WO2016041405A1 - Pd基复合纳米粒子及其制备方法 - Google Patents

Pd基复合纳米粒子及其制备方法 Download PDF

Info

Publication number
WO2016041405A1
WO2016041405A1 PCT/CN2015/084014 CN2015084014W WO2016041405A1 WO 2016041405 A1 WO2016041405 A1 WO 2016041405A1 CN 2015084014 W CN2015084014 W CN 2015084014W WO 2016041405 A1 WO2016041405 A1 WO 2016041405A1
Authority
WO
WIPO (PCT)
Prior art keywords
based composite
nanoparticles
nanoparticle
copper
salt
Prior art date
Application number
PCT/CN2015/084014
Other languages
English (en)
French (fr)
Inventor
符显珠
郭瑛
孙蓉
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2016041405A1 publication Critical patent/WO2016041405A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Definitions

  • the invention relates to the field of nano materials, in particular to a Pd-based composite nano particle and a preparation method thereof.
  • glucose dehydrogenase GDH
  • glucose oxidase GO x
  • this bio-enzyme-based glucose sensor has high sensitivity, it also has some unavoidable disadvantages. Due to the inherent properties of biological enzymes, the long-term stability of the sensor is insufficient. At the same time, biological enzymes are harsh on the environment and are easily affected by environmental factors such as temperature, humidity and pH. In addition, the biological enzyme is easily soluble in water, the nature is unstable, and the active center of the biological enzyme is surrounded by the outer layer protein, which greatly limits the sensitivity, reproducibility and large-scale industrial development of the biosensor.
  • Nanomaterials especially metal oxide nanomaterials, as an electrocatalyst for direct enzyme-free glucose sensors, have been widely used due to their low cost, good biocompatibility, high electrocatalytic activity, non-toxicity or low toxicity and high stability. s concern.
  • the lower hole carrier mobility and ultra-low conductivity of metal oxides severely limit their application in the field of electrochemical catalysts. Therefore, enhanced electron conductivity and mass transfer are the key to expanding the application of metal oxides in the field of electrochemical catalysts.
  • the main method adopted is to use a highly conductive material to be compounded with a metal oxide, such as a one-dimensional or two-dimensional carbon material, to improve the electrical conductivity of the entire electrode.
  • a metal oxide such as a one-dimensional or two-dimensional carbon material
  • a preparation method of Pd-based composite nanoparticles includes the following steps:
  • the mixed solution containing a copper salt and a stabilizer wherein the concentration of the copper salt is 0.0005 mol / L ⁇ 0.005 mol / L, the molar ratio of the stabilizer to the copper salt is 1:1 ⁇ 10;
  • a reducing agent is added to the mixed solution according to a molar ratio of the reducing agent to the copper ion of 1 to 100:1, and the palladium salt and the copper are further reacted.
  • a solution in which the molar ratio of the salt is from 1:5 to 50 to the palladium salt, and stirring is continued at room temperature until the reaction mixture is sufficiently reacted to obtain a reaction liquid;
  • the residue After filtering the reaction solution, the residue is retained, and after the filter residue is washed and dried, the Pd-modified Cu 2 O nanoparticles are obtained, and the Pd-based composite nanoparticles include Cu 2 O nanoparticles having a mesoporous structure. Pd deposited on the surface of the Cu 2 O nanoparticles and the nanoparticles Cu 2 O nanostructure has a rough surface.
  • the concentration of the stabilizer in the mixed solution is from 0.0001 mol/L to 0.05 mol/L.
  • the stabilizer is citric acid, cetyltrimethylammonium bromide or polyvinylpyrrolidone.
  • the palladium salt is palladium chloride.
  • the copper salt is copper chloride or copper sulfate.
  • the reducing agent is sodium borohydride or hydrazine hydrate.
  • a Pd-based composite nanoparticle prepared by the preparation method of the above Pd-based composite nanoparticle prepared by the preparation method of the above Pd-based composite nanoparticle
  • the Pd-based composite nanoparticles comprise Cu 2 O nanoparticles having a mesoporous structure, Pd deposited on the surface of the Cu 2 O nanoparticles and the nanoparticles Cu 2 O nanostructure has a rough surface.
  • the Pd-modified Cu 2 O nanoparticles have a particle size of 50 nm to 200 nm.
  • Pd is deposited on the surface of the Cu 2 O nanoparticles having a mesoporous structure, thereby promoting the charge and mass transport of the Pd-based composite nanoparticles, compared to the simple metal oxide nanomaterials.
  • the Pd-based composite nanoparticles have higher electrocatalytic performance and better charge and mass transport.
  • the rough surface nanostructures of the Cu 2 O nanoparticles enhance the electrochemical catalytic activity sites of the Pd-based composite nanoparticles, thereby making them have higher electrochemical catalytic activity for glucose oxidation.
  • Such Pd-based composite nanoparticles have a wide range of applications in the field of electrochemical biosensors.
  • FIG. 1 is a schematic view showing a preparation method of Pd-based composite nanoparticles according to an embodiment
  • Example 2 is a SEM photograph of Pd-based composite nanoparticles prepared in Example 1;
  • Example 3 is a SEM photograph of the Pd-based composite nanoparticles in Example 1;
  • Example 4 is a graph showing current response curves of a Pd-based composite nanocomposite electrode material prepared in Example 1 and a Pd-based composite nanoelectrode material in a 0.1 mol/L KOH solution continuously added with different concentrations of glucose solution;
  • Figure 5 is a graph of the fitting of the corresponding current response value to glucose concentration in Figure 4.
  • a method for preparing a Pd-based composite nanoparticle includes the following steps:
  • the concentration of the copper salt is from 0.0005 mol/L to 0.005 mol/L, and the molar ratio of the stabilizer to the copper salt is from 1:1 to 10.
  • the concentration of the stabilizer is from 0.0001 mol/L to 0.05 mol/L.
  • the stabilizer may be citric acid, cetyltrimethylammonium bromide or polyvinylpyrrolidone.
  • the copper salt can be copper chloride or copper sulfate.
  • the mixed solution obtained in S10 is uniformly stirred at room temperature for 5 min to 10 min, and then the reducing agent is added to the mixed solution according to the molar ratio of the reducing agent to the copper ion of 1 to 100:1, and the palladium salt and the copper salt are further reacted.
  • a molar ratio of 1:5 to 50 is added to the palladium salt solution, and the mixture is further stirred at room temperature until it is sufficiently reacted to obtain a reaction liquid.
  • the reducing agent can be sodium borohydride or hydrazine hydrate.
  • Stirring can be selected by magnetic stirring.
  • Pd-based composite nanoparticles comprise Cu 2 O nanoparticles having a mesoporous structure, Pd deposited on the surface of the Cu 2 O nanoparticles and the nanoparticles Cu 2 O nanostructure has a rough surface.
  • the particle diameter of the Pd-based composite nanoparticles can be controlled to be 50 nm to 200 nm by changing the ratio of the palladium salt to the copper salt and the copper salt concentration.
  • Pd is deposited on the surface of the Cu 2 O nanoparticles having a mesoporous structure, thereby promoting the Pd-modified Cu 2 O nanoparticles.
  • the Pd-based composite nanoparticles have better electrical conductivity than conventional metal oxide nanomaterials.
  • the rough surface nanostructures of Cu 2 O nanoparticles improve the electrochemical catalytic surface area of Pd-based composite nanoparticles, which makes them have higher electrochemical catalytic activity for glucose oxidation.
  • Such Pd-modified Cu 2 O nanoparticles have wide applications in the field of electrochemical biosensors.
  • the Pd-based composite nanoparticle of one embodiment is prepared by the preparation method of the Pd-modified Cu 2 O nanoparticle described above, and comprises Cu 2 O nanoparticles having a mesoporous structure, and Pd is deposited on the surface of the Cu 2 O nanoparticle and Cu 2 O nanoparticles have a rough surface nanostructure.
  • the Pd-based composite nanoparticles have a particle diameter of 50 nm to 200 nm.
  • Pd is deposited on the surface of Cu 2 O nanoparticles with mesoporous structure, thereby promoting the electronic conductivity and mass transport of Pd-based composite nanoparticles, compared to conventional metal oxide nanomaterials.
  • the Pd-modified Cu 2 O nanoparticles have better charge and mass transport properties.
  • the rough surface nanostructures of Cu 2 O nanoparticles improve the electrochemical catalytic surface area and active sites of Pd-based composite nanoparticles, which makes them have higher electrochemical catalytic activity for glucose oxidation.
  • Such Pd-based composite nanoparticles have a wide range of applications in the field of electrochemical biosensors.
  • the Pd-based composite nanoparticles prepared in Example 1 have mesoporous nanostructures and rough surface nanostructures, and have uniform size, good monodispersity, and an average particle diameter of about 90 nm.
  • the pure Cu 2 O nanoparticle has a mesoporous structure with an average particle diameter of about 90 nm, but the surface is relatively smooth. Does not have rough surface nanostructures.
  • Electrochemical catalytic performance test 2 mg of biosensor electrode material was mixed with a total amount of 5 mL of absolute ethanol, deionized water and 0.1 wt% of a membrane solution solution (volume ratio: 2.5:1:0.5). Thereafter, the homogeneous mixture was loaded on a glassy carbon electrode and dried at 60 ° C to serve as a working electrode for measurement.
  • the reference electrode was a saturated calomel (SCE) electrode, and the platinum plate electrode was used as a counter electrode.
  • the glucose solution was continuously added to 100 mL of N 2 saturated 0.1 mol/L KOH solution.
  • a current response test for glucose oxidation was performed at room temperature.
  • the sensitivity of the Pd-based composite nanoparticles prepared in Example 1 as an electrochemical biosensor is 1395 ⁇ A cm -2 mM -1 , the detection limit is 0.6 ⁇ M, and the response time is less than 3 s. After standing for one month at room temperature, the response current is 95% of the initial response current.
  • the sensitivity of simple mesoporous Cu 2 O nanoparticles as electrochemical biosensor is 480 ⁇ A cm -2 mM -1 , the detection limit is 1.6 ⁇ M, the response time is less than 4s, and the electrode is placed at room temperature for one month.
  • the response current is 93% of the initial current.
  • the Pd-based composite nanoparticles prepared in Example 1 have better sensitivity, lower detection limit, faster response time, and better stability.
  • the Pd-based composite nanoparticles prepared in Example 2 had mesoporous nanostructures and rough surface nanostructures, and were uniform in size and monodispersity, and the average particle diameter was about 105 nm.
  • the mesoporous Cu 2 O nanoelectrode material obtained by introducing no palladium chloride solution was compared by electron microscopy.
  • the mesoporous Cu 2 O nanoelectrode material has a mesoporous structure with an average particle diameter of about 100 nm. However, the surface is smooth and does not have a rough structure.
  • the experimental data showed that the sensitivity of the Pd-based composite nanoparticles prepared in Example 2 as an electrochemical biosensor was 1135 ⁇ Acm -2 mM -1 , the detection limit was 0.8 ⁇ M, the response time was less than 3 s, and the electrode was placed at room temperature. After the month, the response current is 96% of the initial response current.
  • the sensitivity of the mesoporous Cu 2 O nanoelectrode material as an electrochemical biosensor is 412 ⁇ A cm -2 mM -1 , the detection limit is 2.1 ⁇ M, the response time is less than 5s, and the electrode is placed at room temperature for one month.
  • the resulting response current is 91% of the initial current.
  • the Pd-based composite nanoparticles prepared in Example 2 have better sensitivity, lower detection limit, faster response time, and better stability.
  • the Pd-based composite nanoparticles prepared in Example 3 had mesoporous nanostructures and rough surface nanostructures, and were uniform in size and monodispersity, with an average particle size of about 110 nm.
  • the mesoporous Cu 2 O nanoelectrode material obtained without the introduction of palladium chloride solution was compared by electron microscopy.
  • the mesoporous Cu 2 O nanoelectrode material has a mesoporous structure with an average particle size of about 115 nm. , but the surface is smooth and does not have a rough structure.
  • the experimental data showed that the Pd-based composite nanoparticles prepared in Example 3 had an sensitivity of 1005 ⁇ A cm -2 mM -1 as an electrochemical biosensor with a detection limit of 1.0 ⁇ M and a response time of less than 3 s.
  • the electrode was placed at room temperature. After month, the response current is 95% of the initial response current.
  • the sensitivity of simple mesoporous Cu 2 O nanoparticles as electrochemical biosensor is 396 ⁇ A cm -2 mM -1 , the detection limit is 2.0 ⁇ M, the response time is less than 5s, and the electrode is placed at room temperature for one month.
  • the response current is 91% of the initial current.
  • the Pd-based composite nanoparticles prepared in Example 3 have better sensitivity, lower detection limit, faster response time, and better stability.
  • the Pd-based composite nanoparticles prepared in Example 4 had mesoporous nanostructures and rough surface nanostructures, and were uniform in size and monodispersity, and the average particle diameter was about 110 nm.
  • the mesoporous Cu 2 O nanoelectrode material obtained by introducing palladium chloride solution was compared by electron microscopy.
  • the mesoporous Cu 2 O nanoelectrode material has a mesoporous structure with an average particle size of about 110 nm. However, the surface is smooth and does not have a rough structure.
  • the experimental data showed that the Pd-based composite nanoparticles prepared in Example 4 had an sensitivity of 1305 ⁇ A cm -2 mM -1 as an electrochemical biosensor with a detection limit of 1.0 ⁇ M and a response time of less than 3 s.
  • the electrode was placed at room temperature. After the month, the response current is 96% of the initial response current.
  • the sensitivity of simple mesoporous Cu 2 O nanoparticles as electrochemical biosensor is 385 ⁇ A cm -2 mM -1 , the detection limit is 2.0 ⁇ M, the response time is less than 5s, and the electrode is placed at room temperature for one month.
  • the response current is 90% of the initial current.
  • the Pd-based composite nanoparticles prepared in Example 4 have better sensitivity, lower detection limit, faster response time, and better stability.
  • Example 5 Observation by electron microscopy showed that the Pd-based composite nanoparticles prepared in Example 5 had mesoporous nanostructures. And rough surface nanostructures, and uniform size, good monodispersity, average particle size of about 120nm.
  • the mesoporous Cu 2 O nanoelectrode material obtained by introducing no palladium chloride solution was compared by electron microscopy.
  • the mesoporous Cu 2 O nanoelectrode material has a mesoporous structure with an average particle size of about 130 nm. However, the surface is smooth and does not have a rough structure.
  • the experimental data showed that the sensitivity of the Pd-based composite nanoparticle electrochemical biosensor prepared in Example 5 was 1215 ⁇ A cm -2 mM -1 , the detection limit was 0.9 ⁇ M, the response time was less than 3s, and the electrode was placed at room temperature for one month. After that, the response current is 97% of the initial response current. Under the same conditions, the sensitivity of the mesoporous Cu 2 O nanoparticle electrochemical biosensor is 390 ⁇ A cm -2 mM -1 , the detection limit is 1.9 ⁇ M, the response time is less than 5s, and the electrode is placed at room temperature for one month. The response current is 92% of the initial current.
  • the Pd-based composite nanoparticles prepared in Example 5 have better sensitivity, lower detection limit, faster response time, and better stability.
  • the Pd-based composite nanoparticles prepared in Example 6 had mesoporous nanostructures and rough surface nanostructures, and were uniform in size and monodispersity, and the average particle size was about 150 nm.
  • the mesoporous Cu 2 O nanoelectrode material obtained by introducing no palladium chloride solution was compared by electron microscopy.
  • the mesoporous Cu 2 O nanoelectrode material has a mesoporous structure with an average particle diameter of about 160 nm. However, the surface is smooth and does not have a rough structure.
  • the experimental data showed that the sensitivity of the Pd-based composite nanoparticle electrochemical biosensor prepared in Example 6 was 1010 ⁇ A cm -2 mM -1 , the detection limit was 1.5 ⁇ M, the response time was less than 3 s, and the electrode was placed at room temperature for one month. After that, the response current is 95% of the initial response current.
  • the sensitivity of the mesoporous Cu 2 O nanoparticle electrochemical biosensor is 390 ⁇ A cm -2 mM -1 , the detection limit is 1.5 ⁇ M, the response time is less than 5s, and the electrode is placed at room temperature for one month.
  • the response current is 90% of the initial current.
  • the Pd-based composite nanoparticles prepared in Example 6 have better sensitivity, lower detection limit, faster response time, and better stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种Pd基复合纳米粒子及其制备方法,制备方法包括如下步骤:配制含有铜盐和稳定剂的混合溶液;将混合溶液在室温下搅拌5min~10min后,按照还原剂与铜离子的摩尔比为1~100:1加入还原剂,充分反应后再按照钯盐与所述铜盐的摩尔比为1:5~50加入钯盐溶液,继续在室温下搅拌至充分反应;以及将反应液过滤后保留滤渣,将滤渣洗涤、干燥后,得到Pd修饰的Cu2O纳米粒子。这种Pd修饰的Cu2O纳米粒子,Pd沉积在具有介孔结构的Cu2O纳米粒子的表面,从而促进了Pd修饰的Cu2O纳米粒子的电子和质量传输,提高了电催化的反应活性位点,相对于单纯的金属氧化物纳米材料,这种Pd修饰的Cu2O纳米粒子的具有更高的电催化性能。

Description

Pd基复合纳米粒子及其制备方法 技术领域
本发明涉及纳米材料领域,特别是涉及一种Pd基复合纳米粒子及其制备方法。
背景技术
糖尿病作为一种主要的医疗问题之一,正影响着全世界1.5亿人的身体健康。因此,精密的葡萄糖传感器对糖尿病的早期检测和治愈起着至关重要的作用。通常基于生物酶葡萄糖传感器是利用生物催化剂葡萄糖脱氢酶(GDH)和葡萄糖氧化酶(GOx)对葡萄糖进行酶催化电化学氧化。这种基于生物酶的葡萄糖传感器虽然有着较高的灵敏度,但是也存在一些不可避免的缺点。由于生物酶固有的特性,导致传感器的长期稳定性不够。同时生物酶对环境要求苛刻,很容易受到环境因素的影响,如温度、湿度以及pH值等。此外,生物酶易溶于水,性质不稳定,且生物酶的活性中心被外层蛋白质所包围,大大限制了生物传感器的灵敏度、重现性以及大规模的产业化发展。
纳米材料,尤其是金属氧化物纳米材料,作为直接无酶葡萄糖传感器的电催化剂,由于其价格低廉、生物相容性好、电催化活性高、无毒或者低毒和稳定性高而受到了广泛的关注。然而金属氧化物较低的空穴载流子迁移率和超低的导电性能,严重地局限了他们在电化学催化剂领域的应用。故此,增强电子导电率和质量传输是扩大金属氧化物在电化学催化剂领域应用的关键。目前,采取的主要方法是利用导电性高的材料与金属氧化物进行复合,如一维或者二维结构的碳材料等,以改善整个电极的导电性能。但是由于这些复合纳米结构内电子传输距离有限,以致电极的导电性能改性仍然有限,而限制其在电化学传感器中的应用。
发明内容
基于此,有必要提供一种电荷和质量传输较好的Pd基复合纳米粒子及其制备方法。
一种Pd基复合纳米粒子的制备方法,包括如下步骤:
配制含有铜盐和稳定剂的混合溶液,其中,所述铜盐的浓度为0.0005mol/L~0.005mol/L,所述稳定剂与所述铜盐的摩尔比为1∶1~10;
将所述混合溶液在室温下均匀搅拌5min~10min后,按照还原剂与铜离子的摩尔比为1~100∶1向所述混合溶液加入还原剂,充分反应后再按照钯盐与所述铜盐的摩尔比为1∶5~50加入所述钯盐的溶液,继续在室温下搅拌至充分反应得到反应液;以及
将所述反应液过滤后保留滤渣,将所述滤渣洗涤、干燥后,得到所述Pd修饰的Cu2O纳米粒子,所述Pd基复合纳米粒子包括具有介孔结构的Cu2O纳米粒子,Pd沉积在所述Cu2O纳米粒子的表面并且所述Cu2O纳米粒子具有粗糙的表面纳米结构。
在一个实施例中,所述混合溶液中,所述稳定剂的浓度为0.0001mol/L~0.05mol/L。
在一个实施例中,所述稳定剂为柠檬酸、十六烷基三甲基溴化铵或聚乙烯吡咯烷酮。
在一个实施例中,所述钯盐为氯化钯。
在一个实施例中,所述铜盐为氯化铜或硫酸铜。
在一个实施例中,所述还原剂为硼氢化钠或水合肼。
一种Pd基复合纳米粒子,采用上述的Pd基复合纳米粒子的制备方法制备得到;
所述Pd基复合纳米粒子包括具有介孔结构的Cu2O纳米粒子,Pd沉积在所述Cu2O纳米粒子的表面并且所述Cu2O纳米粒子具有粗糙的表面纳米结构。
在一个实施例中,所述Pd修饰的Cu2O纳米粒子的粒径为50nm~200nm。
这种Pd基复合纳米粒子中,Pd沉积在具有介孔结构的Cu2O纳米粒子的表 面,从而促进了Pd基复合纳米粒子的电荷和质量传输,相对于单纯的金属氧化物纳米材料,这种Pd基复合纳米粒子的电催化性能更高,电荷和质量传输较好。
此外,Cu2O纳米粒子具有的粗糙的表面纳米结构提高了Pd基复合纳米粒子的电化学催化活性位点,从而使其对葡萄糖氧化具有更高的电化学催化活性。这种Pd基复合纳米粒子在电化学生物传感器领域具有广泛的应用。
附图说明
图1为一实施方式的Pd基复合纳米粒子的制备方法的示意图;
图2为实施例1制备的Pd基复合纳米粒子的SEM照片;
图3为实施例1中没有Pd基复合纳米粒子的SEM照片;
图4为实施例1制得的Pd基复合纳米复合物电极材料和没有Pd基复合纳米电极材料在0.1mol/L KOH溶液中,连续加入不同浓度葡萄糖溶液的电流响应曲线图;
图5为图4中相应的电流响应值与葡萄糖浓度的拟合曲线图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
参考图1,一实施方式的Pd基复合纳米粒子的制备方法,包括如下步骤:
S10、配制含有铜盐和稳定剂的混合溶液。
铜盐的浓度为0.0005mol/L~0.005mol/L,并且稳定剂与铜盐的摩尔比为1∶1~10。
优选的,稳定剂的浓度为0.0001mol/L~0.05mol/L。
稳定剂可以为柠檬酸、十六烷基三甲基溴化铵或聚乙烯吡咯烷酮。
铜盐可以为氯化铜或硫酸铜。
S20、将S10得到的混合溶液在室温下均匀搅拌5min~10min后,按照还原剂与铜离子的摩尔比为1~100∶1向混合溶液加入还原剂,充分反应后再按照钯盐与铜盐的摩尔比为1∶5~50加入钯盐的溶液,继续在室温下搅拌至充分反应得到反应液。
还原剂可以为硼氢化钠或水合肼。
搅拌可以选择磁力搅拌。
S30、将S20得到的反应液过滤后保留滤渣,将滤渣洗涤、干燥后,得到Pd修饰的Cu2O纳米粒子。
Pd基复合纳米粒子包括具有介孔结构的Cu2O纳米粒子,Pd沉积在所述Cu2O纳米粒子的表面并且所述Cu2O纳米粒子具有粗糙的表面纳米结构。
本实施方式中,可以通过改变钯盐和铜盐的比例关系以及铜盐浓度,控制Pd基复合纳米粒子的粒径为50nm~200nm。
上述Pd修饰的Cu2O纳米粒子的制备方法制备得到的Pd基复合纳米粒子中,Pd沉积在具有介孔结构的Cu2O纳米粒子的表面,从而促进了Pd修饰的Cu2O纳米粒子的电子导电率和质量传输,相对于传统的金属氧化物纳米材料,这种Pd基复合纳米粒子的导电性能较好。此外,Cu2O纳米粒子具有的粗糙的表面纳米结构提高了Pd基复合纳米粒子的电化学催化表面积,从而使其对葡萄糖氧化具有更高的电化学催化活性。这种Pd修饰的Cu2O纳米粒子在电化学生物传感器领域具有广泛的应用。
一实施方式的Pd基复合纳米粒子,采用上述的Pd修饰的Cu2O纳米粒子的制备方法制备得到,包括具有介孔结构的Cu2O纳米粒子,Pd沉积在Cu2O纳米粒子的表面并且Cu2O纳米粒子具有粗糙的表面纳米结构。
优选的,这种Pd基复合纳米粒子的粒径为50nm~200nm。
这种Pd基复合纳米粒子中,Pd沉积在具有介孔结构的Cu2O纳米粒子的表面,从而促进了Pd基复合纳米粒子的电子导电率和质量传输,相对于传统的金属氧化物纳米材料,这种Pd修饰的Cu2O纳米粒子的电荷和质量传输能更好。 此外,Cu2O纳米粒子具有的粗糙的表面纳米结构提高了Pd基复合纳米粒子的电化学催化表面积和活性位点,从而使其对葡萄糖氧化具有更高的电化学催化活性。这种Pd基复合纳米粒子在电化学生物传感器领域具有广泛的应用。
下面为具体实施例。
实施例1
50mL 0.0005mol/L氯化铜溶液,加入到100mL单口烧瓶中,然后加入聚乙烯吡咯烷酮,聚乙烯吡咯烷酮在溶液中的浓度为0.001mol/L。在室温下搅拌5分钟后,迅速将0.02mL wt 85%的水合肼注入其中。待反应10分钟,铜离子充分还原,水合肼充分分解后,再向合成溶液中迅速注入0.5mL 0.01mol/L的氯化钯溶液;保持搅拌10分钟后,将烧瓶中的合成溶液用去离子水和乙醇离心、洗涤并真空烘干,得到Pd基复合纳米粒子。
如图2所示,实施例1制备的Pd基复合纳米粒子具有介孔的纳米结构和粗糙的表面纳米结构,并且尺寸均一、单分散性好,平均粒径在90nm左右。
以没有引入氯化钯溶液,而获得单纯的介孔Cu2O纳米粒子作为比较,如图3所示,纯Cu2O纳米粒子具有介孔结构,平均粒径在90nm左右,但表面比较光滑,不具有粗糙的表面纳米结构。
电化学催化性能测试:将2mg的生物传感器电极材料与总量为5mL的无水乙醇、去离子水和0.1wt%的膜溶液溶液(体积比为2.5∶1∶0.5),在超声处理混合均匀后,将该均匀的混合物负载在玻碳电极上,在60℃烘干后作为测量用的工作电极。电化学测试时参比电极为饱和的甘汞电(SCE)极,铂片电极作为对电极,在100mL N2饱和的0.1mol/L KOH溶液中,连续加入葡萄糖溶液。在室温下进行葡萄糖氧化的电流响应测试。
如图3和图4所示,实施例1制备的Pd基复合纳米粒子作为电化学生物传感器的灵敏度为1395μA cm-2mM-1,检测限为0.6μM,响应时间低于3s,将电极在室温环境下放置一个月后,响应电流为初始响应电流的95%。
相同条件下,单纯的介孔Cu2O纳米粒子作为电化学生物传感器的灵敏度为 480μA cm-2mM-1,检测限为1.6μM,响应时间低于4s,电极在室温环境下放置一个月后的响应电流为初始电流的93%。
从而说明,实施例1制备的Pd基复合纳米粒子具有更好的灵敏度、更低的检测限、快速的响应时间以及稳定性更好的特点。
实施例2
50mL 0.001mol/L硫酸铜溶液,加入到100mL单口烧瓶中,然后加入聚乙烯吡咯烷酮,聚乙烯吡咯烷酮在溶液中的浓度为0.004mol/L。在室温下搅拌5分钟后,迅速将0.05mL 85wt%的水合肼注入其中。待反应10分钟,铜离子充分还原,水合肼充分分解后,再向合成溶液中迅速注入0.5mL 0.01mol/L的氯化钯溶液;保持搅拌10分钟后,将烧瓶中的合成溶液用去离子水和乙醇离心、洗涤并真空烘干,得到Pd修饰的Cu2O纳米粒子。
通过电镜观察表明实施例2制得的Pd基复合纳米粒子具有介孔的纳米结构和粗糙的表面纳米结构,并且尺寸均一、单分散性好,其平均粒径在105nm左右。
以没有引入氯化钯溶液,而获得的单纯的介孔Cu2O纳米电极材料作为比较,通过电镜观察表明单纯的介孔Cu2O纳米电极材料具有介孔结构,平均粒径在100nm左右,但表面比较光滑,不具有粗糙的结构。
按照实施例1的方法进行电化学催化性能测试比较。
实验数据表明,实施例2制得的Pd基复合纳米粒子作为电化学生物传感器的灵敏度为1135μAcm-2mM-1,检测限为0.8μM,响应时间低于3s,将电极在室温环境下放置一个月后,响应电流为初始响应电流的96%。
相同条件下,单纯的介孔Cu2O纳米电极材料作为电化学生物传感器的灵敏度为412μA cm-2mM-1,检测限为2.1μM,响应时间低于5s,电极在室温环境下放置一个月后的响应电流为初始电流的91%。
从而说明,实施例2制备的Pd基复合纳米粒子具有更好的灵敏度、更低的检测限、快速的响应时间以及稳定性更好的特点。
实施例3
50mL 0.0015mol/L硫酸铜溶液,加入到100mL单口烧瓶中,然后加入柠檬酸,柠檬酸在溶液中的浓度为0.006mol/L。在室温下搅拌5分钟后,迅速将0.5mL 2mol/L硼氢化钠溶液注入其中。待反应10分钟,铜离子充分还原,硼氢化钠充分分解后,再向合成溶液中迅速注入1.5mL 0.01mol/L的氯化钯溶液;保持搅拌10分钟后,将烧瓶中的合成溶液用去离子水和乙醇离心、洗涤并真空烘干,得到Pd基复合纳米粒子。
通过电镜观察表明实施例3制得的Pd基复合纳米粒子具有介孔的纳米结构和粗糙的表面纳米结构,并且尺寸均一、单分散性好,平均粒径在110nm左右。
以没有没有引入氯化钯溶液,而获得的单纯的介孔Cu2O纳米电极材料作为比较,通过电镜观察表明单纯的介孔Cu2O纳米电极材料具有介孔结构,平均粒径在115nm左右,但表面比较光滑,不具有粗糙的结构。
按照实施例1的方法进行电化学催化性能测试比较。
实验数据表明,实施例3制得的Pd基复合纳米粒子作为电化学生物传感器灵敏度为1005μA cm-2mM-1,检测限为1.0μM,响应时间低于3s,将电极在室温环境下放置一个月后,响应电流为初始响应电流的95%。
相同条件下,单纯的介孔Cu2O纳米粒子作为电化学生物传感器的灵敏度为396μA cm-2mM-1,检测限为2.0μM,响应时间低于5s,电极在室温环境下放置一个月后的响应电流为初始电流的91%。
从而说明,实施例3制备的Pd基复合纳米粒子具有更好的灵敏度、更低的检测限、快速的响应时间以及稳定性更好的特点。
实施例4
50mL 0.0015mol/L氯化铜溶液,加入到100mL单口烧瓶中,然后加入柠檬酸,柠檬酸在溶液中的浓度为0.0015mol/L。在室温下搅拌5分钟后,迅速将1mL 2mol/L硼氢化钠溶液注入其中。待反应10分钟,铜离子充分还原,硼氢 化钠充分分解后,再向合成溶液中迅速注入1mL 0.01mol/L的氯化钯溶液;保持搅拌10分钟后,将烧瓶中的合成溶液用去离子水和乙醇离心、洗涤并真空烘干,得到Pd修饰的Cu2O纳米粒子。
通过电镜观察表明实施例4制得的Pd基复合纳米粒子具有介孔的纳米结构和粗糙的表面纳米结构,并且尺寸均一、单分散性好,其平均粒径在110nm左右。
以引入氯化钯溶液,而获得的单纯的介孔Cu2O纳米电极材料作为比较,通过电镜观察表明单纯的介孔的Cu2O纳米电极材料具有介孔结构,平均粒径在110nm左右,但表面比较光滑,不具有粗糙的结构。
按照实施例1的方法进行电化学催化性能测试比较。
实验数据表明,实施例4制得的Pd基复合纳米粒子作为电化学生物传感器灵敏度为1305μA cm-2mM-1,检测限为1.0μM,响应时间低于3s,将电极在室温环境下放置一个月后,响应电流为初始响应电流的96%。
相同条件下,单纯的介孔Cu2O纳米粒子作为电化学生物传感器的灵敏度为385μA cm-2mM-1,检测限为2.0μM,响应时间低于5s,电极在室温环境下放置一个月后的响应电流为初始电流的90%。
从而说明,实施例4制备的Pd基复合纳米粒子具有更好的灵敏度、更低的检测限、快速的响应时间以及稳定性更好的特点。
实施例5
50mL 0.003mol/L硫酸铜溶液,加入到100mL单口烧瓶中,然后加入十六烷基三甲基溴化铵,十六烷基三甲基溴化铵在溶液中的浓度为0.009mol/L。在室温下搅拌5分钟后,迅速将0.1mL wt 85%水合肼注入其中。待反应10分钟,铜离子充分还原,水合肼充分分解后,再向合成溶液中迅速注入1mL 0.01mol/L的氯化钯溶液;保持搅拌10分钟后,将烧瓶中的合成溶液用去离子水和乙醇离心、洗涤并真空烘干,得到Pd基复合纳米粒子。
通过电镜观察表明实施例5制得的Pd基复合纳米粒子具有介孔的纳米结构 和粗糙的表面纳米结构,并且尺寸均一、单分散性好,平均粒径在120nm左右。
以没有引入氯化钯溶液,而获得的单纯的介孔Cu2O纳米电极材料作为比较,通过电镜观察表明单纯的介孔Cu2O纳米电极材料具有介孔结构,平均粒径在130nm左右,但表面比较光滑,不具有粗糙的结构。
按照实施例1的方法进行电化学催化性能测试比较。
实验数据表明,实施例5制得的Pd基复合纳米粒子电化学生物传感器灵敏度为1215μA cm-2mM-1,检测限为0.9μM,响应时间低于3s,将电极在室温环境下放置一个月后,响应电流为初始响应电流的97%。相同条件下,单纯的介孔Cu2O纳米粒子电化学生物传感器的灵敏度为390μA cm-2mM-1,检测限为1.9μM,响应时间低于5s,电极在室温环境下放置一个月后的响应电流为初始电流的92%。
从而说明,实施例5制备的Pd基复合纳米粒子具有更好的灵敏度、更低的检测限、快速的响应时间以及稳定性更好的特点。
实施例6
50mL 0.005mol/L硫酸铜溶液,加入到100mL单口烧瓶中,然后加入聚乙烯吡咯烷酮,聚乙烯吡咯烷酮在溶液中的浓度为0.05mol/L。在室温下搅拌8分钟后,迅速将0.1mL wt 85%水合肼注入其中。待反应13分钟,铜离子充分还原,水合肼充分分解后,再向合成溶液中迅速注入1mL 0.01mol/L的氯化钯溶液;保持搅拌10分钟后,将烧瓶中的合成溶液用去离子水和乙醇离心、洗涤并真空烘干,得到Pd基复合纳米粒子。
通过电镜观察表明实施例6制得的Pd基复合纳米粒子具有介孔的纳米结构和粗糙的表面纳米结构,并且尺寸均一、单分散性好,平均粒径在150nm左右。
以没有引入氯化钯溶液,而获得的单纯的介孔Cu2O纳米电极材料作为比较,通过电镜观察表明单纯的介孔Cu2O纳米电极材料具有介孔结构,平均粒径在160nm左右,但表面比较光滑,不具有粗糙的结构。
按照实施例1的方法进行电化学催化性能测试比较。
实验数据表明,实施例6制得的Pd基复合纳米粒子电化学生物传感器灵敏度为1010μA cm-2mM-1,检测限为1.5μM,响应时间低于3s,将电极在室温环境下放置一个月后,响应电流为初始响应电流的95%。
相同条件下,单纯的介孔Cu2O纳米粒子电化学生物传感器的灵敏度为390μA cm-2mM-1,检测限为1.5μM,响应时间低于5s,电极在室温环境下放置一个月后的响应电流为初始电流的90%。
从而说明,实施例6制备的Pd基复合纳米粒子具有更好的灵敏度、更低的检测限、快速的响应时间以及稳定性更好的特点。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种Pd基复合纳米粒子的制备方法,其特征在于,包括如下步骤:
    配制含有铜盐和稳定剂的混合溶液,其中,所述铜盐的浓度为0.0005mol/L~0.005mol/L,所述稳定剂与所述铜盐的摩尔比为1∶1~10;
    将所述混合溶液在室温下均匀搅拌5min~10min后,按照还原剂与铜离子的摩尔比为1~100∶1向所述混合溶液加入还原剂,充分反应后再按照钯盐与所述铜盐的摩尔比为1∶5~50加入所述钯盐的溶液,继续在室温下搅拌至充分反应得到反应液;以及
    将所述反应液过滤后保留滤渣,将所述滤渣洗涤、干燥后,得到所述Pd修饰的Cu2O纳米粒子,所述Pd基复合纳米粒子包括具有介孔结构的Cu2O纳米粒子,Pd沉积在所述Cu2O纳米粒子的表面并且所述Cu2O纳米粒子具有粗糙的表面纳米结构。
  2. 根据权利要求1所述的Pd基复合纳米粒子的制备方法,其特征在于,所述混合溶液中,所述稳定剂的浓度为0.0001mol/L~0.05mol/L。
  3. 根据权利要求1所述的Pd基复合纳米粒子的制备方法,其特征在于,所述稳定剂为柠檬酸、十六烷基三甲基溴化铵或聚乙烯吡咯烷酮。
  4. 根据权利要求1所述的Pd基复合纳米粒子的制备方法,其特征在于,所述钯盐为氯化钯。
  5. 根据权利要求1所述的Pd基复合纳米粒子的制备方法,其特征在于,所述铜盐为氯化铜或硫酸铜。
  6. 根据权利要求1所述的Pd基复合纳米粒子的制备方法,其特征在于,所述还原剂为硼氢化钠或水合肼。
  7. 一种Pd基复合纳米粒子,其特征在于,采用如权利要求1~6中任意一项所述的Pd基复合纳米粒子的制备方法制备得到;
    所述Pd基复合纳米粒子包括具有介孔结构的Cu2O纳米粒子,Pd沉积在所述Cu2O纳米粒子的表面并且所述Cu2O纳米粒子具有粗糙的表面纳米结构。
  8. 根据权利要求7所述的Pd基复合纳米粒子,其特征在于,所述Pd修饰 的Cu2O纳米粒子的粒径为50nm~200nm。
PCT/CN2015/084014 2014-09-15 2015-07-14 Pd基复合纳米粒子及其制备方法 WO2016041405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410468626.5 2014-09-15
CN201410468626.5A CN104289725B (zh) 2014-09-15 2014-09-15 Pd基复合纳米粒子及其制备方法

Publications (1)

Publication Number Publication Date
WO2016041405A1 true WO2016041405A1 (zh) 2016-03-24

Family

ID=52309803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084014 WO2016041405A1 (zh) 2014-09-15 2015-07-14 Pd基复合纳米粒子及其制备方法

Country Status (2)

Country Link
CN (1) CN104289725B (zh)
WO (1) WO2016041405A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112938914A (zh) * 2021-01-25 2021-06-11 西安理工大学 一种介孔磷化物复合纳米粉体及其制备方法和应用
CN113945617A (zh) * 2021-09-24 2022-01-18 合肥天一生物技术研究所有限责任公司 一种检测血浆中维生素b6含量的丝网印刷电极
CN115595606A (zh) * 2022-09-20 2023-01-13 山东大学(Cn) 一种铜基催化电极及制备方法与其在电催化还原二氧化碳制乙烯的应用
CN117181240A (zh) * 2023-09-08 2023-12-08 兰州大学 一种用于产氨的纳米复合材料及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458295B (zh) * 2016-02-01 2019-01-01 中国科学院深圳先进技术研究院 一种多孔微米铜球及其制备方法
CN106299391B (zh) * 2016-08-10 2019-01-08 上海师范大学 一种钯-氧化亚铜网状纳米催化材料及其制备和应用
CN106824225B (zh) * 2017-02-20 2019-08-20 中国科学院深圳先进技术研究院 一种PdCu合金催化剂及其制备方法与应用
CN112023937B (zh) * 2019-11-26 2022-10-21 天津大学 纳米氧化铜包覆的钯纳米线异质型催化剂及其制备方法和在甲醇电催化氧化中的应用
CN111766274B (zh) * 2020-07-07 2023-05-02 华准科技(绍兴)有限公司 Pd修饰的α-Fe2O3纳米材料的应用
CN113178588A (zh) * 2021-03-26 2021-07-27 南通大学 一种具有强耦合结构的Pd基多孔纳米催化剂的制备方法
CN117102477A (zh) * 2023-08-01 2023-11-24 淮安中顺环保科技有限公司 一种铜钯合金纳米颗粒及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19947989A1 (de) * 1999-08-24 2001-03-01 Basf Ag Katalysator, Verfahren zu seiner Herstellung und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
CN1490439A (zh) * 2003-07-11 2004-04-21 华中师范大学 化学沉淀法制备稳定的纳米氧化亚铜晶须的方法
CN1623888A (zh) * 2003-12-04 2005-06-08 中国科学院兰州化学物理研究所 纳米金属介孔复合体的合成方法
CN101805011A (zh) * 2010-04-06 2010-08-18 厦门大学 Cu2O超细纳米粒子与自组装纳米微球及其制备方法
CN103977814A (zh) * 2014-05-14 2014-08-13 中国科学技术大学 尺寸可控的钯-氧化亚铜纳米催化剂及其制备方法和催化应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051660B1 (ko) * 2008-07-22 2011-07-26 한국기계연구원 다공성 니켈 금속분말 및 이의 제조방법
CN101342590A (zh) * 2008-08-26 2009-01-14 郑州大学 一种铜纳米微粒及其制备方法
CN102554264B (zh) * 2012-02-28 2013-11-06 东北大学 导电浆料用银钯合金粉的制备方法
CN103157803B (zh) * 2013-04-17 2016-03-30 新疆大学 一种固相化学反应制备纳米合金的方法
CN103480856A (zh) * 2013-09-09 2014-01-01 南京邮电大学 一种使用二维过渡金属硫族化合物纳米片和金属制备纳米复合材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19947989A1 (de) * 1999-08-24 2001-03-01 Basf Ag Katalysator, Verfahren zu seiner Herstellung und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
CN1490439A (zh) * 2003-07-11 2004-04-21 华中师范大学 化学沉淀法制备稳定的纳米氧化亚铜晶须的方法
CN1623888A (zh) * 2003-12-04 2005-06-08 中国科学院兰州化学物理研究所 纳米金属介孔复合体的合成方法
CN101805011A (zh) * 2010-04-06 2010-08-18 厦门大学 Cu2O超细纳米粒子与自组装纳米微球及其制备方法
CN103977814A (zh) * 2014-05-14 2014-08-13 中国科学技术大学 尺寸可控的钯-氧化亚铜纳米催化剂及其制备方法和催化应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112938914A (zh) * 2021-01-25 2021-06-11 西安理工大学 一种介孔磷化物复合纳米粉体及其制备方法和应用
CN112938914B (zh) * 2021-01-25 2023-09-15 西安理工大学 一种介孔磷化物复合纳米粉体及其制备方法和应用
CN113945617A (zh) * 2021-09-24 2022-01-18 合肥天一生物技术研究所有限责任公司 一种检测血浆中维生素b6含量的丝网印刷电极
CN113945617B (zh) * 2021-09-24 2023-11-21 合肥天一生物技术研究所有限责任公司 一种检测血浆中维生素b6含量的丝网印刷电极
CN115595606A (zh) * 2022-09-20 2023-01-13 山东大学(Cn) 一种铜基催化电极及制备方法与其在电催化还原二氧化碳制乙烯的应用
CN117181240A (zh) * 2023-09-08 2023-12-08 兰州大学 一种用于产氨的纳米复合材料及其制备方法和应用
CN117181240B (zh) * 2023-09-08 2024-03-19 兰州大学 一种用于产氨的纳米复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN104289725B (zh) 2016-08-24
CN104289725A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2016041405A1 (zh) Pd基复合纳米粒子及其制备方法
Zhang et al. Graphene‐based electrochemical glucose sensors: Fabrication and sensing properties
Long et al. Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation
Zhang et al. Direct electrochemistry of cytochrome c immobilized on one dimensional Au nanoparticles functionalized magnetic N-doped carbon nanotubes and its application for the detection of H2O2
Han et al. Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis
Pandikumar et al. Graphene and its nanocomposite material based electrochemical sensor platform for dopamine
Sheng et al. M-Nx (M= Fe, Co, Ni, Cu) doped graphitic nanocages with High specific surface Area for non-enzymatic electrochemical detection of H2O2
Xin et al. A novel H2O2 biosensor based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets–Nafion film modified screen-printed carbon electrode
Niu et al. Platinum nanoparticle-decorated carbon nanotube clusters on screen-printed gold nanofilm electrode for enhanced electrocatalytic reduction of hydrogen peroxide
Xie et al. Cu metal-organic framework-derived Cu Nanospheres@ Porous carbon/macroporous carbon for electrochemical sensing glucose
Dong et al. Exploiting multi-function metal-organic framework nanocomposite Ag@ Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing
Balasubramanian et al. Facile synthesis of spinel-type copper cobaltite nanoplates for enhanced electrocatalytic detection of acetylcholine
Yang et al. Facile synthesis of three-dimensional porous Au@ Pt core-shell nanoflowers supported on graphene oxide for highly sensitive and selective detection of hydrazine
CN108982631B (zh) 一种石墨烯单原子金复合材料及其制备方法和应用
Chen et al. Dispersed Nickel Nanoparticles on Flower‐like Layered Nickel‐Cobalt Double Hydroxides for Non‐enzymic Amperometric Sensing of Glucose
Yang et al. Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode
Shanmugasundaram et al. Direct electrochemistry of cytochrome c with three-dimensional nanoarchitectured multicomponent composite electrode and nitrite biosensing
Hassan et al. Sensitive nonenzymatic detection of hydrogen peroxide at nitrogen-doped graphene supported-CoFe nanoparticles
Lee et al. Nonenzymatic electrochemical sensing of hydrogen peroxide based on a polyaniline-MnO 2 nanofiber-modified glassy carbon electrode
US8956517B2 (en) Nanocomposite based biosensors and related methods
Baghayeri et al. Employment of Pd nanoparticles at the structure of poly aminohippuric acid as a nanocomposite for hydrogen peroxide detection
Wei et al. Economical, green and rapid synthesis of CDs-Cu2O/CuO nanotube from the biomass waste reed as sensitive sensing platform for the electrochemical detection of hydrazine
Feng et al. Glucose biosensors based on Ag nanoparticles modified TiO 2 nanotube arrays
Liang et al. Direct electrochemistry and electrocatalysis of myoglobin immobilized on zirconia/multi-walled carbon nanotube nanocomposite
Wang et al. An electrochemical aptasensor for the sensitive detection of Pb2+ based on a chitosan/reduced graphene oxide/titanium dioxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.07.17)

122 Ep: pct application non-entry in european phase

Ref document number: 15841836

Country of ref document: EP

Kind code of ref document: A1