WO2019167822A1 - 冷凍サイクル、冷凍サイクルの運転方法、冷凍サイクルに用いられるアキュムレータ、及び、冷凍サイクルを搭載した車両用空調装置 - Google Patents

冷凍サイクル、冷凍サイクルの運転方法、冷凍サイクルに用いられるアキュムレータ、及び、冷凍サイクルを搭載した車両用空調装置 Download PDF

Info

Publication number
WO2019167822A1
WO2019167822A1 PCT/JP2019/006709 JP2019006709W WO2019167822A1 WO 2019167822 A1 WO2019167822 A1 WO 2019167822A1 JP 2019006709 W JP2019006709 W JP 2019006709W WO 2019167822 A1 WO2019167822 A1 WO 2019167822A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
accumulator
refrigeration cycle
compressor
working fluid
Prior art date
Application number
PCT/JP2019/006709
Other languages
English (en)
French (fr)
Inventor
浩之 石野
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Publication of WO2019167822A1 publication Critical patent/WO2019167822A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration cycle useful for preventing the refrigerant stored in the accumulator from sleeping in other places in the refrigeration cycle, an operating method thereof, an accumulator used in the refrigeration cycle, and a refrigeration cycle.
  • the present invention relates to a vehicle air conditioner.
  • the refrigeration cycle generally includes a compressor, a radiator that radiates heat of the working fluid compressed by the compressor to the air, and an expansion device that decompresses and expands the working fluid that has been radiated by the radiator.
  • the heat absorber that absorbs the heat of air to the working fluid decompressed and expanded by the expansion device and the accumulator that stores the working fluid are connected at least by piping.
  • a compressor of a vehicle air conditioner is disposed in a space where the flow of outside air such as an engine room is relatively easy, and is susceptible to the outside air temperature when stopped, and the temperature may decrease. As a result, the gas-phase refrigerant accumulated in the accumulator may flow into the compressor and cause an event of liquefaction.
  • Patent Document 1 an open / close valve is opened between the compressor and the accumulator, that is, in the refrigerant tank downstream of the accumulator, when the compressor is driven and closed when the compressor is stopped.
  • an open / close valve is opened between the compressor and the accumulator, that is, in the refrigerant tank downstream of the accumulator, when the compressor is driven and closed when the compressor is stopped.
  • the on-off valve provided on the downstream side of the accumulator can prevent the refrigerant in the accumulator from flowing out to the compressor as described above, the temperature of the heat exchanger or pipe disposed upstream of the accumulator remains When the temperature of the refrigerant in the accumulator becomes lower than that in the refrigerant, the gas-phase refrigerant in the accumulator may flow backward to the heat exchanger or pipe on the upstream side, and may liquefy and fall asleep in the heat exchanger or pipe. If refrigerant stagnation occurs upstream of such an accumulator, the amount of refrigerant stored in the accumulator decreases, and sufficient refrigerant cannot be drawn when the compressor is started from a stopped state. There are concerns about inconveniences such as an increase in the number of rotations of the compressor in order to secure the target heat dissipation amount in the radiator and an increase in the time required to reach the target heat dissipation amount in the radiator.
  • the present invention has been made in view of such circumstances, and mainly provides a technique capable of avoiding that the refrigerant in the accumulator flows out to a place other than the accumulator and falls asleep while the refrigeration cycle is stopped. It is an issue.
  • the present invention provides a means for preventing the refrigerant stored in the accumulator from flowing out not only to the downstream side but also to the upstream side while the cycle is stopped.
  • the refrigerant is prevented from flowing out of the refrigerant, and sufficient refrigerant is stored in the accumulator.
  • the refrigeration cycle according to the present invention includes a compressor, a radiator that releases heat of the working fluid compressed by the compressor to the air, and heat dissipation by the radiator.
  • An expansion device that decompresses and expands the working fluid after being formed, a heat absorber that absorbs the heat of air in the working fluid decompressed and expanded by the expansion device, and an accumulator that stores the working fluid are connected at least by piping.
  • a first control valve capable of controlling the outflow amount of the working fluid flowing out from the accumulator is provided on the outflow side of the accumulator, and the working fluid from the accumulator is provided on the inflow side of the accumulator.
  • the second control valve capable of preventing the outflow of the gas is provided.
  • the first control valve may be an on-off valve
  • the second control valve may be a check valve or an on-off valve.
  • the first control valve and the second control valve are used as on-off valves, it becomes easier to secure the storage of the working fluid in the accumulator by adjusting the opening / closing timing of the respective on-off valves.
  • a check valve it is possible to mechanically prevent the working fluid stored in the accumulator from flowing back to the upstream side. Simplification can be achieved.
  • the discharge function of the compressor is stopped from the circulation state in which the compressor is operated and the working fluid is circulated through the refrigeration cycle, and the working fluid is circulated in the refrigeration cycle. It is desirable to stop the discharge function of the compressor and then close the first control valve when shifting to the circulation stop state where the engine is stopped.
  • the first control valve is closed after the discharge function of the compressor is stopped, so that the path from the first control valve to the compressor is extremely decompressed.
  • the expansion of the differential pressure between the upstream side and the downstream side of the first control valve can be suppressed to reduce breakage and performance deterioration of the first control valve (enhance the durability of the first control valve). It becomes possible. For this reason, when the first control valve is in the closed state, there is no risk of the working fluid in the accumulator leaking downstream due to the malfunction of the first control valve, and thus the working fluid is stagnated at a place other than the accumulator. It can be surely prevented.
  • the second control valve when the second control valve is an on-off valve, it is desirable to close the second control valve after closing the first control valve.
  • the second control valve is closed after the first control valve is closed, so that the working fluid in the accumulator is prevented from flowing out to the downstream side, and the working fluid in the path upstream from the accumulator is accumulated in the accumulator.
  • the amount of working fluid that lies in the cycle can be reduced.
  • the time from when the first control valve is closed to when the second control valve is closed is from the time from when the discharge function of the compressor is stopped until the first control valve is closed. It is desirable to make it longer. By relatively shortening the time from when the discharge function of the compressor is stopped until the first control valve is closed, it is possible to suppress the stagnation of the working fluid between the first control valve and the compressor as much as possible. In addition, by relatively increasing the time from when the first control valve is closed to when the second control valve is closed, the working fluid in the path upstream from the accumulator is collected as much as possible into the accumulator. It is possible to reduce the amount of working fluid that falls into the interior.
  • the compressor is operated from the circulation stop state in which the discharge function of the compressor is stopped to stop the circulation of the working fluid in the refrigeration cycle, and the working fluid is circulated in the refrigeration cycle.
  • the first control valve may be opened, and the compressor may be operated after that.
  • the path from the first control valve to the compressor is not extremely reduced in pressure. It is possible to suppress an increase in the differential pressure between the upstream side and the downstream side of the control valve, thereby suppressing breakage and performance deterioration of the first control valve (increasing durability of the first control valve). For this reason, when the first control valve is in the closed state, there is no risk of the working fluid in the accumulator leaking downstream due to the malfunction of the first control valve, and thus the working fluid is stagnated at a place other than the accumulator. It becomes possible to prevent.
  • the second control valve when the second control valve is an on-off valve, it is desirable to open the first control valve after opening the second control valve.
  • the refrigerant stored in the accumulator is not sucked by the compressor and is extremely reduced in pressure, and the second control valve ( It is possible to suppress the expansion of the differential pressure between the upstream side and the downstream side of the on-off valve) and to suppress the breakage and performance deterioration of the second control valve (enhance the durability of the second control valve).
  • the time from opening the second control valve is set longer than the time from opening the first control valve to operating the compressor.
  • the accumulator may be provided with a first control valve and a second control valve. That is, a compressor, a radiator that releases heat of the working fluid compressed by the compressor to the air, an expansion device that decompresses and expands the working fluid that has been radiated by the radiator, and a decompression by the expansion device
  • An accumulator body for storing the working fluid an accumulator used for a refrigeration cycle configured by connecting at least a heat absorber that absorbs the heat of air to the expanded working fluid and an accumulator for storing the working fluid; and
  • a first control valve provided on the outflow side of the accumulator main body and capable of controlling the outflow amount of the working fluid flowing out from the accumulator, and provided on the inflow side of the accumulator main body to prevent outflow of the working fluid from the accumulator And a possible second control valve.
  • the above-described function can be provided by replacing the accumulator with respect to the existing refrigeration cycle.
  • the first control valve may be constituted by an on-off valve
  • the second control valve may be constituted by a check valve or an on-off valve.
  • the above-described refrigeration cycle is particularly useful for preventing the working fluid from sleeping in a place other than the accumulator when mounted on a vehicle air conditioner that needs to cope with a large change in the external environment.
  • the first control valve capable of controlling the outflow amount of the working fluid flowing out from the accumulator is provided on the outflow side of the accumulator, and the accumulator is provided on the inflow side of the accumulator.
  • the second control valve capable of preventing the backflow of the accumulator is provided, and the first control valve is closed and the backflow from the accumulator is prevented by the second control valve while the refrigeration cycle is stopped. It becomes possible to prevent the working fluid from flowing out to another part of the refrigeration cycle, to store the working fluid in the accumulator as much as possible, and to effectively prevent the working fluid from sleeping in a place other than the accumulator.
  • FIG. 1 is a diagram showing an overall configuration example of a vehicle air conditioner equipped with a refrigeration cycle according to the present invention.
  • FIG. 2 is a table showing states of the on-off valve, the expansion device, and the damper in each operation mode of the refrigeration cycle according to the present invention.
  • FIG. 3 is a diagram illustrating the refrigerant flow in the cooling operation mode of the refrigeration cycle according to the present invention.
  • FIG. 4 is a diagram illustrating the refrigerant flow in the heating operation mode of the refrigeration cycle according to the present invention.
  • FIG. 5 is a diagram for explaining the refrigerant flow in the dehumidifying and heating operation mode of the refrigeration cycle according to the present invention.
  • FIG. 6 is a diagram illustrating an operation sequence when the refrigeration cycle according to FIG. 1 is stopped.
  • FIG. 1 is a diagram showing an overall configuration example of a vehicle air conditioner equipped with a refrigeration cycle according to the present invention.
  • FIG. 2 is a table showing states of the on-off valve, the expansion device, and the
  • FIG. 7 is a diagram for explaining an operation sequence when the refrigeration cycle according to FIG. 1 is started.
  • FIG. 8A is a diagram schematically showing an accumulator in which the first control valve and the second control valve used in the refrigeration cycle according to FIG. 1 are integrated, and FIG. It is the figure which showed typically the accumulator which integrated the 1st control valve and 2nd control valve which are used for the refrigeration cycle which concerns.
  • FIG. 9 is a diagram showing a mode in which the second control valve is an on-off valve in the vehicle air conditioner equipped with the refrigeration cycle according to FIG. 1.
  • FIG. 10 is a diagram illustrating an operation sequence when the refrigeration cycle according to FIG. 9 is stopped.
  • FIG. 11 is a diagram for explaining an operation sequence when the refrigeration cycle according to FIG. 9 is started.
  • FIG. 12A is a diagram for explaining the operation timing of the compressor and each control valve when the refrigeration cycle is stopped, and FIG. 12B is the operation of the compressor and each control valve when the refrigeration cycle is started. It is a figure explaining a timing
  • FIG. 1 shows an example of a vehicle air conditioner 1 according to the present invention.
  • the vehicle air conditioner 1 is mounted on, for example, an automobile, and is an air conditioning unit disposed on the side of the cabin (C) from the firewall ⁇ .
  • the first and second heat exchangers 3 and 4 disposed in the air conditioning unit 2, and the air conditioning unit 2 (in this example, disposed on the engine room (E) side from the firewall ⁇ ), the outside air and heat A replaceable vehicle exterior heat exchanger 5 is provided.
  • the firewall ⁇ is a plate-like member that partitions the engine room (E) and the vehicle compartment (C) disposed behind the engine room (E) in the vehicle front-rear direction, and is called a toe board or a partition wall.
  • the engine room (E) includes not only a form in which the engine is disposed but also a form in which a traveling motor for driving the vehicle is disposed.
  • the engine room (E) is sometimes called a motor room.
  • An inside / outside air switching device (not shown) is provided on the most upstream side of the air conditioning unit 2, and the inside air inlet and the outside air inlet are selectively opened by an intake door.
  • the inside air or the outside air selectively introduced into the air conditioning unit 2 is sucked by the rotation of the blower 20 and sent to the first and second heat exchangers 3 and 4, where heat is exchanged therefor and a desired outlet. Is supplied to the passenger compartment.
  • the second heat exchanger 4 is disposed downstream of the first heat exchanger 3 in the air flow direction in the air conditioning unit, and on the upstream side of the second heat exchanger 4 in the air flow direction, A damper 21 is provided.
  • the damper 21 can be varied from the position (full hot position: opening degree 100%) where the passing air volume of the second heat exchanger 4 is maximized to the position (full cool position: opening degree 0%) where it becomes the minimum. By adjusting the opening, the ratio of the air passing through the second heat exchanger 4 and the air bypassing can be adjusted.
  • the inflow side 4 a of the second heat exchanger 4 is connected to the discharge side A of the compressor 6, and the outflow side 4 b of the second heat exchanger 4 is connected to the inflow side 7 a of the first expansion device 7. ing.
  • the outflow side 3 b of the first heat exchanger 3 is connected to the suction side B of the compressor 6 via the accumulator 10.
  • the outflow side 7b of the first expansion device 7 is connected to the inflow side 5a of the vehicle exterior heat exchanger 5, and the outflow side 5b of the vehicle exterior heat exchanger 5 includes the check valve 8 and the second expansion device. 9 is connected to the inflow side 3 a of the first heat exchanger 3.
  • the refrigeration cycle 30 connected in a loop in the order of the compressor 6 is formed.
  • the refrigerant flow path between the outflow side 4b of the second heat exchanger 4 and the inflow side 7a of the first expansion device 7, the outflow side 8b of the check valve 8 and the inflow of the second expansion device 9 The refrigerant channel between the side 9a is connected by a first bypass channel 12 that is opened and closed by an on-off valve 11, and the outflow side 5b of the vehicle exterior heat exchanger 5 and the inflow side 8a of the check valve 8
  • the refrigerant flow path between the refrigerant flow path and the refrigerant flow path between the outflow side 3b of the first heat exchanger 3 and the inflow side 10a of the accumulator 10 is opened and closed by the second bypass flow path 14 opened and closed by the on-off valve 13. It is connected.
  • the outflow amount of the refrigerant (working fluid) flowing out from the accumulator 10 can be controlled on the outflow side 10b of the accumulator 10, that is, on the refrigerant flow path between the accumulator 10 and the compressor 6.
  • One control valve 15 is provided.
  • the accumulator 10 is located on the inflow side 10 a of the accumulator 10, that is, on the downstream side of the part where the second bypass passage 14 is connected on the refrigerant flow path between the first heat exchanger 3 and the accumulator 10.
  • the 2nd control valve 16 which can prevent the back flow from is provided.
  • the first control valve 15 is configured by an on-off valve
  • the second control valve 16 is configured by a check valve that allows only inflow to the accumulator 10.
  • the first and second expansion devices 7 and 9 use externally controlled expansion valves that can adjust the throttle amount by external control.
  • This control unit 23 is a publicly known unit including an input circuit including an A / D converter and a multiplexer, an arithmetic processing circuit including a ROM, a RAM, a CPU, and an output circuit including a drive circuit.
  • Sensor signals from the indoor temperature sensor 24 for detecting the temperature, the outdoor temperature sensor 25 for detecting the outside air temperature, various signals for setting the operation mode, and a command signal for starting or stopping the refrigeration cycle are input.
  • the control signal is generated by processing according to a predetermined program.
  • the control unit 23 operates the compressor 6, closes the on-off valve 11 and closes the on-off valve 13 as shown in FIGS.
  • the first expansion device 7 is fully opened, and the second expansion device 9 is in a state of being squeezed according to the heat load. Further, the damper 21 is set to the full cool position (position where the opening is 0%). Then, the compressed refrigerant discharged from the discharge side A of the compressor 6 flows into the second heat exchanger 4, but since there is no air passing through the second heat exchanger 4, it does not radiate heat here. Pass through and enter the heat exchanger 5 outside the vehicle compartment via the first expansion device 7.
  • the first expansion device 7 since the first expansion device 7 is in a fully opened state, the first expansion device 7 is not decompressed and expanded here, and after being radiated (condensed and liquefied) by the vehicle exterior heat exchanger 5, The second expansion device 9, the pressure is reduced by the second expansion device 9 and enters the first heat exchanger 3, where the heat is absorbed (evaporated and vaporized) and then returned to the compressor 6 via the accumulator 10. .
  • the air sent from the upstream of the air conditioning unit 2 is cooled by the first heat exchanger 3, bypasses the second heat exchanger 4, and is supplied as it is to the passenger compartment (C) as cold air.
  • the outdoor heat exchanger 5 functions as a radiator
  • the second expansion device 9 functions as an expansion device that decompresses and expands the refrigerant
  • the first heat exchanger 3 functions as a heat absorber. .
  • the control unit 23 When the operation mode is set to the heating operation mode, the control unit 23 operates the compressor 6, closes the on-off valve 11 and opens the on-off valve 13, as shown in FIGS.
  • the expansion device 7 is squeezed, and the second expansion device 9 is closed.
  • the damper 21 is set to the full hot position (position where the opening degree is 100%). Then, when the compressed refrigerant discharged from the discharge side A of the compressor 6 flows into the second heat exchanger 4, it radiates heat to the air passing there. Thereafter, the pressure is reduced by the first expansion device 7, reaches the vehicle exterior heat exchanger 5, absorbs heat (vaporizes and vaporizes) therein, passes through the on-off valve 13, and is returned to the compressor 6 through the accumulator 10.
  • the air sent from the upstream of the air conditioning unit 2 passes through the first heat exchanger 3 but is not heat-exchanged, and is all guided to the second heat exchanger 4 to be heated, as hot air. It is supplied into the passenger compartment (C).
  • the second heat exchanger 4 functions as a radiator
  • the first expansion device 7 functions as an expansion device that decompresses and expands the refrigerant
  • the outdoor heat exchanger 5 functions as a heat absorber. .
  • the control unit 23 When the operation mode is set to the dehumidifying and heating operation mode, the control unit 23 operates the compressor 6, opens the on-off valve 11 and opens the on-off valve 13, as shown in FIGS.
  • the first expansion device 7 is squeezed, and the second expansion device 9 is squeezed according to the heat load. Further, the opening degree of the damper 21 is set to a full hot position or an arbitrary intermediate position. For this reason, the compressed refrigerant discharged from the discharge side A of the compressor 6 is radiated (condensed and liquefied) by the second heat exchanger 4, depressurized by the first expansion device 7, and transferred to the vehicle exterior heat exchanger 5.
  • the heat is absorbed (evaporated and vaporized), passes through the on-off valve 13, and is returned to the compressor 6 through the accumulator 10.
  • the refrigerant that has passed through the second heat exchanger 4 passes through the on-off valve 11 and then is depressurized by the second expansion device 9 to reach the first heat exchanger 3 where heat is absorbed (evaporated and evaporated). And then returned to the compressor 6 via the accumulator 10.
  • the air sent from the upstream of the air conditioning unit 2 is dehumidified by the first heat exchanger 3, heated when passing through the second heat exchanger 4, and dried as warm air. (C) is supplied.
  • the second heat exchanger 4 functions as a radiator
  • the first expansion device 7 and the second expansion device 9 function as expansion devices that decompress and expand the refrigerant
  • the outdoor heat The exchanger 5 and the first heat exchanger 3 function as a heat absorber.
  • the discharge function of the compressor when the compressor is an electric compressor whose rotation is controlled by an electric motor, the electric current is not supplied to the electric motor and the compressor 6 is stopped.
  • the compressor When the power is transmitted through the electromagnetic clutch, the compressor is turned off by turning off the electromagnetic clutch.
  • the swash plate A state in which the swing angle is minimized and the refrigerant is circulated inside the compressor and is not discharged outside the compressor.
  • the compressor when the compressor is an electric compressor whose rotation is controlled by an electric motor, the discharge function of the compressor is exhibited when the compressor 6 is operated by energizing the electric motor.
  • the compressor When the power is transmitted through the electromagnetic clutch, the compressor is turned on and the compressor is operating.
  • the swash plate is shaken. A state in which the refrigerant is discharged out of the compressor with a moving angle other than the minimum.
  • the first control valve 15 is closed after the discharge function of the compressor 6 is stopped, the path from the first control valve 15 to the compressor 6 is not extremely reduced in pressure, and the first control valve It is possible to reduce the damage and performance deterioration of the first control valve 15 by suppressing an increase in the differential pressure between the upstream side and the downstream side of the valve 15 (enhancing the durability of the first control valve 15). Is possible). For this reason, the closed state of the first control valve 15 is impaired, and there is no possibility that the refrigerant in the accumulator leaks to the downstream side, and it is possible to reliably prevent the refrigerant from sleeping in the compressor 6.
  • the second expansion device 9 and the on-off valve 13 on the second bypass passage 14 are simultaneously closed ((3) in the figure).
  • the on-off valve 11 on the first bypass passage 12 is not particularly opened and closed, and is determined in advance when the refrigeration cycle 30 is stopped, even if the open / close state according to the operation state immediately before the refrigeration cycle is stopped is maintained. You may make it return to the default opening-and-closing state set.
  • the reason why the second expansion device 9 and the on-off valve 13 are closed is that there is refrigerant that could not be returned to the accumulator 10, or there was refrigerant that leaked upstream due to insufficient check valve 16 function.
  • the refrigerant sucked by the compressor 6 when the refrigeration cycle 30 is started next time is near the upstream side of the compressor 6. This is to ensure the suction of the refrigerant.
  • the on-off valve 13 is closed first and the second expansion device is closed. 9 may be closed later. This is because the path from the position of the accumulator 10 to the on-off valve 13 is shorter than the path from the first heat exchanger 3 to the second expansion device 9, and the passage resistance is small. This is because the risk that the refrigerant in the accumulator 10 flows out through the second bypass passage 14 is high.
  • the open / close state of the on-off valves 11 and 13 the first expansion device 7 and the opening and opening state of the second expansion device 9 are set ((1) in FIG. 7), and then the first control valve is opened ((2) in FIG. 7), and then the compressor is turned on. Operate ((3) in FIG. 7).
  • the compressor 6 since the compressor 6 is operated after the first control valve 15 is opened, the path from the first control valve 15 to the compressor 6 is not extremely reduced in pressure, and the first control valve 15 It is possible to suppress an increase in the differential pressure between the upstream side and the downstream side, thereby suppressing breakage and performance deterioration of the first control valve 15 (to increase the durability of the first control valve 15). Possible). As a result, the closed state of the first control valve 15 is lost, and there is no possibility that the refrigerant in the accumulator leaks to the downstream side, and it is possible to reliably prevent the refrigerant from sleeping in the compressor 6.
  • the first control valve 15 that can control the outflow amount of the refrigerant flowing out of the accumulator 10 is provided on the piping path between the accumulator 10 and the compressor 6.
  • a second control valve (check valve) 16 capable of preventing the refrigerant from flowing out from the accumulator 10 is provided between the portion where the accumulator 10 and the second bypass passage 14 are connected.
  • the example provided on the piping path is shown, at least one of the first control valve (open / close valve) 15 and the second control valve (check valve) 16 may be integrated with the accumulator 10. (For example, as shown in FIG.
  • the accumulator 10 is provided on the accumulator body 100 for storing the refrigerant and the outflow side 10b of the accumulator body 100.
  • a first control valve 15 that can control the amount of refrigerant flowing out from the collector to the downstream side, and a second control valve that is provided on the inflow side 10a of the accumulator body 100 and can prevent the refrigerant from flowing out from the upstream side. 16 may be integrated with each other).
  • the check valve is provided on the inflow side of the accumulator as the second control valve capable of preventing the refrigerant from flowing out is described.
  • An open / close valve may be used as the control valve 16.
  • the opening and closing of the second control valve 16 is also controlled by a control signal from the control unit 23, and is open in various operation modes (circulation state in which refrigerant is circulated in the refrigeration cycle). Yes.
  • symbol is attached
  • the discharge function of the compressor 6 is stopped from the circulation state in which the compressor 6 is operated in any of the operation modes described above and the refrigerant is circulated through the refrigeration cycle 30, and the refrigerant of the refrigeration cycle 30 is discharged.
  • the following operation is performed.
  • the first control valve 15 is closed after the discharge function of the compressor 6 is stopped, as described above, an increase in the differential pressure between the upstream side and the downstream side of the first control valve 15 is suppressed. This makes it possible to reduce the damage and performance deterioration of the first control valve 15 (it is possible to increase the durability of the first control valve). For this reason, the closed state of the 1st control valve 15 is impaired, and there is no possibility that the refrigerant in the accumulator leaks to the downstream side, and it is possible to reliably prevent the refrigerant from stagnating in the compressor.
  • the second control valve 16 is closed after the first control valve 15 is closed, the refrigerant in the path upstream from the accumulator 10 is collected in the accumulator 10 as much as possible to reduce the amount of refrigerant stagnated in the cycle. It becomes possible.
  • the time ( ⁇ t2) from when the first control valve 15 is closed to when the second control valve 16 is closed is from when the discharge function of the compressor 6 is stopped until the first control valve 15 is closed. It is preferable to set it longer than the time ( ⁇ t1) (see FIG. 12A). Reducing the refrigerant stagnation between the first control valve 15 and the compressor 6 as much as possible by relatively shortening the time from when the discharge function of the compressor 6 is stopped until the first control valve 15 is closed. In addition, by relatively increasing the time from when the first control valve 15 is closed to when the second control valve 16 is closed, the refrigerant in the path upstream from the accumulator 10 is collected by the accumulator 10 as much as possible. In addition, it is possible to reduce the amount of refrigerant that lies in the cycle path other than the accumulator.
  • the second expansion device 9 and the on-off valve 13 on the second bypass passage 14 are simultaneously closed ((4) in the figure).
  • the on-off valve 11 on the first bypass passage 12 is not opened / closed in particular, but it is determined in advance when the refrigeration cycle is stopped, even if it is kept open / closed according to the operation state immediately before the refrigeration cycle is stopped. You may make it return to a default opening-and-closing state.
  • the on-off valve 13 is closed first, and the second expansion device 9 is closed later. You may make it do.
  • the refrigerant stored in the accumulator 10 is not sucked by the compressor and extremely reduced in pressure.
  • the durability of the valve 16 can be increased). For this reason, the closed state of the second control valve 16 is impaired, and there is no possibility that the refrigerant in the accumulator leaks to the upstream side, so that it is possible to prevent the refrigerant from sleeping on the upstream side of the accumulator.
  • the compressor 6 is operated after the first control valve 15 is opened, the path from the first control valve 15 to the compressor 6 is not extremely decompressed, and the upstream side of the first control valve 15 It is possible to suppress the expansion of the differential pressure between the first control valve 15 and the downstream side, thereby suppressing the damage and performance deterioration of the first control valve 15 (the durability of the first control valve can be enhanced). For this reason, the closed state of the first control valve 15 is impaired, and there is no possibility that the refrigerant in the accumulator leaks downstream, and it is possible to reliably prevent the refrigerant from sleeping in the compressor 6.
  • the time from opening the second control valve 16 to opening the first control valve 15 is the time from opening the first control valve 15 to operating the compressor 6 ( ⁇ t4). It is preferable to make it longer (see FIG. 12B).
  • the pressure in the accumulator 10 is balanced with the pressure in the upstream path as much as possible.
  • At least one of the first control valve (open / close valve) 15 and the second control valve (open / close valve) 16 may be integrated with the accumulator 10 (for example, FIG. 8 (b), the accumulator 10 is provided on the accumulator main body 100 that stores the refrigerant, and on the outflow side 10b of the accumulator main body 100, and is capable of controlling the outflow amount of the refrigerant flowing out from the accumulator to the downstream side.
  • the valve 15 and the second control valve 16 provided on the inflow side 10a of the accumulator main body 100 and capable of preventing the refrigerant from flowing out from the upstream side may be integrated.

Abstract

【課題】冷凍サイクルの停止中にアキュムレータ内に蓄積された冷媒がアキュムレータ以外の箇所で寝込むことを回避することが可能な技術を提供する。 【解決手段】圧縮機(6)と、圧縮機(6)で圧縮された作動流体を放熱させる放熱器(4,5)と、放熱器(4,5)で放熱された後の作動流体を減圧膨張させる膨張装置(7,9)と、膨張装置(7,9)で減圧膨張された作動流体に吸熱させる吸熱器(5,3)と、作動流体を蓄えるアキュムレータ(10)とを少なくとも配管接続して構成される冷凍サイクル(30)において、アキュムレータ(10)の流出側(10b)に、該アキュムレータ(10)から流出する作動流体の流出量を制御可能な第1制御弁(15)を設け、アキュムレータ(10)の流入側(10a)に、該アキュムレータ(10)からの逆流を阻止可能な第2制御弁(16)を設ける。第1制御弁(15)としては開閉弁を用い、第2制御弁(16)としては、逆止弁又は開閉弁を用いるとよい。

Description

冷凍サイクル、冷凍サイクルの運転方法、冷凍サイクルに用いられるアキュムレータ、及び、冷凍サイクルを搭載した車両用空調装置
 本発明は、アキュムレータに貯留された冷媒が冷凍サイクルの他の場所に寝込むことを防止するために有用な冷凍サイクル、及び、その運転方法、並びに、冷凍サイクルに用いられるアキュムレータ、及び、冷凍サイクルを搭載した車両用空調装置に関する。
 冷凍サイクルは、一般的に、圧縮機と、この圧縮機で圧縮された作動流体の熱を空気に放熱する放熱器と、前記放熱器で放熱された後の作動流体を減圧膨張する膨張装置と、前記膨張装置で減圧膨張された作動流体に空気の熱を吸熱させる吸熱器と、前記作動流体を蓄えるアキュムレータとを少なくとも配管接続して構成されている。
 このような冷凍サイクルにおいては、圧縮機が稼働されずに長時間停止していると、冷凍サイクル内の圧力が平衡してくるとともに、冷凍サイクル中の温度が低い部位で冷凍サイクル中の冷媒が液化することとなる。車両用空調装置の圧縮機はエンジンルーム等の外気の通流が比較的容易な空間に配置され、停止時には外気温度の影響を受けやすく、温度が低下する場合がある。すると、アキュムレータに蓄積されていた気相冷媒が圧縮機内に流入して、液化する事象が発生するおそれがあった。
 そこで、従来においては、下記の特許文献1に示すように、圧縮機とアキュムレータとの間、即ちアキュムレータの下流側の冷媒菅に、圧縮機の駆動時は開となり、停止時には閉とする開閉弁を設け、圧縮機の停止時にアキュムレータから圧縮機へ冷媒が流出することを阻止するようにした構成が考えられている。
実開平1-109758号公報
 しかしながら、上述のようにアキュムレータの下流側に設けた開閉弁によってアキュムレータ内の冷媒の圧縮機への流出が阻止できたとしても、アキュムレータの上流側に配置された熱交換器や配管の温度がアキュムレータ内の冷媒温度よりも低くなると、アキュムレータ内の気相冷媒が上流側の熱交換器や配管へ逆流し、この熱交換器や配管内で液化して寝込む可能性がある。
 このようなアキュムレータよりも上流側で冷媒の寝込みが生じると、アキュムレータ内に貯留される冷媒量が減少し、圧縮機が停止状態から起動した際に十分な冷媒を吸引することができず、放熱器での目標放熱量を確保するために圧縮機の回転数が増加したり、放熱器での目標放熱量に到達するまでの時間が長くなる等の不都合が懸念される。
 本発明は、係る事情に鑑みてなされたものであり、冷凍サイクルの停止中にアキュムレータ内の冷媒がアキュムレータ以外の箇所へ流出して寝込むことを回避することが可能な技術を提供することを主たる課題としている。
 上記課題を解決するために、本発明は、アキュムレータに貯留されている冷媒がサイクル停止中に下流側のみならず上流側へも流出することを防ぐ手段を設けることで、サイクル停止中でのアキュムレータからの冷媒の流出を抑え、アキュムレータ内に十分な冷媒を貯留させておくものである。
 すなわち、本発明を冷凍サイクルの観点で見ると、本発明に係る冷凍サイクルは、圧縮機と、前記圧縮機で圧縮された作動流体の熱を空気に放出する放熱器と、前記放熱器で放熱された後の作動流体を減圧膨張する膨張装置と、前記膨張装置で減圧膨張された作動流体に空気の熱を吸収させる吸熱器と、前記作動流体を蓄えるアキュムレータとを少なくとも配管接続して構成される冷凍サイクルであって、前記アキュムレータの流出側に、該アキュムレータから流出する作動流体の流出量を制御可能な第1制御弁を設け、また、前記アキュムレータの流入側に、該アキュムレータからの作動流体の流出を阻止可能な第2制御弁を設けたことを特徴としている。
 このような冷凍サイクルにおいては、圧縮機による冷媒の吐出機能が無くなるサイクル停止中において、第1の制御弁を閉としてアキュムレータより下流側への冷媒の流出を阻止するとともに、第2の制御弁によってアキュムレータの上流側への流出(アキュムレータからの逆流)も阻止されるので、アキュムレータから冷凍サイクルの別の部位へ作動流体が流出することを防ぐことが可能となる。このため、サイクル停止中にできるだけ作動流体をアキュムレータに残留させ、アキュムレータ以外の箇所で作動流体が寝込むことを防ぐことが可能となる。
 ここで、前記第1制御弁は、開閉弁を用い、また、前記第2制御弁は、逆止弁又は開閉弁を用いるようにしてもよい。
 第1制御弁および第2制御弁を開閉弁とする場合には、それぞれの開閉弁の開閉タイミングを調節することでアキュムレータへの作動流体の貯留を確保しやすくなり、また、第2制御弁を逆止弁とする場合には、アキュムレータに貯留されている作動流体が上流側に逆流するのを機械的に防止することが可能となるので、開閉弁のような開閉制御が不要となり、構成の簡素化を図ることが可能となる。
 上述した冷凍サイクルを用いた運転方法としては、前記圧縮機を稼動させて前記冷凍サイクルに前記作動流体を循環させる循環状態から前記圧縮機の吐出機能を停止させて前記冷凍サイクルの作動流体の循環を停止させる循環停止状態へ移行する際に、前記圧縮機の吐出機能を停止させ、しかる後に前記第1制御弁を閉とすることが望ましい。
 このような冷凍サイクルの運転方法を採用すれば、圧縮機の吐出機能を停止させた後に第1制御弁が閉となるので、第1制御弁から圧縮機までの経路が極端に減圧されることはなく、第1制御弁の上流側と下流側との間の差圧の拡大を抑制して第1制御弁の破損や性能劣化を低減する(第1制御弁の耐久性を高める)ことが可能となる。このため、第1制御弁の閉状態において、この第1制御弁の不具合によってアキュムレータ内の作動流体が下流側へ漏流する恐れがなくなり、引いてはアキュムレータ以外の箇所での作動流体の寝込みを確実に防ぐことが可能となる。
 特に、前記第2制御弁が開閉弁である場合には、前記第1制御弁を閉とした後に、前記第2制御弁を閉にすることが望ましい。
 前記第1制御弁を閉とした後に第2制御弁を閉とすることで、アキュムレータ内の作動流体の下流側への流出を抑えた上で、アキュムレータより上流側の経路にある作動流体をアキュムレータに回収することが可能となり、サイクル内に寝込む作動流体量を低減させることが可能となる。
 この際、前記第1制御弁を閉としてから前記第2制御弁を閉とするまでの時間を、前記圧縮機の吐出機能を停止させてから前記第1制御弁を閉とするまでの時間よりも長くすることが望ましい。
 圧縮機の吐出機能を停止させてから第1制御弁を閉とするまでの時間を相対的に短くすることで、第1制御弁と圧縮機との間の作動流体の寝込みを極力抑えることができ、また、第1制御弁を閉としてから第2制御弁を閉とするまでの時間を相対的に長くすることで、アキュムレータより上流側の経路にある作動流体をアキュムレータにできるだけ回収し、サイクル内に寝込む作動流体量を低減させることが可能となる。
 さらに上述した冷凍サイクルを用いた運転方法としては、圧縮機の吐出機能を停止させて冷凍サイクルの作動流体の循環を停止させる循環停止状態から圧縮機を稼動させて冷凍サイクルに作動流体を循環させる循環状態へ移行するときに、前記第1制御弁を開とし、しかる後に圧縮機を稼動させるようにするとよい。
 このような冷凍サイクルの運転方法によれば、第1制御弁を開とした後に圧縮機を稼動させるので、第1制御弁から圧縮機までの経路が極端に減圧されることはなく、第1制御弁の上流側と下流側との間の差圧の拡大を抑制して第1制御弁の破損や性能劣化を抑制する(第1制御弁の耐久性を高める)ことが可能となる。このため、第1制御弁の閉状態において、この第1制御弁の不具合によってアキュムレータ内の作動流体が下流側へ漏流する恐れがなくなり、引いてはアキュムレータ以外の箇所での作動流体の寝込みを防ぐことが可能となる。
 特に、前記第2制御弁が開閉弁である場合には、前記第2制御弁を開とした後に、前記第1制御弁を開にすることが望ましい。
 前記第2制御弁を開とした後に第1制御弁を開とすることで、アキュムレータ内に貯留されていた冷媒が圧縮機により吸引されて極端に減圧されることがなく、第2制御弁(開閉弁)の上流側と下流側との間の差圧の拡大を抑制して第2制御弁の破損や性能劣化を抑制する(第2制御弁の耐久性を高める)ことが可能となる。このため、第2制御弁の閉状態において、この第2制御弁の不具合によりアキュムレータ内の作動流体が上流側へ漏流する恐れがなくなり、引いてはアキュムレータ以外の箇所での作動流体の寝込みを防ぐことが可能となる。
 この際、前記第2制御弁を開としてから前記第1制御弁を開とするまでの時間を、前記第1制御弁を開としてから前記圧縮機を稼動させるまでの時間よりも長く設定するとよい。
 第2制御弁を開としてから第1制御弁を開とするまでの時間を長くすることで、アキュムレータ内の圧力をそれより上流側の経路の圧力とできるだけ均衡させ、第1制御弁を開として圧縮機を稼動させた際に、アキュムレータ内に貯留した液状の作動流体が圧縮機に流れ込む不都合をなくすことが可能となる。
 なお、以上の冷凍サイクルを構築するにあたり、アキュムレータに第1制御弁と第2制御弁とを具備するようにしてもよい。
 すなわち、圧縮機と、前記圧縮機で圧縮された作動流体の熱を空気に放出する放熱器と、前記放熱器で放熱された後の作動流体を減圧膨張する膨張装置と、前記膨張装置で減圧膨張された作動流体に空気の熱を吸収させる吸熱器と、前記作動流体を蓄えるアキュムレータとを少なくとも配管接続して構成される冷凍サイクルに用いられる前記アキュムレータを、前記作動流体を蓄えるアキュムレータ本体と、前記アキュムレータ本体の流出側に設けられ、該アキュムレータから流出する作動流体の流出量を制御可能な第1制御弁と、前記アキュムレータ本体の流入側に設けられ、該アキュムレータからの作動流体の流出を阻止可能な第2制御弁と、を有して構成してもよい。
 このような構成においては、既存の冷凍サイクルに対してアキュムレータを交換することによって上述した機能を持たせることが可能となる。
 この場合においても、前記第1制御弁を開閉弁で構成し、前記第2制御弁を逆止弁又は開閉弁で構成するとよい。
 また、上述した冷凍サイクルは、外部環境の大きな変化に対応する必要がある車両用空調装置に搭載した場合において、アキュムレータ以外の箇所に作動流体が寝こむことを防止するために特に有用である。
 以上述べたように、本発明によれば、アキュムレータの流出側に、該アキュムレータから流出する作動流体の流出量を制御可能な第1制御弁を設け、また、アキュムレータの流入側に、該アキュムレータからの逆流を阻止可能な第2制御弁を設け、冷凍サイクルの停止中に、第1の制御弁を閉にすると共に第2の制御弁によってアキュムレータからの逆流を阻止するようにしたので、アキュムレータから冷凍サイクルの別の部位へ作動流体が流出することを防ぐことが可能となり、アキュムレータに作動流体をできるだけ貯留させ、アキュムレータ以外の箇所で作動流体が寝込むことを効果的に防止することが可能となる。
図1は、本発明に係る冷凍サイクルを搭載した車両用空調装置の全体構成例を示す図である。 図2は、本発明に係る冷凍サイクルの各運転モードにおける開閉弁、膨張装置、及びダンパの状態を示す表である。 図3は、本発明に係る冷凍サイクルの冷房運転モードにおける冷媒の流れを説明する図である。 図4は、本発明に係る冷凍サイクルの暖房運転モードにおける冷媒の流れを説明する図である。 図5は、本発明に係る冷凍サイクルの除湿暖房運転モードにおける冷媒の流れを説明する図である。 図6は、図1に係る冷凍サイクルの停止時における操作順序を説明する図である。 図7は、図1に係る冷凍サイクルの起動時における操作順序を説明する図である。 図8(a)は、図1に係る冷凍サイクルに用いられる第1制御弁及び第2制御弁を一体化したアキュムレータを模式的に示した図であり、図8(b)は、図9に係る冷凍サイクルに用いられる第1制御弁及び第2制御弁を一体化したアキュムレータを模式的に示した図である。 図9は、図1に係る冷凍サイクルを搭載した車両用空調装置において、第2制御弁を開閉弁とした態様を示す図である。 図10は、図9に係る冷凍サイクルの停止時における操作順序を説明する図である。 図11は、図9に係る冷凍サイクルの起動時における操作順序を説明する図である。 図12(a)は、冷凍サイクルの停止時における圧縮機と各制御弁の操作タイミングを説明する図であり、図12(b)は、冷凍サイクルの起動時における圧縮機と各制御弁の操作タイミングを説明する図である。
 以下、本発明に係る車両用空調装置の実施例を図面により説明する。
 図1において、本発明に係る車両用空調装置1の一例が示され、車両用空調装置1は、例えば自動車に搭載されるもので、ファイアウォールαより車室(C)側に配された空調ユニット2内に配置されている第1及び第2の熱交換器3,4と、空調ユニット2外に配置され(この例では、ファイアウォールαよりエンジンルーム(E)側に配置され)、外気と熱交換可能な車室外熱交換器5とを備えている。なお、ファイアウォールαは、エンジンルーム(E)と、車両前後方向においてエンジンルーム(E)の後方に配置された車室(C)とを区画する板状の部材のことで、トーボードあるいは隔壁と呼ばれることもある。また、本開示においてエンジンルーム(E)とは、エンジンが配置された形態だけでなく、車両を駆動する走行用モータが配置された形態も含むものとする。エンジンルーム(E)は、モータルームと呼ばれることもある。
 空調ユニット2の最上流側には図示しない内外気切換装置が設けられ、内気入口と外気入口とがインテークドアによって選択的に開口されるようになっている。この空調ユニット2に選択的に導入される内気または外気は、送風機20の回転により吸引され、第1及び第2の熱交換器3,4に送られ、ここで熱交換されて所望の吹き出し口から車室内に供給されるようになっている。
 第2の熱交換器4は、第1の熱交換器3よりも空調ユニット内の空気流れ方向下流側に配置されており、この第2の熱交換器4の空気流れ方向上流側には、ダンパ21が設けられている。ダンパ21は、第2の熱交換器4の通過風量が最大となる位置(フルホット位置:開度100%)から最小となる位置(フルクール位置:開度0%)まで可変できるようになっており、開度を調整することにより、第2の熱交換器4を通過する空気とバイパスする空気との割合を調整できるようになっている。
 第2の熱交換器4の流入側4aは、圧縮機6の吐出側Aに接続され、第2の熱交換器4の流出側4bは、第1の膨張装置7の流入側7aに接続されている。また、第1の熱交換器3の流出側3bは、アキュムレータ10を介して圧縮機6の吸入側Bに接続されている。
 前記第1の膨張装置7の流出側7bは、車室外熱交換器5の流入側5aに接続され、この車室外熱交換器5の流出側5bは、逆止弁8及び第2の膨張装置9を介して第1の熱交換器3の流入側3aに接続されている。
したがって、圧縮機6、第2の熱交換器4、第1の膨張装置7、車室外熱交換器5、逆止弁8、第2の膨張装置9、第1の熱交換器3、アキュムレータ10、圧縮機6の順でループ状に接続された冷凍サイクル30が形成されている。
 また、第2の熱交換器4の流出側4bと第1の膨張装置7の流入側7aとの間の冷媒流路と、逆止弁8の流出側8bと第2の膨張装置9の流入側9aとの間の冷媒流路とが、開閉弁11によって開閉される第1のバイパス流路12によって接続され、車室外熱交換器5の流出側5bと逆止弁8の流入側8aとの間の冷媒流路と第1の熱交換器3の流出側3bとアキュムレータ10の流入側10aとの間の冷媒流路とが、開閉弁13によって開閉される第2のバイパス流路14によって接続されている。
 また、この例においては、前記アキュムレータ10の流出側10b、即ち、アキュムレータ10と圧縮機6との間の冷媒流路上に、アキュムレータ10から流出する冷媒(作動流体)の流出量を制御可能な第1制御弁15が設けられている。また、アキュムレータ10の流入側10a、即ち、第1の熱交換器3とアキュムレータ10との間の冷媒流路上で第2のバイパス通路14が接続される部分より下流側の部分には、アキュムレータ10からの逆流を阻止可能な第2制御弁16が設けられている。
 この例においては、第1制御弁15は開閉弁によって構成され、第2制御弁16はアキュムレータ10への流入のみを許容する逆止弁によって構成されている。
 また、上述の構成例において、第1及び第2の膨張装置7,9は、外部からの制御で絞り量を調節可能な外部制御式膨張弁が用いられている。
 上記開閉弁11,13の開閉、第1及び第2の膨張装置7,9の開度、ダンパ21の開度、及び第1制御弁15の開閉、圧縮機6の冷媒の吐出機能の発揮や停止は、コントロールユニット23からの制御信号で制御されるようになっている。このコントロールユニット23は、A/D変換器やマルチプレクサ等を含む入力回路、ROM、RAM、CPU等を含む演算処理回路、駆動回路等を含む出力回路を備えたそれ自体公知のもので、車室内温度を検出する室内温度センサ24や外気温を検出する外気温度センサ25等からのセンサ信号や運転モードを設定する各種信号、冷凍サイクルの起動または停止させる指令信号が入力され、これらの信号を予め定められた所定のプログラムに沿って処理し、前記制御信号を生成するようにしている。
 次に、コントロールユニット23による制御動作のうち、第1制御弁15を開状態で維持する冷凍サイクル30の稼働状態において、開閉弁11,13と、第1及び第2の膨張装置7,9と、ダンパ21の具体的制御動作例を運転モード毎に概説する。
 まず、運転モードが冷房運転モードに設定される場合には、コントロールユニット23は、圧縮機6を稼働し、図2及び図3に示すように、開閉弁11を閉、開閉弁13を閉、第1の膨張装置7を全開とし、第2の膨張装置9を熱負荷に応じて絞った状態とする。またダンパ21をフルクール位置(開度0%の位置)に設定する。すると、圧縮機6の吐出側Aから吐出された圧縮冷媒は、第2の熱交換器4に流入するが、第2の熱交換器4を通過する空気が無いことからここで放熱することなく通過し、第1の膨張装置7を介して車室外熱交換器5に入る。この際、第1の膨張装置7は、全開状態にあるため、ここで減圧膨張されることはなく、車室外熱交換器5で放熱(凝縮液化)された後に逆止弁8を介して第2の膨張装置9に至り、この第2の膨張装置9で減圧されて第1の熱交換器3に入り、ここで吸熱(蒸発気化)された後にアキュムレータ10を介して圧縮機6に戻される。このため、空調ユニット2の上流から送られてきた空気は、第1の熱交換器3で冷却され、第2の熱交換器4をバイパスしてそのまま冷風として車室(C)内に供給される。
 この冷房運転モードにおいては、室外熱交換器5が放熱器として機能し、第2の膨張装置9が冷媒を減圧膨張する膨張装置として機能し、第1の熱交換器3が吸熱器として機能する。
 運転モードが暖房運転モードに設定される場合には、コントロールユニット23は、圧縮機6を稼働し、図2及び図4に示すように、開閉弁11を閉、開閉弁13を開、第1の膨張装置7を絞った状態とし、第2の膨張装置9を閉とする。またダンパ21をフルホット位置(開度100%の位置)に設定する。すると、圧縮機6の吐出側Aから吐出された圧縮冷媒は、第2の熱交換器4に流入すると、ここを通過する空気に対して放熱する。その後、第1の膨張装置7で減圧されて車室外熱交換器5に至り、ここで吸熱(蒸発気化)された後に開閉弁13を通って、アキュムレータ10を介して圧縮機6に戻される。このため、空調ユニット2の上流から送られてきた空気は、第1の熱交換器3を通過するものの熱交換されず、第2の熱交換器4に全て導かれて加熱され、温風として車室(C)内に供給される。
 この暖房運転モードにおいては、第2の熱交換器4が放熱器として機能し、第1の膨張装置7が冷媒を減圧膨張する膨張装置として機能し、室外熱交換器5が吸熱器として機能する。
 運転モードが除湿暖房運転モードに設定される場合には、コントロールユニット23は、圧縮機6を稼働し、図2及び図5に示されるように、開閉弁11を開、開閉弁13を開、第1の膨張装置7を絞った状態とし、また、第2の膨張装置9を熱負荷に応じて絞った状態とする。またダンパ21の開度をフルホット位置か任意の中間位置に設定する。このため、圧縮機6の吐出側Aから吐出された圧縮冷媒は、第2の熱交換器4で放熱(凝縮液化)され、第1の膨張装置7で減圧されて車室外熱交換器5に至り、ここで吸熱(蒸発気化)された後に開閉弁13を通って、アキュムレータ10を介して圧縮機6に戻される。それと同時に、第2の熱交換器4を通過した冷媒は、開閉弁11を通った後に第2の膨張装置9で減圧されて第1の熱交換器3に至り、ここで吸熱(蒸発気化)された後にアキュムレータ10を介して圧縮機6に戻される。このため、空調ユニット2の上流から送られてきた空気は、第1の熱交換器3によって除湿され、第2の熱交換器4を通過する際に加熱されて、乾燥した温風として車室(C)内に供給される。
 この除湿暖房運転モードにおいては、第2の熱交換器4が放熱器として機能し、第1の膨張装置7と第2の膨張装置9とが冷媒を減圧膨張する膨張装置として機能し、室外熱交換器5と第1の熱交換器3が吸熱器として機能する。
 次に、上述したいずれかの運転モードで圧縮機を稼動させて冷凍サイクルに冷媒を循環させる循環状態から圧縮機の吐出機能を停止させて冷凍サイクルの冷媒の循環を停止させる循環停止状態へ移行する場合の具体的操作を、概説する。
 ここで、圧縮機の吐出機能を停止させるとは、圧縮機が電動モータにより回転制御される電動圧縮機である場合には、電動モータへの通電が無くなって圧縮機6が停止した状態であり、圧縮機が電磁クラッチを介して動力が伝達される場合には、電磁クラッチをオフにして圧縮機を停止させた状態であり、圧縮機がクラッチレス圧縮機である場合には、斜板の揺動角を最小にして冷媒を圧縮機内部で循環させて圧縮機外へ吐出させない状態をいう。また、圧縮機の吐出機能を発揮させるとは、圧縮機が電動モータにより回転制御される電動圧縮機である場合には、電動モータへの通電を行って圧縮機6が稼働された状態であり、圧縮機が電磁クラッチを介して動力が伝達される場合には、電磁クラッチをオンにして圧縮機を稼働した状態であり、圧縮機がクラッチレス圧縮機である場合には、斜板の揺動角を最小以外にして冷媒を圧縮機外へ吐出させた状態をいう。
 このような圧縮機の吐出機能を停止させる循環停止状態へ移行する場合には、図6に示されるように、先ず、圧縮機6の吐出機能を停止させ(図中(1))、しかる後に、第1制御弁15を閉とする(図中(2))。なお、図中のカッコ内の番号は、操作順序を示している。
 この操作により、冷凍サイクル30の停止中は第1制御弁15が閉となるので、アキュムレータ10から圧縮機6へ冷媒が流出することを防ぐことが可能となり、また、第2制御弁(逆止弁)16によってアキュムレータから上流側へ冷媒が流出することも防ぐことが可能となる。このため、冷凍サイクル30の停止中に、冷媒をアキュムレータ10に貯留させておくことが可能となり、アキュムレータ以外の箇所で冷媒が寝込むのを防ぐことが可能となる。
 また、圧縮機6の吐出機能を停止させた後に第1制御弁15を閉とするので、第1制御弁15から圧縮機6までの経路が極端に減圧されることはなく、第1制御弁15の上流側と下流側との間の差圧が拡大することを抑制して第1制御弁15の破損や性能劣化を低減することが可能となる(第1制御弁15の耐久性を高めることが可能となる)。このため、第1制御弁15の閉状態が損なわれてアキュムレータ内の冷媒が下流側へ漏流する恐れが無くなり、圧縮機6に冷媒が寝込むことを確実に防ぐことが可能となる。
 次に、第1制御弁15を閉とした後に、第2の膨張装置9と第2のバイパス通路14上の開閉弁13とを同時に閉とする(図中(3))。第1のバイパス通路12上の開閉弁11は、特に開閉はせず、冷凍サイクル停止直前の運転状況に応じた開閉状態を維持するようにしても、冷凍サイクル30が停止した際に予め決めておいたデフォルトの開閉状態に戻すようにしてもよい。
 第2の膨張装置9と開閉弁13を閉とするのは、アキュムレータ10へ戻しきれなかった冷媒が存在する場合や、逆止弁16の機能が不十分で上流側に漏れ出した冷媒が存在していた場合に、サイクル配管経路内のアキュムレータ10の近傍に冷媒を待機させておくことで、次回、冷凍サイクル30が起動した際に圧縮機6が吸引する冷媒を圧縮機6の上流側近傍に確保させ、冷媒の吸引を安定化させるためである。
 なお、配管経路内に冷媒を蓄えておく観点からは、第2の膨張装置9と開閉弁13とを同時に閉にすることが好ましいが、開閉弁13を先に閉とし、第2の膨張装置9を後に閉としてもよい。これは、アキュムレータ10の位置から開閉弁13までの経路の方が第1の熱交換器3を経由して第2の膨張装置9に至るまでの経路よりも短く、また、通路抵抗も小さいことから、アキュムレータ10内の冷媒が第2のバイパス通路14を介して流出するリスクが高いからである。
 次に、圧縮機6の吐出機能を停止させて冷凍サイクル30の冷媒の循環を停止させている循環停止状態から圧縮機6を稼動させて冷凍サイクル30に冷媒を循環させる循環状態へ移行させる場合の具体的操作を、概説する。
 循環停止状態から冷凍サイクルを冷房運転モードとして起動させたいのか、暖房運転モードとして起動させたいのか、除湿暖房運転モードとして起動させたいのか、によって開閉弁11,13の開閉状態、第1の膨張装置7及び第2の膨張装置9の開度や開閉状態が設定され(図7中(1))、しかる後に、第1制御弁を開とし(図7中(2))、その後、圧縮機を稼動させる(図7中(3))。
 このように、第1制御弁15を開とした後に圧縮機6を稼動させるので、第1制御弁15から圧縮機6までの経路が極端に減圧されることはなく、第1制御弁15の上流側と下流側との間の差圧が拡大することを抑制して第1制御弁15の破損や性能劣化を抑制することが可能となる(第1制御弁15の耐久性を高めることが可能となる)。その結果、第1制御弁15の閉状態が損なわれてアキュムレータ内の冷媒が下流側へ漏流する恐れが無くなり、圧縮機6に冷媒が寝込むことを確実に防ぐことが可能となる。
 なお、上述の例では、アキュムレータ10の流出側には、該アキュムレータ10から流出する冷媒の流出量を制御可能な第1制御弁15をアキュムレータ10と圧縮機6との間の配管経路上に設け、アキュムレータ10の流入側には、該アキュムレータ10からの冷媒の流出を阻止可能な第2制御弁(逆止弁)16をアキュムレータ10と第2のバイパス通路14が接続される部位との間の配管経路上に設けた例を示したが、第1制御弁(開閉弁)15と第2制御弁(逆止弁)16とは、少なくともいずれか一方をアキュムレータ10に一体化させるようにしてもよい(例えば、図8(a)に示すように、アキュムレータ10を、冷媒を蓄えるアキュムレータ本体100と、アキュムレータ本体100の流出側10bに設けられ、アキュムレータから下流側へ流出する冷媒の流出量を制御可能な第1制御弁15と、アキュムレータ本体100の流入側10aに設けられ、アキュムレータから上流側への冷媒の流出を阻止可能な第2制御弁16と、を一体化して構成してもよい)。
 このようなアキュムレータ10を用いることで、既存の冷凍サイクルに対してアキュムレータを交換することによって上述した機能を持たせることが可能となる。
 以上の例においては、アキュムレータの流入側に、該アキュムレータからの冷媒の流出を阻止可能な第2制御弁として逆止弁を設けた例を説明したが、図9に示されるように、第2制御弁16として開閉弁を用いるようにしてもよい。
 この第2制御弁16の開閉も、コントロールユニット23からの制御信号で制御されるようになっており、各種運転モード時(冷凍サイクルに冷媒を循環させる循環状態)においては、開状態となっている。
 なお、他の構成は前記構成例と同様であるので、同一箇所に同一符号を付して説明を省略する。
 このような冷凍サイクルにおいては、前述したいずれかの運転モードで圧縮機6を稼動させて冷凍サイクル30に冷媒を循環させる循環状態から圧縮機6の吐出機能を停止させて冷凍サイクル30の冷媒の循環を停止させる循環停止状態へ移行する場合には、次のような操作がなされる。
 循環停止状態へ移行する場合には、図10に示されるように、先ず、圧縮機6の吐出機能を停止させ(図中(1))、しかる後に、第1制御弁15を閉とし(図中(2))、さらにその後に第2制御弁16を閉とする(図中(3))。
 この操作により、冷凍サイクル30の停止中は第1制御弁15が閉となるので、アキュムレータ10から圧縮機6へ冷媒が流出することを防ぐことが可能となり、また、第2制御弁16によってアキュムレータ10から上流側へ冷媒が流出することも防ぐことが可能となる。このため、冷媒をアキュムレータ10に貯留させておくことが可能となり、アキュムレータ以外の箇所で冷媒が寝込むのを防ぐことが可能となる。
 また、圧縮機6の吐出機能を停止させた後に第1制御弁15を閉とするので、前述した如く、第1制御弁15の上流側と下流側との間の差圧の拡大を抑制して第1制御弁15の破損や性能劣化を低減することが可能となる(第1制御弁の耐久性を高めることが可能となる)。このため、第1制御弁15の閉状態が損なわれてアキュムレータ内の冷媒が下流側へ漏流する恐れが無くなり、圧縮機への冷媒の寝込みを確実に防ぐことが可能となる。
 さらに、第1制御弁15を閉とした後に第2制御弁16を閉とするので、アキュムレータ10より上流側の経路にある冷媒をできるだけアキュムレータ10に回収し、サイクル内に寝込む冷媒量を低減させることが可能となる。
 ここで、第1制御弁15を閉としてから第2制御弁16を閉とするまでの時間(Δt2)は、圧縮機6の吐出機能を停止させてから第1制御弁15を閉とするまでの時間(Δt1)よりも長く設定することが好ましい(図12(a)参照)。
 圧縮機6の吐出機能を停止させてから第1制御弁15を閉とするまでの時間を相対的に短くすることで、第1制御弁15と圧縮機6との間の冷媒の寝込みを極力抑え、また、第1制御弁15を閉としてから第2制御弁16を閉とするまでの時間を相対的に長くすることで、アキュムレータ10より上流側の経路にある冷媒をアキュムレータ10にできるだけ回収し、アキュムレータ以外のサイクル経路内に寝込む冷媒量を低減させることが可能となる。
 なお、第2制御弁16を閉とした後は、第2の膨張装置9と第2のバイパス通路14上の開閉弁13とを同時に閉とする(図中(4))。第1のバイパス通路12上の開閉弁11は、特に開閉はせず、冷凍サイクル停止直前の運転状況に応じた開閉を維持するようにしても、冷凍サイクルが停止した際に予め決めておいたデフォルトの開閉状態に戻すようにしてもよい。
 第2の膨張装置9と開閉弁13を閉とすることで、アキュムレータ10へ戻しきれなかった冷媒が存在する場合や、第2制御弁16の閉状態が不十分で上流側に漏れ出した冷媒が存在していたとしても、サイクル配管経路内のアキュムレータ10の近傍に冷媒を待機させておくことが可能となり、次回、冷凍サイクル30が起動した際に冷媒の吸引を安定化させることが可能となる。
 この場合においても、前記構成例と同様、第2の膨張装置と開閉弁13とを同時に閉にすることに代えて、開閉弁13を先に閉とし、第2の膨張装置9を後に閉とするようにしてもよい。
 次に、圧縮機6の吐出機能を停止させて冷凍サイクル30の冷媒の循環を停止させている循環停止状態から圧縮機6を稼動させて冷凍サイクル30に冷媒を循環させる循環状態へ移行させる場合の具体的操作を、概説する。
 循環停止状態から冷凍サイクルをどの運転モードで起動させたいのかによって開閉弁11,13の開閉状態、第1の膨張装置7及び第2の膨張装置9の開度や開閉状態が設定され(図11中(1))、しかる後に、第2制御弁16を開とし(図11中(2))、その後、第1制御弁15を開とし(図11中(3))、しかる後に、圧縮機6を稼動させる(図11中(4))。
 このように、第2制御弁16を開とした後に第1制御弁15を開とすることで、アキュムレータ10内に貯留されていた冷媒が圧縮機により吸引されて極端に減圧されることがなくなり、第2制御弁(開閉弁)16の上流側と下流側との間の差圧の拡大を抑制して第2制御弁16の破損や性能劣化を抑制することが可能となる(第2制御弁16の耐久性を高めることが可能となる)。このため、第2制御弁16の閉状態が損なわれてアキュムレータ内の冷媒が上流側へ漏流する恐れが無くなり、引いてはアキュムレータより上流側で冷媒が寝込むことを防ぐことが可能となる。
 また、第1制御弁15を開とした後に圧縮機6を稼動させるので、第1制御弁15から圧縮機6までの経路が極端に減圧されることはなく、第1制御弁15の上流側と下流側との間の差圧の拡大を抑制して第1制御弁15の破損や性能劣化を抑制することが可能となる(第1制御弁の耐久性を高めることが可能となる)。 このため、第1制御弁15の閉状態が損なわれてアキュムレータ内の冷媒が下流側へ漏流する恐れが無くなり、圧縮機6に冷媒が寝込むことを確実に防ぐことが可能となる。
 ここで、第2制御弁16を開としてから第1制御弁15を開とするまでの時間(Δt3)は、第1制御弁15を開としてから圧縮機6を稼動させるまでの時間(Δt4)よりも長くすることが好ましい(図12(b)参照)。
  第2制御弁16を開としてから第1制御弁15を開とするまでの時間(Δt3)を長くすることで、アキュムレータ10内の圧力をそれより上流側の経路の圧力とできるだけ均衡させ、第1制御弁15を開として圧縮機6を稼動させた際に、アキュムレータ内に貯留した液状の冷媒が圧縮機に流れ込む不都合をなくすことが可能となる。
 なお、上述の例においも、第1制御弁(開閉弁)15と第2制御弁(開閉弁)16とは、少なくともいずれか一方をアキュムレータ10に一体化させるようにしてもよい(例えば、図8(b)に示すように、アキュムレータ10を、冷媒を蓄えるアキュムレータ本体100と、アキュムレータ本体100の流出側10bに設けられ、アキュムレータから下流側へ流出する冷媒の流出量を制御可能な第1制御弁15と、アキュムレータ本体100の流入側10aに設けられ、アキュムレータから上流側への冷媒の流出を阻止可能な第2制御弁16と、を一体化して構成してもよい)。
 このようなアキュムレータ10を用いることで、既存の冷凍サイクルに対してアキュムレータを交換することによって上述した機能を持たせることが可能となる。
 1 車両用空調装置
 2 空調ユニット
 3 第1の熱交換器
 4 第2の熱交換器
 5 車室外熱交換器
 6 圧縮機
 7 第1の膨張装置
 9 第2の膨張装置
 10 アキュムレータ
 100 アキュムレータ本体
 11 開閉弁
 12 第1のバイパス通路
 13 開閉弁
 14 第2のバイパス通路
 15 第1制御弁
 16 第2制御弁
 21 ダンパ

Claims (11)

  1.  圧縮機と、前記圧縮機で圧縮された作動流体の熱を空気に放出する放熱器と、前記放熱器で放熱された後の作動流体を減圧膨張する膨張装置と、前記膨張装置で減圧膨張された作動流体に空気の熱を吸収させる吸熱器と、前記作動流体を蓄えるアキュムレータとを少なくとも配管接続して構成される冷凍サイクルであって、
     前記アキュムレータの流出側には、該アキュムレータから流出する作動流体の流出量を制御可能な第1制御弁が設けられ、
     前記アキュムレータの流入側には、該アキュムレータからの作動流体の流出を阻止可能な第2制御弁が設けられていることを特徴とする冷凍サイクル。
  2.  前記第1制御弁は、開閉弁であり、前記第2制御弁は、逆止弁又は開閉弁であることを特徴とする請求項1記載の冷凍サイクル。
  3.  請求項1又は2に記載の冷凍サイクルの運転方法であって、
     前記圧縮機を稼動させて前記冷凍サイクルに前記作動流体を循環させる循環状態から前記圧縮機の吐出機能を停止させて前記冷凍サイクルの前記作動流体の循環を停止させる循環停止状態へ移行するときに、
     前記圧縮機の吐出機能を停止させ、しかる後に前記第1制御弁を閉にすることを特徴とする冷凍サイクルの運転方法。
  4.  前記第2制御弁が開閉弁である場合に、前記第1制御弁を閉とした後に、前記第2制御弁を閉にすることを特徴とする請求項3記載の冷凍サイクルの運転方法。
  5.  前記第1制御弁を閉としてから前記第2制御弁を閉とするまでの時間を、前記圧縮機の吐出機能を停止させてから前記第1制御弁を閉とするまでの時間よりも長くすることを特徴とする請求項4記載の冷凍サイクルの運転方法。
  6.  請求項1又は2に記載の冷凍サイクルの運転方法であって、
     前記圧縮機の吐出機能を停止させて前記冷凍サイクルの前記作動流体の循環を停止させる循環停止状態から前記圧縮機を稼動させて前記冷凍サイクルに前記作動流体を循環させる循環状態へ移行するときに、
     前記第1制御弁を開とし、しかる後に前記圧縮機を稼動させることを特徴とする冷凍サイクルの運転方法。
  7.  前記第2制御弁が開閉弁である場合に、前記第2制御弁を開とした後に、前記第1制御弁を開にすることを特徴とする請求項6記載の冷凍サイクルの運転方法。
  8.  前記第2制御弁を開としてから前記第1制御弁を開とするまでの時間を、前記第1制御弁を開としてから前記圧縮機を稼動させるまでの時間よりも長くすることを特徴とする請求項7記載の冷凍サイクルの運転方法。
  9.  圧縮機と、前記圧縮機で圧縮された作動流体の熱を空気に放出する放熱器と、前記放熱器で放熱された後の作動流体を減圧膨張する膨張装置と、前記膨張装置で減圧膨張された作動流体に空気の熱を吸収させる吸熱器と、前記作動流体を蓄えるアキュムレータとを少なくとも配管接続して構成される冷凍サイクルに用いられる前記アキュムレータであって、
     前記作動流体を蓄えるアキュムレータ本体と、
     前記アキュムレータ本体の流出側に設けられ、該アキュムレータから流出する作動流体の流出量を制御可能な第1制御弁と、
     前記アキュムレータ本体の流入側に設けられ、該アキュムレータからの作動流体の流出を阻止可能な第2制御弁と、
    を有することを特徴とするアキュムレータ。
  10.  前記第1制御弁は、開閉弁であり、前記第2制御弁は、逆止弁又は開閉弁であることを特徴とする請求項9記載のアキュムレータ。
  11.  請求項1又は2に記載の冷凍サイクルを搭載した車両用空調装置。
PCT/JP2019/006709 2018-02-27 2019-02-22 冷凍サイクル、冷凍サイクルの運転方法、冷凍サイクルに用いられるアキュムレータ、及び、冷凍サイクルを搭載した車両用空調装置 WO2019167822A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-033250 2018-02-27
JP2018033250 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167822A1 true WO2019167822A1 (ja) 2019-09-06

Family

ID=67805746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006709 WO2019167822A1 (ja) 2018-02-27 2019-02-22 冷凍サイクル、冷凍サイクルの運転方法、冷凍サイクルに用いられるアキュムレータ、及び、冷凍サイクルを搭載した車両用空調装置

Country Status (1)

Country Link
WO (1) WO2019167822A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021084545A (ja) * 2019-11-28 2021-06-03 株式会社ヴァレオジャパン 車両用空調装置及び運転モード切替方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855249U (ja) * 1981-10-09 1983-04-14 三菱電機株式会社 冷凍装置
JPH07248164A (ja) * 1994-03-11 1995-09-26 Matsushita Refrig Co Ltd 冷凍装置
JP2014077552A (ja) * 2012-10-08 2014-05-01 Denso Corp 冷凍サイクル装置
WO2016051493A1 (ja) * 2014-09-30 2016-04-07 三菱電機株式会社 冷凍サイクル装置
JP2016205629A (ja) * 2015-04-15 2016-12-08 富士電機株式会社 冷却装置
WO2018158886A1 (ja) * 2017-03-01 2018-09-07 三菱電機株式会社 冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855249U (ja) * 1981-10-09 1983-04-14 三菱電機株式会社 冷凍装置
JPH07248164A (ja) * 1994-03-11 1995-09-26 Matsushita Refrig Co Ltd 冷凍装置
JP2014077552A (ja) * 2012-10-08 2014-05-01 Denso Corp 冷凍サイクル装置
WO2016051493A1 (ja) * 2014-09-30 2016-04-07 三菱電機株式会社 冷凍サイクル装置
JP2016205629A (ja) * 2015-04-15 2016-12-08 富士電機株式会社 冷却装置
WO2018158886A1 (ja) * 2017-03-01 2018-09-07 三菱電機株式会社 冷凍サイクル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021084545A (ja) * 2019-11-28 2021-06-03 株式会社ヴァレオジャパン 車両用空調装置及び運転モード切替方法
JP7321906B2 (ja) 2019-11-28 2023-08-07 株式会社ヴァレオジャパン 車両用空調装置及び運転モード切替方法

Similar Documents

Publication Publication Date Title
EP4122726A1 (en) Heat pump system for vehicle
JP6189098B2 (ja) ヒートポンプ式車両用空調システム
WO2010079818A1 (ja) 車両用空調装置
JP6909889B2 (ja) 電気自動車用ヒートポンプシステム及びその制御方法
CN107074069B (zh) 热泵式车辆用空调系统
JP2011178372A (ja) 車両用空気調和装置及びその運転切替方法
CN108790672B (zh) 车辆用空调装置
CN112424006B (zh) 车辆用空调装置
EP2572910A1 (en) Vehicle heating and cooling device
JP2012030734A (ja) 車両用冷暖房装置
WO2013145537A1 (ja) 車両用の空調装置
JP2010159008A (ja) 車両用空調装置
JP2012030603A (ja) 車両用冷暖房装置
JP2002019443A (ja) ヒートポンプサイクル
JP2014156143A (ja) 車両用空調装置
JP4831030B2 (ja) 冷凍サイクル装置
WO2019167822A1 (ja) 冷凍サイクル、冷凍サイクルの運転方法、冷凍サイクルに用いられるアキュムレータ、及び、冷凍サイクルを搭載した車両用空調装置
JP2011225174A (ja) 車両用空調装置
JP5142032B2 (ja) 車両用空調装置
JP5346528B2 (ja) 車両用空気調和システム
JP2016060300A (ja) 車両用空調装置
KR20230075230A (ko) 차량용 공조시스템의 제어방법
US11951805B2 (en) Heat management system
JP5560438B2 (ja) 車両用冷暖房装置
WO2021049340A1 (ja) 車両の熱交換システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP