WO2016043265A1 - 導電ペースト、接続構造体及び接続構造体の製造方法 - Google Patents

導電ペースト、接続構造体及び接続構造体の製造方法 Download PDF

Info

Publication number
WO2016043265A1
WO2016043265A1 PCT/JP2015/076467 JP2015076467W WO2016043265A1 WO 2016043265 A1 WO2016043265 A1 WO 2016043265A1 JP 2015076467 W JP2015076467 W JP 2015076467W WO 2016043265 A1 WO2016043265 A1 WO 2016043265A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive paste
solder
connection
target member
Prior art date
Application number
PCT/JP2015/076467
Other languages
English (en)
French (fr)
Inventor
石澤 英亮
諭 齋藤
伸也 上野山
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2015548084A priority Critical patent/JP6577867B2/ja
Priority to CN201580025433.5A priority patent/CN106463200B/zh
Priority to KR1020167022362A priority patent/KR102411356B1/ko
Publication of WO2016043265A1 publication Critical patent/WO2016043265A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/147Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Definitions

  • the present invention relates to a conductive paste containing solder particles.
  • the present invention also relates to a connection structure using the conductive paste and a method for manufacturing the connection structure.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder.
  • the anisotropic conductive material may be connected between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), or connected between a semiconductor chip and a flexible printed circuit board (COF ( (Chip on Film)), connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
  • FOG Glass
  • COF Chip on Film
  • an anisotropic conductive material containing conductive particles is disposed on the glass epoxy substrate. To do.
  • a flexible printed circuit board is laminated, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.
  • Patent Document 1 includes a resin layer containing a thermosetting resin, solder powder, and a curing agent, and the solder powder and the curing agent include the resin layer.
  • An adhesive tape present therein is disclosed. This adhesive tape is in the form of a film, not a paste.
  • Patent Document 1 discloses a bonding method using the above-mentioned adhesive tape. Specifically, a first substrate, an adhesive tape, a second substrate, an adhesive tape, and a third substrate are laminated in this order from the bottom to obtain a laminate. At this time, the first electrode provided on the surface of the first substrate is opposed to the second electrode provided on the surface of the second substrate. Moreover, the 2nd electrode provided in the surface of the 2nd board
  • Patent Document 2 discloses an anisotropic conductive material in which conductive particles are dispersed in an insulating binder.
  • This anisotropic conductive material has a minimum melt viscosity [ ⁇ 0 ] of 1.0 ⁇ 10 2 to 1.0 ⁇ 10 6 mPa ⁇ sec.
  • 1 ⁇ [ ⁇ 1 ] / [ ⁇ 0 ] ⁇ 3 ([ ⁇ 0 ] is the minimum melt viscosity of the anisotropic conductive material, and [ ⁇ 1 ] is the temperature T 0 indicating the minimum melt viscosity. (Melt viscosity at a temperature T 1 lower by 30 ° C.).
  • Patent Document 3 discloses an anisotropic conductive material containing a curable compound, a thermal radical initiator, a photo radical initiator, and conductive particles.
  • Patent Document 4 describes an anisotropic conductive material containing conductive particles and a resin component that cannot be cured at the melting point of the conductive particles.
  • the conductive particles include tin (Sn), indium (In), bismuth (Bi), silver (Ag), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd ), Gallium (Ga), silver (Ag), thallium (Tl), and the like, and alloys of these metals.
  • Patent Document 4 a resin heating step for heating the anisotropic conductive resin to a temperature higher than the melting point of the conductive particles and at which the curing of the resin component is not completed, and a resin component curing step for curing the resin component
  • the electrical connection between the electrodes is described.
  • Patent Document 1 describes that mounting is performed with the temperature profile shown in FIG. In Patent Document 1, the conductive particles melt in a resin component that is not completely cured at a temperature at which the anisotropic conductive resin is heated.
  • a semiconductor chip having a plurality of connection terminals is disposed so as to face a wiring board having a plurality of electrode terminals, and the electrode terminals of the wiring board and the above-mentioned semiconductor chip
  • a flip chip mounting method for electrically connecting a connection terminal includes (1) a step of supplying a resin containing solder powder and a convection additive onto the surface of the wiring board having the electrode terminals, and (2) the semiconductor chip on the resin surface. (3) a step of heating the wiring substrate to a temperature at which the solder powder melts, and (4) a step of curing the resin after the heating step.
  • a connection body for electrically connecting the electrode terminal and the connection terminal is formed, and in the resin curing step (4), the semiconductor chip is connected to the wiring board. Secure to.
  • the adhesive tape described in Patent Document 1 is a film, not a paste. For this reason, it is difficult to efficiently arrange the solder powder on the electrodes (lines). For example, in the adhesive tape described in Patent Document 1, a part of the solder powder is easily placed in a region (space) where no electrode is formed. Solder powder disposed in a region where no electrode is formed does not contribute to conduction between the electrodes.
  • the solder powder or conductive particles may not be efficiently arranged on the electrodes (lines).
  • the moving speed of the solder powder or conductive particles onto the electrode may be slow.
  • Patent Documents 1 and 2 there is no specific description of the conductive particles used for the anisotropic conductive material.
  • conductive particles are used in which a copper layer is formed on the surface of resin particles, and a solder layer is formed on the surface of the copper layer.
  • the central part of the conductive particles is composed of resin particles.
  • An object of the present invention is to provide a conductive paste capable of efficiently arranging solder particles on electrodes, preventing positional displacement between the electrodes, and improving conduction reliability between the electrodes. is there. Moreover, this invention is providing the manufacturing method of the connection structure and connection structure using the said electrically conductive paste.
  • the thermosetting component includes a thermosetting compound and a thermosetting agent, and a plurality of solder particles, and the thermosetting compound includes a crystalline thermosetting compound, and the solder
  • the conductive paste is provided wherein the particles are particles in which both the central portion and the conductive outer surface are solder.
  • the crystalline thermosetting compound is solid at 25 ° C.
  • the melting point of the crystalline thermosetting compound is 80 ° C. or higher and 150 ° C. or lower.
  • the molecular weight of the crystalline thermosetting compound is 300 or more and 500 or less.
  • the crystalline thermosetting compound is a benzophenone type epoxy compound.
  • the average aspect ratio of the crystal of the crystalline thermosetting compound is 5 or less.
  • the average major axis of the crystalline thermosetting compound crystal is 1 / 1.5 or less of the average particle diameter of the solder particles.
  • the average major axis of the crystalline thermosetting compound crystal is 1/10 or more of the average particle diameter of the solder particles.
  • the melting point of the crystalline thermosetting compound is lower than the melting point of the solder.
  • the conductive paste contains a flux, and the melting point of the crystalline thermosetting compound is lower than the activation temperature of the flux.
  • the content of the crystalline thermosetting compound is 10% by weight or more in the total 100% by weight of the thermosetting compound.
  • the conductive paste does not contain a filler or contains a filler at 5% by weight or less.
  • the crystalline thermosetting compound is dispersed in particles in the conductive paste.
  • the conductive paste includes another thermosetting compound different from the crystalline thermosetting compound.
  • the average particle diameter of the solder particles is 1 ⁇ m or more and 60 ⁇ m or less.
  • the content of the solder particles is 10% by weight or more and 80% by weight or less.
  • a first connection target member having at least one first electrode on the surface
  • a second connection target member having at least one second electrode on the surface
  • the connection object member and a connection part that connects the second connection object member, the connection part is a cured product of the conductive paste described above, and the first electrode and the second electrode
  • a connection structure is provided in which an electrode is electrically connected by a solder portion in the connection portion.
  • the first connection target member and the second connection target member are disposed so as to face each other, and by heating the conductive paste to a temperature equal to or higher than the melting point of the solder particles and equal to or higher than the curing temperature of the thermosetting component.
  • a step of electrically connecting the first electrode and the second electrode with a solder portion in the connection portion How to manufacture connection structures There is provided.
  • the conductive paste in the step of arranging the second connection target member and the step of forming the connection portion, no pressure is applied, and the conductive paste includes The weight of the second connection target member is added, or at least one of the step of arranging the second connection target member and the step of forming the connection portion is pressurized, and the first The pressure of pressurization is less than 1 MPa in both the step of disposing the connection target member 2 and the step of forming the connection portion.
  • connection portion in the step of arranging the second connection target member and the step of forming the connection portion, no pressure is applied, and the conductive paste includes The weight of the second connection target member is added.
  • the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board.
  • connection structure when a portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is viewed, it is preferable that the solder portion in the connection portion is arranged in 50% or more of the area of 100% of the portion where the first electrode and the second electrode face each other. In the connection structure, when a portion where the first electrode and the second electrode face each other in a direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode is viewed In addition, it is preferable that 70% or more of the solder portion in the connection portion is disposed in a portion where the first electrode and the second electrode face each other.
  • the conductive paste according to the present invention includes a thermosetting compound and a thermosetting agent as a thermosetting component, and a plurality of solder particles, and the thermosetting compound includes a crystalline thermosetting compound, and the solder particles Since both the central portion and the conductive outer surface are solder particles, when the electrodes are electrically connected, the solder particles can be efficiently disposed on the electrodes. It is possible to prevent misalignment between the electrodes and to improve the reliability of conduction between the electrodes.
  • FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive paste according to an embodiment of the present invention.
  • 2A to 2C are cross-sectional views for explaining each step of an example of a method for manufacturing a connection structure using the conductive paste according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a modification of the connection structure.
  • the conductive paste according to the present invention includes a thermosetting compound and a thermosetting agent as a thermosetting component, and a plurality of solder particles.
  • the thermosetting compound includes a crystalline thermosetting compound.
  • both a center part and an electroconductive outer surface are formed with the solder.
  • the solder particles are particles in which both the central portion of the solder particles and the conductive outer surface are solder.
  • the conductive paste according to the present invention since the above-described configuration is adopted, when the electrodes are electrically connected, the plurality of solder particles are likely to gather between the upper and lower electrodes, and the plurality of solder particles are collected. It can arrange
  • the alignment of the electrode of the first connection target member and the electrode of the second connection target member is performed. Even when the first connection target member and the second connection target member are overlapped with each other in a state of being shifted, the shift is corrected, and the electrodes of the first connection target member and the second connection target member are corrected.
  • the electrode can be connected (self-alignment effect).
  • the conductive paste, the conductive particles used together with the thermosetting compound and the thermosetting agent are solder particles, and the thermosetting compound is crystalline thermosetting. Being a compound greatly contributes.
  • the conductive particles are not formed on the electrodes. Since it becomes difficult to gather and the solder bonding property between the conductive particles is low, the conductive particles that have moved onto the electrode are likely to move out of the electrode. For this reason, the effect of suppressing the displacement between the electrodes is also reduced.
  • Crystalstallinity in a crystalline thermosetting compound means a state in which molecular chains are regularly arranged, and the compound has a glass transition temperature and a melting point.
  • the average aspect ratio of the crystalline thermosetting compound crystal is preferably 5 or less.
  • the conductive particles when used after storage, the conductive particles may be more difficult to be disposed on the electrode (line).
  • the storage stability of the conductive paste is excellent. For this reason, it is possible to efficiently arrange the solder on the electrodes regardless of whether the conductive paste is stored before or after storage, and the conduction reliability between the electrodes can be improved.
  • the viscosity of the conductive paste becomes sufficiently low when heat is applied to the conductive paste.
  • the crystallinity of the crystalline thermosetting compound is lost, whereby the viscosity of the conductive paste is sufficiently lowered and the movement of the solder is promoted.
  • the movement performance of the solder particles may be different before and after storage of the conductive paste. This is presumably because the crystalline state of the crystalline thermosetting compound changes.
  • the average aspect ratio of the crystalline crystal of the crystalline thermosetting compound is 5 or less, the movement performance of the solder particles is difficult to change before and after storage of the conductive paste. Was found.
  • the present invention it is possible to prevent displacement between the electrodes.
  • the electrode of the first connection target member and the electrode of the second connection target member Even when the first connection target member and the second connection target member are overlapped in a state where the alignment of the first connection target member and the second connection target member are overlaid, the shift is corrected and the electrode of the first connection target member and the second connection target are corrected.
  • the electrode of the member can be connected (self-alignment effect). In order to obtain such an effect, using a conductive paste having a specific composition greatly contributes.
  • Examples of the method of setting the average crystal aspect ratio of the crystalline thermosetting compound to 5 or less include a method of pulverizing the crystalline thermosetting compound. After the crystalline thermosetting compound is pulverized, it is preferably blended into the conductive paste. After selecting the crystalline thermosetting compound so that the average aspect ratio is 5 or less, the crystalline thermosetting compound may be used.
  • the average aspect ratio of the crystal of the crystalline thermosetting compound is Preferably it is 4 or less.
  • the average aspect ratio is an average of the aspect ratios of a plurality of crystals.
  • the aspect ratio indicates a major axis / minor axis.
  • the aspect ratio is an aspect ratio in the conductive paste.
  • the average aspect ratio of the crystalline thermosetting compound crystal is 1 or more.
  • the crystal of the crystalline thermosetting compound is preferably a needle crystal.
  • the average aspect ratio of the crystal of the crystalline thermosetting compound is: Preferably it is 1.3 or more, More preferably, it is 1.5 or more.
  • the average major axis of the crystalline thermosetting compound is: Preferably, it is 1 / 1.5 or less of the average particle diameter of the solder particles, more preferably 1/2 or less of the average particle diameter of the solder particles.
  • the average major axis of the crystalline thermosetting compound is preferably Is 1/10 or more of the average particle diameter of the solder particles, more preferably 1/8 or more of the average particle diameter of the solder particles.
  • the melting point of the crystalline thermosetting compound is preferably lower than the melting point of the solder.
  • the absolute value of the difference between the melting point of the crystalline thermosetting compound and the melting point of the solder is preferably 10 ° C. from the viewpoint of more efficiently arranging the solder on the electrodes and further suppressing the displacement between the electrodes.
  • it is 20 degreeC or more, Preferably it is 80 degrees C or less, More preferably, it is 70 degrees C or less.
  • the conductive paste preferably contains a flux.
  • the melting point of the crystalline thermosetting compound is preferably lower than the activation temperature of the flux.
  • the absolute value of the difference between the melting point of the crystalline thermosetting compound and the activation temperature of the flux is preferably 5 from the viewpoint of more efficiently arranging the solder on the electrodes and further suppressing the displacement between the electrodes. ° C or higher, more preferably 10 ° C or higher, preferably 60 ° C or lower, more preferably 50 ° C or lower.
  • the present invention In the conductive paste according to the above, the crystalline thermosetting compound is preferably dispersed in the form of particles.
  • the viscosity ( ⁇ 25) at 25 ° C. of the conductive paste is preferably 10 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, and further preferably 100 Pa ⁇ s or more. , Preferably 800 Pa ⁇ s or less, more preferably 600 Pa ⁇ s or less, and even more preferably 500 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25) can be adjusted as appropriate to the type and amount of the compounding ingredients. Further, the use of a filler can make the viscosity relatively high.
  • the viscosity ( ⁇ 25) can be measured using, for example, an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.) and the like at 25 ° C. and 5 rpm.
  • the conductive paste according to the present invention can be suitably used for a connection structure according to the present invention described later and a method for manufacturing the connection structure.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive paste is preferably used for electrical connection of electrodes.
  • the conductive paste is preferably a circuit connection material.
  • solder particles have solder on a conductive outer surface. In the solder particles, both the central portion and the conductive outer surface are formed of solder. The solder particles are particles in which both the central portion and the conductive outer surface are solder.
  • the zeta potential on the surface of the solder particles is positive.
  • the zeta potential of the surface of the solder particle may not be positive.
  • Zeta potential measurement method 0.05 g of solder particles are put in 10 g of methanol and subjected to ultrasonic treatment or the like to uniformly disperse to obtain a dispersion.
  • the zeta potential can be measured by electrophoretic measurement using this dispersion and “Delsamax PRO” manufactured by Beckman Coulter.
  • the zeta potential of the solder particles is preferably 0 mV or more, more preferably more than 0 mV, preferably 10 mV or less, more preferably 5 mV or less, even more preferably 1 mV or less, still more preferably 0.7 mV or less, particularly preferably 0.5 mV. It is as follows. When the zeta potential is less than or equal to the above upper limit, the solder particles hardly aggregate in the conductive paste before use. When the zeta potential is 0 mV or more, the solder particles efficiently aggregate on the electrode during mounting.
  • the solder particles preferably have a solder particle body and an anionic polymer disposed on the surface of the solder particle body.
  • the solder particles are preferably obtained by surface-treating the solder particle body with an anionic polymer or a compound that becomes an anionic polymer.
  • the solder particles are preferably a surface treated product of an anion polymer or a compound that becomes an anion polymer.
  • the said anion polymer and the compound used as the said anion polymer only 1 type may respectively be used and 2 or more types may be used together.
  • an anionic polymer for example, a (meth) acrylic polymer copolymerized with (meth) acrylic acid, synthesized from a dicarboxylic acid and a diol and having carboxyl groups at both ends
  • Polyester polymer polymer obtained by intermolecular dehydration condensation reaction of dicarboxylic acid and having carboxyl groups at both ends, polyester polymer synthesized from dicarboxylic acid and diamine and having carboxyl groups at both ends, and modified poval having carboxyl groups ( A method of reacting a carboxyl group of an anionic polymer with a hydroxyl group on the surface of a solder particle body using “GOHSEX T” manufactured by Nippon Synthetic Chemical Co., Ltd., etc.
  • anion portion of the anionic polymer examples include the carboxyl group, and other than that, a tosyl group (p—H 3 CC 6 H 4 S ( ⁇ O) 2 —), a sulfonate ion group (—SO 3 —) ), And phosphate ion groups (—PO 4 ⁇ ) and the like.
  • a compound having a functional group that reacts with a hydroxyl group on the surface of the solder particle body and having a functional group that can be polymerized by addition or condensation reaction is used.
  • the method of polymerizing on the surface is mentioned.
  • the functional group that reacts with the hydroxyl group on the surface of the solder particle body include a carboxyl group and an isocyanate group.
  • the functional group that polymerizes by addition and condensation reactions include a hydroxyl group, a carboxyl group, an amino group, and (meth).
  • An acryloyl group is mentioned.
  • the weight average molecular weight of the anionic polymer is preferably 2000 or more, more preferably 3000 or more, preferably 10,000 or less, more preferably 8000 or less.
  • the weight average molecular weight is not less than the above lower limit and not more than the above upper limit, it is easy to dispose an anionic polymer on the surface of the solder particle body, and it is easy to make the zeta potential on the surface of the solder particle positive.
  • the solder particles can be arranged on the electrodes even more efficiently.
  • the weight average molecular weight indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the weight average molecular weight of the polymer obtained by surface-treating the solder particle body with a compound that becomes an anionic polymer is obtained by dissolving the solder in the solder particles and removing the solder particles with dilute hydrochloric acid or the like that does not cause decomposition of the polymer. It can be determined by measuring the weight average molecular weight of the remaining polymer.
  • the solder is preferably a metal (low melting point metal) having a melting point of 450 ° C. or lower.
  • the solder particles are preferably metal particles (low melting point metal particles) having a melting point of 450 ° C. or lower.
  • the low melting point metal particles are particles containing a low melting point metal.
  • the low melting point metal is a metal having a melting point of 450 ° C. or lower.
  • the melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower.
  • the solder particles include tin.
  • the content of tin is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the content of tin in the solder particles is equal to or higher than the lower limit, the connection reliability between the solder portion and the electrode is further enhanced.
  • the tin content is determined using a high-frequency inductively coupled plasma emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). It can be measured.
  • ICP-AES high-frequency inductively coupled plasma emission spectrometer
  • EDX-800HS fluorescent X-ray analyzer
  • solder particles By using the above solder particles, the solder is melted and joined to the electrodes, and the solder portion conducts between the electrodes. For example, since the solder portion and the electrode are not in point contact but in surface contact, the connection resistance is lowered. In addition, the use of solder particles increases the bonding strength between the solder portion and the electrode. As a result, peeling between the solder portion and the electrode is further less likely to occur, and the conduction reliability and the connection reliability are effectively increased.
  • the metal (low melting point metal) constituting the solder particles is not particularly limited.
  • the low melting point metal is preferably tin or an alloy containing tin.
  • the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy.
  • the low melting point metal is preferably tin, a tin-silver alloy, a tin-silver-copper alloy, a tin-bismuth alloy, or a tin-indium alloy because of its excellent wettability with respect to the electrode. More preferred are a tin-bismuth alloy and a tin-indium alloy.
  • the solder particles are preferably a filler material having a liquidus line of 450 ° C. or lower based on JIS Z3001: Welding terms.
  • the composition of the solder particles include metal compositions containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like. Of these, a tin-indium system (117 ° C. eutectic) or a tin-bismuth system (139 ° C. eutectic) which is low-melting and lead-free is preferable. That is, the solder particles preferably do not contain lead, and preferably contain tin and indium, or contain tin and bismuth.
  • the solder particles include nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese, chromium. Further, it may contain a metal such as molybdenum and palladium. Moreover, from the viewpoint of further increasing the bonding strength between the solder portion and the electrode, the solder particles preferably contain nickel, copper, antimony, aluminum, or zinc. From the viewpoint of further increasing the bonding strength between the solder part and the electrode, the content of these metals for increasing the bonding strength is preferably 0.0001% by weight or more, preferably 1% by weight in 100% by weight of the solder particles. % Or less.
  • the average particle size of the solder particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 3 ⁇ m or more, particularly preferably 5 ⁇ m or more, preferably 100 ⁇ m or less, more preferably less than 80 ⁇ m, still more preferably 75 ⁇ m.
  • it is more preferably 60 ⁇ m or less, even more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less, particularly preferably 15 ⁇ m or less, and most preferably 10 ⁇ m or less.
  • the average particle diameter of the solder particles is particularly preferably 3 ⁇ m or more and 30 ⁇ m or less.
  • the average particle diameter” of the solder particles indicates the number average particle diameter.
  • the average particle diameter of the solder particles is obtained, for example, by observing 50 arbitrary solder particles with an electron microscope or an optical microscope, calculating an average value, or performing laser diffraction particle size distribution measurement.
  • the coefficient of variation of the particle diameter of the solder particles is preferably 5% or more, more preferably 10% or more, preferably 40% or less, more preferably 30% or less.
  • the variation coefficient of the particle diameter is not less than the above lower limit and not more than the above upper limit, the solder particles can be more efficiently arranged on the electrode.
  • the coefficient of variation of the particle diameter of the solder particles may be less than 5%.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of solder particles Dn: Average value of particle diameter of solder particles
  • the shape of the solder particles is not particularly limited.
  • the solder particles may have a spherical shape or a shape other than a spherical shape such as a flat shape.
  • the content of the solder particles in 100% by weight of the conductive paste is preferably 1% by weight or more, more preferably 2% by weight or more, still more preferably 10% by weight or more, particularly preferably 20% by weight or more, and most preferably 30%. % By weight or more, preferably 80% by weight or less, more preferably 60% by weight or less, and still more preferably 50% by weight or less.
  • the content of the solder particles is not less than the above lower limit and not more than the above upper limit, it is possible to more efficiently arrange the solder particles on the electrodes, and it is easy to arrange many solder particles between the electrodes, The conduction reliability is further increased. From the viewpoint of further improving the conduction reliability, it is preferable that the content of the solder particles is large.
  • the content of the solder particles is preferably 100% by weight of the conductive paste from the viewpoint of further improving the conduction reliability. Is 20% by weight or more, more preferably 30% by weight or more, preferably 55% by weight or less, more preferably 45% by weight or less.
  • the content of the solder particles is preferably 100% by weight of the conductive paste. Is 30% by weight or more, more preferably 40% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less.
  • the content of the solder particles is preferably 100% by weight of the conductive paste from the viewpoint of further improving the conduction reliability. Is 30% by weight or more, more preferably 40% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less.
  • thermosetting compound thermosetting component
  • the thermosetting compound is a compound that can be cured by heating.
  • the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
  • an epoxy compound is preferable from the viewpoint of further improving the curability and viscosity of the conductive paste and further improving the connection reliability.
  • the thermosetting compound is crystalline thermosetting. Containing sexual compounds.
  • the said crystalline thermosetting compound only 1 type may be used and 2 or more types may be used together.
  • the active compound is preferably solid at 25 ° C.
  • the above crystalline thermosetting The melting point of the functional compound is preferably 80 ° C. or higher, more preferably 85 ° C. or higher, preferably 150 ° C. or lower, more preferably 140 ° C. or lower.
  • the above crystalline thermosetting The molecular weight of the functional compound is preferably 300 or more, more preferably 350 or more, preferably 500 or less, more preferably 400 or less.
  • the molecular weight means a molecular weight that can be calculated from the structural formula when the thermosetting compound is not a polymer and when the structural formula of the thermosetting compound can be specified. Moreover, when the said thermosetting compound is a polymer, a weight average molecular weight is meant.
  • thermosetting compound examples include epoxy compounds and (meth) acrylic compounds.
  • the above-mentioned epoxy compound includes an aromatic epoxy compound.
  • crystalline epoxy compounds such as resorcinol type epoxy compounds, naphthalene type epoxy compounds, biphenyl type epoxy compounds, and benzophenone type epoxy compounds are preferable.
  • 2,4-bis (glycidyloxy) benzophenone or 4,4′-bis (glycidyloxy) benzophenone is preferable.
  • the above (meth) acrylic compound is a compound having a (meth) acryloyl group.
  • examples of the (meth) acrylic compound include epoxy (meth) acrylate compounds.
  • a compound in which a (meth) acryloyl group is introduced into the epoxy compound with (meth) acrylic acid or the like is preferable.
  • the functional compound is particularly preferably a benzophenone type epoxy compound, and most preferably 2,4-bis (glycidyloxy) benzophenone or 4,4′-bis (glycidyloxy) benzophenone.
  • the content of the thermosetting compound is preferably 20% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and preferably 99% by weight or less. Is 98% by weight or less, more preferably 90% by weight or less, and particularly preferably 80% by weight or less. From the viewpoint of further improving the impact resistance, it is preferable that the contents of the thermosetting component and the thermosetting compound are large.
  • the content of the crystalline thermosetting compound is preferably 10% by weight or more, more preferably 30% by weight in the total 100% by weight of the thermosetting compound (other thermosetting compound and crystalline thermosetting compound). % Or more, more preferably 50% by weight or more, particularly preferably 70% by weight or more, and preferably 100% by weight or less.
  • thermosetting agent thermosetting component
  • the thermosetting agent thermosets the thermosetting compound.
  • examples of the thermosetting agent include imidazole curing agents, amine curing agents, phenol curing agents, polythiol curing agents and other thiol curing agents, acid anhydrides, thermal cation initiators (thermal cation curing agents), and thermal radical generators. It is done. As for the said thermosetting agent, only 1 type may be used and 2 or more types may be used together.
  • An imidazole curing agent, a thiol curing agent, or an amine curing agent is preferable because the conductive paste can be cured more rapidly at a low temperature. Moreover, since a storage stability becomes high when a thermosetting compound and the said thermosetting agent are mixed, a latent hardening agent is preferable.
  • the latent curing agent is preferably a latent imidazole curing agent, a latent thiol curing agent, or a latent amine curing agent.
  • the said thermosetting agent may be coat
  • the imidazole curing agent is not particularly limited, and 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s- Examples include triazine isocyanuric acid adducts.
  • the thiol curing agent is not particularly limited, and examples thereof include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate. .
  • the amine curing agent is not particularly limited, and hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5].
  • examples include undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, and diaminodiphenylsulfone.
  • thermal cation initiator examples include iodonium cation curing agents, oxonium cation curing agents, and sulfonium cation curing agents.
  • examples of the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate.
  • examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate.
  • sulfonium-based cationic curing agent examples include tri-p-tolylsulfonium hexafluorophosphate.
  • the thermal radical generator is not particularly limited, and examples thereof include azo compounds and organic peroxides.
  • examples of the azo compound include azobisisobutyronitrile (AIBN).
  • examples of the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.
  • the reaction initiation temperature of the thermosetting agent is preferably 50 ° C or higher, more preferably 70 ° C or higher, still more preferably 80 ° C or higher, preferably 250 ° C or lower, more preferably 200 ° C or lower, still more preferably 150 ° C or lower, Especially preferably, it is 140 degrees C or less.
  • the reaction start temperature of the thermosetting agent is not less than the above lower limit and not more than the above upper limit, the solder is more efficiently arranged on the electrode.
  • the reaction initiation temperature of the thermosetting agent is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
  • the reaction initiation temperature of the thermosetting agent is preferably higher than the melting point of the solder, more preferably 5 ° C or higher, more preferably 10 ° C or higher. More preferably.
  • the reaction start temperature of the thermosetting agent means the temperature at which the exothermic peak of DSC starts to rise.
  • the content of the thermosetting agent is not particularly limited.
  • the content of the thermosetting agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, more preferably 100 parts by weight with respect to 100 parts by weight of the thermosetting compound. Part or less, more preferably 75 parts by weight or less.
  • the content of the thermosetting agent is at least the above lower limit, it is easy to sufficiently cure the conductive paste.
  • the content of the thermosetting agent is not more than the above upper limit, it is difficult for an excess thermosetting agent that did not participate in curing after curing to remain, and the heat resistance of the cured product is further enhanced.
  • the content of the thermosetting agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, more preferably 100 parts by weight of the crystalline thermosetting compound. 100 parts by weight or less, more preferably 75 parts by weight or less. Further, the content of the thermosetting agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, based on 100 parts by weight of the whole thermosetting compound. The amount is preferably 100 parts by weight or less, more preferably 75 parts by weight or less. When the content of the thermosetting agent is at least the above lower limit, it is easy to sufficiently cure the conductive paste. When the content of the thermosetting agent is not more than the above upper limit, it is difficult for an excess thermosetting agent that did not participate in curing after curing to remain, and the heat resistance of the cured product is further enhanced.
  • the conductive paste preferably contains a flux.
  • the flux is not particularly limited.
  • a flux generally used for soldering or the like can be used.
  • the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin.
  • Etc As for the said flux, only 1 type may be used and 2 or more types may be used together.
  • Examples of the molten salt include ammonium chloride.
  • Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, and glutaric acid.
  • Examples of the pine resin include activated pine resin and non-activated pine resin.
  • the flux is preferably an organic acid having two or more carboxyl groups, pine resin.
  • the flux may be an organic acid having two or more carboxyl groups, or pine resin.
  • the above rosins are rosins whose main component is abietic acid.
  • the flux is preferably rosins, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.
  • the active temperature (melting point) of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 190 ° C. or lower, even more preferably 160 ° C. or lower. More preferably, it is 150 ° C. or less, and still more preferably 140 ° C. or less.
  • the active temperature (melting point) of the flux is preferably 80 ° C. or higher and 190 ° C. or lower.
  • the activation temperature (melting point) of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
  • the flux having an active temperature (melting point) of 80 ° C. or higher and 190 ° C. or lower includes succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point) 104 ° C.), dicarboxylic acids such as suberic acid (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), malic acid (melting point 130 ° C.) and the like.
  • the boiling point of the flux is preferably 200 ° C. or lower.
  • the melting point of the flux is preferably higher than the melting point of the solder, more preferably 5 ° C or higher, and even more preferably 10 ° C or higher. .
  • the melting point of the flux is preferably higher than the reaction start temperature of the thermosetting agent, more preferably 5 ° C or higher, more preferably 10 ° C or higher. More preferably.
  • the flux may be dispersed in the conductive paste or may be adhered on the surface of the solder particles.
  • the flux is preferably a flux that releases cations by heating.
  • a flux that releases cations upon heating the solder can be placed more efficiently on the electrode.
  • the content of the flux is preferably 0.5% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less.
  • the conductive paste may not contain a flux.
  • the flux content is not less than the above lower limit and not more than the above upper limit, it becomes more difficult to form an oxide film on the surface of the solder and the electrode, and the oxide film formed on the surface of the solder and the electrode is more effective. Can be removed.
  • a filler may be added to the conductive paste.
  • the filler may be an organic filler or an inorganic filler. By adding the filler, the distance at which the solder particles aggregate can be suppressed, and the solder particles can be uniformly aggregated on all the electrodes of the substrate.
  • the conductive paste preferably does not contain the filler or contains the filler at 5% by weight or less. Since a crystalline thermosetting compound is used, the smaller the filler content, the easier the solder moves on the electrode.
  • the content of the filler is preferably 0% by weight (not contained) or more, preferably 5% by weight or less, more preferably 2% by weight or less, and still more preferably 1% by weight or less.
  • the content of the filler is not less than the above lower limit and not more than the above upper limit, the solder particles are more efficiently arranged on the electrode.
  • the conductive paste is, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, and a lubricant.
  • various additives such as an antistatic agent and a flame retardant may be included.
  • connection structure includes a first connection target member having at least one first electrode on the surface, a second connection target member having at least one second electrode on the surface, and the first The connection object member and the connection part which has connected the said 2nd connection object member are provided.
  • the connection portion is formed of the conductive paste described above, and is a cured product of the conductive paste described above.
  • the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
  • the manufacturing method of the connection structure according to the present invention includes the step of disposing the conductive paste on the surface of the first connection target member having at least one first electrode on the surface using the conductive paste described above.
  • the second connection target member having at least one second electrode on the surface of the conductive paste opposite to the first connection target member side is provided with the first electrode and the second connection target.
  • the conductive paste is heated above the curing temperature of the thermosetting compound.
  • connection structure according to the present invention since a specific conductive paste is used, a plurality of solder particles are likely to gather between the first electrode and the second electrode.
  • a plurality of solder particles can be efficiently arranged on the electrode (line).
  • another method for efficiently collecting a plurality of solder particles between the electrodes may be further employed.
  • a method for efficiently collecting a plurality of solder particles between electrodes when heat is applied to the conductive paste between the first connection target member and the second connection target member, the viscosity of the conductive paste by heat is applied.
  • the method of generating the convection of the electrically conductive paste between a 1st connection object member and a 2nd connection object member etc. is mentioned because it falls.
  • a method of generating convection due to a difference in heat capacity between the electrode on the surface of the connection target member and the other surface member, a method of generating convection as water vapor from the heat of the connection target member, and the first Examples include a method of generating convection due to a temperature difference between the connection target member and the second connection target member.
  • a method of selectively aggregating solder particles on the surface of the electrode may be further employed.
  • a method of selectively agglomerating solder particles on the surface of the electrode there is a connection target member formed by an electrode material having good wettability of molten solder particles and another surface material having poor wettability of molten solder particles.
  • a method of selectively adhering molten solder particles that have reached the surface of the electrode to the electrode and then melting and adhering another solder particle to the molten solder particles, and an electrode material with good thermal conductivity And other surface materials with poor thermal conductivity are selected, and when heat is applied, the temperature of the electrode is raised relative to the other surface members to selectively
  • the solder particles are selectively agglomerated on the electrodes by using solder particles that have been treated so as to have a positive charge with respect to the negative charges existing on the electrode formed of metal.
  • the thickness of the solder part between the electrodes is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the solder wetted area on the surface of the electrode is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, preferably 100. % Or less.
  • the step of arranging the second connection target member and the step of forming the connection portion no pressure is applied, and the second connection is applied to the conductive paste.
  • the weight of the target member is added, or pressure is applied in at least one of the step of arranging the second connection target member and the step of forming the connection portion, and the second connection target member It is preferable that the pressure of pressurization is less than 1 MPa in both the step of disposing and the step of forming the connecting portion. By not applying a pressure of 1 MPa or more, the aggregation of solder particles is considerably promoted.
  • the pressure of pressurization may be less than 1 MPa in both the step of performing pressure and arranging the second connection target member and the step of forming the connection portion.
  • the pressurization may be performed only in the step of arranging the second connection target member, or the pressurization may be performed only in the step of forming the connection portion.
  • Pressurization may be performed in both the step of arranging the connection target member and the step of forming the connection portion.
  • the case where the pressure is less than 1 MPa includes the case where no pressure is applied.
  • the pressure of pressurization is preferably 0.9 MPa or less, more preferably 0.8 MPa or less.
  • the pressure of the pressurization is 0.8 MPa or less, the aggregation of the solder particles is further promoted more remarkably than when the pressure of the pressurization exceeds 0.8 MPa.
  • connection structure in the step of arranging the second connection target member and the step of forming the connection portion, no pressure is applied, and the second connection is applied to the conductive paste.
  • the weight of the target member is preferably added, and in the step of arranging the second connection target member and the step of forming the connection portion, the conductive paste exceeds the weight force of the second connection target member. It is preferable that no pressure is applied.
  • the uniformity of the amount of solder can be further enhanced in the plurality of solder portions.
  • the thickness of the solder portion can be increased more effectively, and a plurality of solder particles can be easily collected between the electrodes, and the plurality of solder particles can be arranged more efficiently on the electrodes (lines).
  • the conduction reliability between the electrodes can be further enhanced.
  • the electrical connection between the laterally adjacent electrodes that should not be connected can be further prevented, and the insulation reliability can be further improved.
  • connection portion if no weight is applied and the weight of the second connection target member is added to the conductive paste, the connection portion
  • the solder particles arranged in the region (space) where the electrode is not formed before the electrode is formed are more easily collected between the first electrode and the second electrode, so that the plurality of solder particles are separated from the electrode (line).
  • the present inventor has also found that the above can be arranged more efficiently.
  • a configuration in which a conductive paste is used instead of a conductive film and a configuration in which the weight of the second connection target member is added to the conductive paste without applying pressure are used in combination. This has a great meaning in order to obtain the effects of the present invention at a higher level.
  • WO2008 / 023452A1 describes that it is preferable to pressurize with a predetermined pressure at the time of bonding from the viewpoint of efficiently moving the solder powder to the electrode surface, and the pressurizing pressure further ensures the solder area.
  • the pressure is set to 0 MPa or more, preferably 1 MPa or more.
  • a predetermined pressure may be applied to the adhesive tape by its own weight.
  • WO2008 / 023452A1 it is described that the pressure applied intentionally to the adhesive tape may be 0 MPa, but there is no difference between the effect when the pressure exceeding 0 MPa is applied and when the pressure is set to 0 MPa. Not listed.
  • WO2008 / 023452A1 recognizes nothing about the importance of using a paste-like conductive paste instead of a film.
  • the conductive film in order to change or adjust the thickness of the connection portion, it is necessary to prepare a conductive film having a different thickness or to prepare a conductive film having a predetermined thickness. There is.
  • the conductive film has a problem that the melt viscosity of the conductive film cannot be sufficiently lowered at the melting temperature of the solder, and the aggregation of the solder particles is hindered.
  • FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive paste according to an embodiment of the present invention.
  • connection structure 1 shown in FIG. 1 is a connection that connects a first connection target member 2, a second connection target member 3, and the first connection target member 2 and the second connection target member 3.
  • Part 4 is formed by the conductive paste described above.
  • the thermosetting compound containing a crystalline thermosetting compound, a thermosetting agent, and a plurality of solder particles are included.
  • the thermosetting compound and the thermosetting agent are thermosetting components.
  • the connecting portion 4 includes a solder portion 4A in which a plurality of solder particles are gathered and joined to each other, and a cured product portion 4B in which a thermosetting component is thermally cured.
  • the first connection object member 2 has a plurality of first electrodes 2a on the surface (upper surface).
  • the second connection target member 3 has a plurality of second electrodes 3a on the surface (lower surface).
  • the first electrode 2a and the second electrode 3a are electrically connected by the solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A.
  • no solder exists in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a.
  • connection structure 1 a plurality of solder particles gather between the first electrode 2 a and the second electrode 3 a, and after the plurality of solder particles melt, After the electrode surface wets and spreads, it solidifies to form the solder portion 4A. For this reason, the connection area of 4 A of solder parts and the 1st electrode 2a, and 4 A of solder parts, and the 2nd electrode 3a becomes large. That is, by using the solder particles, the solder portion 4A, the first electrode 2a, and the solder portion are compared with the case where the conductive outer surface is made of a metal such as nickel, gold or copper. The contact area between 4A and the second electrode 3a increases. For this reason, the conduction
  • the conductive paste may contain a flux. When the flux is used, the flux is generally deactivated gradually by heating.
  • connection structure 1 shown in FIG. 1 all of the solder portions 4A are located in the facing region between the first and second electrodes 2a and 3a.
  • the connection structure 1X of the modification shown in FIG. 3 is different from the connection structure 1 shown in FIG. 1 only in the connection portion 4X.
  • the connection part 4X has the solder part 4XA and the hardened
  • most of the solder portions 4XA are located in regions where the first and second electrodes 2a and 3a are opposed to each other, and a part of the solder portion 4XA is first and second. You may protrude to the side from the area
  • the solder part 4XA protruding laterally from the region where the first and second electrodes 2a and 3a are opposed is a part of the solder part 4XA and is not a solder separated from the solder part 4XA.
  • the amount of solder away from the solder portion can be reduced, but the solder away from the solder portion may exist in the cured product portion.
  • connection structure 1 If the amount of solder particles used is reduced, the connection structure 1 can be easily obtained. If the amount of the solder particles used is increased, it becomes easy to obtain the connection structure 1X.
  • the portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is seen.
  • the solder portion in the connection portion is disposed at 90% or more.
  • connection structure 1 using the conductive paste according to the embodiment of the present invention will be described.
  • the first connection target member 2 having the first electrode 2a on the surface (upper surface) is prepared.
  • a conductive paste 11 including a thermosetting component 11B and a plurality of solder particles 11A is disposed on the surface of the first connection target member 2 (first Process).
  • the conductive paste 11 is disposed on the surface of the first connection target member 2 on which the first electrode 2a is provided.
  • the solder particles 11A are disposed both on the first electrode 2a (line) and on a region (space) where the first electrode 2a is not formed.
  • the arrangement method of the conductive paste 11 is not particularly limited, and examples thereof include application with a dispenser, screen printing, and ejection with an inkjet device.
  • the 2nd connection object member 3 which has the 2nd electrode 3a on the surface (lower surface) is prepared.
  • the 2nd connection object member 3 is arrange
  • the second connection target member 3 is disposed from the second electrode 3a side. At this time, the first electrode 2a and the second electrode 3a are opposed to each other.
  • the conductive paste 11 is heated above the melting point of the solder particles 11A and above the curing temperature of the thermosetting component 11B (third step). That is, the conductive paste 11 is heated to a temperature lower than the melting point of the solder particles 11A and the curing temperature of the thermosetting component 11B. At the time of this heating, the solder particles 11A that existed in the region where no electrode is formed gather between the first electrode 2a and the second electrode 3a (self-aggregation effect).
  • the conductive paste since the conductive paste is used instead of the conductive film, the conductive paste further has a specific composition, so that the solder particles 11A are disposed between the first electrode 2a and the second electrode 3a. To gather effectively. Also, the solder particles 11A are melted and joined together.
  • thermosetting component 11B is thermoset.
  • the connection portion 4 connecting the first connection target member 2 and the second connection target member 3 is formed with the conductive paste 11.
  • the connection part 4 is formed by the conductive paste 11
  • the solder part 4A is formed by joining a plurality of solder particles 11A
  • the cured part 4B is formed by thermosetting the thermosetting component 11B. If the solder particles 11A are sufficiently moved, the first electrode 2a and the second electrode are moved after the movement of the solder particles 11A not located between the first electrode 2a and the second electrode 3a starts. It is not necessary to keep the temperature constant until the movement of the solder particles 11A is completed.
  • pressurization may be performed as long as the interval between the first electrode and the second electrode can be secured.
  • a spacer corresponding to the desired gap between the electrodes may be added so that at least one, preferably three or more spacers are arranged between the electrodes.
  • the spacer include inorganic particles and organic particles.
  • the spacer is preferably an insulating particle.
  • the electrode of the first connection target member Even when the first connection target member and the second connection target member are overlapped in a state where the alignment of the electrodes of the second connection target member is shifted, the shift is corrected and the first connection target member is corrected. Can be connected to the electrode of the second connection target member (self-alignment effect). This is because the molten solder self-aggregated between the electrode of the first connection target member and the electrode of the second connection target member is the electrode of the first connection target member and the electrode of the second connection target member.
  • the area where the solder and the other components of the conductive paste are in contact with each other is minimized, the area becomes more stable in terms of energy. Because. At this time, it is desirable that the conductive paste is not cured and that the viscosity of components other than the solder particles of the conductive paste is sufficiently low at that temperature and time.
  • the viscosity of the conductive paste at the melting point temperature of the solder is preferably 50 Pa ⁇ s or less, more preferably 10 Pa ⁇ s or less, still more preferably 1 Pa ⁇ s or less, preferably 0.1 Pa ⁇ s or more, more preferably 0.2 Pa. -It is more than s. If the viscosity is lower than the predetermined viscosity, the solder particles can be efficiently aggregated. If the viscosity is higher than the predetermined viscosity, the void at the connection portion is suppressed, and the protrusion of the conductive paste to other than the connection portion is suppressed. Can do.
  • connection structure 1 shown in FIG. 1 is obtained.
  • the second step and the third step may be performed continuously.
  • the laminated body of the obtained 1st connection object member 2, the electrically conductive paste 11, and the 2nd connection object member 3 is moved to a heating part, and said 3rd said You may perform a process.
  • the laminate In order to perform the heating, the laminate may be disposed on a heating member, or the laminate may be disposed in a heated space.
  • a 1st connection object member or a 2nd connection object member can be peeled from a connection part for the purpose of correction of a position, or re-production.
  • the heating temperature for performing this peeling is preferably not lower than the melting point of the solder particles, more preferably not lower than the melting point (° C.) of the solder particles + 10 ° C.
  • the heating temperature for performing this peeling may be the melting point (° C.) of the solder particles + 100 ° C. or less.
  • the heating temperature in the third step is not particularly limited as long as it is higher than the melting point of the solder particles and higher than the curing temperature of the thermosetting component.
  • the heating temperature is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, preferably 450 ° C. or lower, more preferably 250 ° C. or lower, and still more preferably 200 ° C. or lower.
  • a heating step may be provided in order to uniformize the aggregation of the solder particles before melting.
  • the heating temperature in the heating step is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, preferably 130 ° C. or lower, more preferably 120 ° C. or lower, preferably 5 seconds or longer, preferably 120 seconds or shorter. Hold.
  • the thermosetting component is reduced in viscosity by heat, and the solder particles before melting are aggregated to form a network structure, and are left behind when the solder particles are melted and aggregated in the third step. Solder particles can be reduced.
  • the melting point of the solder (° C.) or more preferably the melting point of the solder (° C.) + 5 ° C. or more, preferably the melting point of the solder (° C.) + 20 ° C. or less, more preferably the melting point of the solder (° C.).
  • the temperature may be raised to the curing temperature of the thermosetting component.
  • the rate of temperature increase in the third step is preferably 50 ° C./second or less, more preferably 20 ° C./second or less, further preferably 10 ° C./second or less, with respect to the temperature increase from 30 ° C. to the melting point of the solder particles. Is 1 ° C./second or more, more preferably 5 ° C./second or more.
  • the rate of temperature rise is equal to or higher than the above lower limit, the aggregation of solder particles becomes even more uniform.
  • the rate of temperature increase is equal to or less than the above upper limit, an excessive increase in viscosity due to the progress of curing of the thermosetting component is suppressed, and aggregation of solder particles is hardly inhibited.
  • connection structure As the heating method in the third step, a method of heating the entire connection structure using a reflow furnace or an oven above the melting point of the solder particles and the curing temperature of the thermosetting component, or a connection structure The method of heating only the connection part of a body locally is mentioned.
  • instruments used in the method of locally heating include a hot plate, a heat gun that applies hot air, a soldering iron, and an infrared heater.
  • the metal directly under the connection is made of a metal with high thermal conductivity, and other places where heating is not preferred are made of a material with low thermal conductivity such as a fluororesin.
  • the upper surface of the hot plate is preferably formed.
  • the first and second connection target members are not particularly limited. Specifically as said 1st, 2nd connection object member, electronic components, such as a semiconductor chip, a semiconductor package, LED chip, LED package, a capacitor
  • the first and second connection target members are preferably electronic components.
  • At least one of the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board.
  • the second connection target member is preferably a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. Resin films, flexible printed boards, flexible flat cables, and rigid flexible boards have the property of being highly flexible and relatively lightweight. When a conductive film is used for connection of such a connection object member, there exists a tendency for a solder particle not to gather on an electrode.
  • the conductive reliability between the electrodes can be sufficiently improved by efficiently collecting the solder particles on the electrodes. it can.
  • the reliability of conduction between electrodes by not applying pressure compared to the case of using other connection target members such as a semiconductor chip can be obtained more effectively.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • the first electrode and the second electrode are arranged in an area array or a peripheral.
  • the effect of the present invention is more effectively exhibited when the electrodes are arranged on the surface of an area array or a peripheral.
  • the area array is a structure in which electrodes are arranged in a grid pattern on the surface where the electrodes of the connection target members are arranged.
  • the peripheral is a structure in which electrodes are arranged on the outer periphery of a connection target member.
  • the solder particles only have to be aggregated along the direction perpendicular to the comb, whereas in the above structure, the surface on which the electrodes are arranged is uniform over the entire surface. Since it is necessary for the solder particles to agglomerate, the amount of solder tends to be non-uniform in the conventional method, whereas in the method of the present invention, the effects of the present invention are more effectively exhibited.
  • Polymer A 100 parts by weight of bisphenol F (containing 4,4′-methylene bisphenol, 2,4′-methylene bisphenol and 2,2′-methylene bisphenol in a weight ratio of 2: 3: 1), 1,6-hexanediol
  • the reaction product (Polymer A) is a hydroxyl group derived from bisphenol F, 1,6-hexanediol diglycidyl ether, bisphenol F type epoxy resin, and resorcinol type epoxy compound. It was confirmed that the structural unit bonded to the epoxy group in the main chain has an epoxy group at both ends.
  • the weight average molecular weight of the reaction product (polymer A) obtained by GPC was 28,000, and the number average molecular weight was 8,000.
  • Polymer B both ends epoxy group rigid skeleton phenoxy resin, “YX6900BH45” manufactured by Mitsubishi Chemical Corporation, weight average molecular weight 16000
  • Thermosetting compound 1 2,4-bis (glycidyloxy) benzophenone (crystalline thermosetting compound, melting point 94 ° C., molecular weight 362)
  • MEK methyl ethyl ketone
  • n-butanol 3: 1 (weight ratio)
  • DSC -Differential scanning calorimetry
  • Thermosetting compound 2 4,4'-bis (glycidyloxy) benzophenone (crystalline thermosetting compound, melting point 132 ° C., molecular weight 362)
  • MEK methyl ethyl ketone
  • n-butanol 3: 1 (weight ratio)
  • Obtained epoxy compound melting point by DSC of 135 ° C., epoxy equivalent of 176 g / eq. According to the mass spectrum, the molecular weight was 362, and the melt viscosity at 150 ° C. was 12 mPa ⁇ s.
  • Thermosetting compound 3 1,6 hexanediol diglycidyl ether (“Epogouse HD” manufactured by Yokkaichi Synthesis Co., Ltd., liquid at 25 ° C., molecular weight 230)
  • Thermosetting compound 4 Bisphenol F type epoxy compound, “EXA830CRP” manufactured by DIC
  • Thermosetting agent 1 Pentaerythritol tetrakis (3-mercaptobutyrate), “Karenz MT PE1” manufactured by Showa Denko KK
  • Latent epoxy thermosetting agent 1 T & K TOKA's “Fujicure 7000”
  • Flux 1 Adipic acid, manufactured by Wako Pure Chemical Industries, Ltd., melting point (activation temperature) 152 ° C.
  • solder particles having anionic polymer 1 200 g of solder particle main body, 40 g of adipic acid, and 70 g of acetone are weighed in a three-necked flask, and then dehydration condensation between the hydroxyl group on the surface of the solder particle main body and the carboxyl group of adipic acid 0.3 g of dibutyltin oxide as a catalyst was added and reacted at 60 ° C. for 4 hours. Thereafter, the solder particles were collected by filtration.
  • the collected solder particles, 50 g of adipic acid, 200 g of toluene, and 0.3 g of paratoluenesulfonic acid were weighed in a three-necked flask and reacted at 120 ° C. for 3 hours while evacuating and refluxing. . At this time, the reaction was carried out while removing water produced by dehydration condensation using a Dean-Stark extraction device.
  • solder particles were collected by filtration, washed with hexane, and dried. Thereafter, the obtained solder particles were pulverized with a ball mill and then sieved to a predetermined CV value.
  • Solder particles 4 200 g of SnBi solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter (median diameter) 12 ⁇ m), 10 g of a silane coupling agent having an isocyanate group (“KBE-9007” manufactured by Shin-Etsu Chemical Co., Ltd.), and 70 g of acetone. Weighed into a three-necked flask. While stirring at room temperature, 0.25 g of dibutyltin laurate, which is a reaction catalyst between the hydroxyl group and the isocyanate group on the surface of the solder particles, was added, and the mixture was heated at 60 ° C. for 30 minutes under stirring in a nitrogen atmosphere. Thereafter, 50 g of methanol was added, and the mixture was heated at 60 ° C. for 10 minutes under stirring in a nitrogen atmosphere.
  • SnBi solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter (media
  • the mixture was cooled to room temperature, the solder particles were filtered with filter paper, and the solvent was removed by vacuum drying at room temperature for 1 hour.
  • ester group of monoethyl adipate was reacted with the silanol group derived from the silane coupling agent by a transesterification reaction to form a covalent bond.
  • adipic acid was added and reacted at 60 ° C. for 1 hour to add adipic acid to the remaining ethyl ester group that had not reacted with the silanol group of monoethyl adipate.
  • the solder particles are filtered with a filter paper, and the solder particles are washed with hexane on the filter paper, so that the residual adipine adhered to the surface of the solder particles by non-covalent bonding.
  • the solvent was removed by vacuum drying at room temperature for 1 hour.
  • the molecular weight of the polymer formed on the solder surface was 0.1N hydrochloric acid, the solder was dissolved, the polymer was recovered by filtration, and the weight average molecular weight was determined by GPC.
  • solder particles 4 were obtained.
  • the CV value was 20%
  • the surface zeta potential was 0.9 mV
  • the molecular weight Mw of the polymer constituting the surface was 9800.
  • Solder particles 5 Other than using SnBi solder particles (Mitsui Kinzoku Co., Ltd., “DS-10”, average particle diameter (median diameter) 12 ⁇ m) instead of SnBi solder particles (Mitsui Kinzoku Co., Ltd., average particle diameter (median diameter) 30 ⁇ m). Produced solder particles 5 in the same manner as the solder particles 4. In the obtained solder particles 5, the CV value was 15%, the surface zeta potential was 1 mV, and the molecular weight Mw of the polymer constituting the surface was 9900.
  • Solder particles 6 Other than using SnBi solder particles (Mitsui Kinzoku Co., Ltd., average particle size (median diameter) 50 ⁇ m) instead of SnBi solder particles (Mitsui Kinzoku “DS-10”, average particle size (median diameter) 12 ⁇ m) Produced solder particles 6 in the same manner as the solder particles 4.
  • the CV value was 13%
  • the surface zeta potential was 1.1 mV
  • the molecular weight Mw of the polymer constituting the surface was 10,000.
  • solder particles having the anion polymer 1 were put in 10 g of methanol and the resulting solder particles were uniformly dispersed by ultrasonic treatment to obtain a dispersion.
  • the zeta potential was measured by electrophoretic measurement using this dispersion and “Delsamax PRO” manufactured by Beckman Coulter.
  • the weight average molecular weight of the anionic polymer 1 on the surface of the solder particles was obtained by dissolving the solder using 0.1N hydrochloric acid, collecting the polymer by filtration, and determining by GPC.
  • CV value of solder particles The CV value was measured with a laser diffraction particle size distribution analyzer (“LA-920” manufactured by Horiba, Ltd.).
  • conductive particles 1 Production method of conductive particles 1: Divinylbenzene resin particles having an average particle diameter of 10 ⁇ m (“Micropearl SP-210” manufactured by Sekisui Chemical Co., Ltd.) were subjected to electroless nickel plating to form a base nickel plating layer having a thickness of 0.1 ⁇ m on the surface of the resin particles. Next, the resin particles on which the base nickel plating layer was formed were subjected to electrolytic copper plating to form a 1 ⁇ m thick copper layer. Furthermore, electrolytic plating was performed using an electrolytic plating solution containing tin and bismuth to form a solder layer having a thickness of 3 ⁇ m.
  • Conductive particles 1 were prepared.
  • Phenoxy resin (“YP-50S” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) (Examples 1 to 6, 8 and Comparative Example 2)
  • Examples 1 to 6, 8 and Comparative Example 2 (1) Preparation of anisotropic conductive paste
  • Table 1 The components shown in Table 1 below were blended in the blending amounts shown in Table 1 to obtain anisotropic conductive paste.
  • Comparative Example 2 conductive particles whose central portion is not solder are used.
  • Glass epoxy substrate having a copper electrode pattern (copper electrode thickness 12 ⁇ m) having an L / S of 50 ⁇ m / 50 ⁇ m and an electrode length of 3 mm on the upper surface (FR-4 substrate) (first connection target member) was prepared.
  • the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of a copper electrode 12 micrometers) of L / S 50 micrometers / 50 micrometers and electrode length 3mm on the lower surface was prepared.
  • the overlapping area of the glass epoxy substrate and the flexible printed circuit board was 1.5 cm ⁇ 3 mm, and the number of connected electrodes was 75 pairs.
  • the anisotropic conductive paste immediately after production is applied by screen printing using a metal mask so that the thickness is 100 ⁇ m on the electrode of the glass epoxy substrate, and anisotropic conductive A paste layer was formed.
  • the flexible printed circuit board was laminated on the upper surface of the anisotropic conductive paste layer so that the electrodes face each other. At this time, no pressure was applied. The weight of the flexible printed board is added to the anisotropic conductive paste layer. Thereafter, while heating the anisotropic conductive paste layer to 190 ° C., the solder is melted, and the anisotropic conductive paste layer is cured at 190 ° C. for 10 seconds. Obtained.
  • a flexible printed circuit board (second connection target member) having a L / S of 75 ⁇ m / 75 ⁇ m and an electrode length of 3 mm on the lower surface of a copper electrode pattern (copper electrode thickness 12 ⁇ m) was prepared.
  • 2nd connection structure was obtained like manufacture of the 1st connection structure except having used the above-mentioned glass epoxy board and flexible printed circuit board from which L / S differs.
  • Glass epoxy substrate having a copper electrode pattern (copper electrode thickness 12 ⁇ m) with L / S of 100 ⁇ m / 100 ⁇ m and electrode length of 3 mm on the upper surface (FR-4 substrate) (first connection target member) was prepared.
  • the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of copper electrode 12 micrometers) of L / S of 100 micrometers / 100 micrometers and electrode length 3mm on the lower surface was prepared.
  • 3rd connection structure was obtained like manufacture of the 1st connection structure except having used the above-mentioned glass epoxy board and flexible printed circuit board from which L / S differs.
  • Example 7 First, second, and third connection structures were obtained in the same manner as in Example 1 except that a pressure of 1 MPa was applied during heating of the first conductive paste layer.
  • the 1st, 2nd, 3rd connection structure was obtained like Example 1 except having used an anisotropic conductive film.
  • Example 9 to 18 The components shown in Tables 3 and 4 below were blended in the blending amounts shown in Tables 3 and 4 to obtain anisotropic conductive pastes.
  • thermosetting compounds 1 and 2 were heated to 140 ° C. and liquefied. This was cooled to 40 degreeC and the thermosetting agent 1 was added. Then, the thermosetting compound 3 which is another thermosetting compound was added, and it stirred with the planetary stirrer until it became uniform. Then, it left still at 10 degreeC for 5 hours, and the thermosetting compounds 1 and 2 were crystallized.
  • thermosetting compounds 1 and 2 had the predetermined crystal sizes shown in Tables 2 and 3 below.
  • the first, second and third connection structures were produced in the same manner as in Examples 1 to 6, 8 and Comparative Example 2.
  • the anisotropic conductive paste was stored at 50 ° C. for 12 hours.
  • the anisotropic conductive paste after storage the first, second and third connection structures were produced in the same manner as in Examples 1 to 6, 8 and Comparative Example 2.
  • Viscosity Viscosity ( ⁇ 25) at 25 ° C. of the anisotropic conductive paste before storage using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.), 25 ° C. and 5 rpm It measured on each condition.
  • Viscosity ( ⁇ 25 ′) / viscosity ( ⁇ 25) is 1 or more and less than 1.2
  • Viscosity ( ⁇ 25 ′) / viscosity ( ⁇ 25) is 1.2 or more and less than 1.5
  • Viscosity ( ⁇ 25 ′) / Viscosity ( ⁇ 25) is 1.5 or more and less than 2
  • Viscosity ( ⁇ 25 ′) / Viscosity ( ⁇ 25) is 2 or more
  • solder placement accuracy on electrode 1 In the obtained first, second, and third connection structures, a portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is provided. When viewed, the ratio X of the area where the solder portion in the connection portion is arranged in the area of 100% of the portion where the first electrode and the second electrode face each other was evaluated.
  • the solder placement accuracy 1 on the electrode was determined according to the following criteria.
  • Ratio X is 70% or more ⁇ : Ratio X is 60% or more and less than 70% ⁇ : Ratio X is 50% or more and less than 60% X: Ratio X is less than 50%
  • solder placement accuracy on electrode 2 In the obtained first, second, and third connection structures, the first electrode and the second electrode are opposed to each other in a direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode.
  • the ratio Y of the solder part in the connecting part arranged in the part where the first electrode and the second electrode face each other in 100% of the solder part in the connecting part was evaluated. .
  • the solder placement accuracy 2 on the electrode was determined according to the following criteria.
  • Ratio Y is 99% or more ⁇ : Ratio Y is 90% or more and less than 99% ⁇ : Ratio Y is 70% or more and less than 90% X: Ratio Y is less than 70%
  • Average value of connection resistance is 10 7 ⁇ or more ⁇ : Average value of connection resistance is 10 6 ⁇ or more, less than 10 7 ⁇ ⁇ : Average value of connection resistance is 10 5 ⁇ or more, less than 10 6 ⁇ ⁇ : Connection The average resistance is less than 10 5 ⁇
  • first electrode and the second electrode are stacked in the stacking direction of the first electrode, the connection portion, and the second electrode. Whether the center line of the first electrode and the center line of the second electrode were aligned when the portion facing the two electrodes was viewed, and the distance of the positional deviation were evaluated.
  • the positional deviation between the upper and lower electrodes was determined according to the following criteria.
  • Misalignment is less than 15 ⁇ m ⁇ : Misalignment is 15 ⁇ m or more and less than 25 ⁇ m ⁇ : Misalignment is 25 ⁇ m or more and less than 40 ⁇ m ⁇ : Misalignment is 40 ⁇ m or more
  • the average aspect ratio and the average major axis of the crystalline thermosetting compound crystals in the anisotropic conductive pastes after storage of Examples 9, 10, and 16 were the same as those of the anisotropic conductive paste before storage. .
  • the viscosity at 25 ° C. and 5 rpm of the anisotropic conductive paste after storage in Example 9 is 130 mPa ⁇ s
  • the viscosity at 25 ° C. and 0.5 rpm is 450 mPa ⁇ s
  • the viscosity of the conductive paste at 25 ° C. and 5 rpm is 160 mPa ⁇ s
  • Example 16 The anisotropic conductive paste after storage of Example 16 has a viscosity at 25 ° C. and 5 rpm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 はんだ粒子を電極上に効率的に配置することができ、電極間の位置ずれを防ぐことができ、電極間の導通信頼性を高めることができる導電ペーストを提供する。 本発明に係る導電ペーストは、熱硬化性成分として熱硬化性化合物及び熱硬化剤と、複数のはんだ粒子とを含み、前記熱硬化性化合物が、結晶性熱硬化性化合物を含み、前記はんだ粒子は、中心部分及び導電性の外表面とのいずれもがはんだである粒子である。

Description

導電ペースト、接続構造体及び接続構造体の製造方法
 本発明は、はんだ粒子を含む導電ペーストに関する。また、本発明は、上記導電ペーストを用いた接続構造体及び接続構造体の製造方法に関する。
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー中に導電性粒子が分散されている。
 上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。
 上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。
 上記異方性導電材料の一例として、下記の特許文献1には、熱硬化性樹脂を含む樹脂層と、はんだ粉と、硬化剤とを含み、上記はんだ粉と上記硬化剤とが上記樹脂層中に存在する接着テープが開示されている。この接着テープは、フィルム状であり、ペースト状ではない。
 また、特許文献1では、上記接着テープを用いた接着方法が開示されている。具体的には、第一基板、接着テープ、第二基板、接着テープ、及び第三基板を下からこの順に積層して、積層体を得る。このとき、第一基板の表面に設けられた第一電極と、第二基板の表面に設けられた第二電極とを対向させる。また、第二基板の表面に設けられた第二電極と第三基板の表面に設けられた第三電極とを対向させる。そして、積層体を所定の温度で加熱して接着する。これにより、接続構造体を得る。
 下記の特許文献2には、導電性粒子が絶縁性バインダーに分散されている異方性導電材料が開示されている。この異方性導電材料の最低溶融粘度[η]は1.0×10~1.0×10mPa・secである。この異方性導電材料では、1<[η]/[η]≦3([η]は異方性導電材料の最低溶融粘度、[η]は最低溶融粘度を示す温度Tより30℃低い温度Tにおける溶融粘度)を満足する。
 また、下記の特許文献3には、硬化性化合物と、熱ラジカル開始剤と、光ラジカル開始剤と、導電性粒子とを含有する異方性導電材料が開示されている。
 下記の特許文献4には、導電性粒子と、該導電性粒子の融点で硬化が完了しない樹脂成分とを含む異方性導電材料が記載されている。上記導電性粒子としては、具体的には、錫(Sn)、インジウム(In)、ビスマス(Bi)、銀(Ag)、銅(Cu)、亜鉛(Zn)、鉛(Pb)、カドミウム(Cd)、ガリウム(Ga)、銀(Ag)及びタリウム(Tl)等の金属や、これらの金属の合金が挙げられている。
 特許文献4では、上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、異方性導電樹脂を加熱する樹脂加熱ステップと、上記樹脂成分を硬化させる樹脂成分硬化ステップとを経て、電極間を電気的に接続することが記載されている。また、特許文献1には、特許文献1の図8に示された温度プロファイルで実装を行うことが記載されている。特許文献1では、異方性導電樹脂が加熱される温度にて硬化が完了しない樹脂成分内で、導電性粒子が溶融する。
 また、下記の特許文献5には、複数の電極端子を有する配線基板と対向させて、複数の接続端子を有する半導体チップを配設し、上記配線基板の上記電極端子と、上記半導体チップの上記接続端子とを電気的に接続するフリップチップ実装方法が開示されている。このフリップチップ実装方法は、(1)上記配線基板の上記電極端子を有する表面上に、はんだ粉及び対流添加剤を含有する樹脂を供給する工程と、(2)上記樹脂表面に、上記半導体チップを当接させる工程と、(3)上記配線基板を、上記はんだ粉が溶融する温度に加熱する工程と、(4)上記加熱工程後、上記樹脂を硬化させる工程とを含む。上記配線基板の加熱工程(3)において、上記電極端子と上記接続端子とを電気的に接続する接続体を形成し、また、上記樹脂の硬化工程(4)において、上記半導体チップを上記配線基板に固定する。
WO2008/023452A1 特開2009-32657号公報 特開2012-186161号公報 特開2004-260131号公報 特開2006-114865号公報
 特許文献1に記載の接着テープは、フィルム状であり、ペースト状ではない。このため、はんだ粉を電極(ライン)上に効率的に配置することは困難である。例えば、特許文献1に記載の接着テープでは、はんだ粉の一部が、電極が形成されていない領域(スペース)にも配置されやすい。電極が形成されていない領域に配置されたはんだ粉は、電極間の導通に寄与しない。
 また、従来のはんだ粉や、はんだ層を表面に有する導電性粒子を含む異方性導電ペーストでは、はんだ粉又は導電性粒子が電極(ライン)上に効率的に配置されないことがある。従来のはんだ粉又は導電性粒子では、はんだ粉又は導電性粒子の電極上への移動速度が遅いことがある。
 さらに、従来の異方性導電ペーストでは、接続されるべき上下の電極間の位置ずれが生じることがある。
 なお、特許文献1,2では、異方性導電材料に用いる導電性粒子については、具体的な記載がない。特許文献3,5の実施例では、樹脂粒子の表面上に銅層が形成されており、該銅層の表面にはんだ層が形成されている導電性粒子が用いられている。この導電性粒子の中心部分は、樹脂粒子により構成されている。また、特許文献1,2,3,5に記載の異方性導電材料を用いたとしても、導電性粒子が電極(ライン)上に効率的に配置されなかったり、接続されるべき上下の電極間の位置ずれが生じたりすることがある。
 また、特許文献4に記載の異方性導電材料を用いて、特許文献4に記載の方法で電極間を電気的に接続すると、はんだを含む導電性粒子が電極(ライン)上に効率的に配置されないことがある。また、特許文献4の実施例では、はんだの融点以上の温度で、はんだを十分に移動させるために、一定温度に保持しており、接続構造体の製造効率が低くなる。特許文献4の図8に示された温度プロファイルで実装を行うと、接続構造体の製造効率が低くなる。
 本発明の目的は、はんだ粒子を電極上に効率的に配置することができ、電極間の位置ずれを防ぐことができ、電極間の導通信頼性を高めることができる導電ペーストを提供することである。また、本発明は、上記導電ペーストを用いた接続構造体及び接続構造体の製造方法を提供することである。
 本発明の広い局面によれば、熱硬化性成分として熱硬化性化合物及び熱硬化剤と、複数のはんだ粒子とを含み、前記熱硬化性化合物が、結晶性熱硬化性化合物を含み、前記はんだ粒子は、中心部分及び導電性の外表面とのいずれもがはんだである粒子である、導電ペーストが提供される。
 本発明に係る導電ペーストのある特定の局面では、前記結晶性熱硬化性化合物が25℃で固体である。
 本発明に係る導電ペーストのある特定の局面では、前記結晶性熱硬化性化合物の融点が80℃以上、150℃以下である。
 本発明に係る導電ペーストのある特定の局面では、前記結晶性熱硬化性化合物の分子量が300以上、500以下である。
 本発明に係る導電ペーストのある特定の局面では、前記結晶性熱硬化性化合物は、ベンゾフェノン型エポキシ化合物である。
 本発明に係る導電ペーストのある特定の局面では、前記結晶性熱硬化性化合物の結晶の平均アスペクト比が5以下である。
 本発明に係る導電ペーストのある特定の局面では、前記結晶性熱硬化性化合物の結晶の平均長径が、前記はんだ粒子の平均粒子径の1/1.5以下である。
 本発明に係る導電ペーストのある特定の局面では、前記結晶性熱硬化性化合物の結晶の平均長径が、前記はんだ粒子の平均粒子径の1/10以上である。
 本発明に係る導電ペーストのある特定の局面では、前記結晶性熱硬化性化合物の融点は、前記はんだの融点よりも低い。
 本発明に係る導電ペーストのある特定の局面では、前記導電ペーストはフラックスを含み、前記結晶性熱硬化性化合物の融点は、前記フラックスの活性温度よりも低い。
 本発明に係る導電ペーストのある特定の局面では、前記熱硬化性化合物の全体100重量%中、前記結晶性熱硬化性化合物の含有量が10重量%以上である。
 本発明に係る導電ペーストのある特定の局面では、前記導電ペーストはフィラーを含まないか、又はフィラーを5重量%以下で含む。
 本発明に係る導電ペーストのある特定の局面では、前記導電ペースト中で、前記結晶性熱硬化性化合物が、粒子状に分散している。
 本発明に係る導電ペーストのある特定の局面では、結晶性熱硬化性化合物とは異なる他の熱硬化性化合物を含む。
 本発明に係る導電ペーストのある特定の局面では、前記はんだ粒子の平均粒子径が1μm以上、60μm以下である。
 本発明に係る導電ペーストのある特定の局面では、前記はんだ粒子の含有量が10重量%以上、80重量%以下である。
 本発明の広い局面によれば、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、上述した導電ペーストの硬化物であり、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。
 本発明の広い局面によれば、上述した導電ペーストを用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電ペーストを配置する工程と、前記導電ペーストの前記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、前記はんだ粒子の融点以上かつ前記熱硬化性成分の硬化温度以上に前記導電ペーストを加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電ペーストにより形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法が提供される。
 本発明に係る接続構造体の製造方法のある特定の局面では、前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程において、加圧を行わず、前記導電ペーストには、前記第2の接続対象部材の重量が加わるか、又は、前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程の内の少なくとも一方において、加圧を行い、かつ、前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程の双方において、加圧の圧力が1MPa未満である。
 本発明に係る接続構造体の製造方法のある特定の局面では、前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程において、加圧を行わず、前記導電ペーストには、前記第2の接続対象部材の重量が加わる。
 前記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル、又はリジッドフレキシブル基板であることが好ましい。
 前記接続構造体において、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されていることが好ましい。前記接続構造体において、前記第1の電極と前記接続部と前記第2の電極との積層方向と直交する方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分に、前記接続部中のはんだ部の70%以上が配置されていることが好ましい。
 本発明に係る導電ペーストは、熱硬化性成分として熱硬化性化合物及び熱硬化剤と、複数のはんだ粒子とを含み、上記熱硬化性化合物が、結晶性熱硬化性化合物を含み、上記はんだ粒子は、中心部分及び導電性の外表面とのいずれもがはんだである粒子であるので、電極間を電気的に接続した場合に、はんだ粒子を電極上に効率的に配置することができ、電極間の位置ずれを防ぐことができ、電極間の導通信頼性を高めることができる。
図1は、本発明の一実施形態に係る導電ペーストを用いて得られる接続構造体を模式的に示す断面図である。 図2(a)~(c)は、本発明の一実施形態に係る導電ペーストを用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。 図3は、接続構造体の変形例を示す断面図である。
 以下、本発明の詳細を説明する。
 (導電ペースト)
 本発明に係る導電ペーストは、熱硬化性成分として熱硬化性化合物及び熱硬化剤と、複数のはんだ粒子とを含む。本発明に係る導電ペーストでは、上記熱硬化性化合物が、結晶性熱硬化性化合物を含む。上記はんだ粒子は、中心部分及び導電性の外表面とのいずれもがはんだにより形成されている。上記はんだ粒子は、上記はんだ粒子の中心部分及び導電性の外表面とのいずれもがはんだである粒子である。
 本発明に係る導電ペーストでは、上記の構成が採用されているので、電極間を電気的に接続した場合に、複数のはんだ粒子が、上下の対向した電極間に集まりやすく、複数のはんだ粒子を電極(ライン)上に効率的に配置することができる。また、複数のはんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくすることができる。従って、電極間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。さらに、電極間の位置ずれを防ぐことができる。本発明では、導電ペーストを塗布した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材の電極とを接続させることができる(セルフアライメント効果)。このような効果を得るために、導電ペーストであること、熱硬化性化合物及び熱硬化剤とともに用いられる導電性粒子が、はんだ粒子であること、並びに、上記熱硬化性化合物が結晶性熱硬化性化合物であることは大きく寄与する。
 なお、上記はんだ粒子ではなく、はんだにより形成されていない基材粒子と基材粒子の表面上に配置されたはんだ層とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まりにくくなり、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる。このため、電極間の位置ずれの抑制効果も低くなる。
 結晶性熱硬化性化合物における「結晶性」とは、分子鎖が規則正しく配列している状態を意味し、上記化合物はガラス転移温度及び融点を有する。
 本発明に係る導電ペーストでは、上記結晶性熱硬化性化合物の結晶の平均アスペクト比が5以下であることが好ましい。
 従来の異方性導電ペーストでは、保管した後に使用されると、導電性粒子が電極(ライン)上により一層配置されにくくなることがある。
 上記結晶性熱硬化性化合物の結晶の平均アスペクト比が5以下である場合には、導電ペーストの保存安定性に優れている。このため、導電ペーストの保管前及び保管後のいずれの場合であっても、はんだを電極上に効率的に配置することができ、電極間の導通信頼性を高めることができる。
 導電ペースト中に結晶性熱硬化性化合物が含まれることで、導電ペーストに熱を付与すると、導電ペーストの粘度が充分に低くなる。上記導電ペーストに熱が付与されると、上記結晶性熱硬化性化合物の結晶性が失われることで、導電ペーストの粘度が充分に低下し、はんだの移動が促進される。また、結晶性熱硬化性化合物を含む導電ペーストでは、導電ペーストの保管前後において、はんだ粒子の移動性能が異なる場合があることが見出された。これは、結晶性熱硬化性化合物の結晶状態が変化するためであると考えられる。結晶性熱硬化性化合物を用いている場合に、該結晶性熱硬化性化合物の結晶の平均アスペクト比が5以下であれば、導電ペーストの保管前後において、はんだ粒子の移動性能が変化しにくいことが見出された。
 さらに、本発明では、電極間の位置ずれを防ぐことができる。本発明では、導電ペーストを上面に配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材の電極とを接続させることができる(セルフアライメント効果)。このような効果を得るために、特定の組成を有する導電ペーストを用いることは、大きく寄与する。
 上記結晶性熱硬化性化合物の結晶の平均アスペクト比を5以下にする方法としては、結晶性熱硬化性化合物を粉砕する方法等が挙げられる。結晶性熱硬化性化合物を粉砕した後に、導電ペーストに配合することが好ましい。平均アスペクト比が5以下となるように、結晶性熱硬化性化合物を選別した後、結晶性熱硬化性化合物を用いてもよい。
 導電ペーストの保存安定性をより一層高め、はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記結晶性熱硬化性化合物の結晶の平均アスペクト比は好ましくは4以下である。上記平均アスペクト比は、複数の結晶のアスペクト比の平均である。上記アスペクト比は、長径/短径を示す。上記アスペクト比は、導電ペースト中でのアスペクト比である。
 上記結晶性熱硬化性化合物の結晶の平均アスペクト比は1以上である。上記結晶性熱硬化性化合物の結晶は、針状結晶であることが好ましい。導電ペーストの初期粘度を高くし、導電ペーストの過度の濡れ拡がりを抑え、更にはんだを電極上により一層効率的に配置する観点からは、上記結晶性熱硬化性化合物の結晶の平均アスペクト比は、好ましくは1.3以上、より好ましくは1.5以上である。
 導電ペーストの保存安定性をより一層高め、はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記結晶性熱硬化性化合物の結晶の平均長径は、好ましくは上記はんだ粒子の平均粒子径の1/1.5以下であり、より好ましくは上記はんだ粒子の平均粒子径の1/2以下である。
 導電ペーストの初期粘度を高くし、導電ペーストの過度の濡れ拡がりを抑え、更にはんだを電極上により一層効率的に配置する観点からは、上記結晶性熱硬化性化合物の結晶の平均長径は、好ましくは上記はんだ粒子の平均粒子径の1/10以上であり、より好ましくは上記はんだ粒子の平均粒子径の1/8以上である。
 はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記結晶性熱硬化性化合物の融点は、上記はんだの融点よりも低いことが好ましい。はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記結晶性熱硬化性化合物の融点と上記はんだの融点との差の絶対値は好ましくは10℃以上、より好ましくは20℃以上、好ましくは80℃以下、より好ましくは70℃以下である。
 導通信頼性をより一層高める観点からは、上記導電ペーストは、フラックスを含むことが好ましい。はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記結晶性熱硬化性化合物の融点は、上記フラックスの活性温度よりも低いことが好ましい。はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記結晶性熱硬化性化合物の融点と上記フラックスの活性温度との差の絶対値は好ましくは5℃以上、より好ましくは10℃以上、好ましくは60℃以下、より好ましくは50℃以下である。
 塗工性の向上効果と、導電性粒子の電極上への効率的な移動による達成される電極間の導通信頼性の向上効果との双方を高いレベルで両立して得る観点からは、本発明に係る導電ペースト中で、上記結晶性熱硬化性化合物は粒子状に分散していることが好ましい。
 はんだ粒子を電極上により一層効率的に配置するために、上記導電ペーストの25℃での粘度(η25)は好ましくは10Pa・s以上、より好ましくは50Pa・s以上、更に好ましくは100Pa・s以上、好ましくは800Pa・s以下、より好ましくは600Pa・s以下、更に好ましくは500Pa・s以下である。
 上記粘度(η25)は、配合成分の種類及び配合量に適宜調整可能である。また、フィラーの使用により、粘度を比較的高くすることができる。
 上記粘度(η25)は、例えば、E型粘度計(東機産業社製)等を用いて、25℃及び5rpmの条件で測定可能である。
 本発明に係る導電ペーストは、後述する本発明に係る接続構造体及び接続構造体の製造方法に好適に用いることができる。
 上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電ペーストは、電極の電気的な接続に好適に用いられる。上記導電ペーストは、回路接続材料であることが好ましい。
 以下、上記導電ペーストに含まれる各成分を説明する。
 (はんだ粒子)
 上記はんだ粒子は、はんだを導電性の外表面に有する。上記はんだ粒子では、中心部分及び導電性の外表面とのいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び導電性の外表面とのいずれもがはんだである粒子である。
 電極上にはんだ粒子を効率的に集める観点からは、上記はんだ粒子の表面のゼータ電位がプラスであることが好ましい。但し、本発明では、上記はんだ粒子の表面のゼータ電位がプラスでなくてもよい。
 ゼータ電位は以下のようにして測定される。
 ゼータ電位の測定方法:
 はんだ粒子0.05gを、メタノール10gに入れ、超音波処理等をすることで、均一に分散させて、分散液を得る。この分散液を用いて、かつBeckman Coulter社製「Delsamax PRO」を用いて、電気泳動測定法にて、ゼータ電位を測定することができる。
 はんだ粒子のゼータ電位は好ましくは0mV以上、より好ましくは0mVを超え、好ましくは10mV以下、より好ましくは5mV以下、より一層好ましくは1mV以下、更に好ましくは0.7mV以下、特に好ましくは0.5mV以下である。ゼータ電位が上記上限以下であると、使用前の導電ペースト中にて、はんだ粒子が凝集しにくくなる。ゼータ電位が0mV以上であると、実装時に電極上にはんだ粒子が効率的に凝集する。
 表面のゼータ電位をプラスにすることが容易であることから、上記はんだ粒子は、はんだ粒子本体と、上記はんだ粒子本体の表面上に配置されたアニオンポリマーとを有することが好ましい。上記はんだ粒子は、はんだ粒子本体をアニオンポリマー又はアニオンポリマーとなる化合物で表面処理することにより得られることが好ましい。上記はんだ粒子は、アニオンポリマー又はアニオンポリマーとなる化合物による表面処理物であることが好ましい。上記アニオンポリマー及び上記アニオンポリマーとなる化合物はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
 はんだ粒子本体をアニオンポリマーで表面処理する方法としては、アニオンポリマーとして、例えば(メタ)アクリル酸を共重合した(メタ)アクリルポリマー、ジカルボン酸とジオールとから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、ジカルボン酸の分子間脱水縮合反応により得られかつ両末端にカルボキシル基を有するポリマー、ジカルボン酸とジアミンから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、並びにカルボキシル基を有する変性ポバール(日本合成化学社製「ゴーセネックスT」)等を用いて、アニオンポリマーのカルボキシル基と、はんだ粒子本体の表面の水酸基とを反応させる方法が挙げられる。
 上記アニオンポリマーのアニオン部分としては、上記カルボキシル基が挙げられ、それ以外には、トシル基(p-HCCS(=O)-)、スルホン酸イオン基(-SO )、及びリン酸イオン基(-PO )等が挙げられる。
 また、他の方法としては、はんだ粒子本体の表面の水酸基と反応する官能基を有し、さらに、付加、縮合反応により重合可能な官能基を有する化合物を用いて、この化合物をはんだ粒子本体の表面上にてポリマー化する方法が挙げられる。はんだ粒子本体の表面の水酸基と反応する官能基としては、カルボキシル基、及びイソシアネート基等が挙げられ、付加、縮合反応により重合する官能基としては、水酸基、カルボキシル基、アミノ基、及び(メタ)アクリロイル基が挙げられる。
 上記アニオンポリマーの重量平均分子量は好ましくは2000以上、より好ましくは3000以上、好ましくは10000以下、より好ましくは8000以下である。
 上記重量平均分子量が上記下限以上及び上記上限以下であると、はんだ粒子本体の表面上にアニオンポリマーを配置することが容易であり、はんだ粒子の表面のゼータ電位をプラスにすることが容易であり、電極上にはんだ粒子をより一層効率的に配置することができる。
 上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。
 はんだ粒子本体をアニオンポリマーとなる化合物で表面処理することにより得られたポリマーの重量平均分子量は、はんだ粒子中のはんだを溶解し、ポリマーの分解を起こさない希塩酸等により、はんだ粒子を除去した後、残存しているポリマーの重量平均分子量を測定することで求めることができる。
 上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ粒子は、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。また、上記はんだ粒子は錫を含む。上記はんだ粒子に含まれる金属100重量%中、錫の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだ粒子における錫の含有量が上記下限以上であると、はんだ部と電極との接続信頼性がより一層高くなる。
 なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定可能である。
 上記はんだ粒子を用いることで、はんだが溶融して電極に接合し、はんだ部が電極間を導通させる。例えば、はんだ部と電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、はんだ粒子の使用により、はんだ部と電極との接合強度が高くなる結果、はんだ部と電極との剥離がより一層生じ難くなり、導通信頼性及び接続信頼性が効果的に高くなる。
 上記はんだ粒子を構成する金属(低融点金属)は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金等が挙げられる。なかでも、電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金であることが好ましい。錫-ビスマス合金、錫-インジウム合金であることがより好ましい。
 上記はんだ粒子は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだ粒子の組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウムなどを含む金属組成が挙げられる。なかでも低融点で鉛フリーである錫-インジウム系(117℃共晶)、又は錫-ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだ粒子は、鉛を含まないことが好ましく、錫とインジウムとを含むか、又は錫とビスマスとを含むことが好ましい。
 上記はんだ部と電極との接合強度をより一層高めるために、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだ部と電極との接合強度をさらに一層高める観点からは、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ粒子100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。
 上記はんだ粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、更に好ましくは3μm以上、特に好ましくは5μm以上、好ましくは100μm以下、より好ましくは80μm未満、より一層好ましくは75μm以下、より一層好ましくは60μm以下、より一層好ましくは40μm以下、より一層好ましくは30μm以下、更に好ましくは20μm以下、特に好ましくは15μm以下、最も好ましくは10μm以下である。上記はんだ粒子の平均粒子径が上記下限以上及び上記上限以下であると、はんだ粒子を電極上により一層効率的に配置することができる。上記はんだ粒子の平均粒子径は、3μm以上、30μm以下であることが特に好ましい。
 上記はんだ粒子の「平均粒子径」は、数平均粒子径を示す。はんだ粒子の平均粒子径は、例えば、任意のはんだ粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。
 上記はんだ粒子の粒子径の変動係数は、好ましくは5%以上、より好ましくは10%以上、好ましくは40%以下、より好ましくは30%以下である。上記粒子径の変動係数が上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができる。但し、上記はんだ粒子の粒子径の変動係数は、5%未満であってもよい。
 上記変動係数(CV値)は下記式で表される。
 CV値(%)=(ρ/Dn)×100
 ρ:はんだ粒子の粒子径の標準偏差
 Dn:はんだ粒子の粒子径の平均値
 上記はんだ粒子の形状は特に限定されない。上記はんだ粒子の形状は、球状であってもよく、扁平状などの球形状以外の形状であってもよい。
 上記導電ペースト100重量%中、上記はんだ粒子の含有量は好ましくは1重量%以上、より好ましくは2重量%以上、更に好ましくは10重量%以上、特に好ましくは20重量%以上、最も好ましくは30重量%以上、好ましくは80重量%以下、より好ましくは60重量%以下、更に好ましくは50重量%以下である。上記はんだ粒子の含有量が上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができ、電極間にはんだ粒子を多く配置することが容易であり、導通信頼性がより一層高くなる。導通信頼性をより一層高める観点からは、上記はんだ粒子の含有量は多い方が好ましい。
 電極が形成されている部分のライン(L)が50μm以上、150μm未満である場合に、導通信頼性をより一層高める観点からは、上記導電ペースト100重量%中、上記はんだ粒子の含有量は好ましくは20重量%以上、より好ましくは30重量%以上、好ましくは55重量%以下、より好ましくは45重量%以下である。
 電極が形成されていない部分のスペース(S)が50μm以上、150μm未満である場合に、導通信頼性をより一層高める観点からは、上記導電ペースト100重量%中、上記はんだ粒子の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、好ましくは70重量%以下、より好ましくは60重量%以下である。
 電極が形成されている部分のライン(L)が150μm以上、1000μm未満である場合に、導通信頼性をより一層高める観点からは、上記導電ペースト100重量%中、上記はんだ粒子の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、好ましくは70重量%以下、より好ましくは60重量%以下である。
 (熱硬化性化合物:熱硬化性成分)
 上記熱硬化性化合物は、加熱により硬化可能な化合物である。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。なかでも、導電ペーストの硬化性及び粘度をより一層良好にし、接続信頼性をより一層高める観点から、エポキシ化合物が好ましい。
 はんだ粒子を電極上に効率的に配置し、電極間の位置ずれを効果的に抑制し、電極間の導通信頼性及び絶縁信頼性を高める観点から、上記熱硬化性化合物は、結晶性熱硬化性化合物を含む。上記結晶性熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 はんだ粒子を電極上により一層効率的に配置し、電極間の位置ずれをより一層効果的に抑制し、電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記結晶性熱硬化性化合物は、25℃で固体であることが好ましい。
 はんだ粒子を電極上により一層効率的に配置し、電極間の位置ずれをより一層効果的に抑制し、電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記結晶性熱硬化性化合物の融点は好ましくは80℃以上、より好ましくは85℃以上、好ましくは150℃以下、より好ましくは140℃以下である。
 はんだ粒子を電極上により一層効率的に配置し、電極間の位置ずれをより一層効果的に抑制し、電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記結晶性熱硬化性化合物の分子量は好ましくは300以上、より好ましくは350以上、好ましくは500以下、より好ましくは400以下である。
 上記分子量は、上記熱硬化性化合物が重合体ではない場合、及び上記熱硬化性化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記熱硬化性化合物が重合体である場合は、重量平均分子量を意味する。
 上記結晶性熱硬化性化合物としては、エポキシ化合物、及び(メタ)アクリル化合物等が挙げられる。
 上記エポキシ化合物としては、芳香族エポキシ化合物が挙げられる。中でも、レゾルシノール型エポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、ベンゾフェノン型エポキシ化合物等の結晶性エポキシ化合物が好ましい。特に、2,4-ビス(グリシジルオキシ)ベンゾフェノン、又は4,4’-ビス(グリシジルオキシ)ベンゾフェノンが好ましい。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃が、加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができ、なおかつ、硬化時の熱により、導電ペーストの粘度を大きく低下させることができ、はんだ粒子の凝集を効率よく進行させることができる。
 上記(メタ)アクリル化合物は、(メタ)アクリロイル基を有する化合物である。上記(メタ)アクリル化合物としては、エポキシ(メタ)アクリレート化合物が挙げられる。エポキシ化合物に(メタ)アクリル酸等で、(メタ)アクリロイル基を導入した化合物が好ましい。
 はんだ粒子を電極上により一層効率的に配置し、電極間の位置ずれをより一層効果的に抑制し、電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記結晶性熱硬化性化合物は、ベンゾフェノン型エポキシ化合物であることが特に好ましく、2,4-ビス(グリシジルオキシ)ベンゾフェノン、又は4,4’-ビス(グリシジルオキシ)ベンゾフェノンであることが最も好ましい。
 上記導電ペースト100重量%中、上記熱硬化性化合物の含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、更に好ましくは50重量%以上、好ましくは99重量%以下、より好ましくは98重量%以下、更に好ましくは90重量%以下、特に好ましくは80重量%以下である。耐衝撃性をより一層高める観点からは、上記熱硬化性成分及び上記熱硬化性化合物の含有量は多い方が好ましい。
 熱硬化性化合物(他の熱硬化性化合物及び結晶性熱硬化性化合物)の全体100重量%中、上記結晶性熱硬化性化合物の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは100重量%以下である。
 (熱硬化剤:熱硬化性成分)
 上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤などのチオール硬化剤、酸無水物、熱カチオン開始剤(熱カチオン硬化剤)及び熱ラジカル発生剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 導電ペーストを低温でより一層速やかに硬化可能であるので、イミダゾール硬化剤、チオール硬化剤又はアミン硬化剤が好ましい。また、熱硬化性化合物と上記熱硬化剤とを混合したときに保存安定性が高くなるので、潜在性の硬化剤が好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。
 上記イミダゾール硬化剤としては、特に限定されず、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。
 上記チオール硬化剤としては、特に限定されず、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート及びジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等が挙げられる。
 上記アミン硬化剤としては、特に限定されず、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。
 上記熱カチオン開始剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ-p-トリルスルホニウムヘキサフルオロホスファート等が挙げられる。
 上記熱ラジカル発生剤としては、特に限定されず、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイゾブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ-tert-ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。
 上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは70℃以上、更に好ましくは80℃以上、好ましくは250℃以下、より好ましくは200℃以下、更に好ましくは150℃以下、特に好ましくは140℃以下である。上記熱硬化剤の反応開始温度が上記下限以上及び上記上限以下であると、はんだが電極上により一層効率的に配置される。上記熱硬化剤の反応開始温度は80℃以上、140℃以下であることが特に好ましい。
 はんだを電極上により一層効率的に配置する観点からは、上記熱硬化剤の反応開始温度は、上記はんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。
 上記熱硬化剤の反応開始温度は、DSCでの発熱ピークの立ち上がり開始の温度を意味する。
 上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上、好ましくは200重量部以下、より好ましくは100重量部以下、更に好ましくは75重量部以下である。熱硬化剤の含有量が上記下限以上であると、導電ペーストを充分に硬化させることが容易である。熱硬化剤の含有量が上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。
 上記結晶性熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上、好ましくは200重量部以下、より好ましくは100重量部以下、更に好ましくは75重量部以下である。また、上記熱硬化性化合物の全体100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上、好ましくは200重量部以下、より好ましくは100重量部以下、更に好ましくは75重量部以下である。熱硬化剤の含有量が上記下限以上であると、導電ペーストを充分に硬化させることが容易である。熱硬化剤の含有量が上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。
 (フラックス)
 上記導電ペーストは、フラックスを含むことが好ましい。フラックスの使用により、はんだを電極上により一層効果的に配置することができる。該フラックスは特に限定されない。フラックスとして、はんだ接合等に一般的に用いられているフラックスを使用できる。上記フラックスとしては、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。上記フラックスは1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性がより一層高くなる。
 上記松脂はアビエチン酸を主成分とするロジン類である。フラックスは、ロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。
 上記フラックスの活性温度(融点)は、好ましくは50℃以上、より好ましくは70℃以上、更に好ましくは80℃以上、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、更に好ましくは150℃以下、更に一層好ましくは140℃以下である。上記フラックスの活性温度が上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだが電極上により一層効率的に配置される。上記フラックスの活性温度(融点)は80℃以上、190℃以下であることが好ましい。上記フラックスの活性温度(融点)は80℃以上、140℃以下であることが特に好ましい。
 フラックスの活性温度(融点)が80℃以上、190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、スベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、リンゴ酸(融点130℃)等が挙げられる。
 また、上記フラックスの沸点は200℃以下であることが好ましい。
 はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記はんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。
 はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。
 上記フラックスは、導電ペースト中に分散されていてもよく、はんだ粒子の表面上に付着していてもよい。
 上記フラックスは、加熱によりカチオンを放出するフラックスであることが好ましい。加熱によりカチオンを放出するフラックスの使用により、はんだを電極上により一層効率的に配置することができる。
 上記導電ペースト100重量%中、上記フラックスの含有量は好ましくは0.5重量%以上、好ましくは30重量%以下、より好ましくは25重量%以下である。上記導電ペーストは、フラックスを含んでいなくてもよい。フラックスの含有量が上記下限以上及び上記上限以下であると、はんだ及び電極の表面に酸化被膜がより一層形成され難くなり、さらに、はんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。
 (フィラー)
 上記導電ペーストには、フィラーを添加してもよい。フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。フィラーの添加により、はんだ粒子の凝集する距離を抑制し、基板の全電極上に対して、はんだ粒子を均一に凝集させることができる。
 上記導電ペーストは、上記フィラーを含まないか、又は上記フィラーを5重量%以下で含むことが好ましい。結晶性熱硬化性化合物を用いているので、フィラーの含有量が少ないほど、電極上にはんだが移動しやすくなる。
 上記導電ペースト100重量%中、上記フィラーの含有量は好ましくは0重量%(未含有)以上、好ましくは5重量%以下、より好ましくは2重量%以下、更に好ましくは1重量%以下である。上記フィラーの含有量が上記下限以上及び上記上限以下であると、はんだ粒子が電極上により一層効率的に配置される。
 (他の成分)
 上記導電ペーストは、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
 (接続構造体及び接続構造体の製造方法)
 本発明に係る接続構造体は、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部が、上述した導電ペーストにより形成されており、上述した導電ペーストの硬化物である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
 本発明に係る接続構造体の製造方法は、上述した導電ペーストを用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、上記導電ペーストを配置する工程と、上記導電ペーストの上記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する工程と、上記はんだ粒子の融点以上かつ上記熱硬化性成分の硬化温度以上に上記導電ペーストを加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記導電ペーストにより形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する工程とを備える。好ましくは、上記熱硬化性化合物の硬化温度以上に上記導電ペーストを加熱する。
 本発明に係る接続構造体及び本発明に係る接続構造体の製造方法では、特定の導電ペーストを用いているので、複数のはんだ粒子が第1の電極と第2の電極との間に集まりやすく、複数のはんだ粒子を電極(ライン)上に効率的に配置することができる。また、複数のはんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。
 また、複数のはんだ粒子を電極上に効率的に配置し、かつ電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくするためには、導電フィルムではなく、導電ペーストを用いる必要があることを、本発明者は見出した。
 本発明では、複数のはんだ粒子を電極間に効率的に集める他の方法を更に採用してもよい。複数のはんだ粒子を電極間に効率的に集める方法としては、第1の接続対象部材と、第2の接続対象部材との間の導電ペーストに、熱を付与した際、熱により導電ペーストの粘度が低下することで、第1の接続対象部材と、第2の接続対象部材との間の導電ペーストの対流を発生させる方法等が挙げられる。この方法において、接続対象部材の表面の電極とそれ以外の表面部材との熱容量の差異により対流を発生させる方法、接続対象部材の水分を、熱により水蒸気として対流を発生させる方法、並びに第1の接続対象部材と第2の接続対象部材との温度差により対流を発生させる方法等が挙げられる。これにより、導電ペースト中のはんだ粒子を、電極の表面に効率的に移動させることができる。
 本発明では、電極の表面に選択的にはんだ粒子を凝集させる方法を更に採用してもよい。電極の表面に選択的にはんだ粒子を凝集させる方法としては、溶融したはんだ粒子の濡れ性がよい電極材質と、溶融したはんだ粒子の濡れ性の悪いその他の表面材質とにより形成された接続対象部材を選択し、電極の表面に到達した溶融したはんだ粒子を選択的に電極に付着させ、その溶融したはんだ粒子に対し、別のはんだ粒子を溶融させて付着させる方法、熱伝導性がよい電極材質と、熱伝導性が悪いその他の表面材質とにより形成された接続対象部材を選択し、熱を付与した際に、電極の温度を他の表面部材に対し高くすることで、選択的に電極上ではんだを溶融させる方法、金属により形成された電極上に存在するマイナスの電荷に対して、プラスの電荷を持つように処理されたはんだ粒子を用いて、電極に選択的にはんだ粒子を凝集させる方法、並びに、親水性の金属表面を有する電極に対して、導電ペースト中のはんだ粒子以外の樹脂を疎水性とすることで、電極に選択的にはんだ粒子を凝集させる方法等が挙げられる。
 電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上、好ましくは100%以下である。
 本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電ペーストには、上記第2の接続対象部材の重量が加わるか、又は、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の内の少なくとも一方において、加圧を行い、かつ、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の双方において、加圧の圧力が1MPa未満であることが好ましい。1MPa以上の加圧の圧力を加えないことで、はんだ粒子の凝集がかなり促進される。接続対象部材の反りを抑える観点からは、本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の内の少なくとも一方において、加圧を行い、かつ、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の双方において、加圧の圧力が1MPa未満であってもよい。加圧を行う場合に、上記第2の接続対象部材を配置する工程のみにおいて、加圧を行ってもよく、上記接続部を形成する工程のみにおいて、加圧を行ってもよく、上記第2の接続対象部材を配置する工程と上記接続部を形成する工程との双方において、加圧を行ってもよい。加圧の圧力が1MPa未満には、加圧していない場合が含まれる。加圧を行う場合に、加圧の圧力は、好ましくは0.9MPa以下、より好ましくは0.8MPa以下である。加圧の圧力が0.8MPa以下である場合に、加圧の圧力が0.8MPaを超える場合と比べて、はんだ粒子の凝集がより一層顕著に促進される。
 本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電ペーストには、上記第2の接続対象部材の重量が加わることが好ましく、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、上記導電ペーストには、上記第2の接続対象部材の重量の力を超える加圧圧力は加わらないことが好ましい。これらの場合には、複数のはんだ部において、はんだ量の均一性をより一層高めることができる。さらに、はんだ部の厚みをより一層効果的に厚くすることができ、複数のはんだ粒子が電極間に多く集まりやすくなり、複数のはんだ粒子を電極(ライン)上により一層効率的に配置することができる。また、複数のはんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子の量をより一層少なくすることができる。従って、電極間の導通信頼性をより一層高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続をより一層防ぐことができ、絶縁信頼性をより一層高めることができる。
 さらに、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電ペーストには、上記第2の接続対象部材の重量が加われば、接続部が形成される前に電極が形成されていない領域(スペース)に配置されていたはんだ粒子が第1の電極と第2の電極との間により一層集まりやすくなり、複数のはんだ粒子を電極(ライン)上により一層効率的に配置することができることも、本発明者は見出した。本発明では、導電フィルムではなく、導電ペーストを用いるという構成と、加圧を行わず、上記導電ペーストには、上記第2の接続対象部材の重量が加わるようにするという構成とを組み合わせて採用することには、本発明の効果をより一層高いレベルで得るために大きな意味がある。
 なお、WO2008/023452A1では、はんだ粉を電極表面に押し流して効率よく移動させる観点からは、接着時に所定の圧力で加圧するとよいことが記載されており、加圧圧力は、はんだ領域をさらに確実に形成する観点では、例えば、0MPa以上、好ましくは1MPa以上とすることが記載されており、更に、接着テープに意図的に加える圧力が0MPaであっても、接着テープ上に配置された部材の自重により、接着テープに所定の圧力が加わってもよいことが記載されている。WO2008/023452A1では、接着テープに意図的に加える圧力が0MPaであってもよいことは記載されているが、0MPaを超える圧力を付与した場合と0MPaとした場合との効果の差異については、何ら記載されていない。また、WO2008/023452A1では、フィルム状ではなく、ペースト状の導電ペーストを用いることの重要性についても何ら認識されていない。
 また、導電フィルムではなく、導電ペーストを用いれば、導電ペーストの塗布量によって、接続部及びはんだ部の厚みを調整することが容易になる。一方で、導電フィルムでは、接続部の厚みを変更したり、調整したりするためには、異なる厚みの導電フィルムを用意したり、所定の厚みの導電フィルムを用意したりしなければならないという問題がある。また、導電フィルムでは、はんだの溶融温度で、導電フィルムの溶融粘度を十分に下げることができず、はんだ粒子の凝集が阻害されるという問題がある。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
 図1は、本発明の一実施形態に係る導電ペーストを用いて得られる接続構造体を模式的に示す断面図である。
 図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電ペーストにより形成されている。本実施形態では、結晶性熱硬化性化合物を含有する熱硬化性化合物と、熱硬化剤と、複数のはんだ粒子とを含む。上記熱硬化性化合物と上記熱硬化剤とは、熱硬化性成分である。
 接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性成分が熱硬化された硬化物部4Bとを有する。
 第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだは存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだは存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだが存在していてもよい。
 図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電性の外表面がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このため、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、導電ペーストは、フラックスを含んでいてもよい。フラックスを用いた場合には、加熱により、一般にフラックスは次第に失活する。
 なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図3に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだではない。なお、本実施形態では、はんだ部から離れたはんだの量を少なくすることができるが、はんだ部から離れたはんだが硬化物部中に存在していてもよい。
 はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。
 導通信頼性をより一層高める観点からは、上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上(好ましくは60%以上、より好ましくは70%以上、更に好ましくは80%以上、特に好ましくは90%以上)に、上記接続部中のはんだ部が配置されていることが好ましい。
 次に、本発明の一実施形態に係る導電ペーストを用いて、接続構造体1を製造する方法の一例を説明する。
 先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、複数のはんだ粒子11Aとを含む導電ペースト11を配置する(第1の工程)。第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電ペースト11を配置する。導電ペースト11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。
 導電ペースト11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。
 また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電ペースト11において、導電ペースト11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電ペースト11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。
 次に、はんだ粒子11Aの融点以上及び熱硬化性成分11Bの硬化温度以上に導電ペースト11を加熱する(第3の工程)。すなわち、はんだ粒子11Aの融点及び熱硬化性成分11Bの硬化温度の内のより低い温度以上に、導電ペースト11を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。本実施形態では、導電フィルムではなく、導電ペーストを用いているために、更に導電ペーストが特定の組成を有するために、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。また、はんだ粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4を、導電ペースト11により形成する。導電ペースト11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。はんだ粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間にはんだ粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。
 本実施形態では、上記第2の工程及び上記第3の工程において、加圧を行っていない。本実施形態では、導電ペースト11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、はんだ粒子が第1の電極と第2の電極との間に集まろうとする作用が阻害される傾向が高くなる。このことは、本発明者によって見出された。
 ただし、第1の電極と第2の電極との間隔を確保できれば、加圧を行ってもよい。電極間の間隔を確保する手段として、例えば、所望の電極間の間隔に相当するスペーサーを添加し、少なくとも1個、好ましくは3個以上のスペーサーが電極間に配置されるようにすればよい。スペーサーとしては、無機粒子、有機粒子が挙げられる。スペーサーは絶縁性粒子であることが好ましい。
 また、本実施形態では、加圧を行っていないため、導電ペーストを塗布した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極のアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材との電極を接続させることができる(セルフアライメント効果)。これは、第1の接続対象部材の電極と第2の接続対象部材の電極との間に自己凝集した溶融したはんだが、第1の接続対象部材の電極と第2の接続対象部材の電極との間のはんだと導電ペーストのその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電ペーストが硬化していないこと、及び、その温度、時間にて、導電ペーストのはんだ粒子以外の成分の粘度が十分低いことが望ましい。
 はんだの融点温度での導電ペーストの粘度は、好ましくは50Pa・s以下、より好ましくは10Pa・s以下、更に好ましくは1Pa・s以下、好ましくは0.1Pa・s以上、より好ましくは0.2Pa・s以上である。所定の粘度以下であれば、はんだ粒子を効率的に凝集させることができ、所定の粘度以上であれば、接続部でのボイドを抑制し、接続部以外への導電ペーストのはみだしを抑制することができる。
 このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電ペースト11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。
 なお、上記第3の工程の後に、位置の修正や製造のやり直しを目的として、第1の接続対象部材又は第2の接続対象部材を、接続部から剥離することができる。この剥離を行うための加熱温度は、好ましくははんだ粒子の融点以上、より好ましくははんだ粒子の融点(℃)+10℃以上である。この剥離を行うための加熱温度は、はんだ粒子の融点(℃)+100℃以下であってもよい。
 上記第3の工程における加熱温度は、はんだ粒子の融点以上及び熱硬化性成分の硬化温度以上であれば特に限定されない。上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上、好ましくは450℃以下、より好ましくは250℃以下、更に好ましくは200℃以下である。
 第3の工程の前に、溶融前のはんだ粒子の凝集を均一化するために、加熱工程を設けてよい。上記加熱工程における加熱温度は、好ましくは60℃以上、より好ましくは80℃以上、好ましくは130℃以下、より好ましくは120℃以下の温度条件にて、好ましくは5秒以上、好ましくは120秒以下保持する。この加熱工程によって、熱硬化性成分が熱により低粘度化し、溶融前のはんだ粒子が、凝集することで網目構造を形成し、第3の工程ではんだ粒子が溶融して凝集する際、取り残されるはんだ粒子を少なくすることができる。
 第3の工程において、好ましくははんだの融点(℃)以上、より好ましくははんだの融点(℃)+5℃以上、好ましくははんだの融点(℃)+20℃以下、より好ましくははんだの融点(℃)+10℃以下の温度にて、好ましくは10秒以上、好ましくは120秒以下保持したのち、熱硬化性成分の硬化温度にあげてもよい。これにより、熱硬化性成分が硬化する前の、熱硬化性成分の粘度が低い状態にて、はんだ粒子の凝集を完了させることができ、より一層均一なはんだ粒子の凝集を行うことができる。
 第3の工程における昇温速度は、30℃からはんだ粒子の融点までの昇温に関して、好ましくは50℃/秒以下、より好ましくは20℃/秒以下、更に好ましくは10℃/秒以下、好ましくは1℃/秒以上、より好ましくは5℃/秒以上である。昇温速度が上記下限以上であると、はんだ粒子の凝集がより一層均一になる。昇温速度が上記上限以下であると、熱硬化性成分の硬化の進行による過度の粘度上昇が抑えられ、はんだ粒子の凝集が阻害されにくくなる。
 上記第3の工程における加熱方法としては、はんだ粒子の融点以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。
 局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。
 また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。
 上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。
 上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだ粒子が電極上に集まりにくい傾向がある。これに対して、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだ粒子を電極上に効率的に集めることで、電極間の導通信頼性を充分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップなどの他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
 上記第1の電極及び上記第2の電極が、エリアアレイ又はペリフェラルにて配置されていることが好ましい。電極が、エリアアレイ、ペリフェラルにて面にて配置されている場合にて、本発明の効果が一層効果的に発揮される。エリアアレイとは、接続対象部材の電極が配置されている面にて、格子状に電極が配置されている構造のことである。ペリフェラルとは、接続対象部材の外周部に電極が配置されている構造のことである。電極が櫛型に並んでいる構造の場合は、櫛に垂直な方向に沿ってはんだ粒子が凝集すればよいのに対して、上記構造では電極が配置されている面において、全面にて均一にはんだ粒子が凝集する必要があるため、従来の方法では、はんだ量が不均一になりやすいのに対して、本発明の方法では、本発明の効果が一層効果的に発揮される。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 ポリマーA:
 ビスフェノールF(4,4’-メチレンビスフェノールと2,4’-メチレンビスフェノールと2,2’-メチレンビスフェノールとを重量比で2:3:1で含む)100重量部、1,6-ヘキサンジオールジグリシジルエーテル130重量部、ビスフェノールF型エポキシ樹脂(DIC社製「EPICLON EXA-830CRP」)5重量部、及びレゾルシノール型エポキシ化合物(ナガセケムテックス社製「EX-201」)10重量部を、3つ口フラスコに入れ、窒素フロー下にて、100℃で溶解させた。その後、水酸基とエポキシ基の付加反応触媒であるトリフェニルブチルホスホニウムブロミド0.15重量部を添加し、窒素フロー下にて、140℃で4時間、付加重合反応させることにより、反応物(ポリマーA)を得た。
 NMRにより、付加重合反応が進行したことを確認して、反応物(ポリマーA)が、ビスフェノールFに由来する水酸基と1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールF型エポキシ樹脂及びレゾルシノール型エポキシ化合物のエポキシ基とが結合した構造単位を主鎖に有し、かつエポキシ基を両末端に有することを確認した。
 GPCにより得られた反応物(ポリマーA)の重量平均分子量は28000、数平均分子量は8000であった。
 ポリマーB:両末端エポキシ基剛直骨格フェノキシ樹脂、三菱化学社製「YX6900BH45」、重量平均分子量16000
 熱硬化性化合物1:2,4-ビス(グリシジルオキシ)ベンゾフェノン(結晶性熱硬化性化合物、融点94℃、分子量362)
 2,4-ビス(グリシジルオキシ)ベンゾフェノンの合成:
 3口フラスコに、2,4-ジヒドロキシベンゾフェノン27g、エピクロルヒドリン230g、n-ブタノール70g、及びテトラエチルベンジルアンモニウムクロライド1gを入れ、室温にて撹拌、溶解させた。その後、窒素雰囲気下、撹拌下にて、70℃に昇温し、減圧還流下、水酸化ナトリウム水溶液(濃度48重量%)45gを滴下した。滴下は、4時間かけて行った。その後、70℃にて、ディーンスターク管を用い、水分を除去しながら2時間反応させた。その後、減圧下で、未反応のエピクロルヒドリンを除去した。
 得られた反応生成物を、MEK(メチルエチルケトン):n-ブタノール=3:1(重量比)の混合溶剤400gに溶解し、水酸化ナトリウム水溶液(濃度10重量%)5gを添加し、80℃で2時間加熱した。
 その後、室温に冷却し、純水により、洗液が中性になるまで洗浄を行った。有機層をろ過しながら分取し、減圧下にて、残水分及び混合溶媒を除去し、反応生成物を得た。
 n-ヘキサンを用い、上記反応生成物34gを再結晶により精製し、真空乾燥により残溶剤分を除去した。
 得られたエポキシ化合物:DSCによる融点は94℃、エポキシ当量は176g/eq.、マススペクトルによる分子量は362、150℃での溶融粘度は5mPa・sであった。
 ・示差走査熱量測定(DSC)測定装置及び測定条件
 装置;日立ハイテクサイエンス社製「X-DSC7000」、サンプル量;3mg、温度条件;10℃/min
 ・150℃における溶融粘度:ASTM D4287に準拠し、エムエスティーエンジニアリング社製のICIコーンプレート粘度計を用いて測定
 ・エポキシ当量の測定:JIS K7236:2001に準拠して測定
 ・分子量の測定:マススペクトル GC-MS装置(日本電子社製「JMS K-9」)を用いて測定
 熱硬化性化合物2:4,4’-ビス(グリジジルオキシ)ベンゾフェノン(結晶性熱硬化性化合物、融点132℃、分子量362)
 4,4’-ビス(グリジジルオキシ)ベンゾフェノンの合成:
 3口フラスコに、4,4’-ジヒドロキシベンゾフェノン27g、エピクロルヒドリン230g、n-ブタノール70g、及びテトラエチルベンジルアンモニウムクロライド1gを入れ、室温にて撹拌、溶解させた。その後、窒素雰囲気下、撹拌下にて、70℃に昇温し、減圧還流下、水酸化ナトリウム水溶液(濃度48重量%)45gを滴下した。滴下は、4時間かけて行った。その後。70℃にて、ディーンスターク管を用い、水分を除去しながら2時間反応させた。その後、減圧下で、未反応のエピクロルヒドリンを除去した。
 得られた反応生成物を、MEK(メチルエチルケトン):n-ブタノール=3:1(重量比)の混合溶剤400gに溶解し、水酸化ナトリウム水溶液(濃度10重量%)5gを添加し、80℃で2時間加熱した。
 その後、室温に冷却し、純水により、洗液が中性になるまで洗浄を行った。有機層をろ過しながら分取し、減圧下にて、残水分及び混合溶媒を除去し、反応生成物を得た。
 n-ヘキサンを用い、上記反応生成物34gを再結晶により精製し、真空乾燥により残溶剤分を除去した。
 得られたエポキシ化合物:DSCによる融点は135℃、エポキシ当量は176g/eq.、マススペクトルによる分子量は362、150℃での溶融粘度は12mPa・sであった。
 熱硬化性化合物3:1,6ヘキサンジオールジグリシジルエーテル(四日市合成社製「エポゴーセHD」、25℃で液体、分子量230)
 熱硬化性化合物4:ビスフェノールF型エポキシ化合物、DIC社製「EXA830CRP」
 熱硬化剤1:ペンタエリスリトールテトラキス(3-メルカプトブチレート)、昭和電工社製「カレンズMT PE1」
 潜在性エポキシ熱硬化剤1:T&K TOKA社製「フジキュア7000」
 フラックス1:アジピン酸、和光純薬工業社製、融点(活性温度)152℃
 はんだ粒子1~3の作製方法:
 アニオンポリマー1を有するはんだ粒子:はんだ粒子本体200gと、アジピン酸40gと、アセトン70gとを3つ口フラスコに秤量し、次にはんだ粒子本体の表面の水酸基とアジピン酸のカルボキシル基との脱水縮合触媒であるジブチル錫オキサイド0.3gを添加し、60℃で4時間反応させた。その後、はんだ粒子をろ過することで回収した。
 回収したはんだ粒子と、アジピン酸50gと、トルエン200gと、パラトルエンスルホン酸0.3gとを3つ口フラスコに秤量し、真空引き、及び還流を行いながら、120℃で、3時間反応させた。この際、ディーンスターク抽出装置を用いて、脱水縮合により生成した水を除去しながら反応させた。
 その後、ろ過によりはんだ粒子を回収し、ヘキサンにて洗浄し、乾燥した。その後、得られたはんだ粒子をボールミルで解砕した後、所定のCV値となるように篩にかけた。
 はんだ粒子1(SnBiはんだ粒子、融点139℃、三井金属社製「ST-3」を選別したはんだ粒子本体を用い、表面処理を行ったアニオンポリマー1を有するはんだ粒子、平均粒子径4μm、CV値7%、表面のゼータ電位:+0.65mV、ポリマー分子量Mw=6500)
 はんだ粒子2(SnBiはんだ粒子、融点139℃、三井金属社製「DS-10」を選別したはんだ粒子本体を用い、表面処理を行ったアニオンポリマー1を有するはんだ粒子、平均粒子径13μm、CV値20%、表面のゼータ電位:+0.48mV、ポリマー分子量Mw=7000)
 はんだ粒子3(SnBiはんだ粒子、融点139℃、三井金属社製「10-25」を選別したはんだ粒子本体を用い、表面処理を行ったアニオンポリマー1を有するはんだ粒子、平均粒子径25μm、CV値15%、表面のゼータ電位:+0.4mV、ポリマー分子量Mw=8000)
 はんだ粒子4~6の作製方法:
 はんだ粒子4:
 SnBiはんだ粒子(三井金属社製「DS-10」、平均粒子径(メディアン径)12μm)200g、イソシアネート基を有するシランカップリング剤(信越化学工業社製「KBE-9007」)10g、アセトン70gを3つ口フラスコに秤量した。室温で撹拌しながら、はんだ粒子表面の水酸基とイソシアネート基との反応触媒であるジブチルスズラウレート0.25gを添加し、撹拌下、窒素雰囲気下にて、60℃で30分加熱した。その後、メタノールを50g添加し、撹拌下、窒素雰囲気下にて、60℃で10分間加熱した。
 その後、室温まで冷却し、ろ紙ではんだ粒子をろ過し、真空乾燥にて、室温で1時間脱溶剤を行った。
 上記はんだ粒子を、3つ口フラスコに入れ、アセトン70g、アジピン酸モノエチル30g、エステル交換反応触媒であるモノブチルスズオキサイド0.5gを添加し、撹拌下、窒素雰囲気下で60℃で1時間反応させた。
 これにより、シランカップリング剤由来のシラノール基に対して、アジピン酸モノエチルのエステル基をエステル交換反応により反応させ、共有結合させた。
 その後、アジピン酸を10g追加し、60℃で1時間反応させることで、アジピン酸モノエチルのシラノール基と反応していない残エチルエステル基に対して、アジピン酸を付加させた。
 その後、室温まで冷却し、ろ紙ではんだ粒子をろ過し、ろ紙上でヘキサンにてはんだ粒子を洗浄することで、未反応、及びはんだ粒子の表面に非共有結合にて付着している、残アジピン酸モノエチル、アジピン酸を除去したのち、真空乾燥にて、室温で1時間脱溶剤を行った。
 得られたはんだ粒子をボールミルで解砕した後、所定のCV値となるように篩を選択した。
 はんだ表面に形成されたポリマーの分子量は、0.1Nの塩酸を用い、はんだを溶解後、ポリマーをろ過により回収し、GPCにより重量平均分子量を求めた。
 これにより、はんだ粒子4を得た。得られたはんだ粒子4では、CV値20%、表面のゼータ電位0.9mV、表面を構成しているポリマーの分子量Mw=9800であった。
 はんだ粒子5:
 SnBiはんだ粒子(三井金属社製「DS-10」、平均粒子径(メディアン径)12μm)の代わりに、SnBiはんだ粒子(三井金属社製、平均粒子径(メディアン径)30μm)を用いたこと以外は、はんだ粒子4と同様にしてはんだ粒子5を作製した。得られたはんだ粒子5では、CV値15%、表面のゼータ電位1mV、表面を構成しているポリマーの分子量Mw=9900であった。
 はんだ粒子6:
 SnBiはんだ粒子(三井金属社製「DS-10」、平均粒子径(メディアン径)12μm)の代わりに、SnBiはんだ粒子(三井金属社製、平均粒子径(メディアン径)50μm)を用いたこと以外は、はんだ粒子4と同様にしてはんだ粒子6を作製した。得られたはんだ粒子6では、CV値13%、表面のゼータ電位1.1mV、表面を構成しているポリマーの分子量Mw=10000であった。
 (ゼータ電位測定)
 また、得られたはんだ粒子を、アニオンポリマー1を有するはんだ粒子0.05gを、メタノール10gに入れ、超音波処理をすることで、均一に分散させて、分散液を得た。この分散液を用いて、かつBeckman Coulter社製「Delsamax PRO」を用いて、電気泳動測定法にて、ゼータ電位を測定した。
 (アニオンポリマーの重量平均分子量)
 はんだ粒子の表面のアニオンポリマー1の重量平均分子量は、0.1Nの塩酸を用い、はんだを溶解した後、ポリマーをろ過により回収し、GPCにより求めた。
 (はんだ粒子のCV値)
 CV値を、レーザー回折式粒度分布測定装置(堀場製作所社製「LA-920」)にて、測定した。
 導電性粒子1:樹脂粒子の表面上に厚み1μmの銅層が形成されており、該銅層の表面に厚み3μmのはんだ層(錫:ビスマス=43重量%:57重量%)が形成されている導電性粒子
 導電性粒子1の作製方法:
 平均粒子径10μmのジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP-210」)を無電解ニッケルめっきし、樹脂粒子の表面上に厚さ0.1μmの下地ニッケルめっき層を形成した。次いで、下地ニッケルめっき層が形成された樹脂粒子を電解銅めっきし、厚さ1μmの銅層を形成した。更に、錫及びビスマスを含有する電解めっき液を用いて、電解めっきし、厚さ3μmのはんだ層を形成した。このようにして、樹脂粒子の表面上に厚み1μmの銅層が形成されており、該銅層の表面に厚み3μmのはんだ層(錫:ビスマス=43重量%:57重量%)が形成されている導電性粒子1を作製した。
 フェノキシ樹脂(新日鉄住金化学社製「YP-50S」)
 (実施例1~6,8及び比較例2)
 (1)異方性導電ペーストの作製
 下記の表1に示す成分を下記の表1に示す配合量で配合して、異方性導電ペーストを得た。なお、比較例2では、中心部分がはんだではない導電性粒子を用いた。
 (2)第1の接続構造体(L/S=50μm/50μm)の作製
 L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR-4基板)(第1の接続対象部材)を用意した。また、L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
 ガラスエポキシ基板とフレキシブルプリント基板との重ね合わせ面積は、1.5cm×3mmとし、接続した電極数は75対とした。
 上記ガラスエポキシ基板の上面に、作製直後の異方性導電ペーストを、ガラスエポキシ基板の電極上で厚さ100μmとなるように、メタルマスクを用い、スクリーン印刷にて塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層の上面に上記フレキシブルプリント基板を、電極同士が対向するように積層した。このとき、加圧を行わなかった。異方性導電ペースト層には、上記フレキシブルプリント基板の重量は加わる。その後、異方性導電ペースト層の温度が190℃となるように加熱しながら、はんだを溶融させ、かつ異方性導電ペースト層を190℃及び10秒で硬化させ、第1の接続構造体を得た。
 (3)第2の接続構造体(L/S=75μm/75μm)の作製
 L/Sが75μm/75μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR-4基板)(第1の接続対象部材)を用意した。また、L/Sが75μm/75μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
 L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、第2の接続構造体を得た。
 (4)第3の接続構造体(L/S=100μm/100μm)の作製
 L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR-4基板)(第1の接続対象部材)を用意した。また、L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
 L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、第3の接続構造体を得た。
 (実施例7)
 第1の導電ペースト層の加熱時に1MPaの圧力を加えたこと以外は実施例1と同様にして、第1,第2,第3の接続構造体を得た。
 (比較例1)
 (1)異方性導電ペーストの作製
 下記の表1に示す成分を下記の表1に示す配合量で配合して、異方性導電ペーストを得た。得られた異方性導電ペーストを用いたこと、加熱時に1MPaの圧力を加えたこと以外は実施例1と同様にして、第1,第2,第3の接続構造体を得た。
 (比較例3)
 フェノキシ樹脂(新日鉄住金化学社製「YP-50S」)10重量部をメチルエチルケトン(MEK)に固形分が50重量%となるように溶解させて、溶解液を得た。下記の表1に示すフェノキシ樹脂を除く成分を下記の表1に示す配合量と、上記溶解液の全量とを配合して、遊星式攪拌機を用いて2000rpmで5分間攪拌した後、バーコーターを用いて乾燥後の厚みが30μmになるよう離型PET(ポリエチレンテレフタレート)フィルム上に塗工した。室温で真空乾燥することで、MEKを除去することにより、異方性導電フィルムを得た。
 異方性導電フィルムを用いたこと以外は実施例1と同様にして、第1,第2,第3の接続構造体を得た。
 (実施例9~18)
 下記の表3,4に示す成分を下記の表3,4に示す配合量で配合して、異方性導電ペーストを得た。
 まず、熱硬化性化合物1,2を、140℃に熱し、液状化した。これを、40℃まで冷却し、熱硬化剤1を添加した。その後、他の熱硬化性化合物である熱硬化性化合物3を添加し、均一になるまで、遊星式攪拌機にて撹拌した。その後、10℃にて、5時間静置し、熱硬化性化合物1,2を結晶化させた。
 上記配合物を、3本ロールにて、熱硬化性化合物1,2の結晶が、下記の表2,3に示す所定の結晶サイズになるまで、混練した。
 さらに、他の配合物を添加し、遊星式攪拌機にて撹拌した。
 保管前の異方性導電ペーストを用いて、実施例1~6,8及び比較例2と同様にして、第1,第2,第3の接続構造体を作製した。異方性導電ペーストを50℃で12時間保管した。保管後の異方性導電ペーストを用いて、実施例1~6,8及び比較例2と同様にして、第1,第2,第3の接続構造体を作製した。
 (評価)
 (0)結晶性熱硬化性化合物の結晶の平均アスペクト比及び平均長径
 保管前の異方性導電ペーストを電子顕微鏡で観察することにより、結晶性熱硬化性化合物の結晶の平均アスペクト比及び平均長径を評価した。
 (1)粘度
 保管前の異方性導電ペーストの25℃での粘度(η25)を、E型粘度計(東機産業社製)を用いて、25℃及び5rpmと、25℃及び0.5rpmとの各条件で測定した。
 (2)保存安定性
 異方性導電ペーストを50℃で24時間保管した。保管後の異方性導電ペーストの25℃での粘度(η25’)を、E型粘度計(東機産業社製)を用いて、25℃及び5rpmの条件で測定した。保存安定性を以下の基準で判定した。
 [保存安定性の判定基準]
 ○○:粘度(η25’)/粘度(η25)が1以上、1.2未満
 ○:粘度(η25’)/粘度(η25)が1.2以上、1.5未満
 △:粘度(η25’)/粘度(η25)が1.5以上、2未満
 ×:粘度(η25’)/粘度(η25)が2以上
 (3)はんだ部の厚み
 保管前の異方性導電ペーストを用いて得られた第1の接続構造体を断面観察することにより、上下の電極の間に位置しているはんだ部の厚みを評価した。
 (4)電極上のはんだの配置精度1
 得られた第1,第2,第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度1を下記の基準で判定した。
 [電極上のはんだの配置精度1の判定基準]
 ○○:割合Xが70%以上
 ○:割合Xが60%以上、70%未満
 △:割合Xが50%以上、60%未満
 ×:割合Xが50%未満
 (5)電極上のはんだの配置精度2
 得られた第1,第2,第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向と直交する方向に第1の電極と第2の電極との対向し合う部分をみたときに、接続部中のはんだ部100%中、第1の電極と第2の電極との対向し合う部分に配置されている接続部中のはんだ部の割合Yを評価した。電極上のはんだの配置精度2を下記の基準で判定した。
 [電極上のはんだの配置精度2の判定基準]
 ○○:割合Yが99%以上
 ○:割合Yが90%以上、99%未満
 △:割合Yが70%以上、90%未満
 ×:割合Yが70%未満
 (6)上下の電極間の導通信頼性
 得られた第1,第2,第3の接続構造体(n=15個)において、上下の電極間の1接続箇所当たりの接続抵抗をそれぞれ、4端子法により、測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
 [導通信頼性の判定基準]
 ○○:接続抵抗の平均値が50mΩ以下
 ○:接続抵抗の平均値が50mΩを超え、70mΩ以下
 △:接続抵抗の平均値が70mΩを超え、100mΩ以下
 ×:接続抵抗の平均値が100mΩを超える、又は接続不良が生じている
 (7)横方向に隣接する電極間の絶縁信頼性
 得られた第1,第2,第3の接続構造体(n=15個)において、85℃、湿度85%の雰囲気中に100時間放置後、横方向に隣接する電極間に、5Vを印加し、抵抗値を25箇所で測定した。絶縁信頼性を下記の基準で判定した。
 [絶縁信頼性の判定基準]
 ○○:接続抵抗の平均値が10Ω以上
 ○:接続抵抗の平均値が10Ω以上、10Ω未満
 △:接続抵抗の平均値が10Ω以上、10Ω未満
 ×:接続抵抗の平均値が10Ω未満
 (8)上下の電極間の位置ずれ
 得られた第1,第2,第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極の中心線と第2の電極の中心線とが揃っているか否か、並びに位置ずれの距離を評価した。上下の電極間の位置ずれを下記の基準で判定した。
 [上下の電極間の位置ずれの判定基準]
 ○○:位置ずれが15μm未満
 ○:位置ずれが15μm以上、25μm未満
 △:位置ずれが25μm以上、40μm未満
 ×:位置ずれが40μm以上
 結果を下記の表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、実施例9,10,16の保管後の異方性導電ペーストでの結晶性熱硬化性化合物の結晶の平均アスペクト比及平均長径は、保管前の異方性導電ペーストと同じであった。実施例9の保管後の異方性導電ペーストの25℃及び5rpmでの粘度は、130mPa・s、25℃及び0.5rpmでの粘度は450mPa・s、実施例10の保管後の異方性導電ペーストの25℃及び5rpmでの粘度は、160mPa・s、25℃及び0.5rpmでの粘度は500mPa・s、実施例16の保管後の異方性導電ペーストの25℃及び5rpmでの粘度は、350mPa・s、25℃及び0.5rpmでの粘度は1200mPa・sであった。また、保管後の異方性導電ペーストを用いて得られた第1の接続構造体のはんだ部の厚みは、実施例9では33μm、実施例10では36μm、実施例16では43μmであった。
 フレキシブルプリント基板にかえて、樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。
 1,1X…接続構造体
 2…第1の接続対象部材
 2a…第1の電極
 3…第2の接続対象部材
 3a…第2の電極
 4,4X…接続部
 4A,4XA…はんだ部
 4B,4XB…硬化物部
 11…導電ペースト
 11A…はんだ粒子
 11B…熱硬化性成分

Claims (26)

  1.  熱硬化性成分として熱硬化性化合物及び熱硬化剤と、複数のはんだ粒子とを含み、
     前記熱硬化性化合物が、結晶性熱硬化性化合物を含み、
     前記はんだ粒子は、中心部分及び導電性の外表面とのいずれもがはんだである粒子である、導電ペースト。
  2.  前記結晶性熱硬化性化合物が25℃で固体である、請求項1に記載の導電ペースト。
  3.  前記結晶性熱硬化性化合物の融点が80℃以上、150℃以下である、請求項1又は2に記載の導電ペースト。
  4.  前記結晶性熱硬化性化合物の分子量が300以上、500以下である、請求項1~3のいずれか1項に記載の導電ペースト。
  5.  前記結晶性熱硬化性化合物は、ベンゾフェノン型エポキシ化合物である、請求項1~4のいずれか1項に記載の導電ペースト。
  6.  前記結晶性熱硬化性化合物の結晶の平均アスペクト比が5以下である、請求項1~5のいずれか1項に記載の導電ペースト。
  7.  前記結晶性熱硬化性化合物の結晶の平均長径が、前記はんだ粒子の平均粒子径の1/1.5以下である、請求項1~6のいずれか1項に記載の導電ペースト。
  8.  前記結晶性熱硬化性化合物の結晶の平均長径が、前記はんだ粒子の平均粒子径の1/10以上である、請求項1~7のいずれか1項に記載の導電ペースト。
  9.  前記結晶性熱硬化性化合物の融点は、前記はんだの融点よりも低い、請求項1~8のいずれか1項に記載の導電ペースト。
  10.  フラックスを含み、
     前記結晶性熱硬化性化合物の融点は、前記フラックスの活性温度よりも低い、請求項1~9のいずれか1項に記載の導電ペースト。
  11.  前記熱硬化性化合物の全体100重量%中、前記結晶性熱硬化性化合物の含有量が10重量%以上である、請求項1~10のいずれか1項に記載の導電ペースト。
  12.  フィラーを含まないか、又はフィラーを5重量%以下で含む、請求項1~11のいずれか1項に記載の導電ペースト。
  13.  導電ペースト中で、前記結晶性熱硬化性化合物が、粒子状に分散している、請求項1~12のいずれか1項に記載の導電ペースト。
  14.  結晶性熱硬化性化合物とは異なる他の熱硬化性化合物を含む、請求項1~13のいずれか1項に記載の導電ペースト。
  15.  前記はんだ粒子の平均粒子径が1μm以上、60μm以下である、請求項1~14のいずれか1項に記載の導電ペースト。
  16.  前記はんだ粒子の含有量が10重量%以上、80重量%以下である、請求項1~15のいずれか1項に記載の導電ペースト。
  17.  少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、
     少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部が、請求項1~16のいずれか1項に記載の導電ペーストの硬化物であり、
     前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
  18.  前記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板である、請求項17に記載の接続構造体。
  19.  前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている、請求項17又は18に記載の接続構造体。
  20.  前記第1の電極と前記接続部と前記第2の電極との積層方向と直交する方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分に、前記接続部中のはんだ部の70%以上が配置されている、請求項17~19のいずれか1項に記載の接続構造体。
  21.  請求項1~16のいずれか1項に記載の導電ペーストを用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電ペーストを配置する工程と、
     前記導電ペーストの前記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、
     前記はんだ粒子の融点以上かつ前記熱硬化性成分の硬化温度以上に前記導電ペーストを加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電ペーストにより形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法。
  22.  前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程において、加圧を行わず、前記導電ペーストには、前記第2の接続対象部材の重量が加わるか、又は、
     前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程の内の少なくとも一方において、加圧を行い、かつ、前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程の双方において、加圧の圧力が1MPa未満である、請求項21に記載の接続構造体の製造方法。
  23.  前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程において、加圧を行わず、前記導電ペーストには、前記第2の接続対象部材の重量が加わる、請求項22に記載の接続構造体の製造方法。
  24.  前記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板である、請求項21~23のいずれか1項に記載の接続構造体の製造方法。
  25.  前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている接続構造体を得る、請求項21~24のいずれか1項に記載の接続構造体の製造方法。
  26.  前記第1の電極と前記接続部と前記第2の電極との積層方向と直交する方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分に、前記接続部中のはんだ部の70%以上が配置されている接続構造体を得る、請求項21~25のいずれか1項に記載の接続構造体の製造方法。
PCT/JP2015/076467 2014-09-18 2015-09-17 導電ペースト、接続構造体及び接続構造体の製造方法 WO2016043265A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015548084A JP6577867B2 (ja) 2014-09-18 2015-09-17 導電ペースト、接続構造体及び接続構造体の製造方法
CN201580025433.5A CN106463200B (zh) 2014-09-18 2015-09-17 导电糊剂、连接结构体及连接结构体的制造方法
KR1020167022362A KR102411356B1 (ko) 2014-09-18 2015-09-17 도전 페이스트, 접속 구조체 및 접속 구조체의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-190049 2014-09-18
JP2014190049 2014-09-18
JP2015079269 2015-04-08
JP2015-079269 2015-04-08

Publications (1)

Publication Number Publication Date
WO2016043265A1 true WO2016043265A1 (ja) 2016-03-24

Family

ID=55533301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076467 WO2016043265A1 (ja) 2014-09-18 2015-09-17 導電ペースト、接続構造体及び接続構造体の製造方法

Country Status (5)

Country Link
JP (1) JP6577867B2 (ja)
KR (1) KR102411356B1 (ja)
CN (1) CN106463200B (ja)
TW (1) TWI676183B (ja)
WO (1) WO2016043265A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188327A (ja) * 2016-04-06 2017-10-12 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
WO2017179532A1 (ja) * 2016-04-12 2017-10-19 積水化学工業株式会社 導電材料及び接続構造体
JP2018056277A (ja) * 2016-09-28 2018-04-05 エルジー ディスプレイ カンパニー リミテッド 電子部品の実装方法、電子部品の接合構造、基板装置、ディスプレイ装置、ディスプレイシステム
CN109313956A (zh) * 2016-09-09 2019-02-05 积水化学工业株式会社 导电材料、连接结构体以及连接结构体的制造方法
JPWO2018061374A1 (ja) * 2016-09-30 2019-08-29 積水化成品工業株式会社 導電性樹脂粒子及びその用途
US10901277B2 (en) 2016-09-28 2021-01-26 Lg Display Co., Ltd. Display device, display system, and method of installing electronic component
JP2021114449A (ja) * 2020-01-21 2021-08-05 積水化学工業株式会社 導電ペースト及び接続構造体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6517754B2 (ja) * 2016-07-12 2019-05-22 日本碍子株式会社 配線基板接合体
JP7184759B2 (ja) * 2017-12-22 2022-12-06 積水化学工業株式会社 導電材料、導電材料の保管方法、導電材料の製造方法及び接続構造体の製造方法
JPWO2020251043A1 (ja) * 2019-06-13 2020-12-17
KR102556928B1 (ko) * 2021-03-31 2023-07-20 주식회사 노피온 자가 조립형 이방성 도전 접착제 및 이를 이용한 부품 실장 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109115A (ja) * 2006-09-26 2008-05-08 Sekisui Chem Co Ltd 半導体チップ積層体及びその製造方法
JP2008266611A (ja) * 2007-03-23 2008-11-06 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物及び半導体装置
JP2009105117A (ja) * 2007-10-22 2009-05-14 Sony Chemical & Information Device Corp 異方性導電接着剤
JP2012044155A (ja) * 2010-07-21 2012-03-01 Sekisui Chem Co Ltd 半導体チップ実装体の製造方法及び封止樹脂
JP2014056816A (ja) * 2012-08-10 2014-03-27 Sekisui Chem Co Ltd 導電材料及び接続構造体
JP2014130808A (ja) * 2012-11-30 2014-07-10 Sekisui Chem Co Ltd 導電材料及び接続構造体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769688B2 (ja) 2003-02-05 2006-04-26 独立行政法人科学技術振興機構 端子間の接続方法及び半導体装置の実装方法
JP3955302B2 (ja) 2004-09-15 2007-08-08 松下電器産業株式会社 フリップチップ実装体の製造方法
JPWO2008023452A1 (ja) 2006-08-25 2010-01-07 住友ベークライト株式会社 接着テープ、接合体および半導体パッケージ
CN101578345A (zh) * 2007-01-12 2009-11-11 积水化学工业株式会社 电子部件用粘合剂
JP5093482B2 (ja) 2007-06-26 2012-12-12 ソニーケミカル&インフォメーションデバイス株式会社 異方性導電材料、接続構造体及びその製造方法
EP2180026A4 (en) * 2007-08-08 2012-05-30 Hitachi Chemical Co Ltd ADHESIVE COMPOSITION, FILM-TYPE LUBRICANT AND CONNECTING STRUCTURE FOR A SWITCHING ELEMENT
US20110311790A1 (en) * 2008-09-05 2011-12-22 Sumitomo Bakelite Co., Ltd. Conductive connecting material, method for connecting terminals using the conductive connecting material, and method for producing a connecting terminal
KR101538834B1 (ko) * 2009-08-26 2015-07-22 세키스이가가쿠 고교가부시키가이샤 이방성 도전 재료, 접속 구조체 및 접속 구조체의 제조 방법
JP5619466B2 (ja) * 2010-04-13 2014-11-05 デクセリアルズ株式会社 硬化性樹脂組成物、接着性エポキシ樹脂ペースト、ダイボンド剤、非導電性ペースト、接着性エポキシ樹脂フィルム、非導電性エポキシ樹脂フィルム、異方性導電ペースト及び異方性導電フィルム
JP5916423B2 (ja) 2011-02-17 2016-05-11 積水化学工業株式会社 異方性導電材料のbステージ化物、異方性導電材料のbステージ化物の製造方法、接続構造体及び接続構造体の製造方法
JP6066158B2 (ja) * 2012-01-27 2017-01-25 Dic株式会社 エポキシ樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、及び半導体装置
KR20150072381A (ko) * 2012-10-15 2015-06-29 세키스이가가쿠 고교가부시키가이샤 유기 무기 하이브리드 입자, 도전성 입자, 도전 재료 및 접속 구조체
JP5664673B2 (ja) * 2013-01-28 2015-02-04 日立化成株式会社 樹脂ペースト組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109115A (ja) * 2006-09-26 2008-05-08 Sekisui Chem Co Ltd 半導体チップ積層体及びその製造方法
JP2008266611A (ja) * 2007-03-23 2008-11-06 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物及び半導体装置
JP2009105117A (ja) * 2007-10-22 2009-05-14 Sony Chemical & Information Device Corp 異方性導電接着剤
JP2012044155A (ja) * 2010-07-21 2012-03-01 Sekisui Chem Co Ltd 半導体チップ実装体の製造方法及び封止樹脂
JP2014056816A (ja) * 2012-08-10 2014-03-27 Sekisui Chem Co Ltd 導電材料及び接続構造体
JP2014130808A (ja) * 2012-11-30 2014-07-10 Sekisui Chem Co Ltd 導電材料及び接続構造体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188327A (ja) * 2016-04-06 2017-10-12 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
WO2017179532A1 (ja) * 2016-04-12 2017-10-19 積水化学工業株式会社 導電材料及び接続構造体
CN108475551A (zh) * 2016-04-12 2018-08-31 积水化学工业株式会社 导电材料及连接结构体
CN109313956A (zh) * 2016-09-09 2019-02-05 积水化学工业株式会社 导电材料、连接结构体以及连接结构体的制造方法
JP2018056277A (ja) * 2016-09-28 2018-04-05 エルジー ディスプレイ カンパニー リミテッド 電子部品の実装方法、電子部品の接合構造、基板装置、ディスプレイ装置、ディスプレイシステム
US10901277B2 (en) 2016-09-28 2021-01-26 Lg Display Co., Ltd. Display device, display system, and method of installing electronic component
US11112658B2 (en) 2016-09-28 2021-09-07 Lg Display Co., Ltd. Method of installing electronic component, display device and display system
JPWO2018061374A1 (ja) * 2016-09-30 2019-08-29 積水化成品工業株式会社 導電性樹脂粒子及びその用途
JP2021114449A (ja) * 2020-01-21 2021-08-05 積水化学工業株式会社 導電ペースト及び接続構造体
JP7389657B2 (ja) 2020-01-21 2023-11-30 積水化学工業株式会社 導電ペースト及び接続構造体

Also Published As

Publication number Publication date
CN106463200A (zh) 2017-02-22
JP6577867B2 (ja) 2019-09-18
KR102411356B1 (ko) 2022-06-22
TWI676183B (zh) 2019-11-01
TW201616519A (zh) 2016-05-01
JPWO2016043265A1 (ja) 2017-07-06
CN106463200B (zh) 2019-05-31
KR20170058884A (ko) 2017-05-29

Similar Documents

Publication Publication Date Title
JP6577867B2 (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
JP5830196B1 (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
WO2016088664A1 (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
JP6557591B2 (ja) 導電フィルム、接続構造体及び接続構造体の製造方法
JP5860191B1 (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
JP5966102B1 (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
JP5966101B1 (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
WO2015133343A1 (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
JP6592350B2 (ja) 異方性導電材料、接続構造体及び接続構造体の製造方法
WO2016133114A1 (ja) 接続構造体の製造方法
JP2016126878A (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
JP6085031B2 (ja) 接続構造体の製造方法
JP2016126877A (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
WO2016133113A1 (ja) 導電ペースト及び接続構造体
JP2016062768A (ja) 接続構造体の製造方法及び接続構造体
WO2016035637A1 (ja) 接続構造体の製造方法
JP6514610B2 (ja) 接続構造体の製造方法
JP6514615B2 (ja) 接続構造体の製造方法
JP2016066614A (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
JP2016054296A (ja) 接続構造体の製造方法
JP6533427B2 (ja) 導電材料及び接続構造体
JP2016076355A (ja) 接続構造体の製造方法及び接続構造体
JP2016066615A (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
JP2016126876A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2016076693A (ja) 接続構造体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015548084

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167022362

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842547

Country of ref document: EP

Kind code of ref document: A1