WO2016046961A1 - 冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置 - Google Patents
冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2016046961A1 WO2016046961A1 PCT/JP2014/075663 JP2014075663W WO2016046961A1 WO 2016046961 A1 WO2016046961 A1 WO 2016046961A1 JP 2014075663 W JP2014075663 W JP 2014075663W WO 2016046961 A1 WO2016046961 A1 WO 2016046961A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- oxygen sensor
- leakage
- housing
- voltage
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
Definitions
- the present invention relates to a refrigerant leak detection device and a refrigeration cycle device including the same.
- a refrigerant gas sensor for detecting refrigerant gas is provided on the outer surface of an indoor unit, and the refrigerant gas sensor is provided at the lower part of the indoor unit (for example, , See Patent Document 1).
- the conventional refrigerant gas sensor used in the prior art disclosed in Patent Document 1 has a drawback that it is easily affected by aging because it reacts with the outside air.
- the refrigerant concentration detected by the sensor differs depending on the direction and speed at which the refrigerant leaks, the height at which the indoor unit is installed, the area in the installation facility, and the like. That is, it is difficult to set an appropriate sensor reference value (threshold value) for detecting refrigerant leakage with a sensor, depending on the behavior of the leaking refrigerant, the installation conditions of the indoor unit, and the like. If the reference value is high, leakage cannot be detected at an early stage, and if the reference value is low, there is a concern of causing a malfunction.
- the present invention has been made to solve such a problem, and is a refrigerant leak detection device that is less susceptible to aging and can accurately detect the occurrence of refrigerant leak, and a refrigeration cycle device including the same. Is what you get.
- an oxygen sensor that outputs a signal at a voltage corresponding to an oxygen concentration in a housing that houses a refrigerant pipe filled with a refrigerant gas, and a signal output from the oxygen sensor And a detector that detects the occurrence of leakage of the refrigerant gas in the housing based on the voltage of
- an oxygen sensor that is less reactive with outside air than the refrigerant gas sensor is used. There is an effect that it is possible to accurately detect the occurrence of refrigerant leakage.
- FIG. 1 to 5 relate to Embodiment 1 of the present invention.
- FIG. 1 is a diagram showing an example of the entire configuration of a refrigeration cycle apparatus to which a refrigerant leakage detection device is applied
- FIG. FIG. 3 is a block diagram showing the overall configuration
- FIG. 3 is a diagram for explaining the detection operation of the second refrigerant leak detection unit provided in the refrigerant leak detection device
- FIG. 4 is the detection operation of the first refrigerant leak detection unit provided in the refrigerant leak detection device.
- FIG. 5 is a diagram illustrating an example of sensor output when the electrolyte solution of the oxygen sensor included in the refrigerant leakage detection device is naturally frozen.
- FIG. 1 shows a configuration of an air conditioner as an example of a refrigeration cycle apparatus to which the refrigerant leakage detection device according to the present invention is applied.
- examples of the refrigeration cycle apparatus to which the refrigerant leakage detection device according to the present invention is applied include a water heater, a showcase, a refrigerator, and the like.
- the air conditioner includes an indoor unit 10 and an outdoor unit 20.
- the indoor unit 10 is installed in a room that is a target of air conditioning.
- the outdoor unit 20 is installed outside the room.
- the indoor unit 10 includes an indoor unit heat exchanger 11 and an indoor unit fan 12.
- the outdoor unit 20 includes an outdoor unit heat exchanger 21 and an outdoor unit fan 22.
- the indoor unit 10 and the outdoor unit 20 are connected by a refrigerant pipe 23.
- the refrigerant pipe 23 is circulated between the indoor unit heat exchanger 11 and the outdoor unit heat exchanger 21.
- a refrigerant gas is sealed in the refrigerant pipe 23.
- a compressor 25 is provided via a four-way valve 24 in the refrigerant pipe 23 on one side of the refrigerant circulation path between the indoor unit heat exchanger 11 and the outdoor unit heat exchanger 21.
- the compressor 25 is a device that compresses the supplied refrigerant to increase the pressure and temperature of the refrigerant.
- a rotary compressor or a scroll compressor can be used as the compressor 25, for example.
- An expansion valve 26 is provided in the refrigerant pipe 23 on the other side of the circulation path. The expansion valve 26 expands the flowing refrigerant and reduces the pressure of the refrigerant.
- the four-way valve 24, the compressor 25, and the expansion valve 26 are provided in the outdoor unit 20.
- the refrigerant pipe 23 on the indoor unit 10 side and the refrigerant pipe 23 on the outdoor unit 20 side are connected via a metal connecting part such as a joint.
- the indoor metal connection portion 13 is provided in the refrigerant pipe 23 of the indoor unit 10.
- An outdoor metal connection 27 is provided in the refrigerant pipe 23 of the outdoor unit 20.
- the refrigerant pipe 23 on the indoor unit 10 side and the refrigerant pipe 23 on the outdoor unit 20 side are connected via a refrigerant pipe 23 between the indoor metal connection part 13 and the outdoor metal connection part 27 to form a refrigerant circulation path. Is done.
- the refrigeration cycle configured as described above performs heat exchange between the refrigerant and air in each of the indoor unit heat exchanger 11 and the outdoor unit heat exchanger 21, so that the space between the indoor unit 10 and the outdoor unit 20 is changed. It works as a heat pump that transfers heat. At this time, by switching the four-way valve 24, it is possible to reverse the refrigerant circulation direction in the refrigeration cycle to switch between the cooling operation and the heating operation.
- a shutoff valve 28 is provided in the refrigerant pipe 23 of the outdoor unit 20.
- the closing valve 28 can operate and stop the refrigeration cycle by opening or closing the flow of the refrigerant.
- the indoor unit 10 and the outdoor unit 20 each have a casing. Inside the casing of the indoor unit 10, an indoor unit heat exchanger 11, an indoor unit fan 12, and an indoor metal connection unit 13 are accommodated, including a refrigerant pipe 23 in which a refrigerant is sealed. In addition, inside the casing of the outdoor unit 20, a refrigerant pipe 23 in which a refrigerant is also sealed, an outdoor unit heat exchanger 21, an outdoor unit fan 22, a four-way valve 24, a compressor 25, an expansion valve 26, The outdoor metal connection part 27 and the closing valve 28 are accommodated.
- the oxygen sensor 31 is installed in these cases.
- the oxygen sensor 31 is described as being installed in the housing of the indoor unit 10.
- the oxygen sensor 31 may be installed in the casing of the outdoor unit 20, or may be installed in both the casing of the indoor unit 10 and the casing of the outdoor unit 20. Further, the number of oxygen sensors 31 to be installed is not limited to one, and a plurality of oxygen sensors 31 may be installed.
- the oxygen sensor 31 is for detecting the oxygen concentration in the housing that houses the refrigerant pipe 23 in which the refrigerant gas is sealed.
- the oxygen sensor 31 outputs a signal at a voltage corresponding to the oxygen concentration in the housing.
- various types of oxygen sensors using various measurement principles for example, galvanic cell type, polaro type, zirconia type and the like can be used.
- galvanic cell type oxygen sensor which has an electrode and electrolyte solution is used especially as the oxygen sensor 31 is demonstrated.
- the refrigerant leak detection device detects the occurrence of refrigerant leak using the detection result of the oxygen sensor 31.
- the configuration of the refrigerant leakage detection device 30 is shown in FIG.
- the refrigerant leak detection device 30 includes a first refrigerant leak detection unit 32 and a second refrigerant leak detection unit 33 as refrigerant leak detection units.
- the refrigerant leakage detection unit includes the first refrigerant leakage detection unit 32 and the second refrigerant leakage detection unit 33.
- the refrigerant leakage detection unit detects the occurrence of refrigerant gas leakage in the housing based on the voltage of the signal output from the oxygen sensor 31.
- the second refrigerant leakage detection unit 33 among the refrigerant leakage detection units will be described.
- the second refrigerant leakage detection unit 33 detects the occurrence of refrigerant gas leakage in the housing when the voltage of the signal output from the oxygen sensor 31 is equal to or lower than a predetermined voltage reference value.
- the second refrigerant leakage detection unit 33 The principle of detecting the occurrence of refrigerant gas leakage by the second refrigerant leakage detection unit 33 will be described in detail below.
- the refrigerant mixes with the air in the casing.
- the proportion of oxygen that is, the oxygen concentration with respect to the entire atmosphere in the casing is reduced by the amount of leakage of the refrigerant. Therefore, when the atmosphere in the housing includes only the original air and the refrigerant leaked from the refrigerant pipe 23 and the like, the leakage refrigerant concentration in the housing can be known from the oxygen concentration in the housing.
- the oxygen sensor 31 outputs a signal at a voltage corresponding to the oxygen concentration in the casing.
- the voltage of the signal output from the oxygen sensor 31 is directly proportional to the oxygen concentration in the housing. Therefore, when the refrigerant leaks and the refrigerant concentration in the housing increases and the oxygen concentration in the housing decreases, the voltage of the signal output from the oxygen sensor 31 decreases.
- the second refrigerant leakage detection unit 33 assumes that the refrigerant concentration in the casing has become a certain level or higher. The occurrence of refrigerant gas leakage in the housing can be detected.
- This voltage reference value is a reference for detecting the occurrence of refrigerant gas leakage in the housing according to the relationship between the oxygen concentration in the housing and the voltage of the signal output from the oxygen sensor 31 and the type of refrigerant used. Is set based on the concentration of the refrigerant gas in the casing.
- This voltage reference value setting will be described with a specific example.
- the refrigerant sealed in the refrigerant pipe 23 is R32.
- This R32 is flammable, and its lower limit combustion concentration is 14.4%. Therefore, the voltage reference value is set so as to detect the occurrence of refrigerant gas leakage in the casing when the refrigerant concentration in the atmosphere in the casing becomes 14.4% or higher.
- the oxygen concentration C in the galvanic cell type oxygen sensor and the voltage V of the output signal are directly proportional to each other, and the oxygen concentration C changes linearly (linearly) with respect to the voltage V. That is, the relationship between the oxygen concentration C and the voltage V of the output signal can be expressed by the following equation.
- A is a constant determined by the oxygen sensor 31 to be used.
- the voltage reference value may have a safety factor or likelihood, and may be a value larger than the voltage corresponding to the lower limit combustion concentration of the refrigerant. Further, it may be possible to more accurately detect that the lower limit combustion concentration of the refrigerant concentration has been reached by correcting the voltage reference value based on temperature and humidity.
- the voltage reference value Vt set according to the type of refrigerant used in this way is stored in advance in the storage unit 34 provided in the refrigerant leakage detection device 30.
- the second refrigerant leakage detection unit 33 compares the voltage V of the signal output from the oxygen sensor 31 with the voltage reference value Vt stored in the storage unit 34 as needed.
- the output voltage V from the oxygen sensor 31 remains constant at the initial value V0 and does not change.
- the output voltage V from the oxygen sensor 31 gradually decreases according to the refrigerant leakage amount.
- the second refrigerant leakage detection unit 33 detects that refrigerant leakage has occurred in the housing.
- the first refrigerant leak detection unit 32 included in the refrigerant leak detection unit detects the occurrence of refrigerant gas leakage in the housing when the voltage of the signal output from the oxygen sensor 31 is higher than the initial value.
- the refrigerant leakage detection unit 32 When the refrigerant leaks from the refrigerant pipe 23 or the like, the refrigerant rapidly expands at the time of leakage. Since this expansion is rapid, it can be regarded as adiabatic expansion. Therefore, the temperature of the leaked refrigerant decreases due to adiabatic expansion.
- the atmosphere in the housing mixed with the leaked refrigerant becomes low temperature. Therefore, the oxygen sensor 31 is exposed to a low temperature atmosphere in the housing. Then, especially when the galvanic cell type oxygen sensor which has electrolyte solution is used as the oxygen sensor 31, it cools by this low temperature atmosphere, and the electrolyte solution of the oxygen sensor 31 freezes.
- the first refrigerant leakage detection unit 32 can detect the occurrence of refrigerant gas leakage in the housing when the voltage V of the signal output from the oxygen sensor 31 is higher than the initial value V0. .
- the output value from the oxygen sensor 31 in a state where the refrigerant is not leaking may be stored in the storage unit 34 in advance.
- the initial value V0 may be set by the moving average value of the voltage of the signal output from the oxygen sensor 31 within a predetermined time before the current time. According to the latter method, it is not necessary to set the initial value V0 in advance.
- the latter method will be described using a specific example.
- the case where the value which averaged the sensor voltage in the predetermined time in each day from the 1st day before the measurement day (the previous day) to 4 days ago is set as an example is taken as an example.
- the sensor voltages at a predetermined time from 1 day before to 4 days before the measurement date are 29.5 mV (1 day before), 29.4 mV (2 days before), 29.5 mV (3 days before), and 29.4 mV, respectively.
- the initial value on the measurement date is 29.45 mV, which is the average value of these.
- the temperature of the atmosphere in the housing will decrease.
- the electrolyte solution of the oxygen sensor 31 is cooled by the low temperature atmosphere.
- the electrolyte starts to freeze.
- the voltage V of the signal output from the oxygen sensor 31 increases rapidly.
- the first refrigerant leakage detection unit 32 detects that refrigerant leakage has occurred in the housing.
- the first refrigerant leakage detection unit 32 In conventional refrigerant gas sensors, in order to prevent malfunction, it is common to detect the occurrence of gas (refrigerant) leakage when the refrigerant gas concentration has exceeded a reference value for a certain period of time. is there.
- the occurrence of refrigerant leakage can be detected when the output voltage of the oxygen sensor 31 becomes higher than the initial value. Further, it is possible to detect refrigerant leakage in a short time from occurrence.
- the initial value V0 which is a reference value used by the first refrigerant leak detection unit 32 to detect the occurrence of refrigerant leak, does not depend on the refrigerant leak behavior or the housing installation conditions. For this reason, it is possible to easily set an appropriate sensor reference value. In general, by using an oxygen sensor that is less likely to deteriorate over time than a refrigerant gas sensor, it is less susceptible to aging and can accurately detect refrigerant leakage over a long period of time.
- the first refrigerant leak detection unit 32 detects that the voltage of the signal output from the oxygen sensor 31 is lower than the initial value V0 and then becomes higher than the initial value V0. The occurrence of refrigerant gas leakage in the body may be detected. Conversely, if the voltage of the signal output from the oxygen sensor 31 is higher than the initial value V0 without being lower than the initial value V0, the first refrigerant leak detection unit 32 is the refrigerant in the housing. The occurrence of gas leakage may not be detected.
- the first refrigerant leakage detection unit 32 detects the occurrence of refrigerant leakage when the refrigerant leaks into the housing and the output voltage of the oxygen sensor 31 shows a behavior as shown in FIG. It is possible to prevent detection and false detection in the case of natural leakage as shown in FIG.
- each of the first refrigerant leakage detection unit 32 and the second refrigerant leakage detection unit 33 included in the refrigerant leakage detection unit detects the occurrence of refrigerant leakage in the casing by different detection methods.
- the refrigerant leakage detection device 30 determines whether the refrigerant leakage detection unit uses the first refrigerant leakage detection unit 32 or the second refrigerant leakage detection unit 33 to detect the occurrence of refrigerant leakage in the housing. Can be switched by the mode switching unit 35 included in the.
- the mode switching unit 35 causes the refrigerant leakage detection unit to leak the refrigerant gas in the housing using only one of the first refrigerant leakage detection unit 32 and the second refrigerant leakage detection unit 33. Can be set to detect the occurrence of Further, the mode switching unit 35 causes the refrigerant leakage detection unit to detect the occurrence of refrigerant gas leakage in the housing using both the first refrigerant leakage detection unit 32 and the second refrigerant leakage detection unit 33. It may be possible to set to.
- the refrigerant leakage detection unit 32 and the second refrigerant leakage detection unit 33 detect the occurrence of refrigerant gas leakage in the casing. This is a process of detecting the occurrence of gas leakage.
- the former can be said to be a mode in which importance is placed on further reducing the occurrence of refrigerant leakage.
- the latter can be said to be a mode in which importance is placed on further reducing idling (false detection) of refrigerant leakage occurrence.
- the refrigerant leakage detection unit uses either one or both of the first refrigerant leakage detection unit 32 and the second refrigerant leakage detection unit 33 according to the setting by the mode switching unit 35, so that Detects leakage of refrigerant gas.
- the notification unit 36 included in the refrigerant leakage detection device 30 notifies the user or the operator of that fact.
- the notification unit 36 includes a speaker for notifying by sound that an occurrence of leakage of the refrigerant gas in the housing has been detected, an LED for notifying by light, and the like.
- blower fan 38 provided in the refrigerant leak detection device 30 is for generating an air flow in the casing when the refrigerant leak detection unit detects the occurrence of leakage of the refrigerant gas in the casing.
- the blower fan 38 is installed in a housing in which the oxygen sensor 31 is installed.
- the blower fan 38 may be used as the indoor unit fan 12 or the outdoor unit fan 22, or may be provided separately from the indoor unit fan 12 or the outdoor unit fan 22.
- the refrigerant leakage detection device 30 includes a control unit 37 for controlling the operation of the blower fan 38.
- a refrigerant leak detection signal is output from the first refrigerant leak detection unit 32 or the second refrigerant leak detection unit 33.
- the control part 37 will operate the ventilation fan 38, if a refrigerant
- the notification unit 36 also performs a notification operation based on the refrigerant leakage detection signal.
- the refrigerant leakage detection unit detects the occurrence of refrigerant gas leakage in the housing, the air flow is generated in the housing by the blower fan 38, thereby diffusing the leaked refrigerant and the refrigerant concentration. It can suppress that a location with high is made.
- the oxygen sensor 31 is disposed in a location where the possibility of refrigerant leakage is high in the housing of the indoor unit 10 or the outdoor unit 20.
- the locations where the refrigerant leakage is likely to occur include, for example, the brazing portions of the indoor unit heat exchanger 11 and the outdoor unit heat exchanger 21, the indoor metal connection portion 13 and the outdoor metal connection portion 27, and the like. Can do.
- the refrigerant leak detection device configured as described above is output from an oxygen sensor that outputs a signal at a voltage corresponding to the oxygen concentration in a housing that accommodates a refrigerant pipe filled with a refrigerant gas, and the oxygen sensor. And a detector that detects the occurrence of leakage of the refrigerant gas in the housing based on the voltage of the signal.
- FIG. FIG. 6 relates to Embodiment 2 of the present invention, and is a diagram illustrating a detection operation of a first refrigerant leakage detection unit provided in the refrigerant leakage detection device.
- the first refrigerant leakage detection unit 32 in the first embodiment described above detects the occurrence of refrigerant gas leakage in the housing when the voltage of the signal output from the oxygen sensor 31 is higher than the initial value. It was a thing.
- the voltage of the signal output from the oxygen sensor 31 in the first refrigerant leak detection unit 32 increases at a time change rate equal to or higher than a predetermined speed reference value. In this case, the occurrence of refrigerant gas leakage in the housing is detected.
- the first refrigerant leak detection unit 32 included in the refrigerant leak detection unit of the refrigerant leak detection device 30 is a time when the voltage of the signal output from the oxygen sensor 31 is equal to or greater than a predetermined speed reference value.
- the rate of change increases, the occurrence of refrigerant gas leakage in the housing is detected.
- a capillary tube having a hole diameter of 3 mm and a length of 150 mm was used.
- the refrigerant used in the experiment is HFO-1234yf.
- the time change rate (dV / dt) of the output voltage of the oxygen sensor when the electrolyte is frozen is 0.7 mV / min
- the capillary tube When the distance between the tip and the oxygen sensor was 150 mm, the time change rate (dV / dt) of the output voltage of the oxygen sensor when the electrolyte was frozen was 1.1 mV / min.
- the speed reference value is set to, for example, 0.5 mV / min, it is possible to detect that the electrolyte of the oxygen sensor has been frozen due to refrigerant leakage.
- the speed reference value may be set to a value lower than 0.5 mV / min, for example, 0.1 mV / min in advance in consideration of a safety factor and likelihood.
- the speed reference value used in the first refrigerant leak detection unit 32 included in the actual refrigerant leak detection device 30 may be set as follows as an example. That is, first, a cylinder filled with the refrigerant used in the refrigeration cycle apparatus to which the refrigerant leakage detection device 30 is applied is prepared. And the capillary which becomes the leak rate (for example, 10 kg / h) assumed when refrigerant
- an oxygen sensor 31 used in the refrigerant leak detection device 30 is installed vertically downward from the refrigerant outlet of the capillary tube. And a refrigerant
- the electrolyte solution of the oxygen sensor 31 is not frozen, the distance between the tip of the capillary tube and the sensor is shortened or the hole diameter of the capillary tube is increased until the electrolyte solution of the oxygen sensor 31 can be frozen. Increase leak rate.
- the speed reference value is set in consideration of the safety factor and the likelihood.
- the speed reference value thus set is stored in the storage unit 34 in advance.
- the first refrigerant leakage detection unit 32 compares the rate of change of the voltage V of the signal output from the oxygen sensor 31 with the speed reference value stored in the storage unit 34 as needed.
- the output voltage V from the oxygen sensor 31 remains constant at the initial value V0 and does not change.
- the output voltage V from the oxygen sensor 31 gradually decreases in accordance with the amount of refrigerant leaked as in the case of FIG. 4 described in the first embodiment. Go.
- the temperature of the atmosphere in the housing will decrease.
- the electrolyte solution of the oxygen sensor 31 is cooled by the low temperature atmosphere.
- the electrolyte starts to freeze.
- the voltage V of the signal output from the oxygen sensor 31 increases rapidly.
- the first refrigerant leak detection unit 32 causes the refrigerant to enter the casing. Detect that a leak has occurred.
- Other configurations are the same as those in the first embodiment, and detailed description thereof is omitted.
- the refrigerant leakage detection device configured as described above and the first refrigerant leakage detection unit 32 of the refrigeration cycle apparatus including the refrigerant leakage detection device 32, after the electrolyte solution of the oxygen sensor 31 is frozen, the output voltage of the oxygen sensor 31 is Before the output voltage becomes higher than the initial value, the occurrence of refrigerant leakage can be detected when the output voltage rises above the speed reference value. For this reason, in addition to having the same effect as in the first embodiment, it is possible to detect the occurrence of refrigerant leakage in a shorter time after the start of refrigerant leakage.
- the present invention relates to a refrigeration cycle apparatus including a casing that houses therein a refrigerant pipe filled with a refrigerant gas, specifically, an indoor unit of an air conditioner such as a floor-mounted type, a ceiling-mounted type, and a wall-mounted type, and
- the present invention can be used for refrigeration cycle apparatuses such as outdoor units, water heaters, showcases, and refrigerators, and refrigerant leakage detection apparatuses provided in such refrigeration cycle apparatuses.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Combustion & Propulsion (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Air Conditioning Control Device (AREA)
Abstract
経年変化による影響を受けにくく、精度よく冷媒漏洩の発生を検知することができる冷媒漏洩検知装置を提供する。このため、冷媒漏洩検知装置において、冷媒ガスが封入された冷媒配管(23)を内部に収容する筐体内の酸素濃度に応じた電圧で信号を出力する酸素センサ(31)と、前記酸素センサ(31)から出力された信号の電圧に基づいて、前記筐体内での前記冷媒ガスの漏洩の発生を検知する検知部(32、33)と、を備える。
Description
この発明は、冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置に関するものである。
従来においては、冷媒を用いた空気調和機において室内機の外表面に冷媒ガスを検知するための冷媒ガスセンサを備え、冷媒ガスセンサを室内機の下部に設けられているものが知られている(例えば、特許文献1参照)。
しかしながら、特許文献1に示された従来技術で用いられるような従来の冷媒ガスセンサは、外気と反応しやすいため経年変化の影響を受けやすいという欠点がある。また、冷媒が漏洩する方向や速度、室内機を設置する高さや設置設内の面積等によりセンサで検知する冷媒濃度は異なる。つまり、漏洩冷媒の挙動や室内機の据え付け条件等により、センサで冷媒漏洩を検知する適切なセンサ基準値(閾値)を設定することが困難である。そして、基準値が高いと早期に漏洩を検知することができず、基準値が低いと誤作動の原因となってしまう懸念があった。
この発明は、このような課題を解決するためになされたもので、経年変化による影響を受けにくく、精度よく冷媒漏洩の発生を検知することができる冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置を得るものである。
この発明に係る冷媒漏洩検知装置においては、冷媒ガスが封入された冷媒配管を内部に収容する筐体内の酸素濃度に応じた電圧で信号を出力する酸素センサと、前記酸素センサから出力された信号の電圧に基づいて、前記筐体内での前記冷媒ガスの漏洩の発生を検知する検知部と、を備えた構成とする。
また、この発明に係る冷凍サイクル装置においては、少なくとも上記のように構成された冷媒漏洩検知装置と、前記筐体内に設けられ、前記冷媒配管に接続された熱交換器と、を備えた構成とする。
この発明に係る冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置においては、冷媒ガスセンサよりも外気と反応しにくい酸素センサを用いるため、経年変化による影響を受けにくく、万一冷媒が漏洩したとしても精度よく冷媒漏洩の発生を検知することができるという効果を奏する。
この発明を添付の図面に従い説明する。各図を通じて同符号は同一部分又は相当部分を示しており、その重複説明は適宜に簡略化又は省略する。
実施の形態1.
図1から図5は、この発明の実施の形態1に係るもので、図1は冷媒漏洩検知装置が適用される冷凍サイクル装置の全体構成の一例を示す図、図2は冷媒漏洩検知装置の全体構成を示すブロック図、図3は冷媒漏洩検知装置が備える第2の冷媒漏洩検知部の検知動作を説明する図、図4は冷媒漏洩検知装置が備える第1の冷媒漏洩検知部の検知動作を説明する図、図5は冷媒漏洩検知装置が備える酸素センサの電解液が自然凍結した場合のセンサ出力の一例を示す図である。
図1から図5は、この発明の実施の形態1に係るもので、図1は冷媒漏洩検知装置が適用される冷凍サイクル装置の全体構成の一例を示す図、図2は冷媒漏洩検知装置の全体構成を示すブロック図、図3は冷媒漏洩検知装置が備える第2の冷媒漏洩検知部の検知動作を説明する図、図4は冷媒漏洩検知装置が備える第1の冷媒漏洩検知部の検知動作を説明する図、図5は冷媒漏洩検知装置が備える酸素センサの電解液が自然凍結した場合のセンサ出力の一例を示す図である。
この発明に係る冷媒漏洩検知装置が適用される冷凍サイクル装置の一例として、空気調和機の構成を図1に示す。なお、この発明に係る冷媒漏洩検知装置が適用される冷凍サイクル装置としては、空気調和機の他に、例えば、給湯器、ショーケース、あるいは冷蔵庫等を挙げることができる。
図1に示すように、空気調和機は、室内機10及び室外機20からなる。室内機10は、空気調和の対象となる部屋の室内に設置される。室外機20は、当該部屋の室外に設置される。室内機10は、室内機熱交換器11及び室内機ファン12を備えている。室外機20は、室外機熱交換器21及び室外機ファン22を備えている。室内機10と室外機20とは冷媒配管23で接続されている。冷媒配管23は、室内機熱交換器11と室外機熱交換器21との間で循環的に設けられている。冷媒配管23内には冷媒ガスが封入されている。
冷媒配管23内に封入される冷媒ガスは、地球温暖化係数(GWP)の小さいものを用いることが地球環境保護上の観点からいって望ましい。また、冷媒配管23内に封入される冷媒ガスは、可燃性のガスである。この冷媒ガスは空気よりも平均分子量が大きく(空気よりも密度が大きく)、空気中では重力方向の下方へと沈んでいく性質を持っている。
このような冷媒として、具体的に例えば、テトラフルオロプロペン(CF3CF=CH2:HFO-1234yf)、ジフルオロメタン(CH2F2:R32)、プロパン(R290)、プロピレン(R1270)、エタン(R170)、ブタン(R600)、イソブタン(R600a)、1.3.3.3-テトラフルオロ-1-プロペン(CF3-CH=CHF:HFO-1234ze)等の中から選ばれる1つ以上の冷媒からなる(混合)冷媒を用いることができる。
室内機熱交換器11と室外機熱交換器21との間における冷媒の循環経路の一側の冷媒配管23には、四方弁24を介して圧縮機25が設けられている。圧縮機25は、供給された冷媒を圧縮して当該冷媒の圧力及び温度を高める機器である。圧縮機25は、例えば、ロータリー圧縮機、あるいは、スクロール圧縮機等を用いることができる。また、同循環経路の他側の冷媒配管23には、膨張弁26が設けられている。膨張弁26は、流入した冷媒を膨張させ、当該冷媒の圧力を低下させる。四方弁24、圧縮機25及び膨張弁26は、室外機20に設けられる。
室内機10側の冷媒配管23と室外機20側の冷媒配管23とは、継手等の金属接続部を介して接続されている。具体的には、室内機10の冷媒配管23には室内金属接続部13が設けられている。また、室外機20の冷媒配管23には室外金属接続部27が設けられている。室内金属接続部13と室外金属接続部27との間の冷媒配管23を介して、室内機10側の冷媒配管23と室外機20側の冷媒配管23とが接続されて冷媒の循環経路が形成される。
そして、冷媒配管23により形成された冷媒の循環経路と、当該循環経路上に冷媒配管23により接続された、室内機熱交換器11、室外機熱交換器21、四方弁24、圧縮機25及び膨張弁26とにより、冷凍サイクル(冷媒回路)が構成される。
このようにして構成された冷凍サイクルは、室内機熱交換器11及び室外機熱交換器21のそれぞれにおいて冷媒と空気の間で熱交換を行うことにより、室内機10と室外機20との間で熱を移動させるヒートポンプとして働く。この際、四方弁24を切り換えることにより、冷凍サイクルにおける冷媒の循環方向を反転させて冷房運転と暖房運転とを切り換えることができる。
なお、室外機20の冷媒配管23には、閉止弁28が設けられている。閉止弁28は、冷媒の流れを開放したり閉止したりすることで、冷凍サイクルの運転及び停止を行うことができる。
室内機10及び室外機20は、それぞれが筐体を有している。室内機10の筐体の内部には、冷媒が封入された冷媒配管23をはじめとして、室内機熱交換器11、室内機ファン12及び室内金属接続部13が収容されている。また、室外機20の筐体の内部には、同じく冷媒が封入された冷媒配管23をはじめとして、室外機熱交換器21、室外機ファン22、四方弁24、圧縮機25、膨張弁26、室外金属接続部27及び閉止弁28が収容されている。
これらの筐体内には、酸素センサ31が設置される。ここでは、酸素センサ31は室内機10の筐体内に設置されているとして説明する。酸素センサ31は、室外機20の筐体内に設置してもよいし、室内機10の筐体内と室外機20の筐体内の両方に設置してもよい。また、設置する酸素センサ31の数は1つに限られず複数の酸素センサ31を設置してもよい。
酸素センサ31は、冷媒ガスが封入された冷媒配管23を内部に収容する筐体内の酸素濃度を検出するためのものである。酸素センサ31は、筐体内の酸素濃度に応じた電圧で信号を出力する。酸素センサ31は、種々の測定原理を用いたもの、例えば、ガルバニ電池式、ポーラロ式及びジルコニア式等の各方式の酸素センサを用いることができる。ここでは、特に、酸素センサ31として、電極及び電解液を有するガルバニ電池式酸素センサを用いた場合について説明する。
この発明に係る冷媒漏洩検知装置は、酸素センサ31の検知結果を利用して冷媒の漏洩の発生を検知する。この冷媒漏洩検知装置30の構成を図2に示す。冷媒漏洩検知装置30は、冷媒漏洩検知部として第1の冷媒漏洩検知部32及び第2の冷媒漏洩検知部33を備えている。換言すれば、冷媒漏洩検知部は、第1の冷媒漏洩検知部32及び第2の冷媒漏洩検知部33を備えている。
冷媒漏洩検知部は、酸素センサ31から出力された信号の電圧に基づいて、筐体内での冷媒ガスの漏洩の発生を検知するものである。説明が前後するが、まず、冷媒漏洩検知部のうちの第2の冷媒漏洩検知部33について説明する。第2の冷媒漏洩検知部33は、酸素センサ31から出力された信号の電圧が予め定められた電圧基準値以下となった場合に、筐体内での冷媒ガスの漏洩の発生を検知する。
この第2の冷媒漏洩検知部33による冷媒ガスの漏洩の発生の検知の原理について次に詳しく説明する。まず、筐体内で冷媒が漏洩すると、筐体内の空気に冷媒が混ざる。すると、冷媒が漏洩した分だけ、筐体内の雰囲気全体に対する酸素の割合すなわち酸素濃度が減少する。したがって、筐体内の雰囲気が、元々あった空気と冷媒配管23等から漏洩した冷媒とのみを含んでいるとした場合、筐体内の酸素濃度から筐体内の漏洩冷媒濃度を知ることができる。
具体的に例えば、冷媒漏洩前の筐体内の空気中の酸素濃度が20.95%であるとする。このときに、漏洩した冷媒が混入し、筐体内の雰囲気中の酸素濃度が17.93%まで減少した場合を考える。この場合、混合気体(冷媒が混入した雰囲気)中の空気の割合は85.6%(=17.93%/0.2095)まで減少したことになる。このことから、相対的に冷媒濃度は14.4%(=100%-85.6%)であると分かる。
ここで、前述したように、酸素センサ31は、筐体内の酸素濃度に応じた電圧で信号を出力する。特に、酸素センサ31としてガルバニ電池式酸素センサを用いている場合、酸素センサ31から出力される信号の電圧は、筐体内の酸素濃度に正比例する。したがって、冷媒が漏洩して筐体内の冷媒濃度が増加し、筐体内の酸素濃度が減少すると、酸素センサ31から出力される信号の電圧は低下していく。
したがって、酸素センサ31から出力された信号の電圧が予め定められた電圧基準値以下となった場合に、第2の冷媒漏洩検知部33は、筐体内での冷媒濃度が一定以上になったとして、筐体内での冷媒ガスの漏洩の発生を検知することができる。
次に、この第2の冷媒漏洩検知部33が、筐体内での冷媒ガスの漏洩の発生を検知するための基準となる電圧基準値の設定方法について説明する。この電圧基準値は、筐体内の酸素濃度と酸素センサ31から出力される信号の電圧との関係、及び、使用する冷媒種に応じて、筐体内での冷媒ガスの漏洩の発生を検知する基準とする筐体内での冷媒ガスの濃度に基づいて設定される。
この電圧基準値の設定について具体的な例を挙げながら説明する。前述したように、冷媒配管23内に封入される冷媒はR32である。このR32は可燃性であり、その下限燃焼濃度が14.4%である。そこで、筐体内の雰囲気の冷媒濃度が14.4%以上となったときに筐体内での冷媒ガスの漏洩の発生を検知するように電圧基準値を設定する。
まず、R32が空気に14.4%混入すると、混合気体(空気に冷媒が混入した雰囲気)のうち空気の割合は85.6%(=100%-14.4%)となる。したがって、このときの雰囲気の酸素濃度は、17.93%(=85.6%×0.2095)となる。
次に、前述したように一般にガルバニ電池式酸素センサにおける酸素濃度Cと出力信号の電圧Vとは正比例の関係にあり、電圧Vに対し酸素濃度Cは直線的に(線形に)変化する。すなわち、酸素濃度Cと出力信号の電圧Vとの関係は次の式で表すことができる。ただし、Aは、用いる酸素センサ31によって決まる定数である。
C=A×V
したがって、冷媒が漏洩していない大気中の酸素濃度が20.95%のときのセンサ電圧Vの初期値がV0とすると、この酸素センサ31の定数AはA=20.95/V0となる。このAを上記の関係式にあてはめると、以下の式が得られる。
C=(20.95/V0)×V
この式において、R32が空気に14.4%混入したときの酸素濃度である17.93%をCに代入することで、筐体内の雰囲気中のR32の濃度が14.4%であるときに酸素センサ31から出力される信号の電圧Vを次のように得ることができる。
V=(17.93/20.95)×V0=0.86×V0
つまり、この例では、R32の漏洩により、酸素センサ31から出力される信号の電圧Vが初期値V0の0.86倍以下になると、R32の濃度が14.4%以上となる。そこで、前記電圧基準値を0.86×V0に設定することで、R32の冷媒濃度が下限燃焼濃度に達した時点で冷媒漏洩の発生を検知することができる。
具体的に例えば、大気中の酸素濃度が20.95%のときのセンサ電圧の初期値V0が、V0=29.5mVのとき(すなわち、A=0.71のとき)、前記電圧基準値は0.86×V0=25.4mVに設定する。なお、前記電圧基準値に安全率や尤度を持たせて、冷媒の下限燃焼濃度に対応する電圧より大きい値にしてもよい。また、温度や湿度により前記電圧基準値を補正することで、冷媒濃度の下限燃焼濃度に達したことを、より正確に検知できるようにしてもよい。
このようにして使用する冷媒種に応じて設定した前記電圧基準値Vtは、冷媒漏洩検知装置30が備える記憶部34に予め記憶されている。そして、第2の冷媒漏洩検知部33は、酸素センサ31から出力される信号の電圧Vと、記憶部34に記憶されている電圧基準値Vtとを随時に比較している。
例えば、図3に示すように、筐体内に冷媒が漏洩していない場合には、酸素センサ31からの出力電圧Vは、初期値V0のまま一定で変化しない。そして、時刻t1に筐体内への冷媒の漏洩が始まると、酸素センサ31からの出力電圧Vは冷媒の漏洩量に応じて次第に低下していく。そして、酸素センサ31からの出力電圧Vが電圧基準値Vt以下となる時刻t3において、第2の冷媒漏洩検知部33は、筐体内に冷媒の漏洩が発生したことを検知する。
次に、冷媒漏洩検知部が備える第1の冷媒漏洩検知部32について説明する。第1の冷媒漏洩検知部32は、酸素センサ31から出力された信号の電圧が初期値より高くなった場合に、筐体内での冷媒ガスの漏洩の発生を検知する。
この第1の冷媒漏洩検知部32による冷媒ガスの漏洩の発生の検知の原理について次に詳しく説明する。冷媒が冷媒配管23等から漏洩すると、漏洩時に冷媒は急激に膨張する。この膨張は急激であるため断熱膨張であるとみなすことができる。よって、漏洩した冷媒は断熱膨張により温度が低下する。
漏洩した冷媒の温度が低下することで、この漏洩冷媒が混入した筐体内の雰囲気は低温となる。したがって、酸素センサ31は筐体内の低温雰囲気にさらされる。すると、特に酸素センサ31として電解液を有するガルバニ電池式酸素センサを用いている場合、この低温雰囲気により冷却されて酸素センサ31の電解液が凍結する。
酸素センサ31の電解液が凍結すると、当該酸素センサ31から出力される信号の電圧Vは急激に上昇し、筐体内の酸素濃度は増加していないにもかかわらず冷媒漏洩前の初期値V0よりも高くなる。したがって、第1の冷媒漏洩検知部32は、酸素センサ31から出力された信号の電圧Vが初期値V0より高くなった場合に、筐体内での冷媒ガスの漏洩の発生を検知することができる。
ここで、酸素センサ31の出力電圧Vと比較する初期値V0として、冷媒が漏洩していない状態における酸素センサ31からの出力値を予め記憶部34に記憶しておいて用いてもよい。あるいは、初期値V0を、現時点以前の予め定められた一定時間内における酸素センサ31から出力された信号の電圧の移動平均値により設定するようにしてもよい。後者の方法によれば、事前に初期値V0を設定する必要がない。
後者の方法について具体例を用いて説明する。測定日の1日前(前日)から4日前までの各日における予め決められた時刻でのセンサ電圧を平均した値を初期値として設定した場合を例にする。測定日の1日前から4日前までの予め決められた時刻でのセンサ電圧が、それぞれ、29.5mV(1日前)、29.4mV(2日前)、29.5mV(3日前)、29.4mV(4日前)とすると、測定日における初期値は、これらの平均値である29.45mVとなる。
なお、このような初期値の決定方法はあくまでも一例である。このように1日おきに値をとって直近4日分の平均値を初期値とする他に、例えば、1週おきに値をとって直近5週分の平均値を初期値としたり、1月おきに値をとって直近3ヶ月分の平均値を初期値としたりしてもよい。また、逆に、より短い時間間隔、例えば、1時間おきに値をとって初期値を決定するようにしてもよい。なお、一定期間内の平均値ではなく、一定期間内の最高値を初期値に決定するようにしてもよい。
図4に示すように、筐体内に冷媒が漏洩していない場合には、酸素センサ31からの出力電圧Vは、初期値V0のまま一定で変化しない。そして、時刻t1に筐体内への冷媒の漏洩が始まると、前述した図3の場合と同様に酸素センサ31からの出力電圧Vは冷媒の漏洩量に応じて次第に低下していく。
漏洩時に断熱膨張により低温化した冷媒が筐体内の空気に混入すると、筐体内の雰囲気の温度は低下していく。筐体内の雰囲気の温度が低下すると、酸素センサ31の電解液は低温雰囲気により冷却される。冷却された電解液の温度が凝固点に達する時刻t2に、電解液は凍結し始める。電解液が凍結を開始すると、酸素センサ31から出力される信号の電圧Vは急激に上昇する。そして、酸素センサ31からの出力電圧Vが初期値V0より高くなる時刻t3において、第1の冷媒漏洩検知部32は、筐体内に冷媒の漏洩が発生したことを検知する。
従来の冷媒ガスセンサにおいては、誤作動を防止するために、冷媒ガスの濃度が基準値以上となった状態が一定時間以上継続した場合にガス(冷媒)の漏洩発生を検知するのが一般的である。これに対し、この発明に係る第1の冷媒漏洩検知部32によれば、酸素センサ31の出力電圧が初期値より高くなった時点で冷媒の漏洩発生を検知することができるため、従来のものより発生から短時間で冷媒漏洩を検知することができる。
また、第1の冷媒漏洩検知部32が冷媒漏洩発生の検知に用いる基準値である初期値V0は、冷媒の漏洩挙動又は筐体の据え付け条件等によらないものである。このため、適切なセンサ基準値を容易に設定することが可能である。また、一般に冷媒ガスセンサよりも経年劣化しにくい酸素センサを用いることで、経年変化の影響を受けにくく、長期にわたって冷媒漏洩を精度よく検知できる。
ここで、冷媒漏洩によらず、例えば寒冷地等において筐体内の空気の温度が酸素センサ31の電解液の凝固点以下にまで低下したことにより、酸素センサ31の電解液が凍結した場合(以下、このような場合を冷媒漏洩による凍結とは区別して「自然凍結」という)について考える。
このような自然凍結の場合、筐体内の酸素濃度は変化することなく酸素センサ31の電解液の凍結が開始される。このため、図5に示すように、酸素センサ31から出力される信号の電圧Vは、初期値V0から低下することなく上昇する。
そこで、このような事情を鑑みて、第1の冷媒漏洩検知部32は、酸素センサ31から出力された信号の電圧が初期値V0より低くなった後に初期値V0より高くなった場合に、筐体内での冷媒ガスの漏洩の発生を検知するようにしてもよい。逆に言えば、第1の冷媒漏洩検知部32は、酸素センサ31から出力された信号の電圧が初期値V0より低くなることなく初期値V0より高くなった場合には、筐体内での冷媒ガスの漏洩の発生を検知しないようにしてもよい。
このようにすることで、第1の冷媒漏洩検知部32は、筐体内に冷媒が漏洩して酸素センサ31の出力電圧が図4に示すような挙動を示した場合に、冷媒漏洩の発生を検知し、図5に示すような自然漏洩の場合に誤検知することを防止することができる。
以上のようにして、冷媒漏洩検知部が備える第1の冷媒漏洩検知部32及び第2の冷媒漏洩検知部33のそれぞれは、異なる検知方法により筐体内での冷媒の漏洩の発生を検知する。そして、冷媒漏洩検知部が、筐体内での冷媒の漏洩の発生の検知に第1の冷媒漏洩検知部32及び第2の冷媒漏洩検知部33のいずれを用いるのかについては、冷媒漏洩検知装置30が備えるモード切替部35により切り替えることができる。
この際、モード切替部35により、冷媒漏洩検知部が、第1の冷媒漏洩検知部32及び第2の冷媒漏洩検知部33のうちのいずれか一方のみを用いて筐体内での冷媒ガスの漏洩の発生を検知するように設定することができる。また、モード切替部35により、冷媒漏洩検知部が、第1の冷媒漏洩検知部32及び第2の冷媒漏洩検知部33の両方を用いて筐体内での冷媒ガスの漏洩の発生を検知するように設定できるようにしてもよい。
第1の冷媒漏洩検知部32及び第2の冷媒漏洩検知部33の両方を用いて筐体内での冷媒ガスの漏洩の発生を検知する場合、さらに、2通りの検知処理が考えられる。1つめは、第1の冷媒漏洩検知部32及び第2の冷媒漏洩検知部33の少なくともいずれか一方が筐体内での冷媒ガスの漏洩の発生を検知した場合に、冷媒漏洩検知部が筐体内での冷媒ガスの漏洩の発生を検知するという処理である。2つめは、第1の冷媒漏洩検知部32及び第2の冷媒漏洩検知部33の両方が筐体内での冷媒ガスの漏洩の発生を検知した場合に、冷媒漏洩検知部が筐体内での冷媒ガスの漏洩の発生を検知するという処理である。
これらの検知処理のうち、前者は、冷媒漏洩発生の見逃しをより低減することを重視したモードであるといえる。これに対し、後者は、冷媒漏洩発生の空振り(誤検知)をより低減することを重視したモードであるといえる。このようにして、冷媒漏洩検知部は、モード切替部35による設定に従って、第1の冷媒漏洩検知部32及び第2の冷媒漏洩検知部33のいずれか一方あるいは両方を用いて、筐体内での冷媒ガスの漏洩の発生を検知する。
冷媒漏洩検知装置30が備える報知部36は、冷媒漏洩検知部が筐体内での冷媒ガスの漏洩の発生を検知した場合に、その旨を利用者あるいは作業者等に報知する。この報知部36は、筐体内での冷媒ガスの漏洩の発生を検知した旨を、音で報知するためのスピーカ及び光で報知するためのLED等を備えている。
また、冷媒漏洩検知装置30が備える送風ファン38は、冷媒漏洩検知部が筐体内での冷媒ガスの漏洩の発生を検知した場合に筐体内に空気流を発生させるためのものである。送風ファン38は、酸素センサ31が設置された筐体内に設置される。送風ファン38は、室内機ファン12又は室外機ファン22と兼用してもよいし、室内機ファン12又は室外機ファン22とは別に設けるようにしてもよい。
なお、冷媒漏洩検知装置30は、送風ファン38の動作を制御するための制御部37を備えている。冷媒漏洩検知部により筐体内での冷媒ガスの漏洩の発生が検知されると、第1の冷媒漏洩検知部32又は第2の冷媒漏洩検知部33から冷媒漏洩検知信号が出力される。そして、制御部37は、冷媒漏洩検知信号が入力されると送風ファン38を動作させて筐体内に空気流を発生させる。なお、報知部36も冷媒漏洩検知信号に基づいて報知動作を行う。
このようにして、冷媒漏洩検知部が筐体内での冷媒ガスの漏洩の発生を検知した場合に、送風ファン38により筐体内に空気流を発生させることで、漏洩した冷媒を拡散させ、冷媒濃度が高い箇所ができることを抑制することができる。
なお、前述したように、室外機20には冷媒配管23内の冷媒の流れを閉止可能な閉止弁28が設けられている。そこで、冷媒漏洩検知装置30の冷媒漏洩検知部が、筐体内での冷媒ガスの漏洩の発生を検知した場合に、閉止弁28を閉じて冷媒配管23内の冷媒の流れを止めるようにしてもよい。
また、酸素センサ31は、室内機10又は室外機20の筐体内において、冷媒漏洩の生じる可能性が高い箇所に配置することが好ましい。冷媒漏洩の生じる可能性が高い箇所とは、具体的に例えば、室内機熱交換器11及び室外機熱交換器21のろう付け部並びに室内金属接続部13及び室外金属接続部27等を挙げることができる。酸素センサ31を、このような筐体内における冷媒漏洩の可能性が高い箇所に配置することで、これらの箇所から冷媒が漏洩した場合に迅速に冷媒漏洩発生を検知することができる。
以上のように構成された冷媒漏洩検知装置は、冷媒ガスが封入された冷媒配管を内部に収容する筐体内の酸素濃度に応じた電圧で信号を出力する酸素センサと、酸素センサから出力された信号の電圧に基づいて、筐体内での冷媒ガスの漏洩の発生を検知する検知部と、を備えたものである。
このため、一般にガスセンサよりも経年劣化しにくい酸素センサを用いることで、経年変化の影響を受けにくく、冷媒漏洩の発生を精度よく検知できる。
実施の形態2.
図6は、この発明の実施の形態2に係るもので、冷媒漏洩検知装置が備える第1の冷媒漏洩検知部の検知動作を説明する図である。
前述した実施の形態1における第1の冷媒漏洩検知部32は、酸素センサ31から出力された信号の電圧が初期値より高くなった場合に、筐体内での冷媒ガスの漏洩の発生を検知するものであった。
図6は、この発明の実施の形態2に係るもので、冷媒漏洩検知装置が備える第1の冷媒漏洩検知部の検知動作を説明する図である。
前述した実施の形態1における第1の冷媒漏洩検知部32は、酸素センサ31から出力された信号の電圧が初期値より高くなった場合に、筐体内での冷媒ガスの漏洩の発生を検知するものであった。
これに対し、ここで説明する実施の形態2は、第1の冷媒漏洩検知部32が、酸素センサ31から出力された信号の電圧が予め定められた速度基準値以上の時間変化率で上昇した場合に、筐体内での冷媒ガスの漏洩の発生を検知するようにしたものである。
実施の形態1で前述したように、酸素センサ31としてガルバニ電池式酸素センサを用いている場合、酸素センサ31の電解液が凍結すると、当該酸素センサ31から出力される信号の電圧Vが急激に上昇する。そこで、この実施の形態2においては、この際の酸素センサ31からの出力電圧Vの上昇速度が一定以上であれば、冷媒の漏洩により酸素センサ31の電解液が凍結している状態にあると判断する。
すなわち、前述したように、冷媒漏洩検知装置30の冷媒漏洩検知部が備える第1の冷媒漏洩検知部32は、酸素センサ31から出力された信号の電圧が予め定められた速度基準値以上の時間変化率で上昇した場合に、筐体内での冷媒ガスの漏洩の発生を検知する。
次に、この筐体内での冷媒ガスの漏洩の発生を検知する基準となる前記速度基準値の設定方法について説明する。ここでは、前記速度基準値を設定するために、実験により実際に冷媒で酸素センサ31の電解液を凍結させた際の出力電圧の時間変化を測定する方法を例として説明する。この実験では、まず、冷媒が充填された冷媒ボンベに毛細管を接続した。毛細管の冷媒排出口の先端を鉛直方向下向きにし、その下方に酸素センサ31として用いるものと同じ酸素センサを設置した。そして、毛細管の冷媒排出口から冷媒を排出させて酸素センサの電解液を凍結させた際における、酸素センサの出力電圧の時間変化率(dV/dt)を調べた。
また、実験は、10畳(16.55m^2、m^2は平方メートルを表す)の無風状態の空間内で実施した。漏洩冷媒量は2kgで、使用する毛細管の穴径及び長さを適宜に変化させることで、冷媒の漏洩速度が、1kg/h、10kg/h及び40kg/hの3通りとなるように調節した。そして、それぞれの冷媒の漏洩速度について、毛細管の先端(漏洩口)と酸素センサの距離が50mmと150mmの2通りについて実験した。例えば、冷媒の漏洩速度を40kg/hとするためには、穴径3mm、長さ150mmの毛細管を使用した。なお、実験に用いた冷媒はHFO-1234yfである。
このような実験により以下の結果が得られた。まず、冷媒漏洩速度を1kg/hとした場合、毛細管先端と酸素センサの距離が50mmでは電解液凍結時の酸素センサの出力電圧の時間変化率(dV/dt)は1.0mV/min、毛細管先端と酸素センサの距離が150mmでは酸素センサの電解液は凍結しなかった。
また、冷媒漏洩速度を10kg/hとした場合、毛細管先端と酸素センサの距離が50mmでは電解液凍結時の酸素センサの出力電圧の時間変化率(dV/dt)は1.2mV/min、毛細管先端と酸素センサの距離が150mmでは電解液凍結時の酸素センサの出力電圧の時間変化率(dV/dt)は0.6mV/minとなった。
そして、冷媒漏洩速度を40kg/hとした場合、毛細管先端と酸素センサの距離が50mmでは電解液凍結時の酸素センサの出力電圧の時間変化率(dV/dt)は0.7mV/min、毛細管先端と酸素センサの距離が150mmでは電解液凍結時の酸素センサの出力電圧の時間変化率(dV/dt)は1.1mV/minとなった。
このような実験の結果から、次のことがいえる。まず、第1に、毛細管の先端(漏洩口)と酸素センサの距離を大きくすると冷媒漏洩速度の遅い1kg/hでは酸素センサの電解液は凍結しなくなる。そして、第2に、酸素センサの電解液が凍結する程度に十分に冷媒漏洩速度が速く、又は、毛細管の先端(漏洩口)と酸素センサの距離が近い場合、電解液凍結時の酸素センサの出力電圧の時間変化率は、冷媒漏洩速度及び毛細管の先端(漏洩口)と酸素センサの距離のいずれとも明確な関係性は認められない。
したがって、上記の結果が得られた実験条件下では、前記速度基準値を例えば、0.5mV/minに設定すれば、冷媒の漏洩により酸素センサの電解液が凍結したことを検出することができる。なお、予め安全率や尤度を考慮して前記速度基準値を0.5mV/minより低い値、例えば、0.1mV/min等に設定してもよい。
以上のような実験の結果を踏まえると、実際の冷媒漏洩検知装置30が備える第1の冷媒漏洩検知部32で用いる前記速度基準値は、次のようにして設定することが一例として考えられる。すなわち、まず、冷媒漏洩検知装置30を適用する冷凍サイクル装置で使用している冷媒を充填したボンベを用意する。そして、冷凍サイクル装置で冷媒漏洩が発生した場合に想定される漏洩速度(例えば、10kg/h)となるような毛細管をボンベに接続する。
次に、この毛細管の冷媒排出口の鉛直方向下向きに冷媒漏洩検知装置30で使用する酸素センサ31を設置する。そして、冷媒を排出させ、電解液凍結時の酸素センサ31からの出力電圧の時間変化を測定する。これにより、酸素センサ31の電解液が凍結した時の出力電圧の時間変化率を知ることができる。この際、酸素センサ31の電解液が凍結しない場合には、酸素センサ31の電解液を凍結させることができるまで、毛細管の先端とセンサの距離を縮める、あるいは、毛細管の穴径を大きくして漏洩速度を上げる。
そして、こうして求めた酸素センサ31の電解液が凍結した時の出力電圧の時間変化率に基づいて、安全率や尤度を考慮して前記速度基準値を設定する。こうして設定した前記速度基準値は、記憶部34に予め記憶しておく。そして、第1の冷媒漏洩検知部32は、酸素センサ31から出力される信号の電圧Vの時間変化率と、記憶部34に記憶されている前記速度基準値とを随時に比較している。
例えば、図6に示すように、筐体内に冷媒が漏洩していない場合には、酸素センサ31からの出力電圧Vは、初期値V0のまま一定で変化しない。そして、時刻t1に筐体内への冷媒の漏洩が始まると、実施の形態1で説明した図4の場合と同様に酸素センサ31からの出力電圧Vは冷媒の漏洩量に応じて次第に低下していく。
漏洩時に断熱膨張により低温化した冷媒が筐体内の空気に混入すると、筐体内の雰囲気の温度は低下していく。筐体内の雰囲気の温度が低下すると、酸素センサ31の電解液は低温雰囲気により冷却される。冷却された電解液の温度が凝固点に達する時刻t2に、電解液は凍結し始める。電解液が凍結を開始すると、酸素センサ31から出力される信号の電圧Vは急激に上昇する。
そして、酸素センサ31からの出力電圧Vの時間変化率が記憶部34に記憶されている前記速度基準値以上となる時刻t3’において、第1の冷媒漏洩検知部32は、筐体内に冷媒の漏洩が発生したことを検知する。
なお、他の構成については実施の形態1と同様であって、その詳細説明は省略する。
なお、他の構成については実施の形態1と同様であって、その詳細説明は省略する。
以上のように構成された冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置の第1の冷媒漏洩検知部32によれば、酸素センサ31の電解液が凍結した後、酸素センサ31の出力電圧が初期値より高くなる前に、出力電圧が速度基準値以上で上昇した時点で冷媒漏洩の発生を検知することができる。このため、実施の形態1と同様の効果を奏することができるのに加えて、冷媒漏洩開始後にさらに短時間で冷媒漏洩の発生を検知することが可能である。
この発明は、冷媒ガスが封入された冷媒配管を内部に収容する筐体を備えた冷凍サイクル装置、具体的に例えば、床置型、天井設置型及び壁設置型等の空気調和機の室内機及び室外機、給湯器、ショーケース及び冷蔵庫等の冷凍サイクル装置、並びに、このような冷凍サイクル装置に備えられる冷媒漏洩検知装置に利用することができる。
10 室内機、 11 室内機熱交換器、 12 室内機ファン、 13 室内金属接続部、 20 室外機、 21 室外機熱交換器、 22 室外機ファン、 23 冷媒配管、 24 四方弁、 25 圧縮機、 26 膨張弁、 27 室外金属接続部、 28 閉止弁、 30 冷媒漏洩検知装置、 31 酸素センサ、 32 第1の冷媒漏洩検知部、 33 第2の冷媒漏洩検知部、 34 記憶部、 35 モード切替部、 36 報知部、 37 制御部、 38 送風ファン
Claims (13)
- 冷媒ガスが封入された冷媒配管を内部に収容する筐体内の酸素濃度に応じた電圧で信号を出力する酸素センサと、
前記酸素センサから出力された信号の電圧に基づいて、前記筐体内での前記冷媒ガスの漏洩の発生を検知する検知部と、を備えた冷媒漏洩検知装置。 - 前記酸素センサは、電極及び電解液を有するガルバニ電池式酸素センサである請求項1に記載の冷媒漏洩検知装置。
- 前記検知部は、前記酸素センサから出力された信号の電圧が初期値より高くなった場合に、前記筐体内での前記冷媒ガスの漏洩の発生を検知する第1の検知部を備えた請求項2に記載の冷媒漏洩検知装置。
- 前記第1の検知部は、前記酸素センサから出力された信号の電圧が前記初期値より低くなった後に前記初期値より高くなった場合に、前記筐体内での前記冷媒ガスの漏洩の発生を検知する請求項3に記載の冷媒漏洩検知装置。
- 前記初期値は、冷媒が漏洩していない状態における前記酸素センサから出力された信号の電圧により予め設定される請求項3又は請求項4に記載の冷媒漏洩検知装置。
- 前記初期値は、現時点以前の予め定められた一定時間内における前記酸素センサから出力された信号の電圧の移動平均値により設定される請求項3又は請求項4に記載の冷媒漏洩検知装置。
- 前記検知部は、前記酸素センサから出力された信号の電圧が予め定められた速度基準値以上の時間変化率で上昇した場合に、前記筐体内での前記冷媒ガスの漏洩の発生を検知する第1の検知部を備えた請求項2に記載の冷媒漏洩検知装置。
- 前記検知部は、前記酸素センサから出力された信号の電圧が予め定められた電圧基準値以下となった場合に、前記筐体内での前記冷媒ガスの漏洩の発生を検知する第2の検知部を備えた請求項3から請求項7のいずれか一項に記載の冷媒漏洩検知装置。
- 前記電圧基準値は、前記筐体内の酸素濃度と前記酸素センサから出力される信号の電圧との関係、及び、前記筐体内での前記冷媒ガスの漏洩の発生を検知する基準とする前記筐体内での前記冷媒ガスの濃度に基づいて設定される請求項8に記載の冷媒漏洩検知装置。
- 前記検知部が、前記第1の検知部及び前記第2の検知部のうちのいずれを用いて前記筐体内での前記冷媒ガスの漏洩の発生を検知するかを切り替えるモード切替部を備えた請求項8又は請求項9に記載の冷媒漏洩検知装置。
- 前記検知部により前記筐体内での前記冷媒ガスの漏洩の発生が検知された場合に、前記筐体内に空気流を発生させるファンを備えた請求項1から請求項10のいずれか一項に記載の冷媒漏洩検知装置。
- 前記冷媒配管に封入される前記冷媒ガスは可燃性を有する請求項1から請求項11のいずれか一項に記載の冷媒漏洩検知装置。
- 請求項1から請求項12のいずれか一項に記載の冷媒漏洩検知装置と、
前記筐体内に設けられ、前記冷媒配管に接続された熱交換器と、を備えた冷凍サイクル装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/075663 WO2016046961A1 (ja) | 2014-09-26 | 2014-09-26 | 冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置 |
JP2016549862A JP6252684B2 (ja) | 2014-09-26 | 2014-09-26 | 冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/075663 WO2016046961A1 (ja) | 2014-09-26 | 2014-09-26 | 冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016046961A1 true WO2016046961A1 (ja) | 2016-03-31 |
Family
ID=55580520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/075663 WO2016046961A1 (ja) | 2014-09-26 | 2014-09-26 | 冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6252684B2 (ja) |
WO (1) | WO2016046961A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017053517A (ja) * | 2015-09-08 | 2017-03-16 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | 空気調和システム |
CN106545957A (zh) * | 2016-10-11 | 2017-03-29 | 广东工业大学 | 一种基于速度区间参数的变频空调冷媒泄露检测方法 |
JP6121075B1 (ja) * | 2016-05-17 | 2017-04-26 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP2018162912A (ja) * | 2017-03-24 | 2018-10-18 | 三菱電機株式会社 | 環境監視装置 |
WO2019215877A1 (ja) * | 2018-05-10 | 2019-11-14 | 三菱電機株式会社 | 冷媒漏洩判定装置、空気調和機、及び冷媒漏洩判定方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7150630B2 (ja) * | 2019-02-07 | 2022-10-11 | 三菱重工マリンマシナリ株式会社 | 排熱回収装置およびその制御方法 |
CN110578988A (zh) * | 2019-09-20 | 2019-12-17 | 广州华凌制冷设备有限公司 | 空调器及其控制方法和控制装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09229524A (ja) * | 1996-02-23 | 1997-09-05 | Matsushita Refrig Co Ltd | 冷却装置 |
JP2000258000A (ja) * | 1999-03-02 | 2000-09-22 | Daikin Ind Ltd | 空気調和装置 |
JP2001116419A (ja) * | 1999-10-22 | 2001-04-27 | Matsushita Refrig Co Ltd | 冷蔵庫 |
JP2002109656A (ja) * | 2000-09-28 | 2002-04-12 | Tokyo Gas Co Ltd | ガス漏れ検知システム |
JP2002115939A (ja) * | 2000-10-12 | 2002-04-19 | Hitachi Industries Co Ltd | ヒートポンプシステム |
WO2010007448A1 (en) * | 2008-07-14 | 2010-01-21 | Theodoros Efthymiou | Automatic refrigerant leak detection system of indirect means for use on cooling and refrigeration units installed on vehicles and other transportation means. |
JP2010078285A (ja) * | 2008-09-29 | 2010-04-08 | Mitsubishi Electric Corp | ヒートポンプ給湯機 |
JP2012220233A (ja) * | 2011-04-05 | 2012-11-12 | Yazaki Corp | 漏洩検知装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003267026A (ja) * | 2002-03-15 | 2003-09-25 | Denso Corp | 車両用空調装置 |
-
2014
- 2014-09-26 JP JP2016549862A patent/JP6252684B2/ja active Active
- 2014-09-26 WO PCT/JP2014/075663 patent/WO2016046961A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09229524A (ja) * | 1996-02-23 | 1997-09-05 | Matsushita Refrig Co Ltd | 冷却装置 |
JP2000258000A (ja) * | 1999-03-02 | 2000-09-22 | Daikin Ind Ltd | 空気調和装置 |
JP2001116419A (ja) * | 1999-10-22 | 2001-04-27 | Matsushita Refrig Co Ltd | 冷蔵庫 |
JP2002109656A (ja) * | 2000-09-28 | 2002-04-12 | Tokyo Gas Co Ltd | ガス漏れ検知システム |
JP2002115939A (ja) * | 2000-10-12 | 2002-04-19 | Hitachi Industries Co Ltd | ヒートポンプシステム |
WO2010007448A1 (en) * | 2008-07-14 | 2010-01-21 | Theodoros Efthymiou | Automatic refrigerant leak detection system of indirect means for use on cooling and refrigeration units installed on vehicles and other transportation means. |
JP2010078285A (ja) * | 2008-09-29 | 2010-04-08 | Mitsubishi Electric Corp | ヒートポンプ給湯機 |
JP2012220233A (ja) * | 2011-04-05 | 2012-11-12 | Yazaki Corp | 漏洩検知装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017053517A (ja) * | 2015-09-08 | 2017-03-16 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | 空気調和システム |
JP6121075B1 (ja) * | 2016-05-17 | 2017-04-26 | 三菱電機株式会社 | 冷凍サイクル装置 |
CN106545957A (zh) * | 2016-10-11 | 2017-03-29 | 广东工业大学 | 一种基于速度区间参数的变频空调冷媒泄露检测方法 |
CN106545957B (zh) * | 2016-10-11 | 2019-04-23 | 广东工业大学 | 一种基于速度区间参数的变频空调冷媒泄露检测方法 |
JP2018162912A (ja) * | 2017-03-24 | 2018-10-18 | 三菱電機株式会社 | 環境監視装置 |
WO2019215877A1 (ja) * | 2018-05-10 | 2019-11-14 | 三菱電機株式会社 | 冷媒漏洩判定装置、空気調和機、及び冷媒漏洩判定方法 |
JPWO2019215877A1 (ja) * | 2018-05-10 | 2021-02-25 | 三菱電機株式会社 | 冷媒漏洩判定装置、空気調和機、及び冷媒漏洩判定方法 |
JP7019036B2 (ja) | 2018-05-10 | 2022-02-14 | 三菱電機株式会社 | 冷媒漏洩判定装置、空気調和機、及び冷媒漏洩判定方法 |
US11435102B2 (en) | 2018-05-10 | 2022-09-06 | Mitsubishi Electric Corporation | Refrigerant leakage determination device, air-conditioning apparatus, and refrigerant leakage determination method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016046961A1 (ja) | 2017-04-27 |
JP6252684B2 (ja) | 2017-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6252684B2 (ja) | 冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置 | |
JP6911441B2 (ja) | 環境監視装置 | |
JP5642202B2 (ja) | 空気調和装置 | |
JP6958627B2 (ja) | 空気調和機 | |
JP7176175B2 (ja) | 空気調和機 | |
JP3477184B2 (ja) | スプリット形空気調和機 | |
JP4317878B2 (ja) | 空気調和機及びその冷媒量判定方法 | |
KR20140056965A (ko) | 공기조화기 및 그 제어 방법 | |
CA2879007C (en) | Systems and methods for refrigerant charge detection | |
JPWO2017006611A1 (ja) | 冷凍サイクル装置及び冷凍サイクルシステム | |
JP6065962B1 (ja) | 冷凍サイクル装置 | |
JP6431339B2 (ja) | 室内機、および、それを備える空気調和機 | |
JPWO2018131085A1 (ja) | 冷却倉庫 | |
JP5673696B2 (ja) | 空気調和装置 | |
WO2016046960A1 (ja) | 冷媒漏洩検知装置及びこれを備えた冷凍サイクル装置 | |
CN110887165B (zh) | 一种冷媒泄漏的检测方法、装置及空调器 | |
WO2018037544A1 (ja) | ヒートポンプ装置 | |
JP7494504B2 (ja) | ヒートポンプ装置 | |
CN115151769A (zh) | 热泵及其操作方法 | |
JP6584649B2 (ja) | 空気調和機 | |
CN112361541B (zh) | 用于多联机空调系统的膨胀阀控制方法 | |
JP7243132B2 (ja) | ヒートポンプ装置 | |
JP7522960B2 (ja) | 空気調和機 | |
JP6984660B2 (ja) | 環境監視装置 | |
JP6906708B2 (ja) | 水冷式空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14902672 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016549862 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14902672 Country of ref document: EP Kind code of ref document: A1 |