WO2016047740A1 - エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材 - Google Patents

エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材 Download PDF

Info

Publication number
WO2016047740A1
WO2016047740A1 PCT/JP2015/077060 JP2015077060W WO2016047740A1 WO 2016047740 A1 WO2016047740 A1 WO 2016047740A1 JP 2015077060 W JP2015077060 W JP 2015077060W WO 2016047740 A1 WO2016047740 A1 WO 2016047740A1
Authority
WO
WIPO (PCT)
Prior art keywords
airgel
airgel composite
mass
support member
parts
Prior art date
Application number
PCT/JP2015/077060
Other languages
English (en)
French (fr)
Inventor
智彦 小竹
正人 宮武
村井 曜
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201580051494.9A priority Critical patent/CN107074563A/zh
Priority to US15/514,435 priority patent/US10590001B2/en
Priority to SG11201702422SA priority patent/SG11201702422SA/en
Priority to KR1020177008640A priority patent/KR102425252B1/ko
Priority to CN202210519391.2A priority patent/CN114702724B/zh
Priority to EP15843269.0A priority patent/EP3199493A4/en
Priority to JP2016550386A priority patent/JP6428783B2/ja
Publication of WO2016047740A1 publication Critical patent/WO2016047740A1/ja
Priority to US16/735,918 priority patent/US11780735B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to an airgel composite, a support member with an airgel composite, and a heat insulating material.
  • Silica airgel is known as a material having low thermal conductivity and heat insulation. Silica airgel is useful as a functional material having excellent functionality (thermal insulation, etc.), unique optical properties, and unique electrical properties. For example, an electronic substrate utilizing the ultra-low dielectric constant properties of silica airgel It is used as a material, a heat insulating material using the high heat insulating property of silica airgel, a light reflecting material using the ultra-low refractive index of silica airgel, and the like.
  • a supercritical drying method in which a gel-like compound (alcogel) obtained by hydrolyzing and polymerizing alkoxysilane is dried under supercritical conditions of a dispersion medium.
  • an alcogel and a dispersion medium solvent used for drying
  • the dispersion medium is applied to the supercritical fluid by applying a temperature and pressure above its critical point to form a supercritical fluid. It is a method of removing the solvent.
  • the supercritical drying method requires a high-pressure process, capital investment is required for a special apparatus that can withstand supercriticality, and much labor and time are required.
  • a technique for drying alcogel using a general-purpose method that does not require a high-pressure process has been proposed.
  • a method of improving the strength of the resulting alcogel by using a monoalkyltrialkoxysilane and a tetraalkoxysilane in combination at a specific ratio as a gel material and drying at normal pressure is known.
  • the gel tends to contract due to stress caused by the capillary force inside the alcogel.
  • the obtained airgel is poor in handling and large in size. Because it is difficult, there is a problem in productivity. For example, the agglomerated airgel obtained by the above process may be broken simply by trying to lift it by hand. This is presumably due to the fact that the density of the airgel is low and that the airgel has a pore structure in which fine particles of about 10 nm are weakly connected.
  • This invention is made
  • the present invention also provides a support member with an airgel composite formed by supporting such an airgel composite, and a heat insulating material.
  • an airgel composite in which silica particles are composited in an airgel exhibits excellent heat insulation and flexibility. It was.
  • the present invention provides an airgel composite containing an airgel component and silica particles. Unlike the airgel obtained by the prior art, the airgel composite of the present invention is excellent in heat insulation and flexibility.
  • the airgel composite can have a three-dimensional network skeleton formed from an airgel component and silica particles, and pores. Thereby, it becomes easy to improve heat insulation and a softness
  • the present invention also provides an airgel composite containing silica particles as a component constituting a three-dimensional network skeleton.
  • the airgel composite thus obtained is excellent in heat insulation and flexibility.
  • the present invention is also produced from a sol containing silica particles and at least one selected from the group consisting of a silicon compound having a hydrolyzable functional group in the molecule and a hydrolysis product of the silicon compound.
  • An airgel composite obtained by drying a wet gel is provided.
  • the airgel composite thus obtained is excellent in heat insulation and flexibility.
  • the airgel composite described above also contains silica particles and at least one selected from the group consisting of a silicon compound having a hydrolyzable functional group in the molecule and a hydrolysis product of the silicon compound.
  • a wet gel produced from a sol may be dried.
  • the sol may further contain at least one selected from the group consisting of a polysiloxane compound having a reactive group in the molecule and a hydrolysis product of the polysiloxane compound.
  • the sol may further contain at least one selected from the group consisting of a polysiloxane compound having a reactive group in the molecule and a hydrolysis product of the polysiloxane compound.
  • the average primary particle diameter of the silica particles can be 1 to 500 nm. Thereby, it becomes easy to improve heat insulation and a softness
  • the shape of the silica particles may be spherical.
  • the silica particles can be amorphous silica particles, and the amorphous silica particles can be at least one selected from the group consisting of fused silica particles, fumed silica particles, and colloidal silica particles. . Thereby, further excellent heat insulation and flexibility can be achieved.
  • the said drying can be performed under the temperature and atmospheric pressure below the critical point of the solvent used for drying. This makes it easier to obtain an airgel composite that is excellent in heat insulation and flexibility.
  • the present invention further provides a support member with an airgel composite comprising the above airgel composite and a support member supporting the airgel composite.
  • the said airgel composite has the outstanding heat insulation and a softness
  • the present invention further provides a heat insulating material provided with the airgel composite.
  • the heat insulating material according to the present invention exhibits excellent heat insulating properties and excellent flexibility that is difficult to achieve with conventional heat insulating materials, because the airgel composite has excellent heat insulating properties and flexibility. it can.
  • an airgel composite excellent in heat insulation and flexibility can be provided. That is, it is possible to provide an airgel composite that exhibits excellent heat insulating properties, improves handleability, can be increased in size, and can increase productivity. Thus, the airgel composite excellent in heat insulation and flexibility has a possibility of being used for various purposes.
  • a support member with an airgel composite formed by supporting such an airgel composite and a heat insulating material can be provided.
  • the important point according to the present invention is that it becomes easier to control the heat insulation and flexibility than the conventional airgel. This is not possible with conventional aerogels that require sacrificing thermal insulation to obtain flexibility or sacrificing flexibility to obtain thermal insulation.
  • excellent in heat insulation and flexibility does not necessarily mean that both numerical values representing both characteristics are high. For example, “excellent flexibility while maintaining good heat insulation” , “Excellent thermal insulation while maintaining good flexibility” and the like.
  • the surface of the airgel composite in the foil-like support member with the airgel composite obtained in Example 15 is (a) 10,000 times, (b) 50,000 times, (c) 200,000 times, and (d) 350,000. It is the SEM image observed by each magnification.
  • the obtained low-density dried gel is referred to as an aerogel regardless of the drying method of the wet gel.
  • the airgel means “a gel composed of a microporous solid whose dispersed phase is a gas”, which is an aerogel in a broad sense, that is, “Gel compressed of a microporous solid in which the dispersed phase is a gas”. To do.
  • the inside of the airgel has a network-like fine structure, and has a cluster structure in which airgel particles of about 2 to 20 nm are combined. Between the skeletons formed by the clusters, there are pores less than 100 nm, and a three-dimensionally fine porous structure is formed.
  • the airgel in this embodiment is a silica airgel which has a silica as a main component. Examples of the silica airgel include so-called organic-inorganic hybrid silica airgel into which an organic group such as a methyl group or an organic chain is introduced.
  • the airgel composite of the present embodiment has a cluster structure that is a feature of the above airgel while silica particles are composited in the airgel, and has a three-dimensionally fine porous structure. ing.
  • the airgel composite of this embodiment contains an airgel component and silica particles. Although not necessarily meaning the same concept as this, the airgel composite of the present embodiment can also be expressed as containing silica particles as a component constituting the three-dimensional network skeleton. .
  • the airgel composite of this embodiment is excellent in heat insulation and flexibility as described later. In particular, since the flexibility is excellent, the handling property as an airgel composite is improved and the size can be increased, so that the productivity can be increased. In addition, such an airgel composite is obtained by making silica particles exist in the airgel production environment.
  • the merit by the presence of silica particles is not only that the heat insulation and flexibility of the composite itself can be improved, but also shortening the time of the wet gel generation process described later, or simplifying the drying process from the washing and solvent replacement process. Is also possible. In addition, shortening of the time of this process and simplification of a process are not necessarily calculated
  • the composite aspect of an airgel component and a silica particle is various.
  • the airgel component may be in an indeterminate form such as a film or may be in the form of particles (aerogel particles).
  • the airgel component since the airgel component is in various forms and exists between the silica particles, it is presumed that flexibility is imparted to the skeleton of the composite.
  • the composite mode of the airgel component and the silica particles includes a mode in which an amorphous airgel component is interposed between the silica particles.
  • a mode in which an amorphous airgel component is interposed between the silica particles for example, an embodiment in which silica particles are coated with a film-like airgel component (silicone) (an embodiment in which the airgel component includes silica particles), the airgel component serves as a binder and the silica particles , A mode in which the airgel component is filled with a plurality of silica particle gaps, a mode of a combination of these modes (a mode in which silica particles arranged in a cluster are coated with the airgel component, etc.) An embodiment is mentioned.
  • the airgel composite can have a three-dimensional network skeleton composed of silica particles and an airgel component (silicone), and there is no particular limitation on the specific mode (form).
  • the airgel component may be in the form of a clear particle as shown in FIG.
  • the mechanism by which such various aspects occur in the airgel composite of the present embodiment is not necessarily clear, but the present inventor speculates that the generation rate of the airgel component in the gelation process is involved.
  • the production speed of the airgel component tends to vary by varying the number of silanol groups in the silica particles.
  • the production rate of the airgel component also tends to fluctuate by changing the pH of the system.
  • the aspect of the airgel composite (size, shape, etc. of the three-dimensional network skeleton) can be controlled by adjusting the size, shape, silanol group number, system pH, etc. of the silica particles. Therefore, it is considered that the density, porosity, etc. of the airgel composite can be controlled, and the heat insulating property and flexibility of the airgel composite can be controlled.
  • the three-dimensional network skeleton of the airgel composite may be composed of only one kind of the various aspects described above, or may be composed of two or more kinds of aspects.
  • FIG. 1 the airgel composite of the present embodiment will be described using FIG. 1 as an example, but the present invention is not limited to the embodiment of FIG. 1 as described above.
  • the following descriptions can be referred to as appropriate.
  • FIG. 1 is a diagram schematically showing the fine structure of an airgel composite according to an embodiment of the present invention.
  • the airgel composite 10 includes a three-dimensional network skeleton formed by three-dimensionally connecting airgel particles 1 that are airgel components in random three-dimensionally via silica particles 2, and And pores 3 surrounded by a skeleton.
  • the silica particles 2 are interposed between the airgel particles 1 and function as a skeleton support that supports the three-dimensional network skeleton. Therefore, it is thought that by having such a structure, moderate strength is imparted to the airgel while maintaining the heat insulation and flexibility as the airgel.
  • the airgel composite may have a three-dimensional network skeleton formed by three-dimensionally connecting silica particles randomly through the airgel particles.
  • Silica particles may be covered with airgel particles.
  • the said airgel particle (aerogel component) is comprised from silicone, it is guessed that the affinity to a silica particle is high. Therefore, in this embodiment, it is considered that the silica particles were successfully introduced into the three-dimensional network skeleton of the airgel. In this respect, it is considered that the silanol groups of the silica particles also contribute to the affinity between them.
  • the airgel particle 1 is considered to be in the form of secondary particles composed of a plurality of primary particles, and is generally spherical.
  • the average particle size (that is, the secondary particle size) of the airgel particles 1 can be 2 nm to 50 ⁇ m, but may be 5 nm to 2 ⁇ m, or may be 10 nm to 200 nm.
  • the airgel particle 1 has an average particle diameter of 2 nm or more, an airgel composite having excellent flexibility can be easily obtained.
  • the average particle diameter is 50 ⁇ m or less, an airgel composite having excellent heat insulation can be easily obtained. Become.
  • the average particle diameter of the primary particles constituting the airgel particles 1 can be set to 0.1 nm to 5 ⁇ m from the viewpoint of easy formation of secondary particles having a low density porous structure. It may be 200 nm or 1 nm to 20 nm.
  • the silica particles 2 can be used without particular limitation, and examples thereof include amorphous silica particles. Further, the amorphous silica particles include at least one selected from the group consisting of fused silica particles, fumed silica particles, and colloidal silica particles. Among these, colloidal silica particles have high monodispersibility and are easy to suppress aggregation in the sol. Note that the silica particles 2 may be silica particles having a hollow structure, a porous structure, or the like.
  • the shape of the silica particles 2 is not particularly limited, and examples thereof include spherical, eyebrows, and association types. Of these, the use of spherical particles as the silica particles 2 makes it easy to suppress aggregation in the sol.
  • the average primary particle diameter of the silica particles 2 can be 1 to 500 nm, but may be 5 to 300 nm, or 20 to 100 nm. When the average primary particle diameter of the silica particles 2 is 1 nm or more, it becomes easy to impart an appropriate strength to the airgel, and an airgel composite having excellent shrinkage resistance during drying is easily obtained. On the other hand, when the average primary particle diameter is 500 nm or less, it becomes easy to suppress the solid heat conduction of the silica particles, and it becomes easy to obtain an airgel composite excellent in heat insulation.
  • the airgel particles 1 (aerogel component) and the silica particles 2 are bonded in a hydrogen bond, chemical bond, or a combination of these bonds.
  • hydrogen bonds, chemical bonds, or combinations of these bonds are considered to be formed by the silanol groups, reactive groups, or both of the airgel particles 1 (aerogel components) and the silanol groups of the silica particles 2. . Therefore, it is thought that moderate strength is easily imparted to the airgel when the bonding mode is chemical bonding.
  • the particles to be combined with the airgel component are not limited to silica particles, and inorganic particles or organic particles having a silanol group on the particle surface can also be used.
  • the number of silanol groups per gram of the silica particles 2 can be 10 ⁇ 10 18 to 1000 ⁇ 10 18 pcs / g, but may be 50 ⁇ 10 18 to 800 ⁇ 10 18 pcs / g, It may be 10 18 to 700 ⁇ 10 18 pieces / g.
  • the number of silanol groups per gram of silica particles 2 is 10 ⁇ 10 18 pieces / g or more, so that the airgel composite can have better reactivity with the airgel particles 1 (airgel component) and has excellent shrinkage resistance. It becomes easy to obtain a body.
  • the number of silanol groups is 1000 ⁇ 10 18 / g or less, it is easy to suppress abrupt gelation at the time of sol preparation, and it becomes easy to obtain a homogeneous airgel composite.
  • the average particle size of the particles is measured using a scanning electron microscope (hereinafter abbreviated as “SEM”). It can be obtained by directly observing the cross section of.
  • SEM scanning electron microscope
  • the particle diameter of each airgel particle or silica particle can be obtained from the three-dimensional network skeleton based on the diameter of the cross section.
  • the diameter here means the diameter when the cross section of the skeleton forming the three-dimensional network skeleton is regarded as a circle.
  • the diameter when the cross section is regarded as a circle is the diameter of the circle when the area of the cross section is replaced with a circle having the same area.
  • the average particle diameter the diameter of a circle is obtained for 100 particles, and the average is taken.
  • the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, taking colloidal silica particles having a solid content concentration of 5 to 40% by mass normally dispersed in water as an example, a chip obtained by cutting a wafer with a patterned wiring into 2 cm squares for about 30 seconds in a dispersion of colloidal silica particles. After soaking, the chip is rinsed with pure water for about 30 seconds and blown with nitrogen.
  • the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, the silica particles are observed at a magnification of 100,000, and an image is taken.
  • 20 silica particles are arbitrarily selected from the obtained image, and the average of the particle diameters of these particles is defined as the average particle diameter.
  • a rectangle (circumscribed rectangle L) circumscribing the silica particle 2 and arranged so that the long side is the longest is led.
  • the long side of the circumscribed rectangle L is X
  • the short side is Y
  • the biaxial average primary particle diameter is calculated as (X + Y) / 2, and is defined as the particle diameter of the particle.
  • the size of the pores 3 in the airgel composite will be described in the section of [Density and porosity] described later.
  • the content of the airgel component contained in the airgel composite can be 4 to 25 parts by mass with respect to 100 parts by mass of the total amount of the airgel composite, but may be 10 to 20 parts by mass.
  • the content is 4 parts by mass or more, an appropriate strength is easily imparted, and when the content is 25 parts by mass or less, good heat insulating properties are easily obtained.
  • the content of silica particles contained in the airgel composite can be 1 to 25 parts by mass with respect to 100 parts by mass of the total amount of the airgel composite, but may be 3 to 15 parts by mass.
  • the content is 1 part by mass or more, an appropriate strength is easily imparted to the airgel composite, and when the content is 25 parts by mass or less, solid heat conduction of the silica particles is easily suppressed.
  • the airgel composite may further contain other components such as carbon graphite, aluminum compound, magnesium compound, silver compound, and titanium compound for the purpose of suppressing heat radiation.
  • the content of other components is not particularly limited, but can be 1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the airgel complex from the viewpoint of sufficiently securing the desired effect of the airgel complex.
  • the thermal conductivity at 25 ° C. under atmospheric pressure can be 0.03 W / m ⁇ K or less, but may be 0.025 W / m ⁇ K or less. 0.02 W / m ⁇ K or less.
  • the lower limit value of the thermal conductivity is not particularly limited, but can be set to 0.01 W / m ⁇ K, for example.
  • Thermal conductivity can be measured by a steady method. Specifically, it can be measured using, for example, a steady-state thermal conductivity measuring device “HFM436 Lambda” (manufactured by NETZSCH, product name, HFM436 Lambda is a registered trademark).
  • HFM436 Lambda manufactured by NETZSCH, product name, HFM436 Lambda is a registered trademark.
  • the outline of the measurement method of the thermal conductivity using the steady method thermal conductivity measuring device is as follows.
  • the airgel composite is processed into a size of 150 mm ⁇ 150 mm ⁇ 100 mm using a blade having a blade angle of about 20 to 25 degrees to obtain a measurement sample.
  • the recommended sample size in HFM436Lambda is 300 mm ⁇ 300 mm ⁇ 100 mm
  • the thermal conductivity when measured with the above sample size is the same value as the thermal conductivity when measured with the recommended sample size. Confirmed.
  • the measurement sample is shaped with a sandpaper of # 1500 or more as necessary. Then, before the thermal conductivity measurement, the measurement sample is dried at 100 ° C.
  • the measurement conditions are an atmospheric pressure and an average temperature of 25 ° C.
  • the measurement sample obtained as described above was sandwiched between the upper and lower heaters with a load of 0.3 MPa, the temperature difference ⁇ T was set to 20 ° C., and the guard sample was adjusted so as to obtain a one-dimensional heat flow.
  • the thermal resistance RS of a measurement sample is calculated
  • R S N ((T U ⁇ T L ) / Q) ⁇ R O
  • T U represents a measurement sample top surface temperature
  • T L represents the measurement sample lower surface temperature
  • R O represents the thermal contact resistance of the upper and lower interfaces
  • Q is shows the heat flux meter output.
  • N is a proportionality coefficient, and is obtained in advance using a calibration sample.
  • the compression modulus at 25 ° C. can be 3 MPa or less, but may be 2 MPa or less, 1 MPa or less, or 0.5 MPa or less. .
  • the compression elastic modulus is 3 MPa or less, it becomes easy to obtain an airgel composite having excellent handleability.
  • the lower limit value of the compression elastic modulus is not particularly limited, but may be 0.05 MPa, for example.
  • the deformation recovery rate at 25 ° C. can be 90% or more, but may be 94% or more, or 98% or more.
  • the deformation recovery rate is 90% or more, it becomes easier to obtain excellent strength, excellent flexibility for deformation, and the like.
  • the upper limit value of the deformation recovery rate is not particularly limited, but may be, for example, 100% or 99%.
  • the maximum compressive deformation rate at 25 ° C. can be 80% or more, but may be 83% or more, or 86% or more.
  • the upper limit value of the maximum compression deformation rate is not particularly limited, but can be 90%, for example.
  • compression elastic modulus, deformation recovery rate, and maximum compression deformation rate can be measured using a small desktop tester “EZTest” (manufactured by Shimadzu Corporation, product name).
  • the outline of the measurement method such as compression modulus using a small tabletop testing machine is as follows.
  • the airgel composite is processed into a 7.0 mm square cube (die shape) to obtain a measurement sample.
  • the measurement sample is shaped with a sandpaper of # 1500 or more as necessary.
  • the measurement sample is dried at 100 ° C. for 30 minutes under atmospheric pressure using a constant temperature dryer “DVS402” (manufactured by Yamato Scientific Co., Ltd., product name).
  • the measurement sample is then transferred into a desiccator and cooled to 25 ° C. Thereby, a measurement sample for measuring the compression elastic modulus, deformation recovery rate, and maximum compression deformation rate is obtained.
  • a 500N load cell is used.
  • a stainless upper platen ( ⁇ 20 mm) and a lower platen plate ( ⁇ 118 mm) are used as a compression measurement jig.
  • a measurement sample is set between these jigs, compressed at a speed of 1 mm / min, and the displacement of the measurement sample size at 25 ° C. is measured. The measurement is terminated when a load exceeding 500 N is applied or when the measurement sample is destroyed.
  • the compressive strain ⁇ can be obtained from the following equation.
  • ⁇ d / d1
  • ⁇ d represents the displacement (mm) of the thickness of the measurement sample due to the load
  • d1 represents the thickness (mm) of the measurement sample before the load is applied.
  • the compressive stress ⁇ (MPa) can be obtained from the following equation.
  • F / A
  • F represents the compressive force (N)
  • A represents the cross-sectional area (mm 2 ) of the measurement sample before applying a load.
  • the compressive elastic modulus E (MPa) can be obtained from the following equation within a compression force range of 0.1 to 0.2 N, for example.
  • E ( ⁇ 2 ⁇ 1 ) / ( ⁇ 2 ⁇ 1 )
  • ⁇ 1 indicates a compressive stress (MPa) measured at a compressive force of 0.1 N
  • ⁇ 2 indicates a compressive stress (MPa) measured at a compressive force of 0.2 N
  • ⁇ 1 indicates a compressive stress.
  • the compressive strain measured at ⁇ 1 is shown
  • ⁇ 2 shows the compressive strain measured at the compressive stress ⁇ 2 .
  • thermal conductivity, compression elastic modulus, deformation recovery rate, and maximum compression deformation rate can be appropriately adjusted by changing the production conditions, raw materials, etc. of the airgel composite described later.
  • the size of the pores 3, that is, the average pore diameter can be 5 to 1000 nm, but may be 25 to 500 nm.
  • the average pore diameter is 5 nm or more, an airgel composite excellent in flexibility can be easily obtained, and when it is 1000 nm or less, an airgel composite excellent in heat insulation can be easily obtained.
  • the density may be 0.05 ⁇ 0.25g / cm 3 at 25 ° C., or may be 0.1 ⁇ 0.2g / cm 3.
  • the density is 0.05 g / cm 3 or more, more excellent strength and flexibility can be obtained, and when it is 0.25 g / cm 3 or less, more excellent heat insulation can be obtained. it can.
  • the porosity at 25 ° C. can be 85 to 95%, but it may be 87 to 93%.
  • the porosity is 85% or more, more excellent heat insulating properties can be obtained, and when it is 95% or less, more excellent strength and flexibility can be obtained.
  • the average pore diameter, density and porosity of pores (through holes) continuous in a three-dimensional network can be measured by a mercury intrusion method according to DIN 66133.
  • a mercury intrusion method according to DIN 66133.
  • Autopore IV9520 manufactured by Shimadzu Corporation, product name
  • Shimadzu Corporation product name
  • the airgel composite of this embodiment can have a structure represented by the following general formula (1).
  • R 1 and R 2 each independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned, for example.
  • R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like, and the alkyl group is a methyl group and the like.
  • R 3 and R 4 each independently include an alkylene group having 1 to 6 carbon atoms, and examples of the alkylene group include an ethylene group and a propylene group.
  • the airgel composite of the present embodiment is an airgel composite having a ladder structure including a support portion and a bridge portion, and the airgel composite having a structure in which the bridge portion is represented by the following general formula (2). It may be.
  • the “ladder structure” has two struts and bridges connecting the struts (having a so-called “ladder” form). It is.
  • the skeleton of the airgel composite may have a ladder structure, but the airgel composite may partially have a ladder structure.
  • R 6 and R 7 each independently represents an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned, for example.
  • b is an integer of 2 or more
  • two or more R 6 s may be the same or different, and similarly two or more R 7 s are each the same. May be different.
  • the above structure as an airgel component into the skeleton of the airgel complex, for example, it has a structure derived from a conventional ladder-type silsesquioxane (that is, a structure represented by the following general formula (X)
  • An airgel composite having flexibility superior to that of the airgel.
  • the structure of the bridge portion is —O—, but the airgel composite of this embodiment
  • the structure of the bridging portion is a structure (polysiloxane structure) represented by the general formula (2).
  • R represents a hydroxy group, an alkyl group or an aryl group.
  • the ladder structure has the following general formula (You may have the structure represented by 3).
  • R 5 , R 6 , R 7 and R 8 each independently represents an alkyl group or an aryl group
  • a and c each independently represents an integer of 1 to 3000
  • b is 1 to 50 Indicates an integer.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned, for example.
  • R 5 , R 6 , R 7 and R 8 (however, R 5 and R 8 are only in formula (3)) Each independently includes an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like, and examples of the alkyl group include a methyl group.
  • a and c can be independently 6 to 2000, but may be 10 to 1000.
  • b can be 2 to 30, but may be 5 to 20.
  • the airgel composite of the present embodiment includes at least one selected from the group consisting of silica particles, a silicon compound having a hydrolyzable functional group in the molecule, and a hydrolysis product of the silicon compound (hereinafter, these silicons).
  • a compound obtained by drying a wet gel generated from a sol containing a compound or the like may be collectively referred to as “silicon compounds”).
  • the airgel composite described so far may also be obtained by drying a wet gel generated from a sol containing silica particles and silicon compounds.
  • the number of silicon atoms in the molecule of the silicon compound can be 1 or 2. Although it does not specifically limit as a silicon compound which has a hydrolyzable functional group in a molecule
  • numerator For example, an alkyl silicon alkoxide is mentioned. Alkyl silicon alkoxides can have a hydrolyzable functional group number of 3 or less from the viewpoint of improving water resistance. Specifically, for example, methyltrimethoxysilane, dimethyldimethoxysilane, and ethyltrimethoxy Examples include silane.
  • examples of the hydrolyzable functional group include alkoxy groups such as a methoxy group and an ethoxy group.
  • the number of hydrolyzable functional groups is 3 or less, and vinyl trimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl which are silicon compounds having a reactive group in the molecule.
  • Methyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, N- Phenyl-3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, and the like can also be used.
  • bistrimethoxysilylmethane bistrimethoxysilylethane, bistrimethoxysilylhexane, etc., which are silicon compounds having 3 or less hydrolyzable functional groups at the molecular ends can also be used.
  • silicon compounds may be used alone or in combination of two or more.
  • the sol containing the silicon compounds is selected from the group consisting of a polysiloxane compound having a reactive group in the molecule and a hydrolysis product of the polysiloxane compound.
  • these polysiloxane compounds and the like may be collectively referred to as “polysiloxane compounds”).
  • the reactive group in the polysiloxane compounds is not particularly limited, but may be a group that reacts with the same reactive group or a group that reacts with another reactive group, for example, an alkoxy group, a silanol group, a hydroxy group. Examples thereof include an alkyl group, an epoxy group, a polyether group, a mercapto group, a carboxyl group, and a phenol group. You may use the polysiloxane compound which has these reactive groups individually or in mixture of 2 or more types. Examples of the reactive group include an alkoxy group, a silanol group, a hydroxyalkyl group, and a polyether group from the viewpoint of improving the flexibility of the airgel composite.
  • the alkoxy group or the hydroxyalkyl group is a sol.
  • the compatibility can be further improved.
  • the number of carbon atoms of the alkoxy group and hydroxyalkyl group can be 1 to 6, but the flexibility of the airgel composite is not limited. It may be 2 to 4 from the viewpoint of further improving.
  • Examples of the polysiloxane compound having a hydroxyalkyl group in the molecule include those having a structure represented by the following general formula (4).
  • the structure represented by the general formula (1) can be introduced into the skeleton of the airgel composite.
  • R 9 represents a hydroxyalkyl group
  • R 10 represents an alkylene group
  • R 11 and R 12 each independently represents an alkyl group or an aryl group
  • n represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned, for example.
  • two R 9 s may be the same or different from each other, and similarly two R 10 s may be the same or different from each other.
  • two or more R 11 s may be the same or different, and similarly two or more R 12 s may be the same or different.
  • R 9 includes a hydroxyalkyl group having 1 to 6 carbon atoms, and the hydroxyalkyl group includes a hydroxyethyl group, a hydroxypropyl group, and the like.
  • R 10 includes an alkylene group having 1 to 6 carbon atoms, and examples of the alkylene group include an ethylene group and a propylene group.
  • R 11 and R 12 are each independently an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like, and the alkyl group is a methyl group or the like.
  • n can be 2 to 30, but may be 5 to 20.
  • polysiloxane compound having the structure represented by the general formula (4) commercially available products can be used, and compounds such as X-22-160AS, KF-6001, KF-6002, and KF-6003 (all of them) , Manufactured by Shin-Etsu Chemical Co., Ltd.), compounds such as XF42-B0970, Fluid OFOH 702-4% (all manufactured by Momentive).
  • Examples of the polysiloxane compound having an alkoxy group in the molecule include those having a structure represented by the following general formula (5).
  • a ladder structure having a bridge portion represented by the general formula (2) is introduced into the skeleton of the airgel composite. be able to.
  • R 14 represents an alkyl group or an alkoxy group
  • R 15 and R 16 each independently represent an alkoxy group
  • R 17 and R 18 each independently represent an alkyl group or an aryl group
  • m is An integer from 1 to 50 is shown.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • a substituent of a substituted phenyl group an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, a cyano group etc. are mentioned, for example.
  • two R 14 s may be the same or different
  • two R 15 s may be the same or different.
  • two R 14 Each 16 may be the same or different.
  • when m is an integer of 2 or more
  • two or more R 17 s may be the same or different
  • similarly two or more R 18 are each the same. May be different.
  • examples of R 14 include an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms.
  • the alkyl group or alkoxy group includes a methyl group. , A methoxy group, an ethoxy group, and the like.
  • R 15 and R 16 each independently include an alkoxy group having 1 to 6 carbon atoms, and examples of the alkoxy group include a methoxy group and an ethoxy group.
  • R 17 and R 18 are each independently an alkyl group having 1 to 6 carbon atoms, a phenyl group or the like, and the alkyl group is a methyl group or the like.
  • m can be 2 to 30, but may be 5 to 20.
  • the polysiloxane compound having the structure represented by the general formula (5) can be obtained by appropriately referring to the production methods reported in, for example, JP-A Nos. 2000-26609 and 2012-233110. Can do.
  • the polysiloxane compound having an alkoxy group in the molecule may exist as a hydrolysis product in the sol.
  • the polysiloxane compound having an alkoxy group in the molecule and Decomposition products may be mixed. Further, in the polysiloxane compound having an alkoxy group in the molecule, all of the alkoxy groups in the molecule may be hydrolyzed or partially hydrolyzed.
  • polysiloxane compounds may be used alone or in admixture of two or more.
  • the content of the silicon compounds contained in the sol can be 5 to 50 parts by mass with respect to 100 parts by mass of the total sol, but may be 10 to 30 parts by mass. By making it 5 parts by mass or more, it becomes easy to obtain good reactivity, and by making it 50 parts by mass or less, it becomes easy to obtain good compatibility.
  • the total content of silicon compounds and polysiloxane compounds can be 5 to 50 parts by mass with respect to 100 parts by mass of the total amount of sol. May be 10 to 30 parts by mass.
  • the ratio of the content of the silicon compounds and the content of the hydrolysis product of the polysiloxane compounds can be 0.5: 1 to 4: 1, but is 1: 1 to 2: 1. It may be.
  • the ratio of the content of these compounds is 0.5: 1 or more, good compatibility is further easily obtained, and when the ratio is 4: 1 or less, gel shrinkage is further easily suppressed.
  • the content of the silica particles contained in the sol can be 1 to 20 parts by mass with respect to 100 parts by mass of the total sol, but may be 4 to 15 parts by mass.
  • the content By setting the content to 1 part by mass or more, it becomes easy to impart an appropriate strength to the airgel, and it becomes easy to obtain an airgel composite having excellent shrinkage resistance during drying.
  • the airgel composite of this embodiment can have a structure represented by the following general formula (6).
  • R 19 represents an alkyl group.
  • examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group include a methyl group.
  • the airgel composite of this embodiment can have a structure represented by the following general formula (7).
  • R 20 and R 21 each independently represents an alkyl group.
  • examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group include a methyl group.
  • the airgel composite of this embodiment can have a structure represented by the following general formula (8).
  • R 22 represents an alkylene group.
  • examples of the alkylene group include an alkylene group having 1 to 10 carbon atoms, and examples of the alkylene group include an ethylene group and a hexylene group.
  • the manufacturing method of an airgel composite is demonstrated.
  • the manufacturing method of an airgel composite is not specifically limited, For example, it can manufacture with the following method.
  • the airgel composite of the present embodiment is obtained in a sol generation step, a wet gel generation step in which the sol obtained in the sol generation step is gelled and then aged to obtain a wet gel, and the wet gel generation step.
  • the wet gel is washed and (if necessary) solvent-replaced, and the washing and solvent-substituted wet gel is dried by a production method mainly comprising a drying process.
  • the sol is a state before the gelation reaction occurs, and in the present embodiment, the silicon compounds, in some cases polysiloxane compounds, and silica particles are dissolved or dispersed in a solvent.
  • the wet gel means a gel solid in a wet state that contains a liquid medium but does not have fluidity.
  • the sol production step is a step of producing a sol by mixing the above-described silicon compound, optionally a polysiloxane compound, silica particles, and a solvent and hydrolyzing them.
  • Silica particles may be mixed in the state of a dispersion dispersed in a solvent.
  • an acid catalyst may be further added to the solvent in order to promote the hydrolysis reaction.
  • a surfactant, a thermally hydrolyzable compound, and the like can be added to the solvent.
  • components such as carbon graphite, an aluminum compound, a magnesium compound, a silver compound, and a titanium compound may be added to the solvent for the purpose of suppressing heat radiation.
  • alcohols for example, water or a mixed solution of water and alcohols can be used.
  • alcohols include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, and t-butanol.
  • alcohols having a low surface tension and a low boiling point in terms of reducing the interfacial tension with the gel wall include methanol, ethanol, 2-propanol and the like. You may use these individually or in mixture of 2 or more types.
  • the amount of alcohols can be 4 to 8 moles with respect to 1 mole of the total amount of the silicon compound and polysiloxane compound, but may be 4 to 6.5. 4.5 to 6 moles.
  • the amount of alcohols 4 mol or more it becomes easier to obtain good compatibility, and by making it 8 mol or less, it becomes easier to suppress gel shrinkage.
  • Acid catalysts include hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, odorous acid, chloric acid, chlorous acid, hypochlorous acid and other inorganic acids; acidic phosphoric acid Acidic phosphates such as aluminum, acidic magnesium phosphate and acidic zinc phosphate; organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid and azelaic acid Etc. Among these, an organic carboxylic acid is mentioned as an acid catalyst which improves the water resistance of the airgel composite obtained more. Examples of the organic carboxylic acids include acetic acid, but may be formic acid, propionic acid, oxalic acid, malonic acid and the like. You may use these individually or in mixture of 2 or more types.
  • the addition amount of the acid catalyst can be 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound and the polysiloxane compound.
  • a nonionic surfactant As the surfactant, a nonionic surfactant, an ionic surfactant, or the like can be used. You may use these individually or in mixture of 2 or more types.
  • nonionic surfactant examples include those containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group, and those containing a hydrophilic part such as polyoxypropylene.
  • examples of those containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene alkyl ether and the like.
  • hydrophilic parts such as polyoxypropylene, the polyoxypropylene alkyl ether, the block copolymer of polyoxyethylene and polyoxypropylene, etc. are mentioned.
  • Examples of the ionic surfactant include a cationic surfactant, an anionic surfactant, and an amphoteric surfactant.
  • Examples of the cationic surfactant include cetyltrimethylammonium bromide and cetyltrimethylammonium chloride, and examples of the anionic surfactant include sodium dodecylsulfonate.
  • Examples of amphoteric surfactants include amino acid surfactants, betaine surfactants, amine oxide surfactants, and the like.
  • Examples of amino acid surfactants include acyl glutamic acid.
  • Examples of betaine surfactants include lauryldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, and the like.
  • Examples of the amine oxide surfactant include lauryl dimethylamine oxide.
  • surfactants have the effect of reducing the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer and suppressing phase separation in the wet gel formation process described later. It is considered to be.
  • the amount of the surfactant added depends on the type of the surfactant or the types and amounts of the silicon compound and the polysiloxane compound.
  • the amount of the surfactant added is 1 to 100 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound and the polysiloxane compound.
  • the amount can be 100 parts by mass.
  • the added amount may be 5 to 60 parts by mass.
  • thermohydrolyzable compound is considered to generate a base catalyst by thermal hydrolysis to make the reaction solution basic and to promote the sol-gel reaction in the wet gel generation process described later. Accordingly, the thermohydrolyzable compound is not particularly limited as long as it can make the reaction solution basic after hydrolysis.
  • Urea formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N -Acid amides such as methylacetamide and N, N-dimethylacetamide; cyclic nitrogen compounds such as hexamethylenetetramine and the like.
  • urea is particularly easy to obtain the above-mentioned promoting effect.
  • the addition amount of the thermohydrolyzable compound is not particularly limited as long as it can sufficiently promote the sol-gel reaction in the wet gel generation step described later.
  • the amount added can be 1 to 200 parts by mass with respect to 100 parts by mass of the total amount of the silicon compound and the polysiloxane compound.
  • the added amount may be 2 to 150 parts by mass.
  • the hydrolysis in the sol production step depends on the type and amount of silicon compound, polysiloxane compound, silica particles, acid catalyst, surfactant, etc. in the mixed solution, but for example, in a temperature environment of 20 to 60 ° C. For 10 minutes to 24 hours, or in a temperature environment of 50 to 60 ° C. for 5 minutes to 8 hours.
  • the hydrolyzable functional group in a silicon compound and a polysiloxane compound is fully hydrolyzed, and the hydrolysis product of a silicon compound and the hydrolysis product of a polysiloxane compound can be obtained more reliably.
  • the temperature environment of the sol generation step may be adjusted to a temperature that suppresses hydrolysis of the thermohydrolyzable compound and suppresses gelation of the sol. .
  • the temperature at this time may be any temperature as long as the hydrolysis of the thermally hydrolyzable compound can be suppressed.
  • the temperature environment of the sol production step can be 0 to 40 ° C., but may be 10 to 30 ° C.
  • the wet gel generation step is a step in which the sol obtained in the sol generation step is gelled and then aged to obtain a wet gel.
  • a base catalyst can be used to promote gelation.
  • Base catalysts include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride, and ammonium bromide; sodium metaphosphate Basic sodium phosphates such as sodium pyrophosphate and sodium polyphosphate; allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diisobutylamine, 3 -(Diethylamino) propylamine, di-2-ethylhexylamine, 3- (dibutylamino) propylamine, tetramethylethylenediamine, t-butylamine, sec Aliphatic amines such as butylamine, propylamine, 3- (
  • ammonium hydroxide (ammonia water) is excellent in that it has high volatility and does not remain in the airgel composite after drying, and thus does not impair water resistance, and is economical. You may use said base catalyst individually or in mixture of 2 or more types.
  • the dehydration condensation reaction, dealcoholization condensation reaction, or both of the silicon compounds, polysiloxane compounds, and silica particles in the sol can be promoted, and the gelation of the sol It can be performed in a shorter time. Thereby, a wet gel with higher strength (rigidity) can be obtained.
  • ammonia has high volatility and hardly remains in the airgel composite. Therefore, by using ammonia as a base catalyst, an airgel composite having better water resistance can be obtained.
  • the addition amount of the base catalyst can be 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of silicon compounds and polysiloxane compounds, but may be 1 to 4 parts by mass. By setting it as 0.5 mass part or more, gelatinization can be performed in a short time, and a water resistance fall can be suppressed more by setting it as 5 mass part or less.
  • the gelation of the sol in the wet gel generation step may be performed in a sealed container so that the solvent and the base catalyst do not volatilize.
  • the gelation temperature can be 30 to 90 ° C., but it may be 40 to 80 ° C. By setting the gelation temperature to 30 ° C. or higher, gelation can be performed in a shorter time, and a wet gel with higher strength (rigidity) can be obtained. Moreover, since it becomes easy to suppress volatilization of a solvent (especially alcohol) by making gelation temperature into 90 degrees C or less, it can gelatinize, suppressing volume shrinkage.
  • the aging in the wet gel generation step may be performed in a sealed container so that the solvent and the base catalyst do not volatilize.
  • the aging temperature can be 30 to 90 ° C., but it may be 40 to 80 ° C.
  • the aging temperature can be 30 to 90 ° C. or higher, a wet gel with higher strength (rigidity) can be obtained, and by setting the aging temperature to 90 ° C. or lower, volatilization of the solvent (especially alcohols) can be easily suppressed. Therefore, it can be gelled while suppressing volume shrinkage.
  • gelation of the sol and subsequent aging may be performed in a series of operations.
  • the gelation time and the aging time differ depending on the gelation temperature and the aging temperature, in the present embodiment, since the sol contains silica particles, the gelation time is particularly compared with the conventional method for producing an airgel. Can be shortened. This is because the silanol groups, reactive groups, or both of the silicon compounds and polysiloxane compounds in the sol form hydrogen bonds, chemical bonds, or a combination of these bonds with the silanol groups of the silica particles. I guess that is to do.
  • the gelation time can be 10 to 120 minutes, but may be 20 to 90 minutes.
  • the drying process can be simplified from the washing and solvent replacement process described later.
  • the total time of the gelation time and the aging time in the entire gelation and aging process can be 4 to 480 hours, but may be 6 to 120 hours.
  • the gelation temperature and the aging temperature are increased within the above range, or the total time of the gelation time and the aging time is increased within the above range. May be. Further, in order to increase the density of the obtained airgel composite or to reduce the average pore diameter, the gelation temperature and the aging temperature are reduced within the above range, or the total time of the gelation time and the aging time is within the above range. It can be shortened.
  • the washing and solvent replacement step is a step of washing the wet gel obtained by the wet gel generation step (washing step), and a step of replacing the washing liquid in the wet gel with a solvent suitable for the drying conditions (the drying step described later). It is a process which has (solvent substitution process).
  • the washing and solvent replacement step can be performed in a form in which only the solvent replacement step is performed without performing the step of washing the wet gel, but the impurities such as unreacted substances and by-products in the wet gel are reduced, and more From the viewpoint of enabling the production of a highly pure airgel composite, the wet gel may be washed.
  • the solvent replacement step is not necessarily essential as described later.
  • the wet gel obtained in the wet gel production step is washed.
  • cleaning can be repeatedly performed using water or an organic solvent, for example. At this time, washing efficiency can be improved by heating.
  • Organic solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride , N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, formic acid, and other various organic solvents can be used. You may use said organic solvent individually or in mixture of 2 or more types.
  • a low surface tension solvent can be used in order to suppress gel shrinkage due to drying.
  • low surface tension solvents generally have very low mutual solubility with water. Therefore, when using a low surface tension solvent in the solvent replacement step, examples of the organic solvent used in the washing step include hydrophilic organic solvents having high mutual solubility in both water and a low surface tension solvent. Note that the hydrophilic organic solvent used in the washing step can serve as a preliminary replacement for the solvent replacement step.
  • examples of hydrophilic organic solvents include methanol, ethanol, 2-propanol, acetone, and methyl ethyl ketone. Methanol, ethanol, methyl ethyl ketone and the like are excellent in terms of economy.
  • the amount of water or organic solvent used in the washing step can be an amount that can be sufficiently washed by replacing the solvent in the wet gel.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the washing can be repeated until the moisture content in the wet gel after washing is 10% by mass or less with respect to the silica mass.
  • the temperature environment in the washing step can be a temperature not higher than the boiling point of the solvent used for washing.
  • the temperature can be raised to about 30 to 60 ° C.
  • the solvent of the washed wet gel is replaced with a predetermined replacement solvent in order to suppress shrinkage in the drying step described later.
  • the replacement efficiency can be improved by heating.
  • Specific examples of the solvent for substitution include a low surface tension solvent described later in the drying step when drying is performed under atmospheric pressure at a temperature lower than the critical point of the solvent used for drying.
  • examples of the substitution solvent include ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide, and the like, or a mixture of two or more thereof.
  • Examples of the low surface tension solvent include those having a surface tension at 20 ° C. of 30 mN / m or less. The surface tension may be 25 mN / m or less, or 20 mN / m or less.
  • Examples of the low surface tension solvent include pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), 3- Aliphatic hydrocarbons such as methylpentane (18.1), 2-methylhexane (19.3), cyclopentane (22.6), cyclohexane (25.2), 1-pentene (16.0); Aromatic hydrocarbons such as (28.9), toluene (28.5), m-xylene (28.7), p-xylene (28.3); dichloromethane (27.9), chloroform (27.2) ), Carbon tetrachloride (26.9), 1-chloropropane (21.8), 2-ch
  • the amount of the solvent used in the solvent replacement step can be an amount that can sufficiently replace the solvent in the wet gel after washing.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the temperature environment in the solvent replacement step can be a temperature not higher than the boiling point of the solvent used for the replacement.
  • the temperature can be increased to about 30 to 60 ° C.
  • the solvent replacement step is not necessarily essential as described above.
  • the inferred mechanism is as follows. That is, conventionally, in order to suppress shrinkage in the drying process, the solvent of the wet gel is replaced with a predetermined replacement solvent (a low surface tension solvent), but in this embodiment, the silica particles are in a three-dimensional network shape. By functioning as a skeleton support, the skeleton is supported, and the shrinkage of the gel in the drying step is suppressed. Therefore, it is considered that the gel can be directly subjected to the drying step without replacing the solvent used for washing. Thus, in this embodiment, the drying process can be simplified from the washing and solvent replacement process. However, this embodiment does not exclude performing the solvent substitution step at all.
  • the drying method is not particularly limited, and known atmospheric pressure drying, supercritical drying, or freeze drying can be used.
  • atmospheric drying or supercritical drying can be used from the viewpoint of easy production of a low-density airgel composite.
  • atmospheric pressure drying can be used.
  • the normal pressure means 0.1 MPa (atmospheric pressure).
  • the airgel composite of the present embodiment can be obtained by drying a wet gel that has been washed and solvent-substituted (if necessary) at a temperature below the critical point of the solvent used for drying under atmospheric pressure.
  • the drying temperature varies depending on the type of substituted solvent (the solvent used for washing if solvent substitution is not performed), but especially when drying at a high temperature increases the evaporation rate of the solvent and causes large cracks in the gel. In view of the fact that the temperature is 20 to 150 ° C.
  • the drying temperature may be 60 to 120 ° C.
  • the drying time varies depending on the wet gel volume and the drying temperature, but can be 4 to 120 hours. In the present embodiment, it is also included in the atmospheric pressure drying that the drying is accelerated by applying a pressure less than the critical point within a range not inhibiting the productivity.
  • the airgel composite of the present embodiment can also be obtained by supercritical drying a wet gel that has been washed and (if necessary) solvent-substituted.
  • Supercritical drying can be performed by a known method. Examples of the supercritical drying method include a method of removing the solvent at a temperature and pressure higher than the critical point of the solvent contained in the wet gel.
  • all or part of the solvent contained in the wet gel is obtained by immersing the wet gel in liquefied carbon dioxide, for example, at about 20 to 25 ° C. and about 5 to 20 MPa. And carbon dioxide having a lower critical point than that of the solvent, and then removing carbon dioxide alone or a mixture of carbon dioxide and the solvent.
  • the airgel composite obtained by such normal pressure drying or supercritical drying may be further dried at 105 to 200 ° C. for about 0.5 to 2 hours under normal pressure. This makes it easier to obtain an airgel composite having a low density and having small pores. Additional drying may be performed at 150 to 200 ° C. under normal pressure.
  • the support member with an airgel composite of the present embodiment includes the airgel composite described so far and a support member that supports the airgel composite.
  • Such a support member with an airgel composite can exhibit high heat insulation and excellent flexibility.
  • the support member examples include a film-like support member, a sheet-like support member, a foil-like support member, and a porous support member.
  • the film-like support member is obtained by molding a polymer raw material into a thin film, and examples thereof include organic films such as PET and polyimide, glass films, and the like (including metal vapor-deposited films).
  • the sheet-like support member is formed by molding at least one fiber-shaped raw material selected from the group consisting of organic, inorganic, and metal. Paper, non-woven fabric (including glass mat), organic fiber cloth, glass cloth, etc. Can be mentioned.
  • the foil-like support member is a metal raw material formed into a thin film, and examples thereof include aluminum foil and copper foil.
  • the porous support member has a porous structure using at least one selected from the group consisting of organic, inorganic and metal as a raw material, for example, a porous organic material such as polyurethane foam, a porous material such as a zeolite sheet, etc. Examples thereof include porous materials such as inorganic materials, porous metal sheets, and porous aluminum sheets.
  • the support member with the airgel composite can be manufactured, for example, as follows. First, a sol is prepared according to the sol generation process described above. After applying this onto the support member using a film applicator or the like, or impregnating the support member with the film applicator, a film-like support member with a wet gel is obtained according to the wet gel generation step described above. Then, the obtained film-like support member with wet gel is subjected to cleaning and solvent replacement according to the above-described cleaning and solvent replacement steps, and further dried according to the above-described drying step, whereby the support member with an airgel composite is provided. Can be obtained.
  • the thickness of the airgel composite formed on the film-like support member or foil-like support member can be 1 to 200 ⁇ m, but may be 10 to 100 ⁇ m, or 30 to 80 ⁇ m. When the thickness is 1 ⁇ m or more, it is easy to obtain good heat insulating properties, and when it is 200 ⁇ m or less, flexibility is easily obtained.
  • the airgel composite of the present embodiment described as described above has excellent heat insulating properties and flexibility, which has been difficult to achieve with conventional airgel, by containing an airgel component and silica particles.
  • the particularly excellent flexibility made it possible to form an airgel composite layer on a film-like support member and a foil-like support member, which had been difficult to achieve in the past. Therefore, the support member with an airgel composite of the present embodiment has high heat insulating properties and excellent flexibility.
  • the support member with an airgel composite of the present embodiment has high heat insulating properties and excellent flexibility.
  • the airgel composite and the support member with the airgel composite of the present embodiment can be applied to a use as a heat insulating material in an architectural field, an automobile field, a home appliance, a semiconductor field, an industrial facility, and the like.
  • the airgel composite of this embodiment can be used as a coating additive, cosmetics, antiblocking agent, catalyst carrier, etc., in addition to its use as a heat insulating material.
  • the heat insulating material of the present embodiment includes the airgel composite described so far, and has high heat insulating properties and excellent flexibility.
  • the airgel composite obtained by the manufacturing method of the said airgel composite can be made into a heat insulating material as it is (processed into a predetermined shape as needed).
  • Example 1 [Wet gel, airgel composite] 80.0 parts by mass of methyltrimethoxysilane LS-530 (manufactured by Shin-Etsu Chemical Co., Ltd., product name: hereinafter abbreviated as “MTMS”) and dimethyldimethoxysilane LS-520 (manufactured by Shin-Etsu Chemical Co., Ltd., product) Name: “DMDMS” (hereinafter abbreviated as “20.0 mass parts”) and PL-20 as a silica particle-containing raw material (details of PL-20 are shown in Table 1. The same applies to the silica particle-containing raw material).
  • MTMS methyltrimethoxysilane LS-530
  • MTMS dimethyldimethoxysilane LS-520
  • sol 1 0 parts by mass, 40.0 parts by mass of water and 80.0 parts by mass of methanol were mixed, and 0.10 parts by mass of acetic acid as an acid catalyst was added thereto, and reacted at 25 ° C. for 2 hours to obtain sol 1.
  • the obtained wet gel 1 was immersed in 2500.0 parts by mass of methanol and washed at 60 ° C. for 12 hours. This washing operation was performed 3 times while exchanging with fresh methanol.
  • the washed wet gel was immersed in 2500.0 parts by mass of heptane, which is a low surface tension solvent, and solvent substitution was performed at 60 ° C. for 12 hours. This solvent replacement operation was performed three times while exchanging with new heptane.
  • the washed and solvent-substituted wet gel is dried at 40 ° C. for 96 hours under normal pressure, and then further dried at 150 ° C. for 2 hours, whereby the structures represented by the above general formulas (6) and (7) are obtained.
  • the airgel composite 1 which has this was obtained.
  • [Support member with airgel composite] A film-like support member with an airgel composite
  • the sol 1 is formed into a film made of polyethylene terephthalate (longitudinal) 300 mm ⁇ (horizontal) 270 mm ⁇ (thickness) 12 ⁇ m so that the thickness after gelation is 40 ⁇ m (tester) PI-1210) manufactured by Sangyo Co., Ltd. was applied, gelled at 60 ° C. for 3 hours, and then aged at 80 ° C. for 24 hours to obtain a film-like support member 1 with a wet gel.
  • the obtained film-like support member 1 with wet gel was immersed in 100 mL of methanol and washed at 60 ° C. for 2 hours.
  • the washed film-like support member with wet gel was immersed in 100 mL of methyl ethyl ketone, and the solvent was replaced at 60 ° C. for 2 hours. This solvent replacement operation was performed twice while exchanging with new methyl ethyl ketone.
  • the washed and solvent-substituted film-like support member with a wet gel was dried at 120 ° C. for 6 hours under normal pressure to obtain a film-like support member 1 with an airgel composite.
  • the sol 1 is placed in an E glass cloth of (length) 300 mm x (width) 270 mm x (thickness) 100 ⁇ m so that the thickness of the sheet-like support member after gelation is 120 ⁇ m. After impregnation and gelation at 60 ° C. for 3 hours, aging at 80 ° C. for 24 hours yielded a sheet-like support member 1 with a wet gel.
  • the obtained sheet-like support member 1 with wet gel was immersed in 300 mL of methanol and washed at 60 ° C. for 2 hours.
  • the washed sheet-like support member with wet gel was immersed in 300 mL of methyl ethyl ketone, and the solvent was replaced at 60 ° C. for 2 hours. This solvent replacement operation was performed twice while exchanging with new methyl ethyl ketone.
  • the washed and solvent-substituted sheet-like support member with a wet gel was dried at 120 ° C. for 8 hours under normal pressure to obtain a sheet-like support member 1 with an airgel composite.
  • the sol 1 is applied to a (longitudinal) 300 mm x (horizontal) 270 mm x (thickness) 12 ⁇ m aluminum foil using a film applicator so that the thickness after gelation is 40 ⁇ m. Then, after gelling at 60 ° C. for 3 hours, it was aged at 80 ° C. for 24 hours to obtain a foil-like support member 1 with a wet gel.
  • the obtained foil-like support member 1 with wet gel was immersed in 100 mL of methanol and washed at 60 ° C. for 2 hours.
  • the washed foil-like support member with wet gel was immersed in 100 mL of methyl ethyl ketone, and solvent substitution was performed at 60 ° C. for 2 hours. This solvent replacement operation was performed twice while exchanging with new methyl ethyl ketone.
  • the washed and solvent-substituted foil-like support member with a wet gel was dried at 120 ° C. for 6 hours under normal pressure to obtain a foil-like support member 1 with an airgel composite.
  • the above sol 1 is made into a flexible urethane foam of (length) 300 mm x (width) 270 mm x (thickness) 10 mm so that the thickness of the porous support member after gelation becomes 10 mm. After impregnating and gelling at 60 ° C. for 3 hours, it was aged at 80 ° C. for 24 hours to obtain a porous support member 1 with wet gel.
  • porous support member 1 with wet gel was immersed in 300 mL of methanol and washed at 60 ° C. for 2 hours.
  • the washed porous support member with wet gel was immersed in 300 mL of methyl ethyl ketone, and the solvent was replaced at 60 ° C. for 2 hours. This solvent replacement operation was performed twice while exchanging with new methyl ethyl ketone.
  • the porous support member 1 with an airgel composite was obtained by drying the washed and solvent-substituted porous support member with a wet gel at 120 ° C. for 10 hours under normal pressure.
  • Example 2 [Wet gel, airgel composite] 60.0 parts by mass of MTMS as a silicon compound and 40.0 parts by mass of DMDMS, 100.0 parts by mass of PL-2L as a silica particle-containing raw material, 40.0 parts by mass of water and 80.0 parts by mass of methanol 0.10 parts by mass of acetic acid as an acid catalyst was added thereto and reacted at 25 ° C. for 2 hours to obtain sol 2. 40.0 parts by mass of 5% aqueous ammonia as a base catalyst was added to the obtained sol 2, gelled at 60 ° C., and then aged at 80 ° C. for 24 hours to obtain wet gel 2. Then, the airgel composite 2 which has the structure represented by the said General formula (6) and (7) was obtained like Example 1 using the obtained wet gel 2.
  • Example 3 [Wet gel, airgel composite] 60.0 parts by mass of MTMS as a silicon compound, 40.0 parts by mass of bistrimethoxysilylhexane “KBM-3066” (manufactured by Shin-Etsu Chemical Co., Ltd., product name), and ST-OZL-35 as a silica particle-containing raw material 57.0 parts by mass, 83.0 parts by mass of water and 80.0 parts by mass of methanol, 0.10 parts by mass of acetic acid as an acid catalyst, and cetyltrimethylammonium bromide (as a cationic surfactant) 20.0 parts by mass of Wako Pure Chemical Industries, Ltd.
  • KBM-3066 bistrimethoxysilylhexane
  • ST-OZL-35 as a silica particle-containing raw material 57.0 parts by mass
  • 83.0 parts by mass of water and 80.0 parts by mass of methanol 0.10 parts by mass of acetic acid as an acid catalyst
  • Example 4 [Wet gel, airgel composite] 100.0 parts by mass of PL-2L as a raw material containing silica particles, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and hot water addition 120.0 parts by mass of urea was mixed as a decomposable compound, and 70.0 parts by mass of MTMS and 30.0 parts by mass of DMDMS were added thereto as a silicon compound, and reacted at 25 ° C. for 2 hours to obtain sol 4. The obtained sol 4 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 4. Then, the airgel composite 4 which has the structure represented by the said General formula (6) and (7) was obtained like Example 1 using the obtained wet gel 4.
  • Example 5 [Wet gel, airgel composite] 200.0 parts by mass of ST-OXS as a silica particle-containing raw material, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and 120. urea as a thermohydrolyzable compound.
  • the mixture was mixed with 0 part by mass, and 60.0 parts by mass of MTMS and 40.0 parts by mass of DMDMS were added as silicon compounds to this and reacted at 25 ° C. for 2 hours to obtain sol 5.
  • the obtained sol 5 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 5.
  • the airgel composite 5 which has the structure represented by the said General formula (6) and (7) was obtained like Example 1 using the obtained wet gel 5.
  • Example 6 [Wet gel, airgel composite] 100.0 parts by mass of PL-2L-D as a silica particle-containing raw material, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and 120.0 parts by mass of urea is mixed as a thermohydrolyzable compound, 60.0 parts by mass of MTMS and 40.0 parts by mass of DMDMS are added as silicon compounds to this, and reacted at 25 ° C. for 2 hours to obtain sol 6. It was. The obtained sol 6 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 6. Then, the airgel composite 6 which has the structure represented by the said General formula (6) and (7) was obtained like Example 1 using the obtained wet gel 6.
  • Example 7 [Wet gel, airgel composite] As a raw material containing silica particles, 87.0 parts by mass of PL-7, 113.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and hot water addition 120.0 parts by mass of urea was mixed as a decomposable compound, and 60.0 parts by mass of MTMS and 40.0 parts by mass of DMDMS were added thereto as a silicon compound, and reacted at 25 ° C. for 2 hours to obtain sol 7. The obtained sol 7 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 7. Thereafter, an airgel composite 7 having a structure represented by the general formulas (6) and (7) was obtained using the obtained wet gel 7 in the same manner as in Example 1.
  • Example 8 [Wet gel, airgel composite] 167.0 parts by mass of PL-1 as a silica particle-containing raw material, 33.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant and hot water addition 120.0 parts by mass of urea was mixed as a decomposable compound, and 60.0 parts by mass of MTMS and 40.0 parts by mass of DMDMS were added thereto as a silicon compound, and reacted at 25 ° C. for 2 hours to obtain sol 8.
  • the obtained sol 8 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 8.
  • the airgel composite 8 which has the structure represented by the said General formula (6) and (7) was obtained like Example 1 using the obtained wet gel 8.
  • Example 9 [Wet gel, airgel composite] 10.0 parts by mass of AEROSIL 90 as a raw material containing silica particles, 190.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant and thermal hydrolyzability 120.0 parts by mass of urea was mixed as a compound, and 60.0 parts by mass of MTMS and 40.0 parts by mass of DMDMS were added thereto as a silicon compound, and reacted at 25 ° C. for 2 hours to obtain sol 9. The obtained sol 9 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 9. Thereafter, using the obtained wet gel 9, the airgel composite 9 having the structure represented by the general formulas (6) and (7) was obtained in the same manner as in Example 1.
  • Example 10 [Wet gel, airgel composite] 10.0 parts by mass of SO-C2 as a raw material containing silica particles, 190.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and hot water addition 120.0 parts by mass of urea is mixed as a decomposable compound, and 60.0 parts by mass of MTMS and 40.0 parts by mass of bistrimethoxysilylhexane are added to this as a silicon compound, followed by reaction at 25 ° C. for 2 hours to obtain sol 10 Obtained.
  • the obtained sol 10 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 10. Then, the airgel composite 10 which has the structure represented by the said General formula (6) and (8) was obtained like Example 1 using the obtained wet gel 10.
  • Example 11 [Wet gel, airgel composite] 100.0 parts by mass of ST-OYL as a raw material containing silica particles, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, and polyoxyethylene and polyoxypropylene as nonionic surfactants 20.0 parts by mass of the block copolymer F-127 (manufactured by BASF, product name) and 120.0 parts by mass of urea as a thermally hydrolyzable compound were mixed with 80.
  • MTMS as a silicon compound.
  • Example 12 [Wet gel, airgel composite] 200.0 parts by mass of PL-06L as a silica particle-containing raw material, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and 120. urea as a thermohydrolyzable compound.
  • MTMS as a silicon compound
  • CTAB as a cationic surfactant
  • 120. urea as a thermohydrolyzable compound.
  • MTMS as a silicon compound
  • the “polysiloxane compound A” was synthesized as follows. First, 100.0 masses of dimethylpolysiloxane XC96-723 (product name, manufactured by Momentive) having silanol groups at both ends in a 1-liter three-necked flask equipped with a stirrer, a thermometer, and a Dimroth condenser. Parts, 181.3 parts by mass of methyltrimethoxysilane and 0.50 parts by mass of t-butylamine were mixed and reacted at 30 ° C. for 5 hours. Thereafter, this reaction solution was heated at 140 ° C. for 2 hours under reduced pressure of 1.3 kPa to remove volatile components, thereby obtaining a bifunctional alkoxy-modified polysiloxane compound (polysiloxane compound A) at both ends.
  • Example 13 [Wet gel, airgel composite] 100.0 parts by mass of PL-20 as a raw material containing silica particles, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and hot water addition 120.0 parts by mass of urea as a decomposable compound, 60.0 parts by mass of MTMS as a silicon compound, and trifunctional alkoxy modification at both ends having a structure represented by the above general formula (5) as a polysiloxane compound 40.0 parts by mass of a polysiloxane compound (hereinafter referred to as “polysiloxane compound B”) was added and reacted at 25 ° C.
  • polysiloxane compound B a polysiloxane compound
  • the “polysiloxane compound B” was synthesized as follows. First, in a 1 liter three-necked flask equipped with a stirrer, a thermometer, and a Dimroth condenser, 100.0 parts by mass of XC96-723, 202.6 parts by mass of tetramethoxysilane and 0. 50 parts by mass was mixed and reacted at 30 ° C. for 5 hours. Thereafter, this reaction solution was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile components, thereby obtaining a trifunctional alkoxy-modified polysiloxane compound (polysiloxane compound B) at both ends.
  • Example 14 [Wet gel, airgel composite] 100.0 parts by mass of PL-20 as a raw material containing silica particles, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and hot water addition 120.0 parts by mass of urea was mixed as a decomposable compound, 60.0 parts by mass of MTMS and 20.0 parts by mass of DMDMS as silicon compounds, and 20.0 parts by mass of X-22-160AS as a polysiloxane compound.
  • a sol 14 was obtained by reacting at 25 ° C. for 2 hours. The obtained sol 14 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 14. Thereafter, an airgel composite 14 having a structure represented by the general formulas (1), (6) and (7) was obtained in the same manner as in Example 1 by using the obtained wet gel 14.
  • Example 15 [Wet gel, airgel composite] 100.0 parts by mass of PL-2L as a raw material containing silica particles, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, and hot water addition 120.0 parts by mass of urea was mixed as a decomposable compound, 60.0 parts by mass of MTMS and 20.0 parts by mass of DMDMS as silicon compounds, and 20.0 parts by mass of polysiloxane compound A as a polysiloxane compound.
  • sol 15 was obtained by reaction at 25 ° C. for 2 hours. The obtained sol 15 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 15. Then, the airgel composite 15 which has the structure represented by the said General formula (3), (6) and (7) was obtained like Example 1 using the obtained wet gel 15.
  • Example 16 [Wet gel, airgel composite] 143.0 parts by mass of ST-OZL-35 as a raw material containing silica particles, 57.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, 20.0 parts by mass of CTAB as a cationic surfactant, 120.0 parts by mass of urea was mixed as a thermally hydrolyzable compound, 60.0 parts by mass of MTMS and 20.0 parts by mass of DMDMS as silicon compounds, and 20.0 parts of polysiloxane compound B as a polysiloxane compound. A mass part was added and reacted at 25 ° C. for 2 hours to obtain sol 16. The obtained sol 16 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 16. Thereafter, an airgel composite 16 having a structure represented by the general formulas (2), (6), and (7) was obtained using the obtained wet gel 16 in the same manner as in Example 1.
  • Example 17 [Wet gel, airgel composite] 50.0 parts by mass of PL-2L and 50.0 parts by mass of PL-20 as raw materials containing silica particles, 100.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, and as a cationic surfactant 20.0 parts by mass of CTAB and 120.0 parts by mass of urea as a thermally hydrolyzable compound were mixed, and 60.0 parts by mass of MTMS and 40.0 parts by mass of DMDMS were added thereto as a silicon compound.
  • a sol 17 was obtained by reacting for a period of time. The obtained sol 17 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 17. Thereafter, an airgel composite 17 having a structure represented by the general formulas (6) and (7) was obtained in the same manner as in Example 1 by using the obtained wet gel 17.
  • Example 18 [Wet gel, airgel composite] 100.0 parts by mass of PL-2L as a raw material containing silica particles, 50.0 parts by mass of ST-OZL-35, 50.0 parts by mass of water, 0.10 parts by mass of acetic acid as an acid catalyst, cationic surface activity 20.0 parts by mass of CTAB as an agent, 120.0 parts by mass of urea as a thermally hydrolyzable compound, 60.0 parts by mass of MTMS and 20.0 parts by mass of DMDMS as a silicon compound, and a polysiloxane compound As a result, 20.0 parts by mass of polysiloxane compound A was added and reacted at 25 ° C. for 2 hours to obtain sol 18.
  • the obtained sol 18 was gelled at 60 ° C. and then aged at 80 ° C. for 24 hours to obtain a wet gel 18. Thereafter, an airgel composite 18 having a structure represented by the general formulas (3), (6) and (7) was obtained in the same manner as in Example 1 by using the obtained wet gel 18.
  • Example 19 [Wet gel, airgel composite]
  • the wet gel 17 obtained above was immersed in 2500.0 parts by mass of methanol and washed at 60 ° C. for 12 hours. This washing operation was performed 3 times while exchanging with fresh methanol. Next, the washed wet gel was immersed in 2500.0 parts by mass of 2-propanol, and solvent substitution was performed at 60 ° C. for 12 hours. This solvent replacement operation was performed three times while exchanging with new 2-propanol.
  • Example 20 [Wet gel, airgel composite] Using the wet gel 18 obtained above, an airgel composite 20 having a structure represented by the general formulas (3), (6) and (7) was obtained in the same manner as in Example 19.
  • Example 21 [Wet gel, airgel composite]
  • the wet gel 15 obtained above was immersed in 2500.0 parts by mass of methanol and washed at 60 ° C. for 12 hours. This washing operation was performed 3 times while exchanging with fresh methanol. Next, the washed wet gel is dried at 60 ° C. for 2 hours and at 100 ° C. for 3 hours under solvent pressure without solvent substitution, and then further dried at 150 ° C. for 2 hours.
  • the airgel composite 21 having the structure represented by (3), (6) and (7) was obtained.
  • Each support member with a wet gel obtained using the wet gel 15 was immersed in 100 mL of methanol and washed at 60 ° C. for 2 hours. Next, each washed support member with wet gel was dried at 60 ° C. for 30 minutes and at 100 ° C. for 1 hour under normal pressure.
  • a film-like support member 21 with an airgel composite, a sheet-like support member 21 with an airgel composite, a foil-like support member 21 with an airgel composite, and a porous support member 21 with an airgel composite were obtained.
  • Example 22 [Wet gel, airgel composite] Using the wet gel 16 obtained above, an airgel composite 22 having a structure represented by the general formulas (2), (6) and (7) was obtained in the same manner as in Example 21.
  • Table 1 summarizes the modes of the silica particle-containing raw materials in each example.
  • Table 2 summarizes the drying method, the types and addition amounts of the Si raw materials (silicon compounds and polysiloxane compounds), and the addition amount of the silica particle-containing raw materials in each Example and Comparative Example.
  • the wet gel, airgel composite and support member with airgel composite obtained in each example, and the wet gel, airgel and support member with airgel obtained in each comparative example were measured or evaluated according to the following conditions.
  • Summary of gelation time in wet gel formation process, airgel composite and airgel state in atmospheric pressure drying of methanol-substituted gel, and evaluation results of thermal conductivity, compressive elastic modulus, density and porosity of airgel composite and airgel Table 3 summarizes the evaluation results of the 180 ° bending test of the support member with the airgel composite and the support member with the airgel.
  • the volume shrinkage ratio SV before and after drying of the sample was obtained from the following equation.
  • the volume shrinkage ratio SV was 5% or less, it was evaluated as “no contraction”, and when it was 5% or more, it was evaluated as “shrinkage”.
  • SV (V 0 ⁇ V 1 ) / V 0 ⁇ 100
  • V 0 represents the volume of the sample before drying
  • V 1 represents the volume of the sample after drying.
  • the thermal conductivity was measured using a steady-state thermal conductivity measuring device “HFM436 Lambda” (manufactured by NETZSCH, product name).
  • the measurement conditions were an average temperature of 25 ° C. under atmospheric pressure.
  • the measurement sample obtained as described above was sandwiched between the upper and lower heaters with a load of 0.3 MPa, the temperature difference ⁇ T was set to 20 ° C., and the guard sample was adjusted so as to obtain a one-dimensional heat flow. Upper surface temperature, lower surface temperature, etc. were measured.
  • thermal resistance RS of the measurement sample was calculated
  • R S N ((T U ⁇ T L ) / Q) ⁇ R O
  • T U represents a measurement sample top surface temperature
  • T L represents the measurement sample lower surface temperature
  • R O represents the thermal contact resistance of the upper and lower interfaces
  • Q is shows the heat flux meter output.
  • N is a proportionality coefficient, and is obtained in advance using a calibration sample.
  • a small tabletop testing machine “EZTest” manufactured by Shimadzu Corporation, product name
  • 500N was used as a load cell.
  • an upper platen ( ⁇ 20 mm) and a lower platen ( ⁇ 118 mm) made of stainless steel were used as compression measurement jigs.
  • a measurement sample was set between an upper platen and a lower platen arranged in parallel, and compression was performed at a speed of 1 mm / min.
  • the measurement temperature was 25 ° C., and the measurement was terminated when a load exceeding 500 N was applied or when the measurement sample was destroyed.
  • the strain ⁇ was obtained from the following equation.
  • ⁇ d / d1
  • ⁇ d the displacement (mm) of the thickness of the measurement sample due to the load
  • d1 the thickness (mm) of the measurement sample before the load is applied.
  • the compressive stress ⁇ (MPa) was obtained from the following equation.
  • F / A
  • F represents the compressive force (N)
  • A represents the cross-sectional area (mm 2 ) of the measurement sample before applying a load.
  • the compressive elastic modulus E (MPa) was obtained from the following equation in the compression force range of 0.1 to 0.2N.
  • E ( ⁇ 2 ⁇ 1 ) / ( ⁇ 2 ⁇ 1 )
  • ⁇ 1 indicates a compressive stress (MPa) measured at a compressive force of 0.1 N
  • ⁇ 2 indicates a compressive stress (MPa) measured at a compressive force of 0.2 N
  • ⁇ 1 indicates a compressive stress.
  • the compressive strain measured at ⁇ 1 is shown
  • ⁇ 2 shows the compressive strain measured at the compressive stress ⁇ 2 .
  • the airgel composites of the examples had a short gelation time in the wet gel production process and excellent reactivity, and had good shrinkage resistance in atmospheric drying using a methanol-substituted gel.
  • good shrinkage resistance was shown in any of the examples, that is, a good-quality airgel composite could be obtained without performing the solvent replacement step. .
  • the airgel composites of the examples have small thermal conductivity and compression modulus, and are excellent in both high heat insulation and high flexibility. Moreover, the support member with an airgel composite of the example had good bending resistance.
  • FIG. 3 shows the surface of the airgel composite in the foil-like support member with the airgel composite obtained in Example 15, (a) 10,000 times, (b) 50,000 times, (c) 200,000 times, and (d ) SEM images observed at 350,000 times.
  • 4 shows the surface of the airgel composite in the foil-like support member with the airgel composite obtained in Example 16, with (a) 10,000 times, (b) 50,000 times, and (c) 200,000 times, respectively. It is the observed SEM image.
  • the airgel composite obtained in Example 15 had a three-dimensional network skeleton (three-dimensionally fine porous structure).
  • the observed particle size was mainly about 20 nm derived from silica particles.
  • Spherical airgel components (aerogel particles) with a particle diameter smaller than that of the silica particles can also be confirmed, but mainly the airgel components do not take a spherical form and cover the silica particles or function as a binder between the silica particles. Observed to be. Thus, since a part of airgel component functions as a binder between silica particles, it is guessed that the intensity
  • the airgel composite obtained in Example 16 also has a three-dimensional network skeleton.
  • the cluster structure is unique. In this example, it does not have a structure in which particles and particles are connected in a bead shape as in a normal airgel, and the connection part of particles and particles seems to be densely filled with an airgel component (silicone). It is observed. Moreover, since the particle diameter of the particle
  • the airgel component not only functions as a binder between particles, but also covers the entire cluster structure, so it is assumed that the strength of the airgel composite can be further improved. Is done.
  • Example 16 since ST-OZL-35 used was an acidic sol, an airgel composite was produced with a low pH in the system. Therefore, it is guessed that the production
  • FIG. 5 is SEM images obtained by observing the surface of the airgel composite in the foil-like support member with an airgel composite obtained in Example 23 at (a) 50,000 times and (b) 200,000 times, respectively.
  • FIG. 6 is SEM images obtained by observing the surface of the airgel composite in the foil-like support member with the airgel composite obtained in Example 24 at (a) 50,000 times and (b) 200,000 times, respectively.
  • Example 23 A foil with an airgel composite as in Example 15, except that PL-3L (a product name, sol in which spherical colloidal silica having an average primary particle diameter of 35 nm is dispersed) was used as a silica particle-containing raw material. A shaped support member was obtained.
  • Example 24 A foil with an airgel composite as in Example 15 except that HL-3L (a product name, a sol in which spherical colloidal silica having an average primary particle size of 30 nm is dispersed) was used as a silica particle-containing raw material. A shaped support member was obtained.
  • the airgel composites obtained using PL-3L and HL-3L also have a three-dimensional network skeleton.
  • particles derived from silica particles having a particle size of about 40 nm and airgel particles having a particle size of about 20 to 30 nm were mainly observed.
  • particles derived from silica particles having a particle size of about 40 nm and airgel particles having a particle size of about 10 nm were mainly observed. Comparing the two, the airgel composite obtained using PL-3L (FIG. 5) is more derived from silica particles than the airgel composite obtained using HL-3L (FIG. 6). The particles were closely connected via the airgel component.
  • PL-3L can improve the strength of the airgel composite as compared with HL-3L. Since PL-3L has more silanol groups per gram than HL-3L, it is presumed that the airgel component was generated at a higher rate and the airgel component in the obtained airgel composite was easily grown in the form of particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Thermal Insulation (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、エアロゲル成分及びシリカ粒子を含有する、断熱性と柔軟性とに優れるエアロゲル複合体に関する。

Description

エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
 本発明は、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材に関する。
 熱伝導率が小さく断熱性を有する材料としてシリカエアロゲルが知られている。シリカエアロゲルは、優れた機能性(断熱性等)、特異な光学特性、特異な電気特性などを有する機能素材として有用なものであり、例えば、シリカエアロゲルの超低誘電率特性を利用した電子基板材料、シリカエアロゲルの高断熱性を利用した断熱材料、シリカエアロゲルの超低屈折率を利用した光反射材料等に用いられている。
 このようなシリカエアロゲルを製造する方法として、アルコキシシランを加水分解し、重合して得られたゲル状化合物(アルコゲル)を、分散媒の超臨界条件下で乾燥する超臨界乾燥法が知られている(例えば、特許文献1参照)。超臨界乾燥法は、アルコゲルと分散媒(乾燥に用いる溶媒)とを高圧容器中に導入し、分散媒をその臨界点以上の温度と圧力をかけて超臨界流体とすることにより、アルコゲルに含まれる溶媒を除去する方法である。しかし、超臨界乾燥法は高圧プロセスを要するため、超臨界に耐え得る特殊な装置等への設備投資が必要であり、なおかつ多くの手間と時間が必要である。
 そこで、アルコゲルを、高圧プロセスを要しない汎用的な方法を用いて乾燥する手法が提案されている。このような方法としては、例えば、ゲル原料として、モノアルキルトリアルコキシシランとテトラアルコキシシランとを特定の比率で併用することにより、得られるアルコゲルの強度を向上させ、常圧で乾燥させる方法が知られている(例えば、特許文献2参照)。しかしながら、このような常圧乾燥を採用する場合、アルコゲル内部の毛細管力に起因するストレスにより、ゲルが収縮する傾向がある。
米国特許第4402927号 特開2011-93744号公報
 このように、従来の製造プロセスが抱える問題点について様々な観点からの検討が行われている一方で、上記いずれのプロセスを採用したとしても、得られたエアロゲルは取り扱い性が悪く、大型化が困難であるため、生産性に課題がある。例えば、上記プロセスにより得られた塊状のエアロゲルは、手で触って持ち上げようとするだけで破損してしまう場合がある。これは、エアロゲルの密度が低いことと、エアロゲルが10nm程度の微粒子が弱く連結しているだけの細孔構造を有していることとに由来すると推察される。
 従来のエアロゲルが有するこのような問題を改善する手法として、ゲルの細孔径をマイクロメータースケール程度にまで大きくすることでゲルに柔軟性を付与する方法が考えられる。しかしながら、そのようにして得られるエアロゲルは熱伝導率が大幅に増大するという問題があり、エアロゲルの優れた断熱性が失われてしまう。
 本発明は上記の事情に鑑みてなされたものであり、断熱性と柔軟性とに優れるエアロゲル複合体を提供することを目的とする。本発明はまた、そのようなエアロゲル複合体を担持してなるエアロゲル複合体付き支持部材、及び断熱材を提供する。
 本発明者は、上記目的を達成するために鋭意研究を重ねた結果、エアロゲル中にシリカ粒子を複合化したエアロゲル複合体であれば、優れた断熱性と柔軟性とが発現されることを見出した。
 本発明は、エアロゲル成分及びシリカ粒子を含有するエアロゲル複合体を提供するものである。本発明のエアロゲル複合体は、従来技術により得られるエアロゲルとは異なり、断熱性と柔軟性とに優れるものである。
 エアロゲル複合体は、エアロゲル成分及びシリカ粒子より形成された三次元網目骨格と、細孔とを有することができる。これにより、断熱性と柔軟性とをさらに向上し易くなる。
 本発明は、また、三次元網目骨格を構成する成分としてシリカ粒子を含有するエアロゲル複合体を提供するものである。このようにして得られたエアロゲル複合体は、断熱性と柔軟性とに優れる。
 本発明は、また、シリカ粒子と、分子内に加水分解性の官能基を有するシリコン化合物及び該シリコン化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルから生成された湿潤ゲルを乾燥してなるエアロゲル複合体を提供するものである。このようにして得られたエアロゲル複合体は、断熱性と柔軟性とに優れる。
 なお、上述したエアロゲル複合体もまた、シリカ粒子と、分子内に加水分解性の官能基を有するシリコン化合物及び該シリコン化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルから生成された湿潤ゲルを乾燥してなるものであってもよい。
 本発明において、上記ゾルは、分子内に反応性基を有するポリシロキサン化合物及びポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種をさらに含有することができる。これにより、さらに優れた断熱性及び柔軟性を達成することができる。
 また、シリカ粒子の平均一次粒子径は1~500nmとすることができる。これにより、断熱性と柔軟性とをさらに向上し易くなる。
 この際、シリカ粒子の形状は球状とすることができる。また、シリカ粒子は非晶質シリカ粒子とすることができ、さらに当該非晶質シリカ粒子は溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子からなる群より選択される少なくとも一種とすることができる。これにより、さらに優れた断熱性及び柔軟性を達成することができる。
 なお、上記乾燥は、乾燥に用いられる溶媒の臨界点未満の温度及び大気圧下で行うことができる。これにより、断熱性と柔軟性とに優れるエアロゲル複合体をさらに得易くなる。
 本発明は、さらに、上記エアロゲル複合体と、エアロゲル複合体を担持する支持部材と、を備えるエアロゲル複合体付き支持部材を提供するものである。本発明によれば、上記エアロゲル複合体が優れた断熱性及び柔軟性を有していることから、優れた断熱性と従来のエアロゲルでは達成困難な優れた屈曲性とを発現することができる。
 本発明は、さらに、上記エアロゲル複合体を備える断熱材を提供するものである。本発明係る断熱材は、上記エアロゲル複合体が優れた断熱性及び柔軟性を有していることから、優れた断熱性と従来の断熱材では達成困難な優れた屈曲性とを発現することができる。
 本発明によれば、断熱性と柔軟性とに優れるエアロゲル複合体を提供することができる。すなわち、優れた断熱性が発現されるとともに、取り扱い性が向上して大型化も可能となり、生産性を高めることができるエアロゲル複合体を提供することができる。このように断熱性と柔軟性とに優れるエアロゲル複合体は様々な用途に活用できる可能性を有している。本発明によれば、また、そのようなエアロゲル複合体を担持してなるエアロゲル複合体付き支持部材、及び断熱材を提供することができる。ここで、本発明に係る重要な点は、従来のエアロゲルよりも断熱性及び柔軟性の制御を行うことが容易になったことにある。このことは、柔軟性を得るためには断熱性を犠牲にしたり、あるいは断熱性を得るためには柔軟性を犠牲にしたりする必要があった従来のエアロゲルでは達成できなかったことである。なお、上記「断熱性と柔軟性とに優れる」とは、双方の特性を表す数値が共に高いことを必ずしも意味するものではなく、例えば、「断熱性を良好に保ちながら柔軟性が優れる」こと、「柔軟性を良好に保ちながら断熱性が優れる」こと等を包含する。
本発明の一実施形態に係るエアロゲル複合体の微細構造を模式的に表す図である。 粒子の二軸平均一次粒子径の算出方法を示す図である。 実施例15で得られたエアロゲル複合体付き箔状支持部材におけるエアロゲル複合体の表面を、(a)1万倍、(b)5万倍、(c)20万倍、及び(d)35万倍でそれぞれ観察したSEM画像である。 実施例16で得られたエアロゲル複合体付き箔状支持部材におけるエアロゲル複合体の表面を、(a)1万倍、(b)5万倍、及び(c)20万倍でそれぞれ観察したSEM画像である。 実施例23で得られたエアロゲル複合体付き箔状支持部材におけるエアロゲル複合体の表面を、(a)5万倍、及び(b)20万倍でそれぞれ観察したSEM画像である。 実施例24で得られたエアロゲル複合体付き箔状支持部材におけるエアロゲル複合体の表面を、(a)5万倍、及び(b)20万倍でそれぞれ観察したSEM画像である。
 以下、場合により図面を参照しつつ本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
<エアロゲル複合体>
 狭義には、湿潤ゲルに対して超臨界乾燥法を用いて得られた乾燥ゲルをエアロゲル、大気圧下での乾燥により得られた乾燥ゲルをキセロゲル、凍結乾燥により得られた乾燥ゲルをクライオゲルと称するが、本実施形態においては、湿潤ゲルのこれらの乾燥手法によらず、得られた低密度の乾燥ゲルをエアロゲルと称する。すなわち、本実施形態においてエアロゲルとは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is a gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味するものである。一般的にエアロゲルの内部は網目状の微細構造となっており、2~20nm程度のエアロゲル粒子が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、100nmに満たない細孔があり、三次元的に微細な多孔性の構造をしている。なお、本実施形態におけるエアロゲルは、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、メチル基等の有機基又は有機鎖を導入した、いわゆる有機-無機ハイブリッド化されたシリカエアロゲルが挙げられる。なお、本実施形態のエアロゲル複合体は、エアロゲル中にシリカ粒子が複合化されながらも、上記エアロゲルの特徴であるクラスター構造を有しており、三次元的に微細な多孔性の構造を有している。
 本実施形態のエアロゲル複合体は、エアロゲル成分及びシリカ粒子を含有するものである。なお、必ずしもこれと同じ概念を意味するものではないが、本実施形態のエアロゲル複合体は、三次元網目骨格を構成する成分としてシリカ粒子を含有するものである、と表現することも可能である。本実施形態のエアロゲル複合体は、後述するとおり断熱性と柔軟性とに優れている。特に、柔軟性が優れていることによりエアロゲル複合体としての取り扱い性が向上して大型化も可能となるため、生産性を高めることができる。なお、このようなエアロゲル複合体は、エアロゲルの製造環境中にシリカ粒子を存在させることにより得られるものである。そしてシリカ粒子を存在させることによるメリットは、複合体自体の断熱性、柔軟性等を向上できることのみならず、後述する湿潤ゲル生成工程の時間短縮、あるいは洗浄及び溶媒置換工程から乾燥工程の簡略化が可能であることにもある。なお、この工程の時間短縮及び工程の簡略化は、柔軟性が優れるエアロゲル複合体を作製する上で必ずしも求められることではない。
 本実施形態において、エアロゲル成分とシリカ粒子との複合化態様は様々である。例えば、エアロゲル成分は膜状等の不定形であってもよく、粒子状(エアロゲル粒子)であってもよい。いずれの態様においても、エアロゲル成分が様々な形態になりシリカ粒子間に存在しているため、複合体の骨格に柔軟性が付与されていると推察される。
 まず、エアロゲル成分とシリカ粒子の複合化態様としては、不定形のエアロゲル成分がシリカ粒子間に介在する態様が挙げられる。このような態様としては、具体的には、例えば、シリカ粒子が膜状のエアロゲル成分(シリコーン)により被覆された態様(エアロゲル成分がシリカ粒子を内包する態様)、エアロゲル成分がバインダーとなりシリカ粒子同士が連結された態様、エアロゲル成分が複数のシリカ粒子間隙を充填している態様、これらの態様の組み合わせの態様(クラスター状に並んだシリカ粒子がエアロゲル成分により被覆された態様等)、など様々な態様が挙げられる。このように、本実施形態においてエアロゲル複合体は、三次元網目骨格がシリカ粒子とエアロゲル成分(シリコーン)から構成されることができ、その具体的態様(形態)に特に制限はない。
 一方、後述するように、本実施形態においてエアロゲル成分は、不定形ではなく図1のように明確な粒子状となってシリカ粒子と複合化していてもよい。
 本実施形態のエアロゲル複合体においてこのような様々な態様が生じるメカニズムは必ずしも定かではないが、本発明者は、ゲル化工程におけるエアロゲル成分の生成速度が関与していると推察している。例えば、シリカ粒子のシラノール基数を変動させることによってエアロゲル成分の生成速度が変動する傾向がある。また、系のpHを変動させることによってもエアロゲル成分の生成速度が変動する傾向がある。
 このことは、シリカ粒子のサイズ、形状、シラノール基数、系のpH等を調整することにより、エアロゲル複合体の態様(三次元網目骨格のサイズ、形状等)を制御できることを示唆する。したがって、エアロゲル複合体の密度、気孔率等の制御が可能となり、エアロゲル複合体の断熱性と柔軟性を制御することができると考えられる。なお、エアロゲル複合体の三次元網目骨格は、上述した様々な態様の一種類のみから構成されていてもよいし、二種以上の態様から構成されていてもよい。
 以下、図1を例にとり、本実施形態のエアロゲル複合体について説明するが、上述のとおり本発明は図1の態様に限定されるものではない。ただし、上記いずれの態様にも共通する事項(シリカ粒子の種類、サイズ、含有量等)については、以下の記載を適宜参照することができる。
 図1は、本発明の一実施形態に係るエアロゲル複合体の微細構造を模式的に表す図である。図1に示されるように、エアロゲル複合体10は、エアロゲル成分であるエアロゲル粒子1が部分的にシリカ粒子2を介して三次元的にランダムに連なることにより形成される三次元網目骨格と、当該骨格に囲まれた細孔3とを有する。この際、シリカ粒子2はエアロゲル粒子1間に介在し、三次元網目骨格を支持する骨格支持体として機能していると推察される。したがって、このような構造を有することにより、エアロゲルとしての断熱性及び柔軟性を維持しつつ、適度な強度がエアロゲルに付与されることになると考えられる。なお、本実施形態においては、エアロゲル複合体は、シリカ粒子がエアロゲル粒子を介して三次元的にランダムに連なることにより形成される三次元網目骨格を有していてもよい。また、シリカ粒子はエアロゲル粒子により被覆されていてもよい。なお、上記エアロゲル粒子(エアロゲル成分)はシリコーンから構成されるため、シリカ粒子への親和性が高いと推察される。そのため、本実施形態においてはエアロゲルの三次元網目骨格中にシリカ粒子を導入することに成功したと考えられる。この点においては、シリカ粒子のシラノール基も、両者の親和性に寄与していると考えられる。
 エアロゲル粒子1は、複数の一次粒子から構成される二次粒子の態様を取っていると考えられており、概ね球状である。エアロゲル粒子1の平均粒子径(すなわち二次粒子径)は2nm~50μmとすることができるが、5nm~2μmであってもよく、又は10nm~200nmであってもよい。エアロゲル粒子1の平均粒子径が2nm以上であることにより、柔軟性に優れるエアロゲル複合体が得易くなり、一方、平均粒子径が50μm以下であることにより、断熱性に優れるエアロゲル複合体が得易くなる。なお、エアロゲル粒子1を構成する一次粒子の平均粒子径は、低密度の多孔質構造の2次粒子を形成し易いという観点から、0.1nm~5μmとすることができるが、0.5nm~200nmであってもよく、1nm~20nmであってもよい。
 シリカ粒子2としては特に制限なく用いることができ、例えば、非晶質シリカ粒子が挙げられる。さらに当該非晶質シリカ粒子としては、溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子からなる群より選択される少なくとも一種が挙げられる。これらのうち、コロイダルシリカ粒子は単分散性が高く、ゾル中での凝集を抑制し易い。なお、シリカ粒子2としては、中空構造、多孔質構造等を有するシリカ粒子であってもよい。
 シリカ粒子2の形状は特に制限されず、球状、まゆ型、会合型等が挙げられる。これらのうち、シリカ粒子2として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。シリカ粒子2の平均一次粒子径は1~500nmとすることができるが、5~300nmであってもよく、20~100nmであってもよい。シリカ粒子2の平均一次粒子径が1nm以上であることにより、適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲル複合体が得易くなる。一方、平均一次粒子径が500nm以下であることにより、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲル複合体が得易くなる。
 エアロゲル粒子1(エアロゲル成分)とシリカ粒子2とは、水素結合、化学結合、又はそれらの結合の組合せの態様を取って結合していると推測される。この際、水素結合、化学結合、又はそれらの結合の組合せは、エアロゲル粒子1(エアロゲル成分)のシラノール基、反応性基、又はそれら両者と、シリカ粒子2のシラノール基により形成されると考えられる。そのため、結合の態様が化学結合であると、適度な強度をエアロゲルに付与し易いと考えられる。このことから考えると、エアロゲル成分と複合化させる粒子として、シリカ粒子に限らず、粒子表面にシラノール基を有する無機粒子又は有機粒子も用いることができる。
 シリカ粒子2の1g当りのシラノール基数は、10×1018~1000×1018個/gとすることができるが、50×1018~800×1018個/gであってもよく、100×1018~700×1018個/gであってもよい。シリカ粒子2の1g当りのシラノール基数が10×1018個/g以上であることにより、エアロゲル粒子1(エアロゲル成分)とのより良好な反応性を有することができ、耐収縮性に優れるエアロゲル複合体を得易くなる。一方、シラノール基数が1000×1018個/g以下であることにより、ゾル作製時における急なゲル化を抑制し易くなり、均質なエアロゲル複合体が得易くなる。
 本実施形態において、粒子の平均粒子径(エアロゲル粒子の平均二次粒子径及びシリカ粒子の平均一次粒子径)は、走査型電子顕微鏡(以下「SEM」と略記する。)を用いてエアロゲル複合体の断面を直接観察することにより得ることができる。例えば、三次元網目骨格からは、その断面の直径に基づきエアロゲル粒子又はシリカ粒子個々の粒子径を得ることができる。ここでいう直径とは、三次元網目骨格を形成する骨格の断面を円とみなした場合の直径を意味する。また、断面を円とみなした場合の直径とは、断面の面積を同じ面積の円に置き換えたときの当該円の直径のことである。なお、平均粒子径の算出に当たっては、100個の粒子について円の直径を求め、その平均を取るものとする。
 なお、シリカ粒子については原料から平均粒子径を測定することが可能である。例えば、二軸平均一次粒子径は、任意の粒子20個をSEMにより観察した結果から、次のようにして算出される。すなわち、通常水に分散している固形分濃度が5~40質量%であるコロイダルシリカ粒子を例にすると、コロイダルシリカ粒子の分散液にパターン配線付きウエハを2cm角に切ったチップを約30秒浸した後、当該チップを純水にて約30秒間すすぎ、窒素ブロー乾燥する。その後、チップをSEM観察用の試料台に載せ、加速電圧10kVを掛け、10万倍の倍率にてシリカ粒子を観察し、画像を撮影する。得られた画像から20個のシリカ粒子を任意に選択し、それらの粒子の粒子径の平均を平均粒子径とする。この際、選択したシリカ粒子が図2に示すような形状であった場合、シリカ粒子2に外接し、その長辺が最も長くなるように配置した長方形(外接長方形L)を導く。そして、その外接長方形Lの長辺をX、短辺をYとして、(X+Y)/2として二軸平均一次粒子径を算出し、その粒子の粒子径とする。
 エアロゲル複合体における細孔3のサイズは、後述の[密度及び気孔率]の項にて説明する。
 エアロゲル複合体に含まれるエアロゲル成分の含有量は、エアロゲル複合体の総量100質量部に対し、4~25質量部とすることができるが、10~20質量部であってもよい。含有量が4質量部以上であることにより適度な強度を付与し易くなり、25質量部以下であることにより良好な断熱性を得易くなる。
 エアロゲル複合体に含まれるシリカ粒子の含有量は、エアロゲル複合体の総量100質量部に対し、1~25質量部とすることができるが、3~15質量部であってもよい。含有量が1質量部以上であることにより適度な強度をエアロゲル複合体に付与し易くなり、25質量部以下であることによりシリカ粒子の固体熱伝導を抑制し易くなる。
 エアロゲル複合体は、これらエアロゲル成分及びシリカ粒子の他に、熱線輻射抑制等を目的として、カーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等のその他の成分をさらに含んでいてもよい。その他の成分の含有量は特に制限されないが、エアロゲル複合体の所期の効果を十分に確保する観点から、エアロゲル複合体の総量100質量部に対し、1~5質量部とすることができる。
[熱伝導率]
 本実施形態のエアロゲル複合体において、大気圧下、25℃における熱伝導率は0.03W/m・K以下とすることができるが、0.025W/m・K以下であってもよく、0.02W/m・K以下であってもよい。熱伝導率が0.03W/m・K以下であることにより、高性能断熱材であるポリウレタンフォーム以上の断熱性を得ることができる。なお、熱伝導率の下限値は特に限定されないが、例えば、0.01W/m・Kとすることができる。
 熱伝導率は、定常法により測定することができる。具体的には例えば、定常法熱伝導率測定装置「HFM436Lambda」(NETZSCH社製、製品名、HFM436Lambdaは登録商標)を用いて測定することができる。定常法熱伝導率測定装置を用いた熱伝導率の測定方法の概要は次のとおりである。
(測定サンプルの準備)
 刃角約20~25度の刃を用いて、エアロゲル複合体を150mm×150mm×100mmのサイズに加工し、測定サンプルとする。なお、HFM436Lambdaにおける推奨サンプルサイズは300mm×300mm×100mmであるが、上記サンプルサイズで測定した際の熱伝導率は、推奨サンプルサイズで測定した際の熱伝導率と同程度の値となることを確認済みである。次に、面の平行を確保するために、必要に応じて#1500以上の紙やすりで測定サンプルを整形する。そして、熱伝導率測定前に、定温乾燥機「DVS402」(ヤマト科学株式会社製、製品名)を用いて、大気圧下、100℃で30分間、測定サンプルを乾燥する。次いで、測定サンプルをデシケータ中に移し、25℃まで冷却する。これにより、熱伝導率測定用の測定サンプルを得る。
(測定方法)
 測定条件は、大気圧下、平均温度25℃とする。上記のとおり得られた測定サンプルを0.3MPaの荷重にて上部及び下部ヒーター間に挟み、温度差ΔTを20℃とし、ガードヒーターによって一次元の熱流になるように調整しながら、測定サンプルの上面温度、下面温度等を測定する。そして、測定サンプルの熱抵抗Rを次式より求める。
  R=N((T-T)/Q)-R
 式中、Tは測定サンプル上面温度を示し、Tは測定サンプル下面温度を示し、Rは上下界面の接触熱抵抗を示し、Qは熱流束計出力を示す。なお、Nは比例係数であり、較正試料を用いて予め求めておく。
 得られた熱抵抗Rより、測定サンプルの熱伝導率λを次式より求める。
  λ=d/R
 式中、dは測定サンプルの厚さを示す。
[圧縮弾性率]
 本実施形態のエアロゲル複合体において、25℃における圧縮弾性率は3MPa以下とすることができるが、2MPa以下であってもよく、1MPa以下であってもよく、0.5MPa以下であってもよい。圧縮弾性率が3MPa以下であることにより、取り扱い性が優れるエアロゲル複合体とし易くなる。なお、圧縮弾性率の下限値は特に限定されないが、例えば、0.05MPaとすることができる。
[変形回復率]
 本実施形態のエアロゲル複合体において、25℃における変形回復率は90%以上とすることができるが、94%以上であってもよく、98%以上であってもよい。変形回復率が90%以上であることにより、優れた強度、変形に対する優れた柔軟性等をより得易くなる。なお、変形回復率の上限値は特に限定されないが、例えば、100%又は99%とすることができる。
[最大圧縮変形率]
 本実施形態のエアロゲル複合体において、25℃における最大圧縮変形率は80%以上とすることができるが、83%以上であってもよく、86%以上であってもよい。最大圧縮変形率が80%以上であることにより、優れた強度、変形に対する優れた柔軟性等をより得易くなる。なお、最大圧縮変形率の上限値は特に限定されないが、例えば、90%とすることができる。
 これら圧縮弾性率、変形回復率及び最大圧縮変形率は、小型卓上試験機「EZTest」(株式会社島津製作所製、製品名)を用いて測定することができる。小型卓上試験機を用いた圧縮弾性率等の測定方法の概要は次のとおりである。
(測定サンプルの準備)
 刃角約20~25度の刃を用いて、エアロゲル複合体を7.0mm角の立方体(サイコロ状)に加工し、測定サンプルとする。次に、面の平行を確保するために、必要に応じて#1500以上の紙やすりで測定サンプルを整形する。そして、測定前に、定温乾燥機「DVS402」(ヤマト科学株式会社製、製品名)を用いて、大気圧下、100℃で30分間、測定サンプルを乾燥する。次いで測定サンプルをデシケータ中に移し、25℃まで冷却する。これにより、圧縮弾性率、変形回復率及び最大圧縮変形率測定用の測定サンプルを得る。
(測定方法)
 500Nのロードセルを使用する。また、ステンレス製の上圧盤(φ20mm)、下圧盤(φ118mm)を圧縮測定用冶具として用いる。測定サンプルをこれら冶具の間にセットし、1mm/minの速度で圧縮を行い、25℃における測定サンプルサイズの変位等を測定する。測定は、500N超の負荷をかけた時点又は測定サンプルが破壊した時点で終了とする。ここで、圧縮ひずみεは次式より求めることができる。
  ε=Δd/d1
 式中、Δdは負荷による測定サンプルの厚みの変位(mm)を示し、d1は負荷をかける前の測定サンプルの厚み(mm)を示す。
 また、圧縮応力σ(MPa)は、次式より求めることができる。
  σ=F/A
 式中、Fは圧縮力(N)を示し、Aは負荷をかける前の測定サンプルの断面積(mm)を示す。
 圧縮弾性率E(MPa)は、例えば、0.1~0.2Nの圧縮力範囲において、次式より求めることができる。
  E=(σ-σ)/(ε-ε
 式中、σは圧縮力が0.1Nにおいて測定される圧縮応力(MPa)を示し、σは圧縮力が0.2Nにおいて測定される圧縮応力(MPa)を示し、εは圧縮応力σにおいて測定される圧縮ひずみを示し、εは圧縮応力σにおいて測定される圧縮ひずみを示す。
 一方、変形回復率及び最大圧縮変形率は、負荷をかける前の測定サンプルの厚みをd1、500Nの最大負荷をかけた時点又は測定サンプルが破壊した時点の測定サンプルの厚みをd2、負荷を取り除いた後の測定サンプルの厚みをd3として、以下の式に従って算出することができる。
  変形回復率=(d3-d2)/(d1-d2)×100
  最大圧縮変形率=(d1-d2)/d1×100
 なお、これら熱伝導率、圧縮弾性率、変形回復率及び最大圧縮変形率は、後述するエアロゲル複合体の製造条件、原料等を変更することにより適宜調整することができる。
[密度及び気孔率]
 本実施形態のエアロゲル複合体において、細孔3のサイズ、すなわち平均細孔径は5~1000nmとすることができるが、25~500nmであってもよい。平均細孔径が5nm以上であることにより、柔軟性に優れるエアロゲル複合体が得易くなり、また、1000nm以下であることにより、断熱性に優れるエアロゲル複合体が得易くなる。
 本実施形態のエアロゲル複合体において、25℃における密度は0.05~0.25g/cmとすることができるが、0.1~0.2g/cmであってもよい。密度が0.05g/cm以上であることにより、より優れた強度及び柔軟性を得ることができ、また、0.25g/cm以下であることにより、より優れた断熱性を得ることができる。
 本実施形態のエアロゲル複合体において、25℃における気孔率は85~95%とすることができるが、87~93%であってもよい。気孔率が85%以上であることにより、より優れた断熱性を得ることができ、また、95%以下であることにより、より優れた強度及び柔軟性を得ることができる。
 エアロゲル複合体についての、3次元網目状に連続した細孔(通孔)の平均細孔径、密度及び気孔率は、DIN66133に準じて水銀圧入法により測定することができる。測定装置としては、例えば、オートポアIV9520(株式会社島津製作所製、製品名)を用いることができる。
<エアロゲル成分の具体的態様>
 本実施形態のエアロゲル複合体におけるエアロゲル成分としては、以下の態様が挙げられる。これらの態様を採用することにより、エアロゲル複合体の断熱性及び柔軟性を所望の水準に制御することが容易となる。ただし、これらの態様の各々を採用することは、必ずしも本実施形態にて規定するエアロゲル複合体を得ることが目的ではない。各々の態様を採用することで、各々の態様に応じた熱伝導率及び圧縮弾性率を有するエアロゲル複合体を得ることができる。したがって、用途に応じた断熱性及び柔軟性を有するエアロゲル複合体を提供することができる。
(第一の態様)
 本実施形態のエアロゲル複合体は、下記一般式(1)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。なお、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。
 上記の構造をエアロゲル成分としてエアロゲル複合体の骨格中に導入することにより、低熱伝導率かつ柔軟なエアロゲル複合体となる。このような観点から、式(1)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(1)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。
(第二の態様)
 本実施形態のエアロゲル複合体は、支柱部及び橋かけ部を備えるラダー型構造を有するエアロゲル複合体であり、かつ、橋かけ部が下記一般式(2)で表される構造を有するエアロゲル複合体であってもよい。このようなラダー型構造をエアロゲル成分としてエアロゲル複合体の骨格中に導入することにより、耐熱性及び機械的強度を向上させることができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と支柱部同士を連結する橋かけ部(bridges)とを有するもの(いわゆる「梯子」の形態を有するもの)である。本態様において、エアロゲル複合体の骨格がラダー型構造からなっていてもよいが、エアロゲル複合体が部分的にラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。
 上記の構造をエアロゲル成分としてエアロゲル複合体の骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有する(すなわち、下記一般式(X)で表される構造を有する)エアロゲルよりも優れた柔軟性を有するエアロゲル複合体となる。なお、下記一般式(X)にて示すように、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルでは、橋かけ部の構造が-O-であるが、本実施形態のエアロゲル複合体では、橋かけ部の構造が上記一般式(2)で表される構造(ポリシロキサン構造)である。
Figure JPOXMLDOC01-appb-C000003
 式(X)中、Rはヒドロキシ基、アルキル基又はアリール基を示す。
 支柱部となる構造及びその鎖長、並びに橋かけ部となる構造の間隔は特に限定されないが、耐熱性と機械的強度とをより向上させるという観点から、ラダー型構造としては、下記一般式(3)で表される構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000004
 式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。また、式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様にcが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。
 なお、より優れた柔軟性を得る観点から、式(2)及び(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)としてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(3)中、a及びcは、それぞれ独立に6~2000とすることができるが、10~1000であってもよい。また、式(2)及び(3)中、bは、2~30とすることができるが、5~20であってもよい。
(第三の態様)
 本実施形態のエアロゲル複合体は、シリカ粒子と、分子内に加水分解性の官能基を有するシリコン化合物及び該シリコン化合物の加水分解生成物からなる群より選択される少なくとも一種(以下、これらのシリコン化合物等を総称して「シリコン化合物類」という場合がある)と、を含有するゾルから生成された湿潤ゲルを乾燥して得られるものであってもよい。なお、これまで述べてきたエアロゲル複合体も、このように、シリカ粒子と、シリコン化合物類とを含有するゾルから生成された湿潤ゲルを乾燥することで得られるものであってもよい。
 シリコン化合物における分子内のケイ素数は1又は2とすることができる。分子内に加水分解性の官能基を有するシリコン化合物としては、特に限定されないが、例えば、アルキルケイ素アルコキシドが挙げられる。アルキルケイ素アルコキシドは、耐水性を向上する観点から、加水分解性の官能基の数を3個以下とすることができ、具体的には、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン及びエチルトリメトキシシランが挙げられる。ここで、加水分解性の官能基としては、メトキシ基、エトキシ基等のアルコキシ基などが挙げられる。
 また、加水分解性の官能基の数が3個以下であり、分子内に反応性基を有するシリコン化合物であるビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等も用いることができる。
 さらに、分子末端の加水分解性の官能基が3個以下のシリコン化合物であるビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン等も用いることができる。
 これらのシリコン化合物類は、単独で、又は2種類以上を混合して用いてもよい。
 本実施形態のエアロゲル複合体を作製するにあたり、上記のシリコン化合物類を含有するゾルは、分子内に反応性基を有するポリシロキサン化合物及び該ポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種(以下、これらのポリシロキサン化合物等を総称して「ポリシロキサン化合物類」という場合がある)をさらに含有することができる。
 ポリシロキサン化合物類における反応性基は、特に限定されないが、同じ反応性基同士で反応するか、あるいは他の反応性基と反応する基とすることができ、例えば、アルコキシ基、シラノール基、ヒドロキシアルキル基、エポキシ基、ポリエーテル基、メルカプト基、カルボキシル基、フェノール基等が挙げられる。これらの反応性基を有するポリシロキサン化合物は単独で、又は2種類以上を混合して用いてもよい。反応性基としては、例えば、エアロゲル複合体の柔軟性を向上する観点から、アルコキシ基、シラノール基、ヒドロキシアルキル基、ポリエーテル基等が挙げられ、これらのうち、アルコキシ基又はヒドロキシアルキル基はゾルの相溶性をより向上することができる。また、ポリシロキサン化合物の反応性の向上とエアロゲル複合体の熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基の炭素数は1~6とすることができるが、エアロゲル複合体の柔軟性をより向上する観点から2~4であってもよい。
 分子内にヒドロキシアルキル基を有するポリシロキサン化合物としては、下記一般式(4)で表される構造を有するものが挙げられる。下記一般式(4)で表される構造を有するポリシロキサン化合物を使用することにより、前記一般式(1)で表される構造をエアロゲル複合体の骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000005
 式(4)中、Rはヒドロキシアルキル基を示し、R10はアルキレン基を示し、R11及びR12はそれぞれ独立にアルキル基又はアリール基を示し、nは1~50の整数を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(4)中、2個のRは各々同一であっても異なっていてもよく、同様に2個のR10は各々同一であっても異なっていてもよい。また、式(4)中、2個以上のR11は各々同一であっても異なっていてもよく、同様に2個以上のR12は各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物類を含有するゾルから生成された湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲル複合体をさらに得易くなる。このような観点から、式(4)中、Rとしては炭素数が1~6のヒドロキシアルキル基等が挙げられ、当該ヒドロキシアルキル基としてはヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。また、式(4)中、R10としては炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。また、式(4)中、R11及びR12としてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(4)中、nは2~30とすることができるが、5~20であってもよい。
 上記一般式(4)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、X-22-160AS、KF-6001、KF-6002、KF-6003等の化合物(いずれも、信越化学工業株式会社製)、XF42-B0970、Fluid OFOH 702-4%等の化合物(いずれも、モメンティブ社製)などが挙げられる。
 分子内にアルコキシ基を有するポリシロキサン化合物としては、下記一般式(5)で表される構造を有するものが挙げられる。下記一般式(5)で表される構造を有するポリシロキサン化合物を使用することにより、前記一般式(2)で表される橋かけ部を有するラダー型構造をエアロゲル複合体の骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000006
 式(5)中、R14はアルキル基又はアルコキシ基を示し、R15及びR16はそれぞれ独立にアルコキシ基を示し、R17及びR18はそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(5)中、2個のR14は各々同一であっても異なっていてもよく、2個のR15は各々同一であっても異なっていてもよく、同様に2個のR16は各々同一であっても異なっていてもよい。また、式(5)中、mが2以上の整数の場合、2個以上のR17は各々同一であっても異なっていてもよく、同様に2個以上のR18も各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物類を含有するゾルから生成された湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲル複合体をさらに得易くなる。このような観点から、式(5)中、R14としては炭素数が1~6のアルキル基、炭素数が1~6のアルコキシ基等が挙げられ、当該アルキル基又はアルコキシ基としてはメチル基、メトキシ基、エトキシ基等が挙げられる。また、式(5)中、R15及びR16としてはそれぞれ独立に炭素数が1~6のアルコキシ基等が挙げられ、当該アルコキシ基としてはメトキシ基、エトキシ基等が挙げられる。また、式(5)中、R17及びR18としてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(5)中、mは2~30とすることができるが、5~20であってもよい。
 上記一般式(5)で表される構造を有するポリシロキサン化合物は、例えば、特開2000-26609号公報、特開2012-233110号公報等にて報告される製造方法を適宜参照して得ることができる。
 なお、アルコキシ基は加水分解するため、分子内にアルコキシ基を有するポリシロキサン化合物はゾル中にて加水分解生成物として存在する可能性があり、分子内にアルコキシ基を有するポリシロキサン化合物とその加水分解生成物は混在していてもよい。また、分子内にアルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。
 これらのポリシロキサン化合物類は、単独で、又は2種類以上を混合して用いてもよい。
 上記ゾルに含まれるシリコン化合物類の含有量は、ゾルの総量100質量部に対し、5~50質量部とすることができるが、10~30質量部であってもよい。5質量部以上にすることにより良好な反応性を得易くなり、また、50質量部以下にすることにより良好な相溶性を得易くなる。
 また、上記ゾルが、ポリシロキサン化合物類をさらに含有する場合、シリコン化合物類及びポリシロキサン化合物類の含有量の総和は、ゾルの総量100質量部に対し、5~50質量部とすることができるが、10~30質量部であってもよい。含有量の総和を5質量部以上にすることにより良好な反応性をさらに得易くなり、また、50質量部以下にすることにより良好な相溶性をさらに得易くなる。この際、シリコン化合物類の含有量とポリシロキサン化合物類の加水分解生成物の含有量との比は、0.5:1~4:1とすることができるが、1:1~2:1であってもよい。これらの化合物の含有量の比を0.5:1以上とすることにより良好な相溶性をさらに得易くなり、また、4:1以下とすることによりゲルの収縮をさらに抑制し易くなる。
 上記ゾルに含まれるシリカ粒子の含有量は、ゾルの総量100質量部に対し、1~20質量部とすることができるが、4~15質量部であってもよい。含有量を1質量部以上にすることにより適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲル複合体が得易くなる。また、含有量を20質量部以下にすることによりシリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲル複合体が得易くなる。
(その他の態様)
 本実施形態のエアロゲル複合体は、下記一般式(6)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000007
 式(6)中、R19はアルキル基を示す。ここで、アルキル基としては炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
 本実施形態のエアロゲル複合体は、下記一般式(7)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000008
 式(7)中、R20及びR21はそれぞれ独立にアルキル基を示す。ここで、アルキル基としては炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
 本実施形態のエアロゲル複合体は、下記一般式(8)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000009
 式(8)中、R22はアルキレン基を示す。ここで、アルキレン基としては炭素数が1~10のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、ヘキシレン基等が挙げられる。
<エアロゲル複合体の製造方法>
 次に、エアロゲル複合体の製造方法について説明する。エアロゲル複合体の製造方法は、特に限定されないが、例えば、以下の方法により製造することができる。
 すなわち、本実施形態のエアロゲル複合体は、ゾル生成工程と、ゾル生成工程で得られたゾルをゲル化し、その後、熟成して湿潤ゲルを得る湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを洗浄及び(必要に応じ)溶媒置換する工程と、洗浄及び溶媒置換した湿潤ゲルを乾燥する乾燥工程とを主に備える製造方法により製造することができる。なお、ゾルとは、ゲル化反応が生じる前の状態であって、本実施形態においては上記シリコン化合物類と、場合によりポリシロキサン化合物類と、シリカ粒子とが溶媒中に溶解若しくは分散している状態を意味する。また、湿潤ゲルとは、液体媒体を含んでいながらも、流動性を有しない湿潤状態のゲル固形物を意味する。
 以下、本実施形態のエアロゲル複合体の製造方法の各工程について説明する。
(ゾル生成工程)
 ゾル生成工程は、上述のシリコン化合物と、場合によりポリシロキサン化合物と、シリカ粒子と、溶媒とを混合し、加水分解させてゾルを生成する工程である。なお、シリカ粒子は、溶媒に分散された分散液の状態で混合してもよい。本工程においては、加水分解反応を促進させるため、溶媒中にさらに酸触媒を添加してもよい。また、特許第5250900号に示されるように、溶媒中に界面活性剤、熱加水分解性化合物等を添加することもできる。さらに、熱線輻射抑制等を目的として、溶媒中にカーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等の成分を添加してもよい。
 溶媒としては、例えば、水、又は、水及びアルコール類の混合液を用いることができる。アルコール類としては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、t-ブタノール等が挙げられる。これらの中でも、ゲル壁との界面張力を低減させる点で、表面張力が低くかつ沸点の低いアルコールとしては、メタノール、エタノール、2-プロパノール等が挙げられる。これらは単独で、又は2種類以上を混合して用いてもよい。
 例えば、溶媒としてアルコール類を用いる場合、アルコール類の量は、シリコン化合物及びポリシロキサン化合物の総量1モルに対し、4~8モルとすることができるが、4~6.5であってもよく、4.5~6モルであってもよい。アルコール類の量を4モル以上にすることにより良好な相溶性をさらに得易くなり、また、8モル以下にすることによりゲルの収縮をさらに抑制し易くなる。
 酸触媒としては、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸類;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩類;酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸類などが挙げられる。これらの中でも、得られるエアロゲル複合体の耐水性をより向上する酸触媒としては有機カルボン酸類が挙げられる。当該有機カルボン酸類としては酢酸が挙げられるが、ギ酸、プロピオン酸、シュウ酸、マロン酸等であってもよい。これらは単独で、又は2種類以上を混合して用いてもよい。
 酸触媒を用いることで、シリコン化合物及びポリシロキサン化合物の加水分解反応を促進させて、より短時間でゾルを得ることができる。
 酸触媒の添加量は、シリコン化合物及びポリシロキサン化合物の総量100質量部に対し、0.001~0.1質量部とすることができる。
 界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。これらは単独で、又は2種類以上を混合して用いてもよい。
 非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含むもの、ポリオキシプロピレン等の親水部を含むものなどを使用できる。ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含むものとしては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含むものとしては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンのブロック共重合体等が挙げられる。
 イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等が挙げられる。カチオン性界面活性剤としては、臭化セチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム等が挙げられ、アニオン性界面活性剤としては、ドデシルスルホン酸ナトリウム等が挙げられる。また、両イオン性界面活性剤としては、アミノ酸系界面活性剤、ベタイン系界面活性剤、アミンオキシド系界面活性剤等が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸等が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等が挙げられる。アミンオキシド系界面活性剤としては、例えば、ラウリルジメチルアミンオキシドが挙げられる。
 これらの界面活性剤は、後述する湿潤ゲル生成工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用をすると考えられている。
 界面活性剤の添加量は、界面活性剤の種類、あるいはシリコン化合物及びポリシロキサン化合物の種類並びに量にも左右されるが、例えば、シリコン化合物及びポリシロキサン化合物の総量100質量部に対し、1~100質量部とすることができる。なお、同添加量は5~60質量部であってもよい。
 熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、後述する湿潤ゲル生成工程でのゾルゲル反応を促進すると考えられている。よって、この熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、尿素;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物などを挙げることができる。これらの中でも、特に尿素は上記促進効果を得られ易い。
 熱加水分解性化合物の添加量は、後述する湿潤ゲル生成工程でのゾルゲル反応を十分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、シリコン化合物及びポリシロキサン化合物の総量100質量部に対して、1~200質量部とすることができる。なお、同添加量は2~150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性をさらに得易くなり、また、200質量部以下とすることにより、結晶の析出及びゲル密度の低下をさらに抑制し易くなる。
 ゾル生成工程の加水分解は、混合液中のシリコン化合物、ポリシロキサン化合物、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば、20~60℃の温度環境下で10分~24時間行ってもよく、50~60℃の温度環境下で5分~8時間行ってもよい。これにより、シリコン化合物及びポリシロキサン化合物中の加水分解性官能基が十分に加水分解され、シリコン化合物の加水分解生成物及びポリシロキサン化合物の加水分解生成物をより確実に得ることができる。
 ただし、溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、熱加水分解性化合物として尿素を用いた場合は、ゾル生成工程の温度環境は0~40℃とすることができるが、10~30℃であってもよい。
(湿潤ゲル生成工程)
 湿潤ゲル生成工程は、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る工程である。本工程では、ゲル化を促進させるため塩基触媒を用いることができる。
 塩基触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、水酸化アンモニウム(アンモニア水)は、揮発性が高く、乾燥後のエアロゲル複合体中に残存し難いため耐水性を損なわないという点、さらには経済性の点で優れている。上記の塩基触媒は単独で、又は2種類以上を混合して用いてもよい。
 塩基触媒を用いることで、ゾル中のシリコン化合物類、ポリシロキサン化合物類、及びシリカ粒子の、脱水縮合反応、脱アルコール縮合反応、又はそれら両者の反応を促進することができ、ゾルのゲル化をより短時間で行うことができる。また、これにより、強度(剛性)のより高い湿潤ゲルを得ることができる。特に、アンモニアは揮発性が高く、エアロゲル複合体中に残留し難いので、塩基触媒としてアンモニアを用いることで、より耐水性の優れたエアロゲル複合体を得ることができる。
 塩基触媒の添加量は、シリコン化合物類及びポリシロキサン化合物類の総量100質量部に対し、0.5~5質量部とすることができるが、1~4質量部であってもよい。0.5質量部以上とすることにより、ゲル化をより短時間で行うことができ、5質量部以下とすることにより、耐水性の低下をより抑制することができる。
 湿潤ゲル生成工程におけるゾルのゲル化は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。ゲル化温度は、30~90℃とすることができるが、40~80℃であってもよい。ゲル化温度を30℃以上とすることにより、ゲル化をより短時間に行うことができ、強度(剛性)のより高い湿潤ゲルを得ることができる。また、ゲル化温度を90℃以下にすることにより、溶媒(特にアルコール類)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 湿潤ゲル生成工程における熟成は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。熟成により、湿潤ゲルを構成する成分の結合が強くなり、その結果、乾燥時の収縮を抑制するのに十分な強度(剛性)の高い湿潤ゲルを得ることができる。熟成温度は、30~90℃とすることができるが、40~80℃であってもよい。熟成温度を30℃以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、熟成温度を90℃以下にすることにより、溶媒(特にアルコール類)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 なお、ゾルのゲル化終了時点を判別することは困難な場合が多いため、ゾルのゲル化とその後の熟成とは、連続して一連の操作で行ってもよい。
 ゲル化時間と熟成時間は、ゲル化温度及び熟成温度により異なるが、本実施形態においてはゾル中にシリカ粒子が含まれていることから、従来のエアロゲルの製造方法と比較して特にゲル化時間を短縮することができる。この理由は、ゾル中のシリコン化合物類及びポリシロキサン化合物類が有する、シラノール基、反応性基、又はそれら両者が、シリカ粒子のシラノール基と水素結合、化学結合、又はそれらの結合の組合せを形成するためであると推察する。なお、ゲル化時間は10~120分間とすることができるが、20~90分間であってもよい。ゲル化時間を10分間以上とすることにより均質な湿潤ゲルを得易くなり、120分間以下とすることにより後述する洗浄及び溶媒置換工程から乾燥工程の簡略化が可能となる。なお、ゲル化及び熟成の工程全体として、ゲル化時間と熟成時間との合計時間は、4~480時間とすることができるが、6~120時間であってもよい。ゲル化時間と熟成時間の合計を4時間以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、480時間以下にすることにより熟成の効果をより維持し易くなる。
 得られるエアロゲル複合体の密度を下げたり、平均細孔径を大きくするために、ゲル化温度及び熟成温度を上記範囲内で高めたり、ゲル化時間と熟成時間の合計時間を上記範囲内で長くしてもよい。また、得られるエアロゲル複合体の密度を上げたり、平均細孔径を小さくするために、ゲル化温度及び熟成温度を上記範囲内で低くしたり、ゲル化時間と熟成時間の合計時間を上記範囲内で短くしてもよい。
(洗浄及び溶媒置換工程)
 洗浄及び溶媒置換工程は、上記湿潤ゲル生成工程により得られた湿潤ゲルを洗浄する工程(洗浄工程)と、湿潤ゲル中の洗浄液を乾燥条件(後述の乾燥工程)に適した溶媒に置換する工程(溶媒置換工程)を有する工程である。洗浄及び溶媒置換工程は、湿潤ゲルを洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、湿潤ゲル中の未反応物、副生成物等の不純物を低減し、より純度の高いエアロゲル複合体の製造を可能にする観点からは、湿潤ゲルを洗浄してもよい。なお、本実施形態においては、ゲル中にシリカ粒子が含まれていることから、後述するように溶媒置換工程は必ずしも必須ではない。
 洗浄工程では、上記湿潤ゲル生成工程で得られた湿潤ゲルを洗浄する。当該洗浄は、例えば、水又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。
 有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。上記の有機溶媒は単独で、又は2種類以上を混合して用いてもよい。
 後述する溶媒置換工程では、乾燥によるゲルの収縮を抑制するため、低表面張力の溶媒を用いることができる。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒が挙げられる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等が挙げられる。なお、メタノール、エタノール、メチルエチルケトン等は経済性の点で優れている。
 洗浄工程に使用される水又は有機溶媒の量としては、湿潤ゲル中の溶媒を十分に置換し、洗浄できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。洗浄は、洗浄後の湿潤ゲル中の含水率が、シリカ質量に対し、10質量%以下となるまで繰り返すことができる。
 洗浄工程における温度環境は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、30~60℃程度の加温とすることができる。
 溶媒置換工程では、後述する乾燥工程における収縮を抑制するため、洗浄した湿潤ゲルの溶媒を所定の置換用溶媒に置き換える。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥する場合は、後述の低表面張力の溶媒が挙げられる。一方、超臨界乾燥をする場合は、置換用溶媒としては、例えば、エタノール、メタノール、2-プロパノール、ジクロロジフルオロメタン、二酸化炭素等、又はこれらを2種以上混合した溶媒が挙げられる。
 低表面張力の溶媒としては、20℃における表面張力が30mN/m以下のものが挙げられる。なお、当該表面張力は25mN/m以下であっても、又は20mN/m以下であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2-メチルペンタン(17.4)、3-メチルペンタン(18.1)、2-メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1-ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m-キシレン(28.7)、p-キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1-クロロプロパン(21.8)、2-クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2-ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類などが挙げられる(かっこ内は20℃での表面張力を示し、単位は[mN/m]である)。これらの中で、脂肪族炭化水素類(ヘキサン、ヘプタン等)は低表面張力でありかつ作業環境性に優れている。また、これらの中でも、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、さらに後述する乾燥工程における乾燥が容易な点で、常圧での沸点が100℃以下のものを用いてもよい。上記の溶媒は単独で、又は2種類以上を混合して用いてもよい。
 溶媒置換工程に使用される溶媒の量としては、洗浄後の湿潤ゲル中の溶媒を十分に置換できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。
 溶媒置換工程における温度環境は、置換に用いる溶媒の沸点以下の温度とすることができ、例えば、ヘプタンを用いる場合は、30~60℃程度の加温とすることができる。
 なお、本実施形態においては、ゲル中にシリカ粒子が含まれていることから、上述のとおり溶媒置換工程は必ずしも必須ではない。推察されるメカニズムとしては次のとおりである。すなわち、従来であれば乾燥工程における収縮を抑制するため、湿潤ゲルの溶媒を所定の置換用溶媒(低表面張力の溶媒)に置き換えていたが、本実施形態においてはシリカ粒子が三次元網目状の骨格の支持体として機能することにより、当該骨格が支持され、乾燥工程におけるゲルの収縮が抑制される。そのため、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に付すことができると考えられる。このように、本実施形態においては、洗浄及び溶媒置換工程から乾燥工程の簡略化が可能である。ただし、本実施形態は溶媒置換工程を行うことを何ら排除するものではない。
(乾燥工程)
 乾燥工程では、上記のとおり洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを乾燥させる。これにより、最終的にエアロゲル複合体を得ることができる。
 乾燥の手法としては特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中で、低密度のエアロゲル複合体を製造し易いという観点からは、常圧乾燥又は超臨界乾燥を用いることができる。また、低コストで生産可能という観点からは、常圧乾燥を用いることができる。なお、本実施形態において、常圧とは0.1MPa(大気圧)を意味する。
 本実施形態のエアロゲル複合体は、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類により異なるが、特に高温での乾燥が溶媒の蒸発速度を速め、ゲルに大きな亀裂を生じさせる場合があるという点に鑑み、20~150℃とすることができる。なお、当該乾燥温度は60~120℃であってもよい。また、乾燥時間は、湿潤ゲルの容量及び乾燥温度により異なるが、4~120時間とすることができる。なお、本実施形態において、生産性を阻害しない範囲内において臨界点未満の圧力をかけて乾燥を早めることも、常圧乾燥に包含されるものとする。
 本実施形態のエアロゲル複合体は、また、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、超臨界乾燥することによっても得ることができる。超臨界乾燥は、公知の手法にて行うことができる。超臨界乾燥する方法としては、例えば、湿潤ゲルに含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。あるいは、超臨界乾燥する方法としては、湿潤ゲルを、液化二酸化炭素中に、例えば、20~25℃、5~20MPa程度の条件で浸漬することで、湿潤ゲルに含まれる溶媒の全部又は一部を当該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。
 このような常圧乾燥又は超臨界乾燥により得られたエアロゲル複合体は、さらに常圧下にて、105~200℃で0.5~2時間程度追加乾燥してもよい。これにより、密度が低く、小さな細孔を有するエアロゲル複合体をさらに得易くなる。追加乾燥は、常圧下にて、150~200℃で行ってもよい。
<エアロゲル複合体付き支持部材>
 本実施形態のエアロゲル複合体つき支持部材は、これまで説明したエアロゲル複合体と、当該エアロゲル複合体を担持する支持部材と、を備えるものである。このようなエアロゲル複合体つき支持部材であれば、高断熱性と優れた屈曲性とを発現することができる。
 支持部材としては、例えば、フィルム状支持部材、シート状支持部材、箔状支持部材、多孔質支持部材等が挙げられる。
 フィルム状支持部材は、高分子原料を薄い膜状に成形したものであり、PET、ポリイミド等の有機フィルム、ガラスフィルムなどが挙げられる(金属蒸着フィルムも含む)。
 シート状支持部材は、有機、無機及び金属からなる群より選択される少なくとも一種のファイバー状の原料を成形したものであり、紙、不織布(ガラスマットも含む)、有機繊維クロス、ガラスクロス等が挙げられる。
 箔状支持部材は、金属原料を薄い膜状に成形したものであり、アルミ箔、銅箔等が挙げられる。
 多孔質支持部材は、有機、無機及び金属からなる群より選択される少なくとも一種を原料とした多孔質構造を有するものであり、例えば、ポリウレタンフォーム等の多孔質有機材料、ゼオライトシート等の多孔質無機材料、ポーラス金属シート、多孔質アルミシート等の多孔質金属材料などが挙げられる。
 エアロゲル複合体つき支持部材は、例えば、次のようにして作製することができる。まず、上述のゾル生成工程に従ってゾルを準備する。これを支持部材上にフィルムアプリケーター等を用いて塗布した後、又はこれに支持部材を含浸させた後、上述の湿潤ゲル生成工程に従って湿潤ゲル付きフィルム状支持部材を得る。そして、得られた湿潤ゲル付きフィルム状支持部材を、上述の洗浄及び溶媒置換工程に従って洗浄及び(必要に応じ)溶媒置換を行い、さらに上述の乾燥工程に従って乾燥することにより、エアロゲル複合体つき支持部材を得ることができる。
 フィルム状支持部材又は箔状支持部材上に形成したエアロゲル複合体の厚みは1~200μmとすることができるが、10~100μmであってもよく、30~80μmであってもよい。1μm以上とすることで良好な断熱性を得易くなり、また、200μm以下とすることにより柔軟性を得易くなる。
 以上のとおり説明をした本実施形態のエアロゲル複合体は、エアロゲル成分及びシリカ粒子を含有することにより、従来のエアロゲルでは達成困難であった優れた断熱性と柔軟性とを有している。特に優れた柔軟性は、従来達成困難であったフィルム状支持部材及び箔状支持部材上にエアロゲル複合体の層を形成することを可能とした。そのため、本実施形態のエアロゲル複合体つき支持部材は、高断熱性と優れた屈曲性とを有している。なお、シート状支持部材及び多孔質支持部材にゾルを含浸させる態様においても、乾燥後の取り扱い時にエアロゲル複合体の粉落ちを抑制することが可能である。
 このような利点から、本実施形態のエアロゲル複合体及びエアロゲル複合体つき支持部材は、建築分野、自動車分野、家電製品、半導体分野、産業用設備等における断熱材としての用途等に適用できる。また、本実施形態のエアロゲル複合体は、断熱材としての用途の他に、塗料用添加剤、化粧品、アンチブロッキング剤、触媒担持体等として利用することができる。
<断熱材>
 本実施形態の断熱材は、これまで説明したエアロゲル複合体を備えるものであり、高断熱性と優れた屈曲性とを有している。なお、上記エアロゲル複合体の製造方法により得られるエアロゲル複合体をそのまま(必要に応じ所定の形状に加工し)断熱材とすることができる。
 次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明を制限するものではない。
(実施例1)
[湿潤ゲル、エアロゲル複合体]
 シリコン化合物としてメチルトリメトキシシランLS-530(信越化学工業株式会社製、製品名:以下『MTMS』と略記)を80.0質量部及びジメチルジメトキシシランLS-520(信越化学工業株式会社製、製品名:以下『DMDMS』と略記)を20.0質量部、並びにシリカ粒子含有原料としてPL-20(PL-20の詳細については表1に記載。シリカ粒子含有原料について以下同様。)を100.0質量部、水を40.0質量部及びメタノールを80.0質量部混合し、これに酸触媒として酢酸を0.10質量部加え、25℃で2時間反応させてゾル1を得た。得られたゾル1に、塩基触媒として5%濃度のアンモニア水を40.0質量部加え、60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル1を得た。
 その後、得られた湿潤ゲル1をメタノール2500.0質量部に浸漬し、60℃で12時間かけて洗浄を行った。この洗浄操作を、新しいメタノールに交換しながら3回行った。次に、洗浄した湿潤ゲルを、低表面張力溶媒であるヘプタン2500.0質量部に浸漬し、60℃で12時間かけて溶媒置換を行った。この溶媒置換操作を、新しいヘプタンに交換しながら3回行った。洗浄及び溶媒置換された湿潤ゲルを、常圧下にて、40℃で96時間乾燥し、その後さらに150℃で2時間乾燥することで、上記一般式(6)及び(7)で表される構造を有するエアロゲル複合体1を得た。
[エアロゲル複合体付き支持部材]
・エアロゲル複合体付きフィルム状支持部材
 上記ゾル1を、(縦)300mm×(横)270mm×(厚)12μmのポリエチレンテレフタレート製フィルムに、ゲル化後の厚みが40μmとなるようにフィルムアプリケーター(テスター産業株式会社製、PI-1210)を用いて塗布し、60℃で3時間ゲル化した後、80℃で24時間熟成して湿潤ゲル付きフィルム状支持部材1を得た。
 その後、得られた湿潤ゲル付きフィルム状支持部材1をメタノール100mLに浸漬し、60℃で2時間かけて洗浄を行った。次に、洗浄した湿潤ゲル付きフィルム状支持部材を、メチルエチルケトン100mLに浸漬し、60℃で2時間かけて溶媒置換を行った。この溶媒置換操作を、新しいメチルエチルケトンに交換しながら2回行った。洗浄及び溶媒置換された湿潤ゲル付きフィルム状支持部材を、常圧下にて、120℃で6時間乾燥することでエアロゲル複合体付きフィルム状支持部材1を得た。
・エアロゲル複合体付きシート状支持部材
 上記ゾル1を、(縦)300mm×(横)270mm×(厚)100μmのEガラスクロスに、ゲル化後のシート状支持部材の厚みが120μmとなるように含浸し、60℃で3時間ゲル化した後、80℃で24時間熟成して湿潤ゲル付きシート状支持部材1を得た。
 その後、得られた湿潤ゲル付きシート状支持部材1をメタノール300mLに浸漬し、60℃で2時間かけて洗浄を行った。次に、洗浄した湿潤ゲル付きシート状支持部材を、メチルエチルケトン300mLに浸漬し、60℃で2時間かけて溶媒置換を行った。この溶媒置換操作を、新しいメチルエチルケトンに交換しながら2回行った。洗浄及び溶媒置換された湿潤ゲル付きシート状支持部材を、常圧下にて、120℃で8時間乾燥することでエアロゲル複合体付きシート状支持部材1を得た。
・エアロゲル複合体付き箔状支持部材
 上記ゾル1を、(縦)300mm×(横)270mm×(厚)12μmのアルミニウム箔に、ゲル化後の厚みが40μmとなるようにフィルムアプリケーターを用いて塗布し、60℃で3時間ゲル化した後、80℃で24時間熟成して湿潤ゲル付き箔状支持部材1を得た。
 その後、得られた湿潤ゲル付き箔状支持部材1をメタノール100mLに浸漬し、60℃で2時間かけて洗浄を行った。次に、洗浄した湿潤ゲル付き箔状支持部材を、メチルエチルケトン100mLに浸漬し、60℃で2時間かけて溶媒置換を行った。この溶媒置換操作を、新しいメチルエチルケトンに交換しながら2回行った。洗浄及び溶媒置換された湿潤ゲル付き箔状支持部材を、常圧下にて、120℃で6時間乾燥することでエアロゲル複合体付き箔状支持部材1を得た。
・エアロゲル複合体付き多孔質支持部材
 上記ゾル1を、(縦)300mm×(横)270mm×(厚)10mmの軟質ウレタンフォームに、ゲル化後の多孔質支持部材の厚みが10mmとなるように含浸し、60℃で3時間ゲル化した後、80℃で24時間熟成して湿潤ゲル付き多孔質支持部材1を得た。
 その後、得られた湿潤ゲル付き多孔質支持部材1をメタノール300mLに浸漬し、60℃で2時間かけて洗浄を行った。次に、洗浄した湿潤ゲル付き多孔質支持部材を、メチルエチルケトン300mLに浸漬し、60℃で2時間かけて溶媒置換を行った。この溶媒置換操作を、新しいメチルエチルケトンに交換しながら2回行った。洗浄及び溶媒置換された湿潤ゲル付き多孔質支持部材を、常圧下にて、120℃で10時間乾燥することでエアロゲル複合体付き多孔質支持部材1を得た。
(実施例2)
[湿潤ゲル、エアロゲル複合体]
 シリコン化合物としてMTMSを60.0質量部及びDMDMSを40.0質量部、並びにシリカ粒子含有原料としてPL-2Lを100.0質量部、水を40.0質量部及びメタノールを80.0質量部混合し、これに酸触媒として酢酸を0.10質量部加え、25℃で2時間反応させてゾル2を得た。得られたゾル2に、塩基触媒として5%濃度のアンモニア水を40.0質量部加え、60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル2を得た。その後、得られた湿潤ゲル2を用いて、実施例1と同様にして上記一般式(6)及び(7)で表される構造を有するエアロゲル複合体2を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル2を用いて、実施例1と同様にして、エアロゲル複合体付き支持部材2、エアロゲル複合体付きシート状支持部材2、エアロゲル複合体付き箔状支持部材2及びエアロゲル複合体付き多孔質支持部材2を得た。
(実施例3)
[湿潤ゲル、エアロゲル複合体]
 シリコン化合物としてMTMSを60.0質量部及びビストリメトキシシリルへキサン「KBM-3066」(信越化学工業株式会社製、製品名)を40.0質量部、並びにシリカ粒子含有原料としてST-OZL-35を57.0質量部、水を83.0質量部及びメタノールを80.0質量部混合し、これに酸触媒として酢酸を0.10質量部、カチオン系界面活性剤として臭化セチルトリメチルアンモニウム(和光純薬工業株式会社製:以下『CTAB』と略記)を20.0質量部加え、25℃で2時間反応させてゾル3を得た。得られたゾル3に、塩基触媒として5%濃度のアンモニア水を40.0質量部加え、60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル3を得た。その後、得られた湿潤ゲル3を用いて、実施例1と同様にして上記一般式(6)及び(8)で表される構造を有するエアロゲル複合体3を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル3を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材3、エアロゲル複合体付きシート状支持部材3、エアロゲル複合体付き箔状支持部材3及びエアロゲル複合体付き多孔質支持部材3を得た。
(実施例4)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてPL-2Lを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを70.0質量部及びDMDMSを30.0質量部加え、25℃で2時間反応させてゾル4を得た。得られたゾル4を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル4を得た。その後、得られた湿潤ゲル4を用いて、実施例1と同様にして上記一般式(6)及び(7)で表される構造を有するエアロゲル複合体4を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル4を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材4、エアロゲル複合体付きシート状支持部材4、エアロゲル複合体付き箔状支持部材4及びエアロゲル複合体付き多孔質支持部材4を得た。
(実施例5)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてST-OXSを200.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びDMDMSを40.0質量部加え、25℃で2時間反応させてゾル5を得た。得られたゾル5を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル5を得た。その後、得られた湿潤ゲル5を用いて、実施例1と同様にして上記一般式(6)及び(7)で表される構造を有するエアロゲル複合体5を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル5を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材5、エアロゲル複合体付きシート状支持部材5、エアロゲル複合体付き箔状支持部材5及びエアロゲル複合体付き多孔質支持部材5を得た。
(実施例6)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてPL-2L―Dを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びDMDMSを40.0質量部加え、25℃で2時間反応させてゾル6を得た。得られたゾル6を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル6を得た。その後、得られた湿潤ゲル6を用いて、実施例1と同様にして上記一般式(6)及び(7)で表される構造を有するエアロゲル複合体6を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル6を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材6、エアロゲル複合体付きシート状支持部材6、エアロゲル複合体付き箔状支持部材6及びエアロゲル複合体付き多孔質支持部材6を得た。
(実施例7)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてPL-7を87.0質量部、水を113.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びDMDMSを40.0質量部加え、25℃で2時間反応させてゾル7を得た。得られたゾル7を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル7を得た。その後、得られた湿潤ゲル7を用いて、実施例1と同様にして上記一般式(6)及び(7)で表される構造を有するエアロゲル複合体7を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル7を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材7、エアロゲル複合体付きシート状支持部材7、エアロゲル複合体付き箔状支持部材7及びエアロゲル複合体付き多孔質支持部材7を得た。
(実施例8)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてPL-1を167.0質量部、水を33.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びDMDMSを40.0質量部加え、25℃で2時間反応させてゾル8を得た。得られたゾル8を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル8を得た。その後、得られた湿潤ゲル8を用いて、実施例1と同様にして上記一般式(6)及び(7)で表される構造を有するエアロゲル複合体8を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル8を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材8、エアロゲル複合体付きシート状支持部材8、エアロゲル複合体付き箔状支持部材8及びエアロゲル複合体付き多孔質支持部材8を得た。
(実施例9)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてAEROSIL90を10.0質量部、水を190.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びDMDMSを40.0質量部加え、25℃で2時間反応させてゾル9を得た。得られたゾル9を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル9を得た。その後、得られた湿潤ゲル9を用いて、実施例1と同様にして上記一般式(6)及び(7)で表される構造を有するエアロゲル複合体9を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル9を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材9、エアロゲル複合体付きシート状支持部材9、エアロゲル複合体付き箔状支持部材9及びエアロゲル複合体付き多孔質支持部材9を得た。
(実施例10)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてSO-C2を10.0質量部、水を190.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びビストリメトキシシリルヘキサンを40.0質量部加え、25℃で2時間反応させてゾル10を得た。得られたゾル10を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル10を得た。その後、得られた湿潤ゲル10を用いて、実施例1と同様にして上記一般式(6)及び(8)で表される構造を有するエアロゲル複合体10を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル10を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材10、エアロゲル複合体付きシート状支持部材10、エアロゲル複合体付き箔状支持部材10及びエアロゲル複合体付き多孔質支持部材10を得た。
(実施例11)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてST-OYLを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、非イオン性界面活性剤として、ポリオキシエチレンとポリオキシプロピレンとのブロック共重合体であるF-127(BASF社製、製品名)を20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを80.0質量部及び上記一般式(4)で表される構造を有するポリシロキサン化合物としてX-22-160ASを20.0質量部加え、25℃で2時間反応させてゾル11を得た。得られたゾル11を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル11を得た。その後、得られた湿潤ゲル11を用いて、実施例1と同様にして上記一般式(1)及び(6)で表される構造を有するエアロゲル複合体11を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル11を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材11、エアロゲル複合体付きシート状支持部材11、エアロゲル複合体付き箔状支持部材11及びエアロゲル複合体付き多孔質支持部材11を得た。
(実施例12)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてPL-06Lを200.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを80.0質量部及びポリシロキサン化合物として上記一般式(5)で表される構造を有する両末端2官能アルコキシ変性ポリシロキサン化合物(以下、「ポリシロキサン化合物A」という)を20.0質量部加え、25℃で2時間反応させてゾル12を得た。得られたゾル12を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル12を得た。その後、得られた湿潤ゲル12を用いて、実施例1と同様にして上記一般式(3)及び(6)で表される構造を有するエアロゲル複合体12を得た。
 なお、上記「ポリシロキサン化合物A」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1リットルの3つ口フラスコにて、両末端にシラノール基を有するジメチルポリシロキサンXC96-723(モメンティブ社製、製品名)を100.0質量部、メチルトリメトキシシランを181.3質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物A)を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル12を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材12、エアロゲル複合体付きシート状支持部材12、エアロゲル複合体付き箔状支持部材12及びエアロゲル複合体付き多孔質支持部材12を得た。
(実施例13)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてPL-20を100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びポリシロキサン化合物として上記一般式(5)で表される構造を有する両末端3官能アルコキシ変性ポリシロキサン化合物(以下、「ポリシロキサン化合物B」という)を40.0質量部加え、25℃で2時間反応させてゾル13を得た。得られたゾル13を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル13を得た。その後、得られた湿潤ゲル13を用いて、実施例1と同様にして上記一般式(2)及び(6)で表される構造を有するエアロゲル複合体13を得た。
 なお、上記「ポリシロキサン化合物B」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1リットルの3つ口フラスコにて、XC96-723を100.0質量部、テトラメトキシシランを202.6質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端3官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物B)を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル13を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材13、エアロゲル複合体付きシート状支持部材13、エアロゲル複合体付き箔状支持部材13及びエアロゲル複合体付き多孔質支持部材13を得た。
(実施例14)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてPL-20を100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、並びにポリシロキサン化合物としてX-22-160ASを20.0質量部加え、25℃で2時間反応させてゾル14を得た。得られたゾル14を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル14を得た。その後、得られた湿潤ゲル14を用いて、実施例1と同様にして上記一般式(1)、(6)及び(7)で表される構造を有するエアロゲル複合体14を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル14を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材14、エアロゲル複合体付きシート状支持部材14、エアロゲル複合体付き箔状支持部材14及びエアロゲル複合体付き多孔質支持部材14を得た。
(実施例15)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてPL-2Lを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、並びにポリシロキサン化合物としてポリシロキサン化合物Aを20.0質量部加え、25℃で2時間反応させてゾル15を得た。得られたゾル15を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル15を得た。その後、得られた湿潤ゲル15を用いて、実施例1と同様にして上記一般式(3)、(6)及び(7)で表される構造を有するエアロゲル複合体15を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル15を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材15、エアロゲル複合体付きシート状支持部材15、エアロゲル複合体付き箔状支持部材15及びエアロゲル複合体付き多孔質支持部材15を得た。
(実施例16)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてST-OZL-35を143.0質量部、水を57.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、並びにポリシロキサン化合物としてポリシロキサン化合物Bを20.0質量部加え、25℃で2時間反応させてゾル16を得た。得られたゾル16を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル16を得た。その後、得られた湿潤ゲル16を用いて、実施例1と同様にして上記一般式(2)、(6)及び(7)で表される構造を有するエアロゲル複合体16を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル16を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材16、エアロゲル複合体付きシート状支持部材16、エアロゲル複合体付き箔状支持部材16及びエアロゲル複合体付き多孔質支持部材16を得た。
(実施例17)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてPL-2Lを50.0質量部及びPL-20を50.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部並びに熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びDMDMSを40.0質量部加え、25℃で2時間反応させてゾル17を得た。得られたゾル17を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル17を得た。その後、得られた湿潤ゲル17を用いて、実施例1と同様にして上記一般式(6)及び(7)で表される構造を有するエアロゲル複合体17を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル17を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材17、エアロゲル複合体付きシート状支持部材17、エアロゲル複合体付き箔状支持部材17及びエアロゲル複合体付き多孔質支持部材17を得た。
(実施例18)
[湿潤ゲル、エアロゲル複合体]
 シリカ粒子含有原料としてPL-2Lを100.0質量部及びST-OZL-35を50.0質量部、水を50.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部並びに熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部並びにポリシロキサン化合物としてポリシロキサン化合物Aを20.0質量部加え、25℃で2時間反応させてゾル18を得た。得られたゾル18を60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル18を得た。その後、得られた湿潤ゲル18を用いて、実施例1と同様にして上記一般式(3)、(6)及び(7)で表される構造を有するエアロゲル複合体18を得た。
[エアロゲル複合体付き支持部材]
 上記ゾル18を用いて、実施例1と同様にして、エアロゲル複合体付きフィルム状支持部材18、エアロゲル複合体付きシート状支持部材18、エアロゲル複合体付き箔状支持部材18及びエアロゲル複合体付き多孔質支持部材18を得た。
(実施例19)
[湿潤ゲル、エアロゲル複合体]
 上記で得られた湿潤ゲル17を、メタノール2500.0質量部に浸漬し、60℃で12時間かけて洗浄を行った。この洗浄操作を、新しいメタノールに交換しながら3回行った。次に、洗浄した湿潤ゲルを、2-プロパノール2500.0質量部に浸漬し、60℃で12時間かけて溶媒置換を行った。この溶媒置換操作を、新しい2-プロパノールに交換しながら3回行った。
 次に、溶媒置換した湿潤ゲルの超臨界乾燥を行った。オートクレーブ内を2-プロパノールで満たし、溶媒置換した湿潤ゲルを入れた。そして、オートクレーブ内に液化炭酸ガスを送り、オートクレーブ内を分散媒である2-プロパノール及び二酸化炭素の混合物で満たした。その後、オートクレーブ内の環境が80℃、14MPaとなるように加熱及び加圧して、超臨界状態の二酸化炭素をオートクレーブ内に十分に流通させた後、減圧し、ゲルに含まれる2-プロパノールと二酸化炭素を除去した。このようにして、上記一般式(6)及び(7)で表される構造を有するエアロゲル複合体19を得た。
(実施例20)
[湿潤ゲル、エアロゲル複合体]
 上記で得られた湿潤ゲル18を用いて、実施例19と同様にして上記一般式(3)、(6)及び(7)で表される構造を有するエアロゲル複合体20を得た。
(実施例21)
[湿潤ゲル、エアロゲル複合体]
 上記で得られた湿潤ゲル15を、メタノール2500.0質量部に浸漬し、60℃で12時間かけて洗浄を行った。この洗浄操作を、新しいメタノールに交換しながら3回行った。次に、洗浄された湿潤ゲルを、溶媒置換を行わず、常圧下にて、60℃で2時間、100℃で3時間乾燥し、その後さらに150℃で2時間乾燥することで、上記一般式(3)、(6)及び(7)で表される構造を有するエアロゲル複合体21を得た。
[エアロゲル複合体付き支持部材]
 上記湿潤ゲル15を用いて得られた、湿潤ゲル付きの各支持部材を、メタノール100mLに浸漬し、60℃で2時間かけて洗浄を行った。次に、洗浄された湿潤ゲル付きの各支持部材を、常圧下にて、60℃で30分、100℃で1時間乾燥した。このようにして、エアロゲル複合体付きフィルム状支持部材21、エアロゲル複合体付きシート状支持部材21、エアロゲル複合体付き箔状支持部材21及びエアロゲル複合体付き多孔質支持部材21を得た。
(実施例22)
[湿潤ゲル、エアロゲル複合体]
 上記で得られた湿潤ゲル16を用いて、実施例21と同様にして上記一般式(2)、(6)及び(7)で表される構造を有するエアロゲル複合体22を得た。
[エアロゲル複合体付き支持部材]
 上記湿潤ゲル16を用いて得られた、湿潤ゲル付きの各支持部材を用いて、実施例21と同様にして、エアロゲル複合体付きフィルム状支持部材22、エアロゲル複合体付きシート状支持部材22、エアロゲル複合体付き箔状支持部材22及びエアロゲル複合体付き多孔質支持部材22を得た。
(比較例1)
[湿潤ゲル、エアロゲル]
 水を200.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを100.0質量部加え、25℃で2時間反応させてゾル1Cを得た。得られたゾル1Cを60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル1Cを得た。その後、得られた湿潤ゲル1Cを用いて、実施例1と同様にしてエアロゲル1Cを得た。
[エアロゲル付き支持部材]
 上記ゾル1Cを用いて、実施例1と同様にして、エアロゲル付きフィルム状支持部材1C、エアロゲル付きシート状支持部材1C、エアロゲル付き箔状支持部材1C及びエアロゲル付き多孔質支持部材1Cを得た。
(比較例2)
[湿潤ゲル、エアロゲル]
 水を200.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを80.0質量部及びDMDMSを20.0質量部加え、25℃で2時間反応させてゾル2Cを得た。得られたゾル2Cを60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル2Cを得た。その後、得られた湿潤ゲル2Cを用いて、実施例1と同様にしてエアロゲル2Cを得た。
[エアロゲル付き支持部材]
 上記ゾル2Cを用いて、実施例1と同様にして、エアロゲル付きフィルム状支持部材2C、エアロゲル付きシート状支持部材2C、エアロゲル付き箔状支持部材2C及びエアロゲル付き多孔質支持部材2Cを得た。
(比較例3)
[湿潤ゲル、エアロゲル]
 水を200.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを70.0質量部及びDMDMSを30.0質量部加え、25℃で2時間反応させてゾル3Cを得た。得られたゾル3Cを60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル3Cを得た。その後、得られた湿潤ゲル3Cを用いて、実施例1と同様にしてエアロゲル3Cを得た。
[エアロゲル付き支持部材]
 上記ゾル3Cを用いて、実施例1と同様にして、エアロゲル付きフィルム状支持部材3C、エアロゲル付きシート状支持部材3C、エアロゲル付き箔状支持部材3C及びエアロゲル付き多孔質支持部材3Cを得た。
(比較例4)
[湿潤ゲル、エアロゲル]
 水を200.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてMTMSを60.0質量部及びDMDMSを40.0質量部加え、25℃で2時間反応させてゾル4Cを得た。得られたゾル4Cを60℃でゲル化した後、80℃で24時間熟成して湿潤ゲル4Cを得た。その後、得られた湿潤ゲル4Cを用いて、実施例1と同様にして比較例エアロゲル4Cを得た。
[エアロゲル付き支持部材]
 上記ゾル4Cを用いて、実施例1と同様にして、エアロゲル付きフィルム状支持部材4C、エアロゲル付きシート状支持部材4C、エアロゲル付き箔状支持部材4C及びエアロゲル付き多孔質支持部材4Cを得た。
 各実施例におけるシリカ粒子含有原料の態様を表1にまとめて示す。また、各実施例及び比較例における、乾燥方法、Si原料(シリコン化合物及びポリシロキサン化合物)の種類及び添加量、並びにシリカ粒子含有原料の添加量を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
[各種評価]
 各実施例で得られた湿潤ゲル、エアロゲル複合体及びエアロゲル複合体付き支持部材、並びに各比較例で得られた湿潤ゲル、エアロゲル及びエアロゲル付き支持部材について、以下の条件に従って測定又は評価をした。湿潤ゲル生成工程におけるゲル化時間、メタノール置換ゲルの常圧乾燥におけるエアロゲル複合体及びエアロゲルの状態、並びにエアロゲル複合体及びエアロゲルの熱伝導率、圧縮弾性率、密度並びに気孔率の評価結果をまとめて表3に、エアロゲル複合体付き支持部材及びエアロゲル付き支持部材の180°屈曲試験の評価結果をまとめて表4に示す。
(1)ゲル化時間の測定
 各実施例及び比較例で得られたゾル30mLを、100mLのPP製密閉容器に移し、測定サンプルとした。次に、60℃に設定した定温乾燥機「DVS402」(ヤマト科学株式会社製、製品名)を用い、測定サンプルを投入してからゲル化するまでの時間を計測した。
(2)メタノール置換ゲルの常圧乾燥におけるエアロゲル複合体及びエアロゲルの状態
 各実施例及び比較例で得られた湿潤ゲル30.0質量部を、メタノール150.0質量部に浸漬し、60℃で12時間かけて洗浄を行った。この洗浄操作を、新しいメタノールに交換しながら3回行った。次に、洗浄された湿潤ゲルを、刃角約20~25度の刃を用いて、100mm×100mm×100mmのサイズに加工し、乾燥前サンプルとした。得られた乾燥前サンプルを安全扉付き恒温器「SPH(H)-202」(エスペック株式会社製、製品名)を用い、60℃で2時間、100℃で3時間乾燥し、その後さらに150℃で2時間乾燥することで乾燥後サンプルを得た(特に溶媒蒸発速度等は制御していない)。ここで、サンプルの乾燥前後の体積収縮率SVを次式より求めた。そして、体積収縮率SVが5%以下であるときを「収縮なし」と評価し、5%以上であるときを「収縮」と評価した。
  SV=(V-V)/V×100
 式中、Vは乾燥前サンプルの体積を示し、Vは乾燥後サンプルの体積を示す。
(3)熱伝導率の測定
 刃角約20~25度の刃を用いて、エアロゲル複合体及びエアロゲルを150mm×150mm×100mmのサイズに加工し、測定サンプルとした。次に、面の平行を確保するために、必要に応じて#1500以上の紙やすりで整形した。得られた測定サンプルを、熱伝導率測定前に、定温乾燥機「DVS402」(ヤマト科学株式会社製、製品名)を用いて、大気圧下、100℃で30分間乾燥した。次いで測定サンプルをデシケータ中に移し、25℃まで冷却した。これにより、熱伝導率測定用の測定サンプルを得た。
 熱伝導率の測定は、定常法熱伝導率測定装置「HFM436Lambda」(NETZSCH社製、製品名)を用いて行った。測定条件は、大気圧下、平均温度25℃とした。上記のとおり得られた測定サンプルを0.3MPaの荷重にて上部及び下部ヒーター間に挟み、温度差ΔTを20℃とし、ガードヒーターによって一次元の熱流になるように調整しながら、測定サンプルの上面温度、下面温度等を測定した。そして、測定サンプルの熱抵抗Rを次式より求めた。
  R=N((T-T)/Q)-R
 式中、Tは測定サンプル上面温度を示し、Tは測定サンプル下面温度を示し、Rは上下界面の接触熱抵抗を示し、Qは熱流束計出力を示す。なお、Nは比例係数であり、較正試料を用いて予め求めておいた。
 得られた熱抵抗Rより、測定サンプルの熱伝導率λを次式より求めた。
  λ=d/R
 式中、dは測定サンプルの厚さを示す。
(4)圧縮弾性率の測定
 刃角約20~25度の刃を用いて、エアロゲル複合体及びエアロゲルを7.0mm角の立方体(サイコロ状)に加工し、測定サンプルとした。次に、面の平行を確保するために、必要に応じて#1500以上の紙やすりで測定サンプルを整形した。得られた測定サンプルを、測定前に、定温乾燥機「DVS402」(ヤマト科学株式会社製、製品名)を用いて、大気圧下、100℃で30分間乾燥した。次いで測定サンプルをデシケータ中に移し、25℃まで冷却した。これにより、圧縮弾性率測定用の測定サンプルを得た。
 測定装置としては、小型卓上試験機「EZTest」(株式会社島津製作所製、製品名)を用いた。なお、ロードセルとしては500Nを使用した。また、ステンレス製の上圧盤(φ20mm)及び下圧盤(φ118mm)を圧縮測定用冶具として用いた。平行に配置した上圧盤及び下圧盤の間に測定サンプルをセットし、1mm/minの速度で圧縮を行った。測定温度は25℃とし、測定は、500N超の負荷をかけた時点又は測定サンプルが破壊した時点で終了とした。ここで、ひずみεは次式より求めた。
  ε=Δd/d1
 式中、Δdは負荷による測定サンプルの厚みの変位(mm)を示し、d1は負荷をかける前の測定サンプルの厚み(mm)を示す。
 また、圧縮応力σ(MPa)は、次式より求めた。
  σ=F/A
 式中、Fは圧縮力(N)を示し、Aは負荷をかける前の測定サンプルの断面積(mm)を示す。
 圧縮弾性率E(MPa)は、0.1~0.2Nの圧縮力範囲において、次式より求めた。
  E=(σ-σ)/(ε-ε
 式中、σは圧縮力が0.1Nにおいて測定される圧縮応力(MPa)を示し、σは圧縮力が0.2Nにおいて測定される圧縮応力(MPa)を示し、εは圧縮応力σにおいて測定される圧縮ひずみを示し、εは圧縮応力σにおいて測定される圧縮ひずみを示す。
(5)密度及び気孔率の測定
 エアロゲル複合体及びエアロゲルについての、3次元網目状に連続した細孔(通孔)の密度及び気孔率は、DIN66133に準じて水銀圧入法により測定した。なお、測定温度を室温(25℃)とし、測定装置としては、オートポアIV9520(株式会社島津製作所製、製品名)を用いた。
(6)耐屈曲性試験
 各実施例(実施例19及び20を除く)及び比較例で得られたエアロゲル複合体付き支持部材及びエアロゲル付き支持部材を50mm幅に加工し、JIS K5600-1に準じて、エアロゲル複合体層側のマンドレル試験を行った。マンドレル試験機としては、東洋精機製作所製のものを用いた。マンドレル半径1mmにおいて180°屈曲させた際のエアロゲル複合体及びエアロゲル層側のクラック及び/又は剥がれ発生の有無を目視にて評価した。そして、クラック及び/又は剥がれが発生しなかったものを「非破壊」、発生したものを「破壊」と評価した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表3から、実施例のエアロゲル複合体は、湿潤ゲル生成工程におけるゲル化時間が短く反応性に優れ、メタノール置換ゲルを用いた常圧乾燥においては、良好な耐収縮性を有していた。なお、今回の評価において、いずれの実施例においても良好な耐収縮性が示されたことはすなわち、溶媒置換工程を実施せずとも良質なエアロゲル複合体を得られることが示されたことになる。
 また、実施例のエアロゲル複合体は、熱伝導率及び圧縮弾性率が小さく、高断熱性と高柔軟性の両方に優れることが読み取れる。また、実施例のエアロゲル複合体付き支持部材は、良好な耐屈曲性を有していた。
 一方、比較例1~3は、湿潤ゲル生成工程におけるゲル化時間が長く、メタノール置換ゲルを用いた常圧乾燥においては、ゲルが収縮し、表面にクラックを生じた。また、熱伝導率及び柔軟性のいずれかが劣っていた。さらに、エアロゲル付き支持部材は、屈曲に対して脆いため、容易に破壊されてしまった。比較例4は、耐収縮性、柔軟性及び耐屈曲性は十分であるが、ゲル化時間が長く、熱伝導率が大きかった。
(7)SEM観察
 実施例15及び実施例16で得られたエアロゲル複合体付き箔状支持部材におけるエアロゲル複合体の表面をSEMにより観察した。図3は、実施例15で得られたエアロゲル複合体付き箔状支持部材におけるエアロゲル複合体の表面を、(a)1万倍、(b)5万倍、(c)20万倍及び(d)35万倍でそれぞれ観察したSEM画像である。図4は、実施例16で得られたエアロゲル複合体付き箔状支持部材におけるエアロゲル複合体の表面を、(a)1万倍、(b)5万倍、及び(c)20万倍でそれぞれ観察したSEM画像である。
 図3にて示されるように、実施例15で得られたエアロゲル複合体は三次元網目骨格(三次元的に微細な多孔性の構造)を有していることが観察された。観察された粒子の粒子径はシリカ粒子由来の約20nm程度のものが主であった。当該シリカ粒子よりも粒子径の小さい球状のエアロゲル成分(エアロゲル粒子)も確認できるが、主にエアロゲル成分は球状の形態を取らず、シリカ粒子を被覆したりシリカ粒子間のバインダーとして機能したりしているようであることが観察される。このように、エアロゲル成分の一部がシリカ粒子間でバインダーとして機能しているため、エアロゲル複合体の強度を向上することができると推察される。
 図4にて示されるように、実施例16で得られたエアロゲル複合体も三次元網目骨格を有していることが観察された。しかしながら、そのクラスター構造は独特である。本実施例においては、通常のエアロゲルのように粒子と粒子とが数珠状に連結した構造をとらず、粒子と粒子との連結部がエアロゲル成分(シリコーン)により高密に充填されているようであることが観察される。また、シリカ粒子由来の粒子の粒子径がシリカ粒子自体の粒子径よりも有意に大きくなっていることから、シリカ粒子がエアロゲル成分により厚く被覆されていると推察される。このように、本実施例においては、エアロゲル成分が粒子と粒子とのバインダーとして機能するだけでなく、クラスター構造全体を被覆しているため、エアロゲル複合体の強度をさらに向上することができると推察される。なお、実施例16では、使用しているST-OZL-35が酸性のゾルであるため、系中のpHが小さい状態でエアロゲル複合体が作製された。そのため、エアロゲル成分の生成速度が遅くなり、得られるエアロゲル複合体におけるエアロゲル成分が粒子状になり難かったと推察される。
 また、以下の各実施例についてそれぞれエアロゲル複合体付き箔状支持部材を作製し、実施例15等と同様にエアロゲル複合体の表面をSEMにより観察した。図5は、実施例23で得られたエアロゲル複合体付き箔状支持部材におけるエアロゲル複合体の表面を、(a)5万倍、及び(b)20万倍でそれぞれ観察したSEM画像である。図6は、実施例24で得られたエアロゲル複合体付き箔状支持部材におけるエアロゲル複合体の表面を、(a)5万倍、及び(b)20万倍でそれぞれ観察したSEM画像である。
(実施例23)
 シリカ粒子含有原料としてPL-3L(扶桑化学工業株式会社製品名、平均一次粒子径35nmの球状コロイダルシリカが分散したゾル)を用いたこと以外は、実施例15と同様にしてエアロゲル複合体付き箔状支持部材を得た。
(実施例24)
 シリカ粒子含有原料としてHL-3L(扶桑化学工業株式会社製品名、平均一次粒子径30nmの球状コロイダルシリカが分散したゾル)を用いたこと以外は、実施例15と同様にしてエアロゲル複合体付き箔状支持部材を得た。
 図5及び図6において、それぞれPL-3L及びHL-3Lを使用して得られたエアロゲル複合体も三次元網目骨格を有していることが観察された。図5においては、粒子径が約40nm程度のシリカ粒子由来の粒子と、粒子径が20~30nm程度のエアロゲル粒子が主に観察された。一方、図6においては、粒子径が約40nm程度のシリカ粒子由来の粒子と、粒子径が約10nm程度のエアロゲル粒子が主に観察された。両者を比較すると、PL-3Lを使用して得られたエアロゲル複合体(図5)の方が、HL-3Lを使用して得られたエアロゲル複合体(図6)よりも、シリカ粒子由来の粒子同士がエアロゲル成分を介して密に連結していた。そのため、PL-3Lの方がHL-3Lよりも、エアロゲル複合体の強度を向上することができると推察される。なお、PL-3LはHL-3Lよりも1g当りのシラノール基数が多いため、エアロゲル成分の生成速度が速くなり、得られるエアロゲル複合体におけるエアロゲル成分が粒子状に成長し易かったと推察される。
 1…エアロゲル粒子、2…シリカ粒子、3…細孔、10…エアロゲル複合体、L…外接長方形。

Claims (13)

  1.  エアロゲル成分及びシリカ粒子を含有するエアロゲル複合体。
  2.  前記エアロゲル成分及び前記シリカ粒子より形成された三次元網目骨格と、細孔とを有する、請求項1記載のエアロゲル複合体。
  3.  三次元網目骨格を構成する成分としてシリカ粒子を含有するエアロゲル複合体。
  4.  シリカ粒子と、分子内に加水分解性の官能基を有するシリコン化合物及び該シリコン化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルから生成された湿潤ゲルを乾燥してなるエアロゲル複合体。
  5.  シリカ粒子と、分子内に加水分解性の官能基を有するシリコン化合物及び該シリコン化合物の加水分解生成物からなる群より選択される少なくとも一種と、を含有するゾルから生成された湿潤ゲルを乾燥してなる、請求項1~3のいずれか一項記載のエアロゲル複合体。
  6.  前記ゾルが、分子内に反応性基を有するポリシロキサン化合物及び該ポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種をさらに含有する、請求項4又は5記載のエアロゲル複合体。
  7.  前記シリカ粒子の平均一次粒子径が1~500nmである、請求項1~6のいずれか一項記載のエアロゲル複合体。
  8.  前記シリカ粒子の形状が球状である、請求項1~7のいずれか一項記載のエアロゲル複合体。
  9.  前記シリカ粒子が非晶質シリカ粒子である、請求項1~8のいずれか一項記載のエアロゲル複合体。
  10.  前記非晶質シリカ粒子が溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子からなる群より選択される少なくとも一種である、請求項9記載のエアロゲル複合体。
  11.  前記乾燥が、乾燥に用いられる溶媒の臨界点未満の温度及び大気圧下で行われる、請求項4又は5記載のエアロゲル複合体。
  12.  請求項1~11のいずれか一項記載のエアロゲル複合体と、該エアロゲル複合体を担持する支持部材と、を備えるエアロゲル複合体付き支持部材。
  13.  請求項1~11のいずれか一項記載のエアロゲル複合体を備える断熱材。
PCT/JP2015/077060 2014-09-25 2015-09-25 エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材 WO2016047740A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201580051494.9A CN107074563A (zh) 2014-09-25 2015-09-25 气凝胶复合体、带有气凝胶复合体的支撑构件以及绝热材
US15/514,435 US10590001B2 (en) 2014-09-25 2015-09-25 Aerogel composite, and supporting member and heat insulation material provided with aerogel composite
SG11201702422SA SG11201702422SA (en) 2014-09-25 2015-09-25 Aerogel composite, and supporting member and heat insulation material provided with aerogel composite
KR1020177008640A KR102425252B1 (ko) 2014-09-25 2015-09-25 에어로겔 복합체, 에어로겔 복합체 함유 지지 부재 및 단열재
CN202210519391.2A CN114702724B (zh) 2014-09-25 2015-09-25 气凝胶复合体及其制造方法、带有气凝胶复合体的支撑构件以及绝热材
EP15843269.0A EP3199493A4 (en) 2014-09-25 2015-09-25 Aerogel composite, and supporting member and heat insulation material provided with aerogel composite
JP2016550386A JP6428783B2 (ja) 2014-09-25 2015-09-25 エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
US16/735,918 US11780735B2 (en) 2014-09-25 2020-01-07 Aerogel composite, and supporting member and heat insulation material provided with aerogel composite

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014195234 2014-09-25
JP2014-195234 2014-09-25
JP2014-222353 2014-10-31
JP2014222353 2014-10-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/514,435 A-371-Of-International US10590001B2 (en) 2014-09-25 2015-09-25 Aerogel composite, and supporting member and heat insulation material provided with aerogel composite
US16/735,918 Division US11780735B2 (en) 2014-09-25 2020-01-07 Aerogel composite, and supporting member and heat insulation material provided with aerogel composite

Publications (1)

Publication Number Publication Date
WO2016047740A1 true WO2016047740A1 (ja) 2016-03-31

Family

ID=55581256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077060 WO2016047740A1 (ja) 2014-09-25 2015-09-25 エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材

Country Status (9)

Country Link
US (2) US10590001B2 (ja)
EP (1) EP3199493A4 (ja)
JP (1) JP6428783B2 (ja)
KR (1) KR102425252B1 (ja)
CN (1) CN107074563A (ja)
MY (1) MY179677A (ja)
SG (2) SG10202003017RA (ja)
TW (2) TWI737161B (ja)
WO (1) WO2016047740A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010551A1 (ja) * 2015-07-15 2017-01-19 日立化成株式会社 エアロゲル複合材料
WO2018163354A1 (ja) * 2017-03-09 2018-09-13 日立化成株式会社 エアロゲル複合体の製造方法及びエアロゲル複合体
JP2018145331A (ja) * 2017-03-07 2018-09-20 日立化成株式会社 エアロゲルパウダー分散液
JP2018145332A (ja) * 2017-03-07 2018-09-20 日立化成株式会社 樹脂組成物及び成形体
KR20190113802A (ko) * 2017-02-02 2019-10-08 히타치가세이가부시끼가이샤 입자 처리용의 처리제, 발수성 입자 및 그 제조 방법, 발수층 그리고 침투 방지 구조체
JP2020513049A (ja) * 2017-04-13 2020-04-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 多孔質材料を製造する方法
US10824012B2 (en) 2018-01-18 2020-11-03 Samsung Display Co., Ltd. Display device and method of manufacturing the same
US11905452B2 (en) 2017-02-02 2024-02-20 Resonac Corporation Treatment agent for treating fibers, fibers and production method therefor, and fiber sheet and production method therefor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102291408B1 (ko) 2014-02-26 2021-08-18 쇼와덴코머티리얼즈가부시끼가이샤 에어로겔
WO2016121757A1 (ja) 2015-01-27 2016-08-04 日立化成株式会社 エアロゲル積層体及び断熱材
US20180327609A1 (en) * 2015-08-28 2018-11-15 Hitachi Chemical Company, Ltd. Method for manufacturing thermally insulated body, and thermally insulated body
KR102453735B1 (ko) * 2016-03-25 2022-10-11 쇼와덴코머티리얼즈가부시끼가이샤 졸 조성물, 에어로겔 복합체, 에어로겔 복합체 구비 지지 부재 및 단열재
KR20180132723A (ko) * 2016-03-29 2018-12-12 히타치가세이가부시끼가이샤 에어로겔 복합체 파우더
CN109019611B (zh) * 2018-08-17 2020-06-02 中南大学 一种块体透明二氧化硅气凝胶及其快速制备方法和应用
JP7119916B2 (ja) 2018-11-05 2022-08-17 トヨタ自動車株式会社 内燃機関の遮熱コーティングおよび遮熱コーティングの形成方法
JP7426553B2 (ja) * 2019-05-29 2024-02-02 パナソニックIpマネジメント株式会社 断熱シートおよびその製造方法、ならびに電子機器および電池ユニット
US11447633B2 (en) * 2020-04-27 2022-09-20 Taiwan Aerogel Technology Material Co., Ltd. Method for producing a cold resisting and heat insulating composite glue composed of a hydrophobic aerogel and the related product thereof
US11767670B2 (en) * 2020-04-28 2023-09-26 Taiwan Aerogel Technology Material Co., Ltd. Method for producing a heat insulating material composed of a hydrophobic aerogel and the application thereof
CN113564917A (zh) * 2020-04-29 2021-10-29 台湾气凝胶科技材料开发股份有限公司 疏水性气凝胶隔热材的制备方法与应用
CN111893649B (zh) * 2020-07-17 2022-07-26 3M创新有限公司 保暖材料、制备保暖材料的方法、以保暖材料制备的制品
KR102496223B1 (ko) * 2021-06-29 2023-02-06 신정우 에어로겔 과립을 포함하는 에어로겔-흄드실리카 복합단열재 및 그 제조방법
JP2023090369A (ja) * 2021-12-17 2023-06-29 アクア株式会社 断熱材及びそれを用いた冷蔵庫、冷凍冷蔵庫、または冷凍庫

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294418A (ja) * 2000-04-11 2001-10-23 Matsushita Refrig Co Ltd シリカ多孔体の製造方法
WO2014132652A1 (ja) * 2013-02-28 2014-09-04 パナソニック株式会社 エアロゲルを用いた断熱構造体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402927A (en) 1980-04-22 1983-09-06 Dardel Guy Von Silica aerogel
JP2725573B2 (ja) * 1993-11-12 1998-03-11 松下電工株式会社 疎水性エアロゲルの製法
JP2000026609A (ja) 1998-07-13 2000-01-25 Ge Toshiba Silicones Co Ltd アルコキシ基末端ポリジオルガノシロキサンの製造方法
US6492014B1 (en) * 1999-04-01 2002-12-10 The United States Of America As Represented By The Secretary Of The Navy Mesoporous composite gels an aerogels
JP2005154195A (ja) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd エアロゲル材、及びこのエアロゲル材にて形成される物品
CN100372812C (zh) * 2004-02-03 2008-03-05 同济大学 纳米多孔二氧化硅气凝胶块体的制备方法
JP4938994B2 (ja) * 2005-04-22 2012-05-23 ペンタックスリコーイメージング株式会社 シリカエアロゲル膜及びその製造方法
CN1317187C (zh) 2005-07-12 2007-05-23 北京科技大学 一种多孔粉体掺杂的硅石气凝胶隔热材料的制备方法
WO2007010949A1 (ja) 2005-07-19 2007-01-25 Dynax Corporation アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法
US20090247655A1 (en) 2006-10-10 2009-10-01 Korea Institute Of Industrial Technology Method for preparing permanently hydrophobic aerogel and permanently hydrophobic aerogel prepared by using the method
CN101318659A (zh) * 2008-07-04 2008-12-10 绍兴纳诺气凝胶新材料研发中心有限公司 一种常压干燥制备二氧化硅气凝胶复合材料的方法
JP5456436B2 (ja) 2009-10-30 2014-03-26 旭ファイバーグラス株式会社 シリカキセロゲルの製造方法
JP5585529B2 (ja) 2011-05-06 2014-09-10 信越化学工業株式会社 末端アルコキシ変性オルガノポリシロキサン及びその製造方法
KR101323303B1 (ko) * 2012-02-08 2013-10-30 주식회사 화승티엔씨 다공성 복합화합물 및 그 제조방법, 다공성 복합화합물을 함유한 시멘트 조성물
JP2014035043A (ja) 2012-08-09 2014-02-24 Panasonic Corp 断熱材
WO2014132632A1 (ja) * 2013-02-28 2014-09-04 三洋電機株式会社 電解コンデンサおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294418A (ja) * 2000-04-11 2001-10-23 Matsushita Refrig Co Ltd シリカ多孔体の製造方法
WO2014132652A1 (ja) * 2013-02-28 2014-09-04 パナソニック株式会社 エアロゲルを用いた断熱構造体

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017010551A1 (ja) * 2015-07-15 2018-02-22 日立化成株式会社 エアロゲル複合材料
WO2017010551A1 (ja) * 2015-07-15 2017-01-19 日立化成株式会社 エアロゲル複合材料
US20190345362A1 (en) * 2017-02-02 2019-11-14 Hitachi Chemical Company, Ltd. Treatment agent for treating particles, water-repellent particles and production method therefor, water-repellent layer, and penetration preventing structure
US11905452B2 (en) 2017-02-02 2024-02-20 Resonac Corporation Treatment agent for treating fibers, fibers and production method therefor, and fiber sheet and production method therefor
KR102605765B1 (ko) 2017-02-02 2023-11-27 가부시끼가이샤 레조낙 입자 처리용의 처리제, 발수성 입자 및 그 제조 방법, 발수층 그리고 침투 방지 구조체
KR20190113802A (ko) * 2017-02-02 2019-10-08 히타치가세이가부시끼가이샤 입자 처리용의 처리제, 발수성 입자 및 그 제조 방법, 발수층 그리고 침투 방지 구조체
JP2018145331A (ja) * 2017-03-07 2018-09-20 日立化成株式会社 エアロゲルパウダー分散液
JP7024191B2 (ja) 2017-03-07 2022-02-24 昭和電工マテリアルズ株式会社 エアロゲルパウダー分散液
JP2018145332A (ja) * 2017-03-07 2018-09-20 日立化成株式会社 樹脂組成物及び成形体
JPWO2018163354A1 (ja) * 2017-03-09 2019-12-26 日立化成株式会社 エアロゲル複合体の製造方法及びエアロゲル複合体
WO2018163354A1 (ja) * 2017-03-09 2018-09-13 日立化成株式会社 エアロゲル複合体の製造方法及びエアロゲル複合体
JP2020513049A (ja) * 2017-04-13 2020-04-30 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 多孔質材料を製造する方法
US10824012B2 (en) 2018-01-18 2020-11-03 Samsung Display Co., Ltd. Display device and method of manufacturing the same

Also Published As

Publication number Publication date
CN114702724A (zh) 2022-07-05
EP3199493A1 (en) 2017-08-02
TW202018014A (zh) 2020-05-16
KR102425252B1 (ko) 2022-07-25
MY179677A (en) 2020-11-11
KR20170060027A (ko) 2017-05-31
US20170283269A1 (en) 2017-10-05
JP6428783B2 (ja) 2018-11-28
SG10202003017RA (en) 2020-05-28
US11780735B2 (en) 2023-10-10
US10590001B2 (en) 2020-03-17
JPWO2016047740A1 (ja) 2017-07-20
CN107074563A (zh) 2017-08-18
SG11201702422SA (en) 2017-05-30
TWI737161B (zh) 2021-08-21
EP3199493A4 (en) 2018-03-07
TW201627404A (zh) 2016-08-01
US20200148543A1 (en) 2020-05-14
TWI736524B (zh) 2021-08-21

Similar Documents

Publication Publication Date Title
JP6428783B2 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
WO2017164184A1 (ja) ゾル組成物、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
WO2017170534A1 (ja) エアロゲル複合体パウダー
JP6288382B2 (ja) エアロゲル複合体及び断熱材
JP6597064B2 (ja) エアロゲル複合体
JP6269903B2 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JP2018076231A (ja) エアロゲル
WO2017038776A1 (ja) ゾル組成物及びエアロゲル
WO2017170498A1 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JP6705250B2 (ja) エアロゲル複合体
WO2017038781A1 (ja) エアロゲル複合体
JP6699292B2 (ja) エアロゲル複合体の製造方法
JP6693221B2 (ja) エアロゲル複合体の製造方法
JP6693222B2 (ja) エアロゲル複合体の製造方法、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
WO2018163354A1 (ja) エアロゲル複合体の製造方法及びエアロゲル複合体
CN114702724B (zh) 气凝胶复合体及其制造方法、带有气凝胶复合体的支撑构件以及绝热材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550386

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15514435

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177008640

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015843269

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843269

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11201702422S

Country of ref document: SG