WO2016050004A1 - 一种烯烃氧化方法、反应装置和系统 - Google Patents

一种烯烃氧化方法、反应装置和系统 Download PDF

Info

Publication number
WO2016050004A1
WO2016050004A1 PCT/CN2015/000671 CN2015000671W WO2016050004A1 WO 2016050004 A1 WO2016050004 A1 WO 2016050004A1 CN 2015000671 W CN2015000671 W CN 2015000671W WO 2016050004 A1 WO2016050004 A1 WO 2016050004A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
catalyst bed
catalyst
olefin
bed
Prior art date
Application number
PCT/CN2015/000671
Other languages
English (en)
French (fr)
Inventor
史春风
龙军
朱斌
林民
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to RU2017114007A priority Critical patent/RU2694060C2/ru
Priority to KR1020177011456A priority patent/KR102482256B1/ko
Priority to MYPI2017701040A priority patent/MY188483A/en
Priority to CN201580047702.8A priority patent/CN107074795B/zh
Priority to JP2017535945A priority patent/JP6837438B2/ja
Priority to US15/515,187 priority patent/US10400179B2/en
Priority to EP15845790.3A priority patent/EP3202764B1/en
Publication of WO2016050004A1 publication Critical patent/WO2016050004A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/04Metals, or metals deposited on a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • This invention relates to a process for the oxidation of olefins, and more particularly to a process for the manufacture of epoxides by catalytic oxidation of olefins.
  • the present invention also relates to a fixed bed reaction apparatus and system for olefin oxidation.
  • Epoxides such as propylene oxide
  • propylene oxide are an important class of oxygenated organic compounds.
  • a production method of propylene oxide a method of producing propylene oxide by propylene oxidation in the presence of a catalyst (particularly, a titanium silicon molecular sieve) has been industrialized.
  • the object of the present invention is to provide a method for oxidizing an olefin, which can solve the aforementioned problems in the prior art olefin catalytic oxidation process, in particular, can prolong the service life of the catalyst, especially the single-pass service life, and simultaneously suppress the side reaction. occur.
  • the present invention relates to the following aspects.
  • An olefin oxidation process comprising, under olefin oxidation reaction conditions, at least one of an olefin (preferably selected from the group consisting of C 3-6 ⁇ -olefins, more preferably selected from the group consisting of propylene and butene, Further preferably, the reaction feed of propylene) and at least one oxidizing agent (preferably selected from at least one of hydrogen peroxide, an organic peroxide and a peracid, more preferably hydrogen peroxide) flows through the first to nth (n) 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, preferably 2, 3, 4, 5, 6, a step of 7, 8, 9, or 10, more preferably 2, 3, 4 or 5) a catalyst bed, characterized in that the apparent velocities of the respective reaction materials flowing through the first to nth catalyst beds are respectively When v 1 to v n and m take an arbitrary integer in the interval [2, n], the following relation holds.
  • a m-1 is the average cross-sectional area of the m-1th catalyst bed
  • a m is the average cross-sectional area of the mth catalyst bed.
  • a process according to any of the preceding aspects wherein a reaction output comprising an olefin oxide is obtained, and the method further comprises the step of separating the olefin oxide from the reaction output to obtain a tail gas stream.
  • the molar ratio of the olefin to the at least one oxidant in the reaction feed is from 0.1 to 10:1, preferably from 0.2 to 5:1, in the Based on the total amount of the catalyst packed in the 1st to nth catalyst beds, the weight hourly space velocity of the olefin is 0.1-20 h -1 , preferably 0.2-10 h -1 , and the olefin oxidation reaction conditions include: reaction pressure (in terms of The gauge pressure is 0-5 MPa, preferably 0.1-3.5 MPa, and the reaction temperature is 0-120 ° C, preferably 20-80 ° C (such as 30-60 ° C).
  • T m-1 is the reaction temperature (° C.) of the m-1th catalyst bed
  • T m is the reaction temperature (° C.) of the mth catalyst bed.
  • a fixed bed reaction apparatus comprising an inlet (1), a reaction section (3) and an outlet (2), wherein the first to the nth are set in the reaction section (3) (n is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, preferably 2 or 3) catalyst bed, reaction feed from the inlet (1 Entering the reaction zone (3), flowing through the first to nth catalyst beds in sequence, and then entering the outlet (2) to become a reaction discharge, characterized in that the fixed bed reaction device further comprises a speed increasing device, wherein the speed of each reaction material flowing through the first to nth catalyst beds is v 1 to v n , and m is an arbitrary integer within the interval [2, n], the speed increasing device Make the following relationship true,
  • the speed increasing device is a variable diameter section of the reaction section (3) and/or a member disposed inside the reaction section (3),
  • the variable diameter segment or the member can cause m to take an arbitrary integer within the interval [2, n], the following relation holds.
  • a m-1 is the average cross-sectional area of the m-1th catalyst bed
  • a m is the average cross-sectional area of the mth catalyst bed.
  • the speed increasing device is a reaction discharge introduction branch pipe, a solvent introduction branch pipe, an inert gas introduction branch pipe or a combination thereof
  • the reaction discharge introduction branch pipe is A portion of the reaction discharge is introduced into a partition between any two or more pairs of adjacent catalyst beds in the first to nth catalyst beds
  • the solvent introduction branch introduces a solvent into the first to nth a separator between any two or more pairs of adjacent catalyst beds in the catalyst bed
  • the inert gas introduction branch introducing inert gas into any two or more pairs of the first to nth catalyst beds The separation between adjacent catalyst beds.
  • An olefin oxidation reaction system comprising at least a reaction feed unit, an olefin oxidation reaction unit, and a reaction discharge separation unit, wherein the olefin oxidation reaction unit comprises one or A plurality of fixed bed reactors according to any of the preceding aspects.
  • the reaction discharge separation unit separates an olefin oxide from the reaction output of the fixed bed reactor to obtain an off-gas stream
  • the speed increasing device is a tail gas stream introduction branch pipe, and the tail gas stream introducing branch pipe introduces the tail gas stream or a portion thereof into the separation between any two or more pairs of adjacent catalyst beds in the first to nth catalyst beds At the office.
  • the service life of the catalyst can be effectively prolonged, especially the single-pass service life, the regeneration frequency of the catalyst can be reduced, the operation efficiency can be improved, the operation stability can be improved, and the total service life of the catalyst can be prolonged.
  • the olefin oxidation method of the present invention By using the olefin oxidation method of the present invention, even a long-term continuous operation can obtain a relatively stable oxidant conversion rate, a high oxidant effective utilization rate, and a target oxidation product selectivity.
  • the selectivity of the target oxidation product can be maintained at a high level, while the selectivity of by-products is maintained at a low level, thereby making it possible to reduce the difficulty of subsequent separation and purification.
  • Figures 1 to 6 schematically illustrate several embodiments of reactor internals
  • Figure 7 schematically illustrates an embodiment of a reactor reducer section
  • Figure 8 schematically illustrates the reaction discharge introduction of a branch One embodiment
  • Figure 9 schematically illustrates an embodiment of a tail gas stream introduction branch, a solvent introduction branch or an inert gas introduction branch.
  • symbol 1 represents an inlet
  • symbol 2 represents an outlet
  • symbol I represents a first catalyst bed
  • symbol II represents a second catalyst bed
  • symbol III represents a third catalyst bed
  • a gap between different catalyst beds The area represents the separation
  • the symbol 3 represents the reaction section
  • the symbol A represents the reaction feed
  • the symbol B represents the reaction discharge
  • the symbols B1 to B4 represent the reaction discharge introduction branch
  • the symbol C represents the exhaust gas stream
  • the symbol C1 to C4 represents a tail gas stream introduction branch pipe
  • a solvent introduction branch pipe or an inert gas introduction branch pipe represents the flow direction of the reaction material
  • the solid color filling portion in the region of the second catalyst bed layer II in FIGS. 1 to 6 represents the inside of the reactor.
  • reaction materials The flow direction is from top to bottom, one set of reaction section 3, two or three catalyst beds, one inlet and one outlet of the reaction device, four inlet branch pipes, etc., but the present invention does not Limited to this.
  • At least one means one or more (eg, two or more).
  • a process for oxidizing an olefin comprising the step of sequentially flowing a reaction feed through a first to nth catalyst bed under olefin oxidation reaction conditions.
  • n is an integer between 2 and 50, preferably selected from 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 19 or 20, more preferably selected from 2, 3, 4, 5, 6, 7, 8, 9 or 10, more preferably selected from 2, 3, 4 or 5, such as 2.
  • the apparent velocities of the respective reaction materials flowing through the first to nth catalyst beds are v 1 to v n , and m is an arbitrary integer within the interval [2, n], and the relationship is v. M-1 ⁇ v m is established.
  • m takes any integer within the interval [2, n]
  • the expression "the reaction feed sequentially flows through the first to nth catalyst beds” means that the flow path of the reaction feed is sequentially formed from the first catalyst bed to the nth catalyst bed, but It does not mean that the reaction feed flows through the first to nth catalyst beds without any change.
  • the reaction feed e.g., in terms of its composition or properties
  • the reaction feed flowing through each catalyst bed is generally referred to as the reaction mass.
  • reaction materials when flowing through different catalyst beds, the reaction materials may also change due to various factors, such as reaction or introduction of new materials such as carrier fluids, resulting in reaction materials flowing through different catalyst beds (eg It is generally different in terms of its composition or trait.
  • the present invention focuses on the apparent velocity of each reaction mass as it flows through its respective catalyst bed.
  • the reaction feed or reaction mass generally takes the form of a liquid mixture or a gas-liquid mixture, but is sometimes not limited thereto.
  • the apparent velocity (in kg/(m 2 ⁇ s)) refers to the mass flow (in kg/s) of the reaction mass throughout the entire catalyst bed per unit time and The ratio of a certain cross-sectional area (in m 2 ) of the catalyst bed.
  • v 1 the apparent velocity of the reaction mass flowing through the first catalyst bed
  • v 2 the mass flow rate (in kg/s) of the reaction mass passing through the first catalyst bed per unit time and the catalyst bed.
  • the ratio of a certain cross-sectional area of the layer in m 2 generally means the average cross-sectional area from the viewpoint of simplifying the description of the present invention.
  • the term "average cross-sectional area" refers to the ratio of the total catalyst loading volume (in m 3 ) of the catalyst bed to the length (in m) of the catalyst bed along the flow direction of the reaction mass, which It will be apparent to those skilled in the art.
  • the average cross-sectional area is the cross-sectional area.
  • the present invention has no particular requirement for the apparent velocity (absolute value) of the reaction mass flowing through each of the catalyst beds, and can directly apply those conventionally known in the art, such as the apparent appearance of the reaction material flowing through the first catalyst bed.
  • the speed (absolute value) may generally be in the range of 0.001 to 200 kg/(m 2 ⁇ s), but is sometimes not limited thereto.
  • the first to nth catalyst beds may all be disposed in the same reactor to constitute different reaction zones of the reactor, or may be disposed in each of the n reactors to constitute n different reactions.
  • the reactors are disposed in two or more (up to n-1) reactors in any combination to form a combination of multiple reaction zones and multiple reactors.
  • the first to nth catalyst beds may be continuously connected, thereby constituting an integrated catalyst bed, and a separator may be present between any two or more pairs of adjacent catalyst beds therein.
  • the partition may be an internal space of the reactor, in which case one or more non-catalyst beds (such as a bed composed of an inactive filler as described below) or internal members may be provided in the interior space as needed ( For example, a fluid distributor, a catalyst bed support member, a heat exchanger, etc., etc., thereby more flexibly adjusting the olefin oxidation reaction of the present invention.
  • the first to nth catalyst beds are sequentially connected in series along the flow path of the reaction feed to form an upstream-downstream relationship, wherein the first catalyst bed is located at the most upstream, and the nth catalyst bed is located at the most Downstream. Nonetheless, some or all of the catalyst beds may be spatially arranged side by side as long as the reaction feed is passed through it.
  • each of the first to nth catalyst beds may contain one or more catalyst beds. If a plurality of catalyst beds are contained, the plurality of catalyst beds may be connected in series, may be connected in parallel, or may be a combination of series connection and parallel connection. For example, when the plurality of catalyst beds are divided into groups, the catalyst beds in each group may be connected in series and/or in parallel, and the groups may be connected in series and/or in parallel.
  • each of the first to nth catalyst beds may be in the form of a catalyst bed conventionally known in the art, such as a fluidized bed, an expanded bed, a slurry bed or a fixed bed, but from the convenience of the olefin oxidation reaction of the present invention.
  • each of the first to nth catalyst beds is preferably a fixed bed.
  • At least one of the catalysts is loaded in each of the first to nth catalyst beds.
  • the catalyst for example, various catalysts known in the art which are suitable for catalyzing the oxidation of an olefin to produce an epoxide can be mentioned, and in particular, a titanium-silicon molecular sieve can be mentioned.
  • a titanium-silicon molecular sieve is a general term for a class of zeolites in which a titanium atom replaces a part of silicon atoms in a lattice skeleton, and can be represented by a chemical formula of xTiO 2 ⁇ SiO 2 .
  • the content of the titanium atom in the titanium silicon molecular sieve of the present invention is not particularly limited and may be a conventional choice in the art.
  • x may be 0.0001 to 0.05, preferably 0.01 to 0.03, and more preferably 0.015 to 0.025.
  • the titanium silicon molecular sieve may be a common titanium silica molecular sieve having various topologies, for example, the titanium silicon molecular sieve may be selected from a titanium silicalite of MFI structure (such as TS-1), and a titanium of MEL structure.
  • Silicon molecular sieves such as TS-2), titanium-structured titanium-silicon molecular sieves (such as Ti-Beta), MWW-structured titanium-silicon molecular sieves (such as Ti-MCM-22), MOR-structured titanium-silicon molecular sieves (such as Ti-MOR), TUN structure of titanium silicon molecular sieves (such as Ti-TUN), two-dimensional hexagonal structure of titanium silicon molecular sieves (such as Ti-MCM-41, Ti-SBA-15) and other structures of titanium-silicon molecular sieves (such as Ti-ZSM-48) Wait.
  • titanium-structured titanium-silicon molecular sieves such as Ti-Beta
  • MWW-structured titanium-silicon molecular sieves such as Ti-MCM-22
  • MOR-structured titanium-silicon molecular sieves such as Ti-MOR
  • TUN structure of titanium silicon molecular sieves such as Ti-TUN
  • the titanium silicalite is preferably selected from the group consisting of titanium silicalite of MFI structure, titanium silicalite of MEL structure, titanium silicalite of two-dimensional hexagonal structure and titanium silicalite of BEA structure, more preferably titanium silicalite of MFI structure.
  • the titanium silicon molecular sieve is a hollow titanium silicon molecular sieve, which can obtain a further extended single-pass catalyst service life, and at the same time obtain better catalytic effect, obtain higher oxidant conversion rate, product selectivity. And effective utilization of oxidants.
  • the hollow titanium silicon molecular sieve is a titanium silicon molecular sieve of MFI structure
  • the crystal grain of the titanium silicon molecular sieve is a hollow structure
  • the cavity portion of the hollow structure has a radial length of 5 to 300 nm
  • the hollow titanium silicon molecular sieves are commercially available (for example, molecular sieves of the trade name HTS commercially available from Hunan Jianchang Petrochemical Co., Ltd.), and can also be prepared according to the method disclosed in CN1132699C.
  • the first to nth catalyst beds are each filled with at least one of the aforementioned titanium silica molecular sieves.
  • the types of titanium silicon molecular sieves loaded in different catalyst beds may be the same or different.
  • each of the catalyst beds may be loaded with only one of the foregoing titanium silicalite sieves, or one or more of the foregoing titanium silicalite molecular sieves may be loaded in any desired relative proportions.
  • the titanium catalyst molecular sieve packed in the first catalyst bed is empty
  • the titanium-titanium molecular sieve loaded by the n-th catalyst bed is a titanium-silicon molecular sieve other than the hollow titanium-silicon molecular sieve, such as a titanium-silicon molecular sieve selected from other MFI structures (for example, titanium silicon molecular sieve TS-1), One or more of a titanium hexagonal molecular sieve (such as titanium-silicon molecular sieve Ti-MCM-41) and a titanium-structured titanium-silicon molecular sieve (such as titanium-silicon molecular sieve Ti-Beta), which can further delay the titanium silicon molecular sieve Rate of inactivation.
  • a titanium-silicon molecular sieve selected from other MFI structures for example, titanium silicon molecular sieve TS-1
  • a titanium hexagonal molecular sieve such as titanium-silicon molecular sieve Ti-MCM-41
  • the titanium catalyst molecular sieve loaded in the first catalyst bed layer is a hollow titanium silicon molecular sieve
  • the titanium silicon molecular sieve packed in the nth catalyst bed layer is a titanium silicon molecular sieve TS-1. This not only further delays the deactivation rate of the titanium silicon molecular sieve, but also prolongs the single-pass service life of the titanium silicon molecular sieve, and further improves the selectivity of the target oxidation product.
  • the aforementioned titanium silicon molecular sieve may be a titanium silicon molecular sieve raw powder, or may be a shaped titanium silicon molecular sieve, preferably a shaped titanium silicon molecular sieve.
  • the formed titanium silicalite generally contains titanium silicalite as an active ingredient and a carrier as a binder, wherein the content of the titanium silicalite can be conventionally selected.
  • the content of the titanium silicon molecular sieve may be from 5 to 95% by weight, preferably from 10 to 95% by weight, more preferably from 70 to 90% by weight, based on the total amount of the shaped titanium silicon molecular sieve; The content may be from 5 to 95% by weight, preferably from 5 to 90% by weight, more preferably from 10 to 30% by weight.
  • the support for forming the titanium silicalite may be conventionally selected, such as alumina and/or silica. Methods of preparing the shaped titanium silicon molecular sieves are well known in the art and will not be described in detail herein.
  • the particle size of the molded titanium silicon molecular sieve is also not particularly limited, and may be appropriately selected depending on the specific shape.
  • the shaped titanium silicalite may have an average particle size of from 4 to 10,000 microns, preferably from 5 to 5,000 microns, more preferably from 40 to 4,000 microns, such as from 100 to 2,000 microns.
  • the average particle diameter is a volume average particle diameter and can be measured by a laser particle size analyzer.
  • the amounts (mass) of the catalysts (especially titanium silicalites) respectively loaded in the first to nth catalyst beds may be the same or different.
  • W m-1 /W m is 0.1-20, and W m-1 /W m is preferably 0.5 or more, and more preferably 1 or more. More preferably, it is 2 or more.
  • W m-1 is the amount of the catalyst charged in the m-1th catalyst bed, and W m is the amount of the catalyst charged in the mth catalyst bed.
  • W m-1 /W m is preferably 15 or less, and more preferably 10 or less.
  • W m-1 /W m is from 2 to 10:1.
  • W m-1 and W m are determined from the content of the titanium silicon molecular sieve in the shaped titanium silica molecular sieve. Further, the amount of the catalyst charged in each catalyst bed can be appropriately determined as needed (e.g., production capacity), and is not particularly limited herein.
  • the total amount of catalyst (especially titanium silica molecular sieve) (i.e., the total amount of catalyst charged in the first to nth catalyst beds) can be selected depending on the specific treatment amount of the system.
  • the total amount of the catalyst is such that the weight hourly space velocity of the olefin (as a component of the reaction feed) is from 0.1 to 20 h -1 , preferably from 0.2 to 10 h -1 .
  • the first to nth catalyst beds may be further filled with an inactive filler as needed.
  • the inactive filler may be filled in all of the first to nth catalyst bed layers, or the inactive filler may be loaded in one or more of the first to nth catalyst bed layers.
  • the loading of the inactive filler in the catalyst bed enables adjustment of the amount of catalyst in the catalyst bed to adjust the rate of reaction.
  • the amount of the inactive filler may be from 5 to 95% by weight, based on the total amount of catalyst and inactive filler charged in the catalyst bed, when the inactive filler is loaded. .
  • the inactive filler means a filler which has no or substantially no catalytic activity for the oxidation of an olefin, and is conventionally known in the art, and specific examples thereof may include, but are not limited to, quartz sand, ceramic rings, and ceramic chips. One or more.
  • the reaction feed (specifically, the reaction material immediately before entering the first catalyst bed in the present invention) contains an olefin and an oxidizing agent as components.
  • the oxidizing agent may be various commonly used substances capable of oxidizing an olefin.
  • the oxidizing agent is a peroxide.
  • the peroxide refers to a compound having a -O-O- bond in its molecular structure and may be selected from the group consisting of hydrogen peroxide, an organic peroxide, and a peracid.
  • the organic peroxide refers to a substance obtained by substituting one or two hydrogen atoms in a hydrogen peroxide molecule with an organic group.
  • the peracid refers to an organic oxyacid having a -O-O- bond in its molecular structure.
  • the peroxide may include, but are not limited to, hydrogen peroxide, t-butyl hydroperoxide, cumene peroxide, cyclohexyl hydroperoxide, peracetic acid, and peroxypropionic acid.
  • the oxidizing agent is hydrogen peroxide, which further reduces the cost of separation.
  • the hydrogen peroxide may be hydrogen peroxide present in various forms commonly used in the art.
  • the oxidizing agents may be used singly or in combination of two or more kinds.
  • the amount of the oxidizing agent may be selected depending on the amount of the olefin contained in the reaction feed.
  • the molar ratio of the olefin to the oxidizing agent in the reaction feed may range from 0.1 to 10:1, preferably from 0.2 to 5:1.
  • the reaction feed optionally further contains a solvent to better control the reaction rate.
  • the type of the solvent is not particularly limited in the present invention, and the solvent may be various solvents commonly used in the oxidation reaction of an olefin.
  • the solvent is at least one of water, a C 1 -C 10 alcohol, a C 3 -C 10 ketone, a C 2 -C 10 nitrile, and a C 1 -C 6 carboxylic acid.
  • the solvent is one or more of a C 1 -C 6 alcohol, a C 3 -C 8 ketone, and a C 2 -C 5 nitrile.
  • the solvent is one or more of methanol, ethanol, acetonitrile, n-propanol, isopropanol, tert-butanol, isobutanol, and acetone. Further preferably, the solvent is one or more selected from the group consisting of methanol, acetonitrile, acetone, and t-butanol. These solvents may be used singly or in combination of two or more kinds.
  • the amount of the solvent to be used is not particularly limited and may be selected depending on the amounts of the olefin and the oxidizing agent.
  • the molar ratio of the solvent to the olefin in the reaction feed may range from 1 to 100:1, preferably from 2 to 80:1.
  • the reaction feed optionally further contains a basic substance to adjust the pH of the reaction feed to be in the range of 6.5 to 9.
  • a basic substance may include, but are not limited to, ammonia (i.e., NH 3 ), an amine, a quaternary ammonium base, and M 1 (OH) n (wherein M 1 is an alkali metal or an alkaline earth metal such as sodium or potassium) , magnesium or calcium; n is the same integer as the valence of M 1 ).
  • the olefin may be at least one of a C 2 -C 16 ⁇ -olefin, preferably at least one of C 3-6 ⁇ -olefins.
  • the olefin may be a monoolefin or a multiolefin, preferably a monoolefin.
  • the olefin is selected from at least one of propylene and butene, and further preferably propylene. These olefins may be used singly or in combination of two or more kinds.
  • the olefin oxidation reaction conditions can be selected depending on the intended target oxidation product.
  • the olefin oxidation reaction conditions in each catalyst bed may be the same or different (preferably the same), and include: the reaction pressure (in terms of gauge pressure) is 0-5 MPa, preferably 0.1-3.5 MPa, and the reaction temperature is 0-120 ° C, preferably 20-80 ° C (such as 30-60 ° C).
  • the reaction temperature is gradually lowered from the first to nth catalyst beds.
  • T m-1 is 5-30 ° C higher than T m
  • T m-1 is 10-20 ° C higher than T m
  • T m-1 It is the reaction temperature (° C.) of the m-1th catalyst bed
  • T m is the reaction temperature (° C.) of the mth catalyst bed.
  • the reaction temperature of the second catalyst bed is preferably 5-30 ° C lower than the reaction temperature of the first catalyst bed layer, and more preferably 10-20 ° C lower.
  • the reduction in temperature can be achieved by heat exchange of the reaction material flowing into or through the m-th catalyst bed with the heat exchange medium, or by flowing to the reaction material that is about to flow into the m-th catalyst bed as described below.
  • the introduction of a lower temperature carrier fluid is achieved, or a combination of the two.
  • H 1 is the height of the first catalyst bed layer
  • H 2 is the height of the second catalyst bed layer
  • H n is the height of the n-th catalyst bed layer.
  • a reaction discharge containing a target olefin oxide such as an epoxide is obtained by the olefin oxidation reaction carried out in the first to nth catalyst beds.
  • the reaction discharge specifically refers to the reaction material immediately after leaving the nth catalyst bed.
  • the olefin oxidation process optionally further comprises the step of separating the olefin oxide from the reaction output to obtain a tail gas stream, as needed.
  • the off-gas stream may be present as a mixture of unreacted reactants, reaction by-products, solvents, etc. without further separation, or may be separately separated into individual unreacted reactants, reactions.
  • By-products, solvents, etc. can all be used directly as a tail gas stream without any purification treatment.
  • the separation method those conventionally used for this purpose in the art can be directly applied without particular limitation.
  • the separated unreacted reactants, solvents and the like can be recycled as part of the reaction feed.
  • the foregoing provisions of the present invention for the apparent velocities of the respective reaction materials flowing through the first to nth catalyst beds can be satisfied in various ways.
  • the apparent velocity of each reaction material can be increased step by step by stepwise reducing the cross-sectional area of the first to nth catalyst beds to satisfy the present.
  • the aforementioned provisions of the invention For example, when n is 2, the cross-sectional area of the second catalyst bed is made smaller than the cross-sectional area of the first catalyst bed, thereby correspondingly increasing the apparent velocity of the reaction material in the second catalyst bed to satisfy the present invention.
  • a m-1 is the average cross-sectional area of the m-1th catalyst bed
  • a m is the average cross-sectional area of the mth catalyst bed.
  • each of the first to nth catalyst beds has a circular cross section, and the average cross sectional area is reduced to an average diameter.
  • each of the first to nth catalyst beds is of a cylindrical shape of equal diameter, and the average cross-sectional area is reduced to a diameter.
  • a second mode of change in apparent velocity for example, by separating between two or more pairs of adjacent catalyst beds in the first to nth catalyst beds (as previously described).
  • the introduction of a carrier fluid increases the overall throughput of the reaction mass flowing through all of the catalyst beds downstream of the separation, thereby correspondingly increasing the apparent velocity of each of the reaction materials to meet the foregoing provisions of the present invention.
  • n is 2
  • by introducing a carrier fluid to the partition between the first catalyst bed and the second catalyst bed the total flow of the reaction material flowing through the second catalyst bed can be increased, thereby correspondingly
  • the apparent velocity of the reaction mass in the second catalyst bed is increased to meet the foregoing provisions of the present invention.
  • any reaction material which can be discharged from the catalyst bed directly upstream of the partition can be cited and is downstream of the separator.
  • the catalyst loaded in each catalyst bed does not substantially adversely affect the fluid (such as reducing its activity).
  • the carrier fluid include the above-described reaction discharge, the aforementioned solvent, an inert gas, and the above-described exhaust gas stream.
  • the inert gas include nitrogen gas, argon gas, and lower alkane. Among them, nitrogen gas is preferable from the viewpoint of making the olefin oxidation reaction more stable and reducing the cost.
  • the reaction discharge, the inert gas or a combination thereof in any ratio is more preferable.
  • the carrier fluid is introduced only to increase the overall throughput of the reaction mass flowing through all of the catalyst bed downstream of the partition (hereinafter referred to as the downstream catalyst bed), and is not intended to participate in The olefin oxidation reaction occurring in the downstream catalyst bed, and thus although the carrier fluid may happen to contain a substance (such as an unreacted reactant) capable of participating in the olefin oxidation reaction occurring in the downstream catalyst bed,
  • the class of substances is not intentionally introduced into the downstream catalyst bed of the present invention, and the technical effects obtained by the present invention are also not related to the introduction of such substances, since these technical effects of the present invention can be introduced by introducing the solvent. Or the inert gas (excluding such substances) And the same is obtained.
  • the carrier fluid is not considered to be (in any form) a reaction feed or a reaction feed.
  • the introduction amount of the carrier fluid, the introduction manner, and the like are not particularly limited as long as it can (1) react with the catalyst bed directly upstream from the partition.
  • the material is uniformly mixed before, during or after entering the catalyst bed directly downstream of the separation, and (2) such that the apparent velocity of each of the reaction materials satisfies the aforementioned provisions of the present invention.
  • the temperature of the carrier fluid is preferably lower than the reaction mass emerging from the catalyst bed directly upstream of the separation (ie, the inflow immediately downstream of the separation zone) The temperature of the reaction mass of the catalyst bed) thereby effectively reducing the reaction temperature of the downstream catalyst bed.
  • the aforementioned two methods of changing the apparent speed may be used singly or in combination as needed.
  • a fixed bed reaction apparatus which is particularly suitable for carrying out the aforementioned olefin oxidation method of the present invention, but its use is not limited thereto.
  • the fixed bed reaction apparatus of the present invention will be specifically described below with reference to the drawings. In order to simplify the description of the specification, all the matters and embodiments described above for the olefin oxidation process are directly applicable here and will not be described again. Hereinafter, only the matters and embodiments specific to the fixed bed reaction device will be specifically described.
  • the fixed bed reaction apparatus comprises an inlet 1, a reaction section 3 and an outlet 2, in which the first to nth catalyst beds are disposed, and the reaction feed A enters from the inlet 1
  • the reaction zone 3 flows through the first to nth catalyst beds in sequence, and then enters the outlet 2 to become the reaction discharge B.
  • the fixed bed reaction device further comprises a speed increasing device, wherein the apparent velocities of the reaction materials flowing through the first to nth catalyst beds are respectively v 1 to v n , and m is taken as an interval [2, n]
  • the speed increasing device causes the relationship v m-1 ⁇ v m to be established.
  • the meanings of the symbols and expressions are the same as above.
  • the first to nth catalyst beds may all be disposed in the same reactor to constitute different reaction zones of the reactor, at which time the reaction zone 3 corresponds to the reactor. All of the reaction zones; may also be disposed in each of the n reactors to form n different reactors, at which time the reaction zone 3 corresponds to the n reactors; or in any combination of two In a plurality of reactors, a combination of a plurality of reaction zones and a plurality of reactors is formed, and at this time, the reaction zone 3 corresponds to the combination.
  • the inlet 1 and the outlet 2 correspond to the initial inlet and the final outlet of the fixed bed reactor, respectively.
  • the speed increasing device is for increasing the apparent velocity of each of the reaction materials flowing through the first to nth catalyst beds step by step in order to satisfy the aforementioned provision of the present invention.
  • a variable diameter section of the reaction section 3 and/or a member provided inside the reaction section 3 may be mentioned, wherein the variable diameter section or the member enables m
  • the relation A m-1 /A m >1 holds.
  • the internal components of the reaction section 3 may be disposed in different reaction zones of the same reactor or may be disposed inside different reactors, respectively.
  • the internal member of the reactor for example, reference may be made to FIGS. 1 to 6.
  • the reactor inner member is a solid rectangular longitudinal section member disposed on both sides of the second catalyst bed layer II.
  • the rectangular longitudinal section member may extend around the periphery of the second catalyst bed II to completely surround or partially surround the second catalyst bed II.
  • the reactor inner member has a labyrinth longitudinal section shape, and the reaction material flows in a meandering manner as shown in the drawing, flowing out from the lower right side of the labyrinth shape to the outlet 2.
  • the reactor inner member is a solid cylinder provided in the center of the second catalyst bed layer II.
  • the reactor inner member is disposed in the center of the second catalyst bed layer II, has a cavity at the center thereof, and the left and right sides are closed on the side close to the outlet 2, and the reaction material is provided with a plurality of holes from the wall surface thereof (Fig. 4 Five holes in the middle) flow out to the cavity and then flow to the outlet 2.
  • Fig. 4 Five holes in the middle
  • the reactor inner member is a solid hemisphere provided in the center of the second catalyst bed layer II.
  • the reactor inner member is a solid triangular longitudinal section member disposed on both sides of the second catalyst bed layer II.
  • the triangular longitudinal section member may extend around the periphery of the second catalyst bed II to completely surround or partially surround the second catalyst bed II.
  • variable diameter section for example, two or more reaction regions having different average cross-sectional areas in the same reactor, and two or more reactions having different average cross-sectional areas may be mentioned. Or a combination thereof.
  • two or more reaction regions having different average cross-sectional areas in the same reactor for example, reference can be made to FIG. In Fig. 7, a cylindrical reactor has upper and lower reaction zones having different average cross-sectional areas or diameters, wherein a first catalyst bed I is disposed in a larger diameter upper reaction zone, in diameter A second catalyst bed layer II is disposed in the smaller lower reaction zone.
  • the speed increasing device may further be a reaction discharge introduction branch pipe, wherein the reaction discharge introduction branch pipe introduces a part of the reaction discharge material (as a carrier fluid) into the first to nth catalyst beds.
  • a reaction discharge introduction branch pipe introduces a part of the reaction discharge material (as a carrier fluid) into the first to nth catalyst beds.
  • the reaction discharge is introduced into the branch pipe, for example, reference can be made to FIG. In Fig. 8, a portion of the reaction discharge B is introduced between the different catalyst beds by the reaction discharge introduction branch pipes B1 to B4 (for example, between the first catalyst bed layer I and the second catalyst bed layer II, and the second The separation between the catalyst bed II and the third catalyst bed III).
  • a fluid dispenser or the like can be provided in the partition by any means known in the art, thereby facilitating uniform introduction of the carrier fluid.
  • the carrier fluid may be pretreated by heat exchange (such as cooling) or pressurization, etc., prior to introduction of
  • the invention further relates to an olefin oxidation reaction system comprising at least a reaction feed unit, an olefin oxidation reaction unit and a reaction discharge separation unit.
  • the reaction feed unit and the reaction discharge separation unit can directly be applied to those conventionally known in the art for carrying out olefin oxidation reactions.
  • the reaction discharge separation unit separates the olefin oxide from the reaction output of the fixed bed reactor to obtain a tail gas stream.
  • the olefin oxidation reaction unit comprises one or more fixed bed reaction apparatuses of the present invention as described above as an olefin oxidation reactor.
  • the speed increasing device may further be a tail gas stream introduction branch pipe, and the tail gas stream introduction branch pipe introduces the tail gas stream or a part thereof (as a carrier fluid) into the first to A separation between any two or more pairs of adjacent catalyst beds in the nth catalyst bed.
  • the tail gas stream C is introduced between the different catalyst beds (e.g., between the first catalyst bed I and the second catalyst bed II) and the second catalyst bed layer II by introducing the branch streams C1 to C4 through the tail gas stream. The separation from the third catalyst bed III).
  • a fluid dispenser or the like can be provided in the partition by any means known in the art, thereby facilitating uniform introduction of the carrier fluid.
  • the carrier fluid may be pretreated by heat exchange (such as cooling) or pressurization, etc., prior to introduction of the separator, as desired.
  • one or more of the introduction branch pipes C1 to C4 may also be a solvent introduction branch pipe, an inert gas introduction branch pipe, a reaction discharge introduction branch pipe or any combination thereof, thereby simultaneously or additionally using a solvent or an inert gas. Or the reaction discharge or a combination thereof is introduced into the partition.
  • the reagents used were all commercially available analytically pure reagents, the pressure was gauge pressure, and the titanium silica molecular sieves used were all fresh titanium silicalite.
  • the hollow titanium silicon molecular sieves used in the following examples and comparative examples were prepared according to the method disclosed in Chinese Patent No. CN1132699C, and the titanium oxide content thereof was 2.5% by weight; the titanium silicon molecular sieve TS-1 used was according to the Journal of Natural Gas Chemistry. 2001, 10(4): 295-307, page 296, lines 9-24, prepared by the method, having a titanium oxide content of 2.5% by weight; the Ti-MCM-41 titanium silica molecular sieve used is according to Corma et al.
  • Oxidant conversion rate (moles of oxidant consumed by reaction / number of moles of oxidant added) ⁇ 100%;
  • Effective oxidant utilization rate (moles of epoxide formed by reaction / moles of oxidant consumed by reaction) ⁇ 100%;
  • Epoxide selectivity (moles of epoxide formed by reaction / number of moles of olefin consumed by reaction) ⁇ 100%;
  • Methyl formate selectivity (moles of methyl formate formed / moles of olefin consumed by reaction) ⁇ 1000000;
  • Acetone selectivity (moles of acetone produced by the reaction / moles of olefin consumed by the reaction) ⁇ 1000000.
  • the molded hollow titanium silicon molecular sieve (having a volume average particle diameter of 500 ⁇ m and a density of 0.69 g/cm 3 ) contains a hollow titanium silicon molecular sieve and silicon oxide as an oxidizing agent to form a total amount of hollow titanium silicon molecular sieves.
  • the content of the hollow titanium silicon molecular sieve is 75% by weight, and the content of silicon oxide is 25% by weight;
  • the formed titanium silicon molecular sieve TS-1 (having a volume average particle diameter of 500 ⁇ m and a density of 0.75 g/cm 3 ) contains titanium silicon molecular sieve TS-1 and silicon oxide as a binder to form a total amount of titanium silicon molecular sieve TS-1.
  • the content of the titanium silicon molecular sieve TS-1 is 75% by weight, and the content of silicon oxide is 25% by weight;
  • the formed titanium silicon molecular sieve Ti-MCM-41 (having a volume average particle diameter of 500 ⁇ m and a density of 0.63 g/cm 3 ) contains titanium silicon molecular sieve Ti-MCM-41 and silicon oxide as a binder to form a titanium silicon molecular sieve Ti-
  • the total amount of MCM-41 is based on the content of titanium silicalite Ti-MCM-41 is 75% by weight, and the content of silicon oxide is 25% by weight;
  • the formed titanium silicon molecular sieve Ti-Beta (volume average particle diameter of 500 ⁇ m, density of 0.74 g/cm 3 ) contains titanium silicon molecular sieve Ti-Beta and silicon oxide as a binder to form a total amount of titanium silicon molecular sieve Ti-Beta
  • the titanium silicalite has a Ti-Beta content of 75% by weight and a silica content of 25% by weight.
  • the reaction is carried out in two micro-fixed-bed reactors connected in series, wherein each reactor is filled with an equal-diameter catalyst bed having a circular cross section, based on the flow direction of the liquid material, first upstream
  • each reactor is filled with an equal-diameter catalyst bed having a circular cross section, based on the flow direction of the liquid material, first upstream
  • the ratio of the inner diameter of the first catalyst bed in the reactor to the inner diameter of the second catalyst bed in the second reactor downstream is 2:1
  • the first catalyst bed is filled with a hollow titanium silicon molecular sieve
  • the second catalyst bed was packed with a titanium silicon molecular sieve TS-1, and the weight ratio of the hollow titanium silicon molecular sieve to the titanium silicon molecular sieve TS-1 was 2:1.
  • Propylene, hydrogen peroxide as an oxidizing agent (provided as 30% by weight of hydrogen peroxide) and methanol as a solvent are fed from the bottom of the first reactor through the first catalyst bed to form a hollow formed therein
  • the titanium silica molecular sieve is contacted; the liquid mixture output from the first reactor is then continuously passed to the second reactor through the second catalyst bed to contact the shaped titanium silicalite TS-1 packed therein.
  • the molar ratio of propylene to oxidant hydrogen peroxide is 4:1
  • the weight ratio of solvent methanol to propylene is 10:1
  • the temperature in the first catalyst bed and the second catalyst bed is controlled to 50 ° C, respectively.
  • the pressure in one reactor and the second reactor is 2.8 MPa, respectively; the weight space velocity of propylene is 2 h -1 based on the total amount of titanium silicalite in the first catalyst bed and the second catalyst bed. .
  • the olefin was oxidized in the same manner as in Example 1, except that the formed titanium silicalite TS-1 in the second catalyst bed was replaced with an equal amount of formed hollow titanium silicalite.
  • the olefin was oxidized in the same manner as in Example 1, except that the formed hollow titanium silicon molecular sieve in the first catalyst bed was replaced with an equivalent amount of the shaped titanium silica molecular sieve TS-1.
  • the olefin was oxidized in the same manner as in Example 1, except that the formed titanium silicalite TS-1 in the second catalyst bed was replaced with an equal amount of the formed titanium silica molecular sieve Ti-MCM-41.
  • the olefin was oxidized in the same manner as in Example 4 except that the formed hollow titanium silicon molecular sieve in the first catalyst bed was replaced with an equivalent amount of the shaped titanium silica molecular sieve TS-1.
  • the olefin was oxidized in the same manner as in Example 1, except that the titanium silicalite molecular sieve TS was filled in the first catalyst bed under the conditions of the molding titanium silicon molecular sieve TS-1 and the formed hollow titanium silicon molecular sieve loading. -1, filling a hollow titanium silicalite molecular sieve in a second catalyst bed.
  • the olefin was oxidized in the same manner as in Example 1, except that the shaped titanium silicalite TS-1 in the second catalyst bed in the second reactor was replaced with an equal amount of the shaped titanium silica molecular sieve Ti-Beta.
  • the olefin was oxidized in the same manner as in Example 1, except that the reaction temperature of the catalyst in the first catalyst bed and the second catalyst bed was adjusted so that the reaction temperature of the first catalyst bed was 50 ° C, and the second catalyst bed The reaction temperature of the layer was 35 °C.
  • the olefin was oxidized in the same manner as in Example 1, except that the reaction temperature of the catalyst in the first catalyst bed and the second catalyst bed was adjusted so that the reaction temperature of the first catalyst bed was 35 ° C, and the second catalyst bed The reaction temperature of the layer was 50 °C.
  • the olefin was oxidized in the same manner as in Example 1, except that the reaction temperature of the catalyst in the first catalyst bed and the second catalyst bed was adjusted so that the reaction temperature of the first catalyst bed was 50 ° C, and the second catalyst bed The reaction temperature of the layer was 65 °C.
  • the olefin was oxidized in the same manner as in Example 3 except that the inner diameter of the second catalyst bed was increased under the conditions of the type of the catalyst packed in the first catalyst bed and the second catalyst bed and the loading amount being constant.
  • the ratio of the inner diameter of the first catalyst bed to the inner diameter of the second catalyst bed is 1:1.
  • the results when the reaction time was 2 hours and 360 hours are listed in Table 1.
  • the olefin was oxidized in the same manner as in Example 3 except that the inner diameter of the second catalyst bed was increased under the conditions of the type of the catalyst packed in the first catalyst bed and the second catalyst bed and the loading amount being constant.
  • the ratio of the inner diameter of the first catalyst bed to the inner diameter of the second catalyst bed is 1:2.
  • the results when the reaction time was 2 hours and 300 hours are listed in Table 1.
  • Comparing Example 3 with Comparative Examples 1 and 2 it can be seen that the use of the present invention is
  • the method of oxidizing olefin can effectively extend the single-pass service life of the titanium silicon molecular sieve as a catalyst, reduce the regeneration frequency of the catalyst, thereby improving the operation efficiency of the device and reducing the operation cost.
  • Example 1 Comparing Example 1 with Examples 8 and 9, it can be seen that the temperature of the first catalyst bed is higher than the temperature of the second catalyst bed by 5-30 ° C, and further improved epoxide selectivity can be obtained, and Further extend the single-pass life of the catalyst.
  • the molded hollow titanium silicon molecular sieve (volume average particle diameter of 400 ⁇ m, density: 0.71 g/cm 3 ) used in the present embodiment contains hollow titanium silicon molecular sieve and silicon oxide as a binder to form a total amount of hollow titanium silicon molecular sieve.
  • the content of the hollow titanium silicon molecular sieve is 85% by weight, and the content of silicon oxide is 15% by weight;
  • the formed titanium silicon molecular sieve TS-1 (having a volume average particle diameter of 400 ⁇ m and a density of 0.77 g/cm 3 ) containing titanium silicon molecular sieve TS-1 and silicon oxide as a binder to form titanium silicon molecular sieve TS-1 Based on the total amount, the content of the titanium silicon molecular sieve TS-1 was 85% by weight, and the content of silicon oxide was 15% by weight.
  • the reaction is carried out in two micro-fixed-bed reactors connected in series, wherein each reactor is filled with an equal-diameter catalyst bed having a circular cross section, based on the flow direction of the liquid material, first upstream
  • each reactor is filled with an equal-diameter catalyst bed having a circular cross section, based on the flow direction of the liquid material, first upstream
  • the ratio of the average cross-sectional area of the first catalyst bed in the reactor to the average cross-sectional area of the second catalyst bed in the second reactor downstream is 5:1, and the first catalyst bed is packed
  • the hollow titanium silicon molecular sieve is formed, and the second catalyst bed is filled with titanium silicon molecular sieve TS-1, and the weight ratio of the hollow titanium silicon molecular sieve to the titanium silicon molecular sieve TS-1 is 10:1.
  • Propylene, hydrogen peroxide as an oxidizing agent (provided as 40% by weight of hydrogen peroxide) and acetonitrile as a solvent are fed from the bottom of the first reactor through the first catalyst bed to form a hollow formed therein
  • the titanium silica molecular sieve is contacted; the liquid mixture output from the first reactor is then continuously passed to the second reactor through the second catalyst bed to contact the shaped titanium silicon molecular sieve TS-1 packed therein.
  • the molar ratio of propylene to oxidant hydrogen peroxide is 2:1
  • the weight ratio of solvent acetonitrile to propylene is 10:1
  • the temperature in the first catalyst bed and the second catalyst bed is controlled to 40 ° C, respectively.
  • the pressure in one reactor and the second reactor is 2.0 MPa, respectively; based on the total amount of titanium silicalite in the first catalyst bed and the second catalyst bed, the weight space velocity of propylene is 6 h -1 .
  • the olefin was oxidized in the same manner as in Example 11 except that the inner diameter of the second catalyst bed was increased under the conditions in which the loading amount of the catalyst in the first catalyst bed and the second catalyst bed was constant, so that the first catalyst
  • the ratio of the average cross-sectional area of the bed to the average cross-sectional area of the second catalyst bed was 2:1.
  • the olefin was oxidized in the same manner as in Example 11 except that the inner diameter of the first catalyst bed was increased under the conditions in which the loading amount of the catalyst in the first catalyst bed and the second catalyst bed was constant, so that the first catalyst The ratio of the average cross-sectional area of the bed to the average cross-sectional area of the second catalyst bed was 15:1.
  • the olefin was oxidized in the same manner as in Example 11 except that the inner diameter of the second catalyst bed was increased under the conditions in which the loading amount of the catalyst in the first catalyst bed and the second catalyst bed was constant, so that the first catalyst
  • the ratio of the average cross-sectional area of the bed to the average cross-sectional area of the second catalyst bed was 3:2.
  • the olefin was oxidized in the same manner as in Example 11 except that the reaction temperature of the catalyst in the first catalyst bed and the second catalyst bed was adjusted so that the reaction temperature of the first catalyst bed was 40 ° C, and the second catalyst bed The reaction temperature of the layer was 30 °C.
  • the olefin was oxidized in the same manner as in Example 11 except that the reaction temperature of the catalyst in the first catalyst bed and the second catalyst bed was adjusted so that the reaction temperature of the first catalyst bed was 30 ° C, and the second catalyst bed The reaction temperature of the layer was 40 °C.
  • the olefin was oxidized in the same manner as in Example 11 except that the reaction temperature of the catalyst in the first catalyst bed and the second catalyst bed was adjusted so that the reaction temperature of the first catalyst bed was 40 ° C, and the second catalyst bed The reaction temperature of the layer was 60 °C.
  • the shaped hollow titanium silicon molecular sieve (volume average particle diameter of 800 ⁇ m, density: 0.73 g/cm 3 ) used in the present embodiment contains hollow titanium silicon molecular sieve and silica as a binder to form a total amount of hollow titanium silicon molecular sieves.
  • the content of the hollow titanium silicon molecular sieve is 80% by weight, and the content of silicon oxide is 20% by weight;
  • the formed titanium silicon molecular sieve TS-1 (having a volume average particle diameter of 800 ⁇ m and a density of 0.78 g/cm 3 ) containing titanium silicon molecular sieve TS-1 and silicon oxide as a binder to form titanium silicon molecular sieve TS-1 Based on the total amount, the content of the titanium silicon molecular sieve TS-1 was 80% by weight, and the content of silicon oxide was 20% by weight.
  • the reaction is carried out in two micro-fixed-bed reactors connected in series, wherein each reactor is filled with an equal-diameter catalyst bed having a circular cross section, based on the flow direction of the liquid material, first upstream
  • the ratio of the average cross-sectional area of the first catalyst bed in the reactor to the average cross-sectional area of the second catalyst bed in the second reactor downstream is 4:1, and the first catalyst bed is packed.
  • the hollow titanium silicon molecular sieve is formed, and the second catalyst bed is filled with titanium silicon molecular sieve TS-1, and the weight ratio of the hollow titanium silicon molecular sieve to the titanium silicon molecular sieve TS-1 is 6:1.
  • N-butene, t-butyl hydroperoxide as oxidant and tert-butanol as solvent are fed from the bottom of the first reactor through the first catalyst bed to contact the shaped hollow titanium silicon molecular sieve packed therein
  • the liquid mixture output from the first reactor is then continuously passed to the second reactor through a second catalyst bed to contact the shaped titanium silicalite TS-1 packed therein.
  • the molar ratio of n-butene to oxidant t-butyl hydroperoxide is 1:1
  • the weight ratio of solvent t-butanol to n-butene is 15:1
  • the temperature is controlled to 40 ° C, respectively
  • the pressure in the first reactor and the second reactor is 2.0 MPa, respectively; based on the total amount of titanium silicalite in the first catalyst bed and the second catalyst bed,
  • the weight of propylene is 10h -1 .
  • the reaction is carried out in three micro-fixed-bed reactors connected in series, wherein each reactor is filled with an equal-diameter catalyst bed having a circular cross section, based on the flow direction of the liquid material, first upstream
  • the ratio of the average cross-sectional area of the bed was 4:2:1, and the catalyst bed was filled with a hollow titanium silicon molecular sieve.
  • Propylene, hydrogen peroxide as an oxidizing agent (provided as 30% by weight of hydrogen peroxide) and methanol as a solvent are fed from the bottom of the first reactor through the first catalyst bed to form a hollow formed therein Titanium silicon molecular sieve contact; the liquid mixture output from the first reactor is then continuously passed to the second reactor, through the second catalyst bed to contact the shaped hollow titanium silicon molecular sieve packed therein; from the second reactor The output liquid mixture is then continuously passed to a third reactor through a third catalyst bed to contact the shaped hollow titanium silica molecular sieve loaded therein.
  • the mass hourly velocity of propylene is 2h -1 .
  • the olefin oxidation reaction was carried out in accordance with the method of Example 19 except that the reactor was three equal-diameter reactors in series, and the average cross-sectional area of the catalyst bed in each reactor was the same as the average cross-section of the first catalyst bed. The cross-sectional areas were the same, and the ratio of the catalyst loading amount of each of the reactors was 1:1:1.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 2, except that the reactor was a reactor having two unequal reaction zones (i.e., two unequal reaction zones using one reactor were used instead of the one used in Example 2).
  • Two unequal diameter reactors the reactor having two unequal reaction zones is specifically as shown in Fig. 7, the material first contacts the reaction zone of the large inner diameter), wherein the two unequal reaction zones in the reactor are both
  • the ratio of the average cross-sectional area is 2:1, and the loading amount of the catalyst in the two unequal-reaction reaction zones is 2:1.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 20 except that the reactor was a reactor having the same total length as the reactor used in the process of Example 20 and having two equal-diameter reaction zones, wherein the reactors were of two equal diameters.
  • the cross-sectional area of the reaction zone is the same as the cross-sectional area of the first reaction zone, and the loading of the catalyst in the two equal-path reaction zones is 1:1.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 20, except that the reactor was a reactor having three unequal reaction zones in which the reactor was gradually reduced (the material first contacted the reaction zone of the largest inner diameter), wherein three reactors were in the reactor.
  • the ratio of the average cross-sectional area of the three unequal reaction zones is 4:2:1, and the loading amount of the catalyst in the three unequal reaction zones is 4:2:1.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 21, except that the reactor was a reactor having the same total length as the reactor used in the method of Example 21 and having three equal-diameter reaction zones, wherein three equal diameters in the reactor
  • the cross-sectional area of the reaction zone was the same as the average cross-sectional area of the first reaction zone in the reactor used in Example 21, and the loading amount of the catalyst in the three equal-diameter reaction zones of the reactor was 1:1:1.
  • the olefin oxidation reaction was carried out according to the method of Comparative Example 4, respectively, except that the inner members of the longitudinal cross-sectional shape shown in FIGS. 1-6 were respectively placed in the second equal-diameter reaction zone of the reactor to constitute FIGS. 1-6.
  • the two unequal reaction zones are shown such that the ratio of the average cross-sectional area of the two reaction zones is 2:1, and the loading of the catalysts in the two reaction zones is 2:1, respectively.
  • the olefin oxidation reaction was carried out according to the method of Comparative Example 5, respectively, except that the internal members of the longitudinal cross-sectional shape shown in Figures 1-6 were placed in the third equal-diameter reaction zone of the reactor to constitute Figures 1-6, respectively.
  • the three unequal reaction zones are shown such that the ratio of the average cross-sectional areas of the three reaction zones is 2:2:1, and the loading of the catalysts in the three reaction zones is 2:2:1, respectively.
  • the olefin oxidation reaction was carried out in the same manner as in Example 22-27, except that the catalyst was the same as that used in Example 3, that is, the formed titanium silicon molecular sieve TS-1.
  • the olefin oxidation reaction was carried out in accordance with the method of Comparative Example 4, except that the catalyst was the same as that used in Example 3, that is, the formed titanium silicon molecular sieve TS-1.
  • the olefin oxidation reaction was carried out in the same manner as in Example 28-33, except that the catalyst was the same as that used in Example 3, that is, the formed titanium silicon molecular sieve TS-1.
  • the olefin oxidation reaction was carried out in the same manner as in Comparative Example 5, except that the catalyst was the same as that used in Example 3, that is, the formed titanium silicon molecular sieve TS-1.
  • the olefin oxidation reaction was carried out in accordance with the method of Comparative Example 4, in which a part (mass fraction of 20%) of the reaction discharge was uniformly returned from the two reaction discharge introduction branches to the two equal-diameter reaction zones of the reactor in the manner of FIG. between.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 20, in which a part (mass fraction of 20%) of the reaction discharge was uniformly returned from the two reaction discharge introduction branches to the two unequal reaction zones of the reactor in the manner of FIG. between.
  • the olefin oxidation reaction was carried out according to the method of Comparative Example 4, in which a part (mass fraction of 80%) of the reaction discharge was uniformly returned from the two reaction discharge introduction branches to the two equal-diameter reactors in the manner of FIG.
  • the two reaction zones of 8 correspond to two equal-diameter reactors, the same below.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 20, in which a part (mass fraction of 80%) of the reaction discharge was uniformly returned from the two reaction discharge introduction branches to the two unequal reactors in the manner shown in Fig. 8.
  • the olefin oxidation reaction was carried out in accordance with the method of Comparative Example 3, in which a part (mass fraction of 20%) of the reaction discharge was uniformly returned from the four reaction discharge introduction branches to the three equal-diameter reactors in the manner shown in Fig. 8.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 19, in which a part (mass fraction of 20%) of the reaction discharge was uniformly returned from the four reaction discharge introduction branches to the three unequal reactors with reference to Fig. 8 .
  • the olefin oxidation reaction was carried out in accordance with the method of Comparative Example 4, in which a part (mass fraction of 20%) of solvent methanol was uniformly introduced into the branch pipe between the two equal-diameter reaction zones of the reactor in the manner of FIG.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 20, in which a part (mass fraction of 20%) of solvent methanol was introduced into the branch pipe uniformly between the two unequal reaction zones of the reactor in the manner of FIG. .
  • the olefin oxidation reaction was carried out in accordance with the method of Comparative Example 4, in which a part (mass fraction of 80%) of solvent methanol was introduced into the branch pipe uniformly between the two equal-diameter reactors in the manner of FIG.
  • the olefin oxidation reaction was carried out in the same manner as in Example 20, in which a part (mass fraction: 80%) of solvent methanol was uniformly introduced into the branch pipe between the two unequal-reactors in the manner of FIG.
  • the olefin oxidation reaction was carried out according to the method of Comparative Example 4, wherein nitrogen (as a carrier fluid, the amount of introduction was 10% by mass of the total reaction mass) was uniformly introduced into the reactor by two inert gas introduction branches in the manner of FIG. Between two equal diameter reaction zones.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 20, wherein nitrogen (as a carrier fluid, the amount of introduction was 10% by mass of the total reaction mass) was uniformly introduced into the reactor by two inert gas introduction branches in the manner of FIG. Between two unequal reaction zones.
  • the olefin oxidation reaction was carried out according to the method of Comparative Example 4, wherein nitrogen (as a carrier fluid, the amount of introduction was 50% by mass of the total reaction mass) was uniformly introduced into the branch pipe by two inert gases in the manner of FIG. Between the reactors.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 20, in which nitrogen (as a carrier fluid, the amount of introduction was 50% by mass of the total reaction mass) was introduced into the branch pipe by two inert gases in a manner as shown in FIG. Between equal diameter reactors.
  • the olefin oxidation reaction was carried out according to the method of Comparative Example 3, wherein nitrogen (as a carrier fluid, the amount of introduction was 20% by mass of the total reaction mass) was introduced into the branch pipe uniformly by three inert gases to three, etc., with reference to FIG. Between the reactors.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 19, wherein nitrogen (as a carrier fluid, the amount of introduction was 20% by mass of the total reaction mass) was introduced into the branch pipe uniformly by four inert gases to three without reference to FIG. Between equal diameter reactors.
  • the olefin oxidation reaction was carried out in accordance with the method of Comparative Example 4, in which a part (mass fraction of 20%) of the solvent stream obtained by the separation of the reaction product was uniformly introduced into the reactor by two solvent introduction branches in the manner of FIG. Between the equal path reaction zones.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 20, in which a part (mass fraction of 20%) of the solvent stream obtained after separation of the reaction material was uniformly introduced into the reactor by two solvent introduction branches in the manner of FIG. Between the unequal reaction zones.
  • the olefin oxidation reaction was carried out in accordance with the method of Comparative Example 4, in which a part (mass fraction of 80%) of the solvent stream obtained after the separation of the reaction product was separated from the two solvent introduction branches into two equal-diameter reactions in the manner of FIG. Between the devices.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 20, in which a part (mass fraction of 80%) of the solvent stream obtained by the reaction discharge was separated by two according to the manner of FIG.
  • the solvent introduction branch is evenly introduced between the two unequal reactors.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 2, except that the average cross-sectional area of the first catalyst bed in the first reactor upstream and the second catalyst bed in the second reactor downstream
  • the ratio of the average cross-sectional area is 2.5:1
  • the ratio of the catalyst loading of each catalyst bed is 2.5:1.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 2, except that the average cross-sectional area of the first catalyst bed in the first reactor upstream and the second catalyst bed in the second reactor downstream
  • the ratio of the average cross-sectional area is 8:1
  • the ratio of the catalyst loading amount of each catalyst bed is 8:1.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 2, except that the average cross-sectional area of the first catalyst bed in the first reactor upstream and the second catalyst bed in the second reactor downstream
  • the ratio of the average cross-sectional area is 12:1
  • the ratio of the catalyst loading amount of each catalyst bed is 12:1.
  • the olefin oxidation reaction was carried out in accordance with the method of Example 2, except that the average cross-sectional area of the first catalyst bed in the first reactor upstream and the second catalyst bed in the second reactor downstream
  • the ratio of the average cross-sectional area is 20:1
  • the ratio of the catalyst loading amount of each catalyst bed is 20:1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Compounds (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

本发明公开了一种烯烃氧化方法,包括在烯烃氧化反应条件下,使反应进料依次流过第1至第n催化剂床层的步骤,其中设流过所述第1至第n催化剂床层的各反应物料的表观速度分别为v1至vn,m取区间[2,n]内的任意整数时,关系式vm-1<vm成立。本发明的方法能够延长催化剂的使用寿命,特别是单程使用寿命,同时长期抑制副反应的发生。本发明还公开了一种烯烃氧化用固定床反应装置和系统。

Description

一种烯烃氧化方法、反应装置和系统 技术领域
本发明涉及一种烯烃氧化方法,特别是一种通过烯烃催化氧化来制造环氧化物的方法。本发明还涉及一种烯烃氧化用固定床反应装置和系统。
背景技术
环氧化物,比如环氧丙烷,是一类重要的含氧有机化合物。作为环氧丙烷的生产方法,在催化剂(尤其是钛硅分子筛)存在下,通过丙烯氧化来制造环氧丙烷的方法已经推向工业化。
但是,这类烯烃催化氧化方法普遍存在的一个问题是,反应装置运转一段时间后,催化剂对目标氧化反应的活性和选择性均会降低,即催化剂在运转过程中会出现失活现象。目前针对此问题的主要解决方式是将失活的催化剂进行再生。但是,这种再生会增加装置的运行成本并降低装置的运行效率。并且,经再生的催化剂重新投入运行时,催化剂的活性和选择性波动较大,需要很长时间才能稳定;同时,还需要结合提高反应温度等操作来实现反应的平稳运行,但这样会进一步加速催化剂失活并降低其选择性。
另外,这类烯烃催化氧化方法还普遍存在的另一个问题是,反应装置运转一段时间后,催化剂对副反应的选择性会提高,导致反应出料中副产物的比例增加,由此加剧后续分离纯化的难度。
因此,延长催化剂的使用寿命,特别是单程使用寿命,同时长期抑制副反应的发生,仍然是这类烯烃催化氧化方法亟需解决的技术问题。
发明内容
本发明的目的在于提供一种烯烃氧化方法,该方法能够解决现有技术烯烃催化氧化方法中存在的前述问题,尤其是能够延长催化剂的使用寿命,特别是单程使用寿命,同时长期抑制副反应的发生。
具体而言,本发明涉及以下方面的内容。
1.一种烯烃氧化方法,包括在烯烃氧化反应条件下,使含有烯烃(优选选自C3-6α-烯烃中的至少一种,更优选选自丙烯和丁烯中的至 少一种,进一步优选丙烯)和至少一种氧化剂(优选选自过氧化氢、有机过氧化物和过酸中的至少一种,更优选过氧化氢)的反应进料依次流过第1至第n(n为2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20,优选2、3、4、5、6、7、8、9或10,更优选2、3、4或5)催化剂床层的步骤,其特征在于,设流过所述第1至第n催化剂床层的各反应物料的表观速度分别为v1至vn,m取区间[2,n]内的任意整数时,以下关系式成立,
vm-1<vm,优选vm/vm-1=1.5-15,更优选vm/vm-1=2-10,进一步优选vm/vm-1=2-5。
2.根据前述任一方面所述的方法,其中m取区间[2,n]内的任意整数时,以下关系式成立,
Am-1/Am>1,优选Am-1/Am≥1.5,更优选Am-1/Am≥2,优选Am-1/Am≤15,更优选Am-1/Am≤10,进一步优选Am-1/Am≤5,
其中,Am-1为第m-1催化剂床层的平均横截面积,Am为第m催化剂床层的平均横截面积。
3.根据前述任一方面所述的方法,获得含有烯烃氧化物的反应出料,并且所述方法还包括从所述反应出料中分离出所述烯烃氧化物,获得尾气物流的步骤。
4.根据前述任一方面所述的方法,其中在所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间存在分隔处,并且向所述分隔处引入载流体,并且所述载流体选自所述反应出料、溶剂、惰性气体和所述尾气物流中的至少一种,更优选选自所述反应出料和所述惰性气体中的至少一种。
5.根据前述任一方面所述的方法,其中所述第1至第n催化剂床层各自装填有至少一种钛硅分子筛。
6.根据前述任一方面所述的方法,其中所述反应进料中所述烯烃与所述至少一种氧化剂的摩尔比为0.1-10∶1,优选0.2-5∶1,以所述第1至第n催化剂床层装填的催化剂的总量为基准,所述烯烃的重时空速为0.1-20h-1,优选0.2-10h-1,并且所述烯烃氧化反应条件包括:反应压力(以表压计)为0-5MPa,优选0.1-3.5MPa,和反应温度为0-120℃,优选20-80℃(比如30-60℃)。
7.根据前述任一方面所述的方法,其中m取区间[2,n]内的任意整 数时,以下关系式成立,
Tm-1-Tm=5-30,优选Tm-1-Tm=10-20,
其中,Tm-1为第m-1催化剂床层的反应温度(℃),Tm为第m催化剂床层的反应温度(℃)。
8.一种固定床反应装置,包括入口(1)、反应段(3)和出口(2),在所述反应段(3)内设置第1至第n(n为2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20,优选2或3)催化剂床层,反应进料从所述入口(1)进入所述反应段(3),依次流过所述第1至第n催化剂床层,然后进入所述出口(2)而成为反应出料,其特征在于,所述固定床反应装置还包括提速装置,设流过所述第1至第n催化剂床层的各反应物料的表观速度分别为v1至vn,m取区间[2,n]内的任意整数时,所述提速装置使得以下关系式成立,
vm-1<vm,优选vm/vm-1=1.5-15,更优选vm/vm-1=2-10,进一步优选vm/vm-1=2-5。
9.根据前述任一方面所述的固定床反应装置,其中所述提速装置是所述反应段(3)的变径段和/或设置在所述反应段(3)内部的构件,所述变径段或所述构件能够使得m取区间[2,n]内的任意整数时,以下关系式成立,
Am-1/Am>1,优选Am-1/Am≥1.5,更优选Am-1/Am≥2,优选Am-1/Am≤15,更优选Am-1/Am≤10,进一步优选Am-1/Am≤5,
其中,Am-1为第m-1催化剂床层的平均横截面积,Am为第m催化剂床层的平均横截面积。
10.根据前述任一方面所述的固定床反应装置,其中所述提速装置是反应出料引入支管、溶剂引入支管、惰性气体引入支管或其组合,其中所述反应出料引入支管将所述反应出料的一部分引入所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间的分隔处,所述溶剂引入支管将溶剂引入所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间的分隔处,所述惰性气体引入支管将惰性气体引入所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间的分隔处。
11.一种烯烃氧化反应系统,至少包括反应进料单元、烯烃氧化反应单元和反应出料分离单元,其中所述烯烃氧化反应单元包括一个或 多个根据前述任一方面所述的固定床反应装置。
12.根据前述任一方面所述的烯烃氧化反应系统,其中所述反应出料分离单元从所述固定床反应装置的所述反应出料中分离出烯烃氧化物而获得尾气物流,并且所述提速装置是尾气物流引入支管,所述尾气物流引入支管将所述尾气物流或其一部分引入所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间的分隔处。
技术效果
采用本发明的烯烃氧化方法,能够有效地延长催化剂的使用寿命,特别是单程使用寿命,降低催化剂的再生频率,在提高生产效率的同时,能够提高运行稳定性,延长催化剂的总使用寿命。
采用本发明的烯烃氧化方法,即使是长时间连续运行,也能够获得较为稳定的氧化剂转化率,较高的氧化剂有效利用率和目标氧化产物选择性。特别地,即使是长时间连续运行,目标氧化产物的选择性也能够维持较高的水平,而副产物的选择性则维持较低的水平,从而能够降低后续分离纯化的难度。
附图说明
图1至6示意性举例说明了反应器内构件的几种实施方式;图7示意性举例说明了反应器变径段的一种实施方式;图8示意性举例说明了反应出料引入支管的一种实施方式;图9示意性举例说明了尾气物流引入支管、溶剂引入支管或者惰性气体引入支管的一种实施方式。
在附图中,符号1代表入口,符号2代表出口,符号I代表第1催化剂床层,符号II代表第2催化剂床层,符号III代表第3催化剂床层,不同催化剂床层之间的空白区域代表分隔处,符号3代表反应段,符号A代表反应进料,符号B代表反应出料,符号B1至B4代表反应出料引入支管,符号C代表尾气物流、溶剂或惰性气体,符号C1至C4代表尾气物流引入支管、溶剂引入支管或者惰性气体引入支管,带箭头的虚线代表反应物料的流动方向,图1至6中处于第2催化剂床层II所在区域的实色填充部分代表反应器内构件,该内构件具有如各图所示形状的纵剖面。
为了简化说明起见,在本说明书和附图中,作为举例,反应物料的 流动方向是从上至下,反应段3设置一个,催化剂床层设置2个或3个,反应装置的入口和出口均分别设置一个,引入支管均设置4个,等等,但本发明并不限于此。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在本说明书的上下文中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此而形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合是明显不合理的。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,除非以重量为基准时不符合本领域技术人员的常规认识。
本说明书的上下文中,“至少一种”表示一种或多种(如两种以上)。
根据本发明,涉及一种烯烃氧化方法,包括在烯烃氧化反应条件下,使反应进料依次流过第1至第n催化剂床层的步骤。
根据本发明,n是2至50之间的整数,优选选自2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20,更优选选自2、3、4、5、6、7、8、9或10,更优选选自2、3、4或5,比如2。
根据本发明,设流过所述第1至第n催化剂床层的各反应物料的表 观速度分别为v1至vn,m取区间[2,n]内的任意整数时,关系式vm-1<vm成立。
在本发明的上下文中,所谓“m取区间[2,n]内的任意整数”,指的是m选择2至n之间的任意整数,即选择2、3、...、n中的任意一个整数;并且,当n=2时,m=2。
根据本发明,表述“反应进料依次流过第1至第n催化剂床层”指的是从第1催化剂床层至第n催化剂床层依次构成了所述反应进料的流动路线,但这并不意味着所述反应进料没有任何变化地流过第1至第n催化剂床层。实际上,自从进入第1催化剂床层开始,反应进料(比如就其组成或性状而言)会因为发生烯烃氧化反应等而发生变化,由此失去其作为反应原料的初始组成或性状。鉴于此,为了符合本领域技术人员对反应原料的常规理解,在本发明的上下文中,一般将流过各催化剂床层的反应进料称为反应物料。而且,在流过不同的催化剂床层时,该反应物料也会因为各种因素(比如因为发生反应或引入新物料比如载流体)而发生变化,导致流过不同催化剂床层的反应物料(比如就其组成或性状而言)一般也是不同的。本发明重点关注各反应物料在流过其相应催化剂床层时的表观速度。
根据本发明,所述反应进料或反应物料一般呈现为液体混合物或气液混合物的形式,但有时并不限于此。
本发明的上下文中,所述表观速度(单位是kg/(m2·s))指的是单位时间内通过某一催化剂床层全程的反应物料的质量流量(以kg/s计)与该催化剂床层某一横截面积(以m2计)的比值。比如,流过第1催化剂床层的反应物料的表观速度为v1,指的是单位时间内通过第1催化剂床层全程的反应物料的质量流量(以kg/s计)与该催化剂床层某一横截面积(以m2计)的比值。在此,从简化本发明描述的角度而言,所述“横截面积”一般指的是平均横截面积。而且,所谓“平均横截面积”,指的是所述催化剂床层的总催化剂装填体积(以m3计)与该催化剂床层沿反应物料流动方向的长度(以m计)的比值,这对于本领域技术人员而言是显然的。对于等径的催化剂床层,所述平均横截面积即为横截面积。另外,本发明对流过各催化剂床层的反应物料的表观速度(绝对值)没有特殊要求,可以直接适用本领域常规已知的那些,比如流过第1催化剂床层的反应物料的表观速度(绝对值)一 般可以在0.001-200kg/(m2·s)的范围内,但有时并不限于此。
根据本发明,从本发明技术效果更为优异的角度出发,优选vm/vm-1=1.5-15,更优选vm/vm-1=2-10,进一步优选vm/vm-1=2-5。比如,在m=2时,优选v2/v1=1.5-15,更优选v2/v1=2-10,进一步优选v2/v1=2-5。
根据本发明,所述第1至第n催化剂床层可以全部设置于同一个反应器中,构成该反应器的不同反应区域,也可以各自设置于n个反应器中,构成n个不同的反应器,或者按照任意组合的方式设置于两个或多个(最多为n-1个)反应器中,构成多反应区域与多反应器的组合。
根据本发明,所述第1至第n催化剂床层可以连续相连,由此构成一体式催化剂床层,也可以在其中任意两对或多对相邻的催化剂床层之间存在分隔处,由此构成多段式催化剂床层。所述分隔处可以是反应器的内部空间,此时可以根据需要在该内部空间中设置一个或多个非催化剂床层(比如由下文所述的非活性填料构成的床层)或内构件(比如流体分配器、催化剂床层支撑构件、热交换器等)等,由此对本发明的烯烃氧化反应进行更为灵活的调节。
根据本发明,所述第1至第n催化剂床层沿着所述反应进料的流动路线依次串联连接,构成上下游关系,其中第1催化剂床层位于最上游,第n催化剂床层位于最下游。虽然如此,其中一部分或全部的催化剂床层可以在空间上并排设置,只要确保所述反应进料先后流动经过其中即可。
根据本发明,所述第1至第n催化剂床层各自可以含有一个或多个催化剂床层。如果含有多个催化剂床层,所述多个催化剂床层之间可以为串联连接,也可以为并联连接,还可以为串联连接与并联连接的组合。例如,将所述多个催化剂床层分为多组时,每组内的催化剂床层可以为串联连接和/或并联连接,各组之间可以为串联连接和/或并联连接。
根据本发明,所述第1至第n催化剂床层各自可以是流化床、膨胀床、浆态床或固定床等本领域常规已知的催化剂床层形式,但从便于本发明烯烃氧化反应实施的角度出发,所述第1至第n催化剂床层均优选固定床。
根据本发明,在所述第1至第n催化剂床层中,各自装填有至少一种催化剂。
根据本发明,作为所述催化剂,比如可以举出本领域中已知适合用于催化烯烃氧化来制造环氧化物的各种催化剂,特别可以举出钛硅分子筛。
根据本发明,钛硅分子筛是钛原子取代晶格骨架中一部分硅原子的一类沸石的总称,可以用化学式xTiO2·SiO2表示。本发明对于钛硅分子筛中钛原子的含量没有特别限定,可以为本领域的常规选择。具体地,x可以为0.0001-0.05,优选为0.01-0.03,更优选为0.015-0.025。
根据本发明,所述钛硅分子筛可以为常见的具有各种拓扑结构的钛硅分子筛,例如:所述钛硅分子筛可以选自MFI结构的钛硅分子筛(如TS-1)、MEL结构的钛硅分子筛(如TS-2)、BEA结构的钛硅分子筛(如Ti-Beta)、MWW结构的钛硅分子筛(如Ti-MCM-22)、MOR结构的钛硅分子筛(如Ti-MOR)、TUN结构的钛硅分子筛(如Ti-TUN)、二维六方结构的钛硅分子筛(如Ti-MCM-41、Ti-SBA-15)和其它结构的钛硅分子筛(如Ti-ZSM-48)等。所述钛硅分子筛优选选自MFI结构的钛硅分子筛、MEL结构的钛硅分子筛、二维六方结构的钛硅分子筛和BEA结构的钛硅分子筛,更优选为MFI结构的钛硅分子筛。
根据本发明,优选地,所述钛硅分子筛为空心钛硅分子筛,这样能够获得进一步延长的催化剂单程使用寿命,同时还能获得更好的催化效果,获得更高的氧化剂转化率、产物选择性和氧化剂有效利用率。所述空心钛硅分子筛为MFI结构的钛硅分子筛,该钛硅分子筛的晶粒为空心结构,该空心结构的空腔部分的径向长度为5-300纳米,且该钛硅分子筛在25℃、P/P0=0.10、吸附时间为1小时的条件下测得的苯吸附量为至少70毫克/克,该钛硅分子筛的低温氮吸附的吸附等温线和脱附等温线之间存在滞后环。所述空心钛硅分子筛可以商购得到(例如商购自湖南建长石化股份有限公司的牌号为HTS的分子筛),也可以根据CN1132699C中公开的方法制备得到。
根据本发明,特别地,所述第1至第n催化剂床层各自装填有至少一种前述的钛硅分子筛。不同催化剂床层中装填的钛硅分子筛的种类可以为相同,也可以为不同。并且,每一个催化剂床层中也可以仅装填一种前述的钛硅分子筛,也可以按照任意需要的相对比例装填一种或多种前述的钛硅分子筛。
根据本发明,优选地,所述第1催化剂床层装填的钛硅分子筛为空 心钛硅分子筛,所述第n催化剂床层装填的钛硅分子筛为除空心钛硅分子筛外的钛硅分子筛,如选自其它MFI结构的钛硅分子筛(例如钛硅分子筛TS-1)、二维六方结构的钛硅分子筛(如钛硅分子筛Ti-MCM-41)和BEA结构的钛硅分子筛(如钛硅分子筛Ti-Beta)中的一种或两种以上,这样能够进一步延缓钛硅分子筛的失活速率。更优选地,所述第1催化剂床层装填的钛硅分子筛为空心钛硅分子筛,所述第n催化剂床层装填的钛硅分子筛为钛硅分子筛TS-1。这样不仅能够进一步延缓钛硅分子筛的失活速度,延长钛硅分子筛的单程使用寿命,而且还能进一步提高目标氧化产物选择性。
根据本发明,前述的钛硅分子筛可以为钛硅分子筛原粉,也可以为成型钛硅分子筛,优选为成型钛硅分子筛。成型钛硅分子筛一般含有作为活性成分的钛硅分子筛和作为粘结剂的载体,其中,钛硅分子筛的含量可以为常规选择。一般地,以所述成型钛硅分子筛的总量为基准,钛硅分子筛的含量可以为5-95重量%,优选为10-95重量%,更优选为70-90重量%;所述载体的含量可以为5-95重量%,优选为5-90重量%,更优选为10-30重量%。所述成型钛硅分子筛的载体可以为常规选择,如氧化铝和/或氧化硅。制备所述成型钛硅分子筛的方法是本领域所公知的,本文不再详述。所述成型钛硅分子筛的颗粒大小也没有特别限定,可以根据具体形状进行适当的选择。一般地,所述成型钛硅分子筛的平均粒径可以为4-10000微米,优选为5-5000微米,更优选为40-4000微米,如100-2000微米。所述平均粒径为体积平均粒径,可以采用激光粒度仪测定。
根据本发明,所述第1至第n催化剂床层中各自装填的催化剂(特别是钛硅分子筛)的量(质量)可以为相同,也可以为不同。根据一种实施方式,m取区间[2,n]内的任意整数时,Wm-1/Wm为0.1-20,Wm-1/Wm优选为0.5以上,更优选为1以上,进一步优选为2以上。在此,Wm-1为第m-1催化剂床层中装填的催化剂的量,Wm为第m催化剂床层中装填的催化剂的量。Wm-1/Wm优选为15以下,更优选为10以下。更进一步优选地,Wm-1/Wm为2-10∶1。在所述催化剂为成型钛硅分子筛时,Wm-1和Wm由所述成型钛硅分子筛中钛硅分子筛的含量确定。另外,每个催化剂床层中装填的催化剂的量可以根据需要(比如生产容量)合理确定,在此没有特别的限定。
根据本发明,催化剂(尤其是钛硅分子筛)的总量(即,所述第1至第n催化剂床层中装填的催化剂的总量)可以根据体系的具体处理量进行选择。一般地,所述催化剂的总量使得烯烃(作为所述反应进料的组分)的重时空速达到0.1-20h-1,优选0.2-10h-1
根据本发明,所述第1至第n催化剂床层中除了装填所述催化剂之外,还可以根据需要进一步装填非活性填料。可以在全部的所述第1至第n催化剂床层中均装填所述非活性填料,也可以在所述第1至第n催化剂床层中的一个或多个中装填所述非活性填料。在催化剂床层中装填非活性填料能够对催化剂床层中催化剂的量进行调整,从而对反应的速度进行调节。对于某一个催化剂床层而言,在装填非活性填料时,所述非活性填料的含量可以为5-95重量%,相对于该催化剂床层中装填的催化剂和非活性填料的总量而言。在此,所述非活性填料是指对烯烃氧化反应没有或基本没有催化活性的填料,在本领域已经常规已知,其具体实例可以包括但不限于:石英砂、陶瓷环和陶瓷碎片中的一种或多种。
根据本发明,所述反应进料(在本发明中特指即将进入第1催化剂床层之前的反应物料)含有烯烃和氧化剂作为组分。
根据本发明,所述氧化剂可以为常用的各种能够将烯烃氧化的物质。优选地,所述氧化剂为过氧化物。所述过氧化物是指分子结构中含有-O-O-键的化合物,可以选自过氧化氢、有机过氧化物和过酸。所述有机过氧化物是指过氧化氢分子中的一个或两个氢原子被有机基团取代而得到的物质。所述过酸是指分子结构中含有-O-O-键的有机含氧酸。所述过氧化物的具体实例可以包括但不限于:过氧化氢、叔丁基过氧化氢、过氧化异丙苯、环己基过氧化氢、过氧乙酸和过氧丙酸。优选地,所述氧化剂为过氧化氢,这样能够进一步降低分离成本。所述过氧化氢可以为本领域常用的以各种形式存在的过氧化氢。所述氧化剂可以单独一种使用,也可以两种或多种组合使用。
根据本发明,所述氧化剂的用量可以根据所述反应进料包含的烯烃的量进行选择。一般地,在所述反应进料中,所述烯烃与所述氧化剂的摩尔比可以为0.1-10∶1,优选为0.2-5∶1。
根据本发明,所述反应进料还任选进一步含有溶剂,以便更好地控制反应速度。本发明对于所述溶剂的种类没有特别限定,所述溶剂可 以为烯烃氧化反应中常用的各种溶剂。优选地,所述溶剂为水、C1-C10的醇、C3-C10的酮、C2-C10的腈和C1-C6的羧酸中的至少一种。优选地,所述溶剂为C1-C6的醇、C3-C8的酮和C2-C5的腈中的一种或两种以上。更优选地,所述溶剂为甲醇、乙醇、乙腈、正丙醇、异丙醇、叔丁醇、异丁醇和丙酮中的一种或两种以上。进一步优选地,所述溶剂为甲醇、乙腈、丙酮和叔丁醇中的一种或两种以上。这些溶剂可以单独一种使用,也可以两种或多种组合使用。
根据本发明,对于所述溶剂的用量没有特别限定,可以根据烯烃和氧化剂的量进行选择。一般地,在所述反应进料中,所述溶剂与所述烯烃的摩尔比可以为1-100∶1,优选为2-80∶1。
根据本发明,根据具体需要,所述反应进料中还任选进一步含有碱性物质,以将所述反应进料的pH值调节为处于6.5-9的范围之内。所述碱性物质的具体实例可以包括但不限于:氨(即,NH3)、胺、季铵碱和M1(OH)n(其中,M1为碱金属或碱土金属,如钠、钾、镁或钙;n为与M1的化合价相同的整数)。这些碱性物质可以单独一种使用,也可以两种或多种组合使用。
根据本发明,所述烯烃可以为C2-C16α-烯烃中的至少一种,优选C3-6α-烯烃中的至少一种。所述烯烃可以为单烯烃,也可以为多烯烃,优选为单烯烃。具体地,所述烯烃选自丙烯和丁烯中的至少一种,进一步优选丙烯。这些烯烃可以单独一种使用,也可以两种或多种组合使用。
根据本发明,所述的烯烃氧化反应条件可以根据预期的目标氧化产物进行选择。具体地,各催化剂床层中的烯烃氧化反应条件可以各自相同也可以不同(优选相同),并且包括:反应压力(以表压计)为0-5MPa,优选0.1-3.5MPa,和反应温度为0-120℃,优选20-80℃(比如30-60℃)。
根据本发明,从获得更为优异的技术效果的角度出发,优选从第1至第n催化剂床层,反应温度逐级降低。具体而言,m取区间[2,n]内的任意整数时,Tm-1比Tm高5-30℃,优选Tm-1比Tm高10-20℃,其中Tm-1为第m-1催化剂床层的反应温度(℃),Tm为第m催化剂床层的反应温度(℃)。比如,在n为2时,第2催化剂床层的反应温度比第1催化剂床层的反应温度优选低5-30℃,更优选低10-20℃。该温度的 降低可以通过使即将流入或流过第m催化剂床层的反应物料与换热介质进行换热的方式实现,也可以如下所述,通过向即将流入第m催化剂床层的反应物料中引入温度较低的载流体的方式来实现,或者两种方式的组合。
根据本发明,对所述催化剂床层的高度(或者该催化剂床层沿反应物料流动方向的长度)没有特别的限定,一般可以是H1∶H2∶...∶Hn=0.5-5∶0.5-5∶...∶0.5-5,或者H1∶H2∶...∶Hn=0.8-1.2∶0.8-1.2∶...∶0.8-1.2,或者H1∶H2∶...∶Hn=0.95-1.05∶0.95-1.05∶...∶0.95-1.05,或者各催化剂床层具有基本上相同的高度。在此,H1为第1催化剂床层的高度,H2为第2催化剂床层的高度,...,Hn为第n催化剂床层的高度。
根据本发明,通过在所述第1至第n催化剂床层中进行的所述烯烃氧化反应,获得含有目标烯烃氧化物(如环氧化物)的反应出料。在此,所述反应出料特指刚离开所述第n催化剂床层之后的反应物料。
根据本发明,所述烯烃氧化方法根据需要任选还包括从所述反应出料中分离出所述烯烃氧化物,获得尾气物流的步骤。在此,所述尾气物流可以不经过进一步的分离而呈现为由未反应的反应物、反应副产物和溶剂等构成的混合物,也可以经过进一步的分离而成为单独的未反应的反应物、反应副产物和溶剂等,这些均可以直接作为尾气物流使用而不需要任何的提纯处理。作为所述分离方法,可以直接适用本领域中为此目的而常规使用的那些,没有特别的限定。而且,所述分离出的未反应的反应物和溶剂等可以作为反应进料的一部分循环使用。
根据本发明,可以采用各种方式来满足本发明对流过所述第1至第n催化剂床层的各反应物料的表观速度提出的前述规定。
根据本发明,作为表观速度改变方式之一,比如可以通过逐级缩小所述第1至第n催化剂床层的横截面积的方式来逐级增加各反应物料的表观速度,以满足本发明的前述规定。比如在n为2时,通过使第2催化剂床层的横截面积小于第1催化剂床层的横截面积,由此相应增加第2催化剂床层中反应物料的表观速度,以满足本发明的前述规定。具体而言,m取区间[2,n]内的任意整数时,优选使得Am-1/Am>1,优选Am-1/Am≥1.5,更优选Am-1/Am≥2。或者,m取区间[2,n]内的任意 整数时,优选使得Am-1/Am≤15,更优选Am-1/Am≤10,进一步优选Am-1/Am≤5。在此,Am-1为第m-1催化剂床层的平均横截面积,Am为第m催化剂床层的平均横截面积。根据一个实施方式,所述第1至第n催化剂床层中的每一个催化剂床层的横截面均为圆形,此时所述平均横截面积即简化为平均直径。根据另一个实施方式,所述第1至第n催化剂床层中的每一个催化剂床层均为等径的圆柱状,此时所述平均横截面积即简化为直径。
根据本发明,作为表观速度改变方式之二,比如可以通过向所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间的分隔处(如前所述)引入载流体,增加流过处于该分隔处下游的全部催化剂床层的反应物料的总体流通量,由此相应增加各反应物料的表观速度,以满足本发明的前述规定。比如,在n为2时,通过向第1催化剂床层和第2催化剂床层之间的分隔处引入载流体,可以增加流过第2催化剂床层的反应物料的总体流通量,由此相应增加该第2催化剂床层中反应物料的表观速度,以满足本发明的前述规定。
根据所述表观速度改变方式之二,作为所述载流体,可以举出任何能够与从处于所述分隔处直接上游的催化剂床层中出来的反应物料混合并且对于处于所述分隔处下游的各催化剂床层中装填的催化剂基本上不产生不利影响(比如使其活性降低)的流体。作为所述载流体,比如可以举出前述的反应出料、前述的溶剂、惰性气体和前述的尾气物流。作为所述惰性气体,比如可以举出氮气、氩气、低级烷烃等,其中从使烯烃氧化反应更为平稳和降低成本的角度考虑,综合而言,优选氮气。作为所述载流体,更优选所述反应出料、所述惰性气体或其任意比例的组合。
根据本发明,所述载流体仅仅是为了增加流过处于该分隔处下游的全部催化剂床层(以下称为下游催化剂床层)的反应物料的总体流通量而引入的,并不旨在参与所述下游催化剂床层中发生的烯烃氧化反应,因此虽然所述载流体中可能碰巧含有能够参与在所述下游催化剂床层中发生的烯烃氧化反应的物质(比如未反应的反应物),但是该类物质并不是本发明向所述下游催化剂床层中有意引入的,而且本发明所取得的技术效果也与这类物质的引入没有关联性,因为本发明的这些技术效果可以通过引入所述溶剂或所述惰性气体(不含有这类物质) 而同样获得。因此,根据本发明,所述载流体并不被视为(任何形式的)反应进料或反应原料。
根据所述表观速度改变方式之二,对所述载流体的引入量和引入方式等没有特别的限定,只要其能够(1)与从处于所述分隔处直接上游的催化剂床层出来的反应物料,在进入处于所述分隔处直接下游的催化剂床层之前、过程中或之后,混合均匀,并且(2)使得各反应物料的表观速度满足本发明的前述规定。根据一个特别的实施方式,如前文所述,所述载流体的温度优选低于从处于所述分隔处直接上游的催化剂床层出来的反应物料(即,即将流入处于所述分隔处直接下游的催化剂床层的反应物料)的温度,由此有效降低下游催化剂床层的反应温度。
根据本发明,前述的两种表观速度改变方式可以单独使用,也可以根据需要组合使用。
根据本发明,还涉及一种固定床反应装置,其特别适合用于实施本发明前述的烯烃氧化方法,但其用途并不限于此。以下参照附图针对本发明的固定床反应装置进行具体的说明。为了简化说明书篇幅起见,前文针对烯烃氧化方法描述的所有事项和实施方式在此直接适用而不再赘述,下文中仅仅针对所述固定床反应装置特有的事项和实施方式进行具体的说明。
根据本发明,所述固定床反应装置包括入口1、反应段3和出口2,在所述反应段3内设置了第1至第n催化剂床层,反应进料A从所述入口1进入所述反应段3,依次流过所述第1至第n催化剂床层,然后进入所述出口2而成为反应出料B。其中,所述固定床反应装置还包括提速装置,设流过所述第1至第n催化剂床层的各反应物料的表观速度分别为v1至vn,m取区间[2,n]内的任意整数时,所述提速装置使得关系式vm-1<vm成立。在此,各符号和表述的含义同前文。
根据本发明,如前所述,所述第1至第n催化剂床层可以全部设置于同一个反应器中,构成该反应器的不同反应区域,此时所述反应段3对应于该反应器的全部反应区域;也可以各自设置于n个反应器中,构成n个不同的反应器,此时所述反应段3对应于所述n个反应器;或者按照任意组合的方式设置于两个或多个反应器中,构成多反应区域与多反应器的组合,此时所述反应段3对应于所述组合。在这些情 况下,所述入口1和所述出口2分别对应于所述固定床反应装置的初始入口和最终出口。
根据本发明,所述提速装置用以使流过所述第1至第n催化剂床层的各反应物料的表观速度逐级增大,以便满足本发明的前述规定。
根据本发明,作为所述提速装置,比如可以举出所述反应段3的变径段和/或设置在所述反应段3内部的构件,其中所述变径段或所述构件能够使得m取区间[2,n]内的任意整数时,关系式Am-1/Am>1成立。在此,各符号和表述的含义同前文。
根据本发明,作为所述反应段3内部的构件(也称为反应器内构件),比如可以举出设置在同一个反应器的不同反应区域中或者分别设置在不同的反应器内部,用以降低该反应区域或反应器的原始平均横截面积(由此相应降低在该反应区域或反应器中设置的催化剂床层的平均横截面积)的各种构件。作为所述反应器内构件,比如可以参考图1至图6。在图1中,反应器内构件是设置在第2催化剂床层II两侧的实心矩形纵剖面构件。该矩形纵剖面构件可以环绕第2催化剂床层II的周边延伸,完全包围或部分包围该第2催化剂床层II。在图2中,反应器内构件具有迷宫纵剖面形状,反应物料按照图中所示曲折流动,从迷宫形状的右下侧流出至出口2。在图3中,反应器内构件是设置于第2催化剂床层II中央的实心柱体。在图4中,反应器内构件设置于第2催化剂床层II中央,其中心具有空腔,左右两侧在靠近出口2一侧封闭,反应物料从其壁面上设置的多个孔(图4中为5个孔)流出至该空腔,然后流动至出口2。在图5中,反应器内构件是设置于第2催化剂床层II中央的实心半球体。在图6中,反应器内构件是设置在第2催化剂床层II两侧的实心三角形纵剖面构件。该三角形纵剖面构件可以环绕第2催化剂床层II的周边延伸,完全包围或部分包围该第2催化剂床层II。
根据本发明,作为所述变径段,比如可以举出处于同一个反应器中的两个或更多个平均横截面积不同的反应区域、两个或更多个平均横截面积不同的反应器或者其组合。作为处于同一个反应器中的两个或更多个平均横截面积不同的反应区域,比如可以参考图7。在图7中,一个圆筒形反应器具有平均横截面积或直径不同的上下两个反应区域,其中在直径较大的上部反应区域中设置第1催化剂床层I,在直径 较小的下部反应区域中设置第2催化剂床层II。
根据本发明,所述提速装置还可以是反应出料引入支管,其中所述反应出料引入支管将所述反应出料的一部分(作为载流体)引入所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间的分隔处。作为所述反应出料引入支管,比如可以参考图8。在图8中,通过反应出料引入支管B1至B4,将反应出料B的一部分引入不同催化剂床层之间(比如第1催化剂床层I与第2催化剂床层II之间,以及第2催化剂床层II与第3催化剂床层III之间)的分隔处。可以通过本领域已知的任何方式,在所述分隔处中设置流体分配器等,由此有利于载流体的均匀引入。根据需要,在引入所述分隔处之前,所述载流体可以经过换热(比如降温)或加压等预处理。
本发明还涉及一种烯烃氧化反应系统,其至少包括反应进料单元、烯烃氧化反应单元和反应出料分离单元。
根据本发明,所述反应进料单元和反应出料分离单元可以直接适用本领域在进行烯烃氧化反应时常规已知的那些。比如,所述反应出料分离单元从所述固定床反应装置的所述反应出料中分离出烯烃氧化物而获得尾气物流。并且,在所述烯烃氧化反应系统中,所述烯烃氧化反应单元包括一个或多个本发明如前所述的固定床反应装置作为烯烃氧化反应器。
根据本发明,在所述固定床反应装置中,所述提速装置还可以是尾气物流引入支管,所述尾气物流引入支管将所述尾气物流或其一部分(作为载流体)引入所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间的分隔处。作为所述尾气物流引入支管,比如可以参考图9。在图9中,通过尾气物流引入支管C1至C4,将尾气物流C引入不同催化剂床层之间(比如第1催化剂床层I与第2催化剂床层II之间,以及第2催化剂床层II与第3催化剂床层III之间)的分隔处。可以通过本领域已知的任何方式,在所述分隔处中设置流体分配器等,由此有利于载流体的均匀引入。根据需要,在引入所述分隔处之前,所述载流体可以经过换热(比如降温)或加压等预处理。另外,所述引入支管C1至C4中的一个或多个还可以是溶剂引入支管、惰性气体引入支管、反应出料引入支管或其任意的组合,由此同时地或另外地将溶剂、惰性气体或反应出料或其组合引入所述分隔处。
实施例
以下结合实施例详细说明本发明,但并不因此限制本发明的范围。
以下实施例和对比例中,如未特别说明,所用试剂均为市售的分析纯试剂,压力均为表压,所用钛硅分子筛均为新鲜钛硅分子筛。
以下实施例和对比例中所用的空心钛硅分子筛是按照中国专利CN1132699C中公开的方法制备的,其氧化钛含量为2.5重量%;所用的钛硅分子筛TS-1是按Journal of Natural Gas Chemistry,2001,10(4):295-307第296页第9-24行所描述的方法制备的,其氧化钛含量为2.5重量%;所用的Ti-MCM-41钛硅分子筛为按照Corma等在Chem.Commun.,1994,147-148中所描述的方法制备的,其氧化钛含量为3.0重量%;所用的Ti-Beta钛硅分子筛为按照Takashi Tatsumi等在J.Chem.Soc.Chem.Commun.,1997,677-678中所描述的方法制备的,其氧化钛含量为2.6重量%。
以下实施例和对比例中,采用气相色谱法来分析得到的反应液中各成分的含量,在此基础上分别采用以下公式来计算氧化剂转化率、氧化剂有效利用率、作为目标氧化产物的环氧化物选择性、作为副产物的甲酸甲酯选择性和作为副产物的丙酮选择性:
氧化剂转化率=(反应消耗的氧化剂的摩尔数/加入的氧化剂的摩尔数)×100%;
氧化剂有效利用率=(反应生成的环氧化物的摩尔数/反应消耗的氧化剂的摩尔数)×100%;
环氧化物选择性=(反应生成的环氧化物的摩尔数/反应消耗的烯烃的摩尔数)×100%;
甲酸甲酯选择性=(反应生成的甲酸甲酯的摩尔数/反应消耗的烯烃的摩尔数)×1000000;
丙酮选择性=(反应生成的丙酮的摩尔数/反应消耗的烯烃的摩尔数)×1000000。
下述对比例和实施例用于说明本发明的方法。
实施例和对比例中,成型空心钛硅分子筛(体积平均粒径为500μm,密度为0.69g/cm3)含有空心钛硅分子筛和作为氧化剂的氧化硅,以成 型空心钛硅分子筛的总量为基准,空心钛硅分子筛的含量为75重量%,氧化硅的含量为25重量%;
成型钛硅分子筛TS-1(体积平均粒径为500μm,密度为0.75g/cm3)含有钛硅分子筛TS-1和作为粘结剂的氧化硅,以成型钛硅分子筛TS-1的总量为基准,钛硅分子筛TS-1的含量为75重量%,氧化硅的含量为25重量%;
成型钛硅分子筛Ti-MCM-41(体积平均粒径为500μm,密度为0.63g/cm3)含有钛硅分子筛Ti-MCM-41和作为粘结剂的氧化硅,以成型钛硅分子筛Ti-MCM-41的总量为基准,钛硅分子筛Ti-MCM-41的含量为75重量%,氧化硅的含量为25重量%;
成型钛硅分子筛Ti-Beta(体积平均粒径为500μm,密度为0.74g/cm3)含有钛硅分子筛Ti-Beta和作为粘结剂的氧化硅,以成型钛硅分子筛Ti-Beta的总量为基准,钛硅分子筛Ti-Beta的含量为75重量%,氧化硅的含量为25重量%。
实施例1
反应在两个串联连接的微型固定床反应器中进行,其中,每个反应器中装填一个横截面为圆形的等径催化剂床层,以液体物料的流动方向为基准,位于上游的第一个反应器中的第一催化剂床层的内径与位于下游的第二个反应器中的第二催化剂床层的内径的比值为2∶1,第一催化剂床层中装填成型空心钛硅分子筛,第二催化剂床层中装填成型钛硅分子筛TS-1,空心钛硅分子筛与钛硅分子筛TS-1的重量比为2∶1。
将丙烯、作为氧化剂的过氧化氢(以30重量%的双氧水的形式提供)和作为溶剂的甲醇从第一个反应器的底部送入,通过第一催化剂床层以与装填于其中的成型空心钛硅分子筛接触;从第一个反应器输出的液体混合物接着连续进入第二个反应器中,通过第二催化剂床层以与装填于其中的成型钛硅分子筛TS-1接触。
其中,丙烯与氧化剂过氧化氢的摩尔比为4∶1,溶剂甲醇与丙烯的重量比为10∶1;将第一催化剂床层和第二催化剂床层中的温度分别控制为50℃,第一个反应器和第二个反应器内的压力分别为2.8MPa;以第一催化剂床层和第二催化剂床层中的钛硅分子筛的总量为基准, 丙烯的重量空速为2h-1
在上述条件下连续运行,运行过程中,检测从第二个反应器中输出的反应混合物的组成,并计算氧化剂转化率、氧化剂有效利用率、环氧丙烷选择性、甲酸甲酯选择性和丙酮选择性,其中,反应时间为2小时和860小时时的结果在表1中列出。
实施例2
采用与实施例1相同的方法氧化烯烃,不同的是,第二催化剂床层中的成型钛硅分子筛TS-1用等量的成型空心钛硅分子筛代替。
反应时间为2小时和500小时时的结果在表1中列出。
实施例3
采用与实施例1相同的方法氧化烯烃,不同的是,第一催化剂床层中的成型空心钛硅分子筛用等量的成型钛硅分子筛TS-1代替。
反应时间为2小时和480小时时的结果在表1中列出。
实施例4
采用与实施例1相同的方法氧化烯烃,不同的是,第二催化剂床层中的成型钛硅分子筛TS-1用等量的成型钛硅分子筛Ti-MCM-41代替。
反应时间为2小时和600小时时的结果在表1中列出。
实施例5
采用与实施例4相同的方法氧化烯烃,不同的是,第一催化剂床层中的成型空心钛硅分子筛用等量的成型钛硅分子筛TS-1代替。
反应时间为2小时和520小时时的结果在表1中列出。
实施例6
采用与实施例1相同的方法氧化烯烃,不同的是,在成型钛硅分子筛TS-1和成型空心钛硅分子筛装填量不变的条件下,在第一催化剂床层中装填成型钛硅分子筛TS-1,在第二催化剂床层中装填成型空心钛硅分子筛。
反应时间为2小时和420小时时的结果在表1中列出。
实施例7
采用与实施例1相同的方法氧化烯烃,不同的是,第二个反应器中的第二催化剂床层中的成型钛硅分子筛TS-1用等量的成型钛硅分子筛Ti-Beta代替。
反应时间为2小时和580小时时的结果在表1中列出。
实施例8
采用与实施例1相同的方法氧化烯烃,不同的是,调整第一催化剂床层和第二催化剂床层中催化剂的反应温度,使得第一催化剂床层的反应温度为50℃,第二催化剂床层的反应温度为35℃。
反应时间为2小时和920小时时的结果在表1中列出。
实施例9
采用与实施例1相同的方法氧化烯烃,不同的是,调整第一催化剂床层和第二催化剂床层中催化剂的反应温度,使得第一催化剂床层的反应温度为35℃,第二催化剂床层的反应温度为50℃。
反应时间为2小时和800小时时的结果在表1中列出。
实施例10
采用与实施例1相同的方法氧化烯烃,不同的是,调整第一催化剂床层和第二催化剂床层中催化剂的反应温度,使得第一催化剂床层的反应温度为50℃,第二催化剂床层的反应温度为65℃。
反应时间为2小时和780小时时的结果在表1中列出。
对比例1
采用与实施例3相同的方法氧化烯烃,不同的是,在第一催化剂床层和第二催化剂床层装填的催化剂的种类和装填量不变的条件下,增大第二催化剂床层的内径,使得第一催化剂床层的内径与第二催化剂床层的内径的比值为1∶1。反应时间为2小时和360小时时的结果在表1中列出。
对比例2
采用与实施例3相同的方法氧化烯烃,不同的是,在第一催化剂床层和第二催化剂床层装填的催化剂的种类和装填量不变的条件下,增大第二催化剂床层的内径,使得第一催化剂床层的内径与第二催化剂床层的内径的比值为1∶2。反应时间为2小时和300小时时的结果在表1中列出。
表1
Figure PCTCN2015000671-appb-000001
将实施例3与对比例1和2进行比较可以看出,采用根据本发明的 方法将烯烃氧化,能够有效地延长作为催化剂的钛硅分子筛的单程使用寿命,降低催化剂的再生频率,从而提高装置运行效率并降低运行成本。
将实施例1与实施例8和9进行比较可以看出,使第一催化剂床层的温度高于第二催化剂床层的温度5-30℃,能够获得进一步提高的环氧化物选择性,并进一步延长催化剂的单程使用寿命。
实施例11
本实施例中使用的成型空心钛硅分子筛(体积平均粒径为400μm,密度为0.71g/cm3)含有空心钛硅分子筛和作为粘结剂的氧化硅,以成型空心钛硅分子筛的总量为基准,空心钛硅分子筛的含量为85重量%,氧化硅的含量为15重量%;
使用的成型钛硅分子筛TS-1(体积平均粒径为400μm,密度为0.77g/cm3)含有钛硅分子筛TS-1和作为粘结剂的氧化硅,以成型钛硅分子筛TS-1的总量为基准,钛硅分子筛TS-1的含量为85重量%,氧化硅的含量为15重量%。
反应在两个串联连接的微型固定床反应器中进行,其中,每个反应器中装填一个横截面为圆形的等径催化剂床层,以液体物料的流动方向为基准,位于上游的第一个反应器中的第一催化剂床层的平均横截面积与位于下游的第二个反应器中的第二催化剂床层的平均横截面积的比值为5∶1,第一催化剂床层中装填成型空心钛硅分子筛,第二催化剂床层中装填成型钛硅分子筛TS-1,空心钛硅分子筛与钛硅分子筛TS-1的重量比为10∶1。
将丙烯、作为氧化剂的过氧化氢(以40重量%的双氧水的形式提供)和作为溶剂的乙腈从第一个反应器的底部送入,通过第一催化剂床层以与装填于其中的成型空心钛硅分子筛接触;从第一个反应器输出的液体混合物接着连续进入第二反应器中,通过第二催化剂床层以与装填于其中的成型钛硅分子筛TS-1接触。
其中,丙烯与氧化剂过氧化氢的摩尔比为2∶1,溶剂乙腈与丙烯的重量比为10∶1;将第一催化剂床层和第二催化剂床层中的温度分别控制为40℃,第一个反应器和第二个反应器内的压力分别为2.0MPa;以第一催化剂床层和第二催化剂床层中的钛硅分子筛的总量为基准, 丙烯的重量空速为6h-1
在上述条件下连续运行,运行过程中,检测从第二个反应器中输出的反应混合物的组成,并计算氧化剂转化率、氧化剂有效利用率、环氧丙烷选择性、甲酸甲酯选择性和丙酮选择性,其中,反应时间为2小时和900小时时的结果在表2中列出。
实施例12
采用与实施例11相同的方法氧化烯烃,不同的是,第一催化剂床层和第二催化剂床层中催化剂的装填量不变的条件下,提高第二催化剂床层的内径,使得第一催化剂床层的平均横截面积与第二催化剂床层的平均横截面积的比值为2∶1。
反应时间为2小时和900小时时的结果在表2中列出。
实施例13
采用与实施例11相同的方法氧化烯烃,不同的是,第一催化剂床层和第二催化剂床层中催化剂的装填量不变的条件下,提高第一催化剂床层的内径,使得第一催化剂床层的平均横截面积与第二催化剂床层的平均横截面积的比值为15∶1。
反应时间为2小时和860小时时的结果在表2中列出。
实施例14
采用与实施例11相同的方法氧化烯烃,不同的是,第一催化剂床层和第二催化剂床层中催化剂的装填量不变的条件下,提高第二催化剂床层的内径,使得第一催化剂床层的平均横截面积与第二催化剂床层的平均横截面积的比值为3∶2。
反应时间为2小时和880小时时的结果在表2中列出。
实施例15
采用与实施例11相同的方法氧化烯烃,不同的是,调整第一催化剂床层和第二催化剂床层中催化剂的反应温度,使得第一催化剂床层的反应温度为40℃,第二催化剂床层的反应温度为30℃。
反应时间为2小时和920小时时的结果在表2中列出。
实施例16
采用与实施例11相同的方法氧化烯烃,不同的是,调整第一催化剂床层和第二催化剂床层中催化剂的反应温度,使得第一催化剂床层的反应温度为30℃,第二催化剂床层的反应温度为40℃。
反应时间为2小时和860小时时的结果在表2中列出。
实施例17
采用与实施例11相同的方法氧化烯烃,不同的是,调整第一催化剂床层和第二催化剂床层中催化剂的反应温度,使得第一催化剂床层的反应温度为40℃,第二催化剂床层的反应温度为60℃。
反应时间为2小时和820小时时的结果在表2中列出。
表2
Figure PCTCN2015000671-appb-000002
实施例18
本实施例中使用的成型空心钛硅分子筛(体积平均粒径为800μm,密度为0.73g/cm3)含有空心钛硅分子筛和作为粘结剂的氧化硅,以成 型空心钛硅分子筛的总量为基准,空心钛硅分子筛的含量为80重量%,氧化硅的含量为20重量%;
使用的成型钛硅分子筛TS-1(体积平均粒径为800μm,密度为0.78g/cm3)含有钛硅分子筛TS-1和作为粘结剂的氧化硅,以成型钛硅分子筛TS-1的总量为基准,钛硅分子筛TS-1的含量为80重量%,氧化硅的含量为20重量%。
反应在两个串联连接的微型固定床反应器中进行,其中,每个反应器中装填一个横截面为圆形的等径催化剂床层,以液体物料的流动方向为基准,位于上游的第一个反应器中的第一催化剂床层的平均横截面积与位于下游的第二个反应器中的第二催化剂床层的平均横截面积的比值为4∶1,第一催化剂床层中装填成型空心钛硅分子筛,第二催化剂床层中装填成型钛硅分子筛TS-1,空心钛硅分子筛与钛硅分子筛TS-1的重量比为6∶1。
将正丁烯、作为氧化剂的叔丁基过氧化氢和作为溶剂的叔丁醇从第一个反应器的底部送入,通过第一催化剂床层以与装填于其中的成型空心钛硅分子筛接触;从第一个反应器输出的液体混合物接着连续进入第二反应器中,通过第二催化剂床层以与装填于其中的成型钛硅分子筛TS-1接触。
其中,正丁烯与氧化剂叔丁基过氧化氢的摩尔比为1∶1,溶剂叔丁醇与正丁烯的重量比为15∶1;将第一催化剂床层和第二催化剂床层中的温度分别控制为40℃,第一个反应器和第二个反应器内的压力分别为2.0MPa;以第一催化剂床层和第二催化剂床层中的钛硅分子筛的总量为基准,丙烯的重量空速为10h-1
在上述条件下连续运行,运行过程中,检测从第二个反应器中输出的反应混合物的组成,并计算氧化剂转化率、氧化剂有效利用率、环氧丁烷选择性,其中,反应时间为2小时和720小时时的结果在表3中列出。
表3
Figure PCTCN2015000671-appb-000003
实施例19
反应在三个串联连接的微型固定床反应器中进行,其中,每个反应器中装填一个横截面为圆形的等径催化剂床层,以液体物料的流动方向为基准,位于上游的第一个反应器中的第一催化剂床层的平均横截面积与位于中游的第二个反应器中的第二催化剂床层的平均横截面积和位于下游的第三个反应器中的第三催化剂床层的平均横截面积的比值为4∶2∶1,催化剂床层中均装填成型空心钛硅分子筛。
将丙烯、作为氧化剂的过氧化氢(以30重量%的双氧水的形式提供)和作为溶剂的甲醇从第一个反应器的底部送入,通过第一催化剂床层以与装填于其中的成型空心钛硅分子筛接触;从第一个反应器输出的液体混合物接着连续进入第二个反应器中,通过第二催化剂床层以与装填于其中的成型空心钛硅分子筛接触;从第二个反应器输出的液体混合物接着连续进入第三个反应器中,通过第三催化剂床层以与装填于其中的成型空心钛硅分子筛接触。
其中,丙烯与氧化剂过氧化氢的摩尔比为3∶1,溶剂甲醇与丙烯的重量比为8∶1;将第一催化剂床层、第二催化剂床层和第三催化剂床层中的温度分别控制为45℃,第一个反应器、第二个反应器和第三个反应器内的压力分别控制为2.5MPa;以第一催化剂床层、第二催化剂床层和第三催化剂床层中的钛硅分子筛的总量为基准,丙烯的重时质量空速为2h-1
在上述条件下连续运行,运行过程中,检测从第三个反应器中输出的反应混合物的组成,并计算氧化剂转化率、氧化剂有效利用率、环氧丙烷选择性、甲酸甲酯选择性和丙酮选择性,结果在表4中列出,下同。
对比例3
按照实施例19的方法进行烯烃氧化反应,不同的是反应器为三个串联的等径反应器,各反应器中的催化剂床层的平均横截面积与所述第一催化剂床层的平均横截面积相同,且其中各反应器的催化剂装填量之比为1∶1∶1。
实施例20
按照实施例2的方法进行烯烃氧化反应,不同的是反应器为具有二个不等径反应区的一个反应器(即利用一个反应器的二个不等径反应区来替代实施例2所用的二个不等径反应器,具有二个不等径反应区的反应器具体如附图7所示,物料先接触大内径的反应区),其中反应器内二个不等径反应区二者的平均横截面积的比值为2∶1,二个不等径反应区内催化剂的装填量为2∶1。
对比例4
按照实施例20的方法进行烯烃氧化反应,不同的是反应器为总长度与实施例20的方法所用反应器相同且具有二个等径反应区的一个反应器,其中反应器内二个等径反应区的横截面积与第一个反应区的横截面积相同,二个等径反应区内催化剂的装填量为1∶1。
实施例21
按照实施例20的方法进行烯烃氧化反应,不同的是反应器为逐级缩小(物料先接触最大内径的反应区)的具有三个不等径反应区的一个反应器,其中反应器内三个不等径反应区三者的平均横截面积的比值为4∶2∶1,三个不等径反应区内催化剂的装填量为4∶2∶1。
对比例5
按照实施例21的方法进行烯烃氧化反应,不同的是反应器为总长度与实施例21的方法所用反应器相同且具有三个等径反应区的一个反应器,其中反应器内三个等径反应区的横截面积与实施例21中的所用反应器内第一个反应区的平均横截面积相同,反应器三个等径反应区内催化剂的装填量为1∶1∶1。
实施例22-27
分别按照对比例4的方法进行烯烃氧化反应,不同的是反应器的第二个等径反应区内分别放置有附图1-6所示纵剖面形状的内构件从而分别构成附图1-6所示的二个不等径反应区,使得二个反应区的平均横截面积的比值分别为2∶1,二个反应区内催化剂的装填量分别为2∶1。
实施例28-33
分别按照对比例5的方法进行烯烃氧化反应,不同的是反应器的第三个等径反应区内分别放置有附图1-6所示纵剖面形状的内构件从而分别构成附图1-6所示的三个不等径反应区,使得三个反应区的平均横截面积的比值分别为2∶2∶1,三个反应区内催化剂的装填量分别为2∶2∶1。
实施例34-39
分别按照实施例22-27的方法进行烯烃氧化反应,不同的是催化剂同实施例3所用的催化剂,即为成型钛硅分子筛TS-1。
对比例6
按照对比例4的方法进行烯烃氧化反应,不同的是催化剂同实施例3所用的催化剂,即为成型钛硅分子筛TS-1。
实施例40-45
分别按照实施例28-33的方法进行烯烃氧化反应,不同的是催化剂同实施例3所用的催化剂,即为成型钛硅分子筛TS-1。
对比例7
按照对比例5的方法进行烯烃氧化反应,不同的是催化剂同实施例3所用的催化剂,即为成型钛硅分子筛TS-1。
表4
Figure PCTCN2015000671-appb-000004
Figure PCTCN2015000671-appb-000005
实施例46
按照对比例4的方法进行烯烃氧化反应,其中一部分(质量分数为20%)反应出料按照附图8的方式由两个反应出料引入支管均匀返回至反应器的两个等径反应区之间。
在上述条件下连续运行,运行过程中,检测从反应器中输出的反应混合物的组成,并计算氧化剂转化率、氧化剂有效利用率、环氧丙烷 选择性、甲酸甲酯选择性和丙酮选择性,结果在表5中列出,下同。
实施例47
按照实施例20的方法进行烯烃氧化反应,其中一部分(质量分数为20%)反应出料参照附图8的方式由两个反应出料引入支管均匀返回至反应器的两个不等径反应区之间。
实施例48
按照对比例4的方法进行烯烃氧化反应,其中一部分(质量分数为80%)反应出料参照附图8的方式由两个反应出料引入支管均匀返回至两个等径反应器(即附图8的二个反应区对应于两个等径反应器,下同)之间。
实施例49
按照实施例20的方法进行烯烃氧化反应,其中一部分(质量分数为80%)反应出料参照附图8的方式由两个反应出料引入支管均匀返回至两个不等径反应器之间。
实施例50
按照对比例3的方法进行烯烃氧化反应,其中一部分(质量分数为20%)反应出料参照附图8的方式由四个反应出料引入支管均匀返回至三个等径反应器之间。
实施例51
按照实施例19的方法进行烯烃氧化反应,其中一部分(质量分数为20%)反应出料参照附图8的方式由四个反应出料引入支管均匀返回至三个不等径反应器之间。
实施例52
按照对比例4的方法进行烯烃氧化反应,其中一部分(质量分数为20%)溶剂甲醇按照附图9的方式改由两个溶剂引入支管均匀引至反应器的两个等径反应区之间。
实施例53
按照实施例20的方法进行烯烃氧化反应,其中一部分(质量分数为20%)溶剂甲醇按照附图9的方式改由两个溶剂引入支管均匀引至反应器的两个不等径反应区之间。
实施例54
按照对比例4的方法进行烯烃氧化反应,其中一部分(质量分数为80%)溶剂甲醇按照附图9的方式改由两个溶剂引入支管均匀引至两个等径反应器之间。
实施例55
按照实施例20的方法进行烯烃氧化反应,其中一部分(质量分数为80%)溶剂甲醇按照附图9的方式改由两个溶剂引入支管均匀引至两个不等径反应器之间。
实施例56
按照对比例4的方法进行烯烃氧化反应,其中氮气(作为载流体,其引入量为总反应物料的质量分数10%)按照附图9的方式由两个惰性气体引入支管均匀引至反应器的两个等径反应区之间。
实施例57
按照实施例20的方法进行烯烃氧化反应,其中氮气(作为载流体,其引入量为总反应物料的质量分数10%)按照附图9的方式由两个惰性气体引入支管均匀引至反应器的两个不等径反应区之间。
实施例58
按照对比例4的方法进行烯烃氧化反应,其中氮气(作为载流体,其引入量为总反应物料的质量分数50%)按照附图9的方式由两个惰性气体引入支管均匀引至两个等径反应器之间。
实施例59
按照实施例20的方法进行烯烃氧化反应,其中氮气(作为载流体,其引入量为总反应物料的质量分数50%)按照附图9的方式由两个惰性气体引入支管均匀引至两个不等径反应器之间。
实施例60
按照对比例3的方法进行烯烃氧化反应,其中氮气(作为载流体,其引入量为总反应物料的质量分数20%)参照附图9的方式由四个惰性气体引入支管均匀引至三个等径反应器之间。
实施例61
按照实施例19的方法进行烯烃氧化反应,其中氮气(作为载流体,其引入量为总反应物料的质量分数20%)参照附图9的方式由四个惰性气体引入支管均匀引至三个不等径反应器之间。
实施例62
按照对比例4的方法进行烯烃氧化反应,其中一部分(质量分数为20%)反应出料经分离后获得的溶剂物流按照附图9的方式由两个溶剂引入支管均匀引至反应器的两个等径反应区之间。
实施例63
按照实施例20的方法进行烯烃氧化反应,其中一部分(质量分数为20%)反应出料经分离后获得的溶剂物流按照附图9的方式由两个溶剂引入支管均匀引至反应器的两个不等径反应区之间。
实施例64
按照对比例4的方法进行烯烃氧化反应,其中一部分(质量分数为80%)反应出料经分离后获得的溶剂物流按照附图9的方式由两个溶剂引入支管均匀引至两个等径反应器之间。
实施例65
按照实施例20的方法进行烯烃氧化反应,其中一部分(质量分数为80%)反应出料经分离后获得的溶剂物流按照附图9的方式由两个 溶剂引入支管均匀引至两个不等径反应器之间。
实施例66
按照实施例2的方法进行烯烃氧化反应,不同的是位于上游的第一个反应器中的第一催化剂床层的平均横截面积与位于下游的第二个反应器中的第二催化剂床层的平均横截面积的比值为2.5∶1,各催化剂床层的催化剂装填量的比值相应为2.5∶1。
实施例67
按照实施例2的方法进行烯烃氧化反应,不同的是位于上游的第一个反应器中的第一催化剂床层的平均横截面积与位于下游的第二个反应器中的第二催化剂床层的平均横截面积的比值为8∶1,各催化剂床层的催化剂装填量的比值相应为8∶1。
实施例68
按照实施例2的方法进行烯烃氧化反应,不同的是位于上游的第一个反应器中的第一催化剂床层的平均横截面积与位于下游的第二个反应器中的第二催化剂床层的平均横截面积的比值为12∶1,各催化剂床层的催化剂装填量的比值相应为12∶1。
实施例69
按照实施例2的方法进行烯烃氧化反应,不同的是位于上游的第一个反应器中的第一催化剂床层的平均横截面积与位于下游的第二个反应器中的第二催化剂床层的平均横截面积的比值为20∶1,各催化剂床层的催化剂装填量的比值相应为20∶1。
表5
Figure PCTCN2015000671-appb-000007

Claims (12)

  1. 一种烯烃氧化方法,包括在烯烃氧化反应条件下,使含有烯烃(优选选自C3-6α-烯烃中的至少一种,更优选选自丙烯和丁烯中的至少一种,进一步优选丙烯)和至少一种氧化剂(优选选自过氧化氢、有机过氧化物和过酸中的至少一种,更优选过氧化氢)的反应进料依次流过第1至第n(n为2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20,优选2、3、4、5、6、7、8、9或10,更优选2、3、4或5)催化剂床层的步骤,其特征在于,设流过所述第1至第n催化剂床层的各反应物料的表观速度分别为v1至vn,m取区间[2,n]内的任意整数时,以下关系式成立,
    vm-1<vm,优选vm/vm-1=1.5-15,更优选vm/vm-1=2-10,进一步优选vm/vm-1=2-5。
  2. 根据权利要求1所述的方法,其中m取区间[2,n]内的任意整数时,以下关系式成立,
    Am-1/Am>1,优选Am-1/Am≥1.5,更优选Am-1/Am≥2,优选Am-1/Am≤15,更优选Am-1/Am≤10,进一步优选Am-1/Am≤5,
    其中,Am-1为第m-1催化剂床层的平均横截面积,Am为第m催化剂床层的平均横截面积。
  3. 根据权利要求1所述的方法,获得含有烯烃氧化物的反应出料,并且所述方法还包括从所述反应出料中分离出所述烯烃氧化物,获得尾气物流的步骤。
  4. 根据权利要求3所述的方法,其中在所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间存在分隔处,并且向所述分隔处引入载流体,并且所述载流体选自所述反应出料、溶剂、惰性气体和所述尾气物流中的至少一种,更优选选自所述反应出料和所述惰性气体中的至少一种。
  5. 根据权利要求1所述的方法,其中所述第1至第n催化剂床层各自装填有至少一种钛硅分子筛。
  6. 根据权利要求1所述的方法,其中所述反应进料中所述烯烃与所述至少一种氧化剂的摩尔比为0.1-10∶1,优选0.2-5∶1,以所述第1至第n催化剂床层装填的催化剂的总量为基准,所述烯烃的重时空速 为0.1-20h-1,优选0.2-10h-1,并且所述烯烃氧化反应条件包括:反应压力(以表压计)为0-5MPa,优选0.1-3.5MPa,和反应温度为0-120℃,优选20-80℃(比如30-60℃)。
  7. 根据权利要求1所述的方法,其中m取区间[2,n]内的任意整数时,以下关系式成立,
    Tm-1-Tm=5-30,优选Tm-1-Tm=10-20,
    其中,Tm-1为第m-1催化剂床层的反应温度(℃),Tm为第m催化剂床层的反应温度(℃)。
  8. 一种固定床反应装置,包括入口(1)、反应段(3)和出口(2),在所述反应段(3)内设置第1至第n(n为2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20,优选2或3)催化剂床层,反应进料从所述入口(1)进入所述反应段(3),依次流过所述第1至第n催化剂床层,然后进入所述出口(2)而成为反应出料,其特征在于,所述固定床反应装置还包括提速装置,设流过所述第1至第n催化剂床层的各反应物料的表观速度分别为v1至vn,m取区间[2,n]内的任意整数时,所述提速装置使得以下关系式成立,
    vm-1<vm,优选vm/vm-1=1.5-15,更优选vm/vm-1=2-10,进一步优选vm/vm-1=2-5。
  9. 根据权利要求8所述的固定床反应装置,其中所述提速装置是所述反应段(3)的变径段和/或设置在所述反应段(3)内部的构件,所述变径段或所述构件能够使得m取区间[2,n]内的任意整数时,以下关系式成立,
    Am-1/Am>1,优选Am-1/Am≥1.5,更优选Am-1/Am≥2,优选Am-1/Am≤15,更优选Am-1/Am≤10,进一步优选Am-1/Am≤5,
    其中,Am-1为第m-1催化剂床层的平均横截面积,Am为第m催化剂床层的平均横截面积。
  10. 根据权利要求8所述的固定床反应装置,其中所述提速装置是反应出料引入支管、溶剂引入支管、惰性气体引入支管或其组合,其中所述反应出料引入支管将所述反应出料的一部分引入所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间的分隔处,所述溶剂引入支管将溶剂引入所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间的分隔处,所述惰性气体引入支管将惰性气 体引入所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间的分隔处。
  11. 一种烯烃氧化反应系统,至少包括反应进料单元、烯烃氧化反应单元和反应出料分离单元,其中所述烯烃氧化反应单元包括一个或多个根据权利要求8所述的固定床反应装置。
  12. 根据权利要求11所述的烯烃氧化反应系统,其中所述反应出料分离单元从所述固定床反应装置的所述反应出料中分离出烯烃氧化物而获得尾气物流,并且所述提速装置是尾气物流引入支管,所述尾气物流引入支管将所述尾气物流或其一部分引入所述第1至第n催化剂床层中任意两对或多对相邻的催化剂床层之间的分隔处。
PCT/CN2015/000671 2014-09-29 2015-09-29 一种烯烃氧化方法、反应装置和系统 WO2016050004A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2017114007A RU2694060C2 (ru) 2014-09-29 2015-09-29 Способ окисления олефина, реакционное устройство и система
KR1020177011456A KR102482256B1 (ko) 2014-09-29 2015-09-29 올레핀 산화 방법 및 반응 장치와 시스템
MYPI2017701040A MY188483A (en) 2014-09-29 2015-09-29 Olefin oxidation process, reaction apparatus and system
CN201580047702.8A CN107074795B (zh) 2014-09-29 2015-09-29 一种烯烃氧化方法、反应装置和系统
JP2017535945A JP6837438B2 (ja) 2014-09-29 2015-09-29 オレフィン類の酸化方法、反応装置及び反応系
US15/515,187 US10400179B2 (en) 2014-09-29 2015-09-29 Olefin oxidation process, reaction apparatus and system
EP15845790.3A EP3202764B1 (en) 2014-09-29 2015-09-29 Olefin oxidation method, and reaction apparatus and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410513479 2014-09-29
CN201410513479.9 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016050004A1 true WO2016050004A1 (zh) 2016-04-07

Family

ID=55599878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000671 WO2016050004A1 (zh) 2014-09-29 2015-09-29 一种烯烃氧化方法、反应装置和系统

Country Status (8)

Country Link
US (1) US10400179B2 (zh)
EP (1) EP3202764B1 (zh)
JP (1) JP6837438B2 (zh)
KR (1) KR102482256B1 (zh)
CN (3) CN105597631B (zh)
MY (1) MY188483A (zh)
RU (1) RU2694060C2 (zh)
WO (1) WO2016050004A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018039155A1 (en) * 2016-08-24 2018-03-01 The Regents Of The University Of California Selective solid catalyst for tail end of olefin-epoxidation flow reactor
CN108250161A (zh) * 2016-12-28 2018-07-06 中国石油化工股份有限公司 烯丙醇氧化方法
CN109833832A (zh) * 2019-04-08 2019-06-04 江苏扬农化工集团有限公司 一种轴径向hppo固定床反应器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597631B (zh) * 2014-09-29 2019-03-22 中国石油化工股份有限公司 一种固定床反应装置和烯烃氧化反应系统
CN110252394B (zh) * 2019-07-18 2022-03-25 北京赛诺时飞石化科技有限公司 一种用于丙烯氧化制备环氧丙烷的催化剂及其制备、应用
CN114713146A (zh) * 2020-12-22 2022-07-08 中国石油化工股份有限公司 环氧化物的制备装置以及环氧化物的制备方法
CN112604608A (zh) * 2020-12-31 2021-04-06 中海油天津化工研究设计院有限公司 一种采用悬浮床反应器生产环氧化物的方法
CN113082977B (zh) * 2021-04-06 2021-11-30 江苏舒源空调制造有限公司 一种高效废气处理系统及工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030097009A1 (en) * 2000-03-24 2003-05-22 Norikai Oku Process for producing oxirane compound
CN101885711A (zh) * 2009-05-13 2010-11-17 中国石油化工股份有限公司 环氧丙烷的生产方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425924A (en) * 1993-09-07 1995-06-20 Finley; Charles M. Compact fixed-bed reactor with folded reaction path
US5849937A (en) * 1997-12-19 1998-12-15 Arco Chemical Technology, L.P. Epoxidation process using serially connected cascade of fixed bed reactors
CN1132699C (zh) * 1999-12-24 2003-12-31 中国石油化工集团公司 一种钛硅分子筛及其制备方法
JP2001270879A (ja) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd オキシラン化合物の製造方法
US6337412B1 (en) * 2000-04-25 2002-01-08 Chemical Research & Licensing Company Three stage propylene oxide process
EP1258483A1 (en) 2001-03-05 2002-11-20 Degussa AG Process for the epoxidation of olefins
EP1285915A1 (en) * 2001-08-16 2003-02-26 Degussa AG Continuous process to make epoxide from olefins and hydrogen peroxide
DE10234448A1 (de) 2002-07-29 2004-02-12 Basf Ag Verfahren zur Herstellung von Propylenoxid unter Verwendung eines Nachreaktors mit mehreren Einspeise- und/oder Ablaufstellen
DE10320635A1 (de) 2003-05-08 2004-11-18 Basf Ag Verfahren zur Herstellung von Propylenoxid
CN2759585Y (zh) 2004-10-29 2006-02-22 中国石油化工股份有限公司 反应器段间气体混和装置
US7422904B2 (en) * 2005-02-04 2008-09-09 Exxonmobil Chemical Patents Inc. Method of operating a fixed bed reactor under predetermined hydraulic conditions
CN100418200C (zh) * 2005-05-19 2008-09-10 上海宏力半导体制造有限公司 源极/漏极离子掺杂方法
PL1966348T3 (pl) 2005-12-19 2010-10-29 Bp Exploration Operating Co Ltd Sposób wytwarzania produktu w fazie skondensowanej z jednego lub większej liczby substratów w fazie gazowej
CN100429218C (zh) * 2006-04-04 2008-10-29 天津大学 葡萄糖阿魏酸酰胺及其制备方法
CN101274922B (zh) * 2007-03-30 2011-01-19 中国石油化工股份有限公司石油化工科学研究院 一种制备环氧丙烷的方法
CN101314596B (zh) 2007-05-31 2011-04-20 中国石油化工股份有限公司 一种连续生产环氧丙烷的方法
CN101397282B (zh) 2007-09-28 2011-04-20 中国石油化工股份有限公司 一种制备环氧丙烷的方法
CN101279959B (zh) * 2008-05-21 2010-12-01 湖南长岭石化科技开发有限公司 一种合成环氧丙烷的方法
CN102441429B (zh) 2010-10-11 2013-11-27 中国石油化工股份有限公司 烯烃环氧化催化剂及其制备方法和环氧化烯烃的方法
CN105597631B (zh) * 2014-09-29 2019-03-22 中国石油化工股份有限公司 一种固定床反应装置和烯烃氧化反应系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030097009A1 (en) * 2000-03-24 2003-05-22 Norikai Oku Process for producing oxirane compound
CN101885711A (zh) * 2009-05-13 2010-11-17 中国石油化工股份有限公司 环氧丙烷的生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202764A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018039155A1 (en) * 2016-08-24 2018-03-01 The Regents Of The University Of California Selective solid catalyst for tail end of olefin-epoxidation flow reactor
US10898887B2 (en) 2016-08-24 2021-01-26 The Regents Of The University Of California Selective solid catalyst for tail end of olefin-epoxidation flow reactor
CN108250161A (zh) * 2016-12-28 2018-07-06 中国石油化工股份有限公司 烯丙醇氧化方法
CN108250161B (zh) * 2016-12-28 2022-01-04 中国石油化工股份有限公司 烯丙醇氧化方法
CN109833832A (zh) * 2019-04-08 2019-06-04 江苏扬农化工集团有限公司 一种轴径向hppo固定床反应器
CN109833832B (zh) * 2019-04-08 2024-01-26 江苏扬农化工集团有限公司 一种轴径向hppo固定床反应器

Also Published As

Publication number Publication date
CN105597631B (zh) 2019-03-22
EP3202764A1 (en) 2017-08-09
CN105461661A (zh) 2016-04-06
CN105461661B (zh) 2018-07-31
KR102482256B1 (ko) 2022-12-27
CN105597631A (zh) 2016-05-25
RU2694060C2 (ru) 2019-07-09
JP6837438B2 (ja) 2021-03-03
EP3202764A4 (en) 2018-04-04
MY188483A (en) 2021-12-14
RU2017114007A (ru) 2018-11-02
KR20170063847A (ko) 2017-06-08
US20170226429A1 (en) 2017-08-10
US10400179B2 (en) 2019-09-03
JP2017531691A (ja) 2017-10-26
EP3202764B1 (en) 2022-08-24
CN107074795A (zh) 2017-08-18
RU2017114007A3 (zh) 2019-02-01
CN107074795B (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2016050004A1 (zh) 一种烯烃氧化方法、反应装置和系统
JP4334762B2 (ja) 固定層反応器の直列連結カスケードを用いるエポキシ化法
EP2460784B1 (en) Method for producing propylene and catalyst for producing propylene
US20090270640A1 (en) Method for production of ethylene oxide in a microchannel reactor
ZA200501665B (en) Integrated method for synthesising propylene oxide
JP2007291076A (ja) プロピレンの製造方法
JP2010138187A (ja) オレフィン及び有機ヒドロパーオキサイドからのオレフィンオキサイドの製造方法
Himmelmann et al. Selective oxidation of ethanol to ethylene oxide with a dual-layer concept
ES2375472T3 (es) Procedimiento para la epoxidación de olefinas.
CN105531022B (zh) 用于通过复分解生产烯烃的方法及用于所述方法的反应器系统
CN105439916A (zh) 一种硫醚氧化方法
WO2004060838A1 (ja) 芳香族化合物の水素化方法
CN106029629B (zh) 用于制备乙醇胺的方法
US11389777B2 (en) Overall energy optimization of butane dehydrogenation technology by efficient reactor design
EP2846906B1 (en) Process for producing short-chain olefins with prolonged cycle time
CN105524025B (zh) 一种氧化烯烃的方法
WO2012048529A1 (zh) 一种烯烃环氧化生产氧化烯烃的方法
CN105481798B (zh) 一种烯烃氧化方法
CN105524021B (zh) 一种烯烃氧化方法
JP7449415B2 (ja) 流動床再生器、軽オレフィンを調製する装置およびその応用
CN105523972B (zh) 一种硫醚氧化方法
CN105523896A (zh) 一种苯氧化方法
CN117946038A (zh) 环氧化反应的方法和应用
JP2023012431A (ja) 芳香族化合物の製造方法
CN105367458A (zh) 一种硫醚氧化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535945

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015845790

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177011456

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017114007

Country of ref document: RU

Kind code of ref document: A