JP6288942B2 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP6288942B2
JP6288942B2 JP2013102202A JP2013102202A JP6288942B2 JP 6288942 B2 JP6288942 B2 JP 6288942B2 JP 2013102202 A JP2013102202 A JP 2013102202A JP 2013102202 A JP2013102202 A JP 2013102202A JP 6288942 B2 JP6288942 B2 JP 6288942B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
refrigeration
compressor
expansion tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013102202A
Other languages
English (en)
Other versions
JP2014222131A (ja
Inventor
寛也 石原
寛也 石原
純 三重野
純 三重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013102202A priority Critical patent/JP6288942B2/ja
Publication of JP2014222131A publication Critical patent/JP2014222131A/ja
Application granted granted Critical
Publication of JP6288942B2 publication Critical patent/JP6288942B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、冷凍サイクル内の冷媒を回収する膨張タンクを備えた冷凍装置に関するものである。
設計温度内で超臨界状態となる冷媒を使用した冷凍装置において、冷凍サイクル内の圧力が上がった際に、設計圧力を超えないように圧力を下げる必要がある。超臨界状態でない場合には液封にならない限り異常圧力上昇となることはない。一方、冷媒が超臨界状態となった場合には冷凍サイクル内の圧力が上昇し、設計圧力を超えてしまうおそれがある。例えば冷却水等の他の冷却熱源が運転可能であれば、当該冷却熱源による冷却により温度を下げることで、冷凍サイクル内の圧力を下げることが可能である。しかし、例えば停電時においては他冷却熱源を運転することも不可能となるため、設計圧力を守るために別途圧力を下げる手段が必要である。
そこで、従来から、圧縮機が停止時や停電時等において、一時的に冷凍サイクル内の冷媒を貯留し減圧する膨張タンクを設置した冷凍装置が提案されている(例えば特許文献1−3参照)。特許文献1には、低元側圧縮機の吸込側に膨張タンクが接続されており、運転休止時に低元側冷凍サイクル内のほとんどの冷媒が膨張タンクに収容される多元冷凍装置が開示されている。特許文献2には、冷凍サイクルにキャピラリチューブ及び逆止弁を介して膨張タンクが接続されており、運転開始時に冷媒がキャピラリチューブを通じて徐々に戻る二元冷凍装置が開示されている。特許文献3には、膨張タンクが圧縮機の吸込側及び圧縮機の吐出側にそれぞれ電磁弁を介して接続されており、圧縮機の吸込側が所定の圧力値以下になると吸込側の電磁弁が開き膨張タンクへ冷媒が流入するとともに、圧縮機の停止時に吐出側の電磁弁が開いて冷媒が膨張タンクに収容される冷凍回路が開示されている。
特許第3270706号公報 実公昭60−15083号公報 実開平4−85068号公報
特許文献1−3に示すように、装置(圧縮機)の停止時や停電時において、冷凍サイクルの冷媒が膨張タンクに収容された際、冷凍装置の起動時(復電時)には膨張タンク内の冷媒が冷凍サイクル内へ戻す必要がある。このとき、再起動から早期に通常運転に移行するために、膨張タンクから冷媒サイクルへ短時間で冷媒を戻すことが望まれている。
本発明は、上記のような課題を解決するためになされたもので、膨張タンクに回収した冷媒を冷凍サイクルへ短時間で戻し、冷凍装置の再起動時間を短くする冷凍装置を提供することを目的とする。
本発明の冷凍装置は、圧縮機、凝縮器、流量制御装置、蒸発器が順に接続された冷凍サイクルを備えた冷凍装置であって、圧縮機の吸入側に接続され、冷凍サイクルを循環する冷媒を収容する膨張タンクと、膨張タンクと圧縮機の吸入側との間に設けられ、装置の停止時に開放し装置の起動後に閉止する開閉弁と、装置の起動時に膨張タンクの圧力と冷凍サイクルの圧力との差圧を増大させる差圧発生ユニットとを備えたことを特徴とする。
本発明の冷凍装置によれば、冷凍装置の起動時に膨張タンクに収容された冷媒を冷凍サイクルに戻す際、差圧発生ユニットを作動させて膨張タンクの圧力と冷凍サイクルの圧力との差圧を増大させることにより、膨張タンクに回収した冷媒を冷凍サイクルへ短時間で戻し、冷凍装置の再起動時間を短くすることができる。
本発明の冷凍装置の実施形態1を示す冷媒回路図である。 従来の冷凍装置の一例を示す冷媒回路図である。 本発明の冷凍装置の実施形態2を示す冷媒回路図である。 本発明の冷凍装置の実施形態3を示す冷媒回路図である。 本発明の冷凍装置の実施形態3の変形例を示す冷媒回路図である。 本発明の冷凍装置の実施形態3の変形例を示す冷媒回路図である。 本発明の冷凍装置の実施形態4を示す冷媒回路図である。 本発明の冷凍装置の実施形態5を示す冷媒回路図である。
実施形態1.
以下、図面を参照しながら本発明の冷凍装置の実施形態について説明する。図1は本発明の冷凍装置の実施形態1を示す冷媒回路図である。図1の冷凍装置1は、例えば冷凍倉庫等に設置され庫内の温度を冷却するものであって、圧縮機2、凝縮器3、流量制御装置4、蒸発器5、気液分離器6が順次配管接続された冷凍サイクルを有している。冷凍サイクルを循環する冷媒としては、例えば二酸化炭素又はR23(HFC23)冷媒が用いられる。
圧縮機2は、冷媒を吸入し、圧縮して高温・高圧の状態にして吐出するものであって、例えばスクリュー圧縮機等からなっている。凝縮器3は、空気等と冷媒との間で熱交換を行い、冷媒を凝縮液化させるものであって、例えばプレートフィンアンドチューブ熱交換器からなっている。なお、凝縮器3に送風するための送風機(図示せず)が設けられていてもよい。そして、送風機によって周囲空気が凝縮器3に供給されると、凝縮器3を流れる高元冷媒は供給された周囲空気に凝縮熱を放熱するようにしてもよい。
流量制御装置(膨張弁)4は、冷媒を減圧して膨張させるものであって、例えば電子式膨張弁等で構成されている。蒸発器5は、例えば送風機、ポンプ等(図示せず)から供給される空気等との熱交換により冷媒を蒸発ガス化させるものであって、例えばプレートフィンアンドチューブ熱交換器からなっている。なお、蒸発器5に送風するため送風機(図示せず)が設けられていてもよい。そして、送風機によって空気が蒸発器5に供給されると、蒸発器5を流れる高元冷媒は供給された周囲空気に凝縮熱を放熱するようにしてもよい。気液分離器6は、蒸発器5から流れる冷媒をガス冷媒と液冷媒とに分離するものであって、そのうちガス冷媒が圧縮機2に吸入されるようになっている。
次に、図1を参照して冷凍装置1の動作例について説明する。圧縮機2より吐出された高温高圧状態の冷媒は凝縮器3へ流入し、凝縮器3において外気と熱交換して凝縮液化して高圧の液冷媒になる。その後、高圧の液冷媒は、流量制御装置4で減圧されて低圧の気液二相冷媒となり蒸発器5に流入する。この低圧の気液二相状態となった高元冷媒は蒸発器5内で低元冷媒によって加熱されて蒸発し、低圧の蒸気冷媒となって圧縮機2へ流入する。この際、蒸発器5に流入した低圧で気液二相状態の低元冷媒は、冷凍倉庫の庫内空気によって加熱され、蒸発して低圧の蒸気冷媒となる。この際、冷凍倉庫の庫内空気と冷媒との間で熱交換が行われることにより庫内が冷却される。その後、蒸発器5を流出した低圧で蒸気状態の低元冷媒は圧縮機2へ流入し、再び圧縮される。
ここで、冷凍サイクル1A内の圧力が上がった際に、設計圧力を超えないように圧力を下げる必要がある。超臨界状態でない場合には液封にならない限り異常圧力上昇となることはない。一方、冷媒が超臨界状態となった場合には冷凍サイクル1A内の圧力が上昇し、設計圧力を超えてしまう場合がある。冷凍サイクル1A内の圧力が異常に上昇してしまうのを防止するために、冷凍装置1は、膨張タンク10及び開閉弁11を備えている。
膨張タンク10は、冷凍サイクル1Aを循環する冷媒を収容するものであって、圧縮機2の吸込側に接続されている。膨張タンク10と圧縮機2の吸入側(冷凍サイクル1A)との間には開閉弁11が設けられており、開閉弁11が開放すると冷凍サイクル1Aと膨張タンク10とが通じて冷媒が流通するようになっている。この開閉弁11は、初期設定(無通電時)では開放状態になっており、通電した際に閉止するように設定されている。
そして、開閉弁11は、冷凍装置1(圧縮機2)の停止時に開放し、冷凍装置1(圧縮機2)の起動後に閉止するように動作する。すなわち、停電時に冷凍装置1が無通電状態になったとき、開閉弁11は閉止状態から開放状態になる。すると、冷凍サイクル1A内の冷媒は膨張タンク10へ回収され、冷凍サイクル1A内の圧力が低下する。一方、冷凍装置1の運転再開(復電)したとき、開閉弁11は膨張タンク10内の冷媒が冷凍サイクル1A内に戻った後に開放状態から閉止状態になるように動作する。
冷凍装置1が停止した際、冷媒が膨張タンク10側に収容された状態になる。このため、冷凍装置1を再起動する際には膨張タンク10内の冷媒を冷凍サイクル1A内へ戻す必要がある。ここで、従来の冷凍装置50の一例を示す冷媒回路図である。図2のような冷凍装置50において単に開閉弁11が開放した場合、膨張タンク10から冷凍サイクル1Aへ冷媒が戻るまでの時間が掛かってしまう。そこで、冷凍装置1は、冷凍装置1の起動時に、膨張タンク10の圧力と冷凍サイクル1Aの圧力との差圧を増大させる差圧発生ユニット20を備えている。
差圧発生ユニット20は、膨張タンク10の外周に取り付けられた加熱手段である電気ヒータ21からなっている。そして、圧縮機2の再起動時(復電時)に差圧発生ユニット20が作動し、膨張タンク10が加熱される。すると、膨張タンク10内の圧力が上昇し冷凍サイクル1Aの圧力との差圧が大きくなり、膨張タンク10から冷凍サイクル1Aへの冷媒の戻り時間を短縮することができる。
なお、差圧発生ユニット20は、冷凍装置1の起動後であって加熱開始から所定の期間が経過した後に停止するようになっている。また、これと同時に開閉弁11も閉止するようになっている。このように、膨張タンク10内の圧力が冷凍サイクル1Aと均圧した時点で開閉弁11を閉止して冷凍サイクル1Aの体積を通常時に戻し、効率的な運転を行うことができる。あるいは、膨張タンク10内のタンク圧力を検知するタンク圧力検知手段(図示せず)をさらに有し、タンク圧力検知手段により検知されたタンク圧力が所定圧力以下に下がったとき(冷凍サイクル1Aと均圧になったとき)、差圧発生ユニット20が停止するとともに開閉弁11が閉止するようにしてもよい。
また、上述のように、開閉弁11の初期設定が開放状態に設定されており、冷凍装置1の起動後に閉止するものである場合、電力が供給されない停電時に開閉弁11は開放状態になる。このため、冷凍装置1に電力が供給されない状態であっても冷凍サイクル1Aから開閉弁11を介して膨張タンク10へ冷媒が回収されることになり、停電時に圧縮機2に過剰な圧力が掛かり続けるのを確実に防止することができる。
実施形態2.
図3は、本発明の冷凍装置の実施形態2を示す冷媒回路図であり、図3を参照して冷凍装置100について説明する。なお、図3の冷凍装置100において図1の冷凍装置1と同一の構成を有する部位には同一の符号を付してその説明を省略する。図3の冷凍装置100が図1の冷凍装置1と異なる点は、差圧発生ユニット120の構成である。
具体的には、差圧発生ユニット120は、圧縮機2から吐出される冷媒を利用して膨張タンク10を加熱する加熱ユニットからなるものであって、加熱配管121及び流路切替器122を備えている。加熱配管121は、膨張タンク10の外周を囲うように設けられており、両端がそれぞれ圧縮機2の吐出側に接続されている。そして、加熱配管121の一端側から流入した冷媒は再び圧縮機2の吐出側へ戻るようになっている。流路切替器122は、圧縮機2から直接凝縮器3に冷媒が流れる冷媒流路と、圧縮機2から加熱配管121を介して凝縮器3に流れる冷媒流路とを切り替えるものであって、例えば電磁弁からなる電磁弁122a、122bから構成されている。電磁弁122aは加熱配管121上に配置されており、電磁弁122bは冷凍サイクル1A上であって加熱配管121の一端側と他端側との間に配置されている。なお、流路切替器122が2つの電磁弁122a、122bから構成された場合について例示しているが、冷媒流路を切り替えるものであればこれに限定されず、例えば三方弁等の公知の技術を用いて流路を切り替えるようにしてもよい。
そして、冷却運転時(通電時)には電磁弁122aが閉止し、電磁弁122bが開放する。その後、停止時(無通電時)には、開閉弁11が開放し冷凍サイクル1Aから膨張タンク10へ冷媒が流れる。一方、冷凍装置1の起動時(復電時)には電磁弁122aが閉止し、電磁弁122bが開放する。すると、圧縮機2から吐出した高温の冷媒が加熱配管121に流入し凝縮器3側へ流れる。この際、加熱配管121を流れる高温状態の冷媒により膨張タンク10が加熱される。
このように、図3に示す冷凍装置100であっても、起動時(復電時)に膨張タンク10が加熱ユニットからなる差圧発生ユニット120により加熱されることにより、膨張タンク10内の圧力が増加して冷凍サイクル1Aの圧力との差圧が大きくなるため、膨張タンク10から冷凍サイクル1Aへの冷媒の戻り時間を短縮することができる。さらに、圧縮機2から吐出される高温の冷媒を利用して膨張タンク10の圧力を増加させるため、膨張タンク10を加熱するための電力が不要になり、省エネルギー化を図ることができる。
実施形態3.
図4は本発明の冷凍装置の実施形態3を示す冷媒回路図であり、図4を参照して冷凍装置200について説明する。なお、図4の冷凍装置200において図1の冷凍装置1と同一の構成を有する部位には同一の符号を付してその説明を省略する。図4の冷凍装置200が図1の冷凍装置1と異なる点は、差圧発生ユニット220が冷凍サイクル1A側に設けられた減圧ユニットからなる点である。
具体的には、差圧発生ユニット220は、冷凍サイクル1Aにおける圧縮機2の吸込側の圧力を低下させる減圧ユニットからなるものであって、バイパス配管221、キャピラリー222、流路切替器223を備えている。バイパス配管221は、流量制御装置4に並列に接続されたものであって、バイパス配管221側にキャピラリー222が設けられている。キャピラリー222は、圧縮機2の吸込側の吸込圧力を下げるものであって、圧縮機2の許容範囲下限値まで吸込圧力を下げるように径の太さ又は長さ等が設定されている。
流路切替器223は、冷媒が凝縮器3から流量制御装置4に流れる冷媒流路と、凝縮器3からキャピラリー222を介して気液分離器6側に流れる冷媒流路とに切り替えるものであって、例えば電磁弁からなる電磁弁223a、223bから構成されている。電磁弁223aはバイパス配管221側に配置されており、電磁弁223bは流量制御装置4の上流側に配置されている。なお、流路切替器223が2つの電磁弁223a、223bから構成された場合について例示しているが、冷媒流路を切り替えるものであればこれに限定されず、例えば三方弁等の公知の技術を用いて流路を切り替えるようにしてもよい。
そして、通常冷却運転時には冷凍サイクル1A側の電磁弁223aを閉止するとともに、電磁弁223bを開放し、流量制御装置4側に冷媒が流れる。その後、停止時(無通電時)には、開閉弁11が開放し冷凍サイクル1Aから膨張タンク10へ冷媒が流れる。一方、起動時に膨張タンク10から冷媒を回収する際には、バイパス配管221上の電磁弁223aが開放する。すると、冷媒は流量制御装置4を通らずキャピラリー222側を通り気液分離器6に流れる。この際、キャピラリー222において圧縮機2の許容範囲下限値まで吸込圧力が下がる。
このように、図4に示す冷凍装置200において、起動時(復電時)に差圧発生ユニット220が、圧縮機2の吸込側の圧力を下げることにより、冷凍サイクル1Aの圧力との差圧が大きくなるため、膨張タンク10から冷凍サイクル1Aへの冷媒の戻り時間を短縮することができる。すなわち、流量制御装置4を使用している場合、流量制御装置(膨張弁)4の制御可能範囲は限定されている。そこで、冷媒を冷凍サイクル1A内へ戻す際には、流量制御装置(膨張弁)4ではなくキャピラリー222を使用し、出来る限り圧縮機2の吸込圧力を下げる。これにより、膨張タンク10と冷凍サイクル1Aとの差圧が大きい状態(圧縮機吸込圧力が低い状態)で冷媒を冷凍サイクル1A内へ戻すことができ、時間を短縮することができる。
なお、図4において、差圧発生ユニット220がキャピラリー222等を有する減圧ユニットからなる場合について例示しているが、図5に示すように、差圧発生ユニット220が電気ヒータ21(図1参照)と減圧ユニットとの双方を有していてもよいし、図6に示すように、減圧ユニットと加熱ユニット(図3参照)との双方を有していてもよい。この場合、膨張タンク10側の圧力を高くするとともに冷凍サイクル1A側の圧力を低くすることにより、膨張タンク10と冷凍サイクル1Aとの差圧がさらに大きくなるため、膨張タンク10から冷凍サイクル1Aへの冷媒の戻り時間をより短縮することができる。
実施形態4.
図7は本発明の冷凍装置の実施形態4を示す冷媒回路図であり、図7を参照して冷凍装置300について説明する。なお、図7の冷凍装置300において図1の冷凍装置1と同一の構成を有する部位には同一の符号を付してその説明を省略する。図7の冷凍装置300が図1の冷凍装置1と異なる点は、冷凍サイクルに二元冷凍回路を採用した点である。
具体的には、図7の冷凍装置300は、冷凍サイクル(低元冷凍サイクル)1Aと高元冷凍サイクル300Bとを備えている。このうち、冷凍サイクル(低元冷凍サイクル)の凝縮器304は例えばプレート式熱交換器等のカスケード熱交換器から構成されており、冷凍サイクル1Aを循環する低元冷媒と、高元冷凍サイクル300Bを循環する高元冷媒との間で熱交換を行うようになっている。
一方、高元冷凍サイクル300Bは、高元冷媒が循環するものであり、高元圧縮機301、高元凝縮器302、高元流量制御装置303及びカスケード熱交換器304が順次配管接続されて構成されている。高元圧縮機301は、例えば二段スクリュー圧縮機である。高元凝縮器302は例えばプレートフィンアンドチューブ熱交換器であり、高元凝縮器302の近傍には送風機(図示せず)が設けられている。送風機によって周囲空気(外気)が高元凝縮器302に供給されると、高元凝縮器302を流れる高元冷媒は供給された周囲空気に凝縮熱を放熱する。高元流量制御装置303は、例えば電子式膨張弁であり、高元冷凍サイクル300Bを循環する高元冷媒の流量を制御している。カスケード熱交換器304は、例えばプレート式熱交換器であり、上述の通り、高元冷媒と低元冷媒(冷凍サイクル1Aを流れる冷媒)とが熱交換を行うものである。
冷凍サイクル(低元冷凍サイクル)1Aと高元冷凍サイクル300Bとにはそれぞれ異なる冷媒が用いられている。具体的には、冷凍サイクル(低元冷凍サイクル)1Aを循環する低元冷媒として、二酸化炭素又はR23(HFC23)冷媒を用いている。一方、高元冷凍サイクル300Bを循環する高元冷媒として、例えば2,3,3,3−テトラフルオロプロペン(HFO−1234yf)等のテトラフルオロプロペン又はこのテトラフルオロプロペンを含む混合冷媒を用いている。
そして、冷凍サイクル(低元冷凍サイクル)1A側において、圧縮機2の吸込側に膨張タンク10が接続されており、膨張タンク10に差圧発生ユニット20が設置されている。図7のような多元冷凍サイクルを有する冷凍装置300であっても、復電時に膨張タンク10が差圧発生ユニット20により加熱されることにより、膨張タンク10内の圧力が増加して冷凍サイクル1Aの圧力との差圧が大きくなるため、膨張タンク10から冷凍サイクル1Aへの冷媒の戻り時間を短縮することができる。多元冷凍サイクルを採用することにより、膨張タンク10の設置されている低元側の冷媒量を空気冷却式単元冷凍サイクル採用時に比べて削減可能となるため、膨張タンク10から冷凍サイクル1Aへの冷媒の戻り時間を空気冷却式単元冷凍サイクル採用時に比べて、さらに短縮することができる。
なお、図7の冷凍装置300において、差圧発生ユニット20が電気ヒータ21(図1参照)である場合について例示しているが、図3に示す加熱配管121等を有する加熱ユニットからなるものであってもよいし、図4に示す減圧ユニットからなるものであってもよい。さらには、図5と図6に示すように差圧発生ユニットが電気ヒータ21もしくは加熱ユニットと減圧ユニットとの双方を備えたものであってもよい。
実施形態5.
図8は本発明の冷凍装置の実施形態5を示す冷媒回路図であり、図8を参照して冷凍装置400について説明する。なお、図8の冷凍装置400において図1の冷凍装置1と同一の構成を有する部位には同一の符号を付してその説明を省略する。図8の冷凍装置400が図7の冷凍装置300と異なる点は、冷凍サイクル(低元冷凍サイクル)1A側の流量制御装置404として二段絞りを採用した点である。
具体的には、流量制御装置404は、例えば電子式膨張弁からなる2つの絞り装置404A、404Bを備えている。各絞り装置404A、404Bは、それぞれ冷凍サイクル(低元冷凍サイクル)1Aを循環する冷媒流量を制御するものである。そして、圧縮機2より吐出された高温高圧で蒸気状態の低元冷媒は、カスケード熱交換器304へ流入し、高元冷媒に冷却されて凝縮液化し、高圧液冷媒となる。この高圧液状態の低元冷媒は、流量制御装置404に流入する。そして、流量制御装置404の絞り装置404Aにより高圧液状態の低元冷媒は減圧されて中圧の気液二相冷媒となり、絞り装置404Bでさらに減圧され、低圧の気液二相冷媒となって蒸発器5に流入する。
このように、流量制御装置404として2段絞りを採用することにより冷媒を中圧の気液二相冷媒としている。このため、冷凍装置400の冷凍サイクル1A内の冷媒量を大幅に削減でき、冷凍サイクル1Aの必要冷媒充填量を大幅に低減することができる。したがって、膨張タンク10から冷凍サイクル1A内に戻す冷媒量自体を少なくすることができ、差圧発生ユニット20の作動による膨張タンク10から冷凍サイクル1Aへの冷媒の戻り時間をさらに短縮することができる。
なお、図7の冷凍装置400において、電気ヒータ21(図1参照)からなる差圧発生ユニット20を設けた場合について例示しているが、図3に示すように加熱配管121等を有する加熱ユニットからなる差圧発生ユニット120を設けてもよいし、図4に示す減圧ユニットからなる差圧発生ユニット220を設けてもよい。さらには、図5と図6に示すように差圧発生ユニットが電気ヒータ21(図1参照)もしくは加熱ユニット(図3参照)と、減圧ユニットとの双方を備えたものであってもよい。
本発明の実施形態は、上記各実施形態に限定されない。たとえば、各実施形態1〜5において、開閉弁11及び差圧発生ユニット20、120は、起動時(復電時)に膨張タンク10から冷凍サイクル1Aへ冷媒を戻す際に所定の動作をするものであればよく、図示しない制御手段を介して動作を制御されるものであってもよいし、起動時に直接動作が行われるものであってもよい。
また、各実施形態1〜5において、圧縮機2の無通電状態及び再起動時の開閉弁11の動作について説明しているが、圧縮機2の動作時において、冷凍サイクル1A内の圧力が上がった際に、設計圧力を超えないように圧力を下げるため、開閉弁11が開放するようにし、膨張タンク10側へ冷媒を一時的に収容するようにしてもよい。
さらに、各実施形態1〜5において、差圧発生ユニット20、120は、それぞれ電気ヒータもしくは冷媒配管からなる場合について例示しているが、電気ヒータと冷媒配管との双方を具備したものであってもよい。
1、50、100、200、300、400 冷凍装置、1A 冷凍サイクル、2 圧縮機、3 凝縮器、4、404 流量制御装置、5 蒸発器、6 気液分離器、10 膨張タンク、11 開閉弁、20、120、220 差圧発生ユニット、21 電気ヒータ、121 加熱配管、122 流路切替器、122a、122b 電磁弁、221 バイパス配管、222 キャピラリー、223 流路切替器、223a、223b 電磁弁、300B 高元冷凍サイクル、301 高元圧縮機、302 凝縮器、303 高元流量制御装置、304 凝縮器(カスケード熱交換器)、404A、404B 絞り装置。

Claims (11)

  1. 圧縮機、凝縮器、流量制御装置、蒸発器が順に接続された冷凍サイクルを備えた冷凍装置であって、
    前記圧縮機の吸入側に接続され、前記冷凍サイクルを循環する冷媒を収容する膨張タンクと、
    前記膨張タンクと前記圧縮機の吸入側との間に設けられ、装置の停止時に開放し装置の起動後に閉止する開閉弁と、
    装置の起動時に前記膨張タンクの圧力と前記冷凍サイクルの圧力との差圧を増大させる差圧発生ユニットと
    を備えたことを特徴とする冷凍装置。
  2. 前記差圧発生ユニットは、前記膨張タンクに取り付けられ、前記膨張タンクを加熱する加熱手段を有することを特徴とする請求項1に記載の冷凍装置。
  3. 前記加熱手段は、電気ヒータからなることを特徴とする請求項2に記載の冷凍装置。
  4. 前記加熱手段は、
    前記圧縮機の吐出側に接続され、前記膨張タンクの外周を囲う加熱配管と、
    装置の通常運転時に前記圧縮機から前記凝縮器へ冷媒が流れる冷媒流路と、装置の起動時に前記圧縮機から前記加熱配管を介して前記凝縮器へ冷媒が流れる冷媒流路とを切り替える流路切替器と
    を有することを特徴とする請求項2に記載の冷凍装置。
  5. 前記差圧発生ユニットは、
    前記流量制御装置に並列に接続されたバイパス配管と、
    前記バイパス配管に接続されたキャピラリーと、
    装置の通常運転時に前記流量制御装置へ冷媒が流れる冷媒流路と、装置の起動時に前記バイパス配管及び前記キャピラリーへ冷媒が流れる冷媒流路とを切り替える流路切替器と
    を有することを特徴とする請求項1〜4のいずれか1項に記載の冷凍装置。
  6. 前記冷凍サイクルは、前記凝縮器がカスケード熱交換器で構成された低元冷凍サイクルであって、
    高元圧縮機、高元凝縮器、高元流量制御装置、前記カスケード熱交換器が順次冷媒配管により接続され、前記低元冷凍サイクルとは異なる熱媒体が循環する高元冷凍サイクルをさらに有することを特徴とする請求項1〜5のいずれか1項に記載の冷凍装置。
  7. 前記流量制御装置は、複数の絞り装置から構成されていることを特徴とする請求項6に記載の冷凍装置。
  8. 前記開閉弁は、初期状態が開放状態に設定されており、装置の起動後に閉止状態になるものであることを特徴とする請求項1〜7のいずれか1項に記載の冷凍装置。
  9. 前記差圧発生ユニットは、作動開始から所定の期間が経過した後に停止するものであることを特徴とする請求項1〜8のいずれか1項に記載の冷凍装置。
  10. 前記膨張タンク内のタンク圧力を検知するタンク圧力検知手段をさらに有し、
    前記差圧発生ユニットの作動後に前記タンク圧力検知手段により検知された前記タンク圧力が所定の圧力になったとき、前記差圧発生ユニットが動作停止するとともに、前記開閉弁が閉止するものであることを特徴とする請求項1〜8のいずれか1項に記載の冷凍装置。
  11. 冷媒は、二酸化炭素もしくはR23冷媒であることを特徴とする請求項1〜10のいずれか1項に記載の冷凍装置。
JP2013102202A 2013-05-14 2013-05-14 冷凍装置 Active JP6288942B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102202A JP6288942B2 (ja) 2013-05-14 2013-05-14 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102202A JP6288942B2 (ja) 2013-05-14 2013-05-14 冷凍装置

Publications (2)

Publication Number Publication Date
JP2014222131A JP2014222131A (ja) 2014-11-27
JP6288942B2 true JP6288942B2 (ja) 2018-03-07

Family

ID=52121732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102202A Active JP6288942B2 (ja) 2013-05-14 2013-05-14 冷凍装置

Country Status (1)

Country Link
JP (1) JP6288942B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3203163B1 (en) * 2014-09-30 2019-11-13 Mitsubishi Electric Corporation Refrigeration cycle device
JPWO2017175299A1 (ja) * 2016-04-05 2018-10-25 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513573B2 (ja) * 1972-06-19 1976-02-04
JPS5912527Y2 (ja) * 1978-11-13 1984-04-16 ダイキン工業株式会社 二元冷凍装置
JPS6015083Y2 (ja) * 1980-01-14 1985-05-13 ダイキン工業株式会社 低温冷凍装置
JPH055581A (ja) * 1991-06-27 1993-01-14 Toshiba Corp 冷媒回収充填装置
JP3102652B2 (ja) * 1991-11-19 2000-10-23 株式会社日立製作所 冷熱衝撃試験装置
NO175830C (no) * 1992-12-11 1994-12-14 Sinvent As Kompresjonskjölesystem
JP3270706B2 (ja) * 1997-03-24 2002-04-02 三菱電機株式会社 多元冷凍装置
JP2000346503A (ja) * 1999-05-31 2000-12-15 Mitsubishi Electric Building Techno Service Co Ltd 冷媒充填装置
JP2007303792A (ja) * 2006-05-15 2007-11-22 Sanyo Electric Co Ltd 冷凍装置
JP5430604B2 (ja) * 2011-04-08 2014-03-05 三菱電機株式会社 二元冷凍装置

Also Published As

Publication number Publication date
JP2014222131A (ja) 2014-11-27

Similar Documents

Publication Publication Date Title
JP5595245B2 (ja) 冷凍装置
US20100180612A1 (en) Refrigeration device
EP2068093B1 (en) Refrigeration device
US20220146172A1 (en) Heat source unit and refrigeration device
JP5641875B2 (ja) 冷凍装置
JP5932971B2 (ja) 冷凍装置及び冷凍サイクル装置
JP6116684B2 (ja) 冷凍装置
EP3217115B1 (en) Air conditioning apparatus
JP4317793B2 (ja) 冷却システム
JP5783783B2 (ja) 熱源側ユニット及び冷凍サイクル装置
JP6057871B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP2007010220A (ja) 冷凍装置及びその冷凍装置を備えた冷蔵庫
WO2017175299A1 (ja) 冷凍サイクル装置
JP2008164288A (ja) 冷凍装置
JP6288942B2 (ja) 冷凍装置
JP2006308230A (ja) 冷凍サイクル制御装置
JP2005214575A (ja) 冷凍装置
JP6138186B2 (ja) 冷凍装置
WO2019186647A1 (ja) 冷凍装置
JP2005214442A (ja) 冷凍装置
CN112368523B (zh) 冷冻循环装置以及其控制方法
JP2005048981A (ja) 冷凍装置
KR102313304B1 (ko) 이산화탄소 공기조화기
JP6588645B2 (ja) 冷凍サイクル装置
JP2019207104A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180206

R150 Certificate of patent or registration of utility model

Ref document number: 6288942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250