジ-2-エチルプロパノエート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリレート、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ヘプチルノニル、セバシン酸ジブチル、油変性セバシン酸アルキド、及びリン酸エステルとアジピン酸エステルとの混合物等が挙げられる。これら以外の有機エステル可塑剤を用いてもよい。上述のアジピン酸エステル以外の他のアジピン酸エステルを用いてもよい。
 上記有機リン酸可塑剤としては、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェート等が挙げられる。
 上記可塑剤は、下記式(1)で表されるジエステル可塑剤であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、R1及びR2はそれぞれ、炭素数2~10の有機基を表し、R3は、エチレン基、イソプロピレン基又はn-プロピレン基を表し、pは3~10の整数を表す。上記式(1)中のR1及びR2はそれぞれ、炭素数5~10の有機基であることが好ましく、炭素数6~10の有機基であることがより好ましい。
 上記可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)、トリエチレングリコールジ-2-エチルブチレート(3GH)又はトリエチレングリコールジ-2-エチルプロパノエートであることが好ましく、トリエチレングリコールジ-2-エチルヘキサノエート又はトリエチレングリコールジ-2-エチルブチレートであることがより好ましく、トリエチレングリコールジ-2-エチルヘキサノエートであることが更に好ましい。
 ポリビニルアセタール樹脂と可塑剤とを含む層において、上記ポリビニルアセタール樹脂に対する可塑剤の添加量は、PVAの平均重合度、ポリビニルアセタール樹脂のアセタール化度及びアセチル化度等によって適宜調整することができる。
 上記第1の熱可塑性樹脂層中のポリビニルアセタール樹脂100重量部に対して、上記第1の熱可塑性樹脂層中の可塑剤の含有量は好ましくは5重量部以上、より好ましくは10重量部以上、好ましくは60重量部以下、より好ましくは40重量部以下である。上記可塑剤の含有量が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記可塑剤の含有量が上記上限以下であると、樹脂膜の透明性がより一層高くなり、樹脂膜の曲げ弾性率が効果的に高くなる。
 (他の成分)
 上記の樹脂膜における各層は、必要に応じて、紫外線吸収剤、酸化防止剤、光安定剤、難燃剤、帯電防止剤、顔料、染料、接着力調整剤、耐湿剤、蛍光増白剤及び赤外線吸収剤等の添加剤を含んでいてもよい。
 (熱可塑性樹脂膜の製造方法)
 上記の熱可塑性樹脂膜の製造方法としては、例えば、ウェットラミネーション法、ドライラミネーション法、押出コーティング法、多層溶融押出成形法、ホットメルトラミネーション法及びヒートラミネーション法等が挙げられる。
 製造が容易であり、かつ引張強度が優れた熱可塑性樹脂膜が得られるため、上記の樹脂膜は、多層溶融押出成形法により得られていることが好ましい。上記多層溶融押出成形法としては、例えば、マルチマニホールド法及びフィードブロック法等が挙げられる。
 (合わせガラス)
 本発明に係る熱可塑性樹脂膜は、合わせガラスを得るために好適に用いられる。本発明に係る熱可塑性樹脂膜は、合わせガラス用中間膜であることが好ましい。
 本発明に係る合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、上記熱可塑性樹脂膜である合わせガラス用中間膜とを備える。上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、上記合わせガラス用中間膜が配置されている。
 図2は、図1に示す熱可塑性樹脂膜を備えた合わせガラスを示す模式的な断面図である。
 図2に示す合わせガラス51は、第1の合わせガラス部材52と、第2の合わせガラス部材53と、樹脂膜1とを備える。樹脂膜1は、第1の合わせガラス部材52と第2の合わせガラス部材53との間に配置されており、挟み込まれている。第1の合わせガラス部材52は、樹脂膜1の第1の表面1aに積層されている。第2の合わせガラス部材53は、樹脂膜1の第2の表面1bに積層されている。従って、合わせガラス51は、第1の合わせガラス部材52と、樹脂膜1と、第2の合わせガラス部材53とがこの順で積層されて構成されている。
 上記合わせガラス部材としては、ガラス板、ポリカーボネートフィルム、シクロオレフィンフィルム、アクリルフィルム及びポリエステルフィルム等が挙げられる。合わせガラスには、2枚のガラス板の間に樹脂膜が挟み込まれている合わせガラスだけでなく、ガラス板とPETフィルム等との間に樹脂膜が挟み込まれている合わせガラスも含まれる。合わせガラスは、ガラス板を備えた積層体であり、少なくとも1枚のガラス板が用いられていることが好ましい。第1の合わせガラス部材及び第2の合わせガラス部材はそれぞれガラス板又はPETフィルムであることが好ましく、合わせガラスは、第1の合わせガラス部材及び第2の合わせガラス部材のうちの少なくとも一方としてガラス板を備えることが好ましい。
 上記ガラス板としては、無機ガラス及び有機ガラスが挙げられる。上記無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、熱線反射板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、及び線入り板ガラス等が挙げられる。上記有機ガラスは、無機ガラスに代用される合成樹脂ガラスである。上記有機ガラスとしては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。
 上記合わせガラス部材の厚みは、好ましくは0.5mm以上、より好ましくは1mm以上、好ましくは5mm以下、より好ましくは3mm以下である。また、合わせガラス部材がガラス板である場合に、該ガラス板の厚みは、好ましくは1mm以上、好ましくは3mm以下である。合わせガラス部材がPETフィルムである場合に、該PETフィルムの厚みは、好ましくは0.03mm以上、好ましくは0.5mm以下である。
 上記合わせガラスの製造方法は特に限定されない。例えば、第1の合わせガラス部材と第2の合わせガラス部材との間に、樹脂膜を挟んで、押圧ロールに通したり、又はゴムバックに入れて減圧吸引したりして、第1の合わせガラス部材と樹脂膜との間及び第1の合わせガラス部材と樹脂膜との間に残留する空気を脱気する。その後、約70~110℃で予備接着して積層体を得る。次に、積層体をオートクレーブに入れたり、又はプレスしたりして、約120~150℃及び1~1.5MPaの圧力で圧着する。このようにして、合わせガラスを得ることができる。上記第2の層の上記積層体側とは反対の外側の表面にエンボスが形成されている場合には、第1の合わせガラス部材と中間膜との間、及び第2の合わせガラス部材と中間膜との間に残留する空気をより一層効果的に脱気できる。
 合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。合わせガラスは、これら以外にも使用できる。合わせガラスは、建築用又は車両用の合わせガラスであることが好ましく、建築用の合わせガラスであることがより好ましい。建築用の合わせガラスでは、かなり高い耐風圧性が求められる。合わせガラスは、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。また、上記合わせガラスは、他の無機膜もしくは有機膜と積層して用いることにより、例えば遮音性を付与した遮音性合わせガラスなどの機能性合わせガラスとして用いることもできる。上記合わせガラスは、窓ガラスであることが特に好ましい。
 上記合わせガラスのヘーズ値は、好ましくは3%以下、より好ましくは2%以下、より一層好ましくは1%以下、更に好ましくは0.5%以下、特に好ましくは0.4%以下である。合わせガラスのヘーズ値は、JIS K6714に準拠して測定できる。上記合わせガラスのヘーズ値を低くするために、上記の樹脂膜を構成する各層はフィラーを含まないことが好ましい。
 なお、本発明の熱可塑性樹脂膜は、ガラス以外の剛性体と積層することにより、例えば、金属や無機材料等と積層することにより、制振素材として用いることもできる。他にも、例えば、熱可塑性樹脂膜を液晶部材と貼り合せることによって、強度上昇と飛散防止を両立させることもできる。
 以下、実施例を挙げて本発明を更に詳しく説明する。本発明はこれら実施例のみに限定されない。
 (実施例1)
 第1の熱可塑性樹脂層を構成する樹脂として、ポリビニルブチラール樹脂(平均重合度1700、アセタール化度69mol%、アセチル化度1mol%、水酸基の含有率30mol%、積水化学工業社製)を用意した。可塑剤として、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)を用意した。第2の熱可塑性樹脂層を構成する樹脂として、アクリル樹脂(ポリメチルメタクリレート樹脂(PMMA)、三菱レイヨン社製「MF001」、ビカット軟化温度89℃(JIS K7206)、メルトフローレート14.0g/10min(JIS K7210、230℃、37.3N))を用意した。ポリメチルメタクリレート樹脂は、温度75℃で6時間乾燥させて用いた。
 170℃に加熱された押出機1に、上記第1の熱可塑性樹脂層を構成する樹脂100重量部と可塑剤25重量部とを供給し、200℃に加熱された押出機2に上記第2の熱可塑性樹脂層を構成する樹脂100重量部を供給した。このとき、単位時間当たりの押出量は、押出機1と押出機2との重量比が6:1となるようにした。それぞれギアポンプを介して、押出機1から押出される溶融樹脂と押出機2から押出される溶融樹脂とが交互に積層され、合わせて40層積層されるフィールドブロックにて合流させて、40層の積層体21を得た(図3参照)。その後、スクエアミキサーに、積層体21を供給して、80層の積層体を得た(図4~6参照)。その後、2つ目のスクエアミキサーに供給して160層の積層体を得た。
 なお、スクエアミキサーは、断面形状が長方形である流路を通過した溶融樹脂を、分岐流路により2分割し、それらを積み重ねて合流させて層数を2倍にすることが可能な流路を有する筒体である。スクエアミキサーでは、図3に示す40層の積層体21を、図4に示すように中央で2分割するように、矢印X1の方向に流路を圧縮することで、層数が40層であり、かつ厚みが1/2である2つの圧縮物を得ることができる。次に、図5に示すように矢印X2の方向に流路を拡大することで、図6に示すように層数が2倍の80層である積層体22を得ることができる。同様の操作を繰り返して、160層の積層体を得ることができる。さらに2度、同様の操作を繰り返して、640層の積層体を得ることができる。
 このようにして得られた640層の積層体をTダイに供給して、シート状に成形した後、引取ロールで引き取り、平均厚み380μmの640層の樹脂膜を得た。ただし、評価に用いる際は、厚み380μmの部分を選択してサンプリングを行った。
 (実施例2)
 押出機1から押出される溶融樹脂と押出機2から押出される溶融樹脂とが交互に積層され、合わせて10層積層されるフィードブロックにて合流させて、10層の積層体を得たことと、その後スクエアミキサーに供給しなかったこと以外は実施例1と同様にして、10層の樹脂膜を得た。
 (実施例3)
 第1の熱可塑性樹脂層を形成するために、可塑剤の供給量を25重量部から20重量部に変更したこと以外は実施例1と同様にして、640層の樹脂膜を得た。
 (比較例1)
 第1の熱可塑性樹脂層を形成するために、可塑剤の供給量を25重量部から30重量部に変更したこと以外は実施例1と同様にして、640層の樹脂膜を得た。
 (評価)
 (1)1層の厚み、及び、(2)層比
 得られた樹脂膜を、ウルトラミクロトーム(ライカ社製「EM-ULTRACUT・S」)で縦1cm×横1cmの大きさで厚み方向に切断し、積層体の断面を得た。積層体の断面の幅方向の中心部を、デジタルマイクロスコープ(キーエンス社製「VHX-200」)を用いて20μm×20μmの範囲で観察した。視野を厚さ方向に動かすことにより、全ての層の画像を撮影し、断面の拡大画像を得た。断面の拡大画像から、上記デジタルマイクロスコープ付属の計測機能を用いて、各層の幅方向の中心部の厚みを測定した。得られた各層の幅方向の中心部の厚みの平均値を求め、積層体における第1の熱可塑性樹脂層の平均厚み(1層の厚み)及び第2の熱可塑性樹脂層の平均厚み(1層の厚み)とした。全ての第1の熱可塑性樹脂層の合計の厚み(T1)の、全ての第2の熱可塑性樹脂層の合計の厚み(T2)に対する比(T1/T2)を求めた。
 (3)引張弾性率
 実施例1~3及び比較例1における第1の熱可塑性樹脂層及び第2の熱可塑性樹脂層の引張弾性率を以下の手順に従って測定した。実施例1~3及び比較例1における第1の熱可塑性樹脂層を形成するための組成物及び第2の熱可塑性樹脂層を形成するための樹脂を、それぞれ押出機を用いて単層で押出し、平均厚みが380μmである単層の樹脂膜を作製した。得られた単層の樹脂膜に対して鋭利なカミソリを使用し、幅10mm、長さ150mmの短冊状にサンプリングした試験片を用意した。この試験片について、オリエンテック社製万能試験機RTC-1310Aを用いて、ASTM D 882:2012に準拠した方法で、23℃で引張弾性率を測定した。
 (4)曲げ弾性率
 合わせガラスの作製:
 幅25mm、長さ250mmの短冊状にサンプリングした樹脂膜を、幅25mm、厚み1.3mm、長さ250mmのフロートガラス2枚で挟み、真空ラミネーターにて90℃で真空プレスを行い、圧着した。その後、140℃及び1.3MPaの条件でオートクレーブを用いて圧着を行い、合わせガラスを得た。
 曲げ弾性率の評価:
 使用する試験片の寸法を変更したこと以外は、JIS K7171:2008に準拠した方法で、曲げ弾性率を測定した。試験片の寸法は、幅25mm、長さ250mm、及び厚み3mmとした。支点間距離は180mmとし、試験速度は1mm/minとした。
 (5)屈折率
 鋭利なカミソリを使用し、幅10mm、長さ30mmの形状にサンプリングした試験片を用意した。ERMA社製アッベ屈折計ER-7MWを用いて、JIS K7142に準拠して、屈折率を測定した。このとき、23℃で、D線(波長589.3nm)により測定した屈折率nDを、屈折率とした。
 屈折率の結果:
 実施例1~3では、第1の熱可塑性樹脂層の屈折率は1.481、第2の熱可塑性樹脂層の屈折率は1.496であり、第1の熱可塑性樹脂層と第2の熱可塑性樹脂層との屈折率の差の絶対値は0.015であった。
 上記評価結果を表1に記載する。下記の表1において、「PVB」は、ポリビニルブチラール樹脂を示し、「PMMA」はポリメチルメタクリレート樹脂を示す。
Figure JPOXMLDOC01-appb-T000002
 1…樹脂膜
 1a…第1の表面
 1b…第2の表面
 11…熱可塑性樹脂層
 11A…第1の熱可塑性樹脂層
 11B…第2の熱可塑性樹脂層
 21…積層体(40層)
 22…積層体(80層)
 51…合わせガラス
 52…第1の合わせガラス部材
 53…第2の合わせガラス部材

Claims (9)

  1.  熱可塑性樹脂を含む複数の第1の熱可塑性樹脂層と、熱可塑性樹脂を含む複数の第2の熱可塑性樹脂層とを備え、
     前記第1の熱可塑性樹脂層と前記第2の熱可塑性樹脂層とが、厚み方向に積層された多層構造を有し、
     前記第1の熱可塑性樹脂層と前記第2の熱可塑性樹脂層との厚み方向の積層数の合計が5層以上であり、
     前記第1の熱可塑性樹脂層の1層での引張弾性率が30MPaを超え、
     前記第2の熱可塑性樹脂層の1層での引張弾性率が280MPa以上であり、
     前記第2の熱可塑性樹脂層の1層での引張弾性率が、前記第1の熱可塑性樹脂層の1層での引張弾性率よりも大きい、熱可塑性樹脂膜。
  2.  前記第1の熱可塑性樹脂層に含まれる前記熱可塑性樹脂が、ポリビニルアセタール樹脂である、請求項1に記載の熱可塑性樹脂膜。
  3.  前記第2の熱可塑性樹脂層に含まれる前記熱可塑性樹脂が、ポリビニルアセタール樹脂とは異なる熱可塑性樹脂である、請求項1又は2に記載の熱可塑性樹脂膜。
  4.  前記第1の熱可塑性樹脂層と前記第2の熱可塑性樹脂層との屈折率の差の絶対値が0.03未満である、請求項1~3のいずれか1項に記載の熱可塑性樹脂膜。
  5.  前記第1の熱可塑性樹脂層と前記第2の熱可塑性樹脂層との厚み方向の積層数の合計が160層以上である、請求項1~4のいずれか1項に記載の熱可塑性樹脂膜。
  6.  前記第2の熱可塑性樹脂層のそれぞれの1層の厚みが11μm以下である、請求項1~5のいずれか1項に記載の熱可塑性樹脂膜。
  7.  前記第1の熱可塑性樹脂層の合計の厚みの、前記第2の熱可塑性樹脂層の合計の厚みに対する比が、1.5以上である、請求項1~6のいずれか1項に記載の熱可塑性樹脂膜。
  8.  合わせガラスを得るために用いられ、
     合わせガラス用中間膜である、請求項1~7のいずれか1項に記載の熱可塑性樹脂膜。
  9.  第1の合わせガラス部材と、
     第2の合わせガラス部材と、
     請求項8に記載の熱可塑性樹脂膜である合わせガラス用中間膜とを備え、
     前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されている、合わせガラス。
PCT/JP2015/077866 2014-09-30 2015-09-30 熱可塑性樹脂膜及び合わせガラス WO2016052674A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553962A JP6739939B2 (ja) 2014-09-30 2015-09-30 熱可塑性樹脂膜及び合わせガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-202617 2014-09-30
JP2014202617 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052674A1 true WO2016052674A1 (ja) 2016-04-07

Family

ID=55630695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077866 WO2016052674A1 (ja) 2014-09-30 2015-09-30 熱可塑性樹脂膜及び合わせガラス

Country Status (2)

Country Link
JP (1) JP6739939B2 (ja)
WO (1) WO2016052674A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119635A (ja) * 2017-12-28 2019-07-22 株式会社クラレ 合わせガラス用中間膜、合わせガラス及び合わせガラスの製造方法
KR20200093672A (ko) * 2018-08-14 2020-08-05 악첸타 파넬레 + 프로필레 게엠베하 멀티-라미네이트 플라스틱 캐리어 플레이트 및 그 제조 방법
KR20200120945A (ko) * 2018-08-14 2020-10-22 악첸타 파넬레 + 프로필레 게엠베하 다중 라미네이트 플라스틱 캐리어 플레이트를 가진 장식 패널 및 그 제조 방법
CN114267810A (zh) * 2021-12-15 2022-04-01 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
US11999140B2 (en) 2018-08-14 2024-06-04 Akzenta Paneele + Profile Gmbh Decorative panel having a multi-laminate plastic carrier plate and method for the production thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172878A (ja) * 1993-12-22 1995-07-11 Sekisui Chem Co Ltd 合わせガラス用中間膜
JP2009522136A (ja) * 2005-12-30 2009-06-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 多層ポリマー積層体及びそれから製造される高強度積層体
WO2011016494A1 (ja) * 2009-08-07 2011-02-10 株式会社クラレ ポリビニルアセタール積層体およびその用途
WO2015152243A1 (ja) * 2014-03-31 2015-10-08 積水化学工業株式会社 熱可塑性樹脂膜及び合わせガラス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172878A (ja) * 1993-12-22 1995-07-11 Sekisui Chem Co Ltd 合わせガラス用中間膜
JP2009522136A (ja) * 2005-12-30 2009-06-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 多層ポリマー積層体及びそれから製造される高強度積層体
WO2011016494A1 (ja) * 2009-08-07 2011-02-10 株式会社クラレ ポリビニルアセタール積層体およびその用途
WO2015152243A1 (ja) * 2014-03-31 2015-10-08 積水化学工業株式会社 熱可塑性樹脂膜及び合わせガラス

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119635A (ja) * 2017-12-28 2019-07-22 株式会社クラレ 合わせガラス用中間膜、合わせガラス及び合わせガラスの製造方法
KR20200093672A (ko) * 2018-08-14 2020-08-05 악첸타 파넬레 + 프로필레 게엠베하 멀티-라미네이트 플라스틱 캐리어 플레이트 및 그 제조 방법
KR20200120945A (ko) * 2018-08-14 2020-10-22 악첸타 파넬레 + 프로필레 게엠베하 다중 라미네이트 플라스틱 캐리어 플레이트를 가진 장식 패널 및 그 제조 방법
KR102468172B1 (ko) * 2018-08-14 2022-11-16 악첸타 파넬레 + 프로필레 게엠베하 멀티-라미네이트 플라스틱 캐리어 플레이트 및 그 제조 방법
US11518148B2 (en) 2018-08-14 2022-12-06 Akzenta Paneele + Profile Gmbh Decorative panel having a multi-laminate plastic carrier plate and method for the production thereof
KR102480810B1 (ko) * 2018-08-14 2022-12-23 악첸타 파넬레 + 프로필레 게엠베하 다중 라미네이트 플라스틱 캐리어 플레이트를 가진 장식 패널 및 그 제조 방법
US11999140B2 (en) 2018-08-14 2024-06-04 Akzenta Paneele + Profile Gmbh Decorative panel having a multi-laminate plastic carrier plate and method for the production thereof
CN114267810A (zh) * 2021-12-15 2022-04-01 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Also Published As

Publication number Publication date
JP6739939B2 (ja) 2020-08-12
JPWO2016052674A1 (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6523422B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP6170638B1 (ja) 合わせガラス用中間膜及び合わせガラス
JP5975877B2 (ja) 合わせガラス用中間膜、合わせガラス用中間膜の製造方法及び合わせガラス
JP6853290B2 (ja) 熱可塑性樹脂膜及び合わせガラス
JP6229076B2 (ja) 合わせガラス用中間膜及び合わせガラス
WO2016052671A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP2009517248A (ja) エチレン−酢酸ビニル共重合体を含むポリマー中間層
TWI749041B (zh) 著色之層合玻璃用中間膜及著色之層合玻璃
WO2017039004A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP6530711B2 (ja) 合わせガラス用中間膜、合わせガラス用中間膜の製造方法及び合わせガラス
KR102353053B1 (ko) 접합 유리용 중간막 및 접합 유리
JP2019077613A (ja) 合わせガラス用中間膜及び合わせガラス
JP6739939B2 (ja) 熱可塑性樹脂膜及び合わせガラス
WO2014136881A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP6666719B2 (ja) 合わせガラス用中間膜、合わせガラス用中間膜の製造方法及び合わせガラス
WO2015147218A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP2016069278A (ja) 合わせガラス用中間膜及び合わせガラス
KR102340501B1 (ko) 접합 유리용 중간막, 접합 유리용 중간막의 제조 방법 및 접합 유리
JP2019023152A (ja) 熱可塑性樹脂膜及びガラス板含有積層体
JP2015196608A (ja) 合わせガラス用中間膜及び合わせガラス
JP2015193514A (ja) 熱可塑性樹脂膜及び合わせガラス
JP6769904B2 (ja) 熱可塑性樹脂膜
JP6240018B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP2014080359A (ja) 熱可塑性樹脂膜及び合わせガラス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015553962

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845931

Country of ref document: EP

Kind code of ref document: A1