WO2016043147A1 - 反射型マスクブランク及びその製造方法、反射型マスク及びその製造方法、並びに半導体装置の製造方法 - Google Patents

反射型マスクブランク及びその製造方法、反射型マスク及びその製造方法、並びに半導体装置の製造方法 Download PDF

Info

Publication number
WO2016043147A1
WO2016043147A1 PCT/JP2015/075970 JP2015075970W WO2016043147A1 WO 2016043147 A1 WO2016043147 A1 WO 2016043147A1 JP 2015075970 W JP2015075970 W JP 2015075970W WO 2016043147 A1 WO2016043147 A1 WO 2016043147A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
reflective
reflective mask
conductive base
multilayer reflective
Prior art date
Application number
PCT/JP2015/075970
Other languages
English (en)
French (fr)
Inventor
笑喜 勉
竜男 淺川
弘文 小坂井
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014188680A external-priority patent/JP6425951B2/ja
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to KR1020177004859A priority Critical patent/KR102499220B1/ko
Priority to US15/508,544 priority patent/US10347485B2/en
Publication of WO2016043147A1 publication Critical patent/WO2016043147A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • G03F1/86Inspecting by charged particle beam [CPB]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image

Definitions

  • the present invention relates to a reflective mask blank which is an original for manufacturing an exposure mask used for manufacturing a semiconductor device and the like, a manufacturing method thereof, a reflective mask manufactured using the reflective mask blank, and the manufacturing thereof.
  • the present invention relates to a method and a method for manufacturing a semiconductor device.
  • EUV lithography using extreme ultraviolet rays (EUV) having a wavelength of around 13.5 nm has been developed.
  • EUV lithography since there are few materials that are transparent to EUV light, a reflective mask is used instead of a transmissive mask. In this reflective mask, a multilayer reflective film that reflects exposure light is formed on a low thermal expansion substrate, and a mask structure in which a desired transfer pattern is formed on a protective film for protecting the multilayer reflective film. Basic structure.
  • phase shift film type that reflects a certain amount of EUV light
  • absorber film type that absorbs EUV light relatively strongly
  • Even an absorber film type having a large amount and relatively small reflected light reflects about 0.5% of EUV light. For this reason, in the EUV reflective mask, it is necessary to provide a dedicated light-shielding band for sufficiently reducing the influence of exposure light reflection from adjacent exposure, whether it is a phase shift film type or an absorber film type. is there.
  • the light-shielding band is a light-shielding frame (area) provided so as to surround the circuit pattern area of the mask, and the exposure light is transferred and formed adjacent to the block on which the pattern is transferred on the wafer, for example, next. This is to prevent leakage to the circuit pattern area. If the reflected light cannot be sufficiently reduced by this shading zone, exposure light is applied to the adjacent area, causing problems such as a decrease in resolution of the pattern in the adjacent area and a decrease in transfer dimensional accuracy, resulting in a decrease in yield. Cause. In a reflective mask for EUV, if a light shielding band is simply formed only by the phase shift film or the absorber film itself, the reflected light is large and causes these problems.
  • a shading band is used.
  • a typical light shielding band of a reflective mask for EUV lithography is a digging type light shielding band (hereinafter referred to as “multilayer reflection film digging light shielding band” as appropriate) for etching the multilayer reflective film in the light shielding band portion.
  • This method can form a pattern for high-accuracy transfer, reduce the occurrence of defects, and prevent light from being laminated, compared to an absorber laminated type light shielding band in which an absorption film for a light shielding band is further laminated on an absorber film for a transfer pattern. This is advantageous from the viewpoint of preventing the shadowing effect by the band.
  • Patent Document 1 also discloses a light shielding band and a shadowing effect.
  • EUV lithography with a wavelength of 13.5 nm has an extremely high resolution since the wavelength of light used is about 1/15 shorter than that of ArF lithography. Accordingly, the size of the critical defect of the reflective mask for EUV lithography is extremely small.
  • the defect of a reflective mask for EUV lithography is roughly classified into a pattern defect of an absorber pattern and a phase shift pattern (hereinafter referred to as “mask pattern defect” as appropriate) and a defect of a multilayer reflective film.
  • mask pattern defect inspection with an electron beam (EB) having extremely high inspection sensitivity for ultrafine patterns hereinafter referred to as “mask pattern EB defect inspection” as appropriate
  • the absorber film and multilayer reflective film which are conductors, are divided by the light shielding band, and the circuit pattern forming portion is electrically isolated and grounded. Therefore, there is a possibility that charge-up occurs due to electron beam irradiation at the time of mask pattern EB defect inspection.
  • the reflective mask for EUV lithography has a problem that was not found in the transmissive mask called phase defect. If there are minute irregularities on the underlying surface immediately below the multilayer reflective film, the multilayer reflective film layer formed on the surface becomes disordered (swelled), and a phase difference is partially generated. This is because the reflectivity of the EUV light may change partially and become a fatal defect source. Further, in order to reduce defects in the multilayer reflective film, it is necessary to inspect the defects in the multilayer reflective film with extremely high sensitivity. For this purpose, it is necessary to reduce noise and pseudo defects at the time of inspection, and it is required that the surface of the multilayer reflective film has high smoothness.
  • EUV light when EUV light is used as an exposure source, it is known that vacuum ultraviolet light and ultraviolet light (wavelength: 130 to 400 nm) called out-of-band (OoB) light are generated.
  • OoB out-of-band
  • the reflective mask for EUV lithography that digs into the multilayer reflective film described above, since the substrate is exposed in the light shielding zone region, the out-of-band light is reflected on the substrate surface or transmitted through the substrate. Reflection is caused by the conductive film provided on the back surface. Since adjacent circuit pattern regions are exposed a plurality of times, the integrated light amount of the reflected out-of-band light has a non-negligible size, which causes a problem of affecting the dimensions of the wiring pattern.
  • the present invention has a multilayer reflection film that prevents charge-up during electron beam (EB) mask pattern defect inspection, has few phase defects, and has high surface smoothness.
  • EB electron beam
  • Another object of the present invention is to provide a reflective mask using this mask blank, a method for manufacturing the same, and a method for manufacturing a semiconductor device.
  • the present invention has the following configuration.
  • a reflective mask blank in which a conductive base film, a multilayer reflective film that reflects exposure light, and an absorber film that absorbs exposure light are laminated on a substrate,
  • the reflective mask blank wherein the conductive base film is provided adjacent to the multilayer reflective film and is made of a tantalum-based material having a thickness of 1 nm to 10 nm.
  • a reflective mask blank in which a conductive base film, a multilayer reflective film that reflects exposure light, and an absorber film that absorbs exposure light are laminated on a substrate,
  • the conductive base film is a tantalum-based material layer having a thickness of 1 nm to 10 nm provided adjacent to the multilayer reflective film, and a conductive material provided between the tantalum-based material layer and the substrate.
  • a reflective mask blank comprising a laminated film including a layer.
  • the multilayer reflective film is formed by alternately laminating first layers containing silicon and second layers containing molybdenum, and the lowest layer of the multilayer reflective film in contact with the conductive base film is the first layer.
  • the reflective mask blank according to any one of configurations 1 to 4, wherein the reflective mask blank is a layer.
  • the multilayer reflective film is formed by alternately laminating first layers containing silicon and second layers containing molybdenum, and the lowest layer of the multilayer reflective film in contact with the conductive base film is the second layer.
  • the reflective mask blank according to any one of configurations 1 to 4, wherein the reflective mask blank is a layer.
  • Configuration 8 Preparing a reflective mask blank according to any one of Configurations 1 to 6, Forming a resist pattern on the absorber film and forming the absorber pattern by etching using the resist pattern as a mask, or forming a resist pattern after forming a hard mask film for etching on the absorber film; Transferring the resist pattern to the absorber film by etching through the hard mask to form the absorber pattern; And a step of dry-etching a part of the multilayer reflective film with a chlorine-based gas containing oxygen gas.
  • (Configuration 10) 10. A method of manufacturing a reflective mask according to Configuration 8 or 9, wherein a protective film made of a ruthenium-based material is formed on the multilayer reflective film, and the protective film and the multilayer reflective film are continuously dry-etched. .
  • Configuration 11 A pattern formed on the reflective mask using the reflective mask according to Configuration 7 or the reflective mask manufactured by the method of manufacturing a reflective mask according to any one of Configurations 8 to 10.
  • a method for manufacturing a semiconductor device comprising a step of exposing and transferring the film to a resist film formed on a semiconductor substrate.
  • a reflective mask blank in which a conductive base film, a multilayer reflective film that reflects exposure light, and an absorber film that absorbs exposure light are laminated on a substrate,
  • the reflective mask blank wherein the conductive base film is provided adjacent to the multilayer reflective film and is made of a ruthenium-based material having a thickness of 1 nm to 10 nm.
  • the conductive base film is formed by causing sputtered particles of a material constituting the conductive base film to be incident at an angle of 45 degrees or less with respect to the normal line of the main surface of the substrate. 18.
  • the method includes a step of forming a protective film on the multilayer reflective film after the multilayer reflective film forming step, and the protective film is made of a ruthenium-based material.
  • Configuration 23 Preparing a reflective mask blank according to any one of Configuration 12 to Configuration 15, Forming a resist pattern on the absorber film and forming the absorber pattern by etching using the resist pattern as a mask, or forming a resist pattern after forming a hard mask film for etching on the absorber film; Transferring the resist pattern to the absorber film by etching through the hard mask to form the absorber pattern; Etching a part of the multilayer reflective film;
  • a method for producing a reflective mask comprising:
  • (Configuration 24) 24 The method of manufacturing a reflective mask according to Configuration 23, wherein the part of the multilayer reflective film to be etched is a light shielding zone area provided so as to surround the circuit pattern area.
  • a conductive underlayer made of a tantalum-based material or ruthenium-based material having a film thickness of 1 nm or more is formed adjacent to the multilayer reflective film, or adjacent to the multilayer reflective film.
  • a circuit pattern forming region by providing a tantalum-based material film (layer) made of the tantalum-based material and a conductive laminated base film made of a conductive film (layer) formed between the tantalum-based material film and the substrate Can secure ground without being electrically isolated, and can prevent charge-up at the time of mask pattern defect inspection by an electron beam (EB). For this reason, it becomes possible to perform a highly sensitive and stable mask pattern EB defect inspection.
  • EB electron beam
  • the tantalum-based material has high dry etching resistance against dry etching with a chlorine-based gas including an oxygen gas used for etching the multilayer reflective film.
  • a chlorine-based gas containing oxygen gas used for etching the multilayer reflective film.
  • the film thickness of the tantalum-based material film or ruthenium-based material in the conductive base film or the conductive laminated base film is 10 nm or less, the grain can be reduced and high smoothness can be provided. Therefore, the multilayer reflective film formed thereon has few phase defects. In addition, since the smoothness of the surface of the multilayer reflective film is high, there are few pseudo defects when inspecting the defects of the multilayer reflective film, and the defect inspection of the multilayer reflective film can be performed with high sensitivity.
  • the out-of-band light in the region where the multilayer tantalum film such as the light-shielding band portion is removed by etching and the tantalum-based material film is exposed is sufficiently small so as not to adversely affect the exposure transfer.
  • both the mask pattern and the multilayer reflective film can be subjected to defect inspection with high sensitivity, and the multilayer reflective film has few phase defects. Can do. Further, if EUV lithography is performed using this reflective mask, a method for manufacturing a semiconductor device with few transfer defects can be provided.
  • FIG. 1 is a cross-sectional view of an essential part for explaining the configuration of a first reflective mask blank for EUV lithography according to the present invention.
  • a reflective mask blank 100 includes a substrate 1 and a conductive base film 4 made of a tantalum-based material having a thickness of 1 nm or more and 10 nm or less formed on the first main surface (front surface) side.
  • a back surface conductive film 2 for electrostatic chuck is formed on the second main surface (back surface) side of the substrate 1.
  • FIG. 2 is a cross-sectional view of an essential part for explaining the configuration of a second reflective mask blank for EUV lithography according to the present invention.
  • the difference from the configuration of the reflective mask blank for the first EUV lithography is that in the second configuration, the single-layer conductive base film 4 made of a tantalum-based material having a film thickness of 1 nm to 10 nm in the first configuration is used.
  • a laminated conductive base film 3 composed of a plurality of layers (represented in the case of two layers in FIG. 2) is formed, and the rest is the same as the configuration of the first reflective mask blank. is there.
  • the uppermost layer 32 of the laminated conductive base film 3, that is, the layer in contact with the multilayer reflective film 5 is made of a tantalum material having a film thickness of 1 nm or more and 10 nm or less, and is formed between the uppermost layer 32 and the substrate 1.
  • the film is a conductive material layer (conductive film 31).
  • the uppermost layer 32 only needs to have resistance to the etching of the multilayer reflective film 5, but may have conductivity.
  • the conductive film 31 may be a single-layer conductive film or a multi-layer conductive film.
  • the uppermost layer 32 has an etching stopper function when the multilayer reflective film 5 is processed, so that the conductive film 31 is specialized in the conductive function.
  • the underlying film 3 can be formed.
  • the range of adjustment of the conductivity is wider than that of the first reflective mask blank for EUV lithography, and high conductivity can be obtained. Therefore, in mask pattern defect inspection using an electron beam (EB) having a high current value. Can prevent the charge-up. Therefore, it is suitable for further improving the inspection sensitivity and improving the throughput of the mask pattern defect inspection.
  • the first reflective mask blank 100 for EUV lithography is characterized in that the manufacturing process is simplified and the productivity is high because the conductive base film 4 is a single layer film.
  • the third reflective mask blank for EUV lithography is a ruthenium-based conductive undercoat film 4 having a film thickness of 1 nm or more and 10 nm or less compared to the first reflective mask blank for EUV lithography (FIG. 1). It is different in that it is made of a material, and the other structure is the same as that of the first reflective mask blank for EUV lithography.
  • FIG. 3 is a cross-sectional view of an essential part for explaining the configuration of a fourth reflective mask blank for EUV lithography according to the present invention.
  • the difference from the configuration of the reflective mask blank for the third EUV lithography is that the buffer film 10 for increasing the surface smoothness is formed between the substrate 1 and the conductive base film 4 in the fourth configuration.
  • the other configurations are the same as those of the third reflective mask blank.
  • the fourth reflective mask blank 102 for EUV lithography since the multilayer reflective film 5 can be formed on the highly smooth surface by the buffer film 10, the multilayer reflective film 5 with few phase defects is formed. Is possible.
  • the substrate 1 preferably has a low thermal expansion coefficient within the range of 0 ⁇ 5 ppb / ° C. in order to prevent the occurrence of absorber pattern distortion due to heat during EUV exposure.
  • a material having a low thermal expansion coefficient in this range for example, SiO 2 —TiO 2 glass, multicomponent glass ceramics, and the like can be used.
  • the first main surface of the substrate 1 on which a transfer pattern (absorber film 7 described later) is formed has high flatness from the viewpoint of at least pattern transfer accuracy and position accuracy.
  • the flatness is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, particularly preferably in a 132 mm ⁇ 132 mm region on the main surface on the side where the transfer pattern of the substrate 1 is formed. 0.03 ⁇ m or less.
  • the second main surface opposite to the side on which the absorber film 7 is formed is a surface that is electrostatically chucked when being set in the exposure apparatus, and has a flatness of 0.
  • the flatness of the second main surface in the reflective mask blank is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and particularly preferably 0.3 ⁇ m or less in a 142 mm ⁇ 142 mm region. is there.
  • the surface smoothness of the substrate 1 is also an extremely important item, and the surface roughness of the first main surface on which the transfer absorber pattern is formed has a root mean square roughness (Rms) of 0.15 nm or less. More preferably, Rms is preferably 0.10 nm or less.
  • the surface smoothness can be measured with an atomic force microscope.
  • the substrate 1 has a high rigidity in order to prevent a film (such as the multilayer reflective film 5) formed thereon from being deformed by a film stress.
  • a film such as the multilayer reflective film 5
  • those having a high Young's modulus of 65 GPa or more are preferable.
  • the conductive base film is a film formed between the substrate 1 and the multilayer reflective film 5 so as to be in contact with the multilayer reflective film 5.
  • the conductive base film is made of a tantalum material
  • the film (layer) in contact with the multilayer reflective film 5 has a film thickness of 1 nm or more and 10 nm or less, both in the case of the single-layer conductive base film 4 and the multilayer conductive base film 3 composed of a plurality of layers.
  • a tantalum-based material having a film thickness of 1 nm to 10 nm has necessary conductivity and also has a sufficiently small stress.
  • the uppermost layer 32 of the conductive base film 4 and the laminated conductive base film 3 is provided adjacent to the multilayer reflective film 5 and is made of a tantalum (Ta) -based material. 1 nm or more and 10 nm or less. Ta exhibits extremely high dry etching resistance against dry etching using a chlorine-based gas containing oxygen gas. For this reason, when the light-shielding zone 11 is formed by etching a part of the multilayer reflective film 5 with a chlorine-based gas containing oxygen gas, the conductive base film 4 and the laminated conductive base film 3 made of a Ta-based material are used. The uppermost layer 32 is hardly etched, and the decrease in the film thickness is negligible.
  • Ta tantalum
  • the film thickness of the Ta-based material is 1 nm or more, and the conductivity necessary for preventing the charge-up is obtained. can get.
  • the thickness is preferably 3 nm or more, more preferably 4 nm or more.
  • the smoothness of the Ta-based material surface is sufficiently high, The smoothness of the multilayer reflective film 5 formed thereon is also improved, and the occurrence of phase defects can be suppressed.
  • the smoothness of the multilayer reflective film 5 is also effective in suppressing pseudo defects in the defect inspection of the multilayer reflective film 5.
  • the reflectance with respect to out-of-band light is sufficiently small so that exposure transfer is not adversely affected by setting the film thickness of the tantalum material film to 10 nm or less.
  • the film thickness of the tantalum film is 3 nm, the reflectance for light with a wavelength of 130 nm to 400 nm is 17%.
  • a sputtering method is used as a method of forming the uppermost layer 32 of the conductive base film 4 and the laminated conductive base film 3.
  • the ion beam sputtering method is preferable because the surface smoothness of the conductive base film 4 can be improved.
  • the sputtered particles of the material (in this case, Ta) constituting the uppermost layer 32 of the conductive base film 4 and the laminated conductive base film 3 are at an angle of 45 degrees or less with respect to the normal line of the main surface of the substrate 1. Is more preferable because the surface smoothness can be further improved.
  • the uppermost layer 32 of the conductive base film 4 and the laminated conductive base film 3 is made of a material containing tantalum as a main component, and may be made of Ta metal alone, or Ta with titanium (Ti), niobium (Nb), molybdenum.
  • a Ta alloy containing a metal such as (Mo), zirconium (Zr), yttrium (Y), boron (B), lanthanum (La), cobalt (Co), rhenium (Re) may be used.
  • the Ta content of this Ta alloy is 50 atomic percent or more and less than 100 atomic percent, preferably 80 atomic percent or more and less than 100 atomic percent, and more preferably 95 atomic percent or more and less than 100 atomic percent. In particular, when it is 95 atomic% or more and less than 100 atomic%, the mask cleaning resistance and the etching stopper function when the multilayer reflective film 5 is etched are excellent.
  • the uppermost layer 32 of the conductive base film 4 and the laminated conductive base film 3 is preferably a tantalum compound containing nitrogen (N).
  • N nitrogen
  • O and B may be added in addition to Ta metal alone or the above Ta alloy and N.
  • the nitrogen content is preferably 10 atomic percent or more and 30 atomic percent or less.
  • nitrogen is contained, a microcrystalline film is formed. Therefore, the surface roughness of the uppermost layer 32 of the conductive base film 4 and the laminated conductive base film 3 can be reduced, and the surface smoothness can be improved.
  • the content ratio of nitrogen is too high, a polycrystalline film having a large surface roughness is obtained.
  • the uppermost layer 32 of the laminated conductive base film 3 is preferably made of a tantalum compound (TaO, TaON, etc.) containing oxygen (O).
  • the oxygen content is preferably 50 atomic% or more.
  • the out-of-band light having a wavelength of 280 nm or less that does not transmit through the substrate 1 can have a lower reflectance as the thickness of the laminated conductive base film 3 is smaller. Therefore, the thickness is more preferably 1 to 6 nm.
  • the out-of-band light having a wavelength of more than 280 nm that is transmitted through the substrate 1 and reflected by the back surface conductive film 2 has a higher reflectivity as the film thickness of the laminated conductive base film 3 increases in the case of TaO, for example.
  • the film thickness is more preferably 4 nm to 10 nm because it tends to be small.
  • the material of the conductive base film 4 and the conductive film 31 of the laminated conductive base film 3 to be described later are used.
  • a material made of a tantalum compound containing oxygen (O) and nitrogen (N) having lower conductivity than the material can be used.
  • the conductive film 31 (conductive material layer) constituting the laminated conductive base film 3 is not particularly limited as long as the surface of the film is smooth and highly conductive.
  • tantalum (Ta), ruthenium (Ru), titanium (Ti), tungsten (W), chromium (Cr), molybdenum (Mo), rhodium (Rh), platinum (Pt), zirconium (Zr), niobium (Nb) ), Yttrium (Y), boron (B), lanthanum (La), cobalt (Co), rhenium (Re), etc. or Ta (titanium (Ti), niobium (Nb), molybdenum (Mo)).
  • Ta alloy containing metals such as zirconium (Zr), yttrium (Y), boron (B), lanthanum (La), cobalt (Co), rhenium (Re), Ru may be titanium (Ti), niobium (Nb), molybdenum (Mo), zirconium (Zr), yttrium (Y), boron (B), lanthanum (La), cobalt (Co), rhenium (R) ) And the like may be an alloy such as Ru alloy containing. Further, it is also preferable to add nitrogen to these metals or alloys in order to reduce the surface roughness of the conductive film 31 and increase the smoothness. Since the uppermost layer 32 formed on the conductive film 31 serves as an etching stopper when the multilayer reflective film 5 is etched, it is not particularly necessary to pay attention to the etching characteristics of the conductive film 31.
  • the film thickness of the conductive film 31 constituting the laminated conductive base film 3 is set so that the conductivity combined with the uppermost layer 32 satisfies the required value and the allowable value of surface smoothness.
  • the conductive film 31 is formed by a fine film formation method such as ion beam sputtering, generally, the lower limit of the film thickness is determined by the required value of conductivity, and the upper limit value of the film thickness is determined by surface smoothness. Determined.
  • the thickness of the conductive film 31 is preferably 1 nm to 5 nm.
  • the formation method of the conductive film 31 constituting the laminated conductive base film 3 is known in the art, but can be formed by, for example, film formation by ion beam sputtering. It is also effective to perform precision polishing in order to improve the smoothness of the conductive film 31. When the film stress of the conductive film 31 is large, it is also effective to adjust the film stress by performing an annealing process on the conductive film 31 for the purpose of planarizing the mask blank.
  • the conductive underlayer is made of a ruthenium-based material
  • the buffer film 10 has conductivity
  • the buffer film 10 and the conductive base film 4 are combined to form a base film having conductivity for the multilayer reflective film 5.
  • the conductive base film 4 here is a multilayer reflective film. The description will be made as a film on the buffer film 10 formed so as to be in contact with the film 5.
  • the conductive base film 4 is provided adjacent to the multilayer reflective film 5 and is made of a ruthenium (Ru) -based material, and has a film thickness of 1 nm or more and 10 nm or less. Ru exhibits extremely high dry etching resistance against dry etching using a chlorine-based gas. For this reason, when the light-shielding band portion 11 is formed by etching a part of the multilayer reflective film 5 with a chlorine-based gas, the conductive base film 4 made of a Ru-based material is hardly etched, and a decrease in the film thickness can be ignored. Is on the level.
  • Ru ruthenium
  • the conductive base film 4 made of a Ru-based material has a film thickness of 1 nm or more, and the conductivity necessary for preventing charge-up can be obtained.
  • the film thickness dependence of the sheet resistance of Ru is shown in FIG. When the film thickness is less than 1 nm, the resistance increases rapidly.
  • the grain is small when the film thickness of the conductive base film 4 made of Ru-based material is 10 nm or less, the smoothness of the surface of the Ru-based material is sufficiently high, and the phase of the multilayer reflective film 5 formed thereon is increased. Defect generation can be suppressed.
  • a sputtering method is used as a method for forming the conductive base film 4.
  • the ion beam sputtering method is preferable because the surface smoothness of the conductive base film 4 can be improved.
  • the surface smoothness is further improved. It is more preferable because it is possible.
  • Ru sputtered particles are incident at an angle of 50 degrees with respect to the normal of the main surface of the substrate 1, the surface smoothness of the Ru film (2.5 nm) is 0.15 nm (Rms). When incident at an angle of 25 degrees, it is improved to 0.12 nm.
  • the conductive base film 4 is made of a material containing ruthenium as a main component, and may be a simple Ru metal, or Ru may be titanium (Ti), niobium (Nb), molybdenum (Mo), zirconium (Zr), yttrium (Y ), Boron (B), lanthanum (La), cobalt (Co), rhenium (Re), and other Ru alloys may be included, and nitrogen may be included.
  • the Ru content ratio of this Ru alloy is 50 atom% or more and less than 100 atom%, preferably 80 atom% or more and less than 100 atom%, more preferably 95 atom% or more and less than 100 atom%. In particular, when it is 95 atomic% or more and less than 100 atomic%, the mask cleaning resistance and the etching stopper function when the multilayer reflective film 5 is etched are excellent.
  • the buffer film 10 is a film having extremely high surface smoothness, and representative materials include silicon (Si), a multilayer film, TaBN, and the like.
  • a laminated film of Mo and Si used as the multilayer reflective film 5 is preferably used from the viewpoint of facility utilization efficiency and quality control. That is, when a material shared with the multilayer reflective film 5 is used as the buffer film 10, the buffer film 10, the conductive base film 4, the multilayer reflective film 5, and the protective film are subjected to a vacuum under reduced pressure without an intermediate air release step. Since the film 6 can be continuously formed, there is an effect in terms of quality such as prevention of foreign matter adhesion and prevention of oxidation of each film surface as well as an effect of shortening the vacuum processing time. When an oxide film is formed, etching inhibition (decrease in etching rate) occurs when etching with a chlorine-based gas.
  • the multilayer buffer film 10 made of Si and Mo when the conductive base film 4 is continuously formed from the multilayer buffer film 10 under reduced pressure and vacuum, Si and Mo are laminated in this order from the substrate 1 side. It is preferable to stack a plurality of periods with the Si / Mo layered structure as one period, because the uppermost layer in contact with the conductive base film 4 becomes Mo having a low electrical resistance, and therefore the effect of preventing charge-up is enhanced in combination with the conductive base film 4.
  • the Mo / Si laminated structure in which Mo and Si are laminated in this order from the substrate 1 side is laminated in a plurality of periods, the uppermost layer in contact with the conductive base film 4 is made of Si having a relatively high electrical resistance. Therefore, it is preferable to use the buffer film 10 in which Mo is further formed on the uppermost Si layer.
  • the multilayer buffer film 10 when the multilayer buffer film 10 is formed and then released to the atmosphere once and then the conductive base film 4 is formed, an oxide film is formed on the outermost surface of the multilayer buffer film 10. It is desirable that Si having a relatively thin oxide film be the top surface. Therefore, in this case, in the Si / Mo laminated structure in which Si and Mo are laminated in this order from the substrate 1, the uppermost layer is Mo, but the multilayer buffer film 10 in which Si is further formed on the uppermost Mo. It is preferable that
  • the multilayer film of Mo and Si has been described as the multilayer film, a single metal selected from ruthenium (Ru), rhodium (Rh), and platinum (Pt), or an alloy thereof can be used instead of Mo. .
  • ruthenium Ru
  • Rh rhodium
  • Pt platinum
  • an alloy thereof can be used instead of Mo.
  • Si a Si compound containing boron (B), carbon (C), nitrogen (N), and oxygen (O) in addition to Si may be used.
  • the method for forming the buffer film 10 is known in the art, but can be formed by, for example, film formation by ion beam sputtering. It is also effective to perform annealing or precision polishing to improve the smoothness of the buffer film surface. The annealing process also has a flattening effect on the mask blank by adjusting the film stress.
  • the buffer film 10 can also be applied to the case where the conductive base film described above is made of a tantalum material.
  • the multilayer reflective film 5 provides a function of reflecting EUV light in a reflective mask for EUV lithography, and has a multilayer film structure in which layers mainly composed of elements having different refractive indexes are periodically laminated. It has become.
  • a thin film (high refractive index layer) of a light element or a compound thereof, which is a high refractive index material, and a thin film (low refractive index layer) of a heavy element or a compound thereof, which is a low refractive index material, are alternately 40
  • a multilayer film laminated for about 60 cycles is used as the multilayer reflective film 5.
  • the multilayer film has a high refractive index layer / low refractive index layer laminated structure in which a high refractive index layer and a low refractive index layer are laminated in this order from the uppermost layer 32 side of the conductive base film 4 or the laminated conductive base film 3.
  • a plurality of periods may be laminated as one period, or a low refractive index layer in which a low refractive index layer and a high refractive index layer are laminated in this order from the conductive base film 4 side or the uppermost layer 32 side of the laminated conductive base film 3.
  • Multiple periods may be laminated with the laminated structure of the high refractive index layers as one period.
  • the outermost layer of the multilayer reflective film 5, that is, the surface layer of the multilayer reflective film 5 on the side opposite to the uppermost layer 32 side of the conductive base film 4 or the laminated conductive base film 3 is a high refractive index layer. It is preferable that In the multilayer film described above, a high refractive index layer / low refractive index layer in which a high refractive index layer and a low refractive index layer are laminated in this order from the conductive base film 4 side or the uppermost layer 32 side of the laminated conductive base film 3. In the case of laminating a plurality of periods with a laminated structure as one period, the uppermost layer becomes a low refractive index layer.
  • the low refractive index layer constitutes the outermost surface of the multilayer reflective film 5, it is easily oxidized and is a reflective mask. Therefore, it is preferable to further form a high refractive index layer on the uppermost low refractive index layer to form the multilayer reflective film 5.
  • the uppermost layer is a high refractive index layer, so it can be left as it is.
  • a layer containing silicon (Si) is employed as the high refractive index layer.
  • Si silicon
  • a material containing Si in addition to Si alone, a Si compound containing boron (B), carbon (C), nitrogen (N), and oxygen (O) in addition to Si may be used.
  • B boron
  • C carbon
  • N nitrogen
  • O oxygen
  • a layer containing Si as the high refractive index layer, a reflective mask for EUV lithography having excellent EUV light reflectivity can be obtained.
  • a single metal selected from molybdenum (Mo), ruthenium (Ru), rhodium (Rh), and platinum (Pt), or an alloy thereof is used as the low refractive index layer.
  • the multilayer reflective film 5 for EUV light having a wavelength of 13 nm to 14 nm a Mo / Si periodic laminated film in which Mo films and Si films are alternately laminated for about 40 to 60 cycles is preferably used.
  • a high refractive index layer, which is the uppermost layer of the multilayer reflective film 5, is formed of silicon (Si), and a silicon oxide layer containing silicon and oxygen is interposed between the uppermost layer (Si) and the protective film 6. You may make it form. Thereby, mask cleaning tolerance can be improved.
  • Such a multilayer reflective film 5 alone has a reflectance of usually 65% or more, and the upper limit is usually 73%.
  • the thickness and period of each constituent layer of the multilayer reflective film 5 may be appropriately selected depending on the exposure wavelength, and are selected so as to satisfy the Bragg reflection law.
  • the multilayer reflective film 5 there are a plurality of high refractive index layers and low refractive index layers, but the thicknesses of the high refractive index layers and the low refractive index layers may not be the same.
  • the film thickness of the outermost Si layer of the multilayer reflective film 5 can be adjusted within a range where the reflectance is not lowered.
  • the film thickness of the outermost surface Si (high refractive index layer) can be 3 nm to 10 nm.
  • the first layer of the multilayer reflective film 5 formed on the conductive base film 4 or the uppermost layer 32 of the laminated conductive base film 3 is Mo, a diffusion layer is formed between the conductive base films 4. The electrical resistance is difficult to change because it is difficult.
  • the first layer of the multilayer reflective film 5 formed on the conductive base film 4 or the uppermost layer 32 of the laminated conductive base film 3 is Si, TaSi (conductive) is formed between the conductive base films 4.
  • a diffusion layer of RuSi (when the base film is made of a ruthenium-based material) or RuSi (when the conductive base film is made of a ruthenium-based material) is easily formed.
  • the conductive base film is made of a tantalum-based material
  • the surface of the conductive base film 4 or the uppermost layer 32 is exposed when the light-shielding band portion 11 is formed.
  • a TaSi diffusion layer is formed, the conductive base film 4 or This is preferable because oxidation of the surface of the uppermost layer 32 can be prevented.
  • the conductive base film is made of a ruthenium-based material, the RuSi diffusion layer cannot be completely removed at the time of forming the light-shielding band portion 11, and the electrical resistance is deteriorated. Therefore, it is necessary to consider the film thickness of the conductive base film 4. is there.
  • the thickness of the diffusion layer is preferably 0.5 nm to 1 nm.
  • the film thickness of the diffusion layer can be controlled by controlling the power of the ion beam emitted from the ion beam generator when forming the uppermost layer 32 of the conductive base film 4 or the laminated conductive base film 3. . When the ion beam power is increased, the thickness of the diffusion layer can be increased.
  • the film thickness of the diffusion layer can be reduced. You may control.
  • the film thickness of the diffusion layer can be increased as the incident angle approaches 0 °.
  • the method for forming the multilayer reflective film 5 is known in the art, but can be formed by depositing each layer by, for example, ion beam sputtering.
  • an Si film having a thickness of about 4 nm is first formed on the conductive base film 4 or the stacked conductive base film 3 by using an Si target, for example, by ion beam sputtering.
  • a Mo film having a thickness of about 3 nm is formed using a Mo target, and this is set as one period, and is laminated for 40 to 60 periods to form the multilayer reflective film 5 (the outermost layer is an Si layer) ).
  • the conductive base film 4 or the laminated conductive base film 3 and the multilayer reflective film 5 are continuously formed under reduced pressure and vacuum.
  • an oxide layer is formed on the surface of the tantalum material or ruthenium material constituting the conductive base film 4 or the tantalum material constituting the uppermost layer 32 of the laminated conductive base film 3.
  • the conductivity decreases and the surface smoothness also decreases.
  • the conductive base film is made of a ruthenium-based material, the function (etching resistance) as an etching stopper when the light-shielding band portion 11 is formed on the multilayer reflective film 5 using chlorine-based gas is reduced by oxidation.
  • the protective film 6 made of a material containing ruthenium (Ru) is formed on the multilayer reflective film 5 in order to protect the multilayer reflective film 5 from dry etching and cleaning in a manufacturing process of a reflective mask for EUV lithography described later. It is formed. Further, it also protects the multilayer reflective film 5 at the time of correcting the black defect of the mask pattern using an electron beam (EB).
  • FIGS. 1 to 3 show the case where the protective film 6 is a single layer, but it has a laminated structure of three or more layers.
  • the lowermost layer and the uppermost layer are layers made of a substance containing Ru. A metal other than Ru or an alloy may be interposed between the lowermost layer and the uppermost layer.
  • the protective film 6 is made of, for example, a material containing ruthenium as a main component, and may be a simple Ru metal, or Ru may be titanium (Ti), niobium (Nb), molybdenum (Mo), zirconium (Zr), yttrium (Y ), Boron (B), lanthanum (La), cobalt (Co), rhenium (Re) and other Ru alloys may be included, and nitrogen may be included.
  • Ru titanium
  • Ni niobium
  • Mo molybdenum
  • Zr zirconium
  • Y yttrium
  • B Boron
  • La lanthanum
  • Co cobalt
  • Re rhenium
  • other Ru alloys may be included, and nitrogen may be included.
  • nitrogen may be included.
  • the protective film 6 made of a Ru-based material containing Ti is used, diffusion of silicon, which is a constituent element of the multilayer reflective film, from the surface of the multilayer reflective film to the protective film
  • the Ru content ratio of this Ru alloy is 50 atom% or more and less than 100 atom%, preferably 80 atom% or more and less than 100 atom%, more preferably 95 atom% or more and less than 100 atom%.
  • the mask reflection resistance and the absorber film 7 are ensured while ensuring the reflectivity of EUV light while suppressing the diffusion of the multilayer reflective film constituent element (silicon) into the protective film 6. It is possible to have both an etching stopper function when etching is performed and a protective film function for preventing the multilayer reflective film from changing with time.
  • EUV lithography since there are few substances that are transparent to exposure light, an EUV pellicle that prevents foreign matter from adhering to the mask pattern surface is not technically simple. For this reason, pellicleless operation without using a pellicle has become the mainstream.
  • EUV lithography exposure contamination such as a carbon film is deposited on a mask or an oxide film grows by EUV exposure. For this reason, at the stage where the mask is used for manufacturing a semiconductor device, it is necessary to frequently clean and remove foreign matter and contamination on the mask. For this reason, EUV reflective masks are required to have an extraordinary mask cleaning resistance compared to transmissive masks for optical lithography.
  • a cleaning solution such as sulfuric acid, sulfuric acid / hydrogen peroxide (SPM), ammonia, ammonia hydrogen peroxide (APM), OH radical cleaning water, or ozone water having a concentration of 10 ppm or less
  • SPM sulfuric acid / hydrogen peroxide
  • APIAM ammonia hydrogen peroxide
  • OH radical cleaning water or ozone water having a concentration of 10 ppm or less
  • the resistance to cleaning against a mask is high, and it becomes possible to satisfy the demand for resistance to mask cleaning.
  • the thickness of the protective film 6 is not particularly limited as long as the protective film 6 can function as the protective film 6, but is preferably 1.0 nm to 8.0 nm, more preferably from the viewpoint of the reflectance of EUV light. Is from 1.5 nm to 6.0 nm.
  • the same method as a known film forming method can be employed without particular limitation.
  • Specific examples include a sputtering method and an ion beam sputtering method.
  • heat treatment may be performed at 100 ° C. or higher and 300 ° C. or lower, preferably 120 ° C. or higher and 250 ° C. or lower, and more preferably 150 ° C. or higher and 200 ° C. or lower. desirable.
  • the stress is relaxed, and it is possible to prevent the flatness from being lowered due to the mask blank stress strain and to prevent the multilayer reflective film 5 from changing with the EUV light reflectivity with time.
  • the protective film 6 is a RuTi alloy containing Ti, the diffusion of Si from the multilayer reflective film 5 due to this annealing is strongly suppressed, and a decrease in reflectance with respect to EUV light can be prevented.
  • the absorber film 7 may be an absorber film 7 for the purpose of absorbing EUV light, or may be an absorber film 7 having a phase shift function considering the phase difference of EUV light.
  • the absorber film 7 having a phase shift function absorbs EUV light and reflects a part thereof to shift the phase. That is, in the reflective mask on which the absorber film 7 having the phase shift function is patterned, the portion where the absorber film 7 is formed is a level at which pattern transfer is not adversely affected while absorbing and reducing the EUV light.
  • a part of the light is reflected to form a desired phase difference from the reflected light from the field part reflected from the multilayer reflective film 5 via the protective film 6.
  • the absorber film 7 having a phase shift function is formed so that the phase difference between the reflected light from the absorber film 7 and the reflected light from the multilayer reflective film 5 is 170 degrees to 190 degrees.
  • the light of the phase difference in the vicinity of 180 degrees interferes with each other at the pattern edge portion, thereby improving the image contrast of the projection optical image.
  • the resolution is increased, and various exposure tolerances such as exposure tolerance and focus tolerance are expanded.
  • the absorber film 7 may be a single layer film or a multilayer film composed of a plurality of films.
  • a single layer film the number of processes at the time of manufacturing a mask blank can be reduced and production efficiency is increased.
  • a multilayer film its optical constant and film thickness are appropriately set so that the upper film becomes an antireflection film at the time of mask pattern inspection using light. This improves the inspection sensitivity at the time of mask pattern inspection using light.
  • O oxygen
  • N nitrogen
  • various functions can be added by using a multilayer film.
  • the absorber film 7 is an absorber film 7 having a phase shift function, the range of adjustment on the optical surface is expanded by making a multilayer film, and a desired reflectance is easily obtained.
  • the absorber film 7 has a function of absorbing EUV light and can be processed by etching or the like (preferably, it can be etched by dry etching of chlorine (Cl) or fluorine (F) gas), the absorber
  • the material of the film 7 is not particularly limited.
  • a tantalum (Ta) simple substance or a tantalum compound containing Ta as a main component can be preferably used.
  • the absorber film 7 composed of such tantalum or a tantalum compound can be formed by a known method such as a magnetron sputtering method such as a DC sputtering method or an RF sputtering method.
  • the absorber film 7 can be formed on the protective film 6 by a reactive sputtering method using a target containing tantalum and boron and using an argon gas to which oxygen or nitrogen is added.
  • the tantalum compound includes a Ta alloy.
  • the crystalline state of the absorber film 7 is preferably an amorphous or microcrystalline structure from the viewpoint of smoothness and flatness. If the surface of the absorber film 7 is not smooth and flat, the edge roughness of the absorber pattern increases and the dimensional accuracy of the pattern may deteriorate.
  • the surface roughness of the absorber film 7 is preferably a root mean square roughness (Rms) of 0.5 nm or less, more preferably 0.4 nm or less and 0.3 nm or less.
  • a compound containing Ta and B a compound containing Ta and N, a compound containing Ta, O and N, a compound containing Ta and B, and further containing at least one of O and N
  • a compound containing Ta and Si, a compound containing Ta, Si and N, a compound containing Ta and Ge, a compound containing Ta, Ge and N, and the like can be used.
  • Ta is a material having a large EUV light absorption coefficient and can be easily dry-etched with a chlorine-based gas or a fluorine-based gas, it is an excellent absorber film material. Further, by adding B, Si, Ge or the like to Ta, an amorphous material can be easily obtained, and the smoothness of the absorber film 7 can be improved. Further, if N or O is added to Ta, the resistance of the absorber film 7 to oxidation is improved, so that it is possible to improve the stability over time.
  • the absorber film 7 is made of TaBN as a lower layer film, TaBO as an upper layer film, and the thickness of the upper layer TaBO is set to about 14 nm, this upper layer film becomes an antireflection film at the time of mask pattern defect inspection using light. Inspection sensitivity increases.
  • materials constituting the absorber film 7 include chromium, a chromium compound such as Cr, CrN, CrCON, CrCO, CrCOH, and CrCONH, and materials such as WN, TiN, and Ti. .
  • a back surface conductive film 2 for electrostatic chuck is formed on the second main surface (back surface) side of the substrate 1 (opposite the surface on which the multilayer reflective film 5 is formed.
  • the electrical characteristics required of the back surface conductive film 2 for the electrostatic chuck are usually 100 ⁇ / ⁇ or less in terms of sheet resistance.
  • the back surface conductive film 2 can be formed, for example, by a magnetron sputtering method or an ion beam sputtering method using a metal or alloy target such as chromium or tantalum.
  • a typical material is CrN or Cr often used in manufacturing a mask blank such as a transmission mask blank.
  • the thickness of the back surface conductive film 2 is not particularly limited as long as it satisfies the function for an electrostatic chuck, but is usually 10 nm to 200 nm. Further, the back surface conductive film 2 also has a stress adjustment on the second main surface side of the reflective mask blank 100, and balances with stresses from various films formed on the first main surface side, thereby providing a flat reflection. The mold mask blank is adjusted to obtain.
  • an absorber hard mask film or a resist film may be provided on the absorber film 7.
  • Typical materials for the etching hard mask film include silicon (Si) and materials obtained by adding oxygen (O), nitrogen (N), carbon (C), and hydrogen (H) to silicon. Specific examples include SiO 2 , SiON, SiN, SiO, Si, SiC, SiCO, SiCN, and SiCON.
  • the absorber film 7 is a compound containing oxygen, it is better to avoid a material containing oxygen, such as SiO 2, from the viewpoint of etching resistance as the etching hard mask film.
  • the hard mask film for etching is formed, the thickness of the resist film can be reduced, which is advantageous for pattern miniaturization.
  • a reflective mask is manufactured using the reflective mask blank 100 or 101, 102 of this embodiment.
  • a reflective mask blank 100 or 101, 102 of this embodiment is manufactured using the reflective mask blank 100 or 101, 102 of this embodiment.
  • a reflective mask blank 100 or 101, 102 is prepared, and a resist film is formed on the outermost surface of the first main surface (on the absorber film 7 as described in the following embodiments) (reflective mask). (It is not necessary if a resist film is provided as the blank 100, 101, or 102), and a desired pattern such as a circuit pattern is drawn (exposed) on the resist film, and further developed and rinsed to form a predetermined resist pattern. .
  • the absorber film 7 is dry etched to form an absorber pattern.
  • a chlorine-based gas such as Cl 2 , SiCl 4 , or CHCl 3
  • a mixed gas containing these chlorine-based gas and O 2 at a predetermined ratio or a mixture including a chlorine-based gas and He at a predetermined ratio
  • Gas, chlorine-based gas, and mixed gas containing Ar at a predetermined ratio CF 4 , CHF 3 , C 2 F 6 , C 3 F 6 , C 4 F 6 , C 4 F 8 , CH 2 F 2 , CH 3 F
  • Fluorine gases such as C 3 F 8 , SF 6 , and F 2 , mixed gases containing these fluorine gases and O 2 at a predetermined ratio, and the like can be used.
  • the etching gas contains oxygen in the final stage of etching, the Ru-based protective film 6 is roughened. For this reason, it is preferable to use an etching gas containing no oxygen in the overetching stage in which the Ru-based protective film 6 is exposed to etching. Thereafter, the resist pattern is removed by ashing or resist stripping solution, and an absorber pattern in which a desired circuit pattern is formed is created.
  • an absorber pattern in which a desired circuit pattern is formed can also be created using an etching hard mask.
  • an etching hard mask is formed on the absorber film 7, and a resist film is further formed thereon.
  • a film that can be etched with the absorber film 7 is selected.
  • a desired pattern such as a circuit pattern is drawn (exposed) on the resist film, and further developed and rinsed to form a predetermined resist pattern.
  • the etching hard mask mask film is dry-etched to form a hard mask pattern, and the resist pattern is removed by ashing or resist stripping solution.
  • the absorber film 7 is dry-etched using the hard mask pattern as a mask, thereby creating an absorber pattern on which a desired circuit pattern is formed.
  • the hard mask pattern is removed by wet etching or dry etching.
  • the absorber film 7 is dry etched by the above method using the resist pattern for forming the light shielding band as a mask, and then the protective film 6 and the multilayer reflective film 5 are also dry etched.
  • the etching gas for the protective film 6 and the multilayer reflective film 5 includes O 2 in a chlorine-based gas such as Cl 2 , SiCl 4 , or CHCl 3. A mixed gas is used.
  • the etching rate of the film to be processed From the relationship between the etching rate of the film to be processed and the etching rate ratio with respect to the tantalum-based material constituting the uppermost layer 32 of the conductive base film 4 or the laminated conductive base film 3 serving as an etching stopper, chlorine-based gas and O 2 gas
  • the mixing ratio can be set as appropriate.
  • the protective film 6 is made of a Ru-based material, it is possible to etch the protective film 6 and the multilayer reflective film 5 at once by dry etching using a mixed gas containing O 2 in a chlorine-based gas.
  • the protective film and the multilayer reflective film can be dry-etched using different etching gases without being dry-etched all at once.
  • the etching gas during the dry etching of the multilayer reflective film is changed.
  • the upper part of the multilayer reflective film is etched with a chlorine-based gas, and O 2 gas is introduced from the middle to lower the lower part of the multilayer reflective film.
  • a mixed gas of chlorine-based gas and O 2 gas dry etching may be performed.
  • the conductive base film 4 is made of a ruthenium-based material
  • a chlorine-based gas, a fluorine-based gas, or the like can be appropriately used as an etching gas.
  • the etching gas contains oxygen at the final stage of etching. The surface roughness of the conductive undercoat film 4 occurs.
  • the conductive base film 4 is a thin film, the sheet resistance increases as the surface roughness and surface oxidation progress, and the charge-up preventing effect at the time of the mask pattern EB defect inspection is reduced. For this reason, it is preferable to use an etching gas containing no oxygen in the overetching stage in which the conductive base film 4 is exposed to etching. Thereafter, the resist pattern is removed by ashing or resist stripping solution, and a desired light shielding band pattern is created. Thereafter, wet cleaning using an acidic or alkaline aqueous solution and mask pattern EB defect inspection are performed, and mask defect correction is appropriately performed.
  • the circuit pattern formation region is electrically connected to the ground portion disposed outside the light shielding band portion 11 through the conductive base film 4 or the laminated conductive base film 3 with a low sheet resistance. For this reason, the charge-up at the time of mask pattern EB defect inspection can be prevented, and pattern defect inspection can be performed with high sensitivity.
  • the multilayer reflective film 5 is formed on the conductive base film 4 or the laminated conductive base film 3 having a very smooth surface, or the buffer film 10 having an extremely smooth surface is interposed, the film is extremely smooth. Since the multilayer reflective film 5 is formed thereon, the multilayer reflective film 5 has few phase defects.
  • the smoothness of the surface of the multilayer reflective film 5 also increases, for example, background noise during multilayer film defect inspection using 193 nm light is reduced, pseudo defects are reduced, and the defect inspection sensitivity of the multilayer reflective film 5 is also improved. To do. With this highly sensitive mask pattern and defect inspection of the multilayer reflective film 5 and the multilayer reflective film 5 with few phase defects, a multilayer reflective film digging shading band type reflective mask (reflective mask for EUV lithography) with few defects is obtained. .
  • the multilayer reflective film digging shading zone structure was demonstrated here, since the electroconductivity of a mask blank goes up by the structure and manufacturing method of this invention, and it becomes the multilayer reflective film 5 with few defects, it is multilayer. The same effect can be obtained even when there is no reflection film digging portion.
  • a desired transfer pattern can be formed on the semiconductor substrate. Since there are few defects of the multilayer reflective film 5 and mask pattern defects, there are few transfer defects.
  • semiconductor devices on which desired electronic circuits are formed are manufactured with high yield. can do.
  • FIG. 4 is a schematic cross-sectional view of an essential part showing a process of producing a reflective mask 200 for EUV lithography from a reflective mask blank 100 for EUV lithography.
  • the reflective mask blank 100 of Example 1 includes a back conductive film 2, a substrate 1, a single-layer conductive base film 4, a multilayer reflective film 5, and a protective film 6. And an absorber film 7.
  • the absorber film 7 includes a two-layer film of a lower layer absorber film 71 made of TaBN and an upper layer absorber film 72 made of TaBO.
  • SiO 2 —TiO 2 glass substrate which is a low thermal expansion glass substrate of 6025 size (about 152 mm ⁇ 152 mm ⁇ 6.35 mm) with both surfaces of the first main surface and the second main surface polished, was prepared as substrate 1. . Polishing including a rough polishing process, a precision polishing process, a local processing process, and a touch polishing process was performed so as to obtain a flat and smooth main surface.
  • a back conductive film 2 made of CrN was formed on the second main surface (back surface) of the SiO 2 —TiO 2 glass substrate 1 by a magnetron sputtering (reactive sputtering) method under the following conditions.
  • Back surface conductive film formation conditions Cr target, mixed gas atmosphere of Ar and N 2 (Ar: 90 atomic%, N: 10 atomic%), film thickness 20 nm.
  • the multilayer reflective film 5 was formed on the conductive base film 4 so as not to release the atmosphere in the middle to prevent oxidation. That is, the multilayer reflective film 5 was continuously formed under reduced pressure vacuum from the conductive base film 4 step.
  • This multilayer reflective film 5 was a periodic multilayer reflective film made of Si and Mo in order to make a multilayer reflective film suitable for EUV light having a wavelength of 13.5 nm.
  • the multilayer reflective film 5 was formed by alternately stacking Si layers and Mo layers on the conductive base film 4 by ion beam sputtering in an Ar gas atmosphere using an Si target and an Mo target.
  • the sputtered particles of Si and Mo were incident at an angle of 30 degrees with respect to the normal line of the main surface of the substrate 1.
  • a Si film was formed with a thickness of 4.2 nm, and then a Mo film was formed with a thickness of 2.8 nm. This was set as one period, and 40 periods were laminated in the same manner.
  • a Si film was formed with a thickness of 4.0 nm to form the multilayer reflective film 5. Therefore, the lowermost layer of the multilayer reflective film 5, that is, the material of the multilayer reflective film 5 in contact with the conductive base film 4 is Si, and the uppermost layer of the multilayer reflective film 5, that is, the material of the multilayer reflective film in contact with the protective film 6 is also used. Si.
  • a diffusion layer of TaSi of 0.5 nm was formed between the lowermost layer Si of the multilayer reflective film 5 and the conductive base film 4.
  • a protective film 6 made of Ru was formed to a thickness of 2.5 nm by ion beam sputtering using a Ru target in an Ar gas atmosphere.
  • the Ru sputtered particles were incident at an angle of 30 degrees with respect to the normal of the main surface of the substrate 1.
  • annealing was performed at 130 ° C. in the atmosphere.
  • the surface roughness was measured about the sample created by the same process until this stage.
  • the reflectance was 64%
  • the substrate flatness was 500 nm
  • the number of defects was 5, and the surface roughness was 0.14 nm (Rms).
  • the number of defects was measured for a 132 mm ⁇ 132 mm area excluding the peripheral area of the substrate 1 using a defect inspection apparatus (Mask Substrate / Blank Defect Inspection Apparatus M1350, manufactured by Lasertec Corporation).
  • the surface roughness was measured using an atomic force microscope (AFM) for a 1 ⁇ m ⁇ 1 ⁇ m region at the center of the substrate.
  • AFM atomic force microscope
  • a TaBN film having a film thickness of 56 nm is laminated as the lower absorber film 71 and a TaBO film having a film thickness of 14 nm is laminated as the upper absorber film 72 by DC sputtering, and the absorber film 7 made of this two-layer film is formed.
  • the TaBN film was formed by reactive sputtering using TaB as a target in a mixed gas atmosphere of Ar gas and N 2 gas.
  • the TaBO film was formed by reactive sputtering using TaB as a target in a mixed gas atmosphere of Ar gas and O 2 gas.
  • the TaBO film is a film with little change over time, and the TaBO film having this thickness works as an antireflection layer at the time of mask pattern inspection using light, and improves inspection sensitivity.
  • a reflective mask 200 was manufactured using the reflective mask blank 100.
  • a resist film 8 was formed on the upper absorber film 72 of the reflective mask blank 100.
  • a desired pattern such as a circuit pattern was drawn (exposed) on the resist film 8, and further developed and rinsed to form a predetermined resist pattern 8a (FIG. 4C).
  • the resist pattern 8a is used as a mask, the TaBO film (upper absorber film 72) is dry etched using CF 4 gas, and then the TaBN film (lower absorber film 71) is dry etched using Cl 2 gas.
  • the first absorber pattern 7a was formed (FIG. 4D).
  • the protective film 6 made of Ru has extremely high dry etching resistance against Cl 2 gas, and serves as a sufficient etching stopper. Thereafter, the resist pattern 8a was removed by ashing or resist stripping solution (FIG. 4E).
  • a resist film 9 was formed on the reflective mask blank on which the first absorber pattern 7a was formed (FIG. 4F). Then, a shading band pattern was drawn (exposed) on the resist film 9, and further developed and rinsed to form a predetermined shading band resist pattern 9a (FIG. 4G). Next, using the light-shielding band resist pattern 9a as a mask, a TaBO film using CF 4 gas, a TaBN film using Cl 2 gas, and a protective film 6 and multilayer reflection using a mixed gas of Cl 2 and O 2 are used. The film 5 was dry-etched to form a second pattern in which the light-shielding band portion 11 was formed (FIG. 4H). As shown in FIG.
  • the second pattern includes a second absorber pattern 7b composed of a two-layer pattern of an upper layer absorber pattern 72b and a lower layer absorber pattern 71b, a protective film pattern 6b, And the multilayer reflective film pattern 5b.
  • the conductive base film 4 is a Ta thin film having a thickness of 4 nm as described above, but this material has an extremely high etching stopper function with respect to a mixed gas of Cl 2 and O 2 , and the film thickness is also reduced. A very small amount of sufficient conductivity is ensured.
  • the light-shielding band resist pattern 9a is removed by ashing or resist stripping solution, and sulfuric acid / hydrogen peroxide (SPM) cleaning and wet cleaning using an alkaline aqueous solution are performed to manufacture a reflective mask 200 (FIG. 4 (i)). )). Thereafter, a mask pattern EB defect inspection was performed, and mask defect correction was performed as necessary.
  • SPM sulfuric acid / hydrogen peroxide
  • FIG. 5A A top view of the reflective mask 200 manufactured by the above method is shown in FIG.
  • the device region (circuit pattern region) 12 in which circuits and the like are formed is isolated from the outer peripheral region (peripheral region) 13 in a pattern-isolated state by the light-shielding band portion 11.
  • the device region 12 and the outer peripheral region 13 are electrically connected by the conductive base film 4 made of a Ta thin film having a thickness of 4 nm.
  • grounding is taken in the outer peripheral region 13, but the device region is grounded by the conductive base film 4, and charge up when the mask pattern EB defect inspection is performed. Can be prevented.
  • FIG. 5B which is a top view of the reflective mask 200, a region (isolated circuit pattern region) that is isolated in a pattern by a groove 14 dug into the multilayer reflective film 5 in the device region 12. ) Even if there is 12b, the region 12b is electrically connected to the outer peripheral region 13 and can be grounded.
  • the multilayer reflective film digging type light shielding band 11 is formed, but the circuit pattern formation region is shielded through the conductive base film 4 made of a Ta thin film with a thickness of 4 nm. It is electrically connected to the grounding part installed outside the belt part 11 with a low sheet resistance, and there is no problem of pattern drawing defects due to charge-up, reduced mask pattern EB defect inspection sensitivity, and generation of pseudo defects. It was. As a result, a 20 nm pattern defect could be detected on the mask. Moreover, since the multilayer reflective film 5 is formed on the extremely smooth film by the conductive base film 4 having a smooth surface, the number of defects of the multilayer reflective film 5 with the protective film is few, which is high from the viewpoint of defects. A reflective mask with quality could be manufactured.
  • the reflective mask created in Example 1 was set on an EUV scanner, and EUV exposure was performed on a wafer on which a film to be processed and a resist film were formed on a semiconductor substrate. Then, by developing the exposed resist film, a resist pattern was formed on the semiconductor substrate on which the film to be processed was formed.
  • the reflective mask created in Example 1 is a high-quality mask for defects that have few phase defects in the multilayer reflective film 5 and have also been subjected to high-sensitivity mask pattern EB defect inspection. There were also few resist pattern defects. Further, the reflectance of the light shielding band 11 with respect to light having a wavelength of 130 nm to 400 nm was 19%, the out-of-band reflected light from the light shielding band 11 was sufficiently small, and the transfer accuracy was high.
  • This resist pattern is transferred to the film to be processed by etching, and through various processes such as the formation of an insulating film, a conductive film, introduction of a dopant, or annealing, a semiconductor device having desired characteristics is manufactured at a high yield. We were able to.
  • Example 2 the material of the single-layer conductive base film 4 is changed from Ta to TaN in Example 1, the material of the protective film 6 is changed from Ru to RuTi in Example 1, and the protective film 6 is changed.
  • This is an example of a reflective mask blank in which the annealing temperature after formation is changed from 130 ° C. to 150 ° C. in Example 1, and all other processes, including a reflective mask manufacturing method and a semiconductor device manufacturing method, are used. Same as Example 1.
  • Example 2 TaN (Ta: 90 atomic%, N: 10 atomic%) having a film thickness of 5 nm was used as the conductive base film 4.
  • This film was formed by DC sputtering in a mixed gas atmosphere of Ar gas and N 2 gas using a Ta target.
  • the sheet resistance was measured using a sample prepared up to the conductive base film 4
  • the sheet resistance of the conductive base film 4 was 550 ⁇ / ⁇ , and the sheet resistance necessary for preventing charge-up in the mask pattern EB defect inspection. Secured.
  • the surface roughness was 0.13 nm (Rms).
  • the surface roughness was measured using an atomic force microscope (AFM) for a 1 ⁇ m ⁇ 1 ⁇ m region at the center of the substrate.
  • AFM atomic force microscope
  • the protective film 6 in Example 2 is RuTi with a film thickness of 2.5 nm. In order to prevent oxidation, this film was continuously formed under a reduced-pressure vacuum, subsequently to the multilayer reflective film 5 in which 40 layers of Si films and Mo films were alternately laminated without being opened to the atmosphere.
  • the lowermost layer of the multilayer reflective film 5, that is, the material of the multilayer reflective film 5 in contact with the conductive base film 4 is Si
  • the material of the multilayer reflective film in contact with the substrate was also Si.
  • a diffusion layer of 0.5 nm of TaN and Si was formed between the lowermost layer Si of the multilayer reflective film 5 and the conductive base film 4.
  • the method of forming the protective film 6 is an ion beam sputtering method using a RuTi (Ru: 95 atomic%, Ti: 5 atomic%) target in an Ar gas atmosphere.
  • RuTi Ru: 95 atomic%, Ti: 5 atomic%) target
  • the sputtered particles made of Ru and Ti were incident at an angle of 30 degrees with respect to the normal line of the main surface of the substrate 1.
  • annealing at 150 ° C. was performed in a state where the protective film 6 was formed on the multilayer reflective film 5.
  • the reflectivity with respect to EUV light, the substrate flatness, and the number of defects by a laser substrate mask substrate / blank defect inspection apparatus are examined. It was.
  • the surface roughness of the sample prepared in the same process up to this stage was measured. As a result, the reflectance was 65%, the substrate flatness was 350 nm, the number of defects was 5, and the surface roughness was 0.13 nm (Rms).
  • the method for measuring the number of defects and the surface roughness is the same as in the first embodiment.
  • the reflective mask manufactured by the method of Example 2 did not have problems such as pattern drawing defects due to charge-up, reduction in mask pattern EB defect inspection sensitivity, and generation of pseudo defects. As a result, a 20 nm pattern defect could be detected on the mask.
  • the multilayer reflective film 5 is formed on the very smooth film by the conductive base film 4 having a smooth surface, the multilayer reflective film with the protective film has few defects, and high quality from the viewpoint of defects. It was possible to manufacture a reflective mask having
  • the reflective mask created in Example 2 is a low-defective mask in which the multilayer reflective film 5 has few phase defects and high-sensitivity mask pattern EB defect inspection has been performed. There were also few resist pattern defects. Further, the reflectance of the light shielding band 11 with respect to light having a wavelength of 130 nm to 400 nm was 25%, the out-of-band reflected light from the light shielding band 11 was sufficiently small, and the transfer accuracy was high. For this reason, a semiconductor device having desired characteristics could be manufactured with a high yield.
  • Example 3 is the same structure and method as Example 2 except that the order of film formation of Si and Mo in the multilayer reflective film 5 is changed to form a film from Mo. A mask and a semiconductor device were manufactured.
  • Example 3 the multilayer reflective film 5 was formed on the conductive base film 4.
  • the multilayer reflective film 5 was a periodic multilayer reflective film made of Mo and Si.
  • the multilayer reflective film 5 was formed by alternately stacking Mo layers and Si layers on the conductive base film 4 by ion beam sputtering in an Ar gas atmosphere using a Mo target and a Si target.
  • the sputtered particles of Mo and Si were incident at an angle of 30 degrees with respect to the normal of the main surface of the substrate 1.
  • the Mo film was formed with a thickness of 2.8 nm
  • the Si film was formed with a thickness of 4.2 nm.
  • the lowermost layer of the multilayer reflective film 5, that is, the material of the multilayer reflective film 5 in contact with the conductive base film 4 is Mo
  • the uppermost layer of the multilayer reflective film 5, that is, the material of the multilayer reflective film 5 in contact with the protective film 6. Is Si. Since the material of the multilayer reflective film 5 in contact with the conductive base film 4 is Mo, it is difficult to form a diffusion layer at the interface between the conductive base film 4 and the multilayer reflective film 5, so that the change in conductivity is small and stable. Met.
  • the protective film 6 is formed by the same material and method as in Example 2, and with respect to the multilayer reflective film substrate on which the protective film 6 at this stage is formed, the reflectivity for EUV light, the substrate flatness, and the product made by Lasertec Corporation
  • the number of defects was examined using a mask / substrate / blank defect inspection apparatus (M1350).
  • the surface roughness of the sample prepared in the same process up to this stage was measured.
  • the annealing temperature after the formation of the protective film 6 is 150 ° C. as in the second embodiment.
  • the reflectivity was 65%
  • the substrate flatness was 350 nm
  • the number of defects was 5
  • the surface roughness was 0.13 nm (Rms)
  • the method for measuring the number of defects and the surface roughness is the same as in the first and second embodiments.
  • the defect inspection using a high-sensitivity defect inspection apparatus KLA-Tencor's Teron 6xx
  • the detection of pseudo defects is suppressed, and defect inspection is performed.
  • the reflective mask manufactured by the method of Example 3 did not have problems such as pattern drawing defects due to charge-up, reduced mask pattern EB defect inspection sensitivity, and generation of pseudo defects. As a result, a 20 nm pattern defect could be detected on the mask.
  • the multilayer reflective film 5 is formed on the very smooth film by the conductive base film 4 having a smooth surface, the multilayer reflective film with the protective film has few defects, and high quality from the viewpoint of defects. It was possible to manufacture a reflective mask having
  • the reflective mask created in Example 3 is a low-defective mask in which the multilayer reflective film 5 has few phase defects and a high-sensitivity mask pattern EB defect inspection has been performed. There were also few resist pattern defects. Further, the reflectance of the light shielding band 11 with respect to light having a wavelength of 130 nm to 400 nm was 26%, the out-of-band reflected light from the light shielding band 11 was sufficiently small, and the transfer accuracy was high. For this reason, a semiconductor device having desired characteristics could be manufactured with a high yield.
  • Example 4 is a case where a laminated conductive base film 3 is used in place of the single-layer conductive base film 4, and the reflective mask blank is the same in structure and method as in Example 2 except for the above. , A reflective mask, and a semiconductor device were manufactured.
  • the laminated conductive base film 3 of Example 4 is composed of two layers, the uppermost layer 32 being TaN having a thickness of 2 nm and the lower conductive film 31 being Ru having a thickness of 2 nm.
  • the method for forming the laminated conductive base film 3 is as follows. First, a Ru film having a thickness of 2 nm was formed as the conductive film 31 on the main surface (first main surface) of the substrate 1 by ion beam sputtering using an Ru target in an Ar gas atmosphere. Here, the Ru sputtered particles were incident at an angle of 30 degrees with respect to the normal of the main surface of the substrate 1. Thereafter, a TaN film having a thickness of 2 nm (Ta: 90 atomic%, N: 10 atoms) is formed by DC sputtering in a mixed gas atmosphere of Ar gas and O 2 gas using a Ta target on the conductive film 31 as the uppermost layer 32. %).
  • the sheet resistance of the laminated conductive base film 3 was 850 ⁇ / The sheet resistance was sufficiently small to prevent charge-up in the mask pattern EB defect inspection.
  • the surface roughness was 0.13 nm (Rms).
  • the surface roughness was measured using an atomic force microscope (AFM) for a 1 ⁇ m ⁇ 1 ⁇ m region at the center of the substrate.
  • the multilayer reflective film 5 and the protective film 6 are formed by the same material and method as in Example 2, and the reflectance to the EUV light and the substrate flatness with respect to the multilayer reflective film substrate on which the protective film 6 at this stage is formed.
  • the number of defects was examined using a mask substrate / blanks defect inspection apparatus (M1350) manufactured by Lasertec.
  • the surface roughness of the sample prepared in the same process up to this stage was measured.
  • the annealing temperature after the protective film 6 is formed is 150 ° C. as in the second embodiment.
  • the reflectance was 65%
  • the substrate flatness was 350 nm
  • the number of defects was 5.
  • the surface roughness was 0.14 nm (Rms), and almost the same result as in Example 2 was obtained.
  • the method for measuring the number of defects and the surface roughness is the same as in the first embodiment.
  • the defect inspection using a high-sensitivity defect inspection apparatus KLA-Tencor's Teron 6xx
  • the detection of pseudo defects is suppressed, and defect inspection is performed.
  • the reflective mask manufactured by the method of Example 4 did not have problems such as pattern drawing defects due to charge-up, reduced mask pattern EB defect inspection sensitivity, and generation of pseudo defects. As a result, a 20 nm pattern defect could be detected on the mask.
  • the multilayer reflective film 5 is formed on the extremely smooth film by the laminated conductive base film 3 having a smooth surface, the number of defects in the multilayer reflective film with the protective film is few, and from the viewpoint of defects. A reflective mask with high quality could be manufactured.
  • the reflective mask produced in Example 4 is a low-defective mask in which the multilayer reflective film 5 has few phase defects and a high-sensitivity mask pattern EB defect inspection has been performed. There were also few resist pattern defects. Further, the reflectance of the light shielding band 11 with respect to light having a wavelength of 130 nm to 400 nm was 22%, the out-of-band reflected light from the light shielding band 11 was sufficiently small, and the transfer accuracy was high. For this reason, a semiconductor device having desired characteristics could be manufactured with a high yield.
  • Example 5 is the same structure and method as Example 2 except that the thickness of the single-layer conductive base film 4 is changed from 5 nm to 10 nm of Example 2, and a reflective mask blank, a reflective mask, and A semiconductor device was manufactured.
  • TaN Ta: 90 atomic%, N: 10 atomic%) having a film thickness of 10 nm was used as the conductive base film 4.
  • the sheet resistance was measured in the same manner as in Example 2, the sheet resistance of the conductive base film 4 was 240 ⁇ / ⁇ , and the sheet resistance necessary for preventing charge-up in the mask pattern EB defect inspection was secured.
  • the surface roughness measured in the same manner as in Example 2 was 0.14 nm (Rms).
  • the reflectance, the number of defects, and the surface roughness with respect to EUV light were measured by the same measurement method as in Example 1.
  • the reflectance was 65%
  • the number of defects was 6, and the surface roughness was 0.15 nm (Rms).
  • KLA-Tencor's Teron 6xx capable of inspecting defects with a size of 20 nm by SEVD
  • detection of pseudo defects is suppressed, and defect inspection is performed.
  • the reflective mask manufactured by the method of Example 5 did not have problems such as pattern drawing defects due to charge-up, reduction in mask pattern EB defect inspection sensitivity, and generation of pseudo defects. As a result, a 20 nm pattern defect could be detected on the mask. Moreover, since the multilayer reflective film 5 is formed on the extremely smooth film by the conductive base film 4 having a smooth surface, the number of defects of the multilayer reflective film with the protective film is as few as six, and high quality from the viewpoint of defects. It was possible to manufacture a reflective mask having In addition, the reflective mask produced in Example 5 is a low-defective mask in which the multilayer reflective film 5 has few phase defects and a high-sensitivity mask pattern EB defect inspection has been performed.
  • the reflectance of light with a wavelength of 130 nm to 400 nm in the light shielding band 11 was 39%, and the out-of-band reflected light from the light shielding band 11 could be slightly suppressed.
  • Example 6 has the same structure and method as Example 4 except that the material of the uppermost layer 32 of the laminated conductive base film 3 is changed from TaN to TaO in Example 4 and the film thickness thereof is changed.
  • a reflective mask blank, a reflective mask, and a semiconductor device were manufactured.
  • TaO (Ta: 42 atomic%, O: 58 atomic%) was used as the uppermost layer 32, and the film thickness was changed to 1 nm, 4 nm, 6 nm, 8 nm, and 10 nm.
  • These films were formed by DC sputtering in a mixed gas atmosphere of Ar gas and O 2 gas using a Ta target.
  • the sheet resistance of the laminated conductive base film 3 was 2000 ⁇ / ⁇ or less, and the sheet resistance necessary for preventing charge-up in the mask pattern EB defect inspection. Secured.
  • the surface roughness measured in the same manner as in Example 2 was 0.15 nm (Rms) or less.
  • the reflectance with respect to EUV light, the number of defects, and the surface roughness were measured by the same measurement method as in Example 1.
  • the reflectance was 65% or more
  • the number of defects was 6 or less
  • the surface roughness was 0.16 nm (Rms) or less.
  • KLA-Tencor's Teron 6xx capable of inspecting defects with a size of 20 nm by SEVD
  • the reflective mask manufactured by the method of Example 6 did not have problems such as pattern drawing defects due to charge-up, reduced mask pattern EB defect inspection sensitivity, and generation of pseudo defects. As a result, a 20 nm pattern defect could be detected on the mask.
  • the multilayer reflective film 5 is formed on the extremely smooth film by the conductive base film 4 having a smooth surface, the number of defects in the multilayer reflective film with a protective film is as few as six, which is high from the viewpoint of defects. A reflective mask with quality could be manufactured.
  • the reflective mask created in Example 6 is a low-defective mask in which the multilayer reflective film 5 has few phase defects and a high-sensitivity mask pattern EB defect inspection has been performed. There were also few resist pattern defects.
  • the out-of-band reflected light is evaluated by the maximum reflectance in the wavelength range from 190 nm to 280 nm that does not transmit through the substrate 1 and the maximum reflectance in the wavelength range from 281 nm to 320 nm that transmits through the substrate 1. It was.
  • the film thickness of the uppermost layer 32 is 1 nm, 4 nm, 6 nm, 8 nm, and 10 nm
  • the reflectivity with respect to light with a wavelength of 190 nm to 280 nm in the light shielding zone 11 is 13%, 19%, 22%, 25%, and 28%, respectively.
  • the reflectance for light with a wavelength of 281 nm to 320 nm was 26%, 24%, 23%, 23%, and 22%, respectively, and the out-of-band reflected light from the light shielding zone 11 was sufficiently small, and the transfer accuracy was high. . For this reason, a semiconductor device having desired characteristics could be manufactured with a high yield.
  • Example 7 has the same structure and method as Example 4 except that the material of the uppermost layer 32 of the laminated conductive base film 3 is changed from TaN to TaON in Example 4 and the film thickness thereof is changed.
  • a reflective mask blank, a reflective mask, and a semiconductor device were manufactured.
  • TaON Ta: 38 atomic%, O: 52 atomic%, N: 10 atomic%) was used as the uppermost layer 32, and the film thickness was changed to 1 nm, 4 nm, 6 nm, 8 nm, and 10 nm.
  • This film was formed by DC sputtering using a Ta target in a mixed gas atmosphere of Ar gas, O 2 gas, and N 2 gas.
  • the sheet resistance of the laminated conductive base film 3 was 2000 ⁇ / ⁇ or less, and the sheet resistance necessary for preventing charge-up in the mask pattern EB defect inspection. Secured.
  • the surface roughness measured in the same manner as in Example 2 was 0.15 nm (Rms) or less.
  • the reflectance with respect to EUV light, the number of defects, and the surface roughness were measured by the same measurement method as in Example 1.
  • the reflectance was 65% or more
  • the number of defects was 6 or less
  • the surface roughness was 0.16 nm (Rms) or less.
  • KLA-Tencor's Teron 6xx capable of inspecting defects with a size of 20 nm by SEVD
  • the reflective mask manufactured by the method of Example 7 did not have problems such as pattern drawing defects due to charge-up, reduction in mask pattern EB defect inspection sensitivity, and generation of pseudo defects. As a result, a 20 nm pattern defect could be detected on the mask.
  • the multilayer reflective film 5 is formed on the extremely smooth film by the conductive base film 4 having a smooth surface, the number of defects in the multilayer reflective film with a protective film is as few as six, which is high from the viewpoint of defects. A reflective mask with quality could be manufactured.
  • the reflective mask created in Example 7 is a low-defective mask in which the multilayer reflective film 5 has few phase defects and a high-sensitivity mask pattern EB defect inspection has been performed. There were also few resist pattern defects.
  • the wavelength of 190 nm to 280 nm in the light-shielding band portion 11 when the film thickness of the uppermost layer 32 was 1 nm, 4 nm, 6 nm, 8 nm, and 10 nm.
  • the reflectance for light is 14%, 19%, 23%, 26% and 28%, respectively, and the reflectance for light with a wavelength of 281 nm to 320 nm is 26%, 24%, 25%, 26% and 27%, respectively.
  • the out-of-band reflected light from the light shielding band 11 was sufficiently small, and the transfer accuracy was high. For this reason, a semiconductor device having desired characteristics could be manufactured with a high yield.
  • Example 8 is a reflective mask blank in which a single-layer conductive base film 4 is formed of a Ru film having a thickness of 3 nm.
  • the configuration is the same as that of the first embodiment except for the conductive base film 4.
  • the conductive base film 4 is formed by performing ion beam sputtering using a Ru target in an Ar gas atmosphere, and the main surface (first surface) of the substrate 1 opposite to the side on which the back surface conductive film 2 is formed. (1 main surface) was performed by forming a Ru film having a thickness of 3 nm.
  • the Ru sputtered particles were incident at an angle of 30 degrees with respect to the normal of the main surface of the substrate 1.
  • the sheet resistance of the conductive base film 4 was 500 ⁇ / ⁇ , which prevented charge-up prevention in the mask pattern EB defect inspection.
  • the sheet resistance was sufficiently low.
  • the reflectance with respect to EUV light, the substrate flatness on the side where the multilayer reflective film 5 and the protective film 6 are formed, and the number of defects I investigated.
  • the surface roughness surface smoothness
  • the reflectance was 64%
  • the substrate flatness was 500 nm
  • the number of defects was 5, and the surface roughness was 0.14 nm (Rms).
  • the number of defects was measured on a 132 mm ⁇ 132 mm area excluding the peripheral area of the substrate 1 using a defect inspection apparatus (Mask Substrate / Blank Defect Inspection Apparatus M1350, manufactured by Lasertec Corporation).
  • the surface roughness was measured using an atomic force microscope (AFM) for a 1 ⁇ m ⁇ 1 ⁇ m region at the center of the substrate.
  • AFM atomic force microscope
  • the production of the reflective mask using the reflective mask blank of Example 8 is the same as the production method of Example 1, but the formation of the light shielding band portion 11 using the light shielding band resist pattern 9a as a mask (FIG. 4G ) To (f)) are as follows.
  • the multilayer reflective film 5 was dry-etched using to form a second pattern in which the light-shielding band portion 11 was formed (FIG. 4H). As shown in FIG.
  • the second pattern includes a second absorber pattern 7b composed of a two-layer pattern of an upper layer absorber pattern 72b and a lower layer absorber pattern 71b, a protective film pattern 6b, And the multilayer reflective film pattern 5b.
  • the conductive base film 4 is a Ru thin film having a thickness of 3 nm as described above, but this material has an extremely high etching stopper function with respect to Cl 2 gas, and the film thickness can be reduced only slightly. Conductivity is ensured.
  • the shading band resist pattern 9a is removed by ashing or a resist stripping solution, and sulfuric acid / hydrogen peroxide (SPM) cleaning and wet cleaning using an alkaline aqueous solution are performed to manufacture a reflective mask.
  • SPM sulfuric acid / hydrogen peroxide
  • the reflective mask manufactured by the method of Example 8 did not have problems such as pattern drawing defects due to charge-up, reduced mask pattern EB defect inspection sensitivity, and generation of pseudo defects. As a result, a 20 nm pattern defect could be detected on the mask.
  • the multilayer reflective film 5 is formed on the very smooth film by the conductive base film 4 having a smooth surface, the multilayer reflective film with the protective film has few defects, and high quality from the viewpoint of defects. It was possible to manufacture a reflective mask having
  • Example 9 the material of the conductive base film 4 and the protective film 6 is changed from Ru to RuTi in Example 8, and the annealing temperature after forming the protective film 6 is changed from 130 ° C. to 150 ° C. in Example 1.
  • the reflective mask blank is replaced. The rest is the same as that of the eighth embodiment, including the reflective mask manufacturing method and the semiconductor device manufacturing method.
  • Example 9 RuTi having a film thickness of 2 nm was used as the conductive base film 4.
  • This film was formed by an ion beam sputtering method using a RuTi (Ru: 95 atomic%, Ti: 5 atomic%) target in an Ar gas atmosphere.
  • RuTi Ru: 95 atomic%, Ti: 5 atomic%) target in an Ar gas atmosphere.
  • the sputtered particles made of Ru and Ti were incident at an angle of 30 degrees with respect to the normal line of the main surface of the substrate 1.
  • the sheet resistance was measured using a sample prepared up to the conductive base film 4 in the same process, the sheet resistance of the conductive base film 4 was 1200 ⁇ / ⁇ , which prevented charge-up prevention in the mask pattern EB defect inspection. The necessary sheet resistance was secured.
  • the protective film 6 in Example 9 is RuTi with a film thickness of 2.5 nm. In order to prevent oxidation, this film is not opened to the atmosphere in the middle, and the conductive base film 4 made of RuTi, and the multilayer reflective film 5 in which 40 layers of Mo and Si films are alternately laminated, are all subjected to a vacuum. The film was continuously formed below.
  • the film forming method is an ion beam sputtering method using a RuTi (Ru: 95 atomic%, Ti: 5 atomic%) target in an Ar gas atmosphere.
  • RuTi Ru: 95 atomic%, Ti: 5 atomic%
  • the sputtered particles made of Ru and Ti were incident at an angle of 30 degrees with respect to the normal line of the main surface of the substrate 1. Thereafter, annealing at 150 ° C. was performed in a state where the protective film 6 was formed on the multilayer reflective film 5.
  • the reflectivity with respect to EUV light, the substrate flatness, and the number of defects by a laser substrate mask substrate / blank defect inspection apparatus are examined. It was.
  • the surface roughness of the sample prepared in the same process up to this stage was measured. As a result, the reflectance was 65%, the substrate flatness was 350 nm, the number of defects was 4, and the surface roughness was 0.14 nm (Rms).
  • the method for measuring the number of defects and the surface roughness is the same as in the first embodiment.
  • the reflective mask manufactured by the method of Example 9 did not have problems such as pattern drawing defects due to charge-up, reduced mask pattern EB defect inspection sensitivity, and generation of pseudo defects. As a result, a 20 nm pattern defect could be detected on the mask.
  • the multilayer reflective film 5 is formed on the very smooth film by the conductive base film 4 having a smooth surface, the multilayer reflective film with the protective film has few defects, and high quality from the viewpoint of defects. It was possible to manufacture a reflective mask having
  • the reflective mask created in Example 9 is a low-defective mask in which the multilayer reflective film 5 has few phase defects and a high-sensitivity mask pattern EB defect inspection has been performed. There were also few resist pattern defects. For this reason, a semiconductor device having desired characteristics could be manufactured with a high yield.
  • Example 10 is the same as Example 8 except that the buffer film 10 made of Si was formed between the substrate 1 and the conductive base film 4, and the film thickness of the conductive base film 4 made of Ru was changed to 2 nm.
  • a reflective mask blank, a reflective mask, and a semiconductor device were manufactured with the same structure and method.
  • Example 10 is a mask blank in which the buffer film 10 is formed on the first main surface of the substrate 1.
  • the buffer film 10 has a thickness of 30 nm, and was formed by an ion beam sputtering method using a Si target in Ar gas. Here, the Si sputtered particles were incident at an angle of 30 degrees with respect to the normal of the main surface of the substrate 1.
  • a conductive base film 4 made of Ru was formed on the buffer film 10 in the same manner as in Example 8. The difference from Example 8 is only the film thickness. In Example 8, the thickness of the conductive base film 4 was 3 nm, but in Example 10, it was 2 nm.
  • the conductive base film 4 is formed by an ion beam sputtering method using a Ru target in an Ar gas atmosphere, and the sputtered particles made of Ru are 30 degrees with respect to the normal line of the main surface of the substrate 1. Incident at an angle.
  • the sheet resistance was measured using a sample prepared up to the conductive base film 4 in the same process, the sheet resistance of the laminated film composed of the buffer film 10 and the conductive base film 4 was 800 ⁇ / ⁇ , and the mask pattern EB defect The sheet resistance necessary to prevent charge-up of inspection was secured.
  • the multilayer reflective film 5 and the protective film 6 are formed by the same material and method as in Example 1, and the reflectance with respect to EUV light and the substrate flatness are compared with the multilayer reflective film substrate on which the protective film 6 at this stage is formed.
  • the number of defects was examined using a mask substrate / blanks defect inspection apparatus (M1350) manufactured by Lasertec.
  • the surface roughness of the sample prepared in the same process up to this stage was measured.
  • the annealing temperature after the protective film 6 is formed is 130 ° C. as in the first embodiment.
  • the reflectivity was 64%
  • the substrate flatness was 500 nm
  • the number of defects was 6, and the surface roughness was 0.14 nm (Rms).
  • the same results as in Example 8 were obtained.
  • the method for measuring the number of defects and the surface roughness is the same as in the first embodiment.
  • the defect inspection using a high-sensitivity defect inspection apparatus KLA-Tencor's Teron 6xx
  • the detection of pseudo defects is suppressed, and defect inspection is performed.
  • the reflective mask manufactured by the method of Example 10 did not have problems such as pattern drawing defects due to charge-up, reduction in mask pattern EB defect inspection sensitivity, and generation of pseudo defects. As a result, a 20 nm pattern defect could be detected on the mask. Moreover, since the multilayer reflective film 5 is formed on the extremely smooth film by the conductive base film 4 having a smooth surface, the number of defects of the multilayer reflective film with the protective film is as few as six, and high quality from the viewpoint of defects. It was possible to manufacture a reflective mask having
  • the reflective mask created in Example 10 is a low defect mask with few phase defects of the multilayer reflective film 5 and high sensitivity mask pattern EB defect inspection. There were also few resist pattern defects. For this reason, a semiconductor device having desired characteristics could be manufactured with a high yield.
  • Example 11 the buffer film 10 made of a multilayer film composed of Si and Mo was formed between the substrate 1 and the conductive base film 4, and the film thickness of the conductive base film 4 made of Ru was set to 2 nm.
  • a reflective mask blank, a reflective mask, and a semiconductor device were manufactured with the same structure and method as in Example 8 except for the changes.
  • Example 11 is a mask blank in which a buffer film 10 made of a multilayer film composed of Si and Mo is formed on the first main surface of the substrate 1.
  • the buffer film 10 was formed by alternately stacking Si layers and Mo layers on the substrate 1 by ion beam sputtering in an Ar gas atmosphere using an Si target and an Mo target.
  • the sputtered particles of Si and Mo were incident at an angle of 30 degrees with respect to the normal line of the main surface of the substrate 1.
  • a Si film was formed with a thickness of 4 nm, and then a Mo film was formed with a thickness of 3 nm. This was defined as one period, and 10 periods were laminated in the same manner.
  • a conductive base film 4 made of Ru was formed on the buffer film 10 made of the multilayer film by the same method as in Example 8. The difference from Example 8 is only the film thickness. In Example 8, the thickness of the conductive base film 4 was 3 nm, but in Example 11, it was 2 nm. Therefore, the conductive base film 4 is formed by an ion beam sputtering method using a Ru target in an Ar gas atmosphere, and the sputtered particles made of Ru are 30 degrees with respect to the normal line of the main surface of the substrate 1. Incident at an angle.
  • the sheet resistance of the multilayer film formed of the buffer film 10 made of a multilayer film and the conductive base film 4 was 100 ⁇ / ⁇ , The sheet resistance was sufficiently small to prevent charge-up in the mask pattern EB defect inspection.
  • the multilayer reflective film 5 and the protective film 6 are formed by the same material and method as in Example 1, and the reflectance with respect to EUV light and the substrate flatness are compared with the multilayer reflective film substrate on which the protective film 6 at this stage is formed.
  • the number of defects was examined using a mask substrate / blanks defect inspection apparatus (M1350) manufactured by Lasertec.
  • the surface roughness of the sample prepared in the same process up to this stage was measured.
  • the annealing temperature after the protective film 6 is formed is 130 ° C. as in the first embodiment. As a result, the reflectivity was 64%, the substrate flatness was 550 nm, the number of defects was 7, and the surface roughness was 0.14 nm (Rms).
  • Example 8 The same results as in Example 8 were obtained.
  • the method for measuring the number of defects and the surface roughness is the same as in the first embodiment.
  • the defect inspection using a high-sensitivity defect inspection apparatus KLA-Tencor's Teron 6xx capable of inspecting defects of 20 nm size by SEVD, the detection of pseudo defects is suppressed, and defect inspection is performed.
  • KLA-Tencor's Teron 6xx a high-sensitivity defect inspection apparatus
  • the reflective mask manufactured by the method of Example 11 did not have problems such as pattern drawing defects due to charge-up, reduced mask pattern EB defect inspection sensitivity, and generation of pseudo defects. As a result, a 20 nm pattern defect could be detected on the mask.
  • the multilayer reflective film 5 is formed on the very smooth film by the conductive base film 4 having a smooth surface, the multilayer reflective film with the protective film has few defects, and high quality from the viewpoint of defects. It was possible to manufacture a reflective mask having
  • the reflective mask produced in Example 11 is a low-defective mask in which the multilayer reflective film 5 has few phase defects and a high-sensitivity mask pattern EB defect inspection has been performed. There were also few resist pattern defects. For this reason, a semiconductor device having desired characteristics could be manufactured with a high yield.
  • Comparative example In the comparative example, a reflective mask blank and a reflective mask were manufactured by the same structure and method as in Example 1 except that a Ta film having a film thickness of 30 nm was used as the conductive base film 4. A semiconductor device was manufactured by the same method.
  • a Ta film with a film thickness of 30 nm was used as the conductive base film 4.
  • This film was formed by a sputtering method using a Ta target in an Ar gas atmosphere.
  • the sheet resistance of the conductive base film 4 was 70 ⁇ / ⁇ , which is necessary for preventing the charge-up in the EB mask inspection. Secured sheet resistance.
  • the multilayer reflective film 5 and the protective film 6 are formed by the same material and method as in Example 1, and the reflectance with respect to EUV light and the substrate flatness are compared with the multilayer reflective film substrate on which the protective film 6 at this stage is formed.
  • the number of defects was examined using a mask substrate / blanks defect inspection apparatus (M1350) manufactured by Lasertec. In addition, the surface roughness of the sample prepared in the same process up to this stage was measured.
  • the annealing temperature after the protective film 6 is formed is 130 ° C. as in the first embodiment. As a result, the reflectance was 60% and the substrate flatness was 800 nm. The number of defects was 10.
  • the surface roughness was 0.60 nm (Rms), which was 4.6 times or more that of Example 1.
  • the method for measuring the number of defects and the surface roughness is the same as in the first embodiment.
  • the reflective mask manufactured by the method of the comparative example did not cause problems such as pattern drawing defects due to EB charge-up and reduced sensitivity of the absorber pattern inspection.
  • the surface of the multilayer reflective film with a protective film is rough, and the defect inspection result of the multilayer reflective film 5 is saturated with pseudo defects, so that even the presence of phase defects and amplitude defects cannot be determined.
  • the reflective mask manufactured by the method of the comparative example is a mask whose defect quality cannot be guaranteed.
  • the reflectance of light with a wavelength of 130 nm to 400 nm in the light shielding zone 11 was 40%, and out-of-band reflected light from the light shielding zone 11 was recognized, and the pattern transfer accuracy was low due to the influence. Therefore, the yield of the semiconductor device manufactured using the reflective mask created in the comparative example was low.
  • the reflective mask is formed by setting the annealing temperature after forming the protective film 6 to higher temperatures (180 ° C., 200 ° C., 250 ° C., 300 ° C. (annealing time is appropriately adjusted)).
  • annealing time is appropriately adjusted

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 電子線によるマスク欠陥検査時のチャージアップを防止するとともに、平滑性の高い多層反射膜を持つ低欠陥な反射型マスクブランク、及び反射型マスクとその製造方法を提供する。 基板(1)上に導電性下地膜(4)と、露光光を反射する多層反射膜(5)と、露光光を吸収する吸収体膜(7)が積層されたEUVリソグラフィ用の反射型マスクブランク(100)であって、前記導電性下地膜は、前記多層反射膜と隣接して設けられた膜厚が1nm以上10nm以下のタンタル系材料又はルテニウム系材料の単層膜、あるいは前記多層反射膜と隣接して設けられた膜厚が1nm以上10nm以下のタンタル系材料層と該タンタル系材料層と前記基板との間に設けられた導電性材料層とを含む積層膜からなる反射型マスクブランク、及びそのマスクブランクを用いて製造された反射型マスクとする。また、その反射型マスクを用いて半導体装置を製造する。

Description

反射型マスクブランク及びその製造方法、反射型マスク及びその製造方法、並びに半導体装置の製造方法
 本発明は、半導体装置の製造などに使用される露光用マスクを製造するための原版である反射型マスクブランク及びその製造方法、この反射型マスクブランクを用いて製造される反射型マスク及びその製造方法、並びに半導体装置の製造方法に関する。
 半導体製造における露光装置の光源の種類は、波長436nmのg線、同365nmのi線、同248nmのKrFレーザ、同193nmのArFレーザと、波長を徐々に短くしながら進化してきており、より微細なパターン転写を実現するため、波長が13.5nm近傍の極端紫外線 (EUV:Extreme Ultra Violet)を用いたEUVリソグラフィが開発されている。EUVリソグラフィでは、EUV光に対して透明な材料が少ないことから、透過型マスクではなく、反射型のマスクが用いられる。この反射型マスクでは、低熱膨張基板上に露光光を反射する多層反射膜が形成され、当該多層反射膜を保護するための保護膜の上に、所望の転写用パターンが形成されたマスク構造を基本構造としている。
 転写用パターンには、EUV光を一定量反射させる位相シフト膜型(ハーフトーン位相シフト型)とEUV光を比較的強く吸収する吸収体膜型(バイナリー型)とがあるが、EUV光の吸収量が大きく、相対的に反射光が小さな吸収体膜型でも0.5%程度のEUV光を反射する。このため、EUV用反射型マスクでは、位相シフト膜型はもとより吸収体膜型でも、隣接して行われる露光からの露光光の反射の影響を十分低減するための専用の遮光帯を設ける必要がある。ここで、遮光帯とは、マスクの回路パターン領域を囲むように設けられた遮光枠(領域)であり、露光光が、ウエハ上のパターン転写されるブロックに隣接する領域、例えば隣に転写形成される回路パターン領域に漏れないようにするためのものである。この遮光帯部で十分に反射光を低減できない場合には、隣接領域に露光光が被り、その隣接領域内にあるパターンの解像度低下や、転写寸法精度の低下といった問題を引き起こして、歩留まり低下の原因となる。EUV用反射型マスクでは、単純に位相シフト膜や吸収体膜そのものだけで遮光帯を形成すると反射光が大きく、これらの問題を引き起こすので、十分な遮光性(十分な反射低減機能)を持った遮光帯が用いられる。
 EUVリソグラフィ用反射型マスクの代表的な遮光帯は、遮光帯部分の多層反射膜をエッチングする掘り込み型の遮光帯(以下、適宜「多層反射膜掘り込み遮光帯」という)である。この方法は、転写パターン用の吸収体膜上にさらに遮光帯用の吸収膜を積層させた吸収体積層型の遮光帯よりも、高精度転写用パターンの形成、欠陥発生の低減、及び積層遮光帯膜によるシャドーイング効果の防止という観点で有利である。
 このようなEUVリソグラフィ用の反射型マスク及びこれを作製するためのマスクブランクスに関連する技術は、特許文献1から特許文献4に開示されている。又、特許文献1には、遮光帯及びシャドーイング効果についても、開示されている。
特開2009-212220号公報 特開2010-080659号公報 特開2004-39884号公報 特開2005-268750号公報
 波長13.5nmのEUVリソグラフィはArFリソグラフィよりも、使用する光の波長が約1/15と桁違いに短いので、その解像度は極めて高い。その分、EUVリソグラフィ用の反射型マスクの致命欠陥のサイズは極めて小さい。
 EUVリソグラフィ用の反射型マスクの欠陥は、吸収体パターンや位相シフトパターンのパターン欠陥(以下、適宜「マスクパターン欠陥」という)と、多層反射膜の欠陥に大別される。
 極めて小さいサイズのマスクパターン欠陥を低減するためには、超微細パターンに対して極めて高い検査感度を有する電子線(EB)によるパターン欠陥検査(以下、適宜「マスクパターンEB欠陥検査」という)が必要になってきている。マスクパターンEB欠陥検査では、チャージアップを起こすと検査感度の低下や誤検出を起こすおそれがあるので、チャージアップを防止することが重要となる。しかしながら、多層反射膜掘り込み遮光帯型のEUVリソグラフィ用反射型マスクでは、導電体である吸収体膜や多層反射膜が遮光帯によって分断され、回路パターン形成部が電気的に孤立してしまいアースを確保できなくなるため、マスクパターンEB欠陥検査時の電子線照射によってチャージアップを起こすおそれがある。
 一方、多層反射膜の欠陥を低減するためには、多層反射膜直下の下地表面の平滑性を極めて高くする必要がある。その理由は、EUVリソグラフィ用反射型マスクには位相欠陥という透過型マスクにはなかった問題があるためである。多層反射膜直下の下地表面に微小な凹凸があると、それが源になってその上に形成される多層反射膜層に乱れ(うねり)が生じ、部分的に位相差が発生する。それに伴ってEUV光の反射率が部分的に変わって致命欠陥源となるおそれがあるからである。又、多層反射膜の欠陥低減のためには、多層反射膜の欠陥を極めて高い感度で検査する必要がある。このためには、検査時のノイズや疑似欠陥を低減する必要があり、多層反射膜表面の平滑性も高いものが要求される。
 又、露光源としてEUV光を用いた場合、アウトオブバンド(OoB:Out Of Band)光と呼ばれる真空紫外光及び紫外光(波長:130~400nm)が発生することが知られている。上述した多層反射膜掘り込み遮光帯型のEUVリソグラフィ用反射型マスクでは、遮光帯領域では基板が露出しているため、アウトオブバンド光は、基板面での反射や、基板を透過し、基板の裏面に設けられた導電膜による反射が生じてしまう。隣接した回路パターン領域は複数回露光されるため、反射したアウトオブバンド光の光量積算値は無視できない大きさとなり、配線パターンの寸法に影響を与えてしまうという問題が発生する。
 本発明は、上記の点に鑑み、電子線(EB)によるマスクパターン欠陥検査時のチャージアップを防止するとともに、位相欠陥が少なく、高い表面平滑性を有する多層反射膜を持ち、また、多層反射膜掘り込み部から反射してくるアウトオブバンド光が少なく、その結果、マスクパターンの転写精度が高くなる反射型マスクを製造するのに好適な反射型マスクブランクとその製造方法を提供することを目的とする。又、このマスクブランクを用いた反射型マスク及びその製造方法、並びに半導体装置の製造方法を提供することを目的とする。
 上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
 基板上に導電性下地膜と、露光光を反射する多層反射膜と、露光光を吸収する吸収体膜が積層された反射型マスクブランクであって、
 前記導電性下地膜は、前記多層反射膜と隣接して設けられ、膜厚が1nm以上10nm以下のタンタル系材料からなることを特徴とする反射型マスクブランク。
(構成2)
 基板上に導電性下地膜と、露光光を反射する多層反射膜と、露光光を吸収する吸収体膜が積層された反射型マスクブランクであって、
 前記導電性下地膜は、前記多層反射膜と隣接して設けられた膜厚が1nm以上10nm以下のタンタル系材料層と、該タンタル系材料層と前記基板との間に設けられた導電性材料層とを含む積層膜からなることを特徴とする反射型マスクブランク。
(構成3)
 前記タンタル系材料は、窒素及び酸素のうち少なくとも1つを含むことを特徴とする構成1又は2記載の反射型マスクブランク。
(構成4)
 前記多層反射膜上に保護膜が形成されており、該保護膜がルテニウム系材料からなることを特徴とする構成1乃至3のいずれか一つに記載の反射型マスクブランク。
(構成5)
 前記多層反射膜は、ケイ素を含有する第1の層とモリブデンを含有する第2の層とが交互に積層されてなり、前記導電性下地膜と接する多層反射膜の最下層は前記第1の層であることを特徴とする構成1乃至4のいずれか一つに記載の反射型マスクブランク。
(構成6)
 前記多層反射膜は、ケイ素を含有する第1の層とモリブデンを含有する第2の層とが交互に積層されてなり、前記導電性下地膜と接する多層反射膜の最下層は前記第2の層であることを特徴とする構成1乃至4のいずれか一つに記載の反射型マスクブランク。
(構成7)
 構成1及至6のいずれか一つに記載の反射型マスクブランクによって作製されることを特徴とする反射型マスク。
(構成8)
 構成1及至6のいずれか一つに記載の反射型マスクブランクを準備する工程と、
 前記吸収体膜上にレジストパターンを形成し、該レジストパターンをマスクにしてエッチングにより吸収体パターンを形成する工程、又は前記吸収体膜上にエッチング用ハードマスク膜を形成した後にレジストパターンを形成し、該ハードマスクを介して該レジストパターンをエッチングにより吸収体膜に転写して吸収体パターンを形成する工程と、
 前記多層反射膜の一部を酸素ガスを含む塩素系ガスによってドライエッチングする工程と、を含むことを特徴とする反射型マスクの製造方法。
(構成9)
 前記多層反射膜の一部をエッチングする場所は、回路パターン領域を取り囲むように設けられた遮光帯領域であることを特徴とする構成8記載の反射型マスクの製造方法。
(構成10)
 前記多層反射膜上にルテニウム系材料からなる保護膜が形成されており、該保護膜及び多層反射膜を連続してドライエッチングすることを特徴とする構成8又は9記載の反射型マスクの製造方法。
(構成11)
 構成7に記載の反射型マスク、又は構成8乃至10のいずれか一つに記載の反射型マスクの製造方法によって製造された反射型マスクを用いて、該反射型マスク上に形成されているパターンを、半導体基板上に形成されたレジスト膜に露光転写する工程を備えることを特徴とする半導体装置の製造方法。
(構成12)
 基板上に導電性下地膜と、露光光を反射する多層反射膜と、露光光を吸収する吸収体膜が積層された反射型マスクブランクであって、
 前記導電性下地膜は、前記多層反射膜と隣接して設けられ、膜厚が1nm以上10nm以下のルテニウム系材料からなることを特徴とする反射型マスクブランク。
(構成13)
 前記導電性下地膜と前記基板との間に、前記基板表面の欠陥又は粗さから生じる前記多層反射膜表面への悪影響を緩和する緩衝膜を備えることを特徴とする構成12記載の反射型マスクブランク。
(構成14)
 前記多層反射膜上に保護膜が形成されており、該保護膜がルテニウム系材料からなることを特徴とする構成12又は13記載の反射型マスクブランク。
(構成15)
 前記ルテニウム系材料は、チタンを含むことを特徴とする構成14記載の反射型マスクブランク。
(構成16)
 基板上にスパッタリング法によって導電性下地膜を形成する導電性下地膜形成工程と、
 前記導電性下地膜と隣接して、露光光を反射する多層反射膜を形成する多層反射膜形成工程と、
 露光光を吸収する吸収体膜を形成する吸収体膜形成工程とを順次行って製造する反射型マスクブランクの製造方法であって、
 前記導電性下地膜は、膜厚が1nm以上10nm以下のルテニウム系材料からなることを特徴とする反射型マスクブランクの製造方法。
(構成17)
 前記導電性下地膜は、イオンビームスパッタリング法によって形成されることを特徴とする構成16記載の反射型マスクブランクの製造方法。
(構成18)
 前記導電性下地膜は、該導電性下地膜を構成する材料のスパッタ粒子を基板主表面の法線に対して45度以下の角度で入射させることによって形成されることを特徴とする構成16又は17記載の反射型マスクブランクの製造方法。
(構成19)
 前記導電性下地膜形成工程と前記多層反射膜形成工程は、減圧真空下において連続して実施されることを特徴とする構成16及至構成18のいずれか一つに記載の反射型マスクブランクの製造方法。
(構成20)
 前記多層反射膜形成工程の後に、該多層反射膜上に保護膜を形成する工程を有し、該保護膜がルテニウム系材料からなることを特徴とする構成16及至構成19のいずれか一つに記載の反射型マスクブランクの製造方法。
(構成21)
 前記ルテニウム系材料は、チタンを含むことを特徴とする構成20記載の反射型マスクブランクの製造方法。
(構成22)
 前記多層反射膜上に保護膜が形成された状態で、100℃以上300℃以下でアニール処理することを特徴とする構成20又は21記載の反射型マスクブランクの製造方法。
(構成23)
 構成12及至構成15のいずれか一つに記載の反射型マスクブランクを準備する工程と、
 前記吸収体膜上にレジストパターンを形成し、該レジストパターンをマスクにしてエッチングにより吸収体パターンを形成する工程、又は前記吸収体膜上にエッチング用ハードマスク膜を形成した後にレジストパターンを形成し、該ハードマスクを介して該レジストパターンをエッチングにより吸収体膜に転写して吸収体パターンを形成する工程と、
 前記多層反射膜の一部をエッチングする工程と、
 を含むことを特徴とする反射型マスクの製造方法。
(構成24)
 前記多層反射膜の一部をエッチングする場所は、回路パターン領域を取り囲むように設けられた遮光帯領域であることを特徴とする構成23記載の反射型マスクの製造方法。
(構成25)
 構成23又は24記載の反射型マスクの製造方法によって製造された反射型マスクを用いて、該反射型マスク上に形成されているパターンを、半導体基板上に形成されたレジスト膜に露光転写する工程を備えることを特徴とする半導体装置の製造方法。
 本発明の反射型マスクブランクによれば、多層反射膜に隣接して基板上に膜厚が1nm以上のタンタル系材料又はルテニウム系材料からなる導電性下地膜、あるいは多層反射膜に隣接して形成されたタンタル系材料からなるタンタル系材料膜(層)と該タンタル系材料膜と基板との間に形成された導電膜(層)からなる導電性積層下地膜を備えることにより、回路パターン形成領域は電気的に孤立することなくアースを確保することができて、電子線(EB)によるマスクパターン欠陥検査時のチャージアップを防止できる。このため、高感度で安定的なマスクパターンEB欠陥検査を行うことが可能となる。
 ここで、タンタル系材料は、多層反射膜のエッチングに用いられる酸素ガスを含む塩素系ガスによるドライエッチングに対して高いドライエッチング耐性を有する。多層反射膜の一部を、酸素ガスを含む塩素系ガスによりエッチングして遮光帯部を形成する際、タンタル系材料は殆どエッチングされないので、膜厚が1nm以上のタンタル系材料でマスクパターンEB欠陥検査に必要な導電率を確保することができる。
 又、上記導電性下地膜又は導電性積層下地膜におけるタンタル系材料膜又はルテニウム系材料の膜厚を10nm以下で構成したので、グレインを小さくすることができ、高い平滑性を持たせることができるため、その上に形成される多層反射膜は位相欠陥の少ないものとなる。加えて、多層反射膜表面の平滑性も高いものとなるため、多層反射膜の欠陥を検査する際にも疑似欠陥が少なく、高い感度で多層反射膜の欠陥検査を行うことができる。
 加えて、タンタル系材料膜の場合には、その膜厚を10nm以下とすることにより、遮光帯部等の多層反射膜がエッチング除去されて該タンタル系材料膜が露出した領域におけるアウトオブバンド光に対する反射率が、露光転写に悪影響を与えない十分小さなものになる。
 本発明の反射型マスクの製造方法によれば、マスクパターンも多層反射膜も高い感度で欠陥検査を行うことができ、且つ多層反射膜の位相欠陥が少ないため、欠陥の少ないマスクを製造することができる。又、この反射型マスクを用いてEUVリソグラフィを行えば、転写欠陥の少ない半導体装置の製造方法を提供することが可能になる。
本発明に係る第1のEUVリソグラフィ用反射型マスクブランクの概略構成を説明するための要部断面構成図である。 本発明に係る第2のEUVリソグラフィ用反射型マスクブランクの概略構成を説明するための要部断面構成図である。 本発明に係る第4のEUVリソグラフィ用反射型マスクブランクの概略構成を説明するための要部断面構成図である。 本発明に係る第1のEUVリソグラフィ用反射型マスクブランクから、EUVリソグラフィ用反射型マスクを作製する工程を要部断面図にて示した工程図である。 本発明に係るEUVリソグラフィ用反射型マスクの概要構造を説明するための要部平面図である。 Ru導電膜の電気的特性を膜厚とシート抵抗の関係から示す特性図である。
 以下、本発明の実施形態について、図面を参照しながら具体的に説明する。なお、以下の実施形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。なお、図中、同一又は相当する部分には同一の符号を付してその説明を簡略化ないし省略することがある。
<反射型マスクブランクの構成及びその製造方法>
 図1は、本発明に係る第1のEUVリソグラフィ用反射型マスクブランクの構成を説明するための要部断面図である。同図に示されるように、反射型マスクブランク100は、基板1と、第1主面(表面)側に形成された膜厚が1nm以上10nm以下のタンタル系材料からなる導電性下地膜4と、露光光であるEUV光を反射する多層反射膜5と、当該多層反射膜5を保護するためのルテニウム(Ru)を主成分とした材料で形成される保護膜6と、EUV光を吸収する吸収体膜7と、を有し、これらがこの順で積層されるものである。又、基板1の第2主面(裏面)側には、静電チャック用の裏面導電膜2が形成される。
 図2は、本発明に係る第2のEUVリソグラフィ用反射型マスクブランクの構成を説明するための要部断面図である。第1のEUVリソグラフィ用反射型マスクブランクの構成との違いは、第2の構成では、第1の構成の膜厚が1nm以上10nm以下のタンタル系材料からなる単層の導電性下地膜4の代わりに複数層(図2中では代表して2層の場合を図示)からなる積層型導電性下地膜3が形成されていることで、その他は第1の反射型マスクブランクの構成と同じである。ここで、積層型導電性下地膜3の最上層32、すなわち多層反射膜5に接する層は膜厚が1nm以上10nm以下のタンタル系材料からなり、最上層32と基板1の間に形成される膜は導電性材料層(導電膜31)である。最上層32は、多層反射膜5のエッチングに対して耐性を有していればよいが、導電性を有していてもよい。導電膜31は単層の導電膜であっても良いし、複数層からなる導電膜であっても良い。
 第2のEUVリソグラフィ用反射型マスクブランク101では、多層反射膜5を加工する時のエッチングストッパ機能を最上層32に持たせることにより、導電膜31を導電機能に特化させた積層型導電性下地膜3とすることができる。このことにより、第1のEUVリソグラフィ用反射型マスクブランクより導電率の調整範囲が拡がり、高い導電率を得ることが可能になるので、電流値の高い電子線(EB)によるマスクパターン欠陥検査においても余裕を持ってチャージアップを防止できる。このため、検査感度のさらなる向上やマスクパターン欠陥検査のスループットの向上に好適である。一方、第1のEUVリソグラフィ用反射型マスクブランク100では、導電性下地膜4が単層膜であるため、製造プロセスが簡略化され、生産性が高いという特徴がある。
 本発明に係る第3のEUVリソグラフィ用反射型マスクブランクは、第1のEUVリソグラフィ用反射型マスクブランク(図1)に対し、導電性下地膜4が、膜厚が1nm以上10nm以下のルテニウム系材料からなっている点で相違し、その他は第1のEUVリソグラフィ用反射型マスクブランクと同様の構成である。
 図3は、本発明に係る第4のEUVリソグラフィ用反射型マスクブランクの構成を説明するための要部断面図である。第3のEUVリソグラフィ用反射型マスクブランクの構成との違いは、第4の構成では基板1と導電性下地膜4の間に表面平滑性を上げるための緩衝膜10が形成されていることで、その他は第3の反射型マスクブランクの構成と同じである。第4のEUVリソグラフィ用反射型マスクブランク102では、緩衝膜10により、高い平滑性の面上で多層反射膜5の形成を行うことができるので、位相欠陥の少ない多層反射膜5を形成することが可能となる。
 以下、各層ごとに説明をする。
<<基板>>
 基板1は、EUV露光時の熱による吸収体パターン歪みの発生を防止するため、0±5ppb/℃の範囲内の低熱膨張係数を有するものが好ましく用いられる。この範囲の低熱膨張係数を有する素材としては、例えば、SiO-TiO系ガラス、多成分系ガラスセラミックス等を用いることができる。
 基板1の転写パターン(後述の吸収体膜7がこれを構成する)が形成される側の第1主面は、少なくともパターン転写精度、位置精度を得る観点から高平坦度となるように表面加工されている。EUV露光の場合、基板1の転写パターンが形成される側の主表面の132mm×132mmの領域において、平坦度が0.1μm以下であることが好ましく、更に好ましくは0.05μm以下、特に好ましくは0.03μm以下である。又、吸収体膜7が形成される側と反対側の第2主面は、露光装置にセットするときに静電チャックされる面であって、132mm×132mmの領域において、平坦度が0.1μm以下であることが好ましく、更に好ましくは0.05μm以下、特に好ましくは0.03μm以下である。なお、反射型マスクブランクにおける第2主面の平坦度は、142mm×142mmの領域において、平坦度が1μm以下であることが好ましく、更に好ましくは0.5μm以下、特に好ましくは0.3μm以下である。
 又、基板1の表面平滑性の高さも極めて重要な項目であり、転写用吸収体パターンが形成される第1主面の表面粗さは、二乗平均平方根粗さ(Rms)で0.15nm以下、さらに好ましくはRmsで0.10nm以下であることが好ましい。なお、表面平滑性は、原子間力顕微鏡で測定することができる。
 さらに、基板1は、その上に形成される膜(多層反射膜5など)の膜応力による変形を防止するために、高い剛性を有しているものが好ましい。特に、65GPa以上の高いヤング率を有しているものが好ましい。
<<導電性下地膜>>
 導電性下地膜は、基板1と多層反射膜5の間に、多層反射膜5と接触するように形成された膜である。
<<<導電性下地膜がタンタル系材料からなる場合>>>
 図1の反射型マスクブランク100に示すように、単層の導電性下地膜4の場合と、図2の反射型マスクブランク101に示すように、複数層からなる積層型導電性下地膜3の場合がある。ここで、単層の導電性下地膜4の場合も、複数層からなる積層型導電性下地膜3の場合も、多層反射膜5に接する膜(層)は、膜厚が1nm以上10nm以下のタンタル系材料からなる。膜厚が1nm以上10nm以下のタンタル系材料は、必要な導電性を有する他、応力も十分小さい。
 繰り返しになるが、導電性下地膜4及び積層型導電性下地膜3の最上層32は、多層反射膜5と隣接して設けられ、タンタル(Ta)系材料からなっており、その膜厚は1nm以上10nm以下である。
 Taは、酸素ガスを含む塩素系ガスによるドライエッチングに対して極めて高いドライエッチング耐性を示す。このため、多層反射膜5の一部を、酸素ガスを含む塩素系ガスによりエッチングして遮光帯部11を形成する時に、Ta系材料からなる導電性下地膜4及び積層型導電性下地膜3の最上層32は殆どエッチングされず、その膜厚の減少は無視できるレベルにある。この導電性下地膜4及び積層型導電性下地膜3の最上層32の高いエッチング耐性と、Taの導電性から、Ta系材料の膜厚が1nm以上で、チャージアップ防止に必要な導電性が得られる。導電性下地膜4の場合、単層膜で十分な導電性を得るためには、好ましくは3nm以上、より好ましくは4nm以上である。
 又、Ta系材料からなる導電性下地膜4及び積層型導電性下地膜3の最上層32の膜厚が10nm以下であるとグレインが小さいため、Ta系材料表面の平滑性は十分に高く、その上に形成される多層反射膜5の平滑性も向上して位相欠陥発生を抑制できる。この多層反射膜5の平滑性は、多層反射膜5の欠陥検査における疑似欠陥の抑制にも効果がある。加えて、アウトオブバンド光に対する反射率は、タンタル系材料膜の膜厚を10nm以下とすることにより、露光転写に悪影響を与えない十分小さなものになる。アウトオブバンド光をできるだけ抑制するためには、5nm以下が好ましく、3nm以下がより好ましい。例えば、タンタル膜の膜厚が3nmの場合、波長130nmから400nmの光に対する反射率は17%となる。
 導電性下地膜4及び積層型導電性下地膜3の最上層32の形成方法としては、スパッタリング法が用いられる。特に、イオンビームスパッタ法を用いると、導電性下地膜4の表面平滑性を向上できるため好ましい。さらに、導電性下地膜4及び積層型導電性下地膜3の最上層32を構成する材料(この場合はTa)のスパッタ粒子を、基板1の主表面の法線に対して45度以下の角度で入射させると、表面平滑性をさらに一層向上できるためより好ましい。
 導電性下地膜4及び積層型導電性下地膜3の最上層32は、タンタルを主成分として含む材料により構成され、Ta金属単体でも良いし、Taにチタン(Ti)、ニオブ(Nb)、モリブデン(Mo)、ジルコニウム(Zr)、イットリウム(Y)、ホウ素(B)、ランタン(La)、コバルト(Co)、レニウム(Re)等の金属を含有したTa合金であっても良い。
 このTa合金のTa含有比率は50原子%以上100原子%未満、好ましくは80原子%以上100原子%未満、さらに好ましくは95原子%以上100原子%未満である。特に、95原子%以上100原子%未満では、マスク洗浄耐性や多層反射膜5をエッチング加工した時のエッチングストッパ機能が優れる。
 導電性下地膜4及び積層型導電性下地膜3の最上層32は、窒素(N)を含むタンタル化合物が好ましい。タンタル化合物としては、Ta金属単体又は上記Ta合金とNの他に、O、Bを加えてもよい。窒素の含有量は10原子%以上30原子%以下が好ましい。窒素を含有させると微結晶膜となるため、導電性下地膜4及び積層型導電性下地膜3の最上層32の表面粗さを小さくでき、表面平滑性を向上できる。一方、窒素の含有比率が高すぎると、表面粗さの大きい多結晶膜となる。又、Taは酸化しやすい元素であるため、窒素を含有させることによって、Ta単体と比較して、マスク洗浄耐性が向上する。さらに、Ta単体に比べ、アウトオブバンド光の反射率を低減することが可能となる。
 アウトオブバンド光をさらに低減させるためには、積層型導電性下地膜3の最上層32は、酸素(O)を含むタンタル化合物(TaO、TaON等)とすることが好ましい。酸素の含有量は50原子%以上が好ましい。また、基板1を透過しない280nm以下の波長のアウトオブバンド光は、積層型導電性下地膜3の膜厚が薄いほど反射率を小さくできるので、膜厚は1~6nmがより好ましい。一方、基板1を透過して裏面導電膜2によって反射される280nm超の波長のアウトオブバンド光は、例えばTaOの場合には、積層型導電性下地膜3の膜厚が厚いほど反射率を小さくできる傾向があるので、膜厚は4nm~10nmがより好ましい。
 積層型導電性下地膜3の最上層32は、エッチングストッパ機能を持たせることに特化させる場合には、導電性下地膜4の材料や後述の積層型導電性下地膜3の導電膜31の材料と比較して、導電性の低い酸素(O)、窒素(N)を含むタンタル化合物からなる材料を用いることができる。
 積層型導電性下地膜3を構成する導電膜31(導電性材料層)は、その膜の表面が平滑で導電性が高い膜であれば特に制限はない。例えば、タンタル(Ta)、ルテニウム(Ru)、チタン(Ti)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、ロジウム(Rh)、白金(Pt)、ジルコニウム(Zr)、ニオブ(Nb)、イットリウム(Y)、ホウ素(B)、ランタン(La)、コバルト(Co)、レニウム(Re)などの金属単体でも良いし、Taにチタン(Ti)、ニオブ(Nb)、モリブデン(Mo)、ジルコニウム(Zr)、イットリウム(Y)、ホウ素(B)、ランタン(La)、コバルト(Co)、レニウム(Re)等の金属を含有したTa合金でもよいし、Ruにチタン(Ti)、ニオブ(Nb)、モリブデン(Mo)、ジルコニウム(Zr)、イットリウム(Y)、ホウ素(B)、ランタン(La)、コバルト(Co)、レニウム(Re)等を含有したRu合金等の合金であっても良い。又、これらの金属あるいは合金に窒素を添加することも導電膜31の表面粗さを低減し、平滑性を高める上で好ましい。なお、導電膜31の上に形成されている最上層32が多層反射膜5をエッチングする時のエッチングストッパになるので、導電膜31は、エッチング特性に留意する必要は特にない。
 積層型導電性下地膜3を構成する導電膜31の膜厚は、最上層32と合わせた導電率が要求値を満たし、且つ表面平滑性の許容値を満たすように設定する。イオンビームスパッタ法等の粒径の細かな成膜法によって導電膜31が形成される場合は、一般に、膜厚の下限は導電率の要求値によって定まり、膜厚の上限値は表面平滑性によって定まる。例えば、導電膜31をイオンビームスパッタ法で形成したRuとした場合は、導電膜31の膜厚は1nmから5nmが好ましい。
 積層型導電性下地膜3を構成する導電膜31の形成方法は当該技術分野において公知であるが、例えばイオンビームスパッタ法により成膜することで形成できる。又、導電膜31の平滑性向上のために、精密研磨を行ったりすることも有効である。又、導電膜31の膜応力が大きい場合には、マスクブランクの平坦化効果を目的に、導電膜31に対してアニール処理を行って膜応力調整することも効果的である。
<<<導電性下地膜がルテニウム系材料からなる場合>>>
 図1の反射型マスクブランク100に示すように、基板1上に直に形成される場合と、図3の反射型マスクブランク102に示すように、基板1上の緩衝膜10の直上に形成される場合がある。緩衝膜10が導電性を有する場合、緩衝膜10と導電性下地膜4を合わせて多層反射膜5にとっての導電性を有する下地膜となるが、ここでの導電性下地膜4は、多層反射膜5に接するように成膜された緩衝膜10上の膜として説明を行う。
 導電性下地膜4は、多層反射膜5と隣接して設けられ、ルテニウム(Ru)系材料からなっており、その膜厚は1nm以上10nm以下である。
 Ruは塩素系ガスによるドライエッチングに対して極めて高いドライエッチング耐性を示す。このため、多層反射膜5の一部を塩素系ガスによりエッチングして遮光帯部11を形成する時にRu系材料からなる導電性下地膜4は殆どエッチングされず、その膜厚の減少は無視できるレベルにある。この導電性下地膜4の高いエッチング耐性と、Ruの導電性から、Ru系材料からなる導電性下地膜4の膜厚が1nm以上で、チャージアップ防止に必要な導電性が得られる。参考までに、Ruのシート抵抗の膜厚依存性を図6に示す。膜厚が1nm未満になると急激に抵抗が増加する。
 又、Ru系材料からなる導電性下地膜4の膜厚が10nm以下であるとグレインが小さいため、Ru系材料表面の平滑性は十分に高く、その上に形成される多層反射膜5の位相欠陥発生を抑制できる。
 導電性下地膜4の形成方法としては、スパッタリング法が用いられる。特に、イオンビームスパッタ法を用いると、導電性下地膜4の表面平滑性を向上できるため好ましい。さらに、導電性下地膜4を構成する材料(この場合はRu)のスパッタ粒子を、基板1の主表面の法線に対して45度以下の角度で入射させると、表面平滑性をさらに一層向上できるためより好ましい。例えば、Ruスパッタ粒子を基板1の主表面の法線に対して50度の角度で入射させた場合には、Ru膜(2.5nm)の表面平滑性は0.15nm(Rms)となるが、25度の角度で入射させた場合には0.12nmに改善される。
 導電性下地膜4は、ルテニウムを主成分として含む材料により構成され、Ru金属単体でもよいし、Ruにチタン(Ti)、ニオブ(Nb)、モリブデン(Mo)、ジルコニウム(Zr)、イットリウム(Y)、ホウ素(B)、ランタン(La)、コバルト(Co)、レニウム(Re)などの金属を含有したRu合金であってよく、窒素を含んでいても構わない。
 このRu合金のRu含有比率は50原子%以上100原子%未満、好ましくは80原子%以上100原子%未満、さらに好ましくは95原子%以上100原子%未満である。特に、95原子%以上100原子%未満では、マスク洗浄耐性や多層反射膜5をエッチング加工した時のエッチングストッパ機能が優れる。
<<緩衝膜>>
 緩衝膜10は、その表面平滑性が極めて高い膜であり、その代表的な材料としては、ケイ素(Si)、多層膜、TaBN等がある。多層膜としては、多層反射膜5として用いられているMoとSiの積層膜が設備利用効率やその品質管理の面から好ましく用いられる。即ち、緩衝膜10として多層反射膜5と共用の材料を用いると、途中での大気開放工程を経ずに減圧真空下で、緩衝膜10、導電性下地膜4、多層反射膜5、及び保護膜6を続けて成膜できることから、真空処理の時間短縮効果とともに、異物付着防止及び各膜表面の酸化防止といった品質面でも効果がある。酸化膜が形成されると、塩素系ガスでエッチングする時にエッチング阻害(エッチングレートの低下)が起こる。
 SiとMoからなる多層膜の緩衝膜10において、多層膜の緩衝膜10から導電性下地膜4を続けて減圧真空下で成膜した場合は、基板1側からSiとMoをこの順に積層したSi/Moの積層構造を1周期として複数周期積層すると、導電性下地膜4と接する最上層が電気抵抗の低いMoとなるため、導電性下地膜4と相まってチャージアップ防止効果が高まって好ましい。逆に、基板1側からMoとSiをこの順に積層したMo/Siの積層構造を1周期として複数周期積層する場合は、導電性下地膜4と接する最上層が電気抵抗の比較的高いSiとなるため、最上層のSiの上にMoをさらに形成した緩衝膜10とすることが好ましい。
 一方、多層膜の緩衝膜10を成膜後、一旦大気開放してその後に導電性下地膜4を成膜した場合には、多層膜の緩衝膜10の最表面に酸化膜が形成されるので、比較的酸化膜の薄いSiを最上面とすることが望ましい。したがって、この場合、基板1側からSiとMoをこの順に積層したSi/Moの積層構造では最上層がMoとなるが、最上層のMoの上にSiをさらに形成した多層膜の緩衝膜10とすることが好ましい。
 上記多層膜として、MoとSiの積層膜について述べたが、Moに代えてルテニウム(Ru)、ロジウム(Rh)、及び白金(Pt)から選ばれる金属単体や、これらの合金を用いることもできる。又、Si単体の他に、Siに、ボロン(B)、炭素(C)、窒素(N)、酸素(O)を含むSi化合物でもよい。
 緩衝膜10の形成方法は当該技術分野において公知であるが、例えばイオンビームスパッタ法により成膜することで形成できる。又、緩衝膜表面の平滑性向上のために、アニールを行ったり、精密研磨を行ったりすることも有効である。なお、アニール処理は、膜応力調整によるマスクブランクの平坦化効果もある。
 また、緩衝膜10は、上述した導電性下地膜がタンタル系材料からなる場合についても適用することが可能である。
<<多層反射膜>>
 多層反射膜5は、EUVリソグラフィ用反射型マスクにおいて、EUV光を反射する機能を付与するものであり、屈折率の異なる元素を主成分とする各層が周期的に積層された多層膜の構成となっている。
 一般的には、高屈折率材料である軽元素又はその化合物の薄膜(高屈折率層)と、低屈折率材料である重元素又はその化合物の薄膜(低屈折率層)とが交互に40から60周期程度積層された多層膜が、多層反射膜5として用いられる。
 多層膜は、導電性下地膜4あるいは積層型導電性下地膜3の最上層32側から高屈折率層と低屈折率層をこの順に積層した高屈折率層/低屈折率層の積層構造を1周期として複数周期積層しても良いし、導電性下地膜4側あるいは積層型導電性下地膜3の最上層32側から低屈折率層と高屈折率層をこの順に積層した低屈折率層/高屈折率層の積層構造を1周期として複数周期積層しても良い。なお、多層反射膜5の最表面の層、即ち、導電性下地膜4側あるいは積層型導電性下地膜3の最上層32側と反対側の多層反射膜5の表面層は、高屈折率層とすることが好ましい。上述の多層膜において、導電性下地膜4側あるいは積層型導電性下地膜3の最上層32側から高屈折率層と低屈折率層をこの順に積層した高屈折率層/低屈折率層の積層構造を1周期として複数周期積層する場合は最上層が低屈折率層となるが、この場合、低屈折率層が多層反射膜5の最表面を構成すると容易に酸化されてしまい反射型マスクの反射率が減少するので、最上層の低屈折率層上に高屈折率層をさらに形成して多層反射膜5とすることが好ましい。一方、上述の多層膜において、導電性下地膜4側あるいは積層型導電性下地膜3の最上層32側から低屈折率層と高屈折率層をこの順に積層した低屈折率層/高屈折率層の積層構造を1周期として複数周期積層する場合は、最上層が高屈折率層となるので、そのままで良い。
 本実施形態において、高屈折率層としては、ケイ素(Si)を含む層が採用される。Siを含む材料としては、Si単体の他に、Siに、ボロン(B)、炭素(C)、窒素(N)、酸素(O)を含むSi化合物でも良い。Siを含む層を高屈折率層として使用することによって、EUV光の反射率に優れたEUVリソグラフィ用反射型マスクが得られる。又、低屈折率層としては、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、及び白金(Pt)から選ばれる金属単体や、これらの合金が用いられる。例えば波長13nmから14nmのEUV光に対する多層反射膜5としては、好ましくはMo膜とSi膜を交互に40から60周期程度積層したMo/Si周期積層膜が用いられる。なお、多層反射膜5の最上層である高屈折率層をケイ素(Si)で形成し、当該最上層(Si)と保護膜6との間に、ケイ素と酸素とを含むケイ素酸化物層を形成するようにしてもよい。これにより、マスク洗浄耐性を向上させることができる。
 このような多層反射膜5の単独での反射率は通常65%以上であり、上限は通常73%である。なお、多層反射膜5の各構成層の厚み、周期は、露光波長により適宜選択すれば良く、ブラッグ反射の法則を満たすように選択される。多層反射膜5において高屈折率層及び低屈折率層はそれぞれ複数存在するが、高屈折率層同士、そして低屈折率層同士の厚みが同じでなくても良い。又、多層反射膜5の最表面のSi層の膜厚は、反射率を低下させない範囲で調整することができる。最表面のSi(高屈折率層)の膜厚は、3nmから10nmとすることができる。
 導電性下地膜4あるいは積層型導電性下地膜3の最上層32の上に形成する多層反射膜5の最初の層が、Moであると、導電性下地膜4の間に拡散層が形成されにくいため、電気抵抗は変化しにくい。一方、導電性下地膜4あるいは積層型導電性下地膜3の最上層32の上に形成する多層反射膜5の最初の層がSiであると、導電性下地膜4の間にTaSi(導電性下地膜がタンタル系材料からなる場合)又はRuSi(導電性下地膜がルテニウム系材料からなる場合)の拡散層が形成されやすい。導電性下地膜がタンタル系材料からなる場合、遮光帯部11形成時に導電性下地膜4や最上層32の表面が露出するが、TaSiの拡散層が形成されていると導電性下地膜4や最上層32の表面の酸化を防止することができるため好ましい。導電性下地膜がルテニウム系材料からなる場合、遮光帯部11形成時にRuSiの拡散層がエッチング時に完全に除去できず、電気抵抗を悪化させるので導電性下地膜4の膜厚を考慮する必要がある。導電性下地膜4や積層型導電性下地膜3の最上層32の上に形成する多層反射膜5の最下層がSiの場合、Moを最初の層とする場合より、0.5nm程度厚くする必要がある。拡散層の厚さは0.5nmから1nmが好ましい。
 導電性下地膜4あるいは積層型導電性下地膜3の最上層32を形成する際のイオンビーム発生装置から発せられるイオンビームのパワーを制御することによって、拡散層の膜厚を制御することができる。イオンビームのパワーを上げると、拡散層の膜厚を大きくすることが可能である。また、イオンビーム発生装置から発せられるイオンビームがターゲットに入射することにより発生するスパッタ粒子の入射角度(基板1の主表面の法線に対する入射角度)を調整することにより、拡散層の膜厚を制御してもよい。入射角度が0°に近づくほど拡散層の膜厚を大きくすることができる。
 多層反射膜5の形成方法は当該技術分野において公知であるが、例えばイオンビームスパッタ法により、各層を成膜することで形成できる。上述したMo/Si周期多層膜の場合、例えばイオンビームスパッタ法により、先ずSiターゲットを用いて厚さ4nm程度のSi膜を導電性下地膜4あるいは積層型導電性下地膜3上に成膜し、その後Moターゲットを用いて厚さ3nm程度のMo膜を成膜し、これを1周期として、40から60周期積層して、多層反射膜5を形成する(最表面の層はSi層とする)。
 導電性下地膜4あるいは積層型導電性下地膜3と多層反射膜5の成膜に際しては、減圧真空下において連続して行われることが望ましい。途中で大気や酸素に曝されると、導電性下地膜4を構成するタンタル系材料又はルテニウム系材料や積層型導電性下地膜3の最上層32を構成するタンタル系材料の表面に酸化層が形成されて導電率が下がるとともに、その表面平滑性も低下する。又、導電性下地膜がルテニウム系材料からなる場合、塩素系ガスを用いて多層反射膜5に遮光帯部11を形成する時のエッチングストッパとしての機能(エッチング耐性)が酸化により下がる。真空引き、大気開放、真空引き工程を行うと、異物欠陥率が高まるが、減圧真空下において連続して成膜することにより、異物欠陥を低減できる。一方で、設備の効率運用を鑑みて、導電性下地膜4あるいは積層型導電性下地膜3と、多層反射膜5の成膜に際して、一旦大気開放して別装置で成膜することも可能である。
<<保護膜>>
 例えば、ルテニウム(Ru)を含む材料からなる保護膜6は、後述するEUVリソグラフィ用反射型マスクの製造工程におけるドライエッチングや洗浄から多層反射膜5を保護するために、多層反射膜5の上に形成される。又、電子線(EB)を用いたマスクパターンの黒欠陥修正の際の多層反射膜5の保護も兼ね備える。ここで、図1~図3では保護膜6が1層の場合を示しているが、3層以上の積層構造とし、例えば、最下層と最上層を、上記Ruを含有する物質からなる層とし、最下層と最上層との間に、Ru以外の金属、若しくは合金を介在させたものとしても構わない。保護膜6は、例えば、ルテニウムを主成分として含む材料により構成され、Ru金属単体でもよいし、Ruにチタン(Ti)、ニオブ(Nb)、モリブデン(Mo)、ジルコニウム(Zr)、イットリウム(Y)、ホウ素(B)、ランタン(La)、コバルト(Co)、レニウム(Re)などの金属を含有したRu合金であっても良く、窒素を含んでいても構わない。この中でも特にTiを含有したRu系材料からなる保護膜6を用いると、多層反射膜構成元素であるケイ素の多層反射膜表面から保護膜6への拡散が小さくなる。このため、マスク洗浄時の表面荒れが少なくなり、又、膜はがれも起こしにくくなる。表面荒れの低減は、EUV露光光に対する反射率低下防止に直結するので、EUV露光の露光効率改善、スループット向上のために重要である。
 このRu合金のRu含有比率は50原子%以上100原子%未満、好ましくは80原子%以上100原子%未満、さらに好ましくは95原子%以上100原子%未満である。特に、95原子%以上100原子%未満では、保護膜6への多層反射膜構成元素(ケイ素)の拡散を抑えつつ、EUV光の反射率を十分確保しながら、マスク洗浄耐性、吸収体膜7をエッチング加工した時のエッチングストッパ機能、及び多層反射膜経時変化防止の保護膜機能を兼ね備えることが可能となる。
 EUVリソグラフィでは、露光光に対して透明な物質が少ないので、マスクパターン面への異物付着を防止するEUVペリクルが技術的に簡単ではない。このことから、ペリクルを用いないペリクルレス運用が主流となっている。又、EUVリソグラフィでは、EUV露光によってマスクにカーボン膜が堆積したり酸化膜が成長するといった露光コンタミが起こる。このため、マスクを半導体装置の製造に使用している段階で、度々洗浄を行ってマスク上の異物やコンタミを除去する必要がある。このことから、EUV反射型マスクでは、光リソグラフィ用の透過型マスクに比べて桁違いのマスク洗浄耐性が要求されている。Tiを含有したRu系材料からなる保護膜6を用いると、硫酸、硫酸過水(SPM)、アンモニア、アンモニア過水(APM)、OHラジカル洗浄水、あるいは濃度が10ppm以下のオゾン水などの洗浄液に対する洗浄耐性が特に高く、マスク洗浄耐性の要求を満たすことが可能となる。
 このような保護膜6の厚みは、その保護膜6としての機能を果たすことができる限り特に制限されないが、EUV光の反射率の観点から、好ましくは、1.0nmから8.0nm、より好ましくは、1.5nmから6.0nmである。
 保護膜6の形成方法としては、公知の膜形成方法と同様のものを特に制限なく採用することができる。具体例としては、スパッタリング法及びイオンビームスパッタ法が挙げられる。
 多層反射膜5上に保護膜6が形成された状態で、100℃以上300℃以下、望ましくは120℃以上250℃以下、さらにいっそう望ましくは150℃以上200℃以下で熱処理(アニール)することが望ましい。このアニールにより、応力が緩和して、マスクブランク応力歪による平坦度の低下を防止できるとともに、多層反射膜5のEUV光反射率経時変化を防止できる。特に、保護膜6がTiを含むRuTi合金である場合は、このアニールによる多層反射膜5からのSiの拡散が強く抑制され、EUV光に対する反射率低下を防止できる。
<<吸収体膜>>
 保護膜6の上に、EUV光を吸収する吸収体膜7が形成される。吸収体膜7は、EUV光の吸収を目的とした吸収体膜7であっても良いし、EUV光の位相差も考慮した位相シフト機能を有する吸収体膜7であっても良い。位相シフト機能を有する吸収体膜7とは、EUV光を吸収するとともに一部を反射させて位相をシフトさせるものである。即ち、位相シフト機能を有する吸収体膜7がパターンニングされた反射型マスクにおいて、吸収体膜7が形成されている部分では、EUV光を吸収して減光しつつパターン転写に悪影響がないレベルで一部の光を反射させて、保護膜6を介して多層反射膜5から反射してくるフィールド部からの反射光と所望の位相差を形成するものである。位相シフト機能を有する吸収体膜7は、吸収体膜7からの反射光と多層反射膜5からの反射光との位相差が170度から190度となるように形成される。180度近傍の反転した位相差の光同士がパターンエッジ部で干渉し合うことにより、投影光学像の像コントラストが向上する。その像コントラストの向上にともなって解像度が上がり、露光量裕度、焦点裕度等の露光に関する各種裕度が拡がる。
 吸収体膜7は単層の膜であっても良いし、複数の膜からなる多層膜であっても良い。単層膜の場合は、マスクブランク製造時の工程数を削減できて生産効率が上がるという特徴がある。多層膜の場合には、上層膜が、光を用いたマスクパターン検査時の反射防止膜になるように、その光学定数と膜厚を適当に設定する。このことにより、光を用いたマスクパターン検査時の検査感度が向上する。又、上層に酸化耐性が向上する酸素(O)や窒素(N)等が添加された膜を用いると、経時安定性が向上する。このように、多層膜にすることによって様々な機能を付加させることが可能となる。吸収体膜7が位相シフト機能を有する吸収体膜7の場合には、多層膜にすることによって光学面での調整の範囲が拡がり、所望の反射率が得やすくなる。
 吸収体膜7としては、EUV光を吸収する機能を有し、エッチング等により加工が可能(好ましくは塩素(Cl)やフッ素(F)系ガスのドライエッチングでエッチング可能)である限り、吸収体膜7の材料は特に限定されない。そのような機能を有するものとして、タンタル(Ta)単体又はTaを主成分として含むタンタル化合物を好ましく用いることができる。
 このようなタンタルやタンタル化合物により構成される吸収体膜7は、DCスパッタリング法やRFスパッタリング法などのマグネトロンスパッタリング法といった公知の方法で形成することが出来る。例えば、タンタルとホウ素を含むターゲットを用い、酸素あるいは窒素を添加したアルゴンガスを用いた反応性スパッタリング法で吸収体膜7を保護膜6上に成膜することができる。
 前記タンタル化合物は、Taの合金を含む。このような吸収体膜7の結晶状態は、平滑性及び平坦性の点から、アモルファス状又は微結晶の構造であることが好ましい。吸収体膜7表面が平滑・平坦でないと、吸収体パターンのエッジラフネスが大きくなり、パターンの寸法精度が悪くなることがある。吸収体膜7の好ましい表面粗さは、二乗平均平方根粗さ(Rms)で、0.5nm以下であり、更に好ましくは0.4nm以下、0.3nm以下であれば更に好ましい。
 前記タンタル化合物としては、TaとBとを含む化合物、TaとNとを含む化合物、TaとOとNとを含む化合物、TaとBとを含み、更にOとNの少なくとも何れかを含む化合物、TaとSiとを含む化合物、TaとSiとNとを含む化合物、TaとGeとを含む化合物、TaとGeとNとを含む化合物、等を用いることが出来る。
 TaはEUV光の吸収係数が大きく、又、塩素系ガスやフッ素系ガスで容易にドライエッチングすることが可能な材料であるため、加工性に優れた吸収体膜材料である。さらにTaにBやSi、Ge等を加えることにより、アモルファス状の材料が容易に得られ、吸収体膜7の平滑性を向上させることができる。又、TaにNやOを加えれば、吸収体膜7の酸化に対する耐性が向上するため、経時的な安定性を向上させることが出来るという効果が得られる。
 吸収体膜7を、TaBNを下層膜、TaBOを上層膜とし、上層のTaBOの膜厚を約14nmとすると、光を用いたマスクパターン欠陥検査の際、この上層膜が反射防止膜となって検査感度が上がる。
 又、吸収体膜7を構成する材料としては、タンタル又はタンタル化合物以外に、Cr、CrN、CrCON、CrCO、CrCOH、CrCONH等のクロム又はクロム化合物や、WN、TiN、Ti等の材料が挙げられる。
<<裏面導電膜>>
 基板1の第2主面(裏面)側(多層反射膜5形成面の反対側)には、静電チャック用の裏面導電膜2が形成される。静電チャック用の裏面導電膜2に求められる電気的特性はシート抵抗で言って通常100Ω/□以下である。裏面導電膜2の形成方法は、例えばマグネトロンスパッタリング法やイオンビームスパッタ法により、クロム、タンタル等の金属や合金のターゲットを使用して形成することができる。代表的な材料は、透過型マスクブランクなどのマスクブランク製造でよく用いられるCrNやCrである。裏面導電膜2の厚さは、静電チャック用としての機能を満足する限り特に限定されないが、通常10nmから200nmである。又、この裏面導電膜2は反射型マスクブランク100の第2主面側の応力調整も兼ね備えていて、第1主面側に形成された各種膜からの応力とバランスをとって、平坦な反射型マスクブランクが得られるように調整される。
<<エッチングマスク>>
 反射型マスクブランクとしては吸収体膜7上にエッチング用ハードマスク膜やレジスト膜を備えているものであってもよい。エッチング用ハードマスク膜の代表的な材料としては、ケイ素(Si)やケイ素に酸素(O)、窒素(N)、炭素(C)、水素(H)を加えた材料等がある。具体的には、SiO、SiON、SiN、SiO、Si、SiC、SiCO、SiCN、SiCONなどが挙げられる。但し、吸収体膜7が酸素を含む化合物の場合、エッチング用ハードマスク膜として酸素を含む材料、例えばSiOはエッチング耐性の観点から避けたほうが良い。エッチング用ハードマスク膜を形成した場合には、レジスト膜の厚さを薄くすることが可能となり、パターンの微細化に対して有利である。
<反射型マスク及びその製造方法>
 本実施形態の反射型マスクブランク100あるいは101、102を使用して、反射型マスクを製造する。ここでは概要説明のみを行い、後に実施例において図面を参照しながら詳細に説明する。
 反射型マスクブランク100あるいは101、102を準備して、その第1主面の最表面(以下の実施例で説明するように、吸収体膜7上)に、レジスト膜を形成し(反射型マスクブランク100あるいは101、102としてレジスト膜を備えている場合は不要)、このレジスト膜に回路パターン等の所望のパターンを描画(露光)し、さらに現像、リンスすることによって所定のレジストパターンを形成する。
 このレジストパターンをマスクとして使用して、吸収体膜7をドライエッチングすることにより、吸収体パターンを形成する。なお、エッチングガスとしては、Cl、SiCl、CHCl等の塩素系のガス、これら塩素系ガス及びOを所定の割合で含む混合ガス、塩素系ガス及びHeを所定の割合で含む混合ガス、塩素系ガス及びArを所定の割合で含む混合ガス、CF、CHF、C、C、C、C、CH、CHF、C、SF、F等のフッ素系のガス、これらフッ素系ガス及びOを所定の割合で含む混合ガス等を用いることができる。ここで、エッチングの最終段階でエッチングガスに酸素が含まれていると、Ru系保護膜6に表面荒れが生じる。このため、Ru系保護膜6がエッチングに曝されるオーバーエッチング段階では、酸素が含まれていないエッチングガスを用いるのが好ましい。
 その後、アッシングやレジスト剥離液によりレジストパターンを除去し、所望の回路パターンが形成された吸収体パターンを作成する。
 なお、ここではレジストをエッチングマスクとした時の場合を示したが、エッチング用ハードマスクを用いて所望の回路パターンが形成された吸収体パターンを作成することもできる。この場合は、吸収体膜7の上にエッチング用ハードマスクを形成し、さらにその上にレジスト膜を形成する。エッチング用ハードマスクとしては、吸収体膜7とエッチング選択性が取れる膜が選択される。このレジスト膜に回路パターン等の所望のパターンを描画(露光)し、さらに現像、リンスすることによって所定のレジストパターンを形成する。このレジストパターンをマスクとしてエッチング用ハードマスクマスク膜をドライエッチングしてハードマスクパターンを形成し、レジストパターンをアッシングやレジスト剥離液などで除去する。その後、このハードマスクパターンをマスクにして吸収体膜7をドライエッチングすることにより、所望の回路パターンが形成された吸収体パターンを作成する。その後、ハードマスクパターンをウェットエッチングあるいはドライエッチングによって除去する。
 又、ハードマスクパターン形成直後にはレジストパターンを除去せず、レジストパターン付きハードマスクパターンで吸収体膜7をエッチングする方法もある。この場合は、吸収体膜7をエッチングする際にレジストパターンが自動的に除去され、工程が簡略化されるという特徴がある。一方、レジストパターンが除去されたハードマスクパターンをマスクにして吸収体膜7をエッチングする方法では、エッチング途中に消失するレジストからの有機生成物(アウトガス)の変化ということがなく、安定したエッチングができるという特徴がある。
 次に、レジスト膜を形成し、このレジスト膜に遮光帯パターンを描画(露光)し、さらに現像、リンスすることによって遮光帯形成用のレジストパターンを形成する。この遮光帯形成用のレジストパターンをマスクとして使用して、吸収体膜7を前記方法でドライエッチングした後、保護膜6及び多層反射膜5もドライエッチングする。ここで、導電性下地膜がタンタル系材料からなる場合には、保護膜6及び多層反射膜5のエッチングガスとしては、Cl、SiCl、CHCl等の塩素系のガスにOを含む混合ガスを用いる。被加工膜のエッチングレートと、エッチングストッパとなる導電性下地膜4や積層型導電性下地膜3の最上層32を構成するタンタル系材料に対するエッチングレート比の関係から、塩素系ガスとOガスの混合比率を適宜設定することができる。保護膜6がRu系材料の場合、塩素系のガスにOを含む混合ガスによるドライエッチングで、保護膜6及び多層反射膜5を一括でエッチングすることが可能になるので製造効率が高いという特徴がある。
 なお、保護膜及び多層反射膜は一括でドライエッチングせずに、別々のエッチングガスを用いてドライエッチングすることも可能である。また、多層反射膜のドライエッチングの途中でエッチングガスを変えることも可能であり、例えば多層反射膜の上部は塩素系ガスでエッチングし、途中からOガスを導入して多層反射膜の下部は塩素系ガスとOガスの混合ガスでドライエッチングしてもよい。
 導電性下地膜4がルテニウム系材料からなる場合は、エッチングガスとして塩素系のガスやフッ素系のガス等を適宜用いることができるが、エッチングの最終段階でエッチングガスに酸素が含まれていると、導電性下地膜4に表面荒れが生じる。導電性下地膜4は薄膜のため、この表面荒れと表面酸化が進むとシート抵抗が増大し、マスクパターンEB欠陥検査の時のチャージアップ防止効果が薄れる。このため、導電性下地膜4がエッチングに曝されるオーバーエッチング段階では、酸素が含まれていないエッチングガスを用いるのが好ましい。
 その後、アッシングやレジスト剥離液によりレジストパターンを除去し、所望の遮光帯パターンを作成する。その後、酸性やアルカリ性の水溶液を用いたウェット洗浄とマスクパターンEB欠陥検査を行い、マスク欠陥修正を適宜行う。
 以上の工程により、回路パターン形成領域は導電性下地膜4あるいは積層型導電性下地膜3を介して遮光帯部11の外側に設置されたアース部と低いシート抵抗で電気的に繋がる。このため、マスクパターンEB欠陥検査時のチャージアップを防止でき、高い感度でパターン欠陥検査を行うことができる。又、極めて平滑な表面を持つ導電性下地膜4あるいは積層型導電性下地膜3の上に多層反射膜5が形成されるため、若しくは表面が極めて平滑な緩衝膜10の介在によって極めて平滑な膜上に多層反射膜5が形成されるため、多層反射膜5の位相欠陥も少ない。さらに、多層反射膜5の表面の平滑性も高くなるため、例えば193nmの光を用いた多層膜欠陥検査時のバックグラウンドノイズが減って疑似欠陥が減り、多層反射膜5の欠陥検査感度も向上する。この高い感度でのマスクパターン及び多層反射膜5の欠陥検査と位相欠陥の少ない多層反射膜5により、欠陥の少ない多層反射膜掘り込み遮光帯型反射マスク(EUVリソグラフィ用反射型マスク)が得られる。
 なお、ここでは多層反射膜掘り込み遮光帯構造の場合を説明したが、本発明の構造と製法により、マスクブランクの導電性が上がり、又、欠陥の少ない多層反射膜5となることから、多層反射膜掘り込み部がない場合にも同上の効果がある。
<半導体装置の製造方法>
 上記本実施形態の反射型マスクを使用してEUV露光を行うことにより、半導体基板上に所望の転写パターンを形成することができる。多層反射膜5の欠陥やマスクパターン欠陥が少ないため、転写欠陥も少ない。このリソグラフィ工程に加え、被加工膜のエッチングや絶縁膜、導電膜の形成、ドーパントの導入、あるいはアニールなど種々の工程を経ることで、所望の電子回路が形成された半導体装置を高い歩留まりで製造することができる。
 以下、各実施例について図面を参照しつつ説明する。なお、各実施例において同様の構成要素については同一の符号を使用し、説明を簡略化若しくは省略する。
 図4は、EUVリソグラフィ用反射型マスクブランク100から、EUVリソグラフィ用反射型マスク200を作製する工程を示す要部断面模式図である。
 実施例1の反射型マスクブランク100は、図4(a)に示すように、裏面導電膜2と、基板1と、単層の導電性下地膜4と、多層反射膜5と、保護膜6と、吸収体膜7を有する。吸収体膜7はTaBNからなる下層吸収体膜71とTaBOからなる上層吸収体膜72の2層膜からなる。最初に、この反射型マスクブランクについて説明する。
((反射型マスクブランク))
(((基板)))
 第1主面及び第2主面の両表面が研磨された6025サイズ(約152mm×152mm×6.35mm)の低熱膨張ガラス基板であるSiO-TiO系ガラス基板を準備し基板1とした。平坦で平滑な主表面となるように、粗研磨加工工程、精密研磨加工工程、局所加工工程、及びタッチ研磨加工工程よりなる研磨を行った。
(((裏面導電膜)))
 SiO-TiO系ガラス基板1の第2主面(裏面)にCrNからなる裏面導電膜2をマグネトロンスパッタリング(反応性スパッタリング)法により下記の条件にて形成した。
 裏面導電膜形成条件:Crターゲット、ArとNの混合ガス雰囲気(Ar:90原子%、N:10原子%)、膜厚20nm。
(((導電性下地膜)))
 次に、Arガス雰囲気中でTaターゲットを使用したイオンビームスパッタリングを行って、裏面導電膜2が形成された側と反対側の基板1の主表面(第1主面)上に、膜厚4nmのTa膜からなる導電性下地膜4を形成した。ここで、Taのスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。同様の方法で導電性下地膜4まで作成した試料を用いてシート抵抗を測定したところ、導電性下地膜4のシート抵抗は600Ω/□であり、マスクパターンEB欠陥検査のチャージアップ防止に対して十分低いシート抵抗であった。表面粗さは0.13nm(Rms)であった。ここで、表面粗さは、基板中心の1μm×1μm領域に対して、原子間力顕微鏡(AFM)を用いて測定した。
(((多層反射膜)))
 次に、酸化を防止すべく途中で大気開放を行わないようにして、導電性下地膜4上に、多層反射膜5を形成した。即ち、多層反射膜5を導電性下地膜4工程から減圧真空下で連続的に形成した。この多層反射膜5は、波長13.5nmのEUV光に適した多層反射膜とするために、SiとMoからなる周期多層反射膜とした。多層反射膜5は、SiターゲットとMoターゲットを使用し、Arガス雰囲気中でイオンビームスパッタリングにより導電性下地膜4上にSi層及びMo層を交互に積層して形成した。ここで、Si及びMoのスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。まず、Si膜を4.2nmの厚みで成膜し、続いて、Mo膜を2.8nmの厚みで成膜した。これを1周期とし、同様にして40周期積層し、最後にSi膜を4.0nmの厚みで成膜し、多層反射膜5を形成した。したがって、多層反射膜5の最下層、すなわち導電性下地膜4と接する多層反射膜5の材料はSiであり、また多層反射膜5の最上層、すなわち保護膜6と接する多層反射膜の材料もSiである。多層反射膜5の最下層のSiと導電性下地膜4との間には0.5nmのTaSiの拡散層が形成された。なお、ここでは40周期としたが、それに限るものではなく、例えば60周期でも良い。60周期とした場合、40周期より工程数は増えるが、EUV光に対する反射率を高めることができる。
(((保護膜)))
 引き続き、Arガス雰囲気中で、Ruターゲットを使用したイオンビームスパッタリングによりRuからなる保護膜6を2.5nmの厚みで成膜した。ここで、Ruのスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。その後、大気中で130℃のアニールを行った。
 この段階の保護膜6が形成された多層反射膜付き基板に対して、EUV光に対する反射率、多層反射膜5及び保護膜6が形成された側の基板平坦度、及び欠陥数を調べた。又、この段階まで同じ工程で作成した試料について、表面粗さ(表面平滑性)を測定した。その結果、反射率は64%、基板平坦度は500nm、そして欠陥数は5個であり、表面粗さは0.14nm(Rms)であった。ここで、欠陥数は、基板1の周辺領域を除外した132mm×132mmの領域に対して、欠陥検査装置(レーザーテック社製 マスク・サブストレート/ブランクス欠陥検査装置 M1350)を用いて測定した。又、表面粗さは、基板中心の1μm×1μm領域に対して、原子間力顕微鏡(AFM)を用いて測定した。なお、多層反射膜付き基板について、SEVD(Spherical Equivalent Volume Diameter)で20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥の検出が抑えられ、欠陥検査が可能なレベルの表面状態であった。
(((吸収体膜)))
 次に、DCスパッタリング法により、下層吸収体膜71として膜厚56nmのTaBN膜を、上層吸収体膜72として膜厚14nmのTaBO膜を積層して、この2層膜よりなる吸収体膜7を形成した。TaBN膜は、TaBをターゲットに用いて、ArガスとNガスの混合ガス雰囲気にて反応性スパッタリング法で形成した。TaBO膜は、TaBをターゲットに用いて、ArガスとOガスの混合ガス雰囲気にて反応性スパッタリング法により形成した。TaBO膜は経時変化の少ない膜であると共に、この膜厚のTaBO膜は光を用いたマスクパターン検査の時に反射防止層として働き、検査感度を向上させる。EBでマスクパターン検査を行う場合でも、スループットの関係で、光によるマスクパターン検査を併用する方法が多用されている。即ち、メモリセル部のような微細パターンが用いられている領域に対しては検査感度の高いEBでマスクパターン検査を行い、間接周辺回路部のような比較的大きなパターンで構成されている領域に対してはスループットの高い光でマスクパターン検査を行う。
((反射型マスク))
 次に、上記反射型マスクブランク100を用いて、反射型マスク200を製造した。
 まず、図4(b)に示されるように、反射型マスクブランク100の上層吸収体膜72の上に、レジスト膜8を形成した。そして、このレジスト膜8に回路パターン等の所望のパターンを描画(露光)し、さらに現像、リンスすることによって所定のレジストパターン8aを形成した(図4(c))。次に、レジストパターン8aをマスクにしてTaBO膜(上層吸収体膜72)をCFガスを用いてドライエッチングし、引き続き、TaBN膜(下層吸収体膜71)をClガスを用いてドライエッチングすることで、第1の吸収体パターン7aを形成した(図4(d))。Ruからなる保護膜6はClガスに対するドライエッチング耐性が極めて高く、十分なエッチングストッパとなる。その後、レジストパターン8aをアッシングやレジスト剥離液などで除去した(図4(e))。
 その後、第1の吸収体パターン7aが形成された反射型マスクブランクの上に、レジスト膜9を形成した(図4(f))。そして、このレジスト膜9に遮光帯パターンを描画(露光)し、さらに現像、リンスすることによって所定の遮光帯レジストパターン9aを形成した(図4(g))。次に、遮光帯レジストパターン9aをマスクにして、CFガスを用いてTaBO膜を、Clガスを用いてTaBN膜を、ClとOの混合ガスを用いて保護膜6と多層反射膜5をドライエッチングすることで、遮光帯部11が形成された第2のパターンを形成した(図4(h))。この第2のパターンは、図4(h)に示されているように、上層吸収体パターン72bと下層吸収体パターン71bの2層パターンからなる第2の吸収体パターン7b、保護膜パターン6b、及び多層反射膜パターン5bからなる。導電性下地膜4は上述のように膜厚4nmのTa薄膜であるが、この材料はClとOの混合ガスに対して極めて高いエッチングストッパ機能を有しており、膜厚の減少もごく僅かで十分な導電性が確保される。その後、遮光帯レジストパターン9aをアッシングやレジスト剥離液などで除去し、硫酸過水(SPM)洗浄とアルカリ性の水溶液を用いたウェット洗浄を行って、反射型マスク200を製造した(図4(i))。その後マスクパターンEB欠陥検査を行い、適宜必要に応じてマスク欠陥修正を行った。
 上記方法によって製造された反射型マスク200の上面図を図5に示す。図5(a)に示されるように、回路等が形成されたデバイス領域(回路パターン領域)12は、遮光帯部11によって外周部領域(周辺領域)13からパターン的には孤立した隔離状態にあるが、膜厚4nmのTa薄膜からなる導電性下地膜4によって、電気的にはデバイス領域12と外周部領域13は繋がっている。マスク上のデバイス領域への異物付着を防止するため、アースは外周部領域13で取るが、導電性下地膜4の介在によってデバイス領域のアースが取れて、マスクパターンEB欠陥検査した時のチャージアップを防止することができる。この結果、マスク上で20nmのパターン欠陥の検出が可能となった。
 ここでは、多層反射膜5まで掘り込む場所が遮光帯部11の場合を示したが、その場合だけに限られない。反射型マスク200の上面図である図5(b)に示すように、デバイス領域12内に多層反射膜5まで掘り込まれた溝部14によってパターン的に隔離された領域(孤立された回路パターン領域)12bがある場合でも、電気的には領域12bは外周部領域13と繋がってアースを取ることができる。
 本実施例の反射型マスク200では、多層反射膜掘り込み型の遮光帯部11が形成されているが、回路パターン形成領域は膜厚4nmのTa薄膜からなる導電性下地膜4を介して遮光帯部11の外側に設置されたアース部と低いシート抵抗で電気的に繋がっており、チャージアップに伴うパターン描画欠陥、マスクパターンEB欠陥検査感度の低下、及び疑似欠陥の発生といった問題は生じなかった。その結果、マスク上で20nmのパターン欠陥を検出できた。又、平滑な表面を持つ導電性下地膜4によって、極めて平滑な膜上に多層反射膜5が形成されるため、保護膜付き多層反射膜5の欠陥も5個と少なく、欠陥の観点から高い品質を持つ反射型マスクを製造することができた。
((半導体装置の製造))
 実施例1で作成した反射型マスクをEUVスキャナにセットし、半導体基板上に被加工膜とレジスト膜が形成されたウエハに対してEUV露光を行った。そして、この露光済レジスト膜を現像することによって、被加工膜が形成された半導体基板上にレジストパターンを形成した。
 実施例1で作成した反射型マスクは、多層反射膜5の位相欠陥も少なく、高感度なマスクパターンEB欠陥検査も行われた欠陥に対する品質の高いマスクであるため、転写形成されたウエハ上のレジストパターンの欠陥も少なかった。又、遮光帯部11における波長130nmから400nmの光に対する反射率は19%であり、遮光帯部11からのアウトオブバンド反射光も十分少なく、転写精度も高かった。
 このレジストパターンをエッチングにより被加工膜に転写し、又、絶縁膜、導電膜の形成、ドーパントの導入、あるいはアニールなど種々の工程を経ることで、所望の特性を有する半導体装置を高い歩留まりで製造することができた。
 実施例2は、単層の導電性下地膜4の材料を実施例1のTaからTaNに代え、又、保護膜6の材料を実施例1のRuからRuTiに代え、且つ、保護膜6を形成した後のアニール温度を実施例1の130℃から150℃に代えた反射型マスクブランクとした例であって、それ以外は、反射型マスクの製造方法及び半導体装置の製造方法を含め、全て実施例1と同じである。
 実施例2では、導電性下地膜4として膜厚5nmのTaN(Ta:90原子%、N:10原子%)を用いた。この膜は、Taターゲットを用いて、ArガスとNガスの混合ガス雰囲気にてDCスパッタリングにより形成した。導電性下地膜4まで作成した試料を用いてシート抵抗を測定したところ、導電性下地膜4のシート抵抗は550Ω/□であり、マスクパターンEB欠陥検査のチャージアップ防止に対して必要なシート抵抗を確保した。表面粗さは0.13nm(Rms)であった。ここで、表面粗さは、基板中心の1μm×1μm領域に対して、原子間力顕微鏡(AFM)を用いて測定した。
 実施例2における保護膜6は膜厚2.5nmのRuTiである。この膜は、酸化を防止するために途中で大気開放することなく、Si膜とMo膜を交互に40層積層した多層反射膜5に引き続いて全て減圧真空下で連続して成膜した。ここで、実施例1と同様に、多層反射膜5の最下層、すなわち導電性下地膜4と接する多層反射膜5の材料はSiであり、また多層反射膜5の最上層、すなわち保護膜6と接する多層反射膜の材料もSiとした。多層反射膜5の最下層のSiと導電性下地膜4との間には0.5nmのTaNとSiの拡散層が形成された。保護膜6の成膜の方法は、Arガス雰囲気中でRuTi(Ru:95原子%、Ti:5原子%)ターゲットを使用したイオンビームスパッタ法である。ここで、RuとTiからなるスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。その後、保護膜6が多層反射膜5上に形成された状態で150℃のアニールを行った。
 この段階の保護膜6が形成された多層反射膜基板に対して、EUV光に対する反射率、基板平坦度、及び、レーザーテック社製 マスク・サブストレート/ブランクス欠陥検査装置(M1350)による欠陥数を調べた。又、この段階まで同じ工程で作成した試料について、表面粗さを測定した。その結果、反射率は65%、基板平坦度は350nm、そして欠陥数は5個であり、表面粗さは0.13nm(Rms)であった。ここで、欠陥数や表面粗さの計測方法は実施例1と同じである。保護膜6としてRuTi(Ru:95原子%、Ti:5原子%)を用いたことにより、150℃と高めの温度でのアニールにもかかわらず多層反射膜5から保護膜へのSiの拡散が抑制できた。このため、EUV光に対する反射率65%が得られるとともに、150℃のアニールによって応力調整が図られ、基板平坦度は350nmと良好な値になった。又、多層反射膜付き基板について、SEVDで20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥の検出が抑えられ、欠陥検査が可能なレベルの表面状態であった。
 実施例2の方法で製造された反射型マスクは、実施例1と同様に、チャージアップに伴うパターン描画欠陥、マスクパターンEB欠陥検査感度の低下、及び疑似欠陥の発生といった問題は生じなかった。その結果、マスク上で20nmのパターン欠陥を検出できた。又、平滑な表面を持つ導電性下地膜4によって、極めて平滑な膜上に多層反射膜5が形成されるため、保護膜付き多層反射膜の欠陥も5個と少なく、欠陥の観点から高い品質を持つ反射型マスクを製造することができた。
 又、実施例2で作成した反射型マスクは、多層反射膜5の位相欠陥も少なく、高感度なマスクパターンEB欠陥検査も行われた低欠陥のマスクであるため、転写形成されたウエハ上のレジストパターンの欠陥も少なかった。又、遮光帯部11における波長130nmから400nmの光に対する反射率は25%であり、遮光帯部11からのアウトオブバンド反射光も十分少なく、転写精度も高かった。このため、所望の特性を有する半導体装置を高い歩留まりで製造することができた。
 実施例3は、多層反射膜5のSiとMoの成膜の順序を変えてMoから成膜するように変更した以外は実施例2と全て同じ構造と方法で、反射型マスクブランク、反射型マスク、及び半導体装置を製造した。
 したがって実施例3では、実施例2と同様に、導電性下地膜4上に、多層反射膜5を形成した。この際、多層反射膜5は、MoとSiからなる周期多層反射膜とした。多層反射膜5は、MoターゲットとSiターゲットを使用し、Arガス雰囲気中でイオンビームスパッタリングにより導電性下地膜4上にMo層及びSi層を交互に積層して形成した。ここで、Mo及びSiのスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。まず、Mo膜を2.8nmの厚みで成膜し、続いて、Si膜を4.2nmの厚みで成膜した。これを1周期とし、同様にして40周期積層し、多層反射膜5を形成した。したがって、多層反射膜5の最下層、すなわち導電性下地膜4と接する多層反射膜5の材料はMoであり、また多層反射膜5の最上層、すなわち保護膜6と接する多層反射膜5の材料はSiである。導電性下地膜4と接する多層反射膜5の材料がMoであることから、導電性下地膜4と多層反射膜5の界面に拡散層が形成されにくいため導電率の変化は小さく、安定したものであった。
 その後、保護膜6を実施例2と同じ材料と方法で形成し、この段階の保護膜6が形成された多層反射膜基板に対して、EUV光に対する反射率、基板平坦度、及びレーザーテック社製 マスク・サブストレート/ブランクス欠陥検査装置(M1350)による欠陥数を調べた。又、この段階まで同じ工程で作成した試料について、表面粗さを測定した。保護膜6が形成された後のアニール温度は実施例2と同じく150℃である。その結果、反射率は65%、基板平坦度は350nm、そして欠陥数は5個であり、表面粗さは0.13nm(Rms)であり、実施例2とほぼ同じ結果が得られた。ここで、欠陥数や表面粗さの計測方法は実施例1や2と同じである。又、多層反射膜付き基板について、SEVDで20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥の検出が抑えられ、欠陥検査が可能なレベルの表面状態であった。
 実施例3の方法で製造された反射型マスクは、実施例2と同様に、チャージアップに伴うパターン描画欠陥、マスクパターンEB欠陥検査感度の低下、及び疑似欠陥の発生といった問題は生じなかった。その結果、マスク上で20nmのパターン欠陥を検出できた。又、平滑な表面を持つ導電性下地膜4によって、極めて平滑な膜上に多層反射膜5が形成されるため、保護膜付き多層反射膜の欠陥も5個と少なく、欠陥の観点から高い品質を持つ反射型マスクを製造することができた。
 又、実施例3で作成した反射型マスクは、多層反射膜5の位相欠陥も少なく、高感度なマスクパターンEB欠陥検査も行われた低欠陥なマスクであるため、転写形成されたウエハ上のレジストパターンの欠陥も少なかった。又、遮光帯部11における波長130nmから400nmの光に対する反射率は26%であり、遮光帯部11からのアウトオブバンド反射光も十分少なく、転写精度も高かった。このため、所望の特性を有する半導体装置を高い歩留まりで製造することができた。
 実施例4は、単層の導電性下地膜4に代えて、積層型導電性下地膜3を用いた場合であって、それ以外は実施例2と全て同じ構造と方法で、反射型マスクブランク、反射型マスク、及び半導体装置を製造した。ここで、実施例4の積層型導電性下地膜3は2層膜からなり、最上層32を膜厚2nmのTaN、下層の導電膜31を膜厚2nmのRuとした。
 積層型導電性下地膜3の形成方法は下記の通りである。最初に、導電膜31として、基板1の主表面(第1主面)上にArガス雰囲気中でRuターゲットを使用したイオンビームスパッタ法で膜厚2nmのRu膜を形成した。ここで、Ruスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。その後、最上層32として、導電膜31上にTaターゲットを用いて、ArガスとOガスの混合ガス雰囲気にてDCスパッタリングにより膜厚2nmのTaN膜(Ta:90原子%、N:10原子%)を形成した。
 同様の工程で、下層の導電膜31と最上層32からなる積層型導電性下地膜3まで作成した試料を用いてシート抵抗を測定したところ、積層型導電性下地膜3のシート抵抗は850Ω/□であり、マスクパターンEB欠陥検査のチャージアップ防止に対して充分小さなシート抵抗であった。又、表面粗さは0.13nm(Rms)であった。ここで、表面粗さは、基板中心の1μm×1μm領域に対して、原子間力顕微鏡(AFM)を用いて測定した。
 その後、多層反射膜5及び保護膜6を実施例2と同じ材料と方法で形成し、この段階の保護膜6が形成された多層反射膜基板に対して、EUV光に対する反射率、基板平坦度、及びレーザーテック社製 マスク・サブストレート/ブランクス欠陥検査装置(M1350)による欠陥数を調べた。又、この段階まで同じ工程で作成した試料について、表面粗さを測定した。保護膜6が形成された後のアニール温度は、実施例2と同じく、150℃である。その結果、反射率は65%、基板平坦度は350nm、そして欠陥数は5個であった。表面粗さは0.14nm(Rms)であり、実施例2とほぼ同じ結果が得られた。ここで、欠陥数や表面粗さの計測方法は実施例1と同じである。又、多層反射膜付き基板について、SEVDで20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥の検出が抑えられ、欠陥検査が可能なレベルの表面状態であった。
 実施例4の方法で製造された反射型マスクは、実施例1と同様に、チャージアップに伴うパターン描画欠陥、マスクパターンEB欠陥検査感度の低下、及び疑似欠陥の発生といった問題は生じなかった。その結果、マスク上で20nmのパターン欠陥を検出できた。又、平滑な表面を持つ積層型導電性下地膜3によって、極めて平滑な膜上に多層反射膜5が形成されるため、保護膜付き多層反射膜の欠陥も5個と少なく、欠陥の観点から高い品質を持つ反射型マスクを製造することができた。
 又、実施例4で作成した反射型マスクは、多層反射膜5の位相欠陥も少なく、高感度なマスクパターンEB欠陥検査も行われた低欠陥なマスクであるため、転写形成されたウエハ上のレジストパターンの欠陥も少なかった。又、遮光帯部11における波長130nmから400nmの光に対する反射率は22%であり、遮光帯部11からのアウトオブバンド反射光も十分少なく、転写精度も高かった。このため、所望の特性を有する半導体装置を高い歩留まりで製造することができた。
 実施例5は、単層の導電性下地膜4の膜厚を実施例2の5nmから10nmに代えた以外は実施例2と全て同じ構造と方法で、反射型マスクブランク、反射型マスク、及び半導体装置を製造した。
 実施例5では、導電性下地膜4として膜厚10nmのTaN(Ta:90原子%、N:10原子%)を用いた。実施例2と同様に、シート抵抗を測定したところ、導電性下地膜4のシート抵抗は240Ω/□であり、マスクパターンEB欠陥検査のチャージアップ防止に対して必要なシート抵抗を確保した。実施例2と同様に測定した表面粗さは0.14nm(Rms)であった。
 保護膜6が形成された多層反射膜基板に対して、実施例1と同様の計測方法で、EUV光に対する反射率、欠陥数及び表面粗さを測定した。その結果、反射率は65%、欠陥数は6個であり、表面粗さは0.15nm(Rms)であった。又、多層反射膜付き基板について、SEVDで20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥の検出が抑えられ、欠陥検査が可能なレベルの表面状態であった。
 実施例5の方法で製造された反射型マスクは、実施例1と同様に、チャージアップに伴うパターン描画欠陥、マスクパターンEB欠陥検査感度の低下、及び疑似欠陥の発生といった問題は生じなかった。その結果、マスク上で20nmのパターン欠陥を検出できた。又、平滑な表面を持つ導電性下地膜4によって、極めて平滑な膜上に多層反射膜5が形成されるため、保護膜付き多層反射膜の欠陥も6個と少なく、欠陥の観点から高い品質を持つ反射型マスクを製造することができた。
 又、実施例5で作成した反射型マスクは、多層反射膜5の位相欠陥も少なく、高感度なマスクパターンEB欠陥検査も行われた低欠陥なマスクであるため、転写形成されたウエハ上のレジストパターンの欠陥も少なかった。又、遮光帯部11における波長130nmから400nmの光に対する反射率は39%であり、遮光帯部11からのアウトオブバンド反射光を若干抑制できた。
 実施例6は、積層型導電性下地膜3の最上層32の材料を実施例4のTaNからTaOに代えた点及びその膜厚を変えた以外は、実施例4と全て同じ構造と方法で、反射型マスクブランク、反射型マスク、及び半導体装置を製造した。
 実施例6では、最上層32としてTaO(Ta:42原子%、O:58原子%)を用い、膜厚を1nm、4nm、6nm、8nm及び10nmと変えて作製した。これらの膜は、Taターゲットを用いて、ArガスとOガスの混合ガス雰囲気にてDCスパッタリングにより形成した。実施例2と同様に、シート抵抗を測定したところ、積層型導電性下地膜3のシート抵抗は何れも2000Ω/□以下であり、マスクパターンEB欠陥検査のチャージアップ防止に対して必要なシート抵抗を確保した。実施例2と同様に測定した表面粗さは0.15nm(Rms)以下であった。
 保護膜6が形成された各多層反射膜基板に対して、実施例1と同様の計測方法で、EUV光に対する反射率、欠陥数及び表面粗さを測定した。その結果、反射率は65%以上、欠陥数は6個以下であり、表面粗さは0.16nm(Rms)以下であった。又、多層反射膜付き基板について、SEVDで20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥の検出が抑えられ、欠陥検査が可能なレベルの表面状態であった。
 実施例6の方法で製造された反射型マスクは、実施例1と同様に、チャージアップに伴うパターン描画欠陥、マスクパターンEB欠陥検査感度の低下、及び疑似欠陥の発生といった問題は生じなかった。その結果、マスク上で20nmのパターン欠陥を検出できた。又、平滑な表面を持つ導電性下地膜4によって、極めて平滑な膜上に多層反射膜5が形成されるため、保護膜付き多層反射膜の欠陥も6個以下と少なく、欠陥の観点から高い品質を持つ反射型マスクを製造することができた。
 又、実施例6で作成した反射型マスクは、多層反射膜5の位相欠陥も少なく、高感度なマスクパターンEB欠陥検査も行われた低欠陥なマスクであるため、転写形成されたウエハ上のレジストパターンの欠陥も少なかった。
 又、アウトオブバンド反射光は、基板1を透過しない190nmから280nmの波長範囲における反射率の最大値と、基板1を透過する281nmから320nmの波長範囲における反射率の最大値とで評価を行った。最上層32の膜厚が1nm、4nm、6nm、8nm及び10nmの場合の遮光帯部11における波長190nmから280nmの光に対する反射率は各々13%、19%、22%、25%及び28%であり、波長281nmから320nmの光に対する反射率は各々26%、24%、23%、23%及び22%であり、遮光帯部11からのアウトオブバンド反射光も十分少なく、転写精度も高かった。このため、所望の特性を有する半導体装置を高い歩留まりで製造することができた。
 実施例7は、積層型導電性下地膜3の最上層32の材料を実施例4のTaNからTaONに代えた点及びその膜厚を変えた以外は、実施例4と全て同じ構造と方法で、反射型マスクブランク、反射型マスク、及び半導体装置を製造した。
 実施例7では、最上層32としてTaON(Ta:38原子%、O:52原子%、N:10原子%)を用い、膜厚を1nm、4nm、6nm、8nm、10nmと変えて作製した。この膜は、Taターゲットを用いて、ArガスとOガスとNガスの混合ガス雰囲気にてDCスパッタリングにより形成した。実施例2と同様に、シート抵抗を測定したところ、積層型導電性下地膜3のシート抵抗は何れも2000Ω/□以下であり、マスクパターンEB欠陥検査のチャージアップ防止に対して必要なシート抵抗を確保した。実施例2と同様に測定した表面粗さは0.15nm(Rms)以下であった。
 保護膜6が形成された各多層反射膜基板に対して、実施例1と同様の計測方法で、EUV光に対する反射率、欠陥数及び表面粗さを測定した。その結果、反射率は65%以上、欠陥数は6個以下であり、表面粗さは0.16nm(Rms)以下であった。又、多層反射膜付き基板について、SEVDで20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥の検出が抑えられ、欠陥検査が可能なレベルの表面状態であった。
 実施例7の方法で製造された反射型マスクは、実施例1と同様に、チャージアップに伴うパターン描画欠陥、マスクパターンEB欠陥検査感度の低下、及び疑似欠陥の発生といった問題は生じなかった。その結果、マスク上で20nmのパターン欠陥を検出できた。又、平滑な表面を持つ導電性下地膜4によって、極めて平滑な膜上に多層反射膜5が形成されるため、保護膜付き多層反射膜の欠陥も6個以下と少なく、欠陥の観点から高い品質を持つ反射型マスクを製造することができた。
 又、実施例7で作成した反射型マスクは、多層反射膜5の位相欠陥も少なく、高感度なマスクパターンEB欠陥検査も行われた低欠陥なマスクであるため、転写形成されたウエハ上のレジストパターンの欠陥も少なかった。
 又、実施例6と同様にしてアウトオブバンド反射光の評価を行ったところ、最上層32の膜厚が1nm、4nm、6nm、8nm及び10nmの場合の遮光帯部11における波長190nmから280nmの光に対する反射率は各々14%、19%、23%、26%及び28%であり、波長281nmから320nmの光に対する反射率は各々26%、24%、25%、26%及び27%であり、遮光帯部11からのアウトオブバンド反射光も十分少なく、転写精度も高かった。このため、所望の特性を有する半導体装置を高い歩留まりで製造することができた。
 実施例8は、単層の導電性下地膜4を、膜厚3nmのRu膜によって構成した反射型マスクブランクである。導電性下地膜4以外は、実施例1と同じ構成である。
 実施例8における導電性下地膜4の形成は、Arガス雰囲気中でRuターゲットを使用したイオンビームスパッタリングを行って、裏面導電膜2が形成された側と反対側の基板1の主表面(第1主面)上に、膜厚3nmのRu膜を形成することで行った。ここで、Ruのスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。同様の方法で導電性下地膜4まで作成した試料を用いてシート抵抗を測定したところ、導電性下地膜4のシート抵抗は500Ω/□であり、マスクパターンEB欠陥検査のチャージアップ防止に対して十分低いシート抵抗であった。
 保護膜6(2.5nmのRu膜)が形成された多層反射膜基板に対して、EUV光に対する反射率、多層反射膜5及び保護膜6が形成された側の基板平坦度、及び欠陥数を調べた。又、この段階まで同じ工程で作成した試料について、表面粗さ(表面平滑性)を測定した。その結果、反射率は64%、基板平坦度は500nm、そして欠陥数は5個であり、表面粗さは0.14nm(Rms)であった。ここで、欠陥数は、基板1の周辺領域を除外した132mm×132mmの領域に対して、欠陥検査装置(レーザーテック社製 マスク・サブストレート/ブランクス欠陥検査装置 M1350)を用いて測定した。又、表面粗さは、基板中心の1μm×1μm領域に対して、原子間力顕微鏡(AFM)を用いて測定した。なお、多層反射膜付き基板について、SEVD(Spherical Equivalent Volume Diameter)で20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥の検出が抑えられ、欠陥検査が可能なレベルの表面状態であった。
 実施例8の反射型マスクブランクを用いた反射型マスクの製造は、実施例1の製造方法と同様であるが、遮光帯レジストパターン9aをマスクとした遮光帯部11の形成(図4(g)~(f))については次の通りである。
 CFガスを用いてTaBO膜を、Clガスを用いてTaBN膜を、OとClの混合ガス、あるいはOとBr系の混合ガスを用いて保護膜6を、及びClガスを用いて多層反射膜5をドライエッチングすることで、遮光帯部11が形成された第2のパターンを形成した(図4(h))。この第2のパターンは、図4(h)に示されているように、上層吸収体パターン72bと下層吸収体パターン71bの2層パターンからなる第2の吸収体パターン7b、保護膜パターン6b、及び多層反射膜パターン5bからなる。導電性下地膜4は上述のように膜厚3nmのRu薄膜であるが、この材料はClガスに対して極めて高いエッチングストッパ機能を有しており、膜厚の減少もごく僅かで十分な導電性が確保される。
 その後、遮光帯レジストパターン9aをアッシングやレジスト剥離液などで除去し、硫酸過水(SPM)洗浄とアルカリ性の水溶液を用いたウェット洗浄を行って、反射型マスクを製造する点や、半導体装置の製造方法等は実施例1と同様である。
 実施例8の方法で製造された反射型マスクは、実施例1と同様に、チャージアップに伴うパターン描画欠陥、マスクパターンEB欠陥検査感度の低下、及び疑似欠陥の発生といった問題は生じなかった。その結果、マスク上で20nmのパターン欠陥を検出できた。又、平滑な表面を持つ導電性下地膜4によって、極めて平滑な膜上に多層反射膜5が形成されるため、保護膜付き多層反射膜の欠陥も5個と少なく、欠陥の観点から高い品質を持つ反射型マスクを製造することができた。
 実施例9は、導電性下地膜4と保護膜6の材料を実施例8のRuからRuTiに代えて、且つ保護膜6を形成した後のアニール温度を実施例1の130℃から150℃に代えた反射型マスクブランクとした例であって、それ以外は、反射型マスクの製造方法及び半導体装置の製造方法を含め、全て実施例8と同じである。
 実施例9では、導電性下地膜4として膜厚2nmのRuTiを用いた。この膜は、Arガス雰囲気中でRuTi(Ru:95原子%、Ti:5原子%)ターゲットを使用したイオンビームスパッタリング法で成膜した。ここで、RuとTiからなるスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。同様の工程で導電性下地膜4まで作成した試料を用いてシート抵抗を測定したところ、導電性下地膜4のシート抵抗は1200Ω/□であり、マスクパターンEB欠陥検査のチャージアップ防止に対して必要なシート抵抗を確保した。
 実施例9における保護膜6は膜厚2.5nmのRuTiである。この膜は、酸化を防止するために途中で大気開放することなく、RuTiからなる導電性下地膜4と、Mo膜とSi膜を交互に40層積層した多層反射膜5に引き続いて全て減圧真空下で連続して成膜した。成膜の方法は、Arガス雰囲気中でRuTi(Ru:95原子%、Ti:5原子%)ターゲットを使用したイオンビームスパッタリング法である。ここで、RuとTiからなるスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。その後、保護膜6が多層反射膜5上に形成された状態で150℃のアニールを行った。
 この段階の保護膜6が形成された多層反射膜基板に対して、EUV光に対する反射率、基板平坦度、及び、レーザーテック社製 マスク・サブストレート/ブランクス欠陥検査装置(M1350)による欠陥数を調べた。又、この段階まで同じ工程で作成した試料について、表面粗さを測定した。その結果、反射率は65%、基板平坦度は350nm、そして欠陥数は4個であり、表面粗さは0.14nm(Rms)であった。ここで、欠陥数や表面粗さの計測方法は実施例1と同じである。保護膜6としてRuTi(Ru:95原子%、Ti:5原子%)を用いたことにより、150℃と高めの温度でのアニールにもかかわらず多層反射膜5から保護膜へのSiの拡散が抑制できた。このため、EUV光に対する反射率65%が得られるとともに、150℃のアニールによって応力調整が図られ、基板平坦度は350nmと良好な値になった。又、多層反射膜付き基板について、SEVDで20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥の検出が抑えられ、欠陥検査が可能なレベルの表面状態であった。
 実施例9の方法で製造された反射型マスクは、実施例1と同様に、チャージアップに伴うパターン描画欠陥、マスクパターンEB欠陥検査感度の低下、及び疑似欠陥の発生といった問題は生じなかった。その結果、マスク上で20nmのパターン欠陥を検出できた。又、平滑な表面を持つ導電性下地膜4によって、極めて平滑な膜上に多層反射膜5が形成されるため、保護膜付き多層反射膜の欠陥も4個と少なく、欠陥の観点から高い品質を持つ反射型マスクを製造することができた。
 又、実施例9で作成した反射型マスクは、多層反射膜5の位相欠陥も少なく、高感度なマスクパターンEB欠陥検査も行われた低欠陥のマスクであるため、転写形成されたウエハ上のレジストパターンの欠陥も少なかった。このため、所望の特性を有する半導体装置を高い歩留まりで製造することができた。
 実施例10は、Siからなる緩衝膜10を基板1と導電性下地膜4の間に形成したことと、Ruからなる導電性下地膜4の膜厚を2nmに変更した以外は実施例8と全て同じ構造と方法で、反射型マスクブランク、反射型マスク、及び半導体装置を製造した。
 実施例10は、基板1の第1主面上に緩衝膜10が形成されたマスクブランクである。この緩衝膜10の膜厚は30nmであり、Arガス中でSiターゲットを使用したイオンビームスパッタリング法で成膜した。ここで、Siスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。
 この緩衝膜10の上にRuからなる導電性下地膜4を実施例8と同じ方法で形成した。実施例8との違いは膜厚のみで、実施例8では導電性下地膜4の膜厚を3nmとしたが、実施例10では2nmとした。したがって、この導電性下地膜4は、Arガス雰囲気中でRuターゲットを使用したイオンビームスパッタリング法で成膜し、Ruからなるスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。同様の工程で導電性下地膜4まで作成した試料を用いてシート抵抗を測定したところ、緩衝膜10と導電性下地膜4からなる積層膜のシート抵抗は800Ω/□であり、マスクパターンEB欠陥検査のチャージアップ防止に対して必要なシート抵抗を確保した。
 その後、多層反射膜5及び保護膜6を実施例1と同じ材料と方法で形成し、この段階の保護膜6が形成された多層反射膜基板に対して、EUV光に対する反射率、基板平坦度、及びレーザーテック社製 マスク・サブストレート/ブランクス欠陥検査装置(M1350)による欠陥数を調べた。又、この段階まで同じ工程で作成した試料について、表面粗さを測定した。保護膜6が形成された後のアニール温度は、実施例1と同じく、130℃である。その結果、反射率は64%、基板平坦度は500nm、そして欠陥数は6個であり、表面粗さは0.14nm(Rms)であり、実施例8とほぼ同じ結果が得られた。ここで、欠陥数や表面粗さの計測方法は実施例1と同じである。又、多層反射膜付き基板について、SEVDで20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥の検出が抑えられ、欠陥検査が可能なレベルの表面状態であった。
 実施例10の方法で製造された反射型マスクは、実施例1と同様に、チャージアップに伴うパターン描画欠陥、マスクパターンEB欠陥検査感度の低下、及び疑似欠陥の発生といった問題は生じなかった。その結果、マスク上で20nmのパターン欠陥を検出できた。又、平滑な表面を持つ導電性下地膜4によって、極めて平滑な膜上に多層反射膜5が形成されるため、保護膜付き多層反射膜の欠陥も6個と少なく、欠陥の観点から高い品質を持つ反射型マスクを製造することができた。
 又、実施例10で作成した反射型マスクは、多層反射膜5の位相欠陥も少なく、高感度なマスクパターンEB欠陥検査も行われた低欠陥なマスクであるため、転写形成されたウエハ上のレジストパターンの欠陥も少なかった。このため、所望の特性を有する半導体装置を高い歩留まりで製造することができた。
 実施例11は、SiとMoで構成される多層膜からなる緩衝膜10を基板1と導電性下地膜4の間に形成したことと、Ruからなる導電性下地膜4の膜厚を2nmに変更した以外は実施例8と全て同じ構造と方法で、反射型マスクブランク、反射型マスク、及び半導体装置を製造した。
 実施例11は、基板1の第1主面上にSiとMoで構成される多層膜からなる緩衝膜10が形成されたマスクブランクである。この緩衝膜10は、SiターゲットとMoターゲットを使用し、Arガス雰囲気中でイオンビームスパッタリングにより基板1上にSi層及びMo層を交互に積層して形成した。ここで、Si及びMoのスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。まず、Si膜を4nmの厚みで成膜し、続いて、Mo膜を3nmの厚みで成膜した。これを1周期とし、同様にして10周期積層した。
 この多層膜からなる緩衝膜10の上にRuからなる導電性下地膜4を実施例8と同じ方法で形成した。実施例8との違いは膜厚のみで、実施例8では導電性下地膜4の膜厚を3nmとしたが、実施例11では2nmとした。したがって、この導電性下地膜4は、Arガス雰囲気中でRuターゲットを使用したイオンビームスパッタリング法で成膜し、Ruからなるスパッタ粒子は、基板1の主表面の法線に対して30度の角度で入射させた。同様の工程で導電性下地膜4まで作成した試料を用いてシート抵抗を測定したところ、多層膜からなる緩衝膜10と導電性下地膜4からなる積層膜のシート抵抗は100Ω/□であり、マスクパターンEB欠陥検査のチャージアップ防止に対して十分小さなシート抵抗となった。
 その後、多層反射膜5及び保護膜6を実施例1と同じ材料と方法で形成し、この段階の保護膜6が形成された多層反射膜基板に対して、EUV光に対する反射率、基板平坦度、及びレーザーテック社製 マスク・サブストレート/ブランクス欠陥検査装置(M1350)による欠陥数を調べた。又、この段階まで同じ工程で作成した試料について、表面粗さを測定した。保護膜6が形成された後のアニール温度は、実施例1と同じく、130℃である。その結果、反射率は64%、基板平坦度は550nm、そして欠陥数は7個であり、表面粗さは0.14nm(Rms)であり、実施例8とほぼ同じ結果が得られた。ここで、欠陥数や表面粗さの計測方法は実施例1と同じである。又、多層反射膜付き基板について、SEVDで20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥の検出が抑えられ、欠陥検査が可能なレベルの表面状態であった。
 実施例11の方法で製造された反射型マスクは、実施例1と同様に、チャージアップに伴うパターン描画欠陥、マスクパターンEB欠陥検査感度の低下、及び疑似欠陥の発生といった問題は生じなかった。その結果、マスク上で20nmのパターン欠陥を検出できた。又、平滑な表面を持つ導電性下地膜4によって、極めて平滑な膜上に多層反射膜5が形成されるため、保護膜付き多層反射膜の欠陥も7個と少なく、欠陥の観点から高い品質を持つ反射型マスクを製造することができた。
 又、実施例11で作成した反射型マスクは、多層反射膜5の位相欠陥も少なく、高感度なマスクパターンEB欠陥検査も行われた低欠陥なマスクであるため、転写形成されたウエハ上のレジストパターンの欠陥も少なかった。このため、所望の特性を有する半導体装置を高い歩留まりで製造することができた。
(比較例)
 比較例では、導電性下地膜4として膜厚が30nmのTa膜を用いた以外、実施例1と同様の構造と方法で、反射型マスクブランク、反射型マスクを製造し、又、実施例1と同様の方法で半導体装置を製造した。
 比較例では、導電性下地膜4として膜厚30nmのTa膜を用いた。この膜は、Arガス雰囲気中でTaターゲットを使用したスパッタリング法で成膜した。同様の工程で導電性下地膜4まで作成した試料を用いてシート抵抗を測定したところ、導電性下地膜4のシート抵抗は70Ω/□であり、EBマスク検査のチャージアップ防止に対して必要なシート抵抗を確保した。
 その後、多層反射膜5及び保護膜6を実施例1と同じ材料と方法で形成し、この段階の保護膜6が形成された多層反射膜基板に対して、EUV光に対する反射率、基板平坦度、及びレーザーテック社製 マスク・サブストレート/ブランクス欠陥検査装置(M1350)による欠陥数を調べた。又、この段階まで同じ工程で作成した試料について、表面粗さを測定した。保護膜6が形成された後のアニール温度は、実施例1と同じく、130℃である。その結果、反射率は60%、基板平坦度は800nmであった。欠陥数は10個であった。しかし、SEVDで20nmサイズの欠陥検査が可能な高感度欠陥検査装置(KLA-Tencor社製 Teron6xx)を用いた欠陥検査においては、疑似欠陥が多発したため、100000個を超えて測定不可能となった。表面粗さは0.60nm(Rms)であり、実施例1の4.6倍以上の粗さであった。ここで、欠陥数や表面粗さの計測方法は実施例1と同じである。
 比較例の方法で製造された反射型マスクは、実施例1と同様に、EBチャージアップに伴うパターン描画欠陥や吸収体パターン検査の感度の低下といった問題は生じなかった。その反面、保護膜付きの多層反射膜の表面は荒れていて、多層反射膜5の欠陥検査結果は擬似欠陥で飽和され、位相欠陥や振幅欠陥の有無すら判別できない状態であった。又、この反射型マスクを用いて転写評価をしたところ、多数の転写欠陥が観測された。したがって、比較例の方法で製造された反射型マスクは欠陥品質が保証できないマスクであった。又、遮光帯部11における波長130nmから400nmの光に対する反射率は40%であり、遮光帯部11からのアウトオブバンド反射光が認められ、その影響でパターン転写精度は低かった。そのため、比較例で作成した反射型マスクを用いて製造された半導体装置の歩留まりは低かった。
 なお、上述の実施例2において、保護膜6を形成した後のアニール温度をさらに高温(180℃、200℃、250℃、300℃(アニール処理時間は適宜調整))に設定して反射型マスクブランクを作製したところ、実施例2に比べて基板平坦度はさらに改善して高平坦度の反射型マスクブランクが得られた。
 1…基板、2…導電膜、3…積層型導電性下地膜、4…導電性下地膜、5…多層反射膜、5b…多層反射膜パターン、6…保護膜、6b…保護膜パターン、7…吸収体膜、7a…第1の吸収体パターン、7b…第2の吸収体パターン、8…レジスト膜、8a…レジストパターン、9…レジスト膜、9a…遮光帯レジストパターン、11…遮光帯部、12…回路パターン領域、12b…孤立された回路パターン領域、13…周辺領域、14…溝部、31…導電膜、32…最上層、71…TaBN吸収体膜(下層吸収体膜)、71a…TaBN膜パターン(下層吸収体パターン)、71b…TaBN膜パターン(下層吸収体パターン)、72…TaBO膜(上層吸収体膜)、72a…TaBO膜パターン(上層吸収体パターン)、72b…TaBO膜パターン(上層吸収体パターン)、100…反射型マスクブランク(第1のEUVリソグラフィ用反射型マスクブランク)、101…反射型マスクブランク(第2のEUVリソグラフィ用反射型マスクブランク)、102…反射型マスクブランク(第4のEUVリソグラフィ用反射型マスクブランク)、200…反射型マスク

Claims (25)

  1.  基板上に導電性下地膜と、露光光を反射する多層反射膜と、露光光を吸収する吸収体膜が積層された反射型マスクブランクであって、
     前記導電性下地膜は、前記多層反射膜と隣接して設けられ、膜厚が1nm以上10nm以下のタンタル系材料からなることを特徴とする反射型マスクブランク。
  2.  基板上に導電性下地膜と、露光光を反射する多層反射膜と、露光光を吸収する吸収体膜が積層された反射型マスクブランクであって、
     前記導電性下地膜は、前記多層反射膜と隣接して設けられた膜厚が1nm以上10nm以下のタンタル系材料層と、該タンタル系材料層と前記基板との間に設けられた導電性材料層とを含む積層膜からなることを特徴とする反射型マスクブランク。
  3.  前記タンタル系材料は、窒素及び酸素のうち少なくとも1つを含むことを特徴とする請求項1又は2記載の反射型マスクブランク。
  4.  前記多層反射膜上に保護膜が形成されており、該保護膜がルテニウム系材料からなることを特徴とする請求項1乃至3のいずれか一つに記載の反射型マスクブランク。
  5.  前記多層反射膜は、ケイ素を含有する第1の層とモリブデンを含有する第2の層とが交互に積層されてなり、前記導電性下地膜と接する多層反射膜の最下層は前記第1の層であることを特徴とする請求項1乃至4のいずれか一つに記載の反射型マスクブランク。
  6.  前記多層反射膜は、ケイ素を含有する第1の層とモリブデンを含有する第2の層とが交互に積層されてなり、前記導電性下地膜と接する多層反射膜の最下層は前記第2の層であることを特徴とする請求項1乃至4のいずれか一つに記載の反射型マスクブランク。
  7.  請求項1及至6のいずれか一つに記載の反射型マスクブランクによって作製されることを特徴とする反射型マスク。
  8.  請求項1及至6のいずれか一つに記載の反射型マスクブランクを準備する工程と、
     前記吸収体膜上にレジストパターンを形成し、該レジストパターンをマスクにしてエッチングにより吸収体パターンを形成する工程、又は前記吸収体膜上にエッチング用ハードマスク膜を形成した後にレジストパターンを形成し、該ハードマスクを介して該レジストパターンをエッチングにより吸収体膜に転写して吸収体パターンを形成する工程と、
     前記多層反射膜の一部を酸素ガスを含む塩素系ガスによってドライエッチングする工程と、を含むことを特徴とする反射型マスクの製造方法。
  9.  前記多層反射膜の一部をエッチングする場所は、回路パターン領域を取り囲むように設けられた遮光帯領域であることを特徴とする請求項8記載の反射型マスクの製造方法。
  10.  前記多層反射膜上にルテニウム系材料からなる保護膜が形成されており、該保護膜及び多層反射膜を連続してドライエッチングすることを特徴とする請求項8又は9記載の反射型マスクの製造方法。
  11.  請求項7に記載の反射型マスク、又は請求項8乃至10のいずれか一つに記載の反射型マスクの製造方法によって製造された反射型マスクを用いて、該反射型マスク上に形成されているパターンを、半導体基板上に形成されたレジスト膜に露光転写する工程を備えることを特徴とする半導体装置の製造方法。
  12.  基板上に導電性下地膜と、露光光を反射する多層反射膜と、露光光を吸収する吸収体膜が積層された反射型マスクブランクであって、
     前記導電性下地膜は、前記多層反射膜と隣接して設けられ、膜厚が1nm以上10nm以下のルテニウム系材料からなることを特徴とする反射型マスクブランク。
  13.  前記導電性下地膜と前記基板との間に、前記基板表面の欠陥又は粗さから生じる前記多層反射膜表面への悪影響を緩和する緩衝膜を備えることを特徴とする請求項12記載の反射型マスクブランク。
  14.  前記多層反射膜上に保護膜が形成されており、該保護膜がルテニウム系材料からなることを特徴とする請求項12又は13記載の反射型マスクブランク。
  15.  前記ルテニウム系材料は、チタンを含むことを特徴とする請求項14記載の反射型マスクブランク。
  16.  基板上にスパッタリング法によって導電性下地膜を形成する導電性下地膜形成工程と、
     前記導電性下地膜と隣接して、露光光を反射する多層反射膜を形成する多層反射膜形成工程と、
     露光光を吸収する吸収体膜を形成する吸収体膜形成工程とを順次行って製造する反射型マスクブランクの製造方法であって、
     前記導電性下地膜は、膜厚が1nm以上10nm以下のルテニウム系材料からなることを特徴とする反射型マスクブランクの製造方法。
  17.  前記導電性下地膜は、イオンビームスパッタリング法によって形成されることを特徴とする請求項16記載の反射型マスクブランクの製造方法。
  18.  前記導電性下地膜は、該導電性下地膜を構成する材料のスパッタ粒子を基板主表面の法線に対して45度以下の角度で入射させることによって形成されることを特徴とする請求項16又は17記載の反射型マスクブランクの製造方法。
  19.  前記導電性下地膜形成工程と前記多層反射膜形成工程は、減圧真空下において連続して実施されることを特徴とする請求項16及至請求項18のいずれか一つに記載の反射型マスクブランクの製造方法。
  20.  前記多層反射膜形成工程の後に、該多層反射膜上に保護膜を形成する工程を有し、該保護膜がルテニウム系材料からなることを特徴とする請求項16及至請求項19のいずれか一つに記載の反射型マスクブランクの製造方法。
  21.  前記ルテニウム系材料は、チタンを含むことを特徴とする請求項20記載の反射型マスクブランクの製造方法。
  22.  前記多層反射膜上に保護膜が形成された状態で、100℃以上300℃以下でアニール処理することを特徴とする請求項20又は21記載の反射型マスクブランクの製造方法。
  23.  請求項12及至請求項15のいずれか一つに記載の反射型マスクブランクを準備する工程と、
     前記吸収体膜上にレジストパターンを形成し、該レジストパターンをマスクにしてエッチングにより吸収体パターンを形成する工程、又は前記吸収体膜上にエッチング用ハードマスク膜を形成した後にレジストパターンを形成し、該ハードマスクを介して該レジストパターンをエッチングにより吸収体膜に転写して吸収体パターンを形成する工程と、
     前記多層反射膜の一部をエッチングする工程と、
     を含むことを特徴とする反射型マスクの製造方法。
  24.  前記多層反射膜の一部をエッチングする場所は、回路パターン領域を取り囲むように設けられた遮光帯領域であることを特徴とする請求項23記載の反射型マスクの製造方法。
  25.  請求項23又は24記載の反射型マスクの製造方法によって製造された反射型マスクを用いて、該反射型マスク上に形成されているパターンを、半導体基板上に形成されたレジスト膜に露光転写する工程を備えることを特徴とする半導体装置の製造方法。
PCT/JP2015/075970 2014-09-17 2015-09-14 反射型マスクブランク及びその製造方法、反射型マスク及びその製造方法、並びに半導体装置の製造方法 WO2016043147A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177004859A KR102499220B1 (ko) 2014-09-17 2015-09-14 반사형 마스크 블랭크 및 그 제조 방법, 반사형 마스크 및 그 제조 방법, 및 반도체 장치의 제조 방법
US15/508,544 US10347485B2 (en) 2014-09-17 2015-09-14 Reflective mask blank, method for manufacturing same, reflective mask, method for manufacturing same, and method for manufacturing semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014188680A JP6425951B2 (ja) 2014-09-17 2014-09-17 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
JP2014-188680 2014-09-17
JP2014-265214 2014-12-26
JP2014265214 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016043147A1 true WO2016043147A1 (ja) 2016-03-24

Family

ID=55533184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075970 WO2016043147A1 (ja) 2014-09-17 2015-09-14 反射型マスクブランク及びその製造方法、反射型マスク及びその製造方法、並びに半導体装置の製造方法

Country Status (4)

Country Link
US (1) US10347485B2 (ja)
KR (1) KR102499220B1 (ja)
TW (1) TWI664489B (ja)
WO (1) WO2016043147A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191209A (ja) * 2018-04-18 2019-10-31 Hoya株式会社 導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
US10915015B2 (en) 2017-12-21 2021-02-09 Samsung Electronics Co., Ltd. EUV mask blank, photomask manufactured by using the EUV mask blank, lithography apparatus using the photomask and method of fabricating semiconductor device using the photomask
JP2022159362A (ja) * 2017-06-21 2022-10-17 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730139B (zh) 2016-07-27 2021-06-11 美商應用材料股份有限公司 具多層吸收劑的極紫外遮罩坯料及製造方法
KR102631779B1 (ko) 2016-10-21 2024-02-01 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크의 제조 방법, 및 반도체 장치의 제조 방법
KR102002441B1 (ko) 2017-01-17 2019-07-23 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크 및 그 제조 방법, 및 반도체 장치의 제조 방법
JP6229807B1 (ja) * 2017-02-22 2017-11-15 旭硝子株式会社 マスクブランク
US11150550B2 (en) * 2017-08-10 2021-10-19 AGC Inc. Reflective mask blank and reflective mask
US10962873B2 (en) 2017-09-29 2021-03-30 Taiwan Semiconductor Manufacturing Co., Ltd. Extreme ultraviolet mask and method of manufacturing the same
US10866504B2 (en) 2017-12-22 2020-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Lithography mask with a black border region and method of fabricating the same
US10845698B2 (en) * 2018-05-30 2020-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Mask, method of forming the same and method of manufacturing a semiconductor device using the same
JP6988697B2 (ja) * 2018-05-31 2022-01-05 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法及びフォトマスク
TW202026770A (zh) 2018-10-26 2020-07-16 美商應用材料股份有限公司 用於極紫外線掩模吸收劑的ta-cu合金材料
TW202028495A (zh) 2018-12-21 2020-08-01 美商應用材料股份有限公司 極紫外線遮罩吸收器及用於製造的方法
US11249390B2 (en) 2019-01-31 2022-02-15 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
TW202035792A (zh) 2019-01-31 2020-10-01 美商應用材料股份有限公司 極紫外光遮罩吸收體材料
TWI828843B (zh) 2019-01-31 2024-01-11 美商應用材料股份有限公司 極紫外線(euv)遮罩素材及其製造方法
TW202111420A (zh) 2019-05-22 2021-03-16 美商應用材料股份有限公司 極紫外光遮罩吸收材料
US11366379B2 (en) 2019-05-22 2022-06-21 Applied Materials Inc. Extreme ultraviolet mask with embedded absorber layer
US11275303B2 (en) 2019-05-22 2022-03-15 Applied Materials Inc. Extreme ultraviolet mask absorber matertals
TW202104666A (zh) 2019-05-22 2021-02-01 美商應用材料股份有限公司 極紫外光遮罩吸收劑材料
TW202104667A (zh) 2019-05-22 2021-02-01 美商應用材料股份有限公司 極紫外光遮罩吸收材料
US11385536B2 (en) 2019-08-08 2022-07-12 Applied Materials, Inc. EUV mask blanks and methods of manufacture
US11480869B2 (en) * 2019-08-29 2022-10-25 Taiwan Semiconductor Manufacturing Company Ltd. Photomask with enhanced contamination control and method of forming the same
US11630385B2 (en) 2020-01-24 2023-04-18 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
TW202131087A (zh) 2020-01-27 2021-08-16 美商應用材料股份有限公司 極紫外光遮罩吸收劑材料
TWI817073B (zh) 2020-01-27 2023-10-01 美商應用材料股份有限公司 極紫外光遮罩坯體硬遮罩材料
TW202129401A (zh) 2020-01-27 2021-08-01 美商應用材料股份有限公司 極紫外線遮罩坯體硬遮罩材料
TW202141165A (zh) 2020-03-27 2021-11-01 美商應用材料股份有限公司 極紫外光遮罩吸收材料
US11644741B2 (en) 2020-04-17 2023-05-09 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US20210333717A1 (en) * 2020-04-23 2021-10-28 Taiwan Semiconductor Manufacturing Co., Ltd. Extreme ultraviolet mask and method of manufacturing the same
US11300871B2 (en) 2020-04-29 2022-04-12 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
KR20210156461A (ko) * 2020-06-18 2021-12-27 삼성전자주식회사 극자외선 노광 장치의 노광 마스크
TW202202641A (zh) 2020-07-13 2022-01-16 美商應用材料股份有限公司 極紫外線遮罩吸收劑材料
KR102522952B1 (ko) * 2020-09-02 2023-04-19 주식회사 에스앤에스텍 극자외선용 반사형 블랭크 마스크 및 그의 결함 검사 방법
US11609490B2 (en) 2020-10-06 2023-03-21 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11513437B2 (en) 2021-01-11 2022-11-29 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US11592738B2 (en) 2021-01-28 2023-02-28 Applied Materials, Inc. Extreme ultraviolet mask absorber materials

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293450A (ja) * 1995-04-24 1996-11-05 Nikon Corp X線反射型マスク
JP2009212220A (ja) * 2008-03-03 2009-09-17 Toshiba Corp 反射型マスク及びその作製方法
JP2011192693A (ja) * 2010-03-12 2011-09-29 Hoya Corp 多層反射膜付基板、反射型マスクブランク及びそれらの製造方法
WO2012105698A1 (ja) * 2011-02-04 2012-08-09 旭硝子株式会社 導電膜付基板、多層反射膜付基板、およびeuvリソグラフィ用反射型マスクブランク
WO2012121159A1 (ja) * 2011-03-07 2012-09-13 旭硝子株式会社 多層基板、多層基板の製造方法、多層基板の品質管理方法
JP2012204708A (ja) * 2011-03-28 2012-10-22 Toppan Printing Co Ltd 反射型マスクブランク及び反射型マスク
JP2013225662A (ja) * 2012-03-19 2013-10-31 Hoya Corp Euvリソグラフィー用多層反射膜付き基板及びeuvリソグラフィー用反射型マスクブランク、並びにeuvリソグラフィー用反射型マスク及び半導体装置の製造方法
JP2014096484A (ja) * 2012-11-09 2014-05-22 Toppan Printing Co Ltd Euvlマスク用ブランクス及びその製造方法、euvlマスク及びその更新方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113656A (ja) 1991-10-23 1993-05-07 Toppan Printing Co Ltd 位相シフトマスクおよびその製造方法並びにそれに用いる位相シフトマスク用ブランク
US6835503B2 (en) * 2002-04-12 2004-12-28 Micron Technology, Inc. Use of a planarizing layer to improve multilayer performance in extreme ultra-violet masks
JP4212025B2 (ja) 2002-07-04 2009-01-21 Hoya株式会社 反射型マスクブランクス及び反射型マスク並びに反射型マスクの製造方法
US6908713B2 (en) 2003-02-05 2005-06-21 Intel Corporation EUV mask blank defect mitigation
JP3683261B2 (ja) 2003-03-03 2005-08-17 Hoya株式会社 擬似欠陥を有する反射型マスクブランクス及びその製造方法、擬似欠陥を有する反射型マスク及びその製造方法、並びに擬似欠陥を有する反射型マスクブランクス又は反射型マスクの製造用基板
US6984475B1 (en) 2003-11-03 2006-01-10 Advanced Micro Devices, Inc. Extreme ultraviolet (EUV) lithography masks
JP4693395B2 (ja) 2004-02-19 2011-06-01 Hoya株式会社 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法
US7504185B2 (en) 2005-10-03 2009-03-17 Asahi Glass Company, Limited Method for depositing multi-layer film of mask blank for EUV lithography and method for producing mask blank for EUV lithography
DE102006044591A1 (de) 2006-09-19 2008-04-03 Carl Zeiss Smt Ag Optische Anordnung, insbesondere Projektionsbelichtungsanlage für die EUV-Lithographie, sowie reflektives optisches Element mit verminderter Kontamination
KR101771380B1 (ko) 2008-05-09 2017-08-24 호야 가부시키가이샤 반사형 마스크, 반사형 마스크 블랭크 및 그 제조 방법
JP5282507B2 (ja) 2008-09-25 2013-09-04 凸版印刷株式会社 ハーフトーン型euvマスク、ハーフトーン型euvマスクの製造方法、ハーフトーン型euvマスクブランク及びパターン転写方法
US8562794B2 (en) 2010-12-14 2013-10-22 Asahi Glass Company, Limited Process for producing reflective mask blank for EUV lithography and process for producing substrate with functional film for the mask blank
JP6226517B2 (ja) * 2012-09-11 2017-11-08 芝浦メカトロニクス株式会社 反射型マスクの製造方法、および反射型マスクの製造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293450A (ja) * 1995-04-24 1996-11-05 Nikon Corp X線反射型マスク
JP2009212220A (ja) * 2008-03-03 2009-09-17 Toshiba Corp 反射型マスク及びその作製方法
JP2011192693A (ja) * 2010-03-12 2011-09-29 Hoya Corp 多層反射膜付基板、反射型マスクブランク及びそれらの製造方法
WO2012105698A1 (ja) * 2011-02-04 2012-08-09 旭硝子株式会社 導電膜付基板、多層反射膜付基板、およびeuvリソグラフィ用反射型マスクブランク
WO2012121159A1 (ja) * 2011-03-07 2012-09-13 旭硝子株式会社 多層基板、多層基板の製造方法、多層基板の品質管理方法
JP2012204708A (ja) * 2011-03-28 2012-10-22 Toppan Printing Co Ltd 反射型マスクブランク及び反射型マスク
JP2013225662A (ja) * 2012-03-19 2013-10-31 Hoya Corp Euvリソグラフィー用多層反射膜付き基板及びeuvリソグラフィー用反射型マスクブランク、並びにeuvリソグラフィー用反射型マスク及び半導体装置の製造方法
JP2014096484A (ja) * 2012-11-09 2014-05-22 Toppan Printing Co Ltd Euvlマスク用ブランクス及びその製造方法、euvlマスク及びその更新方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022159362A (ja) * 2017-06-21 2022-10-17 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
JP7368564B2 (ja) 2017-06-21 2023-10-24 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
US10915015B2 (en) 2017-12-21 2021-02-09 Samsung Electronics Co., Ltd. EUV mask blank, photomask manufactured by using the EUV mask blank, lithography apparatus using the photomask and method of fabricating semiconductor device using the photomask
US11372322B2 (en) 2017-12-21 2022-06-28 Samsung Electronics Co., Ltd. EUV mask blank, photomask manufactured by using the EUV mask blank, lithography apparatus using the photomask and method of fabricating semiconductor device using the photomask
JP2019191209A (ja) * 2018-04-18 2019-10-31 Hoya株式会社 導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法

Also Published As

Publication number Publication date
US10347485B2 (en) 2019-07-09
US20170263444A1 (en) 2017-09-14
KR102499220B1 (ko) 2023-02-13
TW201614362A (en) 2016-04-16
KR20170051419A (ko) 2017-05-11
TWI664489B (zh) 2019-07-01

Similar Documents

Publication Publication Date Title
WO2016043147A1 (ja) 反射型マスクブランク及びその製造方法、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP7047046B2 (ja) マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
TWI810176B (zh) 反射型光罩基底、反射型光罩及其製造方法、與半導體裝置之製造方法
WO2018135468A1 (ja) 導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
KR102631779B1 (ko) 반사형 마스크 블랭크, 반사형 마스크의 제조 방법, 및 반도체 장치의 제조 방법
TWI827823B (zh) 附多層反射膜之基板、反射型光罩基底及反射型光罩、與半導體裝置之製造方法
JP6651314B2 (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
US20220342293A1 (en) Substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP6425951B2 (ja) 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
JP6475400B2 (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
WO2020184473A1 (ja) 反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP6440996B2 (ja) 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
JP7313166B2 (ja) マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
JP2016046370A5 (ja)
JP7288782B2 (ja) 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
CN111512226B (zh) 掩模坯料、相移掩模及半导体器件的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177004859

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15508544

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841563

Country of ref document: EP

Kind code of ref document: A1