WO2016051493A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2016051493A1
WO2016051493A1 PCT/JP2014/076048 JP2014076048W WO2016051493A1 WO 2016051493 A1 WO2016051493 A1 WO 2016051493A1 JP 2014076048 W JP2014076048 W JP 2014076048W WO 2016051493 A1 WO2016051493 A1 WO 2016051493A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pipe
liquid
refrigeration cycle
storage tank
Prior art date
Application number
PCT/JP2014/076048
Other languages
English (en)
French (fr)
Inventor
智隆 石川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to AU2014407850A priority Critical patent/AU2014407850B2/en
Priority to US15/509,971 priority patent/US10088210B2/en
Priority to CN201480082328.0A priority patent/CN107076465B/zh
Priority to JP2016551379A priority patent/JP6227797B2/ja
Priority to EP14903075.1A priority patent/EP3203163B1/en
Priority to PCT/JP2014/076048 priority patent/WO2016051493A1/ja
Priority to KR1020177010861A priority patent/KR101908874B1/ko
Publication of WO2016051493A1 publication Critical patent/WO2016051493A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a refrigeration cycle apparatus used for, for example, freezing and refrigeration.
  • a conventional refrigeration cycle apparatus includes an outdoor unit having a compressor and a heat source side heat exchanger, an indoor unit having a use side heat exchanger and a throttling device, and a refrigerant pipe connecting them, the compressor, the heat source side heat exchanger
  • the expansion device and the use-side heat exchanger are configured by pipe connection (for example, see Patent Document 1).
  • an HFC refrigerant fluorocarbon not containing chlorine
  • an R404A refrigerant R-125, R-134a, R-143a
  • R410A refrigerant R32 is 50 wt%, R125 is 50 wt%), and the like.
  • the refrigeration cycle that has been used so far is used from the viewpoint of ease of construction and reduction of component costs. It is conceivable to reuse the transition pipe of the apparatus as the transition pipe of a new refrigeration cycle apparatus.
  • the operating pressure of R410A is higher than the operating pressure of R404A. Therefore, when the transition pipe of the refrigeration cycle apparatus using the R404A refrigerant is reused as the transition pipe of the refrigeration cycle apparatus using the R410A refrigerant, the refrigeration cycle particularly in a state where the refrigerant stays in the transition pipe due to a power failure or the like. In a situation where the apparatus is stopped, when the temperature of the refrigerant rises due to an increase in the outside air temperature, the pressure of the refrigerant rises, and there is a possibility that the pressure of the refrigerant exceeds the pressure resistance reference value of the crossover pipe. Therefore, it was necessary to change the transition pipe to a thick pipe.
  • a liquid-side crossover pipe and a gas-side crossover pipe that connect the outdoor unit and the indoor unit, a liquid-side refrigerant pipe that connects the condenser and the liquid-side crossover pipe, a compressor and a gas-side crossover
  • a gas side refrigerant pipe connecting the pipe, a first connection pipe extending from the liquid side refrigerant pipe or the liquid side crossover pipe, and a second connection pipe extending from the gas side refrigerant pipe or the gas side crossover pipe.
  • the suction side is connected to the first connection pipe
  • the discharge side is connected to the second connection pipe
  • the first connection pipe are provided for suction into the refrigerant storage tank
  • the first check valve that allows the refrigerant to flow only in the direction
  • a conventional refrigeration cycle device equipped with a solenoid valve has been proposed For example, see Patent Document 2).
  • the present invention has been made to solve the above-described problems. Even when a liquid side crossover pipe for low-pressure refrigerant is used, the refrigerant in the liquid side crossover pipe is recovered at the time of stoppage, and the liquid side crossover is recovered.
  • An object of the present invention is to obtain a refrigeration cycle apparatus that can suppress the occurrence of problems with pressure resistance of piping, shorten the construction time, reduce the construction cost, and reduce the size of the refrigerant storage tank.
  • a refrigeration cycle apparatus includes a compressor that compresses and discharges a refrigerant, a heat source unit that includes a condenser that condenses the refrigerant discharged from the compressor, and a pressure reducing device that depressurizes the refrigerant flowing out of the condenser. And a cooling unit having an evaporator for evaporating the refrigerant flowing out from the decompression device, a liquid side crossover pipe and a gas side crossover pipe connecting the heat source unit and the cooling unit, the condenser and the liquid side crossover A liquid-side refrigerant pipe connecting the pipe, and a gas-side refrigerant pipe connecting the compressor and the gas-side crossover pipe.
  • the refrigeration cycle apparatus further includes a liquid side connecting pipe extending from the liquid side refrigerant pipe or the liquid side connecting pipe, a gas side connecting pipe extending from the gas side refrigerant pipe or the gas side connecting pipe, and a suction side.
  • a refrigerant storage tank that is connected to the liquid side connection pipe, a discharge side is connected to the gas side connection pipe, and stores a refrigerant; an inlet side solenoid valve that is disposed in the liquid side connection pipe and is opened when no power is supplied; An inlet-side check valve that is disposed in the liquid-side connection pipe and allows the refrigerant to flow only to the refrigerant storage tank side, and is disposed in the gas-side connection pipe and is opened when the inlet-side solenoid valve is energized. And a valve device that is interrupted after the energization stop of the inlet side solenoid valve.
  • the inlet side solenoid valve is shut off and the valve device is opened, so that the inside of the refrigerant storage tank is maintained at a low pressure.
  • the inlet side solenoid valve is opened, so that the high-pressure liquid refrigerant in the liquid side refrigerant pipe and the liquid side crossover pipe flows into the refrigerant storage tank.
  • the valve device is opened for a while after stopping, the high-pressure liquid refrigerant flows into the refrigerant storage tank, and the gas refrigerant in the refrigerant storage tank is discharged.
  • the gas refrigerant that has remained in the refrigerant storage tank is confined in the refrigerant storage tank, and the pressure in the refrigerant storage tank becomes high, and the high-pressure liquid refrigerant cannot be recovered. Thereafter, the valve device is shut off, and the high-pressure liquid refrigerant is sealed in the refrigerant storage tank. Thereby, the high-pressure liquid refrigerant remaining in the high-pressure side refrigerant circuit is collected and sealed in the refrigerant storage tank. Therefore, even when the liquid side crossover piping for the low-pressure refrigerant is used, it is possible to suppress the occurrence of the pressure-resistance problem of the liquid side crossover piping at the time of stoppage. Furthermore, it is not necessary to increase the volume of the refrigerant storage tank, and the refrigerant storage tank can be made compact.
  • FIG. 1 is a refrigerant circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • a refrigeration cycle apparatus 100 includes a heat source unit 1 installed outdoors, a cooling unit 2 installed in a store to be cooled, for example, a convenience store or a supermarket, a refrigerant storage tank 12 that stores refrigerant, Is provided.
  • the heat source unit 1 and the cooling unit 2 are connected via a liquid side crossover pipe 5 and a gas side crossover pipe 8.
  • the heat source unit 1 includes a compressor 3 that compresses the refrigerant, and a condenser 4 that is a heat source side heat exchanger.
  • the suction side of the compressor 3 is connected to a gas side crossover pipe 8 via a gas side refrigerant pipe 9.
  • the discharge side of the compressor 3 is connected to the inlet of the condenser 4 via the discharge pipe 10.
  • the outlet of the condenser 4 is connected to the gas side crossover pipe 5 via the liquid side refrigerant pipe 11.
  • the cooling unit 2 includes a decompression device 6 and an evaporator 7 that is a use side heat exchanger.
  • the cooling unit 2 includes a refrigerant circuit through which high-pressure liquid refrigerant flowing from the liquid side crossover pipe 5 flows in the order of the decompression device 6, the evaporator 7, and the gas side crossover pipe 8.
  • the decompression device 6 applies an electric expansion valve capable of adjusting the flow rate of the refrigerant, and expands and decompresses the high-pressure liquid refrigerant flowing from the liquid side crossover pipe 5.
  • the driving of the decompression device 6 is controlled by a control unit (not shown).
  • the refrigerant storage tank 12 has a suction side connected to a liquid side connection pipe 13 extending from the liquid side refrigerant pipe 11 and a discharge side connected to a gas side connection pipe 14 extending from the gas side refrigerant pipe 9.
  • the gas side connection pipe 14 is attached to the refrigerant storage tank 12 so that the end (outlet) thereof is located in the upper space in the refrigerant storage tank 12. That is, the gas side connection pipe 14 is connected to the refrigerant storage tank 12 so as to open to the upper part in the refrigerant storage tank 12, and only the gas refrigerant in the refrigerant storage tank 12 can flow out to the gas side refrigerant pipe 9.
  • An energized and closed inlet-side electromagnetic valve 15 and an inlet-side check valve 16 that can flow only in the inflow direction to the refrigerant storage tank 12 are provided in the liquid-side connection pipe 13. Further, a mechanical on-off valve 17 as a valve device that mechanically opens and closes the valve is provided in the gas side connection pipe 14.
  • the temperature type expansion valve is one in which the same refrigerant as that used in the refrigeration cycle apparatus 100 is enclosed in the temperature sensing cylinder 18 and the opening degree of the expansion valve is adjusted by a saturation pressure corresponding to the temperature of the temperature sensing cylinder 18.
  • the reference pressure for adjusting the opening of the expansion valve is the refrigerant saturation pressure at the portion where the expansion valve body is located.
  • the expansion valve is closed.
  • the temperature sensing cylinder 18 is disposed in the discharge pipe 10, and the expansion valve is opened and closed by a saturation pressure corresponding to the temperature of the discharge pipe 10. Since the temperature sensing cylinder 18 is installed in the discharge pipe 10 where the temperature becomes high, a large driving force for opening and closing the valve can be obtained.
  • the installation place of the temperature sensing cylinder 18 is not limited to the discharge pipe 10 and may be any place where a temperature higher than the saturation temperature corresponding to the reference pressure can be obtained during normal operation.
  • the liquid side crossover pipe 5 is upstream of the decompression device 6 and is on the high pressure side of the refrigeration cycle.
  • the gas side crossover pipe 8 is downstream of the decompression device 6 and is on the low pressure side of the refrigeration cycle.
  • the refrigeration cycle apparatus 100 is filled with CO 2 , which is a high-pressure refrigerant, so that the pressure on the high-pressure side of the refrigeration cycle is equal to or lower than the critical pressure of the refrigerant. That is, the high pressure side of the refrigeration cycle apparatus 100 is operated at a pressure equal to or lower than the set pressure of the liquid side crossover pipe 5.
  • the set pressure of the liquid side crossover pipe 5 is 4.15 MPa.
  • the energized open solenoid valve is a valve that opens only when the solenoid valve is energized, and shuts off the valve by de-energizing. Further, the energized and closed solenoid valve is a valve that shuts off only when the solenoid valve is energized and opens the valve by stopping energization.
  • the decompression device 6 When power is supplied to the refrigeration cycle apparatus 100, the decompression device 6 is opened, and the inlet side electromagnetic valve 15 is shut off. Further, since the temperature of the discharge pipe 10 is low and the saturation pressure corresponding to the temperature of the temperature sensing cylinder 18 is lower than the reference pressure, the mechanical on-off valve 17 is shut off. Then, the gas refrigerant in the gas side refrigerant pipe 9 is compressed by the compressor 3, flows through the discharge pipe 10, and is sent to the condenser 4. The condenser 4 cools and condenses the refrigerant by releasing heat from the compressed gas refrigerant to a coolant such as air, water, or another refrigeration cycle. The gas refrigerant is condensed by the condenser 4 to become a high-pressure liquid refrigerant, flows through the liquid side refrigerant pipe 11 and the liquid side crossover pipe 5 and is sent to the cooling unit 2.
  • the high-pressure liquid refrigerant sent to the cooling unit 2 is expanded and decompressed by the decompression device 6.
  • the evaporator 7 is provided in a cooling container (for example, a cooling showcase) installed in a store.
  • the decompressed refrigerant is sent to the evaporator 7, where it evaporates while cooling the air in the cooling container, and becomes a low-pressure gas refrigerant.
  • This low-pressure gas refrigerant flows through the gas-side crossover pipe 8 and is sent to the heat source unit 1, and flows through the gas-side refrigerant pipe 9 and is sent to the compressor 3.
  • the refrigerant discharged from the compressor 3 is discharged into the discharge pipe 10, the condenser 4, the liquid side refrigerant pipe 11, the liquid side crossover pipe 5, the decompression device 6, the evaporator 7, the gas side crossover pipe 8, and the gas side.
  • a main refrigerant circuit is formed which is sequentially pumped to the refrigerant pipe 9 and circulated to the compressor 3.
  • the mechanical on-off valve 17 is opened. Therefore, the gas refrigerant in the refrigerant storage tank 12 is sucked into the compressor 3 through the gas side connection pipe 14 and the gas side refrigerant pipe 9. Thereby, the inside of the refrigerant storage tank 12 is maintained at a low pressure equivalent to the suction side pressure of the compressor 3.
  • the pressure in the liquid side refrigerant pipe 11 is higher than the pressure in the refrigerant storage tank 12. Therefore, the liquid refrigerant in the discharge pipe 10, the condenser 4, the liquid side refrigerant pipe 11, and the liquid side crossover pipe 5 is changed into the liquid side connection pipe 13 by the pressure difference between the liquid side refrigerant pipe 11 and the refrigerant storage tank 12. It flows through and is collected in the refrigerant storage tank 12. At this time, the gas refrigerant remaining in the refrigerant storage tank 12 is pushed out from the outlet of the gas side connection pipe 14 located in the upper space in the refrigerant storage tank 12 by the inflow of the liquid refrigerant, and the gas side connection pipe 14 flows out to the gas side refrigerant pipe 9.
  • the inside of the main refrigerant circuit of the refrigeration cycle apparatus 100 is equalized. It becomes a state, and the temperature of the discharge pipe 10 falls. As a result, the saturation pressure corresponding to the temperature of the temperature sensing cylinder 18 becomes lower than the reference pressure, and the mechanical on-off valve 17 is shut off. Further, the outflow of the refrigerant from the refrigerant storage tank 12 to the liquid side refrigerant pipe 11 is blocked by the inlet side check valve 16. Thereby, the liquid refrigerant in the discharge pipe 10, the condenser 4, the liquid side refrigerant pipe 11, and the liquid side transition pipe 5 is collected and sealed in the refrigerant storage tank 12.
  • the liquid side crossover piping 5 and the gas side crossover are used to reduce the construction cost. It is conceivable to divert existing piping such as piping 8.
  • the refrigerant storage tank 12 is produced at a design pressure (for example, 12 MPa) corresponding to the CO 2 refrigerant. Further, since it is dangerous if the refrigerant storage tank 12 is full and liquid-sealed, the volume of the refrigerant storage tank 12 needs to be equal to or larger than the liquid volume of all the refrigerants enclosed in the refrigeration cycle apparatus 100. There is.
  • the design pressure of the component corresponding to the R410A refrigerant is 4.15 MPa which is the saturation pressure at 65 ° C., which is equivalent to the saturation pressure at 8 ° C. with CO 2 refrigerant. That is, when the ambient temperature of the refrigeration cycle apparatus 100 exceeds 8 ° C., there is a possibility that the design pressure (reference pressure) of parts corresponding to the R410A refrigerant may be exceeded.
  • CO 2 refrigerant becomes supercritical when the refrigerant temperature is 31 ° C. or higher, and the pressure is determined by the single-phase refrigerant density (refrigerant amount and refrigerant circuit internal volume), not the gas-liquid two-phase state. To rise.
  • the refrigerant flows into the low-pressure side refrigerant circuit composed of the evaporator 7 in which the low-pressure gas refrigerant remains, the gas-side crossover pipe 8, and the gas-side refrigerant pipe 9 to equalize the pressure in the main refrigerant circuit.
  • the liquid refrigerant is present in the main refrigerant circuit and the temperature of the outside air becomes high, the refrigerant pressure rises and exceeds the pressure resistance reference value of the existing piping.
  • the refrigeration cycle apparatus 100 includes the refrigerant storage tank 12, if it stops abnormally, it remains in the high-pressure side refrigerant circuit including the discharge pipe 10, the condenser 4, the liquid side refrigerant pipe 11, and the liquid side transition pipe 5.
  • the high-pressure liquid refrigerant is collected and sealed in the refrigerant storage tank 12. Therefore, since the liquid refrigerant does not exist in the main refrigerant circuit, a situation in which the refrigerant pressure in the existing pipe exceeds the pressure resistance reference value of the existing pipe can be avoided even if the temperature of the outside air increases.
  • Embodiment 1 for example, when the refrigeration cycle apparatus using the R410A refrigerant is replaced with a refrigeration cycle apparatus using the CO 2 refrigerant having a higher operating pressure, the liquid side transition pipe 5, the gas side Existing piping such as the transition piping 8 can be used. Therefore, it is not necessary to use a thick pipe that conforms to the pressure resistance reference value corresponding to the CO 2 refrigerant, and it is not necessary to lay a thick pipe, so that the construction time can be shortened and the construction cost can be reduced.
  • an energized and closed inlet side solenoid valve 15 is provided in the liquid side connection pipe 13
  • a mechanical on-off valve 17 is provided in the gas side connection pipe 14
  • a temperature sensing cylinder 18 is provided in the discharge pipe 10. Therefore, in the normal operation state, the inlet side electromagnetic valve 15 is maintained in the shut-off state, the mechanical on-off valve 17 is maintained in the open state, and the inside of the refrigerant storage tank 12 can be maintained at a low pressure.
  • the inlet side solenoid valve 15 is maintained in an open state, and the mechanical on-off valve 17 is maintained in an open state for a while after the abnormal stop, so that the discharge pipe 10 and the condenser 4
  • the high-pressure liquid refrigerant remaining in the high-pressure side refrigerant circuit composed of the liquid-side refrigerant pipe 11 and the liquid-side crossover pipe 5 flows into the refrigerant storage tank 12 and remains in the refrigerant storage tank 12. Flows out to the gas-side refrigerant pipe 9 through the gas-side connection pipe 14. That is, the inside of the refrigerant storage tank 12 is vented.
  • the gas refrigerant that has remained in the refrigerant storage tank 12 is confined in the refrigerant storage tank 12, and the high pressure in the refrigerant storage tank 12 is avoided so that the high-pressure liquid refrigerant cannot be recovered.
  • Liquid refrigerant can be efficiently recovered, and the amount of recovered refrigerant can be increased.
  • the inlet side check valve 16 is provided in the liquid side connection pipe 13
  • the flow of the refrigerant from the refrigerant storage tank 12 to the liquid side refrigerant pipe 11 is blocked, and the discharge pipe 10, the condenser 4, the liquid
  • the high-pressure liquid refrigerant remaining in the high-pressure side refrigerant circuit composed of the side refrigerant pipe 11 and the liquid side crossover pipe 5 can be recovered in the refrigerant storage tank 12 and sealed.
  • the driving force for refrigerant recovery at the time of a power failure is a differential pressure between the high-pressure side pressure of the main refrigerant circuit and the low-pressure pressure in the refrigerant storage tank 12.
  • the low pressure in the refrigerant storage tank 12 is maintained even if the refrigerant flows in.
  • the high pressure side pressure drops due to a pressure loss due to the flow of the refrigerant during refrigerant recovery. In particular, when the liquid side crossover pipe 5 becomes long, the pressure loss becomes large, and the refrigerant recovery becomes difficult.
  • the refrigerant storage tank 12 is preferably installed so as to be positioned below in the vertical direction with respect to the liquid side crossover pipe 5, the liquid side refrigerant pipe 11, and the liquid side connection pipe 13.
  • the differential pressure is about 2.0 MPa.
  • the pipe length at which the pressure loss of the pipe having a pipe diameter of ⁇ 12.7 mm is equivalent to the differential pressure is 227 m. Therefore, if the total length of the liquid side transition pipe 5 having the longest pipe length is 227 m or less, the refrigerant can be reliably recovered.
  • the flow rate of the refrigerant at the time of recovery can be designed by the flow resistance value at the entrance of the refrigerant storage tank 12, and the time during which the inside of the refrigerant storage tank 12 can be maintained at a low pressure is 1 minute. Therefore, the refrigerant flow rate can be designed so that the refrigerant can be recovered in one minute.
  • the refrigerant can be reliably recovered even if the total length of the liquid side crossover pipe 5 is longer.
  • the full length of the liquid side crossover piping 5 here is the piping length which becomes possible by degassing the inside of the refrigerant
  • a check valve is not provided in the gas side connection pipe 14, but an outlet side check valve capable of flowing only in the direction to the gas side refrigerant pipe 9 is provided in the gas side connection pipe 14. It may be provided.
  • the rotational speed of the compressor 3 is once increased and reduced below the pressure using the pressure in the gas side refrigerant pipe 9, and then the rotational speed of the compressor 3 is returned to the original rotational speed.
  • the pressure in the refrigerant storage tank 12 becomes lower by lowering the pressure in the gas side refrigerant pipe 9 than the pressure using the pressure. Then, when the rotation speed of the compressor 3 is returned to the original rotation speed and the pressure in the gas side refrigerant pipe 9 returns to the pressure used, the movement of the gas refrigerant from the gas side refrigerant pipe 9 to the refrigerant storage tank 12 exits. Blocked by the side check valve, the pressure in the refrigerant storage tank 12 is maintained at a lower pressure.
  • the mechanical on-off valve 17 is used as the valve device.
  • the valve device is not limited to the mechanical on-off valve 17, and for a while after the energization stop of the inlet side electromagnetic valve 15, Any valve device that can be kept open may be used.
  • an energized open storage type electromagnetic valve may be used.
  • the drive power of the power storage solenoid valve is stored during normal operation, and for a while after the stop, the power storage solenoid valve maintains an open state by the stored drive power, Degas.
  • the stored driving power is lost, the power storage solenoid valve is shut off, and the liquid refrigerant is collected and sealed in the refrigerant storage tank 12. Therefore, the same effect as that obtained when the mechanical on-off valve 17 is used can be obtained even when the energized open storage electromagnetic valve is used.
  • the refrigerant storage tank 12 is installed in the heat source unit 1.
  • the liquid side connecting pipe 13 is extended from the liquid side connecting pipe 5, and the gas side connecting pipe 14 is connected to the gas side connecting pipe 8.
  • the refrigerant storage tank 12 may be installed outside the heat source unit.
  • the heat source unit has the same configuration as an outdoor unit of a general refrigeration cycle apparatus, the outdoor unit can be shared, and the system construction cost can be reduced.
  • FIG. FIG. 2 is a refrigerant circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the refrigerant return pipe 19 is disposed so as to connect the lower part in the refrigerant storage tank 12 and the gas side refrigerant pipe 9.
  • An outlet-side solenoid valve 20 that is energized is provided in the refrigerant return pipe 19.
  • Other configurations are the same as those in the first embodiment.
  • Refrigeration cycle apparatus 101 operates in the same manner as refrigeration cycle apparatus 100 described above, with outlet-side solenoid valve 20 being opened during normal operation.
  • the outlet side solenoid valve 20 is shut off and operates in the same manner as the refrigeration cycle apparatus 100 described above.
  • the refrigerant return pipe 19 is disposed so as to connect the lower portion in the refrigerant storage tank 12 and the gas side refrigerant pipe 9. You may arrange
  • the refrigerant return pipe 19 is disposed so as to connect the lower part in the refrigerant storage tank 12 and the gas side refrigerant pipe 9, but the refrigerant return pipe is connected to the refrigerant storage pipe.
  • the hole diameter of the end (outlet) of the refrigerant return pipe located at the lower part in the refrigerant storage tank 12 is set to the end (flow of the gas side connection pipe 14 located in the upper space in the refrigerant storage tank 12.
  • the flow resistance of the outlet of the refrigerant return pipe is made smaller than the outlet diameter of the outlet of the refrigerant return pipe, and the flow resistance of the outlet of the gas side connecting pipe 14 can be made larger to prevent the liquid refrigerant from flowing out during refrigerant recovery. it can.
  • FIG. 3 is a refrigerant circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • the expansion tank 21 is connected to the gas side refrigerant pipe 9 that is the suction side of the compressor 3.
  • Other configurations are the same as those in the first embodiment.
  • the expansion tank 21 is connected to the gas-side refrigerant pipe 9, the internal volume of the main refrigerant circuit can be increased, and the pressure in the main refrigerant circuit is increased. Can be prevented. If the expansion tank 21 is installed alone, an extremely large tank volume is required, and there is a possibility that the utility is lacking in terms of installation space and cost. In the third embodiment, since the expansion tank 21 and the refrigerant storage tank 12 are used in combination, the refrigerant in the main refrigerant circuit is greatly removed, the expansion tank 21 can be downsized, and the installation space and cost can be reduced. An effect can be obtained.
  • the expansion tank 21 is connected to the gas side refrigerant pipe 9, but the expansion tank 12 may be connected to the gas side crossover pipe 8.
  • FIG. 4 is a refrigerant circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • the second refrigeration cycle 25 as the pressure adjustment mechanism unit is configured as a refrigerant circuit in which the refrigerant flows in the order of the compressor 26, the condenser 27, and the evaporator 28 and is circulated to the compressor 26.
  • the refrigerant evaporated by the evaporator 28 is disposed so as to be able to exchange heat with the refrigerant condensed by the condenser 4.
  • Other configurations are the same as those in the first embodiment.
  • the high-pressure refrigerant condensed in the condenser 4 is heat-exchanged with the refrigerant evaporated in the evaporator 28 of the second refrigeration cycle 25. Control is performed so that the refrigerant in the refrigerant circuit on the high-pressure side is cooled and does not become supercritical. Therefore, since the pressure of the refrigerant in the high-pressure side refrigerant circuit of the refrigeration cycle apparatus 103 can be reduced to a critical pressure or less, the refrigerant in the high-pressure side refrigerant circuit can be recovered as a high-density liquid refrigerant when stopped. .
  • FIG. 5 is a refrigerant circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 5 of the present invention.
  • a bypass heat exchanging unit 30 as a pressure adjusting mechanism unit is formed on the condenser 4 side of the connection part of the liquid side connection pipe 13 of the liquid side refrigerant pipe 11.
  • the bypass pipe 31 is branched from between the bypass heat exchange part 30 of the liquid side refrigerant pipe 11 and the connection part of the liquid side connection pipe 13 and connected to the gas side refrigerant pipe 9.
  • the bypass heat exchange unit 30 is configured to exchange heat between the refrigerant condensed in the condenser 4 and flowing through the liquid side refrigerant pipe 11 and the refrigerant flowing through the bypass pipe 31.
  • An expansion valve 32 as a bypass pressure reducing device is disposed on the upstream side of the bypass heat exchange unit 30 of the bypass pipe 31.
  • a solenoid valve 33 that is energized is disposed on the downstream side of the bypass heat exchange section 30 of the bypass pipe 31.
  • Other configurations are the same as those in the first embodiment.
  • the refrigerant condensed in the condenser 4 and flowing through the liquid refrigerant pipe 11 exchanges heat with the refrigerant depressurized by the expansion valve 32 in the bypass heat exchange unit 30. Then, it is supercooled.
  • the pressure of the refrigerant in the refrigerant circuit on the high-pressure side of the refrigeration cycle apparatus 104 can be reduced below the critical pressure, so the refrigerant distribution in the refrigerant circuit on the high-pressure side increases, and the refrigerant when the refrigeration cycle apparatus 104 is shut down
  • the amount of refrigerant recovered by the storage tank 12 can be increased.
  • bypass pipe 31 is connected to the gas-side refrigerant pipe 9, but the bypass pipe 31 may be connected to the intermediate pressure of the compressor 3.
  • FIG. 6 is a refrigerant circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 6 of the present invention.
  • an internal heat exchange part 35 as a pressure adjusting mechanism part is formed on the condenser 4 side of the connection part of the liquid side connection pipe 13 of the liquid side refrigerant pipe 11.
  • the internal heat exchange unit 35 is configured to exchange heat between the refrigerant condensed in the condenser 4 and flowing through the liquid refrigerant pipe 11 and the refrigerant flowing through the gas refrigerant pipe 9. Yes.
  • Other configurations are the same as those in the first embodiment.
  • the refrigerant condensed in the condenser 4 and flowing through the liquid side refrigerant pipe 11 is decompressed by the decompression device 6 by the internal heat exchanging unit 35, and by the evaporator 7.
  • the refrigerant is supercooled by exchanging heat with the gas refrigerant that evaporates and flows through the gas side refrigerant pipe 9.
  • FIG. 7 is a refrigerant circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 7 of the present invention.
  • the liquid receiving part 36 is provided on the condenser 4 side of the connection part of the liquid side connection pipe 13 of the liquid side refrigerant pipe 11.
  • Other configurations are the same as those in the first embodiment.
  • the refrigeration cycle apparatus 106 since the liquid receiving part 36 is provided in the liquid side refrigerant pipe 11, a large amount of liquid refrigerant is stored in a high-pressure refrigerant circuit. Thereby, the refrigerant distribution in the refrigerant circuit on the high pressure side increases, and the amount of refrigerant recovered by the refrigerant storage tank 12 when the operation of the refrigeration cycle apparatus 106 is stopped can be increased.
  • the liquid side crossover piping is used to reduce the construction cost. 5.
  • the refrigerant having a high operating pressure is not limited to the CO 2 refrigerant, and may be, for example, an R1123 refrigerant.
  • the R1123 refrigerant is combustible
  • the refrigerant storage tank 12 since the refrigerant storage tank 12 is used in the refrigeration cycle apparatus, most of the R1123 refrigerant can be stored in the refrigerant storage tank 12 even during a power failure. Thereby, leakage of the R1123 refrigerant into the room can be prevented, and excellent safety can be exhibited. Therefore, even if a flammable HC refrigerant (R600a, R290, etc.), an HFO refrigerant (R1234yf, R1234ze, etc.) or a toxic NH 3 refrigerant is used as the refrigerant of the refrigeration cycle apparatus, the same effect is obtained. Is obtained.
  • CO 2, R600a, R290, R1234yf may be enclosed in the refrigeration cycle device of one of the refrigerant in the refrigerant groups R1234ze and NH 3, a mixture of a plurality of refrigerant selected from these refrigerants group The mixed refrigerant thus obtained may be enclosed in the refrigeration cycle apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 この発明は、低圧冷媒用の液側渡り配管を用いても、停止時に、液側渡り配管内の冷媒を回収し、液側渡り配管の耐圧の問題の発生を抑えることができ、施工時間を短縮し、施工コストを低減できるとともに、冷媒貯留タンクのコンパクト化を図ることができる冷凍サイクル装置を得ることを目的としている。 この発明による冷凍サイクル装置は、液側冷媒配管から延び出る液側接続配管と、ガス側冷媒配管から延び出るガス側接続配管と、吸入側が液側接続配管に接続され、排出側がガス側接続配管に接続され、冷媒を貯留する冷媒貯留タンクと、液側接続配管に配設され、無通電時に開放される入口側電磁弁と、液側接続配管に配設され、冷媒貯留タンク側にのみ冷媒を通流させる入口側逆止弁と、ガス側接続配管に配設され、入口側電磁弁に通電時に開放され、入口側電磁弁への通電停止から遅れて遮断される弁装置と、を備えている。

Description

冷凍サイクル装置
 本発明は、例えば冷凍、冷蔵の用途に利用される冷凍サイクル装置に関するものである。
 従来の冷凍サイクル装置は、圧縮機および熱源側熱交換器を有する室外機、利用側熱交換機および絞り装置を有する室内機、およびこれらを接続する冷媒配管を備え、圧縮機、熱源側熱交換器、絞り装置および利用側熱交換器が配管接続されて構成されていた(例えば、特許文献1参照)。
 冷凍サイクル装置に封入される冷媒としては、近年、環境保護の観点から、オゾン破壊係数が零のHFC系冷媒(塩素を含まないフルオロカーボン)、R404A冷媒(R-125、R-134a、R-143aの混合冷媒)、R410A冷媒(R32が50wt%、R125が50wt%)などが用いられる。そして、ユーザが、例えば、R404A冷媒を使用する冷凍サイクル装置から、R410A冷媒を使用する冷凍サイクル装置に買い換える場合、工事の簡易性および部品コストの低減の観点から、それまで使用していた冷凍サイクル装置の渡り配管を、新しい冷凍サイクル装置の渡り配管として再利用することが考えられる。
 しかしながら、R410Aの動作圧力は、R404Aの動作圧力より高い。そこで、R404A冷媒を使用する冷凍サイクル装置の渡り配管を、R410A冷媒を使用する冷凍サイクル装置の渡り配管として再利用した場合には、特に停電などにより渡り配管内に冷媒が滞留する状態で冷凍サイクル装置が停止した状況では,外気温度の上昇により冷媒の温度が上昇すると、冷媒の圧力が上昇し、冷媒の圧力が渡り配管の耐圧基準値を超える恐れがあった。そのため、渡り配管を肉厚の厚い配管に変更する必要があった。さらに、冷凍サイクル装置が、コンビニエンスストアやスーパーマーケットなどの店舗に設置されたショーケースの冷凍、冷蔵に適用される場合には、室外機を室内機から離れた場所に設置することが多く、渡り配管の全長が100mに及ぶこともある。そこで、現地で、渡り配管の施工が煩雑となり、配管の材料コストが高くなるので、施工時間が長くなるとともに、施工コストが増大するという課題があった。
 このような状況を鑑み、室外機と室内機とを接続する液側渡り配管およびガス側渡り配管と、凝縮器と液側渡り配管とを接続する液側冷媒配管と、圧縮機とガス側渡り配管とを接続するガス側冷媒配管と、液側冷媒配管又は液側渡り配管から延在する第1の接続配管と、ガス側冷媒配管又はガス側渡り配管から延在する第2の接続配管と、第1の接続配管に吸入側が接続され、第2の接続配管に排出側が接続され、渡り配管内の冷媒を貯留する冷媒貯留タンクと、第1の接続配管に設けられ、冷媒貯留タンクへ吸入方向のみ冷媒を通流させる第1の逆止弁と、第1の接続配管に設けられ、通電時に遮断する第1の電磁弁と、第2の接続配管に設けられ、通電時に開放する第2の電磁弁と、を備えた従来の冷凍サイクル装置が提案されていた(例えば、特許文献2参照)。
 特許文献2に記載の従来の冷凍サイクル装置では、停電などにより液側渡り配管内に冷媒が滞留する状態で運転停止した場合であっても、液側渡り配管内の冷媒を一時的に冷媒貯留タンクに貯留させることができ、液側渡り配管内の液冷媒を除去することができる。そこで、冷媒が高圧冷媒であり、外気が高温となった場合でも、液側渡り配管の耐圧の問題が生じない。これにより、冷媒を低圧冷媒から高圧冷媒に変えても、低圧冷媒用の耐圧基準値を有する配管を液側渡り配管に用いることができるので、施工時間を短縮でき、施工コストを低減できる。
国際公開第2004/013549号 特許第4687710号公報
 しかしながら、特許文献2に記載された従来の冷凍サイクル装置では、液側渡り配管内の冷媒を冷媒貯留タンクに貯留する際に、冷媒貯留タンク内のガス冷媒を抜く機構がないので、液側渡り配管内の冷媒を十分に回収できなかった。そこで、液側渡り配管内に冷媒が残留し、液側渡り配管内の圧力が耐圧基準値を超える可能性があった。
 また、冷媒貯留タンク内のガス冷媒を抜くことなく、液側渡り配管内の冷媒を回収しようとすると、冷媒貯留タンクの容器には大容積の容器が必要となり、容器コストが増加し、設置面積が増加するという課題があった。
 この発明は、上述のような問題を解決するためになされたものであり、低圧冷媒用の液側渡り配管を用いても、停止時に、液側渡り配管内の冷媒を回収し、液側渡り配管の耐圧の問題の発生を抑えることができ、施工時間を短縮し、施工コストを低減できるとともに、冷媒貯留タンクのコンパクト化を図ることができる冷凍サイクル装置を得ることを目的としている。
 この発明による冷凍サイクル装置は、冷媒を圧縮して吐出する圧縮機、および上記圧縮機から吐出された冷媒を凝縮する凝縮器を有する熱源ユニットと、上記凝縮器から流出する冷媒を減圧する減圧装置、および上記減圧装置から流出する冷媒を蒸発させる蒸発器を有する冷却ユニットと、上記熱源ユニットと上記冷却ユニットとを接続する液側渡り配管およびガス側渡り配管と、上記凝縮器と上記液側渡り配管とを接続する液側冷媒配管と、上記圧縮機と上記ガス側渡り配管とを接続するガス側冷媒配管と、を備え、上記圧縮機から、上記凝縮器、上記液側冷媒配管、上記液側渡り配管、上記減圧装置、上記蒸発器、上記ガス側渡り配管、および上記ガス側冷媒配管を通り、上記圧縮機に戻る主冷媒回路に冷媒が封入されている。本冷凍サイクル装置は、さらに、上記液側冷媒配管又は上記液側渡り配管から延び出る液側接続配管と、上記ガス側冷媒配管又は上記ガス側渡り配管から延び出るガス側接続配管と、吸入側が上記液側接続配管に接続され、排出側が上記ガス側接続配管に接続され、冷媒を貯留する冷媒貯留タンクと、上記液側接続配管に配設され、無通電時に開放される入口側電磁弁と、上記液側接続配管に配設され、上記冷媒貯留タンク側にのみ冷媒を通流させる入口側逆止弁と、上記ガス側接続配管に配設され、上記入口側電磁弁に通電時に開放され、上記入口側電磁弁への通電停止から遅れて遮断される弁装置と、を備えている。
 この発明によれば、運転時には、入口側電磁弁が遮断され、弁装置が開放されているので、冷媒貯留タンク内が低圧に維持される。そして、停止時に、入口側電磁弁が開放されるので、液側冷媒配管および液側渡り配管内の高圧の液冷媒が冷媒貯留タンク内に流入する。また、弁装置は、停止後しばらくの間、開放されているので、高圧の液冷媒が冷媒貯留タンク内に流入しつつ、冷媒貯留タンク内のガス冷媒が排出される。そこで、冷媒貯留タンク内に在留していたガス冷媒が冷媒貯留タンク内に閉じ込められ、冷媒貯留タンク内が高圧となって、高圧の液冷媒を回収できなくことが回避される。その後、弁装置が遮断され、高圧の液冷媒が、冷媒貯留タンク内に密閉される。これにより、高圧側の冷媒回路内に残留する高圧の液冷媒が冷媒貯留タンク内に回収、密封される。そこで、低圧冷媒用の液側渡り配管を用いても、停止時に、液側渡り配管の耐圧の問題の発生を抑えることができるので、施工時間を短縮し、施工コストを低減できる。さらに、冷媒貯留タンクの容積を大きくする必要がなく、冷媒貯留タンクのコンパクト化も図られる。
この発明の実施の形態1に係る冷凍装置の冷媒回路構成図である。 この発明の実施の形態2に係る冷凍装置の冷媒回路構成図である。 この発明の実施の形態3に係る冷凍装置の冷媒回路構成図である。 この発明の実施の形態4に係る冷凍装置の冷媒回路構成図である。 この発明の実施の形態5に係る冷凍装置の冷媒回路構成図である。 この発明の実施の形態6に係る冷凍装置の冷媒回路構成図である。 この発明の実施の形態7に係る冷凍装置の冷媒回路構成図である。
 実施の形態1.
 図1はこの発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成図である。
 図1において、冷凍サイクル装置100は、室外に設置される熱源ユニット1と、冷却対象、例えばコンビニエンスストアやスーパーマーケットなどの店舗に設置される冷却ユニット2と、冷媒を貯留する冷媒貯留タンク12と、を備える。そして、熱源ユニット1と冷却ユニット2が、液側渡り配管5とガス側渡り配管8を介して接続されている。
 熱源ユニット1は、冷媒を圧縮する圧縮機3と、熱源側熱交換器である凝縮器4と、を備えている。圧縮機3の吸入側が、ガス側冷媒配管9を介してガス側渡り配管8に接続されている。また、圧縮機3の吐出側が、吐出配管10を介して凝縮器4の入口に接続されている。凝縮器4の出口が、液側冷媒配管11を介してガス側渡り配管5に接続されている。
 冷却ユニット2は、減圧装置6と、利用側熱交換器である蒸発器7と、を備えている。そして、冷却ユニット2は、液側渡り配管5から流入する高圧の液冷媒が、減圧装置6、蒸発器7、ガス側渡り配管8の順に通流する冷媒回路を備える。ここでは、減圧装置6は、冷媒の流量を調整可能な電動膨張弁を適用し、液側渡り配管5から流入する高圧の液冷媒を膨張させて減圧する。減圧装置6の駆動は、図示しない制御部により制御される。
 冷媒貯留タンク12は、吸入側が液側冷媒配管11から延びる液側接続配管13に接続され、排出側がガス側冷媒配管9から延びるガス側接続配管14に接続されている。ガス側接続配管14は、その端部(流出口)が冷媒貯留タンク12内の上部空間に位置するように冷媒貯留タンク12に取り付けられている。すなわち、ガス側接続配管14は、冷媒貯留タンク12内の上部に開口するように冷媒貯留タンク12に接続され、冷媒貯留タンク12内のガス冷媒のみをガス側冷媒配管9に流出可能としている。そして、通電閉の入口側電磁弁15と冷媒貯留タンク12への流入方向のみ通流可能な入口側逆止弁16とが、液側接続配管13に設けられている。また、機械的に弁を開閉する、弁装置としての機械式開閉弁17が、ガス側接続配管14に設けられている。
 ここでは、機械式開閉弁17は、一般的な冷凍空調装置の減圧装置として用いられている温度式膨張弁を適用している。温度式膨張弁は、冷凍サイクル装置100に用いられる冷媒と同じ冷媒を感温筒18に封入し、感温筒18の温度に相当する飽和圧力により膨張弁の開度を調節するものである。膨張弁の開度を調節する基準圧力は、膨張弁本体がある部分の冷媒飽和圧力である。そして、感温筒18の温度に相当する飽和圧力が基準圧力より高くなると、膨張弁が開かれる。逆に、感温筒18の温度に相当する飽和圧力が基準圧力より低くなる、又は等しくなると、膨張弁が閉じられる。この実施の形態1では、感温筒18を吐出配管10に配設し、吐出配管10の温度に相当する飽和圧力により膨張弁を開閉している。感温筒18が高温となる吐出配管10に設置されているので、弁開閉のための大きな駆動力が得られる。なお、感温筒18の設置場所は、吐出配管10に限定されず、通常運転時に、基準圧力相当の飽和温度より高い温度が得られる箇所であればよい。
 液側渡り配管5は、減圧装置6よりも上流となり、冷凍サイクルの高圧側となる。一方、ガス側渡り配管8は、減圧装置6よりも下流となり、冷凍サイクルの低圧側となる。この冷凍サイクル装置100には、高圧冷媒であるCO2が封入され、冷凍サイクルの高圧側の圧力が冷媒の臨界圧以下とされている。すなわち、この冷凍サイクル装置100の高圧側は、液側渡り配管5の設定圧力以下の圧力で運転動作する。ここでは、液側渡り配管5の設定圧力は、4.15MPaとされている。
 なお、通電開の電磁弁とは、電磁弁に通電時のみ弁が開放し、通電を止めることで弁を遮断するものである。また、通電閉の電磁弁とは、電磁弁に通電時のみ弁が遮断し、通電を止めることで弁を開放するものである。
 つぎに、冷凍サイクル装置100の通常運転時に動作について説明する。
 冷凍サイクル装置100に電力が供給されると、減圧装置6が開放され、入口側電磁弁15が遮断される。また、吐出配管10の温度が低く、感温筒18の温度に相当する飽和圧力が基準圧力より低いので、機械式開閉弁17が遮断されている。
 そして、ガス側冷媒配管9内のガス冷媒が、圧縮機3により圧縮され、吐出配管10を通流して凝縮器4に送られる。凝縮器4は、圧縮されたガス冷媒から、空気、水、他の冷凍サイクルなどの冷却材に熱を放出させることにより、冷媒を冷却して凝縮する。ガス冷媒は、凝縮器4で凝縮されて高圧の液冷媒となり、液側冷媒配管11および液側渡り配管5を通流して、冷却ユニット2に送られる。
 冷却ユニット2に送られた高圧の液冷媒は、減圧装置6で膨張されて減圧される。蒸発器7は、店舗に設置された冷却用容器(例えば、冷却用ショーケースなど)に設けられる。減圧された冷媒は、蒸発器7に送られ、冷却用容器内の空気を冷却しながら蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、ガス側渡り配管8を通流して熱源ユニット1に送られ、ガス側冷媒配管9を通流して、圧縮機3に送られる。
 これにより、圧縮機3から吐出された冷媒を、吐出配管10、凝縮器4、液側冷媒配管11、液側渡り配管5、減圧装置6、蒸発器7、ガス側渡り配管8、およびガス側冷媒配管9に順次圧送して圧縮機3に環流させる主冷媒回路が形成される。
 そして、吐出配管10の温度が高くなり、感温筒18の温度に相当する飽和圧力が基準圧力より高くなると、機械式開閉弁17が開かれる。そこで、冷媒貯留タンク12内のガス冷媒がガス側接続配管14およびガス側冷媒配管9を介して圧縮機3に吸入される。これにより、冷媒貯留タンク12内が圧縮機3の吸入側圧力と同等の低圧に維持される。
 つぎに、冷凍サイクル装置100が、通常運転から停電などにより異常停止した場合の動作について説明する。
 冷凍サイクル装置100への電力の供給が停止されると、圧縮機3および凝縮器4が停止するとともに、減圧装置6が遮断され、入口側電磁弁15が開放される。そして、吐出配管10、凝縮器4、液側冷媒配管11および液側渡り配管5内には、高圧の液冷媒が滞留し、蒸発器7、ガス側渡り配管8およびガス側冷媒配管9内には、低圧のガス冷媒が滞留する。この時点では、吐出配管10の温度が高く、感温筒18の温度に相当する飽和圧力が基準圧力より高くなっており、機械式開閉弁17が開放状態に維持される。また、液側冷媒配管11内の圧力が、冷媒貯留タンク12の圧力より高くなっている。そこで、液側冷媒配管11と冷媒貯留タンク12との間の圧力差により、吐出配管10、凝縮器4、液側冷媒配管11および液側渡り配管5内の液冷媒が、液側接続配管13を通流して冷媒貯留タンク12に回収される。このとき、冷媒貯留タンク12内に残留していたガス冷媒は、液冷媒の流入により、冷媒貯留タンク12内の上部空間に位置するガス側接続配管14の流出口から押し出され、ガス側接続配管14を通ってガス側冷媒配管9に流出する。
 そして、吐出配管10、凝縮器4、液側冷媒配管11および液側渡り配管5内の液冷媒が、冷媒貯留タンク12内に回収されると、冷凍サイクル装置100の主冷媒回路内が均圧状態となり、吐出配管10の温度が下がる。これにより、感温筒18の温度に相当する飽和圧力が基準圧力より低くなり、機械式開閉弁17が遮断される。また、冷媒貯留タンク12から液側冷媒配管11への冷媒に流出は、入口側逆止弁16により阻止される。これにより、吐出配管10、凝縮器4、液側冷媒配管11および液側渡り配管5内の液冷媒が、冷媒貯留タンク12内に回収、密封される。
 ここで、例えば、R410A冷媒を使用する冷凍サイクル装置から、より動作圧力の高いCO2冷媒を使用する冷凍サイクル装置に買い換える場合、施工コストを低減するために、液側渡り配管5、ガス側渡り配管8などの既設の配管を流用することが考えられる。ただし、冷媒貯留タンク12は、CO2冷媒に対応した設計圧力(例えば、12MPa)に作製される。また、冷媒貯留タンク12内が満液となって、液封状態となると、危険であるので、冷媒貯留タンク12の容積は、冷凍サイクル装置100に封入される全冷媒の液体積以上とする必要がある。
 R410A冷媒に対応した部品の設計圧力は、65℃における飽和圧力の4.15MPaとなり、CO2冷媒での8℃における飽和圧力相当となる。すなわち、冷凍サイクル装置100の周囲温度が8℃を超えると、R410A冷媒に対応した部品の設計圧力(基準圧力)を超えてしまう可能性がある。特に、CO2冷媒は、冷媒温度が31℃以上で超臨界となり、気液二相状態ではなく、単相の冷媒密度(冷媒量と冷媒回路内容積)により圧力が決まるので、圧力が極端に上昇する。
 そこで、冷媒貯留タンク12がない場合には、異常停止すると、吐出配管10、凝縮器4、液側冷媒配管11および液側渡り配管5からなる高圧側の冷媒回路内に残留する高圧の液冷媒が、低圧のガス冷媒が残留する蒸発器7、ガス側渡り配管8、およびガス側冷媒配管9からなる低圧側の冷媒回路に流入し、主冷媒回路内が均圧となる。このとき、液冷媒が主冷媒回路内に存在するようになり、外気の温度が高くなると、冷媒圧力が上昇し、既設の配管の耐圧基準値を超えてしまう。
 本冷凍サイクル装置100では、冷媒貯留タンク12を備えているので、異常停止すると、吐出配管10、凝縮器4、液側冷媒配管11および液側渡り配管5からなる高圧側の冷媒回路内に残留する高圧の液冷媒が、冷媒貯留タンク12内に回収、密封される。そこで、液冷媒が主冷媒回路内に存在していないので、外気の温度が高くなっても、既設の配管内の冷媒圧力が既設の配管の耐圧基準値を超えるような事態が未然に回避される。
 このように、実施の形態1によれば、例えば、R410A冷媒を使用する冷凍サイクル装置から、より動作圧力の高いCO2冷媒を使用する冷凍サイクル装置に買い換える場合、液側渡り配管5、ガス側渡り配管8などの既設の配管を流用することができる。そこで、CO2冷媒に対応する耐圧基準値に適合する肉厚の配管を用いる必要がなく、肉厚の配管を敷設する必要がないので、施工時間を短縮できるとともに、施工コストを低減できる。
 また、通電閉の入口側電磁弁15を液側接続配管13に設け、機械式開閉弁17をガス側接続配管14に設け、感温筒18を吐出配管10に配設している。そこで、通常運転状態では、入口側電磁弁15が遮断状態に維持され、機械式開閉弁17が開放状態に維持され、冷媒貯留タンク12内を低圧に維持できる。さらに、通常運転から異常停止すると、入口側電磁弁15が開放状態に維持され、異常停止後しばらくの間は、機械式開閉弁17が開放状態に維持されるので、吐出配管10、凝縮器4、液側冷媒配管11および液側渡り配管5からなる高圧側の冷媒回路内に残留する高圧の液冷媒が冷媒貯留タンク12内に流入しつつ、冷媒貯留タンク12内に在留していたガス冷媒がガス側接続配管14を介してガス側冷媒配管9に流出する。すなわち、冷媒貯留タンク12内がガス抜きされる。これにより、冷媒貯留タンク12内に在留していたガス冷媒が冷媒貯留タンク12内に閉じ込められ、冷媒貯留タンク12内が高圧となって、高圧の液冷媒を回収できなくことが回避され、密度の高い液冷媒を効率的に回収でき、冷媒回収量を増大することができる。さらに、冷媒貯留タンク12の容積を大きくする必要がなく、冷媒貯留タンク12のコンパクト化が図られる。
 さらに、入口側逆止弁16が液側接続配管13に設けられているので、冷媒貯留タンク12から液側冷媒配管11への冷媒の通流が阻止され、吐出配管10、凝縮器4、液側冷媒配管11および液側渡り配管5からなる高圧側の冷媒回路内に残留する高圧の液冷媒を冷媒貯留タンク12内に回収し、密封することができる。
 ここで、停電時の冷媒回収の駆動力は、主冷媒回路の高圧側圧力と冷媒貯留タンク12内の低圧圧力との差圧となる。冷媒貯留タンク12内がガス抜きされることで、冷媒が流入しても、冷媒貯留タンク12内の低圧圧力が維持される。しかし、高圧側圧力は、冷媒回収時の冷媒の流動による圧力損失で圧力低下が生じる。特に、液側渡り配管5が長くなると、圧力損失が大きくなり、冷媒回収が困難となる。そこで、冷媒貯留タンク12を、液側渡り配管5、液側冷媒配管11および液側接続配管13に対し、鉛直方向の下方に位置するように設置することがよい。特に、配管長さの長い液側渡り配管5に対して、液側貯留タンク12を鉛直方向の下方に位置するように設置することが好ましい。これにより、差圧による駆動力に、液ヘッドによる駆動力が加わり、冷媒回収量を増加でき、圧力抑制効果をさらに得ることができる。
 冷凍サイクル装置100において、R410A冷媒を用いた場合、差圧が約2.0MPaとなる。配管径をφ12.7mmとした配管の圧力損失が差圧と同等となる配管長さは227mである。したがって、最も配管長さの長い液側渡り配管5の全長が227m以下であれば、冷媒を確実に回収することができる。また、回収時の冷媒の流速は、冷媒貯留タンク12の入り口の流動抵抗値により設計可能であり、冷媒貯留タンク12内を低圧に維持し続けられる時間は1分間である。そこで、冷媒を1分間で回収できる冷媒流速に設計すればよい。
 冷媒回収の駆動力となる差圧がさらに大きい冷媒、例えばCO2やR1123を用いれば、液側渡り配管5の全長がさらに長くても、冷媒を確実に回収することができる。なお、ここでの液側渡り配管5の全長は、冷媒貯留タンク12内がガス抜きされて冷媒貯留タンク12内を低圧に保つことで可能となる配管長さである。
 なお、上記実施の形態1では、逆止弁がガス側接続配管14に設けられていないが、ガス側冷媒配管9への方向のみ通流可能な出口側逆止弁をガス側接続配管14に設けてもよい。この場合、通常運転時に、圧縮機3の回転数を一旦増速し、ガス側冷媒配管9内の圧力を利用する圧力より低下させた後、圧縮機3の回転数を元の回転数に戻し、ガス側冷媒配管9内の圧力を利用する圧力に戻す運転を行うことにより、冷媒貯留タンク12内の圧力をより低圧にすることができる。すなわち、ガス側冷媒配管9内の圧力を利用する圧力より低下させることにより、冷媒貯留タンク12内の圧力がより低圧となる。そして、圧縮機3の回転数を元の回転数に戻し、ガス側冷媒配管9内の圧力が利用する圧力に戻ると、ガス側冷媒配管9から冷媒貯留タンク12へのガス冷媒の移動が出口側逆止弁により阻止され、冷媒貯留タンク12内の圧力がより低圧な状態に維持される。これにより、液側冷媒配管11と冷媒貯留タンク12との間の圧力差が大きくなり、冷媒貯留タンク12による冷媒回収効果が促進される。
 また、上記実施の形態1では、弁装置として機械式開閉弁17を用いているが、弁装置は、機械式開閉弁17に限定されず、入口側電磁弁15への通電停止後しばらく間、開放を維持できる弁装置であればよく、例えば、通電開の蓄電式電磁弁を用いることができる。この場合、通常運転時に蓄電式電磁弁の駆動電力を蓄電しておき、停止後しばらくの間、蓄電式電磁弁が、蓄電していた駆動電力により開放状態を維持し、冷媒貯留タンク12内のガス抜きを実施する。そして、蓄電していた駆動電力が消失すると、蓄電式電磁弁が遮断され、液冷媒が冷媒貯留タンク12内に回収、密封される。したがって、通電開の蓄電式電磁弁を用いても、機械式開閉弁17を用いた場合と同様な効果が得られる。
 また、上記実施の形態1では、冷媒貯留タンク12が熱源ユニット1内に設置しているが、液側接続配管13を液側渡り配管5から延ばし、ガス側接続配管14をガス側渡り配管8から延ばして、冷媒貯留タンク12を熱源ユニットの外側に設置してもよい。この場合、熱源ユニットが、一般的な冷凍サイクル装置の室外機と同様の構成となるので、室外機の共通化が図られ、システム構築コストを低減することができる。
 実施の形態2.
 図2はこの発明の実施の形態2に係る冷凍サイクル装置の冷媒回路構成図である。
 図2において、冷媒戻し配管19が、冷媒貯留タンク12内の下部と、ガス側冷媒配管9と、を連結するように配設されている。通電開の出口側電磁弁20が、冷媒戻し配管19に設けられている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 実施の形態2による冷凍サイクル装置101は、通常運転時には、出口側電磁弁20が開放され、上述の冷凍サイクル装置100と同様に動作する。また、冷凍サイクル装置101が異常停止すると、出口側電磁弁20が遮断され、上述の冷凍サイクル装置100と同様に動作する。
 この冷凍サイクル装置101では、異常停止状態から通常運転に戻ると、出口側電磁弁20が開放され、圧縮機3が運転される。そこで、ガス側冷媒配管9内のガス冷媒が、圧縮機3に吸入、圧縮されて、吐出配管10に吐出される。このとき、冷媒貯留タンク12内の液冷媒が、冷媒戻し配管19を通流して主冷媒回路に戻されるので、設定された冷媒量での通常運転を行うことができる。
 なお、上記実施の形態2では、冷媒戻し配管19が、冷媒貯留タンク12内の下部と、ガス側冷媒配管9と、を連結するように配設されているが、冷媒戻し配管19を、冷媒貯留タンク12内の下部と、ガス側渡り配管8と、を連結するように配設してもよい。
 また、上記実施の形態2では、冷媒戻し配管19が、冷媒貯留タンク12内の下部と、ガス側冷媒配管9と、を連結するように配設されているが、冷媒戻し配管を、冷媒貯留タンク12内の下部と、ガス側接続配管14の機械式開閉弁17の冷媒貯留タンク12側と、を連結するように配設してもよい。この場合、例えば、冷媒貯留タンク12内の下部に位置する冷媒戻し配管の端部(流出口)の孔径を、冷媒貯留タンク12内の上部空間に位置するガス側接続配管14の端部(流出口)の孔径より小さくして、冷媒戻し配管の流出口の流動抵抗をガス側接続配管14の流出口の流路抵抗より大きくすることで、冷媒回収時の液冷媒の流出を防止することができる。
 実施の形態3.
 図3はこの発明の実施の形態3に係る冷凍サイクル装置の冷媒回路構成図である。
 図3において、膨張タンク21が、圧縮機3の吸入側であるガス側冷媒配管9に接続されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 この実施の形態3による冷凍サイクル装置102では、膨張タンク21が、ガス側冷媒配管9に接続されているので、主冷媒回路の内容積を拡大することができ、主冷媒回路内の圧力上昇などを防止することができる。膨張タンク21を単独で設置すれば、極めて大きなタンク容積が必要となり、設置スペースおよびコストの面で実用性に欠ける可能性がある。この実施の形態3では、膨張タンク21と冷媒貯留タンク12とを併用しているので、主冷媒回路の冷媒が大幅に除去され、膨張タンク21の小型化が可能となり、設置スペースおよびコストの低減効果を得ることができる。
 なお、上記実施の形態3では、膨張タンク21がガス側冷媒配管9に接続されているが、膨張タンク12はガス側渡り配管8に接続されてもよい。
 実施の形態4.
 図4はこの発明の実施の形態4に係る冷凍サイクル装置の冷媒回路構成図である。
 図4において、圧力調整機構部としての第2冷凍サイクル25は、冷媒が、圧縮機26、凝縮器27、蒸発器28の順に通流して、圧縮機26に環流される冷媒回路に構成され、蒸発器28で蒸発された冷媒が、凝縮器4で凝縮された冷媒と熱交換可能に配設されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 この実施の形態4による冷凍サイクル装置103では、凝縮器4で凝縮された高圧の冷媒が、第2冷凍サイクル25の蒸発器28で蒸発された冷媒と熱交換されるので、冷凍サイクル装置103の高圧側の冷媒回路内の冷媒が冷却され、超臨界とならないように制御される。そこで、冷凍サイクル装置103の高圧側の冷媒回路内の冷媒の圧力を臨界圧力以下に低減できるので、停止時に、高圧側の冷媒回路内の冷媒を、密度の高い液冷媒として回収することができる。
 実施の形態5.
 図5はこの発明の実施の形態5に係る冷凍サイクル装置の冷媒回路構成図である。
 図5において、圧力調節機構部としてのバイパス熱交換部30が、液側冷媒配管11の液側接続配管13の接続部の凝縮器4側に形成されている。そして、バイパス配管31が、液側冷媒配管11のバイパス熱交換部30と液側接続配管13の接続部との間から分岐して、ガス側冷媒配管9に接続されている。バイパス熱交換部30は、凝縮器4で凝縮されて液側冷媒配管11内を通流する冷媒とバイパス配管31内を通流する冷媒との間で熱交換するように構成されている。そして、バイパス減圧装置としての膨張弁32がバイパス配管31のバイパス熱交換部30の上流側に配設されている。さらに、通電開の電磁弁33がバイパス配管31のバイパス熱交換部30の下流側に配設されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 この実施の形態5による冷凍サイクル装置104では、凝縮器4で凝縮されて液側冷媒配管11内を通流する冷媒が、バイパス熱交換部30で、膨張弁32で減圧された冷媒と熱交換して、過冷却される。これにより、冷凍サイクル装置104の高圧側の冷媒回路内の冷媒の圧力を臨界圧力以下に低減できるので、高圧側の冷媒回路内の冷媒分布が増加し、冷凍サイクル装置104の運転停止時の冷媒貯留タンク12による冷媒回収量を増大させることができる。
 なお、上記実施の形態5では、バイパス配管31がガス側冷媒配管9に接続されているが、バイパス配管31を圧縮機3の中間圧に接続してもよい。
 実施の形態6.
 図6はこの発明の実施の形態6に係る冷凍サイクル装置の冷媒回路構成図である。
 図6において、圧力調節機構部としての内部熱交換部35が、液側冷媒配管11の液側接続配管13の接続部の凝縮器4側に形成されている。そして、内部熱交換部35は、凝縮器4で凝縮されて液側冷媒配管11内を通流する冷媒とガス側冷媒配管9を通流する冷媒との間で熱交換するように構成されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 この実施の形態6による冷凍サイクル装置105では、凝縮器4で凝縮されて液側冷媒配管11内を通流する冷媒が、内部熱交換部35で、減圧装置6で減圧され、蒸発器7で蒸発してガス側冷媒配管9内を通流するガス冷媒と熱交換して、過冷却される。これにより、冷凍サイクル装置105の高圧側の冷媒回路内の冷媒の圧力を臨界圧力以下に低減できるので、高圧側の冷媒回路内の冷媒分布が増加し、冷凍サイクル装置105の運転停止時の冷媒貯留タンク12による冷媒回収量を増大させることができる。
 実施の形態7.
 図7はこの発明の実施の形態7に係る冷凍サイクル装置の冷媒回路構成図である。
 図7において、受液部36が、液側冷媒配管11の液側接続配管13の接続部の凝縮器4側に設けられている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
 この実施の形態7による冷凍サイクル装置106では、受液部36が液側冷媒配管11に設けられているので、多くの液冷媒が高圧の冷媒回路内に貯留される。これにより、高圧側の冷媒回路内の冷媒分布が増加し、冷凍サイクル装置106の運転停止時の冷媒貯留タンク12による冷媒回収量を増大させることができる。
 なお、上記各実施の形態では、R410A冷媒を使用する冷凍サイクル装置から、より動作圧力の高いCO2冷媒を使用する冷凍サイクル装置に買い換える場合において、施工コストを低減するために、液側渡り配管5、ガス側渡り配管8などの、低圧冷媒用に圧力設定された既設の配管を流用した。動作圧力の高い冷媒は、CO2冷媒に限定されず、例えば、R1123冷媒でもよい。
 また、R1123冷媒は燃焼性であるが、本冷凍サイクル装置では、冷媒貯留タンク12を用いているので、停電時でも、R1123冷媒のほとんどを冷媒貯留タンク12に貯留することができる。これにより、R1123冷媒の室内への漏洩を防止でき、すぐれた安全性を発揮することができる。そこで、本冷凍サイクル装置の冷媒として、燃焼性のあるHC系冷媒(R600a,R290など)やHFO系冷媒(R1234yf,R1234zeなど)、毒性のあるNH3等の冷媒を用いても、同様に効果が得られる。
 また、CO2、R600a、R290、R1234yf、R1234zeおよびNH3の冷媒群の中の1つの冷媒を本冷凍サイクル装置に封入してもよいし、これらの冷媒群から選択された複数の冷媒を混合した混合冷媒を、本冷凍サイクル装置に封入してもよい。

Claims (18)

  1.  冷媒を圧縮して吐出する圧縮機、および上記圧縮機から吐出された冷媒を凝縮する凝縮器を有する熱源ユニットと、
     上記凝縮器から流出する冷媒を減圧する減圧装置、および上記減圧装置から流出する冷媒を蒸発させる蒸発器を有する冷却ユニットと、
     上記熱源ユニットと上記冷却ユニットとを接続する液側渡り配管およびガス側渡り配管と、
     上記凝縮器と上記液側渡り配管とを接続する液側冷媒配管と、
     上記圧縮機と上記ガス側渡り配管とを接続するガス側冷媒配管と、を備え、
     上記圧縮機から、上記凝縮器、上記液側冷媒配管、上記液側渡り配管、上記減圧装置、上記蒸発器、上記ガス側渡り配管、および上記ガス側冷媒配管を通り、上記圧縮機に戻る主冷媒回路に冷媒が封入された冷凍サイクル装置において、
     上記液側冷媒配管又は上記液側渡り配管から延び出る液側接続配管と、
     上記ガス側冷媒配管又は上記ガス側渡り配管から延び出るガス側接続配管と、
     吸入側が上記液側接続配管に接続され、排出側が上記ガス側接続配管に接続され、冷媒を貯留する冷媒貯留タンクと、
     上記液側接続配管に配設され、無通電時に開放される入口側電磁弁と、
     上記液側接続配管に配設され、上記冷媒貯留タンク側にのみ冷媒を通流させる入口側逆止弁と、
     上記ガス側接続配管に配設され、上記入口側電磁弁に通電時に開放され、上記入口側電磁弁への通電停止から遅れて遮断される弁装置と、
    を備えた冷凍サイクル装置。
  2.  上記弁装置は、機械的に開閉する開閉弁である請求項1記載の冷凍サイクル装置。
  3.  上記開閉弁は、上記圧縮機の吐出部温度に相当する冷媒飽和圧力を駆動力として開閉する請求項2記載の冷凍サイクル装置。
  4.  上記弁装置は、通電時に、開放されると共に電力を蓄電し、通電停止後、蓄電された電力により開放状態を維持する蓄電式電磁弁である請求項1記載の冷凍サイクル装置。
  5.  上記ガス側接続配管は、上記冷媒貯留タンク内の上部に開口するように上記冷媒貯留タンクに接続されている請求項1から請求項4のいずれか1項に記載の冷凍サイクル装置。
  6.  上記冷媒貯留タンク内の下部と、上記ガス側接続配管の上記弁装置の上記冷媒貯留タンク側と、を連結する冷媒戻し配管を備え、上記冷媒戻し配管の上記冷媒貯留タンク内の開口部の流路抵抗が、上記ガス側接続配管の上記冷媒貯留タンク内の開口部の流路抵抗より大きい請求項5記載の冷凍サイクル装置。
  7.  上記冷媒貯留タンク内の下部と、上記ガス側冷媒配管又は上記ガス側渡り配管と、を連結する冷媒戻し配管と、
     上記冷媒戻し配管に配設された通電開の出口側電磁弁と、を備える請求項5記載の冷凍サイクル装置。
  8.  上記冷媒貯留タンクは、上記液側渡り配管より鉛直方向下方に配設されている請求項1から請求項7のいずれか1項に記載の冷凍サイクル装置。
  9.  上記液側渡り配管の配管長さが、227m以下である請求項1から請求項8のいずれか1項に記載の冷凍サイクル装置。
  10.  上記冷媒貯留タンクの容積が、上記主冷媒回路に封入された冷媒の液体積以上である請求項1から請求項9のいずれか1項に記載の冷凍サイクル装置。
  11.  上記ガス側冷媒配管又は上記ガス側渡り配管に接続された膨張タンクを備える請求項1から請求項10のいずれか1項に記載の冷凍サイクル装置。
  12.  上記主冷媒回路の上記圧縮機の吐出側から上記冷却ユニットに至る高圧側の冷媒回路内を臨界圧力以下に調節する圧力調節機構部を備える請求項1から請求項11のいずれか1項に記載の冷凍サイクル装置。
  13.  上記圧力調節機構部は、上記液側冷媒配管を流れる冷媒を冷却する第2冷凍サイクル装置である請求項12記載の冷凍サイクル装置。
  14.  上記圧力調整機構部は、上記液側冷媒配管を流れる冷媒と上記ガス側冷媒配管を流れる冷媒とを熱交換する内部熱交換部である請求項12記載の冷凍サイクル装置。
  15.  上記液側冷媒配管から分岐して上記ガス側冷媒配管に接続されたバイパス配管と、
     上記バイパス配管に設けられたバイパス減圧装置と、を備え、
     上記圧力調整機構部は、上記液側冷媒配管を流れる冷媒と上記バイパス減圧装置で減圧されて上記バイパス配管を流れる冷媒とを熱交換するバイパス熱交換部である請求項12記載の冷凍サイクル装置。
  16.  上記減圧装置に送られる冷媒をためる受液器を備える請求項1から請求項15のいずれか1項に記載の冷凍サイクル装置。
  17.  上記主冷媒回路に封入される冷媒は、CO2、R600a、R290、R1234yf、R1234ze、R1123およびNH3からなる冷媒群のなかの少なくとも1つの冷媒である請求項1から請求項16のいずれか1項に記載の冷凍サイクル装置。
  18.  上記主冷媒回路に封入される冷媒は、燃焼性または毒性のある冷媒である請求項1から請求項16のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2014/076048 2014-09-30 2014-09-30 冷凍サイクル装置 WO2016051493A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2014407850A AU2014407850B2 (en) 2014-09-30 2014-09-30 Refrigeration cycle device
US15/509,971 US10088210B2 (en) 2014-09-30 2014-09-30 Refrigeration cycle apparatus
CN201480082328.0A CN107076465B (zh) 2014-09-30 2014-09-30 制冷循环装置
JP2016551379A JP6227797B2 (ja) 2014-09-30 2014-09-30 冷凍サイクル装置
EP14903075.1A EP3203163B1 (en) 2014-09-30 2014-09-30 Refrigeration cycle device
PCT/JP2014/076048 WO2016051493A1 (ja) 2014-09-30 2014-09-30 冷凍サイクル装置
KR1020177010861A KR101908874B1 (ko) 2014-09-30 2014-09-30 냉동 사이클 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076048 WO2016051493A1 (ja) 2014-09-30 2014-09-30 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2016051493A1 true WO2016051493A1 (ja) 2016-04-07

Family

ID=55629592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076048 WO2016051493A1 (ja) 2014-09-30 2014-09-30 冷凍サイクル装置

Country Status (7)

Country Link
US (1) US10088210B2 (ja)
EP (1) EP3203163B1 (ja)
JP (1) JP6227797B2 (ja)
KR (1) KR101908874B1 (ja)
CN (1) CN107076465B (ja)
AU (1) AU2014407850B2 (ja)
WO (1) WO2016051493A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167822A1 (ja) * 2018-02-27 2019-09-06 株式会社ヴァレオジャパン 冷凍サイクル、冷凍サイクルの運転方法、冷凍サイクルに用いられるアキュムレータ、及び、冷凍サイクルを搭載した車両用空調装置
WO2021048899A1 (ja) * 2019-09-09 2021-03-18 三菱電機株式会社 室外ユニット及び冷凍サイクル装置
WO2022230955A1 (ja) * 2021-04-30 2022-11-03 ダイキン工業株式会社 冷凍サイクルシステム及び冷媒回収装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705807B1 (en) * 2017-11-02 2021-11-24 Mitsubishi Electric Corporation Refrigeration cycle device
CN108613425B (zh) * 2018-03-26 2022-04-26 广东美的制冷设备有限公司 空调装置
EP3779326B1 (en) * 2018-04-11 2023-11-29 Mitsubishi Electric Corporation Refrigeration cycle device
FR3081865B1 (fr) * 2018-06-05 2020-11-06 Arkema France Compositions a base de 1,1,2-trifluoroethylene et de dioxyde de carbone
EP3599440A1 (de) * 2018-07-24 2020-01-29 Siemens Aktiengesellschaft Verfahren und vorrichtung zur verdichtung eines gases
KR102002016B1 (ko) * 2018-09-28 2019-10-21 한영테크노켐(주) 가연성 냉매를 이용하는 냉동시스템의 안전운전방법 및 안전운전장치
AU2020207659A1 (en) * 2019-01-08 2021-08-12 Watergen Ltd. Atmospheric water generator with a defrost system
CN110411082B (zh) * 2019-07-23 2020-10-23 珠海格力电器股份有限公司 冷媒回收系统及其控制方法、装置、控制器和空调系统
CN110500828A (zh) * 2019-08-29 2019-11-26 乐舟 便携式冷媒回收机及冷媒回收系统
JP6881538B2 (ja) 2019-09-30 2021-06-02 ダイキン工業株式会社 冷凍装置
CN112730860A (zh) * 2020-12-18 2021-04-30 南通华兴石油仪器有限公司 一种密闭条件下输送循环实验装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128344A (ja) * 1973-04-11 1974-12-09
JPS56152269U (ja) * 1980-04-15 1981-11-14
JPH07159010A (ja) * 1993-12-09 1995-06-20 Matsushita Electric Ind Co Ltd 空気調和機
JPH08334272A (ja) * 1995-06-09 1996-12-17 Daikin Ind Ltd 空気調和装置
JP2009156531A (ja) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp 冷凍装置
JP2010019439A (ja) * 2008-07-08 2010-01-28 Mitsubishi Electric Corp 冷凍サイクル装置および冷凍サイクル装置の運転方法
JP2012207823A (ja) * 2011-03-29 2012-10-25 Fujitsu General Ltd 冷凍サイクル装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246760A (en) * 1978-10-02 1981-01-27 Carrier Corporation Non-reverse hot gas defrost system
US4266405A (en) * 1979-06-06 1981-05-12 Allen Trask Heat pump refrigerant circuit
US4735059A (en) * 1987-03-02 1988-04-05 Neal Andrew W O Head pressure control system for refrigeration unit
US5070705A (en) * 1991-01-11 1991-12-10 Goodson David M Refrigeration cycle
JPH07280364A (ja) * 1994-04-08 1995-10-27 Hoshizaki Electric Co Ltd 冷凍サイクル装置
JPH1130445A (ja) * 1997-07-10 1999-02-02 Denso Corp 冷凍サイクル装置
US5996360A (en) * 1997-11-27 1999-12-07 Denso Corporation Refrigerant cycle system
JP2000179958A (ja) 1998-12-16 2000-06-30 Matsushita Electric Ind Co Ltd 空気調和装置
US20020095944A1 (en) * 2001-01-12 2002-07-25 Mile High Equipment Co. Alternate path for refrigerant flow on a split system icemaker
JP2003065635A (ja) 2001-08-24 2003-03-05 Zexel Valeo Climate Control Corp 冷凍サイクル
ES2353864T3 (es) 2002-08-02 2011-03-07 Daikin Industries, Ltd. Equipo de refrigeración.
US7424807B2 (en) * 2003-06-11 2008-09-16 Carrier Corporation Supercritical pressure regulation of economized refrigeration system by use of an interstage accumulator
JP2006290042A (ja) * 2005-04-06 2006-10-26 Calsonic Kansei Corp 車両用空調装置
CN101351677B (zh) 2005-12-29 2011-09-14 阿塞里克股份有限公司 冷却装置
JP4883201B2 (ja) * 2009-04-17 2012-02-22 ダイキン工業株式会社 熱源ユニット
JP5515568B2 (ja) * 2009-09-30 2014-06-11 株式会社富士通ゼネラル ヒートポンプサイクル装置
US9410727B1 (en) * 2012-07-27 2016-08-09 Hill Phoenix, Inc. Systems and methods for defrosting an evaporator in a refrigeration system
JP6288942B2 (ja) * 2013-05-14 2018-03-07 三菱電機株式会社 冷凍装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128344A (ja) * 1973-04-11 1974-12-09
JPS56152269U (ja) * 1980-04-15 1981-11-14
JPH07159010A (ja) * 1993-12-09 1995-06-20 Matsushita Electric Ind Co Ltd 空気調和機
JPH08334272A (ja) * 1995-06-09 1996-12-17 Daikin Ind Ltd 空気調和装置
JP2009156531A (ja) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp 冷凍装置
JP2010019439A (ja) * 2008-07-08 2010-01-28 Mitsubishi Electric Corp 冷凍サイクル装置および冷凍サイクル装置の運転方法
JP2012207823A (ja) * 2011-03-29 2012-10-25 Fujitsu General Ltd 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203163A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167822A1 (ja) * 2018-02-27 2019-09-06 株式会社ヴァレオジャパン 冷凍サイクル、冷凍サイクルの運転方法、冷凍サイクルに用いられるアキュムレータ、及び、冷凍サイクルを搭載した車両用空調装置
WO2021048899A1 (ja) * 2019-09-09 2021-03-18 三菱電機株式会社 室外ユニット及び冷凍サイクル装置
JPWO2021048899A1 (ja) * 2019-09-09 2021-03-18
CN114341568A (zh) * 2019-09-09 2022-04-12 三菱电机株式会社 室外单元以及制冷循环装置
JP7154426B2 (ja) 2019-09-09 2022-10-17 三菱電機株式会社 室外ユニット及び冷凍サイクル装置
CN114341568B (zh) * 2019-09-09 2023-07-18 三菱电机株式会社 室外单元以及制冷循环装置
WO2022230955A1 (ja) * 2021-04-30 2022-11-03 ダイキン工業株式会社 冷凍サイクルシステム及び冷媒回収装置
JP2022171183A (ja) * 2021-04-30 2022-11-11 ダイキン工業株式会社 冷凍サイクルシステム及び冷媒回収装置
JP7185154B2 (ja) 2021-04-30 2022-12-07 ダイキン工業株式会社 冷凍サイクルシステム及び冷媒回収装置

Also Published As

Publication number Publication date
KR101908874B1 (ko) 2018-10-16
AU2014407850A1 (en) 2017-04-20
EP3203163A1 (en) 2017-08-09
CN107076465B (zh) 2019-08-06
CN107076465A (zh) 2017-08-18
EP3203163A4 (en) 2018-06-06
US10088210B2 (en) 2018-10-02
JPWO2016051493A1 (ja) 2017-04-27
EP3203163B1 (en) 2019-11-13
KR20170057415A (ko) 2017-05-24
JP6227797B2 (ja) 2017-11-08
US20170299241A1 (en) 2017-10-19
AU2014407850B2 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6227797B2 (ja) 冷凍サイクル装置
JP4687710B2 (ja) 冷凍装置
US9523520B2 (en) Air-conditioning apparatus
EP2808621A1 (en) Air-conditioning device
JPWO2014068967A1 (ja) 冷凍装置
CN104321598A (zh) 冷冻装置
JP5049889B2 (ja) 冷凍装置
JP2017142038A (ja) 冷凍サイクル装置
JP5186949B2 (ja) 冷凍装置
CN114174732A (zh) 热源机组及制冷装置
EP2910872A1 (en) Freezing device
WO2019053771A1 (ja) 空気調和装置
WO2015060384A1 (ja) 冷凍装置
JP6472527B2 (ja) 冷凍サイクル装置
JP5765990B2 (ja) 室内機及び空気調和装置
CN109564033B (zh) 热泵装置
JP2015068571A (ja) 冷凍装置
US20190137147A1 (en) Refrigeration systems and methods
JP6765086B2 (ja) 冷凍装置
JP2010014343A (ja) 冷凍装置
KR102636893B1 (ko) 냉장 시스템 및 방법
JP6771311B2 (ja) 冷凍サイクル装置
JP2018054214A (ja) 冷凍装置
JPWO2016207992A1 (ja) 空気調和機
JP7398582B1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551379

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15509971

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014903075

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903075

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014407850

Country of ref document: AU

Date of ref document: 20140930

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177010861

Country of ref document: KR

Kind code of ref document: A