JP6705250B2 - エアロゲル複合体 - Google Patents

エアロゲル複合体 Download PDF

Info

Publication number
JP6705250B2
JP6705250B2 JP2016066324A JP2016066324A JP6705250B2 JP 6705250 B2 JP6705250 B2 JP 6705250B2 JP 2016066324 A JP2016066324 A JP 2016066324A JP 2016066324 A JP2016066324 A JP 2016066324A JP 6705250 B2 JP6705250 B2 JP 6705250B2
Authority
JP
Japan
Prior art keywords
group
airgel
silicon
airgel composite
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016066324A
Other languages
English (en)
Other versions
JP2017179063A (ja
Inventor
俊郎 金子
俊郎 金子
知里 吉川
知里 吉川
智彦 小竹
智彦 小竹
慧 高安
慧 高安
正人 宮武
正人 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016066324A priority Critical patent/JP6705250B2/ja
Publication of JP2017179063A publication Critical patent/JP2017179063A/ja
Application granted granted Critical
Publication of JP6705250B2 publication Critical patent/JP6705250B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、強靭性かつ柔軟性に優れるエアロゲル複合体に関する。
熱伝導率が小さく断熱性を有する材料としてシリカエアロゲルが知られている。シリカエアロゲルは、優れた機能性(断熱性等)、特異な光学特性、特異な電気特性などを有する機能素材として有用なものであり、例えば、シリカエアロゲルの超低誘電率特性を利用した電子基板材料、高断熱性を利用した断熱材料、超低屈折率を利用した光反射材料等に用いられている。
このようなシリカエアロゲルを製造する方法として、アルコキシシランを加水分解し、重合して得られたゲル状化合物(アルコゲル)を、分散媒の超臨界条件下で乾燥する超臨界乾燥法が知られている(例えば特許文献1参照)。超臨界乾燥法は、アルコゲルと分散媒(乾燥に用いる溶媒)とを高圧容器中に導入し、分散媒をその臨界点以上の温度と圧力をかけて超臨界流体とすることにより、アルコゲルに含まれる溶媒を除去する方法である。しかし、超臨界乾燥法は高圧プロセスを要するため、超臨界に耐え得る特殊な装置等への設備投資が必要であり、なおかつ多くの手間と時間が必要である。
そこで、アルコゲルを、高圧プロセスを要しない汎用的な方法を用いて乾燥する手法が提案されている。このような方法としては、例えば、ゲル原料として、モノアルキルトリアルコキシシランとテトラアルコキシシランとを特定の比率で併用することにより、得られるアルコゲルの強度を向上させ、常圧で乾燥させる方法が知られている(例えば特許文献2参照)。しかしながら、このような常圧乾燥を採用する場合、アルコゲル内部の毛細管力に起因するストレスにより、ゲルが収縮する傾向がある。
米国特許第4402927号 特開2011−93744号公報
このように、従来の製造プロセスが抱える問題点について様々な観点からの検討が行われている一方で、上記いずれのプロセスを採用したとしても、得られたエアロゲルは強靭性に難があり、取り扱い性に課題がある。例えば、上記プロセスにより得られた塊状のエアロゲルは、手で触って持ち上げようとするだけで破損してしまう場合がある。これは、エアロゲルの密度が低いことと、エアロゲルが10nm程度の微粒子が弱く連結しているだけの細孔構造を有していることとに由来すると推察される。
本発明は上記の事情に鑑みてなされたものであり、断熱性を維持しつつ、高い圧縮破断強度や引張破断強度、および低い引張弾性率を有することにより、強靭性や柔軟性に優れたエアロゲル複合体を提供することを目的とする。
本発明者は、上記目的を達成するために鋭意研究を重ねた結果、DD/MAS法を用いて測定された固体29Si−NMRスペクトルにおいて、含ケイ素結合単位Q、Tに由来するシグナル面積とDに由来するシグナル面積との比Q+T:Dが特定範囲内にあるエアロゲル複合体であれば、優れた圧縮破断強度や引張破断強度、および優れた引張弾性率を有することを見出し、本発明の完成に至った。
すなわち、本発明は、エアロゲル成分及びシリカ粒子を含有し、DD/MAS法を用いて測定された固体29Si−NMRスペクトルにおいて、含ケイ素結合単位Q、T及びDを以下のとおり規定したとき、Q及びTに由来するシグナル面積と、Dに由来するシグナル面積との比(シグナル面積比)Q+T:Dが1:0.10〜1:0.35である、エアロゲル複合体を提供する。
Q:1個のケイ素原子に結合した酸素原子が4個の含ケイ素結合単位。
T:1個のケイ素原子に結合した酸素原子が3個と水素原子又は1価の有機基が1個の含ケイ素結合単位。
D:1個のケイ素原子に結合した酸素原子が2個と水素原子又は1価の有機基が2個の含ケイ素結合単位。
ただし、上記有機基とはケイ素原子に結合する原子が炭素原子である1価の有機基である。
本発明は、あるいは、DD/MAS法を用いて測定された固体29Si−NMRスペクトルにおいて、含ケイ素結合単位Q、T及びDを以下のとおり規定したとき、Q及びTに由来するシグナル面積と、Dに由来するシグナル面積との比(シグナル面積比)Q+T:Dが1:0.10〜1:0.35である、エアロゲル複合体を提供することもできる。
Q:1個のケイ素原子に結合した酸素原子が4個の含ケイ素結合単位。
T:1個のケイ素原子に結合した酸素原子が3個と水素原子又は1価の有機基が1個の含ケイ素結合単位。
D:1個のケイ素原子に結合した酸素原子が2個と水素原子又は1価の有機基が2個の含ケイ素結合単位。
ただし、Qに由来するシグナル面積が0超であり、上記有機基とはケイ素原子に結合する原子が炭素原子である1価の有機基である。
本発明において、シリカ粒子の平均一次粒子径は1〜500nmとすることができる。
本発明は、下記一般式(1)で表される構造を有することができる。

式(1)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。
本発明は、支柱部及び橋かけ部を備えるラダー型構造を有し、橋かけ部が下記一般式(2)で表される構造を有することができる。

式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1〜50の整数を示す。
本発明は、下記一般式(3)で表される構造を有することができる。

式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a、b及びcはそれぞれ独立に1〜50の整数を示す。
本発明によれば、断熱性を維持しつつ、高い圧縮破断強度や引張破断強度、および低い引張弾性率を有することにより、強靭性や柔軟性に優れたエアロゲル複合体を提供することができる。後述の実施例にも示されているように、例えば圧縮破断強度が0.3MPa以上かつ引張破断強度が10kPa以上であって、引張弾性率が20kPa未満であるエアロゲル複合体を提供することができる。
粒子の二軸平均一次粒子径の算出方法を示す図である。 DD/MAS法を用いて得られる、実施例1のエアロゲル複合体に対する固体29Si−NMRスペクトルを示す図である。
以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書において、「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。「A又はB」とは、A及びBのいずれか一方を含んでいればよく、両方を含んでいてもよい。本実施形態で例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。
<エアロゲル複合体>
狭義には、湿潤ゲルに対して超臨界乾燥法を用いて得られた乾燥ゲルをエアロゲル、大気圧下での乾燥により得られた乾燥ゲルをキセロゲル、凍結乾燥により得られた乾燥ゲルをクライオゲルと称するが、本実施形態においては、湿潤ゲルのこれらの乾燥手法によらず、得られた低密度の乾燥ゲルをエアロゲルと称する。すなわち、本実施形態においてエアロゲルとは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is a gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味するものである。一般的にエアロゲルの内部は網目状の微細構造となっており、2〜20nm程度のエアロゲル粒子が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、100nmに満たない細孔があり、三次元的に微細な多孔性の構造をしている。なお、本実施形態におけるエアロゲルは、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、メチル基等の有機基又は有機鎖を導入した、いわゆる有機−無機ハイブリッド化されたシリカエアロゲルが挙げられる。なお、本実施形態のエアロゲル複合体は、エアロゲル中にシリカ粒子が複合化されながらも、上記エアロゲルの特徴であるクラスター構造を有しており、三次元的に微細な多孔性の構造を有している。
本実施形態のエアロゲル複合体は、エアロゲル成分及びシリカ粒子を含有するものである。なお、必ずしもこれと同じ概念を意味するものではないが、本実施形態のエアロゲル複合体は、三次元網目骨格を構成する成分としてシリカ粒子を含有するものである、と表現することも可能である。本実施形態のエアロゲル複合体は、後述するとおり断熱性と柔軟性とに優れている。特に、柔軟性が優れていることによりエアロゲル複合体としての取り扱い性が向上して大型化も可能となるため、生産性を高めることができる。なお、このようなエアロゲル複合体は、エアロゲルの製造環境中にシリカ粒子を存在させることにより得られるものである。そしてシリカ粒子を存在させることによるメリットは、複合体自体の断熱性、柔軟性等を向上できることのみならず、後述する湿潤ゲル生成工程の時間短縮、あるいは洗浄及び溶媒置換工程から乾燥工程の簡略化が可能であることにもある。なお、この工程の時間短縮及び工程の簡略化は、柔軟性が優れるエアロゲル複合体を作製する上で必ずしも求められることではない。
本実施形態において、エアロゲル成分とシリカ粒子との複合化態様は様々である。例えば、エアロゲル成分は膜状等の不定形であってもよく、粒子状(エアロゲル粒子)であってもよい。いずれの態様においても、エアロゲル成分が様々な形態になりシリカ粒子間に存在しているため、複合体の骨格に柔軟性が付与されていると推察される。
まず、エアロゲル成分とシリカ粒子の複合化態様としては、不定形のエアロゲル成分がシリカ粒子間に介在する態様が挙げられる。このような態様としては、具体的には、例えば、シリカ粒子が膜状のエアロゲル成分(シリコーン)により被覆された態様(エアロゲル成分がシリカ粒子を内包する態様)、エアロゲル成分がバインダーとなりシリカ粒子同士が連結された態様、エアロゲル成分が複数のシリカ粒子間隙を充填している態様、これらの態様の組み合わせの態様(クラスター状に並んだシリカ粒子がエアロゲル成分により被覆された態様等)、など様々な態様が挙げられる。このように、本実施形態においてエアロゲル複合体は、三次元網目骨格がシリカ粒子とエアロゲル成分(シリコーン)から構成されることができ、その具体的態様(形態)に特に制限はない。
一方、本実施形態においてエアロゲル成分は、不定形ではなく明確な粒子状となってシリカ粒子と複合化していてもよい。
本実施形態のエアロゲル複合体においてこのような様々な態様が生じるメカニズムは必ずしも定かではないが、本発明者は、ゲル化工程におけるエアロゲル成分の生成速度が関与していると推察している。例えば、シリカ粒子のシラノール基数を変動させることによってエアロゲル成分の生成速度が変動する傾向がある。また、系のpHを変動させることによってもエアロゲル成分の生成速度が変動する傾向がある。
このことは、シリカ粒子のサイズ、形状、シラノール基数、系のpH等を調整することにより、エアロゲル複合体の態様(三次元網目骨格のサイズ、形状等)を制御できることを示唆する。したがって、エアロゲル複合体の密度、気孔率等の制御が可能となり、エアロゲル複合体の断熱性と柔軟性を制御することができると考えられる。なお、エアロゲル複合体の三次元網目骨格は、上述した様々な態様の一種類のみから構成されていてもよいし、二種以上の態様から構成されていてもよい。
シリカ粒子としては特に制限なく用いることができ、例えば、非晶質シリカ粒子が挙げられる。さらに当該非晶質シリカ粒子としては、溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子からなる群より選択される少なくとも一種が挙げられる。これらのうち、コロイダルシリカ粒子は単分散性が高く、ゾル中での凝集を抑制し易い。なお、シリカ粒子としては、中空構造、多孔質構造等を有するシリカ粒子であってもよい。
シリカ粒子の形状は特に制限されず、球状、繭型、会合型等が挙げられる。これらのうち、シリカ粒子として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。シリカ粒子の平均一次粒子径は1〜500nmとすることができるが、5〜300nmであってもよく、20〜100nmであってもよい。シリカ粒子の平均一次粒子径が1nm以上であることにより、適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲル複合体が得易くなる。一方、平均一次粒子径が500nm以下であることにより、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲル複合体が得易くなる。
エアロゲル粒子(エアロゲル成分)とシリカ粒子とは、水素結合、化学結合、又はそれらの結合の組合せの態様を取って結合していると推測される。この際、水素結合、化学結合、又はそれらの結合の組合せは、エアロゲル粒子(エアロゲル成分)のシラノール基、反応性基、又はそれら両者と、シリカ粒子のシラノール基により形成されると考えられる。そのため、結合の態様が化学結合であると、適度な強度をエアロゲルに付与し易いと考えられる。このことから考えると、エアロゲル成分と複合化させる粒子として、シリカ粒子に限らず、粒子表面にシラノール基を有する無機粒子又は有機粒子も用いることができる。
シリカ粒子の1g当りのシラノール基数は、10×1018〜1000×1018個/gとすることができるが、50×1018〜800×1018個/gであってもよく、100×1018〜700×1018個/gであってもよい。シリカ粒子の1g当りのシラノール基数が10×1018個/g以上であることにより、エアロゲル粒子(エアロゲル成分)とのより良好な反応性を有することができ、耐収縮性に優れるエアロゲル複合体を得易くなる。一方、シラノール基数が1000×1018個/g以下であることにより、ゾル作製時における急なゲル化を抑制し易くなり、均質なエアロゲル複合体が得易くなる。
本実施形態において、粒子の平均粒子径(エアロゲル粒子の平均二次粒子径及びシリカ粒子の平均一次粒子径)は、走査型電子顕微鏡(以下「SEM」と略記する。)を用いてエアロゲル複合体の断面を直接観察することにより得ることができる。例えば、三次元網目骨格からは、その断面の直径に基づきエアロゲル粒子又はシリカ粒子個々の粒子径を得ることができる。ここでいう直径とは、三次元網目骨格を形成する骨格の断面を円とみなした場合の直径を意味する。また、断面を円とみなした場合の直径とは、断面の面積を同じ面積の円に置き換えたときの当該円の直径のことである。なお、平均粒子径の算出に当たっては、100個の粒子について円の直径を求め、その平均を取るものとする。
なお、シリカ粒子については原料から平均粒子径を測定することが可能である。例えば、二軸平均一次粒子径は、任意の粒子20個をSEMにより観察した結果から、次のようにして算出される。すなわち、通常水に分散している固形分濃度が5〜40質量%であるコロイダルシリカ粒子を例にすると、コロイダルシリカ粒子の分散液にパターン配線付きウエハを2cm角に切ったチップを約30秒浸した後、当該チップを純水にて約30秒間すすぎ、窒素ブロー乾燥する。その後、チップをSEM観察用の試料台に載せ、加速電圧10kVを掛け、10万倍の倍率にてシリカ粒子を観察し、画像を撮影する。得られた画像から20個のシリカ粒子を任意に選択し、それらの粒子の粒子径の平均を平均粒子径とする。この際、選択したシリカ粒子が図1に示すような形状であった場合、シリカ粒子1に外接し、その長辺が最も長くなるように配置した長方形(外接長方形L)を導く。そして、その外接長方形Lの長辺をX、短辺をYとして、(X+Y)/2として二軸平均一次粒子径を算出し、その粒子の粒子径とする。
エアロゲル複合体に含まれるエアロゲル成分の含有量は、エアロゲル複合体の総量100質量部に対し、4〜25質量部とすることができるが、10〜20質量部であってもよい。含有量が4質量部以上であることにより適度な強度を付与し易くなり、25質量部以下であることにより良好な断熱性を得易くなる。
エアロゲル複合体に含まれるシリカ粒子の含有量は、エアロゲル複合体の総量100質量部に対し、1〜25質量部とすることができるが、3〜15質量部であってもよい。含有量が1質量部以上であることにより適度な強度をエアロゲル複合体に付与し易くなり、25質量部以下であることによりシリカ粒子の固体熱伝導を抑制し易くなる。
エアロゲル複合体は、これらエアロゲル成分及びシリカ粒子の他に、熱線輻射抑制等を目的として、カーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等のその他の成分をさらに含んでいてもよい。その他の成分の含有量は特に制限されないが、エアロゲル複合体の所期の効果を十分に確保する観点から、エアロゲル複合体の総量100質量部に対し、1〜5質量部とすることができる。
<含ケイ素結合単位Q、T及びDに係るシグナル面積>
本実施形態のエアロゲル複合体は、強靭性や柔軟性の観点から、DD/MAS法を用いて測定された固体29Si−NMRスペクトルにおいて、含ケイ素結合単位Q、T及びDを以下のとおり規定したとき、Q及びTに由来するシグナル面積と、Dに由来するシグナル面積との比(シグナル面積比)Q+T:Dが1:0.10〜1:0.35であるが、1:0.10超1:0.35以下であってもよく、1:0.15〜1:0.25であってもよい。
Q:1個のケイ素原子に結合した酸素原子が4個の含ケイ素結合単位。
T:1個のケイ素原子に結合した酸素原子が3個と水素原子又は1価の有機基が1個の含ケイ素結合単位。
D:1個のケイ素原子に結合した酸素原子が2個と水素原子又は1価の有機基が2個の含ケイ素結合単位。
(ただし、上記有機基とはケイ素原子に結合する原子が炭素原子である1価の有機基である。)
なお、上記Q、T及びDにおける「酸素原子」とは、主として2個のケイ素原子間を結合する酸素原子であるが、例えばケイ素原子に結合した水酸基が有する酸素原子である場合も考えられる。また、「有機基」とはケイ素原子に結合する原子が炭素原子である1価の有機基であり、例えば炭素数が1〜10の非置換又は置換の1価の有機基が挙げられる。非置換の1価の有機基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基等の炭化水素基が挙げられる。また、置換の1価の有機基としては、これら炭化水素基の水素原子がハロゲン原子、所定の官能基、所定の官能基含有有機基等で置換された炭化水素基(置換有機基)、あるいは特にシクロアルキル基、アリール基、アラルキル基等の環の水素原子がアルキル基で置換された炭化水素基、などが挙げられる。なお、上記ハロゲン原子としては塩素原子、フッ素原子等が(すなわち、クロロアルキル基、ポリフルオロアルキル基等のハロゲン原子置換有機基となる)、上記官能基としては、水酸基、メルカプト基、カルボキシル基、エポキシ基、アミノ基、シアノ基、アクリロイルオキシ基、メタクリロイルオキシ基等が、上記官能基含有有機基としては、アルコキシ基、アシル基、アシルオキシ基、アルコキシカルボニル基、グリシジル基、エポキシシクロヘキシル基、アルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、N−アミノアルキル置換アミノアルキル基等が、それぞれ挙げられる。
シグナル面積比は、固体29Si−NMRスペクトルにより確認することができる。具体的には、エアロゲル複合体に対し、DD/MAS法を用いた29Si−NMR測定を行うことにより、例えば図2に示すようなスペクトルが得られる。図2は、DD/MAS法を用いて得られる、実施例1のエアロゲル複合体に対する固体29Si−NMRスペクトルを示す図である。この図にみられるように、含ケイ素結合単位Q、T及びDの化学シフトは、Q単位:−90〜−135ppm、T単位:−45〜−85ppm、D単位:0〜−40ppmの範囲にそれぞれ観察されるため、含ケイ素結合単位Q、T及びDのシグナルを分離し、各単位に由来するシグナル面積を計算することが可能である。
ここで、図2を用いて、シグナル面積比の計算方法を説明する。例えば、図2においては、−90〜−135ppmの化学シフト範囲において、シリカ由来のQ単位シグナルが観測されている。また、−45〜−85ppmの化学シフト範囲において、T単位のシグナルが観測されており、0〜−40ppmの化学シフト範囲において、D単位のシグナルが観測されている。シグナル面積(積分値)は、それぞれの化学シフト範囲において、シグナルを積分することにより得られる。Q単位とT単位のシグナル面積を足し合わせて1とした場合、図2のシグナル面積比Q+T:Dは、1:0.21と計算される。シグナル面積は一般的なスペクトル解析ソフト(例えば、ブルカー社製のNMRソフトウェア「TopSpin」(TopSpinは登録商標))を用いて算出されるものである。なお、スペクトル解析には、『パソコンによるFT−NMRのデータ処理(第2版)(CD−ROM付by Windows):中村博:三共出版』(Windowsは登録商標)に付属のソフトウェアを使用することもできる。
本実施形態のエアロゲル複合体では、DD/MAS法を用いて測定された固体29Si−NMRスペクトルにおいて、所定量の含ケイ素結合単位Qが観測され得る。具体的には、Q単位シグナルのシグナル面積(積分値)が0超である。これまで述べてきたシリカ粒子の存在は、Q単位シグナルのシグナル面積で規定することができる。そのため、本実施形態のエアロゲル複合体は、DD/MAS法を用いて測定された固体29Si−NMRスペクトルにおいて、含ケイ素結合単位Q、T及びDを上記のとおり規定したとき、Q及びTに由来するシグナル面積と、Dに由来するシグナル面積との比(シグナル面積比)Q+T:Dが1:0.10〜1:0.35である、エアロゲル複合体(ただし、Qに由来するシグナル面積が0超である)、ということもできる。
なお、このようなシグナル面積比は、後述するエアロゲルの製造条件、特に酸触媒の添加量を変更することにより適宜調整することができる。
<エアロゲル成分の具体的態様>
本実施形態のエアロゲル複合体におけるエアロゲル成分としては、以下の態様が挙げられる。これらの態様を採用することにより、エアロゲル複合体の断熱性及び柔軟性を所望の水準に制御することが容易となる。ただし、これらの態様の各々を採用することは、必ずしも本実施形態にて規定するエアロゲル複合体を得ることが目的ではない。各々の態様を採用することで、各々の態様に応じた熱伝導率及び圧縮弾性率を有するエアロゲル複合体を得ることができる。したがって、用途に応じた断熱性及び柔軟性を有するエアロゲル複合体を提供することができる。
(第一の態様)
本実施形態のエアロゲル複合体は、下記一般式(1)で表される構造を有することができる。
式(1)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。なお、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。
上記の構造をエアロゲル成分としてエアロゲル複合体の骨格中に導入することにより、低熱伝導率かつ柔軟なエアロゲル複合体となる。このような観点から、式(1)中、R及びRとしてはそれぞれ独立に炭素数が1〜6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(1)中、R及びRとしてはそれぞれ独立に炭素数が1〜6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。
(第二の態様)
本実施形態のエアロゲル複合体は、支柱部及び橋かけ部を備えるラダー型構造を有するエアロゲル複合体であり、かつ、橋かけ部が下記一般式(2)で表される構造を有するエアロゲル複合体であってもよい。このようなラダー型構造をエアロゲル成分としてエアロゲル複合体の骨格中に導入することにより、耐熱性及び機械的強度を向上させることができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と支柱部同士を連結する橋かけ部(bridges)とを有するもの(いわゆる「梯子」の形態を有するもの)である。本態様において、エアロゲル複合体の骨格がラダー型構造からなっていてもよいが、エアロゲル複合体が部分的にラダー型構造を有していてもよい。
式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1〜50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。
上記の構造をエアロゲル成分としてエアロゲル複合体の骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有する(すなわち、下記一般式(X)で表される構造を有する)エアロゲルよりも優れた柔軟性を有するエアロゲル複合体となる。なお、下記一般式(X)にて示すように、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルでは、橋かけ部の構造が−O−であるが、本実施形態のエアロゲル複合体では、橋かけ部の構造が上記一般式(2)で表される構造(ポリシロキサン構造)である。
式(X)中、Rはヒドロキシ基、アルキル基又はアリール基を示す。
支柱部となる構造及びその鎖長、並びに橋かけ部となる構造の間隔は特に限定されないが、耐熱性と機械的強度とをより向上させるという観点から、ラダー型構造としては、下記一般式(3)で表される構造を有していてもよい。
式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1〜3000の整数を示し、bは1〜50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。また、式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様にcが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。
なお、より優れた柔軟性を得る観点から、式(2)及び(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)としてはそれぞれ独立に炭素数が1〜6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(3)中、a及びcは、それぞれ独立に6〜2000とすることができるが、10〜1000であってもよい。また、式(2)及び(3)中、bは、2〜30とすることができるが、5〜20であってもよい。
(第三の態様)
本実施形態のエアロゲル複合体は、シリカ粒子と、分子内に加水分解性の官能基を有するシリコン化合物及び該シリコン化合物の加水分解生成物からなる群より選択される少なくとも一種(以下、これらのシリコン化合物等を総称して「シリコン化合物類」という場合がある)と、を含有するゾルから生成された湿潤ゲルを乾燥して得られるもの(ゾル由来の湿潤ゲルの乾燥物)であってもよい。なお、これまで述べてきたエアロゲル複合体も、このように、シリカ粒子と、シリコン化合物類とを含有するゾルから生成された湿潤ゲルを乾燥することで得られるものであってもよい。
シリコン化合物における分子内のケイ素数は1又は2とすることができる。分子内に加水分解性の官能基を有するシリコン化合物としては、特に限定されないが、例えば、アルキルケイ素アルコキシドが挙げられる。アルキルケイ素アルコキシドは、耐水性を向上する観点から、加水分解性の官能基の数を3個以下とすることができ、具体的には、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン及びエチルトリメトキシシランが挙げられる。ここで、加水分解性の官能基としては、メトキシ基、エトキシ基等のアルコキシ基などが挙げられる。
また、加水分解性の官能基の数が3個以下であり、分子内に反応性基を有するシリコン化合物であるビニルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン等も用いることができる。
さらに、分子末端の加水分解性の官能基が3個以下のシリコン化合物であるビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン等も用いることができる。
これらのシリコン化合物類は、単独で、又は2種類以上を混合して用いてもよい。
本実施形態のエアロゲル複合体を作製するにあたり、上記のシリコン化合物類を含有するゾルは、分子内に反応性基を有するポリシロキサン化合物及び該ポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種(以下、これらのポリシロキサン化合物等を総称して「ポリシロキサン化合物類」という場合がある)をさらに含有することができる。
ポリシロキサン化合物類における反応性基は、特に限定されないが、同じ反応性基同士で反応するか、あるいは他の反応性基と反応する基とすることができ、例えば、アルコキシ基、シラノール基、ヒドロキシアルキル基、エポキシ基、ポリエーテル基、メルカプト基、カルボキシル基、フェノール基等が挙げられる。これらの反応性基を有するポリシロキサン化合物は単独で、又は2種類以上を混合して用いてもよい。反応性基としては、例えば、エアロゲル複合体の柔軟性を向上する観点から、アルコキシ基、シラノール基、ヒドロキシアルキル基、ポリエーテル基等が挙げられ、これらのうち、アルコキシ基又はヒドロキシアルキル基はゾルの相溶性をより向上することができる。また、ポリシロキサン化合物の反応性の向上とエアロゲル複合体の熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基の炭素数は1〜6とすることができるが、エアロゲル複合体の柔軟性をより向上する観点から2〜4であってもよい。
分子内にヒドロキシアルキル基を有するポリシロキサン化合物としては、下記一般式(4)で表される構造を有するものが挙げられる。下記一般式(4)で表される構造を有するポリシロキサン化合物を使用することにより、前記一般式(1)で表される構造をエアロゲル複合体の骨格中に導入することができる。
式(4)中、Rはヒドロキシアルキル基を示し、R10はアルキレン基を示し、R11及びR12はそれぞれ独立にアルキル基又はアリール基を示し、nは1〜50の整数を示す。ここで、アリール基としては、フェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(4)中、2個のRは各々同一であっても異なっていてもよく、同様に2個のR10は各々同一であっても異なっていてもよい。また、式(4)中、2個以上のR11は各々同一であっても異なっていてもよく、同様に2個以上のR12は各々同一であっても異なっていてもよい。
上記構造のポリシロキサン化合物類を含有するゾルから生成された湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲル複合体をさらに得易くなる。このような観点から、式(4)中、Rとしては炭素数が1〜6のヒドロキシアルキル基等が挙げられ、当該ヒドロキシアルキル基としてはヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。また、式(4)中、R10としては炭素数が1〜6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。また、式(4)中、R11及びR12としてはそれぞれ独立に炭素数が1〜6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(4)中、nは2〜30とすることができるが、5〜20であってもよい。
上記一般式(4)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、X−22−160AS、KF−6001、KF−6002、KF−6003等の化合物(いずれも、信越化学工業株式会社製)、XF42−B0970、Fluid OFOH 702−4%等の化合物(いずれも、モメンティブ社製)などが挙げられる。
分子内にアルコキシ基を有するポリシロキサン化合物としては、下記一般式(5)で表される構造を有するものが挙げられる。下記一般式(5)で表される構造を有するポリシロキサン化合物を使用することにより、前記一般式(2)で表される橋かけ部を有するラダー型構造をエアロゲル複合体の骨格中に導入することができる。
式(5)中、R14はアルキル基又はアルコキシ基を示し、R15及びR16はそれぞれ独立にアルコキシ基を示し、R17及びR18はそれぞれ独立にアルキル基又はアリール基を示し、mは1〜50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、例えば、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(5)中、2個のR14は各々同一であっても異なっていてもよく、2個のR15は各々同一であっても異なっていてもよく、同様に2個のR16は各々同一であっても異なっていてもよい。また、式(5)中、mが2以上の整数の場合、2個以上のR17は各々同一であっても異なっていてもよく、同様に2個以上のR18も各々同一であっても異なっていてもよい。
上記構造のポリシロキサン化合物類を含有するゾルから生成された湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲル複合体をさらに得易くなる。このような観点から、式(5)中、R14としては炭素数が1〜6のアルキル基、炭素数が1〜6のアルコキシ基等が挙げられ、当該アルキル基又はアルコキシ基としてはメチル基、メトキシ基、エトキシ基等が挙げられる。また、式(5)中、R15及びR16としてはそれぞれ独立に炭素数が1〜6のアルコキシ基等が挙げられ、当該アルコキシ基としてはメトキシ基、エトキシ基等が挙げられる。また、式(5)中、R17及びR18としてはそれぞれ独立に炭素数が1〜6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(5)中、mは2〜30とすることができるが、5〜20であってもよい。
上記一般式(5)で表される構造を有するポリシロキサン化合物は、例えば、特開2000−26609号公報、特開2012−233110号公報等にて報告される製造方法を適宜参照して得ることができる。
なお、アルコキシ基は加水分解するため、分子内にアルコキシ基を有するポリシロキサン化合物はゾル中にて加水分解生成物として存在する可能性があり、分子内にアルコキシ基を有するポリシロキサン化合物とその加水分解生成物は混在していてもよい。また、分子内にアルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。
これらのポリシロキサン化合物類は、単独で、又は2種類以上を混合して用いてもよい。
上記ゾルに含まれるシリコン化合物類の含有量は、ゾルの総量100質量部に対し、5〜50質量部とすることができるが、10〜30質量部であってもよい。5質量部以上にすることにより良好な反応性を得易くなり、また、50質量部以下にすることにより良好な相溶性を得易くなる。
また、上記ゾルが、ポリシロキサン化合物類をさらに含有する場合、シリコン化合物類及びポリシロキサン化合物類の含有量の総和は、ゾルの総量100質量部に対し、5〜50質量部とすることができるが、10〜30質量部であってもよい。含有量の総和を5質量部以上にすることにより良好な反応性をさらに得易くなり、また、50質量部以下にすることにより良好な相溶性をさらに得易くなる。この際、シリコン化合物類の含有量とポリシロキサン化合物類の加水分解生成物の含有量との比は、0.5:1〜4:1とすることができるが、1:1〜2:1であってもよい。これらの化合物の含有量の比を0.5:1以上とすることにより良好な相溶性をさらに得易くなり、また、4:1以下とすることによりゲルの収縮をさらに抑制し易くなる。
上記ゾルに含まれるシリカ粒子の含有量は、ゾルの総量100質量部に対し、1〜20質量部とすることができるが、4〜15質量部であってもよい。含有量を1質量部以上にすることにより適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲル複合体が得易くなる。また、含有量を20質量部以下にすることによりシリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲル複合体が得易くなる。
(その他の態様)
本実施形態のエアロゲル複合体は、下記一般式(6)で表される構造を有することができる。
式(6)中、R19はアルキル基を示す。ここで、アルキル基としては炭素数が1〜6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
本実施形態のエアロゲル複合体は、下記一般式(7)で表される構造を有することができる。
式(7)中、R20及びR21はそれぞれ独立にアルキル基を示す。ここで、アルキル基としては炭素数が1〜6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
本実施形態のエアロゲル複合体は、下記一般式(8)で表される構造を有することができる。
式(8)中、R22はアルキレン基を示す。ここで、アルキレン基としては炭素数が1〜10のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、ヘキシレン基等が挙げられる。
<エアロゲル複合体の製造方法>
次に、エアロゲル複合体の製造方法について説明する。エアロゲル複合体の製造方法は、特に限定されないが、例えば、以下の方法により製造することができる。
すなわち、本実施形態のエアロゲル複合体は、ゾル生成工程と、ゾル生成工程で得られたゾルをゲル化し、その後、熟成して湿潤ゲルを得る湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを洗浄及び(必要に応じ)溶媒置換する工程と、洗浄及び溶媒置換した湿潤ゲルを乾燥する乾燥工程とを主に備える製造方法により製造することができる。なお、ゾルとは、ゲル化反応が生じる前の状態であって、本実施形態においては上記シリコン化合物類と、場合によりポリシロキサン化合物類と、シリカ粒子とが溶媒中に溶解若しくは分散している状態を意味する。また、湿潤ゲルとは、液体媒体を含んでいながらも、流動性を有しない湿潤状態のゲル固形物を意味する。
以下、本実施形態のエアロゲル複合体の製造方法の各工程について説明する。
(ゾル生成工程)
ゾル生成工程は、上述のシリコン化合物と、場合によりポリシロキサン化合物と、シリカ粒子と、溶媒とを混合し、加水分解させてゾルを生成する工程である。なお、シリカ粒子は、溶媒に分散された分散液の状態で混合してもよい。本工程においては、加水分解反応を促進させるため、溶媒中にさらに酸触媒を添加してもよい。また、特許第5250900号に示されるように、溶媒中に界面活性剤、熱加水分解性化合物等を添加することもできる。さらに、熱線輻射抑制等を目的として、溶媒中にカーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等の成分を添加してもよい。
溶媒としては、例えば、水、又は、水及びアルコール類の混合液を用いることができる。アルコール類としては、メタノール、エタノール、n−プロパノール、2−プロパノール、n−ブタノール、2−ブタノール、t−ブタノール等が挙げられる。これらの中でも、ゲル壁との界面張力を低減させる点で、表面張力が低くかつ沸点の低いアルコールとしては、メタノール、エタノール、2−プロパノール等が挙げられる。これらは単独で、又は2種類以上を混合して用いてもよい。
例えば、溶媒としてアルコール類を用いる場合、アルコール類の量は、シリコン化合物及びポリシロキサン化合物の総量1モルに対し、4〜8モルとすることができるが、4〜6.5であってもよく、4.5〜6モルであってもよい。アルコール類の量を4モル以上にすることにより良好な相溶性をさらに得易くなり、また、8モル以下にすることによりゲルの収縮をさらに抑制し易くなる。
酸触媒としては、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸類;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩類;酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸類などが挙げられる。これらの中でも、得られるエアロゲル複合体の耐水性をより向上する酸触媒としては有機カルボン酸類が挙げられる。当該有機カルボン酸類としては酢酸が挙げられるが、ギ酸、プロピオン酸、シュウ酸、マロン酸等であってもよい。これらは単独で、又は2種類以上を混合して用いてもよい。
酸触媒を用いることで、シリコン化合物及びポリシロキサン化合物の加水分解反応を促進させて、より短時間でゾルを得ることができる。
酸触媒の添加量は、シリコン化合物及びポリシロキサン化合物の総量100質量部に対し、0.01〜50.0質量部とすることができるが、0.5〜30質量部としてもよく、1.0〜10.0質量部としてもよい。酸触媒の添加量を適切に調整することで、上記含ケイ素結合単位Q、T及びDを制御することが可能である。
界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。これらは単独で、又は2種類以上を混合して用いてもよい。
非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含むもの、ポリオキシプロピレン等の親水部を含むものなどを使用できる。ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含むものとしては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含むものとしては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンのブロック共重合体等が挙げられる。
イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等が挙げられる。カチオン性界面活性剤としては、臭化セチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム等が挙げられ、アニオン性界面活性剤としては、ドデシルスルホン酸ナトリウム等が挙げられる。また、両イオン性界面活性剤としては、アミノ酸系界面活性剤、ベタイン系界面活性剤、アミンオキシド系界面活性剤等が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸等が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等が挙げられる。アミンオキシド系界面活性剤としては、例えば、ラウリルジメチルアミンオキシドが挙げられる。
これらの界面活性剤は、後述する湿潤ゲル生成工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用をすると考えられている。
界面活性剤の添加量は、界面活性剤の種類、あるいはシリコン化合物及びポリシロキサン化合物の種類並びに量にも左右されるが、例えば、シリコン化合物及びポリシロキサン化合物の総量100質量部に対し、1〜100質量部とすることができる。なお、同添加量は5〜60質量部であってもよい。
熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、後述する湿潤ゲル生成工程でのゾルゲル反応を促進すると考えられている。よって、この熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、尿素;ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物などを挙げることができる。これらの中でも、特に尿素は上記促進効果を得られ易い。
熱加水分解性化合物の添加量は、後述する湿潤ゲル生成工程でのゾルゲル反応を十分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、シリコン化合物及びポリシロキサン化合物の総量100質量部に対して、1〜200質量部とすることができる。なお、同添加量は2〜150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性をさらに得易くなり、また、200質量部以下とすることにより、結晶の析出及びゲル密度の低下をさらに抑制し易くなる。
ゾル生成工程の加水分解は、混合液中のシリコン化合物、ポリシロキサン化合物、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば、20〜60℃の温度環境下で10分〜24時間行ってもよく、50〜60℃の温度環境下で5分〜8時間行ってもよい。これにより、シリコン化合物及びポリシロキサン化合物中の加水分解性官能基が十分に加水分解され、シリコン化合物の加水分解生成物及びポリシロキサン化合物の加水分解生成物をより確実に得ることができる。
ただし、溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、熱加水分解性化合物として尿素を用いた場合は、ゾル生成工程の温度環境は0〜40℃とすることができるが、10〜30℃であってもよい。
(湿潤ゲル生成工程)
湿潤ゲル生成工程は、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る工程である。本工程では、ゲル化を促進させるため塩基触媒を用いることができる。
塩基触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2−エチルヘキシルアミン、3−エトキシプロピルアミン、ジイソブチルアミン、3−(ジエチルアミノ)プロピルアミン、ジ−2−エチルヘキシルアミン、3−(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t−ブチルアミン、sec−ブチルアミン、プロピルアミン、3−(メチルアミノ)プロピルアミン、3−(ジメチルアミノ)プロピルアミン、3−メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N−メチルモルホリン、2−メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、水酸化アンモニウム(アンモニア水)は、揮発性が高く、乾燥後のエアロゲル複合体中に残存し難いため耐水性を損なわないという点、さらには経済性の点で優れている。上記の塩基触媒は単独で、又は2種類以上を混合して用いてもよい。
塩基触媒を用いることで、ゾル中のシリコン化合物類、ポリシロキサン化合物類、及びシリカ粒子の、脱水縮合反応、脱アルコール縮合反応、又はそれら両者の反応を促進することができ、ゾルのゲル化をより短時間で行うことができる。また、これにより、強度(剛性)のより高い湿潤ゲルを得ることができる。特に、アンモニアは揮発性が高く、エアロゲル複合体中に残留し難いので、塩基触媒としてアンモニアを用いることで、より耐水性の優れたエアロゲル複合体を得ることができる。
塩基触媒の添加量は、シリコン化合物類及びポリシロキサン化合物類の総量100質量部に対し、0.5〜5質量部とすることができるが、1〜4質量部であってもよい。0.5質量部以上とすることにより、ゲル化をより短時間で行うことができ、5質量部以下とすることにより、耐水性の低下をより抑制することができる。
湿潤ゲル生成工程におけるゾルのゲル化は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。ゲル化温度は、30〜90℃とすることができるが、40〜80℃であってもよい。ゲル化温度を30℃以上とすることにより、ゲル化をより短時間に行うことができ、強度(剛性)のより高い湿潤ゲルを得ることができる。また、ゲル化温度を90℃以下にすることにより、溶媒(特にアルコール類)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
湿潤ゲル生成工程における熟成は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。熟成により、湿潤ゲルを構成する成分の結合が強くなり、その結果、乾燥時の収縮を抑制するのに十分な強度(剛性)の高い湿潤ゲルを得ることができる。熟成温度は、30〜90℃とすることができるが、40〜80℃であってもよい。熟成温度を30℃以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、熟成温度を90℃以下にすることにより、溶媒(特にアルコール類)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
なお、ゾルのゲル化終了時点を判別することは困難な場合が多いため、ゾルのゲル化とその後の熟成とは、連続して一連の操作で行ってもよい。
ゲル化時間と熟成時間は、ゲル化温度及び熟成温度により異なるが、本実施形態においてはゾル中にシリカ粒子が含まれていることから、従来のエアロゲルの製造方法と比較して特にゲル化時間を短縮することができる。この理由は、ゾル中のシリコン化合物類及びポリシロキサン化合物類が有する、シラノール基、反応性基、又はそれら両者が、シリカ粒子のシラノール基と水素結合、化学結合、又はそれらの結合の組合せを形成するためであると推察する。なお、ゲル化時間は10〜120分間とすることができるが、20〜90分間であってもよい。ゲル化時間を10分間以上とすることにより均質な湿潤ゲルを得易くなり、120分間以下とすることにより後述する洗浄及び溶媒置換工程から乾燥工程の簡略化が可能となる。なお、ゲル化及び熟成の工程全体として、ゲル化時間と熟成時間との合計時間は、4〜480時間とすることができるが、6〜120時間であってもよい。ゲル化時間と熟成時間の合計を4時間以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、480時間以下にすることにより熟成の効果をより維持し易くなる。
得られるエアロゲル複合体の密度を下げたり、平均細孔径を大きくするために、ゲル化温度及び熟成温度を上記範囲内で高めたり、ゲル化時間と熟成時間の合計時間を上記範囲内で長くしてもよい。また、得られるエアロゲル複合体の密度を上げたり、平均細孔径を小さくするために、ゲル化温度及び熟成温度を上記範囲内で低くしたり、ゲル化時間と熟成時間の合計時間を上記範囲内で短くしてもよい。
(洗浄及び溶媒置換工程)
洗浄及び溶媒置換工程は、上記湿潤ゲル生成工程により得られた湿潤ゲルを洗浄する工程(洗浄工程)と、湿潤ゲル中の洗浄液を乾燥条件(後述の乾燥工程)に適した溶媒に置換する工程(溶媒置換工程)を有する工程である。洗浄及び溶媒置換工程は、湿潤ゲルを洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、湿潤ゲル中の未反応物、副生成物等の不純物を低減し、より純度の高いエアロゲル複合体の製造を可能にする観点からは、湿潤ゲルを洗浄してもよい。なお、本実施形態においては、ゲル中にシリカ粒子が含まれていることから、後述するように溶媒置換工程は必ずしも必須ではない。
洗浄工程では、上記湿潤ゲル生成工程で得られた湿潤ゲルを洗浄する。当該洗浄は、例えば、水又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。
有機溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、アセトン、メチルエチルケトン、1,2−ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N−ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。上記の有機溶媒は単独で、又は2種類以上を混合して用いてもよい。
後述する溶媒置換工程では、乾燥によるゲルの収縮を抑制するため、低表面張力の溶媒を用いることができる。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒が挙げられる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2−プロパノール、アセトン、メチルエチルケトン等が挙げられる。なお、メタノール、エタノール、メチルエチルケトン等は経済性の点で優れている。
洗浄工程に使用される水又は有機溶媒の量としては、湿潤ゲル中の溶媒を十分に置換し、洗浄できる量とすることができる。当該量は、湿潤ゲルの容量に対して3〜10倍の量とすることができる。洗浄は、洗浄後の湿潤ゲル中の含水率が、シリカ質量に対し、10質量%以下となるまで繰り返すことができる。
洗浄工程における温度環境は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、30〜60℃程度の加温とすることができる。
溶媒置換工程では、後述する乾燥工程における収縮を抑制するため、洗浄した湿潤ゲルの溶媒を所定の置換用溶媒に置き換える。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥する場合は、後述の低表面張力の溶媒が挙げられる。一方、超臨界乾燥をする場合は、置換用溶媒としては、例えば、エタノール、メタノール、2−プロパノール、ジクロロジフルオロメタン、二酸化炭素等、又はこれらを2種以上混合した溶媒が挙げられる。
低表面張力の溶媒としては、20℃における表面張力が30mN/m以下のものが挙げられる。なお、当該表面張力は25mN/m以下であっても、又は20mN/m以下であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2−メチルペンタン(17.4)、3−メチルペンタン(18.1)、2−メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1−ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m−キシレン(28.7)、p−キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1−クロロプロパン(21.8)、2−クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2−ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類などが挙げられる(かっこ内は20℃での表面張力を示し、単位は[mN/m]である)。これらの中で、脂肪族炭化水素類(ヘキサン、ヘプタン等)は低表面張力でありかつ作業環境性に優れている。また、これらの中でも、アセトン、メチルエチルケトン、1,2−ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、さらに後述する乾燥工程における乾燥が容易な点で、常圧での沸点が100℃以下のものを用いてもよい。上記の溶媒は単独で、又は2種類以上を混合して用いてもよい。
溶媒置換工程に使用される溶媒の量としては、洗浄後の湿潤ゲル中の溶媒を十分に置換できる量とすることができる。当該量は、湿潤ゲルの容量に対して3〜10倍の量とすることができる。
溶媒置換工程における温度環境は、置換に用いる溶媒の沸点以下の温度とすることができ、例えば、ヘプタンを用いる場合は、30〜60℃程度の加温とすることができる。
なお、本実施形態においては、ゲル中にシリカ粒子が含まれていることから、上述のとおり溶媒置換工程は必ずしも必須ではない。推察されるメカニズムとしては次のとおりである。すなわち、従来であれば乾燥工程における収縮を抑制するため、湿潤ゲルの溶媒を所定の置換用溶媒(低表面張力の溶媒)に置き換えていたが、本実施形態においてはシリカ粒子が三次元網目状の骨格の支持体として機能することにより、当該骨格が支持され、乾燥工程におけるゲルの収縮が抑制される。そのため、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に付すことができると考えられる。このように、本実施形態においては、洗浄及び溶媒置換工程から乾燥工程の簡略化が可能である。ただし、本実施形態は溶媒置換工程を行うことを何ら排除するものではない。
(乾燥工程)
乾燥工程では、上記のとおり洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを乾燥させる。これにより、最終的にエアロゲル複合体を得ることができる。
乾燥の手法としては特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中で、低密度のエアロゲル複合体を製造し易いという観点からは、常圧乾燥又は超臨界乾燥を用いることができる。また、低コストで生産可能という観点からは、常圧乾燥を用いることができる。なお、本実施形態において、常圧とは0.1MPa(大気圧)を意味する。
本実施形態のエアロゲル複合体は、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類により異なるが、特に高温での乾燥が溶媒の蒸発速度を速め、ゲルに大きな亀裂を生じさせる場合があるという点に鑑み、20〜150℃とすることができる。なお、当該乾燥温度は60〜120℃であってもよい。また、乾燥時間は、湿潤ゲルの容量及び乾燥温度により異なるが、4〜120時間とすることができる。なお、本実施形態において、生産性を阻害しない範囲内において臨界点未満の圧力をかけて乾燥を早めることも、常圧乾燥に包含されるものとする。
本実施形態のエアロゲル複合体は、また、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、超臨界乾燥することによっても得ることができる。超臨界乾燥は、公知の手法にて行うことができる。超臨界乾燥する方法としては、例えば、湿潤ゲルに含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。あるいは、超臨界乾燥する方法としては、湿潤ゲルを、液化二酸化炭素中に、例えば、20〜25℃、5〜20MPa程度の条件で浸漬することで、湿潤ゲルに含まれる溶媒の全部又は一部を当該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。
このような常圧乾燥又は超臨界乾燥により得られたエアロゲル複合体は、さらに常圧下にて、105〜200℃で0.5〜2時間程度追加乾燥してもよい。これにより、密度が低く、小さな細孔を有するエアロゲル複合体をさらに得易くなる。追加乾燥は、常圧下にて、150〜200℃で行ってもよい。
本実施形態のエアロゲル複合体は、高断熱性と優れた屈曲性とを有している。上記エアロゲル複合体の製造方法により得られるエアロゲル複合体は、そのまま(必要に応じ所定の形状に加工し)断熱材として使用することができる。そのため、建築分野、自動車分野、家電製品、半導体分野、産業用設備等の用途に適用できる。
次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。
(合成例)
撹拌機、温度計及びジムロート冷却管を備えた1リットルの3つ口フラスコにて、ヒドロキシ末端ジメチルポリシロキサン「XC96−723」(モメンティブ社製、製品名)を100.0質量部、メチルトリメトキシシランを181.3質量部及びt−ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、上記一般式(5)で表される両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物A)を得た。
(実施例1)
シリカ粒子含有原料としてPL−2L(扶桑化学工業株式会社製、製品名、平均一次粒子径:20nm、固形分:20質量%)を100.0質量部、水を99.0質量部、酸触媒として酢酸を1.0質量部、イオン性界面活性剤としてヘキサデシルトリメチルアンモニウムブロミド(和光純薬工業株式会社製、以下「CTAB」と略記)を20.0質量部及び熱加水分解性化合物として尿素を120.0質量部混合し、これにシリコン化合物としてメチルシトリメトキシラン(信越化学工業株式会社製、以下「MTMS」と略記)を60.0質量部及びジメトキシジメチルシラン(東京化成工業株式会社製、以下「DMDMS」と略記)を20.0質量部、並びにポリシロキサン化合物としてポリシロキサン化合物Aを20.0質量部加え、25℃で30分反応させた。得られたゾルを60℃で4時間ゲル化した後、60℃で60時間熟成して湿潤ゲルを得た。
その後、得られた湿潤ゲルを水1000.0質量部及びメタノール1500.0質量部の混合液に浸漬し、60℃で3時間かけて洗浄を行った。この洗浄操作を、混合液をメタノール2500.0質量部に交換して再度行った。次に、洗浄した湿潤ゲルを、低表面張力溶媒であるメチルエチルケトン2500.0質量部に浸漬し、60℃で3時間かけて溶媒置換を行った。この溶媒置換操作を、新しいメチルエチルケトンに交換しながら2回行った。洗浄及び溶媒置換された湿潤ゲルを、常圧下にて、25℃で48時間乾燥し、その後さらに150℃で2時間乾燥することで、上記一般式(3)、(6)及び(7)で表される構造を有するエアロゲル複合体を得た。
(実施例2〜3)
ゾル生成時の水添加量及び酢酸添加量を表1のとおりとしたこと以外は、実施例1と同様にして、エアロゲル複合体を得た。
[各種評価]
各実施例で得られたエアロゲル複合体について、以下の内容に従って含ケイ素結合単位Q、T及びDのシグナル面積比、圧縮破断強度、引張破断強度、引張弾性率、熱伝導率を測定し、評価した。評価結果を表2にまとめて示す。なお、参考として、DD/MAS法を用いて得られる、実施例1のエアロゲル複合体に対する固体29Si−NMRスペクトルを図2に示す。
(1)含ケイ素結合単位Q、T及びDに係るシグナル面積比の測定
固体29Si−NMR装置として「FT−NMR AV400WB」(ブルカー・バイオスピン株式会社製、製品名)を用いて測定を行った。測定条件は、測定モード:DD/MAS法、プローブ:7mmφのCPMASプローブ、磁場:9.4T、共鳴周波数:79MHz、MAS回転数:4kHz、遅延時間:150秒とした。化学シフトの基準物質としては、3−トリメチルシリルプロピオン酸ナトリウムを用い、その化学シフトを1.459ppmとした。
測定サンプルとしてはエアロゲル複合体を細かく裁断したものを準備し、これをZrO製ローターに詰めて、プローブに装着して測定を行った。得られた含ケイ素結合単位Q、T及びDに係るシグナル面積比(Q+T:D)を求めた。なお、スペクトル解析にあたり、Line Broadening係数は100Hzとした。
(2)圧縮破断強度の測定
刃角約20〜25度の刃を用いて、エアロゲル複合体を厚み7mm、幅7mm、長さ7mmの立方体に加工し、測定サンプルとした。次に、面の平行を確保するために、必要に応じて#1500以上の紙やすりで測定サンプルを整形した。
測定装置としては、小型卓上試験機「EZTest」(株式会社島津製作所製、製品名)を用いた。なお、ロードセルとしては500Nを使用した。また、ステンレス製の上圧盤(φ20mm)及び下圧盤(φ118mm)を測定用冶具として用いた。平行に配置した上圧盤及び下圧盤の間に測定サンプルをセットし、1mm/minの速度でサンプルを圧縮した。測定温度は25℃とし、測定サンプルが破壊した時点の圧縮強度を圧縮破断強度とした。
ここで、圧縮強度δ(MPa)は以下のように求めた。
δ=F/A
式中、Fは圧縮力(N)を示し、Aは負荷をかける前の測定サンプルの断面積(mm)を示す。
(3)引張破断強度および引張弾性率の測定
刃角約20〜25度の刃を用いて、エアロゲル複合体を厚み3mm、幅6mm、長さ30mmに加工し、測定サンプルとした。次に、面の平行を確保するために、必要に応じて#1500以上の紙やすりで測定サンプルを整形した。得られた測定サンプルを、測定前に、定温乾燥機「DVS402」(ヤマト科学株式会社製、製品名)を用いて、大気圧下、100℃で30分間乾燥した。次いで測定サンプルをデシケータ中に移し、25℃まで冷却した。
測定装置としては、圧縮破断強度測定と同様に小型卓上試験機「EZTest」(株式会社島津製作所製、製品名)を用いた。平行に配置した上圧盤及び下圧盤の間に測定サンプルをセットし、1mm/minの速度で引張を行った。測定温度は25℃とし、500N超の負荷をかけた時点又は測定サンプルが破壊した時点の引張応力を引張破断強度とした。ここで、ひずみεは次式より求めた。
ε=Δd/d1
式中、Δdは負荷による測定サンプルの引張りの変位(mm)を示し、d1は負荷をかける前の測定サンプルのクランプ間距離(mm)を示す。
また、引張応力σ(kPa)は、次式より求めた。
σ=F/A
式中、Fは引張力(N)を示し、Aは負荷をかける前の測定サンプルの断面積(mm)を示す。
引張弾性率E(kPa)は、0.1〜0.2Nの引張力範囲において、次式より求めた。
E=(σ−σ)/(ε−ε
式中、σは引張力が0.1Nにおいて測定される引張応力を示し、σは引張力が0.2Nにおいて測定される引張応力を示し、εは引張応力σにおいて測定される引張ひずみを示し、εは引張応力σにおいて測定される引張ひずみを示す。
(4)熱伝導率の測定
刃角約20〜25度の刃を用いて、エアロゲル複合体を150mm×150mm×100mmのサイズに加工し、測定サンプルとした。次に、面の平行を確保するために、必要に応じて#1500以上の紙やすりで整形した。得られた測定サンプルを、熱伝導率測定前に、定温乾燥機「DVS402」(ヤマト科学株式会社製、製品名)を用いて、大気圧下、100℃で30分間乾燥した。次いで測定サンプルをデシケータ中に移し、25℃まで冷却した。
熱伝導率の測定は、定常法熱伝導率測定装置「HFM436Lambda」(NETZSCH社製、製品名)を用いて行った。測定条件は、大気圧下、平均温度25℃とした。上記のとおり得られた測定サンプルを0.3MPaの荷重にて上部及び下部ヒーター間に挟み、温度差ΔTを20℃とし、ガードヒーターによって一次元の熱流になるように調整しながら、測定サンプルの上面温度、下面温度等を測定した。そして、測定サンプルの熱抵抗Rを次式より求めた。
=N((T−T)/Q)−R
式中、Tは測定サンプル上面温度を示し、Tは測定サンプル下面温度を示し、Rは上下界面の接触熱抵抗を示し、Qは熱流束計出力を示す。なお、Nは比例係数であり、較正試料を用いて予め求めておいた。
得られた熱抵抗Rより、測定サンプルの熱伝導率λを次式より求めた。
λ=d/R
式中、dは測定サンプルの厚さを示す。
表2から、面積比Q+T:Dの値が1:0.10〜1:0.35の範囲にある本実施例のエアロゲル複合体は、大気圧下、25℃での熱伝導率が0.03W/m・K以下でありながら、圧縮破断強度が0.3MPa以上かつ引張破断強度が10kPa以上であり、従来のエアロゲルでは達成困難であった優れた強靭性を有している。また、引張弾性率が20kPa未満であり、優れた柔軟性も有していることが分かる。本実施形態のエアロゲル複合体は、断熱材としての用途の他に、塗料用添加剤、化粧品、アンチブロッキング剤、触媒担持体等として利用することができる。
1…シリカ粒子、L…外接長方形。

Claims (5)

  1. エアロゲル成分及びシリカ粒子を含有し、
    DD/MAS法を用いて測定された固体29Si−NMRスペクトルにおいて、含ケイ素結合単位Q、T及びDを以下のとおり規定したとき、Q及びTに由来するシグナル面積と、Dに由来するシグナル面積との比(シグナル面積比)Q+T:Dが1:0.10〜1:0.35である、エアロゲル複合体。
    Q:1個のケイ素原子に結合した酸素原子が4個の含ケイ素結合単位。
    T:1個のケイ素原子に結合した酸素原子が3個と水素原子又は1価の有機基が1個の含ケイ素結合単位。
    D:1個のケイ素原子に結合した酸素原子が2個と水素原子又は1価の有機基が2個の含ケイ素結合単位。
    [ただし、上記有機基とはケイ素原子に結合する原子が炭素原子である1価の有機基である]。
  2. 前記シリカ粒子の平均一次粒子径が1〜500nmである、請求項1に記載のエアロゲル複合体。
  3. 下記一般式(1)で表される構造を有する、請求項1又は2に記載のエアロゲル複合体。

    [式(1)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。]
  4. 支柱部及び橋かけ部を備えるラダー型構造を有し、前記橋かけ部が下記一般式(2)で表される、請求項1〜のいずれか一項に記載のエアロゲル複合体。

    [式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1〜50の整数を示す。]
  5. 下記一般式(3)で表される構造を有する、請求項に記載のエアロゲル複合体。
    [式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a、b及びcはそれぞれ独立に1〜50の整数を示す。]
JP2016066324A 2016-03-29 2016-03-29 エアロゲル複合体 Active JP6705250B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016066324A JP6705250B2 (ja) 2016-03-29 2016-03-29 エアロゲル複合体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016066324A JP6705250B2 (ja) 2016-03-29 2016-03-29 エアロゲル複合体

Publications (2)

Publication Number Publication Date
JP2017179063A JP2017179063A (ja) 2017-10-05
JP6705250B2 true JP6705250B2 (ja) 2020-06-03

Family

ID=60005038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016066324A Active JP6705250B2 (ja) 2016-03-29 2016-03-29 エアロゲル複合体

Country Status (1)

Country Link
JP (1) JP6705250B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6544404B2 (ja) 2017-09-19 2019-07-17 日本電気株式会社 照合システム
JP7293583B2 (ja) * 2018-07-11 2023-06-20 株式会社レゾナック エアロゲルブロック
JP2021155298A (ja) * 2020-03-27 2021-10-07 積水化成品工業株式会社 多孔質構造内包粒子、その製造方法及びその用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201607053XA (en) * 2014-02-26 2016-10-28 Hitachi Chemical Co Ltd Aerogel

Also Published As

Publication number Publication date
JP2017179063A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
KR102425252B1 (ko) 에어로겔 복합체, 에어로겔 복합체 함유 지지 부재 및 단열재
TWI710627B (zh) 氣凝膠
KR102453735B1 (ko) 졸 조성물, 에어로겔 복합체, 에어로겔 복합체 구비 지지 부재 및 단열재
JP6288382B2 (ja) エアロゲル複合体及び断熱材
WO2017170534A1 (ja) エアロゲル複合体パウダー
JP6288384B2 (ja) エアロゲル
KR102452217B1 (ko) 에어로겔 및 그의 제조 방법
WO2017038776A1 (ja) ゾル組成物及びエアロゲル
WO2017038777A1 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JP6705250B2 (ja) エアロゲル複合体
WO2017170498A1 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JP6750626B2 (ja) エアロゲル複合体
JP6693221B2 (ja) エアロゲル複合体の製造方法
JP6699292B2 (ja) エアロゲル複合体の製造方法
JP6693222B2 (ja) エアロゲル複合体の製造方法、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JP2017043708A (ja) エアロゲル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R151 Written notification of patent or utility model registration

Ref document number: 6705250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350