WO2016039213A1 - リグニン誘導体、リグニン樹脂組成物、ゴム組成物および成形材料 - Google Patents

リグニン誘導体、リグニン樹脂組成物、ゴム組成物および成形材料 Download PDF

Info

Publication number
WO2016039213A1
WO2016039213A1 PCT/JP2015/074766 JP2015074766W WO2016039213A1 WO 2016039213 A1 WO2016039213 A1 WO 2016039213A1 JP 2015074766 W JP2015074766 W JP 2015074766W WO 2016039213 A1 WO2016039213 A1 WO 2016039213A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin derivative
lignin
rubber
resin
rubber composition
Prior art date
Application number
PCT/JP2015/074766
Other languages
English (en)
French (fr)
Inventor
威俊 村井
中川 裕茂
松本 光貴
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2016547387A priority Critical patent/JP6733546B2/ja
Priority to CN201580049132.6A priority patent/CN106687507A/zh
Priority to EP15840209.9A priority patent/EP3192825A4/en
Priority to US15/509,331 priority patent/US10138377B2/en
Publication of WO2016039213A1 publication Critical patent/WO2016039213A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G1/00Lignin; Lignin derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer

Definitions

  • the present invention relates to a lignin derivative, a lignin resin composition, a rubber composition, and a molding material.
  • lignin is contained in wood at a ratio of about 30%, and since it has a structure containing abundant aromatic rings, it can be used as an aromatic resin raw material.
  • resin compositions, tires, and the like that are used as resin raw materials by taking out (extracting) relatively low molecular weight lignin (lignin derivatives) from woody biomass by various methods are being studied (for example, Patent Document 1). 2).
  • Examples of the method for extracting the lignin derivative include the following methods.
  • delignification treatment at the time of pulp production or removal of biofuel or biomaterial from biomass as well as solvent extraction treatment from residues and bagasse after saccharification treatment when removing biofuel or biomaterial from biomass, machinery
  • delignification treatment by chemical treatment or high temperature / high pressure water treatment, steam explosion treatment, and lignin extraction treatment by organosolv process.
  • the lignin derivative obtained as described above has a highly polar structure rich in phenolic hydroxyl groups and alcoholic hydroxyl groups. Therefore, compositions and tires using lignin derivatives as tackifiers and antioxidants have been studied. (For example, see Patent Document 1)
  • lignin derivatives are also expected to be used as rubber reinforcements.
  • examples of the rubber reinforcing effect of the lignin derivative include an improvement in rubber elastic modulus, a reduction in hysteresis loss, and an improvement in mechanical strength. These characteristics lead to improvements in the rigidity, low heat generation and mechanical strength of rubber parts, respectively.
  • lignin is dissolved in a black liquor containing sodium hydroxide and sodium sulfide, and particulate lignin derivatives are recovered from the black liquor in which the lignin is dissolved and added to the rubber composition. It is used as a filler.
  • a lignin derivative does not have sufficient properties as a filler, causing a decrease in rigidity and mechanical strength of the rubber composition.
  • Patent Document 3 discloses that by treating biomass with phenol and concentrated sulfuric acid, lignophenol in which phenol is added to lignin is generated and used as a rubber reinforcing resin.
  • lignophenol in which phenol is added to lignin is generated and used as a rubber reinforcing resin.
  • systems using various lignophenol derivatives have been shown, they contain a large amount of phenols, which are petroleum-derived components, and also have insufficient rubber reinforcing effects such as rigidity.
  • the object of the present invention is to give a low hysteresis loss property, elastic modulus or tensile property, which is a predetermined number average molecular weight and contains a component soluble in a polar organic solvent (soluble component). It is to provide a lignin derivative for rubber reinforcement or molding material.
  • a lignin derivative for rubber reinforcement or molding material capable of imparting the above-mentioned characteristics can be provided by using a component having a heat melting property (softening point of 80 to 160 ° C.) as a soluble component. There is to do.
  • Another object of the present invention is to provide a lignin resin composition, a rubber composition and a molding material containing such a lignin derivative.
  • a lignin derivative extracted from biomass and used for rubber reinforcement or molding material has a number average molecular weight of 300 to 2000 and contains a component soluble in a polar organic solvent in an amount of 80% by mass or more.
  • the organic solvent includes a lower alcohol,
  • the said other organic solvent is a lignin derivative as described in said (8) containing acetone.
  • a lignin resin composition comprising the lignin derivative according to any one of (1) to (9) above and a resin material.
  • a rubber composition comprising the lignin derivative according to any one of (1) to (9) above and a rubber material.
  • a molding material comprising the lignin derivative according to any one of (1) to (9) above and a resin material.
  • a lignin derivative having a predetermined number average molecular weight and a soluble component (soluble component) in a polar organic solvent an excellent low hysteresis loss property, elastic modulus, or tensile property can be obtained.
  • a lignin resin composition, a rubber composition or a molding material can be obtained.
  • the lignin resin composition, rubber composition, or molding material which has the said more outstanding characteristic can be obtained by using the component which has heat melting property as said soluble component.
  • the obtained lignin resin composition, rubber composition, or molding material exhibits excellent low hysteresis loss, and is excellent in the balance of elastic modulus, moldability, and tensile properties.
  • the lignin derivative of the present invention the method for producing the lignin derivative, the lignin resin composition, the rubber composition, and the molding material will be described in detail based on preferred embodiments.
  • the lignin derivative of the present invention includes a component having a predetermined number average molecular weight and soluble in a polar organic solvent (soluble component) among lignin derivative components obtained by various methods.
  • a rubber composition can be prepared by mixing the lignin derivative and the rubber material, and a lignin resin composition or a molding material can be prepared by mixing the lignin derivative and the resin material. it can.
  • it is important that the lignin derivative contains a component soluble in a polar organic solvent in an amount of 80% by mass or more.
  • Lignin derivative together with cellulose and hemicellulose, is a major component that forms the skeleton of plants and is one of the most abundant substances in nature.
  • the lignin derivative is a compound having a phenol derivative as a unit structure.
  • This unit structure has a chemically and biologically stable carbon-carbon bond and carbon-oxygen-carbon bond, and is not easily subjected to chemical degradation or biological degradation. For this reason, a lignin derivative is useful as a resin raw material for adding to a rubber composition or a molding material.
  • the high molecular weight lignin contained in the biomass is simply referred to as “lignin”, and the relatively low molecular weight lignin derived from this lignin is referred to as “lignin derivative”.
  • the biomass in the present specification is a plant containing lignin or a processed product of the plant. Examples of the plant include broadleaf trees such as beech, birch and oak, coniferous trees such as cedar, pine, and oak, bamboo , Rice plants such as rice straw, and coconut shells.
  • the lignin derivative include a guaiacylpropane structure represented by the following formula (1), a syringylpropane structure represented by the following formula (2), and a 4-hydroxyphenylpropane structure represented by the following formula (3).
  • a guaiacylpropane structure represented by the following formula (1) a guaiacylpropane structure represented by the following formula (1)
  • a syringylpropane structure represented by the following formula (2) and a 4-hydroxyphenylpropane structure represented by the following formula (3).
  • From conifers mainly guaiacylpropane structures, from deciduous trees, mainly guaiacylpropane structures and syringylpropane structures, and from herbs, mainly guaiacylpropane structures, syringylpropane structures, and 4-hydroxypropylene structures. Each phenylpropane structure is extracted.
  • the lignin derivative according to the present invention it is preferable that at least one of the ortho-position and para-position of the aromatic ring is unsubstituted with respect to the hydroxyl group.
  • a lignin derivative is excellent in reactivity because it contains many reaction sites where a curing agent acts by an electrophilic substitution reaction on an aromatic ring, and steric hindrance is reduced in a reaction with a hydroxyl group.
  • a lignin resin composition containing a phenolic resin having many portions in which the ortho-position and para-position of the aromatic ring are unsubstituted with respect to the hydroxyl group has sufficient reactivity because of the reaction site of the phenolic resin.
  • the lignin derivative may be a lignin secondary derivative in which a functional group is introduced into the basic structure in addition to the basic structure.
  • the functional group possessed by the lignin secondary derivative is not particularly limited.
  • a functional group capable of reacting with the same type of functional group or a functional group capable of reacting with a different functional group is preferable.
  • Specific examples include an epoxy group, a methylol group, a vinyl group having a carbon-carbon unsaturated bond, an ethynyl group, a maleimide group, a cyanate group, and an isocyanate group.
  • a lignin secondary derivative in which a methylol group is introduced into the lignin derivative (methylolated) is preferably used.
  • Such a lignin secondary derivative is self-cross-linked by a self-condensation reaction between methylol groups, and is further cross-linked to an alkoxymethyl group or a hydroxyl group in the following cross-linking agent.
  • a cured product having a particularly homogeneous and rigid skeleton and excellent in solvent resistance can be obtained.
  • the lignin derivative according to the present invention is a lignin derivative having a predetermined number average molecular weight and containing a component soluble in a polar organic solvent among lignin derivative components obtained by various methods.
  • a lignin derivative can impart excellent elastic modulus and tensile properties to the rubber composition by being mixed with the rubber material.
  • the rubber composition used for manufacturing a rubber product contains additives for various purposes in addition to a rubber material (raw rubber).
  • One of these additives is a reinforcing material. By adding a reinforcing material, the rubber composition can be given hardness, tensile strength, abrasion resistance, and the like.
  • a rubber composition having excellent elastic modulus and tensile properties can be prepared by using the lignin derivative according to the present invention as a reinforcing material for the rubber composition. Moreover, the rubber composition excellent in the balance of low hysteresis loss property, rubber elasticity, and a tensile characteristic can be adjusted by including a phenol resin in the lignin derivative and rubber material which concern on this invention.
  • the molding material used for manufacturing the molded product contains various purpose additives in addition to the resin material.
  • the lignin derivative according to the present invention as this additive, a molding material having excellent elastic modulus and bending properties can be prepared.
  • Such a lignin derivative is preferably obtained by decomposing biomass. Since biomass is a substance obtained by capturing and fixing carbon dioxide in the atmosphere during the process of photosynthesis, biomass contributes to the suppression of the increase in carbon dioxide in the atmosphere. Therefore, it can contribute to suppression of global warming by utilizing biomass industrially.
  • biomass include lignocellulosic biomass.
  • lignocellulosic biomass include plant leaves, bark, branches and wood containing lignin, and processed products thereof.
  • plants containing lignin include the aforementioned broad-leaved trees, conifers, and gramineous plants.
  • Decomposition methods include chemical treatment methods (eg, organosolv process methods using chemicals containing organic solvents), hydrolysis treatment methods, steam explosion methods, supercritical water treatment methods, subcritical water treatment methods Examples thereof include a treatment method, a mechanical treatment method, a cresol sulfate method, and a pulp production method. From the viewpoint of environmental load, a steam explosion method, a subcritical water treatment method, and a mechanical treatment method are preferable. From the viewpoint of cost, it is preferable to use a pulp production method and a biomass by-product.
  • a lignin derivative can be prepared, for example, by decomposing biomass in the presence of a solvent at 150 to 400 ° C., 1 to 40 MPa, and 8 hours or less.
  • the lignin derivative can also be prepared by the methods disclosed in JP2009-084320A and JP2012-201828. Moreover, since a lignin derivative is extracted from biomass which is a natural product, it is a composite of various compounds. For this reason, it is almost impossible to specifically specify all chemical structures of these compounds. However, the present inventors can obtain a lignin resin composition, rubber composition or molding material having excellent low hysteresis loss, elastic modulus or tensile properties by using a lignin derivative exhibiting predetermined characteristics. I found.
  • the above-described effect can be obtained by using a lignin derivative exhibiting predetermined characteristics, and it is not meaningful for the present inventor to specify all chemical structures of the compounds constituting the lignin derivative.
  • the lignin derivative exhibiting such predetermined characteristics can be obtained by the various methods described above. Among them, in particular, by using an organosolv process, it can be obtained relatively easily and in a high yield.
  • the lignin derivative according to the present invention contains a component that is soluble in a polar organic solvent (hereinafter simply referred to as “soluble component”).
  • soluble component a component that is soluble in a polar organic solvent
  • the number average molecular weight of the soluble component in the lignin derivative is 300 to 2000.
  • the number average molecular weight of a soluble component is the number average molecular weight of polystyrene conversion which measured the lignin derivative by the gel permeation chromatography (GPC) analysis.
  • GPC gel permeation chromatography
  • a lignin resin composition is prepared by mixing such a lignin derivative and a resin material, by adjusting the mixing conditions (temperature, pressure, mixing time, etc.), the purpose of use of the lignin resin composition can be improved. Accordingly, it becomes easy to adjust the molecular weight to a desired range.
  • a rubber composition containing such a lignin resin composition can improve its rubber reinforcing properties.
  • the number average molecular weight of the soluble component is preferably about 300 to 1,000, and more preferably about 300 to 750. When the number average molecular weight of the soluble component is within the above range, the reactivity with the resin material is further improved, and the molecular weight of the lignin resin composition can be more easily adjusted.
  • polar organic solvents examples include lower alcohols such as methanol and ethanol, phenols such as phenol and cresol, ketones such as methyl ethyl ketone and acetone, cyclic ethers such as tetrahydrofuran and dioxane, and acetonitrile.
  • Nitriles such as N, N-dimethylformamide, N, N-dimethylacetamide, amides such as n-methylpyrrolidone, alkyl halides such as methylene chloride and chloroform, and dimethyl sulfoxide (DMSO).
  • the soluble component in the lignin derivative is preferably soluble in lower alcohols such as methanol and ethanol, and ketones such as methyl ethyl ketone and acetone, and more soluble in acetone. preferable.
  • Lignin derivatives are difficult to dissolve in lower alcohols and ketones. Therefore, it is difficult to dissolve relatively high molecular weight lignin derivatives in these polar organic solvents. Therefore, the soluble component of the lignin derivative that dissolves in these polar organic solvents has a sufficiently small molecular weight.
  • the soluble component of the lignin derivative that is soluble in acetone has a molecular weight within the predetermined range described above more reliably.
  • a lignin derivative is dissolved in the above polar organic solvent, insoluble components are removed, and then concentrated and dried to contain soluble components in an amount of 80% by mass or more (preferably 95% by mass or more).
  • a solvent used for gel permeation chromatography measurement to prepare a measurement sample.
  • the solvent used at this time will not be specifically limited if it is a solvent which can melt
  • said various organic solvents can be used.
  • Tetrahydrofuran is preferred from the viewpoint of measurement accuracy of gel permeation chromatography.
  • HPC-8320GPC manufactured by Tosoh
  • TSKgelGMMHXL manufactured by Tosoh
  • G2000HXL manufactured by Tosoh
  • the number average molecular weight of the lignin derivative can be calculated from a calibration curve showing the relationship between the retention time and molecular weight of standard polystyrene prepared separately.
  • the standard polystyrene used for preparing the calibration curve is not particularly limited.
  • the number average molecular weight is 427,000, 190,000, 96,400, 37,900, 18,100, 10,200, 5 , 970, 2,630, 1,050 and 500 standard polystyrene (manufactured by Tosoh Corporation).
  • the lignin derivative according to the present invention contains the above soluble component in an amount of 80% by mass or more.
  • a lignin derivative can have a sufficiently low molecular weight. Therefore, when mixing a lignin derivative and a rubber material and preparing a rubber composition, the dispersibility to the rubber material of a lignin derivative can be improved. For this reason, a homogeneous rubber composition can be prepared.
  • a lignin derivative is mixed with a resin material to prepare a molding material, the dispersibility of the lignin derivative in the resin material can be enhanced. For this reason, a homogeneous molding material can be prepared.
  • the lignin derivative preferably contains a soluble component in an amount of 90% by mass or more, more preferably 95% by mass or more. Thereby, the effect mentioned above becomes more remarkable.
  • the quantity of the soluble component in a lignin derivative can be calculated using the following method, for example. First, a polar organic solvent having a mass ratio of 10 times is added to 700 g of lignin derivative and stirred for 12 hours or longer, and then a solid residue is removed (separated) to obtain a solution. This solution is concentrated and dried under reduced pressure at 50 ° C. for 2 hours or more to obtain a measurement sample. The content of the soluble component can be calculated from the weight of the measurement sample and the weight of the lignin derivative before being immersed in the polar organic solvent.
  • insoluble component When a component insoluble in a polar organic solvent (hereinafter simply referred to as “insoluble component”) is contained in the lignin derivative, this insoluble component is a component having a higher molecular weight than the soluble component. Since the lignin derivative of the present invention contains a large amount of soluble components having a relatively low molecular weight as described above, even when it contains such insoluble components, it has high flow characteristics during molding processing, And high dispersibility in rubber materials. Therefore, the rubber composition containing such a lignin resin composition can improve the rubber reinforcing properties.
  • the hysteresis loss of the lignin resin composition, rubber composition or molding material can be further reduced, and the mechanical strength thereof can be further improved.
  • Such an effect is remarkably exhibited by including the above-described low molecular weight soluble component and high molecular weight insoluble component in the lignin derivative.
  • the lignin derivative preferably contains about 0.1 to 10% by mass of the insoluble component, and more preferably contains about 1 to 5% by mass.
  • the lignin resin composition, rubber composition or molding material has excellent low hysteresis loss and mechanical strength. Can be granted.
  • the softening point of the soluble component in the lignin derivative according to the present invention is preferably 200 ° C. or less, more preferably 180 ° C. or less, and further preferably 80 to 160 ° C.
  • the softening point exceeds the upper limit, depending on the composition of the resin material or rubber material mixed with the lignin derivative, the heat melting property and fluidity of the lignin derivative are lowered, and the dispersibility in the resin material or rubber material is reduced. May decrease.
  • the softening point is lower than the lower limit, depending on the composition of the resin material mixed with the lignin derivative, the heat melting property and fluidity of the lignin derivative become too high, and the varinin derivative is not effective during molding of the rubber composition or molding material. May occur. For this reason, when manufacturing a molding material, the handleability of a lignin derivative falls and there exists a possibility that the loss at the time of manufacture may become large. In addition, the heat melting property and fluidity of the lignin derivative become too high, and the lignin derivative is hardened by blocking at room temperature, which may reduce the storage stability.
  • a ring and ball softening point tester ASP-MG2 type manufactured by Meltech Co., Ltd.
  • the lignin derivative according to the present invention may have a carboxyl group.
  • it can bridge
  • it may act as a catalyst of a crosslinking agent, can promote the crosslinking reaction of the crosslinking agent with respect to a lignin derivative, and can improve solvent resistance and a cure rate.
  • the carboxyl group can be confirmed by the presence or absence of absorption of a peak at 172 to 174 ppm when subjected to 13 C-NMR analysis.
  • the production method of the lignin derivative is not particularly limited, but some examples will be described below. First, a method for producing a lignin derivative by high-temperature and high-pressure treatment of biomass will be described.
  • the method for producing the resin composition of the present invention comprises: [1] placing biomass in the presence of a solvent and decomposing them under high temperature and high pressure, and [2-a] lignin derivative as a solid component in the treated product.
  • the lignin derivative Separating the liquid component (dissolved solution) containing the solid component from the solid component, and drying the dissolved solution of [3] [2-a] and / or [2-b] to recover the solute (lignin derivative); And [4] mixing the recovered solute and other resin components (resin material) as necessary to obtain a lignin resin composition.
  • each step will be described.
  • biomass is placed in the presence of a solvent and decomposed under high temperature and pressure.
  • Biomass is a plant or a processed product of a plant as described above. Examples of this plant include broadleaf trees such as beech, birch and oak, conifers such as cedar, pine and cypress, bamboo, rice straw. Such grasses, coconut shells and the like.
  • the size after pulverization is preferably about 100 ⁇ m to 1 cm, and more preferably about 200 to 1000 ⁇ m.
  • Examples of the solvent used in this step include water, alcohols such as methanol and ethanol, phenols such as phenol and cresol, ketones such as acetone and methyl ethyl ketone, dimethyl ether, ethyl methyl ether, diethyl ether, Ethers such as tetrahydrofuran, nitriles such as acetonitrile, amides such as N, N-dimethylformamide, and the like, and one or two or more of these solvents are used.
  • alcohols such as methanol and ethanol
  • phenols such as phenol and cresol
  • ketones such as acetone and methyl ethyl ketone
  • dimethyl ether ethyl methyl ether
  • diethyl ether diethyl ether
  • Ethers such as tetrahydrofuran
  • nitriles such as acetonitrile
  • amides such as N, N-dimethylformamide,
  • water is particularly preferably used as the solvent.
  • the water for example, ultrapure water, pure water, distilled water, ion exchange water or the like is used. By using water, unintended denaturation of the lignin derivative is suppressed, and the waste liquid generated with the decomposition treatment is aqueous, so the environmental burden can be minimized.
  • the amount of the solvent used is preferably as much as possible with respect to the biomass, but is preferably about 1 to 20 times by mass, more preferably about 2 to 10 times by mass with respect to the biomass.
  • biomass in the presence of the solvent is decomposed under high temperature and pressure.
  • biomass is decomposed
  • a pressure vessel such as an autoclave can be used.
  • this pressure vessel what is equipped with the heating means and the stirring means is preferable, and it is preferable that mechanical energy, such as stirring biomass under high temperature and high pressure, can be added.
  • mechanical energy such as stirring biomass under high temperature and high pressure
  • the treatment temperature is preferably 150 to 400 ° C., more preferably 180 to 350 ° C., and further preferably 220 to 320 ° C.
  • the treatment temperature is within the above range, the molecular weight of the lignin derivative obtained after decomposition can be optimized. Thereby, the moldability of the lignin resin composition, the rubber composition or the molding material and the solvent resistance after curing can be made higher compatible.
  • an appropriate processing time may be used depending on the apparatus used for the processing.
  • the apparatus to be used is an autoclay part, it is preferably 480 minutes or less, more preferably 15 to 360 minutes.
  • the processing time is 480 minutes or longer, the heat energy cost is increased, and the production cost is increased. There is no problem even if the treatment time is shorter than 15 minutes, but depending on the apparatus, heat transfer may be insufficient and biomass decomposition may be insufficient.
  • the pressure in the decomposition treatment is preferably 1 to 40 MPa, more preferably 1.5 to 25 MPa, and further preferably 3 to 20 MPa. If the pressure is within the above range, the decomposition efficiency of biomass can be increased to the image step portion, and as a result, the processing time can be shortened.
  • the stirring temperature is preferably about 0 to 150 ° C, more preferably about 10 to 130 ° C.
  • the stirring time is preferably about 1 to 120 minutes, more preferably about 5 to 60 minutes.
  • examples of the stirring method include various mills such as a ball mill and a bead mill, a method using a stirrer equipped with a stirring blade, a method using water flow stirring using a homogenizer, a jet pump, and the like.
  • a catalyst and an oxidizing agent that accelerate the decomposition treatment may be added to the solvent as necessary.
  • the catalyst include inorganic bases such as sodium carbonate, inorganic acids such as acetic acid and formic acid, and examples of the oxidizing agent include hydrogen peroxide.
  • the amount of the catalyst and oxidizing agent added is preferably about 0.1 to 10% by mass, more preferably about 0.5 to 5% by mass in the concentration in the aqueous solution.
  • the solvent used in the decomposition treatment is preferably used in a subcritical or supercritical state (condition).
  • a solvent in a subcritical or supercritical state can accelerate the biomass decomposition treatment without a special additive component such as a catalyst. For this reason, it becomes possible to decompose biomass in a short time without using a complicated separation process, and it is possible to reduce the manufacturing cost of the lignin derivative and simplify the manufacturing process.
  • the critical temperature of water is about 374 ° C.
  • the critical pressure is about 22.1 MPa.
  • polar organic solvents As the solvent in which lignin is soluble, various polar organic solvents are used, and in particular, those containing lower alcohols such as methanol and ethanol, and ketones such as acetone and methyl ethyl ketone are preferably used. By using these polar organic solvents, it is possible to separate and extract the lignin derivative dissolved in the polar organic solvent and the lignin derivative insoluble in the polar organic solvent from the recovered solid component.
  • the immersion time is not particularly limited, but is preferably about 1 to 48 hours, and more preferably about 2 to 30 hours. Moreover, it is also possible to heat at the boiling point or less of a solvent at the time of immersion.
  • the filtrate (dissolved solution) contains two or more types of solvents.
  • the lignin derivative is uniformly dispersed in two or more kinds of solvents, it is preferable to distill off the solvents collectively.
  • the filtrate (dissolved solution) is phase-separated into a layer containing a lignin derivative and a layer not containing a lignin derivative, first, the solution containing the lignin derivative is separated by separating the layer not containing the lignin derivative. Only collect. Next, the solvent is preferably distilled off from the collected solution.
  • Examples of the method for distilling off the solvent include, but are not limited to, a method of drying under reduced pressure (vacuum drying).
  • the drying temperature under reduced pressure is preferably set to a temperature that matches the solvent to be distilled off.
  • the solvent used for the separation treatment has a high boiling point and is 210 ° C. or lower. Accordingly, the drying temperature under reduced pressure is preferably 40 to 250 ° C, more preferably 50 to 230 ° C.
  • the time for drying under reduced pressure is not particularly limited, but is preferably about 0.5 to 48 hours, more preferably about 1 to 24 hours.
  • the temperature and time of vacuum drying effective for controlling the amount of volatile components vary depending on the scale to be dried. What is necessary is just to select optimal temperature and time by the vacuum dryer to be used.
  • the pressure in vacuum drying is preferably 0.1 to 60 kPa, more preferably 0.5 to 50 kPa.
  • ⁇ Lignin derivative production method 2 cooking process> Several types of cooking processes are known, and examples include a kraft cooking process, an alkali cooking process, a sulfite cooking process, an organosolv process, and the like, and various cooking processes can be used. Among these cooking processes, it is preferable to use an organosolv process using a chemical containing an organic solvent.
  • a lignin derivative modified with a structure derived from a compound contained in an organic solvent can be obtained.
  • Such lignin derivatives are excellent in compatibility with resin materials and rubber materials. Therefore, the lignin derivative obtained by the organosolv process can be uniformly mixed with a resin material or a rubber material. For this reason, a rubber composition having excellent elastic modulus and tensile properties, or a molding material having excellent elastic modulus and mechanical strength can be obtained.
  • lignin derivatives contain almost no sulfur. For this reason, when using for a molding material, malfunctions, such as a deterioration of the long-term reliability of the molded product by sulfur, do not occur. Further, when used in a rubber composition, the risk of causing a vulcanization reaction is reduced. Thus, the vulcanization reaction can be started by adding the vulcanizing agent separately, and the progress of the vulcanization reaction can be strictly controlled according to the amount of the vulcanizing agent added. As a result, the rubber viscosity can be increased during kneading in the rubber composition, and overcuring (overcuring) and undercuring (unvulcanized) can be controlled, and a rubber composition having excellent rubber properties is prepared. be able to.
  • the sulfur content of the lignin derivative according to the present invention is preferably less than 0.05% by mass, and more preferably 0.03% by mass or less.
  • a vulcanizing agent examples include lower alcohols such as methanol, ethanol and propanol, ketones such as methyl ethyl ketone and acetone, cyclic ethers such as tetrahydrofuran and dioxane, phenols such as phenol and cresol, and acetic acid.
  • organic solvents include lower alcohols such as methanol, ethanol and propanol, ketones such as methyl ethyl ketone and acetone, cyclic ethers such as tetrahydrofuran and dioxane, phenols such as phenol and cresol, and acetic acid.
  • carboxylic acids examples include carboxylic acids.
  • a solution containing lower alcohols is preferably used, and a lower alcohol aqueous solution is more preferably used.
  • the solvent is introduced into the lignin derivative, so that the meltability and the compatibility with the resin material are improved.
  • the lignin derivative which is not low molecular weight more than necessary can be obtained. Therefore, a lignin derivative capable of preparing a lignin resin composition, rubber composition or molding material having excellent elastic modulus and tensile properties can be obtained.
  • the content of the organic solvent in such a drug is not particularly limited, but is preferably about 10 to 90% by mass, and more preferably about 30 to 70% by mass.
  • various additives may be added to this medicine as necessary.
  • the additive include alkali components such as sodium hydroxide, calcium hydroxide, and potassium hydroxide, sulfuric acid, hydrochloric acid, aluminum chloride, alkaline earth metal salts, and the like.
  • the treatment temperature in the organosolv process is 60 to 230 ° C., and the treatment time is preferably 10 to 360 minutes.
  • the lignin derivative can be recovered from the black liquor obtained after the cooking treatment by precipitation, liquid-solid separation and drying in the same manner as in a general organosolv process.
  • the Alcell (registered trademark) method using a lower alcohol aqueous solution is preferably used.
  • Examples of the reforming treatment include a treatment for introducing a functional group into a lignin derivative produced by a biomass cooking process.
  • a treatment for introducing a functional group into a lignin derivative produced by a biomass cooking process For example, the process etc. which contact the compound containing the functional group to introduce
  • the solvent extraction is a process of dissolving the lignin derivative produced in the above step in a solvent capable of dissolving the lignin derivative and then mainly removing the solvent-soluble component (a process of purifying the lignin derivative).
  • Examples of the process for taking out the solvent-soluble component include filtering the solid residue after dissolving the solvent to concentrate and drying the soluble component.
  • the lignin derivative that has undergone such solvent extraction treatment has a low molecular weight and is excellent in heat melting property, so that it can be easily mixed with a phenol-based resin or rubber and can improve rubber reinforcing properties. Further, since the molecular weight and physical properties are uniform, it is useful in that a homogeneous rubber composition and molding material can be prepared.
  • a lignin derivative is extracted from biomass by an organosolv process using a chemical containing a lower alcohol, it is more preferable to perform solvent extraction using acetone.
  • the specific reason is unknown, but due to the intermolecular interaction between the lignin derivative and each solvent (lower alcohol, acetone), it has a lower molecular weight than the lignin derivative extracted at the stage of the organosolv process.
  • a lignin derivative having a uniform molecular weight and physical properties can be purified.
  • the lignin resin composition of the present invention includes a lignin derivative and a resin material.
  • a rubber composition having excellent rubber elastic modulus and tensile properties can be prepared.
  • a rubber composition excellent in the balance of low hysteresis loss, rubber elasticity, and tensile properties is possible.
  • the resin material mixed with the lignin derivative is not particularly limited, and examples thereof include phenol resins, epoxy resins, furan resins, urea resins, and melamine resins. Of these, phenol resins are preferably used.
  • the amount of the resin material added to the lignin resin composition is preferably about 10 to 1000 parts by mass, more preferably about 20 to 500 parts by mass with respect to 100 parts by mass of the lignin derivative. By adding the resin material at such a ratio, it is possible to crosslink the phenolic resin and the lignin derivative without excess or deficiency.
  • examples of the phenolic resin include phenols or those obtained by reacting phenols with a modified compound together with aldehydes.
  • examples of the phenols include cresols such as o-cresol, m-cresol and p-cresol, ethylphenols such as o-ethylphenol, m-ethylphenol and p-ethylphenol, isopropylphenol and butylphenol.
  • Butylphenols such as p-tert-butylphenol, and long-chain alkylphenols such as p-tert-amylphenol, p-octylphenol, p-nonylphenol, and p-cumylphenol, and one or two of them A mixture of seeds or more can be used.
  • examples of the modifying compound include compounds having an aromatic structure such as catechol, pyrogallol, bisphenol F, and bisphenol A having two or more hydroxyl groups in the molecule, and polycyclic aromatic structures such as naphthol having a hydroxyl group.
  • aromatic structure such as catechol, pyrogallol, bisphenol F, and bisphenol A having two or more hydroxyl groups in the molecule
  • polycyclic aromatic structures such as naphthol having a hydroxyl group.
  • Melamine, terpenes, furan resins such as furfural
  • plant-derived components such as tung oil, linseed oil, cashew oil, tall oil, and the like. Since cashew oil has a phenol structure, cashew resin is also included as a phenolic resin.
  • the phenolic resin preferably contains at least one of cashew-modified phenol resin, tall-modified phenol resin, alkyl-modified phenol resin, and cashew resin. Since such a phenolic resin is excellent in compatibility with the rubber material, it is considered that the phenolic resin can be uniformly dispersed when mixed with the rubber material to prepare a homogeneous rubber composition. That is, a rubber composition that is homogeneous and has a large rubber elastic modulus can be obtained.
  • cashew-modified phenol resin for example, cashew oil which is a natural product containing cardanol or cardol having an unsaturated double bond in the side chain is used, and this is obtained by condensation or addition reaction with phenols and aldehydes. It is done.
  • the cashew-modified phenolic resin includes a novolak type and a resol type, both of which are used. However, considering the cost and the like, the novolak type is preferably used.
  • the tall-modified phenol resin is a phenol resin modified with tall oil. It is thought that the form in which the double bond of unsaturated fatty acid in tall oil is bonded to the phenol ring of the phenol resin, the form in which tall oil is dispersed and mixed in the phenol resin, or the form in which these are mixed .
  • alkyl-modified phenol resin examples include compounds obtained by reacting aldehydes with phenols having an alkyl group such as bisphenol A or nonylphenol, octylphenol, and dodecylphenol.
  • cashew resin examples include cashew oil or a polymer thereof, which is a natural product containing cardanol or cardol having an unsaturated double bond in the side chain, or a polymer reacted with an aldehyde or a saccharide. It is done.
  • examples of the catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, phosphorous acid, oxalic acid, diethyl sulfuric acid, paratoluenesulfonic acid, and organic phosphonic acid.
  • organic acids, metal salts such as zinc acetate, and the like can be used alone or in combination of two or more.
  • the molecular weight of such a phenolic resin is not particularly limited, but the number average molecular weight is preferably about 400 to 5000, and more preferably about 500 to 3000.
  • the handleability of the phenolic resin is improved. If the number average molecular weight of the phenolic resin is below the lower limit, depending on the composition of the phenolic resin, the phenolic resin becomes a highly viscous material, or even if solidified, it is easily consolidated by the environment. There is a risk.
  • the average molecular weight of the phenolic resin exceeds the upper limit, depending on the composition of the phenolic resin, the phenolic resin may be difficult to dissolve in the solvent or the compatibility with the blend may be reduced.
  • the number average molecular weight of a phenol-type resin can be measured using the method similar to the lignin derivative mentioned above.
  • the form of the lignin resin composition obtained using such a resin material and a lignin derivative is not particularly limited, and examples thereof include powder, granule, pellet, and varnish.
  • the form of a lignin resin composition is a granular form or a pellet form.
  • the rubber composition of the present invention may further contain a filler, a crosslinking agent, and other components as described later.
  • the solid content concentration in the lignin resin composition is not particularly limited, but is, for example, about 60 to 98% by mass, and preferably about 70 to 95% by mass.
  • ⁇ Method for producing lignin resin composition Next, the manufacturing method of the lignin resin composition mentioned above is demonstrated.
  • the manufacturing method of a lignin resin composition is not specifically limited, For example, the raw material mentioned above is thrown into a kneader and the method of kneading
  • Examples of the kneader include a mixer, a kneader, and a roll. Moreover, when kneading
  • the organic solvent include methanol, ethanol, propanol, butanol, methyl cellosolve, acetone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and quinoline. , Cyclopentanone, m-cresol, chloroform and the like, and one or a mixture of two or more thereof is used.
  • the rubber composition of the present invention contains at least a rubber material (raw rubber) and the lignin derivative described above. Or the rubber composition of this invention contains a rubber material and the lignin resin composition mentioned above at least. Such a rubber composition has a good balance between rubber elastic modulus and low hysteresis loss. Such a rubber composition is useful, for example, as a tire rubber composition capable of achieving both good steering stability and reduction in rolling resistance.
  • Rubber material examples include various natural rubbers and various synthetic rubbers. Specifically, natural rubber (NR), modified natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR), ethylene propylene diene rubber (EPDM), acrylonitrile butadiene Examples thereof include rubber (NBR), chloroprene rubber (CR) and the like, and one or more of these can be used in combination.
  • natural rubber (NR), modified natural rubber, styrene butadiene rubber (SBR), and butadiene rubber (BR) are superior in properties such as trauma resistance, wear resistance, fatigue resistance, and flex crack growth resistance.
  • One or more rubbers selected from among these are preferably used, and at least one of natural rubber and butadiene rubber (BR) is more preferably used from the viewpoint of availability.
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • the content of SBR and BR is preferably 50% by mass or less in the rubber composition, more preferably 30% by mass or less. preferable.
  • SBR and BR content is less than or equal to the above upper limit, the ratio of petroleum resources in the rubber composition can be kept low, and the burden on the environment can be further reduced.
  • the rubber composition of the present invention has at least one functional group selected from the group consisting of alkoxyl groups, alkoxysilyl groups, epoxy groups, glycidyl groups, carbonyl groups, ester groups, hydroxy groups, amino groups, and silanol groups. It may contain at least one of a functional group-containing natural rubber containing a group (modified natural rubber) and a functional group-containing diene rubber. When natural rubber and diene rubber contain these functional groups, the dispersibility of the filler in the rubber composition is improved by the reaction or interaction of these rubber materials with the surface of the filler.
  • the functional group described above is preferably contained in a proportion of about 0.001 to 80 mol% of the rubber material, more preferably in a proportion of about 0.01 to 50 mol%. More preferably, it is contained at a ratio of about 0.02 to 25 mol%. If the content of the functional group is within the above range, the effect of reacting with or interacting with the surface of the filler can be obtained better, and at the time of producing unvulcanized rubber (rubber composition not containing a vulcanizing agent) The increase in the viscosity is suppressed, and the processability is improved.
  • Examples of the method of incorporating the above-mentioned functional group into the rubber material include a method of introducing a functional group into the polymerization terminal of a styrene-butadiene copolymer polymerized using an organolithium initiator in a hydrocarbon solvent, Examples thereof include a method of epoxidizing rubber or diene rubber by a method such as a chlorohydrin method, a direct oxidation method, a hydrogen peroxide method, an alkyl hydroperoxide method, or a peracid method.
  • the rubber component is such that at least one of natural rubber, modified natural rubber, styrene butadiene rubber (SBR) and butadiene rubber (BR) accounts for 50 to 100% by mass of the rubber material. Is preferably set.
  • the rubber elastic modulus storage elastic modulus E ′
  • the hysteresis loss loss tangent tan ⁇ near 60 ° C.
  • the addition amount of the rubber material is not particularly limited, but is preferably about 100 to 10000 parts by mass, more preferably about 200 to 5000 parts by mass, with respect to 100 parts by mass of the lignin derivative and the resin. More preferably, it is about 300 to 2000 parts by mass.
  • the rubber composition of this invention may contain the filler other than the component mentioned above.
  • the filler those usually used in resin compositions and rubber compositions can be employed. Specific examples include at least one selected from the group consisting of carbon black, silica, alumina, and cellulose fiber. Particularly, at least one selected from silica and carbon black is preferably used.
  • the content of the filler is preferably about 10 to 150 parts by mass with respect to 100 parts by mass of the rubber material.
  • the rubber elastic modulus of the rubber composition can be increased by setting the filler content to the lower limit value or more. On the other hand, by setting the filler content to the upper limit value or less, the rubber elastic modulus is prevented from excessively increasing, and the processability during the preparation of the rubber composition is improved, and the filling in the rubber composition is performed. It is possible to suppress a decrease in wear resistance, elongation at break and the like due to deterioration of the dispersibility of the agent. Moreover, the increase in the hysteresis loss property of a rubber composition can be suppressed.
  • silica when silica is blended as a filler, silica is blended at a ratio of about 3 to 150 parts by mass with respect to 100 parts by mass of the rubber material, and the silane coupling agent is added to 1 to 20 parts by mass of the silica content. It is preferable to mix
  • the rubber elastic modulus of the rubber composition can be increased by setting the silica content to the lower limit value or more. On the other hand, by setting the silica content to be equal to or less than the above upper limit value, it is possible to improve processability during preparation of the rubber composition while suppressing an excessive increase in the rubber elastic modulus.
  • the content of silica is more preferably about 5 to 100 parts by mass, and further preferably about 10 to 80 parts by mass with respect to 100 parts by mass of the rubber material.
  • silica conventionally used for reinforcing rubber can be used, and examples thereof include dry method silica, wet method silica, colloidal silica, and the like.
  • the silica preferably has a nitrogen adsorption specific surface area (N2SA) of 20 to 600 m 2 / g, more preferably 40 to 500 m 2 / g, and still more preferably 50 to 450 m 2 / g.
  • N2SA of silica is not less than the lower limit, the reinforcing effect on the rubber composition is increased.
  • N2SA of silica is not more than the above upper limit value, the dispersibility of silica in the rubber composition becomes good, and for example, a rubber composition excellent in low hysteresis loss can be obtained.
  • the filler is not limited to the above-described constituent materials.
  • the constituent material of the filler include talc, fired clay, unfired clay, mica, silicates such as glass, oxides such as titanium oxide and alumina, magnesium silicate, calcium carbonate, magnesium carbonate, hydro Carbonates such as talcite, oxides such as zinc oxide and magnesium oxide, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates such as barium sulfate, calcium sulfate and calcium sulfite Alternatively, borates such as sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate, sodium borate, nitrides such as aluminum nitride, boron nitride, and silicon nitride can be given. And the powder, particle
  • inorganic fillers such as carbon fiber, wood powder, pulp pulverized powder, cloth pulverized powder, thermosetting resin cured powder, aramid fiber, organic filler such as talc, etc. are also included in the lignin resin composition. It can be used as a filler.
  • the rubber composition of this invention may contain the crosslinking agent other than the component mentioned above.
  • the cross-linking agent is not particularly limited as long as it can cross-link either one or both of the rubber material and the lignin derivative, but one containing a compound represented by the following formula (4) is preferably used.
  • [Z in Formula (4) is any one of a melamine residue, a urea residue, a glycolyl residue, an imidazolidinone residue, and an aromatic ring residue.
  • M represents an integer of 2 to 14.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • —CH 2 OR is a nitrogen atom of a melamine residue, a nitrogen atom of a primary amino group of a urea residue, a nitrogen atom of a secondary amino group of a glycolyl residue, or a secondary amino group of an imidazolidinone residue. It is directly bonded to either the nitrogen atom or the carbon atom of the aromatic ring residue.
  • a rubber composition containing such a compound is excellent in mechanical properties after curing, and contributes to improvement in durability and appearance of the cured product.
  • the compound represented by the above formula (4) contained in the cross-linking agent can form a polyfunctional cross-linking point, so that the lignin derivative is cross-linked with high density and uniformity to form a homogeneous and rigid skeleton. It is because it forms.
  • the rigid skeleton improves the mechanical properties and durability (boiling resistance, etc.) of the cured product, and also suppresses the occurrence of blisters and cracks, thereby improving the appearance of the cured product.
  • —CH 2 OR is a nitrogen atom of a melamine residue, a nitrogen atom of a primary amino group of a urea residue, a nitrogen atom of a secondary amino group of a glycolyl residue, or 2 of an imidazolidinone residue.
  • —CH 2 OR is a nitrogen atom of a melamine residue, a nitrogen atom of a primary amino group of a urea residue, a nitrogen atom of a secondary amino group of a glycolyl residue, or 2 of an imidazolidinone residue.
  • R contained in at least one of “—CH 2 OR” is an alkyl group.
  • the melamine residue refers to a group having a melamine skeleton represented by the following formula (A).
  • the urea residue refers to a group having a urea skeleton represented by the following formula (B).
  • glycolyl residue refers to a group having a glycolyl skeleton represented by the following formula (C).
  • the imidazolidinone residue refers to a group having an imidazolidinone skeleton represented by the following formula (D).
  • the aromatic ring residue means a group having an aromatic ring (benzene ring).
  • a compound represented by any one of the following formulas (5) to (8) is particularly preferably used. These react with a crosslinking reaction point on the aromatic ring contained in the phenol skeleton in the lignin derivative to surely crosslink the lignin derivative and cause self-crosslinking by self-condensation reaction between functional groups. As a result, a cured product having a particularly homogeneous and rigid skeleton and excellent in mechanical properties, durability and appearance can be obtained.
  • X is CH 2 OR or a hydrogen atom
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • N represents an integer of 1 to 3.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • R is independently an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • a compound represented by the above formula (5) a compound represented by the following formula (9) or the following formula (10) is particularly preferably used.
  • These react with a crosslinking reaction point on the aromatic ring contained in the phenol skeleton in the lignin derivative to particularly surely crosslink the lignin derivative and cause self-crosslinking by self-condensation reaction between functional groups.
  • a cured product having a particularly uniform and rigid skeleton and excellent mechanical properties, durability and appearance can be obtained.
  • n an integer of 1 to 3.
  • n an integer of 1 to 3.
  • the cross-linking agent may contain at least one compound of hemisamethylenetetramine, quinuclidine, and pidgin instead of or together with the compound represented by the above formula (4).
  • a cured product containing such a crosslinking agent has excellent mechanical strength (such as durability) and an excellent appearance. This is because hexamethylenetetramine, quinuclidine and pididine cross-link lignin derivatives with high density and uniformity to form a homogeneous and rigid skeleton.
  • the crosslinking agent may contain a crosslinking agent component other than the above compound.
  • the cross-linking agent component other than the above compound include, for example, orthocresol novolac epoxy resin, bisphenol A type epoxy resin, epoxidized glycerin, epoxidized linseed oil, epoxy resin such as epoxidized soybean oil, hexamethylene diisocyanate, toluene diisocyanate.
  • Isocyanate compounds compounds that can be cross-linked by electrophilic substitution reaction on aromatic rings of lignin derivatives, aldehydes such as formaldehyde, acetaldehyde, paraformaldehyde, furfural, aldehyde sources such as polyoxymethylene, resol type phenol
  • aldehydes such as formaldehyde, acetaldehyde, paraformaldehyde, furfural
  • aldehyde sources such as polyoxymethylene
  • the conventional phenol resin such as a resin include a known crosslinking agent and a compound that can be crosslinked by electrophilic substitution reaction on the aromatic ring of the lignin derivative.
  • the content rate of these crosslinking agent components in a crosslinking agent is 80 mass% or more before crosslinking reaction.
  • the amount of the crosslinking agent to be added is not particularly limited, but is preferably about 5 to 120 parts by mass, more preferably about 10 to 100 parts by mass with respect to 100 parts by mass of the lignin derivative.
  • the rubber composition of the present invention may contain other components in addition to the components described above.
  • other components include softeners, tackifiers, antioxidants, ozone degradation inhibitors, anti-aging agents, sulfur and other vulcanizing agents, vulcanization accelerators, vulcanization accelerators, peroxides, Examples include zinc oxide and stearic acid.
  • an organic peroxide or a sulfur vulcanizing agent for example, an organic peroxide or a sulfur vulcanizing agent can be used.
  • the organic peroxide include benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, and 2,5-dimethyl.
  • sulfur-based vulcanizing agent examples include sulfur and morpholine disulfide. Of these, sulfur is particularly preferably used.
  • vulcanization accelerators examples include sulfenamide, thiazole, thiuram, thiourea, guanidine, dithiocarbamic acid, aldehyde-amine, aldehyde-ammonia, imidazoline, and xanthate vulcanization accelerators. An agent etc. are mentioned, and the thing containing at least 1 sort is used among these.
  • anti-aging agent for example, amine-based, phenol-based, imidazole-based compounds, carbamic acid metal salts, waxes, and the like are appropriately selected and used.
  • the rubber composition of the present invention can be appropriately mixed with a compounding agent usually used in the rubber industry, such as stearic acid and zinc oxide.
  • the solid content concentration in the rubber composition is not particularly limited, but as an example, it is about 60 to 98% by mass, preferably about 70 to 95% by mass.
  • Such a rubber composition can be applied to all uses of conventional rubber compositions, and specifically, can be applied to uses such as tires, belts, rubber crawlers, anti-vibration rubbers, and shoes.
  • the manufacturing method of a rubber composition is not specifically limited, For example, the process of kneading
  • an organic solvent may be used as necessary.
  • the organic solvent include methanol, ethanol, propanol, butanol, methyl cellosolve, acetone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and quinoline.
  • a lignin derivative and a resin are mixed to obtain a mixed resin.
  • rubber material, mixed resin, and optional components are kneaded by a closed kneader to contain no vulcanization system
  • a composition (unvulcanized rubber composition) is obtained.
  • kneading conditions (kneading temperature, kneading time, etc.) are appropriately set according to the kneader.
  • a vulcanizing agent and a vulcanization accelerator are added to the rubber composition obtained by the above (2) using the kneader including rolls such as an open roll, and kneaded again.
  • a rubber composition containing a vulcanization system is obtained.
  • the cured product of the rubber composition can be obtained by molding and curing the rubber composition.
  • the molding method is not particularly limited because it varies depending on the application, but when molding using a mold, the produced rubber composition is molded using a mold equipped with a hydraulic press. . Thereby, the hardened
  • the rubber composition of the present invention can be used as a rubber composition for tires as an example.
  • the rubber composition of the present invention is used as a rubber composition for tire cap treads, it is produced by a usual method. That is, after an unvulcanized rubber composition is extruded into the shape of a tread portion of a tire, the extruded rubber composition is bonded by a normal method with a tire molding machine to form an unvulcanized tire. Next, the unvulcanized tire can be heated and pressurized in a vulcanizer to obtain a tire.
  • the molding temperature is preferably about 100 to 280 ° C., more preferably about 120 to 250 ° C., and further preferably about 130 to 230 ° C. If the molding temperature exceeds the upper limit, the rubber may be deteriorated. On the other hand, if the molding temperature is lower than the lower limit, sufficient molding may not be possible.
  • the molding material of the present invention contains the lignin derivative described above.
  • the molding material of this invention contains the lignin resin composition (mainly a lignin derivative and a resin material) mentioned above.
  • a molding material has an excellent elastic modulus and mechanical strength.
  • the molding material of the present invention contains a plant-derived substance (lignin derivative), for example, even when discarded by incineration, the amount of increase in carbon dioxide in the atmosphere is suppressed as compared with the case where such a substance is not included. Can do. For this reason, the molding material of this invention can aim at reduction of an environmental load.
  • a plant-derived substance lignin derivative
  • the molding material of the present invention can be produced by a method similar to the method for producing a rubber composition described above, and can be cured by a method similar to the effect method for the rubber composition described above.
  • the lignin derivative of this invention As mentioned above, although the lignin derivative of this invention, the manufacturing method of a lignin derivative, the lignin resin composition, the rubber composition, and the molding material were demonstrated, this invention is not limited to this. For example, arbitrary components may be added to the lignin resin composition, the rubber composition, and the molding material, respectively.
  • Stearic acid Beads stearic acid YR made by NOF Corporation
  • Sulfur Hosoi Chemical Industry Co., Ltd., fine sulfur vulcanization accelerator: Ouchi Shinsei Chemical Industry Co., Ltd., MSA-G Phenolic resin: Sumitomo Bakelite, PR-50731
  • Cashew modified novolac type phenolic resin PR-12686, manufactured by Sumitomo Bakelite Co., Ltd.
  • Tall-modified novolac type phenolic resin PR-13349, manufactured by Sumitomo Bakelite Co., Ltd.
  • Example 1A (1) Lignin derivative 300 g of cedar chips (absolutely dry amount) and 1600 g of pure water were introduced into a rotary autoclave having a capacity of 2.4 L. Then, while the contents were stirred at a rotation speed of 300 rpm, the cedar chips were decomposed by processing at a processing temperature of 300 ° C. and a processing pressure of 9 MPa for 60 minutes. Subsequently, the decomposition product was filtered and washed with pure water to separate a water-insoluble portion. This water-insoluble part was immersed in acetone and then filtered to recover the acetone-soluble part. Subsequently, acetone was distilled off from the acetone soluble part to obtain a lignin derivative.
  • Example 2A A rubber composition was obtained in the same manner as in Example 1A, except that the lignin derivative was 100 parts by mass and no phenol resin material was added.
  • Example 3A A rubber composition was obtained in the same manner as in Example 1A, except that 50 parts by mass of tall-modified phenol resin was added instead of cashew-modified phenol.
  • Example 4A A rubber composition was obtained in the same manner as in Example 1A, except that 50 parts by mass of a novolac type modified phenolic resin was added instead of the cashew modified phenol.
  • Example 5A A rubber composition was obtained in the same manner as in Example 1A, except that 75 parts by mass of the lignin derivative and 25 parts by mass of the cashew-modified phenol resin were changed.
  • Example 6A A rubber composition was obtained in the same manner as in Example 1A, except that 25 parts by mass of the lignin derivative and 75 parts by mass of the cashew-modified phenol resin were changed.
  • Example 7A A rubber composition was obtained in the same manner as in Example 1A, except that the biomass was derived from eucalyptus.
  • Example 8A A rubber composition was obtained in the same manner as in Example 2A, except that the biomass was derived from eucalyptus.
  • Example 9A In Example 1A, a rubber composition was obtained in the same manner as in Example 1A, except that the cedar chips were decomposed by treatment at a treatment pressure of 3 MPa for 180 minutes.
  • Example 10A After drying and pulverizing a lignin derivative (Lignol Lignin (Powder): manufactured by Lignol), which is one of the organosolv processes, by the Alcell (Alcell (registered trademark)) method, It was dissolved in acetone and filtered to remove the solid residue to obtain a supernatant. Thereafter, a rubber composition was obtained in the same manner as in Example 1A, except that the supernatant was concentrated and dried to obtain a lignin derivative.
  • lignin derivative Lignol Lignin (Powder): manufactured by Lignol
  • Alcell Alcell (registered trademark)
  • Comparative Example 2A A rubber composition was obtained in the same manner as in Comparative Example 1A, except that the lignin derivative was 100 parts by mass and no phenol resin material was added.
  • Comparative Example 3A A rubber composition was obtained in the same manner as in Comparative Example 1A, except that the biomass was derived from eucalyptus.
  • Comparative Example 4A A rubber composition was obtained in the same manner as in Comparative Example 2A, except that the biomass was derived from eucalyptus.
  • Comparative Example 5A In Comparative Example 1A, a rubber composition was obtained in the same manner as Comparative Example 1A, except that the cedar chips were decomposed by treatment at a treatment pressure of 3 MPa for 180 minutes.
  • Comparative Example 6A A rubber composition in the same manner as in Comparative Example 1A, except that a lignin derivative (Lignol Lignin (Powder): manufactured by Lignol) obtained by the Alcell (registered trademark) method was dried and ground at 150 ° C. I got a thing.
  • a lignin derivative Lignol Lignin (Powder): manufactured by Lignol
  • Alcell registered trademark
  • Example 7A A rubber composition is synthesized using the rubber, filler, resin cross-linking agent, vulcanizing agent, vulcanization accelerator, vulcanization acceleration aid, and release agent described in Example 1 without using a lignin derivative or a phenol resin. A rubber composition was obtained in the same manner as in Example 1A except that.
  • Comparative Example 8A A rubber composition was obtained in the same manner as in Comparative Example 7A, except that 100 parts by mass of novolak type phenol was added to Comparative Example 7A.
  • Comparative Example 9A A rubber composition was obtained in the same manner as in Comparative Example 7A, except that 100 parts by mass of cashew-modified phenol was added to Comparative Example 7A.
  • Tables 1 and 2 show the compositions of the lignin derivatives and rubber compositions of Examples and Comparative Examples obtained as described above.
  • the cured products of the rubber compositions obtained in Examples 1A to 10A had the storage elastic modulus E ′ and the cuts of the cured products of the rubber composition added with the lignin derivative. It has been observed that both tensile stresses can be increased. Further, by adding the resin together with the lignin derivative, the reciprocal of the loss tangent tan ⁇ at 60 ° C. can be increased as compared with the case where the resin is not added, and the hysteresis loss of the cured product of the rubber composition can be reduced. It was recognized that Therefore, it was recognized that by adding the lignin derivative and the resin (by adding the lignin resin composition), the balance between the rubber elastic modulus and the hysteresis loss is improved.
  • the number average molecular weight of the soluble component in the lignin derivatives used in Examples 1A to 10A was in the range of 300 to 2000.
  • the softening point of the soluble component in the lignin derivatives used in Examples 1A to 10A was 100 to 180 ° C.
  • the content of acetone-soluble components (acetone dissolution rate) in the lignin derivatives used in Examples 1A to 10A was 80% by mass or more.
  • Natural rubber manufactured by Tochi Curing agent: Hexamethylenetetramine Carbon black: HAF manufactured by Mitsubishi Chemical Corporation Silica: manufactured by Evonik, Ultrasil VN3 (BET specific surface area: 175 m 2 / g) Silane coupling agent: Si-69, manufactured by Evonik Zinc oxide: Made by Sakai Chemical Industry Co., Ltd.
  • Stearic acid Beads stearic acid YR made by NOF Corporation
  • Sulfur Hosoi Chemical Industry Co., Ltd., fine sulfur vulcanization accelerator: Ouchi Shinsei Chemical Industry Co., Ltd., MSA-G Phenolic resin: Sumitomo Bakelite, PR-50731
  • Cashew modified novolac type phenolic resin PR-12686, manufactured by Sumitomo Bakelite Co., Ltd.
  • Tall-modified novolac type phenolic resin PR-13349, manufactured by Sumitomo Bakelite Co., Ltd.
  • Example 1B (2) Lignin derivative A lignin derivative obtained by the Alcell (Alcell (registered trademark)) method (Lignol Lignin (Powder): manufactured by Lignol) was dissolved in 10 mass times of acetone, and the solid residue was removed by filtration. A supernatant was obtained. Thereafter, the supernatant was concentrated and dried to obtain a lignin derivative.
  • Example 2B A rubber composition was obtained in the same manner as in Example 1B except that a novolac type phenol resin was added instead of the toll-modified phenol resin.
  • Example 3B A rubber composition was obtained in the same manner as in Example 1B except that a cashew-modified phenol resin was added instead of the tall-modified phenol resin.
  • Example 4B A rubber composition was obtained in the same manner as in Example 3B, except that the addition amount of the lignin derivative and the addition amount of the cashew-modified phenol resin were changed as shown in Table 3.
  • Example 5B A rubber composition was obtained in the same manner as in Example 3B, except that the addition amount of the lignin derivative and the addition amount of the cashew-modified phenol resin were changed as shown in Table 3.
  • Example 6B A rubber composition was obtained in the same manner as in Example 1B, except that the addition of the tall-modified phenol resin was omitted and the lignin derivative was changed to 100 parts by mass.
  • Example 7B A rubber composition was obtained in the same manner as in Example 3B, except that silica was added as a filler and the addition amount of carbon black was changed as shown in Table 1.
  • Example 8B A rubber composition was obtained in the same manner as in Example 6B, except that the lignin derivative (Lignol Lignin (Powder): manufactured by Lignol) was used as it was.
  • the lignin derivative Lignol Lignin (Powder): manufactured by Lignol
  • Example 9B A rubber composition was obtained in the same manner as in Example 3B, except that the lignin derivative (Lignol Lignin (Powder): manufactured by Lignol) was used as it was.
  • the lignin derivative Lignol Lignin (Powder): manufactured by Lignol
  • Example 10B A rubber composition was obtained in the same manner as in Example 6B, except that hexamethylenetetramine was not used.
  • Example 11B Biomass decomposition process 300 g of cedar chips (absolutely dry amount) and 1600 g of pure water were introduced into a rotary autoclave having a capacity of 2.4 L. Then, while the contents were stirred at a rotation speed of 300 rpm, the cedar chips were decomposed by processing at a processing temperature of 300 ° C. and a processing pressure of 9 MPa for 180 minutes.
  • the decomposition product was filtered and washed with pure water to separate a water-insoluble portion.
  • This water-insoluble part was immersed in acetone and then filtered to recover the acetone-soluble part.
  • acetone was distilled off from the acetone soluble part to obtain a lignin derivative.
  • Example 12B A rubber composition was obtained in the same manner as in Example 11B except that the addition of the cashew-modified phenol resin was omitted and the lignin derivative was changed to 100 parts by mass.
  • Example 2B A rubber composition was obtained in the same manner as in Example 11B except that the addition of the lignin derivative and the addition of the cashew-modified phenol resin were omitted, and 100 parts by mass of the novolac type phenol resin was added.
  • the length of the test piece was 22 mm, the width was 10 mm, the heating rate was 5 ° C./min, the strain was 2%, and the measurement frequency was 1 Hz.
  • the cured products of the rubber compositions obtained in Examples 1B to 12B had the storage elastic modulus E ′ of the cured product of the rubber composition and the tensile strength at break by adding the lignin derivative. It was found that both stresses can be increased.
  • the reciprocal of the loss tangent tan ⁇ at 60 ° C. can be increased as compared with the case where the resin is not added, and the hysteresis loss of the cured product of the rubber composition can be reduced. It was recognized that
  • the number average molecular weight of the soluble component in the lignin derivatives used in Examples 1B to 12B was in the range of 300 to 2000.
  • the softening point of the soluble component in the lignin derivatives used in Examples 1B to 12B was 100 to 200 ° C.
  • the content of acetone-soluble components (acetone solubility) in the lignin derivatives used in Examples 1B to 12B was 80% by mass or more.
  • Example 13B to 16B the same lignin derivative as in Example 1B was used.
  • Example 17B the same lignin derivative as in Example 8B was used.
  • Example 18B the same lignin derivative as in Example 11B was used.
  • Comparative Example 5B a lignin derivative obtained by using the following method was used. 300 g of cedar chips (absolute dry amount) and 1600 g of pure water were introduced into a rotary autoclave having a capacity of 2.4 L. Then, while the contents were stirred at a rotation speed of 300 rpm, the cedar chips were decomposed by processing at a processing temperature of 300 ° C. and a processing pressure of 9 MPa for 60 minutes.
  • the decomposition product was filtered and washed with pure water to separate a water-insoluble portion.
  • This water-insoluble part was used as a lignin derivative.
  • the addition amount of each component was set so as to have the composition shown in Table 4, and the lignin resin compositions of Examples 13B to 18B and Comparative Examples 4B and 5B were prepared.
  • the cured products of the molding materials of Examples 13B to 18B can increase both the elastic modulus and the mechanical strength by adding the lignin derivative. It was also recognized that the mechanical strength in a heat resistant environment could be increased.
  • a lignin derivative having a predetermined number average molecular weight and a soluble component (soluble component) in a polar organic solvent an excellent low hysteresis loss property, elastic modulus or tensile property can be obtained.
  • a lignin resin composition, a rubber composition or a molding material can be obtained.
  • the lignin resin composition, rubber composition, or molding material which has the said more outstanding characteristic can be obtained by using the component which has heat melting property as said soluble component.
  • the obtained lignin resin composition, rubber composition, or molding material exhibits excellent low hysteresis loss, and is excellent in the balance of elastic modulus, moldability, and tensile properties. Therefore, the present invention has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 バイオマスより抽出される、ゴム補強用または成形材料用に用いられるリグニン誘導体を提供する。かかるリグニン誘導体は、数平均分子量が300~2000であり、極性有機溶媒に可溶な成分を80質量%以上の量で含んでいることを特徴とする。このようなリグニン誘導体を含ませることにより、優れた低ヒステリシスロス性、弾性率または引張特性を有するリグニン樹脂組成物、ゴム組成物または成形材料を得ることができる。また、上記可溶成分として、熱溶融性を有する成分を用いることにより、より優れた前記特性を有するリグニン樹脂組成物、ゴム組成物または成形材料を得ることができる。

Description

リグニン誘導体、リグニン樹脂組成物、ゴム組成物および成形材料
 本発明は、リグニン誘導体、リグニン樹脂組成物、ゴム組成物および成形材料に関する。
 近年、植物又は植物由来の加工品等のバイオマスを利用する技術や、バイオマスを、石油由来の化学品、樹脂製品等に転換する技術の開発が求められている。例えば、樹皮、間伐材、建築廃材等の木質系廃材などは、これまで、その多くが廃棄処分されている。しかしながら、地球環境保護が重要課題になりつつあり、その観点から、木質系廃材の再利用、リサイクルが検討され始めている。
 一般的な木質の主要成分は、セルロース、ヘミセルロースおよびリグニンである。このうち、リグニンは、木質に約30%の割合で含まれており、芳香環を豊富に含む構造を有しているため、芳香族樹脂原料として利用が可能である。現在、種々の方法で木質等のバイオマスから比較的低分子量のリグニン(リグニン誘導体)を取り出し(抽出し)、樹脂原料として利用した樹脂組成物およびタイヤ等が検討されている(例えば、特許文献1、2参照。)。
 リグニン誘導体の抽出方法としては、以下のような方法が挙げられる。例えば、パルプ製造時、またはバイオマスからバイオ燃料やバイオマテリアルを取り出す際の脱リグニン処理、同様にバイオマスからバイオ燃料やバイオマテリアルを取り出す際の糖化処理後の残さ及びバガスなどからの溶媒抽出処理、機械的処理による脱リグニン処理、または、高温高圧水処理、水蒸気爆砕処理やオルガノソルブプロセスによるリグニン抽出処理等が挙げられる。
 上記のようにして得られたリグニン誘導体は、フェノール性水酸基やアルコール性水酸基を豊富に含む極性の高い構造を有している。そのため、リグニン誘導体を粘着性付与剤および酸化防止剤として利用した組成物およびタイヤが検討されている。(例えば、特許文献1参照)
 一方、リグニン誘導体は、ゴム補強材としての利用も期待されている。リグニン誘導体のゴム補強効果としては、ゴムの弾性率向上、ヒステリシスロスの低減、機械的強度の向上等が挙げられる。これらの特性はそれぞれゴム部品の剛性、低発熱性、機械的強度の向上につながる。
 また、例えば、特許文献2では、水酸化ナトリウムと硫化ナトリウムとを含む黒液にリグニンを溶解させ、該リグニンが溶解した黒液から粒子状のリグニン誘導体を回収し、ゴム組成物に添加するための充填材として利用している。しかしながら、この場合、かかるリグニン誘導体は、充填材としての特性が十分でなく、ゴム組成物の剛性や機械的強度の低下を引き起こす。
 他に、特許文献3では、フェノールと濃硫酸とを用いてバイオマスを処理することにより、リグニンにフェノールが付加されたリグノフェノールを生成し、ゴム補強樹脂として利用することが開示されている。しかしながら、種々のリグノフェノール誘導体を用いた系が示されているものの、石油由来成分であるフェノール類を多く含むうえに、剛性などのゴム補強効果も十分でない。
特表2012-229330号公報 特表2011-522085号公報 特開2008-285626号公報
 本発明の目的は、所定の数平均分子量であり、極性有機溶媒に可溶な成分(可溶成分)を含むことにより、優れた低ヒステリシスロス性、弾性率または引張特性を付与することができるゴム補強用または成形材料用のリグニン誘導体を提供することにある。特に、可溶成分として、熱溶融性(軟化点が80~160℃)を有する成分を用いることにより、より優れた前記特性を付与することができるゴム補強用または成形材料用のリグニン誘導体を提供することにある。また、かかるリグニン誘導体を含むリグニン樹脂組成物、ゴム組成物および成形材料を提供することにある。
 このような目的は、下記(1)~(16)の本発明により達成される。
 (1) バイオマスより抽出され、ゴム補強用または成形材料用に用いられるリグニン誘導体であって、
 当該リグニン誘導体は、数平均分子量が300~2000であり、極性有機溶媒に可溶な成分を80質量%以上の量で含んでいることを特徴とするリグニン誘導体。
 (2) 前記極性有機溶媒は、アセトンである上記(1)に記載のリグニン誘導体。
 (3) 当該リグニン誘導体は、前記成分を95質量%以上の量で含んでいる上記(1)または(2)に記載のリグニン誘導体。
 (4) 前記成分の数平均分子量は、300~750である上記(1)ないし(3)のいずれかに記載のリグニン誘導体。
 (5) 前記成分の軟化温度は、80~160℃である上記(1)ないし(4)のいずれかに記載のリグニン誘導体。
 (6) 当該リグニン誘導体は、有機溶媒を含む薬剤を用いたオルガノソルブプロセスによって、バイオマスを蒸解することにより抽出される上記(1)ないし(5)のいずれかに記載のリグニン誘導体。
 (7) 前記有機溶媒は、アルコール類、ケトン類およびエーテル類のうちの少なくとも1種を含む上記(6)に記載のリグニン誘導体。
 (8) 前記有機溶媒は、低級アルコールを含む上記(6)または(7)に記載のリグニン誘導体。
 (9) 前記有機溶媒は、低級アルコールを含み、
 前記他の有機溶媒は、アセトンを含む上記(8)に記載のリグニン誘導体。
 (10) 上記(1)ないし(9)のいずれかに記載のリグニン誘導体と、樹脂材料とを含むことを特徴とするリグニン樹脂組成物。
 (11) 前記樹脂材料は、フェノール系樹脂を含む上記(10)に記載のリグニン樹脂組成物。
 (12) 前記フェノール系樹脂は、カシュー変性フェノール樹脂、トール変性フェノール樹脂、アルキル変性フェノール樹脂およびカシュー樹脂のうちの少なくとも1種を含む上記(11)に記載のリグニン樹脂組成物。
 (13) 上記(1)ないし(9)のいずれかに記載のリグニン誘導体と、ゴム材料とを含むことを特徴とするゴム組成物。
 (14) 前記ゴム材料は、天然ゴム、ブタジエンゴムおよびスチレンブタジエンゴムのうちの少なくとも1種を含む上記(13)に記載のゴム組成物。
 (15) 架橋剤、および/または充填剤をさらに含む上記(13)または(14)に記載のゴム組成物。
 (16) 上記(1)ないし(9)のいずれかに記載のリグニン誘導体と、樹脂材料とを含むことを特徴とする成形材料。
 本発明によれば、所定の数平均分子量であり、極性有機溶媒に可溶な成分(可溶成分)を含むリグニン誘導体を含ませることにより、優れた低ヒステリシスロス性、弾性率または引張特性を有するリグニン樹脂組成物、ゴム組成物または成形材料を得ることができる。また、上記可溶成分として、熱溶融性を有する成分を用いることにより、より優れた前記特性を有するリグニン樹脂組成物、ゴム組成物または成形材料を得ることができる。特に、フェノール系樹脂を含むことにより、得られるリグニン樹脂組成物、ゴム組成物または成形材料は、優れた低ヒステリシスロス性を示し、かつ弾性率、成形性、引張特性のバランスに優れる。
 以下、本発明のリグニン誘導体、リグニン誘導体の製造方法、リグニン樹脂組成物、ゴム組成物および成形材料について好適実施形態に基づいて詳細に説明する。
 本発明のリグニン誘導体は、種々の方法で得られたリグニン誘導体成分の中でも、所定の数平均分子量であり、極性有機溶媒に可溶な成分(可溶成分)を含んでいる。かかるリグニン誘導体とゴム材料とを混合することにより、ゴム組成物を調製することができ、また、かかるリグニン誘導体と樹脂材料とを混合することにより、リグニン樹脂組成物または成形材料を調製することができる。
 特に、本発明では、リグニン誘導体が、極性有機溶媒に可溶な成分を80質量%以上の量で含んでいることが重要である。
 以下、ゴム補強用または成形材料用に用いられる本発明のリグニン誘導体について説明する。
 <リグニン誘導体>
 まず、リグニン誘導体について説明する。リグニンは、セルロースおよびヘミセルロースとともに、植物体の骨格を形成する主要成分であり、かつ、自然界に最も豊富に存在する物質の1つである。
 リグニン誘導体は、フェノール誘導体を単位構造とする化合物である。この単位構造は、化学的および生物学的に安定な炭素-炭素結合や炭素-酸素-炭素結合を有するため、化学的な劣化や生物的分解を受け難い。このため、リグニン誘導体は、ゴム組成物や成形材料に添加するための樹脂原料として有用とされる。
 なお、本明細書では、バイオマスに含まれる高分子量のリグニンのことを単に「リグニン」といい、このリグニンから誘導される相対的に低分子量のリグニンのことを「リグニン誘導体」という。また、本明細書におけるバイオマスとは、リグニンを含有する植物または植物の加工品であり、植物としては、例えば、ブナ、白樺、ナラのような広葉樹、杉、松、桧のような針葉樹、竹、稲わらのようなイネ科植物、椰子殻等が挙げられる。
 リグニン誘導体の具体例としては、下記式(1)で表わされるグアイアシルプロパン構造、下記式(2)で表わされるシリンギルプロパン構造、下記式(3)で表わされる4-ヒドロキシフェニルプロパン構造等が挙げられる。なお、針葉樹類からは主にグアイアシルプロパン構造が、広葉樹類からは主にグアイアシルプロパン構造およびシリンギルプロパン構造が、草本類からは主にグアイアシルプロパン構造、シリンギルプロパン構造および4-ヒドロキシフェニルプロパン構造がそれぞれ抽出される。
Figure JPOXMLDOC01-appb-C000001
 また、本発明に係るリグニン誘導体は、水酸基に対して芳香環のオルト位およびパラ位の少なくとも一方が無置換になっているのが好ましい。このようなリグニン誘導体は、芳香環への親電子置換反応により硬化剤が作用する反応サイトを多く含み、かつ、水酸基での反応において立体障害が低減するため、反応性に優れる。一方、水酸基に対して芳香環のオルト位およびパラ位が無置換である部分を多く持つフェノール系樹脂を含むリグニン樹脂組成物は、フェノール系樹脂の反応サイトがあるため十分な反応性を持つ。
 なお、リグニン誘導体は、上記基本構造の他、上記基本構造に官能基を導入したリグニン二次誘導体であってもよい。
 リグニン二次誘導体が有する官能基としては、特に限定されないが、例えば、同種の官能基と反応し得る官能基、または異なる官能基と反応し得る官能基が好適である。具体的には、エポキシ基、メチロール基の他、炭素-炭素不飽和結合を有するビニル基、エチニル基、マレイミド基、シアネート基、イソシアネート基等が挙げられる。このうち、リグニン誘導体にメチロール基を導入した(メチロール化した)リグニン二次誘導体が好ましく用いられる。このようなリグニン二次誘導体は、メチロール基同士の自己縮合反応により自己架橋が生じるとともに、下記架橋剤中のアルコキシメチル基や水酸基に対してより架橋する。その結果、特に均質で剛直な骨格を有し、耐溶剤性に優れた硬化物が得られる。
 ここで、本発明に係るリグニン誘導体は、種々の方法で得られたリグニン誘導体成分の中でも、所定の数平均分子量であり、極性有機溶媒に可溶な成分を含むリグニン誘導体である。このようなリグニン誘導体は、ゴム材料と混合されることにより、ゴム組成物に対して優れた弾性率および引張特性を付与することができる。すなわち、ゴム製品を製造するのに用いられるゴム組成物は、ゴム材料(原料ゴム)の他に、様々な目的の添加剤を含んでいる。これらの添加剤の1つとして、補強材がある。補強材を添加することにより、ゴム組成物に硬さ、引張強さ、耐摩耗性等を付与することができる。したがって、本発明に係るリグニン誘導体をゴム組成物の補強材として用いることで、優れた弾性率および引張特性を有するゴム組成物を調製することができる。また本発明に係るリグニン誘導体およびゴム材料に、さらにフェノール樹脂を含むことで、低ヒステリシスロス性、ゴム弾性、引張特性のバランスに優れたゴム組成物を調整することができる。
 また、成形品を製造するのに用いられる成形材料は、樹脂材料の他に、様々な目的の添加剤を含んでいる。この添加剤として本発明に係るリグニン誘導体を用いることにより、優れた弾性率および曲げ特性を有する成形材料を調製することができる。
 このようなリグニン誘導体は、バイオマスを分解して得られるのが好ましい。バイオマスは光合成の過程で大気中の二酸化炭素を取り込み固定化した物質であることから、バイオマスは大気中の二酸化炭素の増加抑制に寄与している。そのため、バイオマスを工業的に利用することによって、地球温暖化の抑制に寄与することができる。バイオマスとしては、例えば、リグノセルロース系バイオマスが挙げられる。リグノセルロース系バイオマスとしては、リグニンを含有する植物の葉、樹皮、枝及び木材、並びにこれらの加工品等が挙げられる。リグニンを含有する植物としては、上述の広葉樹、針葉樹、及びイネ科植物等が挙げられる。分解方法(抽出方法)としては、薬品処理する方法(例えば、有機溶媒を含む薬剤を用いたオルガノソルブプロセスによる方法)、加水分解処理する方法、水蒸気爆砕法、超臨界水処理法、亜臨界水処理法、機械的に処理する方法、硫酸クレゾール法、パルプ製造法等が挙げられる。環境負荷の観点からは、水蒸気爆砕法、亜臨界水処理法、機械的に処理する方法が好ましい。コストの観点からは、パルプ製造法、バイオマス利用の副生成物を用いることが好ましい。リグニン誘導体は、例えば、バイオマスを、溶媒存在下で150~400℃、1~40MPa、8時間以下で分解処理することにより調製できる。また、リグニン誘導体は、特開2009-084320号公報及び特開2012-201828号公報等に開示された方法で調製することもできる。
 また、リグニン誘導体は、天然物であるバイオマスから抽出されたものであるため、様々な化合物の複合物である。このため、それらの化合物の全ての化学構造を具体的に特定することはほぼ不可能である。しかしながら、本発明者らは、所定の特性を示すリグニン誘導体を用いることで、優れた低ヒステリシスロス性、弾性率または引張特性を有するリグニン樹脂組成物、ゴム組成物または成形材料を得ることができることを見出した。言い換えると、所定の特性を示すリグニン誘導体を用いることにより、上記効果を得られるのであって、リグニン誘導体を構成する化合物の全ての化学構造を特定することは、本発明者は意味がないと考える。かかる所定の特性を示すリグニン誘導体は、上述した種々の方法により得ることが可能であるが、その中でも、特に、オルガノソルブプロセスを用いることにより、比較的簡便に、かつ高い収率で得られる。
 また、上述したように、本発明に係るリグニン誘導体は、極性有機溶媒に可溶な成分(以下、単に「可溶成分」という)を含んでいる。
 本発明では、リグニン誘導体中の可溶成分の数平均分子量が、300~2000である。なお、可溶成分の数平均分子量は、リグニン誘導体をゲル浸透クロマトグラフィー(GPC)分析により測定されたポリスチレン換算の数平均分子量である。このような数平均分子量の可溶成分は、樹脂材料との反応性に優れる。そのため、このようなリグニン誘導体と樹脂材料とを混合してリグニン樹脂組成物を調製したときには、混合する条件(温度、圧力、混合時間等)を調整することにより、リグニン樹脂組成物の使用目的に応じて、その分子量を所望の範囲に調整し易くなる。例えば、このようなリグニン樹脂組成物を含むゴム組成物は、そのゴム補強特性を向上させることができる。
 また、可溶成分の数平均分子量は、300~1000程度であるのが好ましく、300~750程度であるのがより好ましい。可溶成分の数平均分子量が上記範囲内であれば、樹脂材料との反応性がより向上し、リグニン樹脂組成物の分子量をより容易に調整することができる。
 なお、極性有機溶媒としては、例えば、メタノール、エタノールのような低級アルコール類、フェノール、クレゾールのようなフェノール類、メチルエチルケトン、アセトンのようなケトン類、テトラヒドロフラン、ジオキサンのような環状エーテル類、アセトニトリルのようなニトリル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、n-メチルピロリドンのようなアミド類、塩化メチレン、クロロホルムのようなハロゲン化アルキル類、ジメチルスルホキシド(DMSO)等が挙げられる。これらの極性有機溶媒の中でも、リグニン誘導体中の可溶成分は、メタノール、エタノール等の低級アルコール、メチルエチルケトン、アセトン等のケトン類に可溶であるのが好ましく、アセトンに可溶であるのがより好ましい。リグニン誘導体は、低級アルコールやケトン類等に溶解し難い。そのため、比較的高分子量のリグニン誘導体は、これらの極性有機溶媒に溶解するのが困難となる。したがって、これらの極性有機溶媒に溶解するリグニン誘導体の可溶成分は、十分に小さい分子量を有する。特に、アセトンに可溶するリグニン誘導体の可溶成分は、より確実に上述した所定の範囲内の分子量を有する。
 ここで、上記ゲル浸透クロマトグラフィー分析によって上記可溶成分の数平均分子量を測定する手順の一例について説明する。
 まず、リグニン誘導体を上記極性有機溶媒に溶解させ、不溶成分を除去した後、濃縮、乾燥させることにより、可溶成分を80質量%以上の量(好ましくは、95質量%以上の量)で含むリグニン誘導体を準備する。このリグニン誘導体をゲル浸透クロマトグラフィーの測定に用いられる溶媒に溶解させ、測定サンプルを調製する。このときに用いられる溶媒は、リグニン誘導体を溶解し得る溶媒であれば、特に限定されないが、例えば、上記の各種有機溶媒を用いることができる。なお、ゲル浸透クロマトグラフィーの測定精度の観点から、テトラヒドロフランが好ましい。
 次に、GPCシステム「HLC-8320GPC(東ソー製)」に、スチレン系ポリマー充填剤を充填した有機系汎用カラムである「TSKgelGMHXL(東ソー製)」、および「G2000HXL(東ソー製)」を直列に接続する。
 このGPCシステムに、前記の測定サンプルを200μL注入し、40℃において、溶離液のテトラヒドロフランを1.0mL/minで展開し、示差屈折率(RI)および紫外吸光度(UV)を利用して保持時間を測定する。一方、別に作製しておいた標準ポリスチレンの保持時間と分子量との関係を示した検量線から、前記のリグニン誘導体の数平均分子量を算出することができる。
 検量線を作成するために使用する標準ポリスチレンとしては、特に限定されないが、例えば、数平均分子量が427,000、190,000、96,400、37,900、18,100、10,200、5,970、2,630、1,050および500の標準ポリスチレン(東ソー製)を用いることができる。
 また、本発明に係るリグニン誘導体は、上記可溶成分を80質量%以上の量で含んでいる。このようなリグニン誘導体は、その分子量を十分に低くすることができる。そのため、リグニン誘導体とゴム材料とを混合してゴム組成物を調製する際、リグニン誘導体のゴム材料への分散性を高めることができる。このため、均質なゴム組成物を調製することができる。同様に、このようなリグニン誘導体は、樹脂材料と混合して成形材料を調製する際、リグニン誘導体の樹脂材料への分散性を高めることができる。このため、均質な成形材料を調製することができる。
 また、リグニン誘導体は、可溶成分を90質量%以上の量で含んでいるのが好ましく、95質量%以上の量で含んでいるのがより好ましい。これにより、上述した効果がより顕著となる。
 なお、リグニン誘導体中の可溶成分の量は、例えば、以下の方法を用いて計算することができる。まず、700gのリグニン誘導体に、質量比10倍量の極性有機溶媒を加えて撹拌し、12時間以上浸漬した後、固体残渣を除去(分離)して溶液を得る。この溶液を濃縮して、50℃、2時間以上減圧乾燥して、測定サンプルを得る。この測定サンプルの重量と極性有機溶媒に浸漬する前のリグニン誘導体の重量から、可溶成分の含有量を計算することができる。
 なお、リグニン誘導体中に極性有機溶媒に不溶な成分(以下、単に「不溶成分」という)が含まれている場合、この不溶成分は、可溶成分に比べて分子量が大きい成分である。本発明のリグニン誘導体は、上述したような比較的低分子量の可溶成分を多く含むため、このような不溶成分を含んでいる場合でも、成形加工時に高い流動特性を有し、また、樹脂材料やゴム材料への高い分散性を有する。そのため、このようなリグニン樹脂組成物を含むゴム組成物は、そのゴム補強特性を向上させることができる。
 また、不溶成分を含むリグニン誘導体を用いることにより、リグニン樹脂組成物、ゴム組成物または成形材料のヒステリシスロス性をより低減することができるとともに、その機械的強度をより向上させることができる。このような効果は、リグニン誘導体中に、上述した低分子量の可溶成分と、高分子量の不溶成分とを含むことにより顕著に発現する。
 また、リグニン誘導体は、上記不溶成分を0.1~10質量%程度含んでいるのが好ましく、1~5質量%程度含んでいるのがより好ましい。リグニン誘導体中の不溶成分の含有量が上記範囲内であれば、リグニン誘導体の成形性を維持しつつ、リグニン樹脂組成物、ゴム組成物または成形材料により優れた低ヒステリシスロス性および機械的強度を付与することができる。
 また、本発明に係るリグニン誘導体中の可溶成分の軟化点は、200℃以下であるのが好ましく、180℃以下であるのがより好ましく、80~160℃であるのがさらに好ましい。軟化点が前記上限値を上回ると、リグニン誘導体と混合される樹脂材料またはゴム材料の組成によっては、リグニン誘導体の熱溶融性および流動性が低下し、樹脂材料またはゴム材料中への分散性が低下するおそれがある。一方、軟化点が前記下限値を下回ると、リグニン誘導体と混合される樹脂材料の組成によっては、リグニン誘導体の熱溶融性および流動性が高くなり過ぎて、ゴム組成物または成形材料の成形時にバリが発生するおそれがある。このため、成形材料を製造する際、リグニン誘導体のハンドリング性が低下し、製造時のロスが大きくなるおそれがある。また、リグニン誘導体の熱溶融性および流動性が高くなり過ぎて、室温でのブロッキングにより固まってしまい、保存性が低下するおそれがある。
 なお、軟化点を測定する方法は、JIS K 2207に準じて、環球式軟化点試験機(メルテック(株)製ASP-MG2型)を用いることができる。
 また、本発明に係るリグニン誘導体は、カルボキシル基を有しても良い。前記カルボキシル基を有する場合は、後述する架橋剤と架橋させることができる。すなわち、リグニン誘導体中に架橋点が増加することにより架橋密度を向上させることができるため、耐溶剤性に優れる。また、架橋剤の触媒として作用することもあり、リグニン誘導体に対する架橋剤の架橋反応を促進させることができ、耐溶剤性や硬化速度を向上させることができる。
 なお、上述したリグニン誘導体中がカルボキシル基を有する場合は、そのカルボキシル基は、13C-NMR分析に供されたとき、172~174ppmのピークの吸収の有無によって確認することができる。
 <リグニン誘導体の製造方法>
 次に、前述したリグニン誘導体の製造方法について説明する。
 リグニン誘導体は、その製造方法は特に限定されないが、いくつかの例について以下に説明する。
 まず、バイオマスの高温高圧処理によるリグニン誘導体の製造方法について述べる。
 <リグニン誘導体製造法1 高温高圧処理法>
 本発明の樹脂組成物を製造する方法は、[1]バイオマスを溶媒存在下におき、これらを高温高圧下で分解処理する工程と、[2-a]処理物中の固形成分にリグニン誘導体が含まれる場合、固形成分を極性溶媒で処理し、極性溶媒に対する不溶分と溶解液とを分離する工程及び/または[2-b]処理物中の液体成分にリグニン誘導体が含まれる場合、リグニン誘導体を含む液体成分(溶解液)を固形成分から分離する工程と、[3][2-a]及び/または[2-b]の溶解液を乾燥させ、溶質(リグニン誘導体)を回収する工程と、必要に応じて[4]回収した溶質とその他の樹脂成分(樹脂材料)とを混合し、リグニン樹脂組成物を得る工程と、を有する。以下、各工程について説明する。
 [1]
 まず、バイオマスを溶媒存在下におき、高温高圧下で分解処理する。バイオマスとは、前述したように植物または植物の加工品であるが、この植物としては、例えば、ブナ、白樺、ナラのような広葉樹、スギ、マツ、ヒノキのような針葉樹、竹、稲わらのようなイネ科植物、椰子殻等が挙げられる。
 そして、分解処理にあたり、バイオマスをブロック状、チップ状、粉末状等に粉砕しておくことが好ましい。その場合、粉砕後の大きさが100μm~1cm程度であるのが好ましく、200~1000μm程度であるのがより好ましい。このような大きさのバイオマスを用いることにより、液中でのバイオマスの分散性を高めるとともに、バイオマスの分解処理を効率よく行うことができる。
 本工程において用いる溶媒としては、例えば、水の他、メタノール、エタノールのようなアルコール類、フェノール、クレゾールのようなフェノール類、アセトン、メチルエチルケトンのようなケトン類、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、テトラヒドロフランのようなエーテル類、アセトニトリルのようなニトリル類、N,N-ジメチルホルムアミドのようなアミド類等が挙げられ、これらのうちの1種または2種以上の混合溶媒が用いられる。
 また、溶媒としては特に水が好ましく用いられる。水としては、例えば、超純水、純水、蒸留水、イオン交換水等が用いられる。水を用いることにより、リグニン誘導体の意図しない変性が抑制されるとともに、分解処理に伴って発生する廃液が水性であることから、環境負荷を最小限に抑えることができる。溶媒の使用量としては、バイオマスに対して多いほどよいが、好ましくはバイオマスに対して1~20質量倍程度であるのが好ましく、2~10質量倍程度であるのがより好ましい。
 次に、溶媒存在下においたバイオマスを高温高圧下で分解処理する。これにより、バイオマスは、リグニン、セルロース、ヘミセルロース、およびその他のそれらの分解物や反応物等に分解される。
 高温高圧環境の生成においては、高温高圧に耐えうる容器であれば特に制限はないが、オートクレーブのような耐圧容器を用いることができる。また、この耐圧容器としては、加熱手段や撹拌手段を備えているものが好ましく、高温高圧下でバイオマスを撹拌する等の機械的エネルギーを加えられることが好ましい。また、必要に応じて容器内の温度など圧力に影響を与える要因とは独立に加圧する手段を備えていてもよい。かかる手段としては、例えば、容器内に窒素ガス、アルゴンガス等の不活性ガスを導入する手段等が挙げられる。
 分解処理における条件は、処理温度が150~400℃であるのが好ましく、180~350℃であるのがより好ましく、220~320℃であるのがさらに好ましい。処理温度が前記範囲内にあれば、分解後に得られるリグニン誘導体の分子量を最適化することができる。これにより、リグニン樹脂組成物、ゴム組成物または成形材料の成形性と硬化後の耐溶剤性とをより高度に両立させることができる。
 また、分解処理における処理時間は、処理に用いる装置により、適切な処理時間を用いてもよい。例えば用いる装置がオートクレー部であるならば、480分以下であるのが好ましく、15~360分であるのがより好ましい。処理時間が480分以上の場合には、熱エネルギーコストがかかってしまうため、生産コストが上がってしまう。処理時間が15分より短くても問題はないが、装置によっては伝熱が不十分でバイオマスの分解が不十分なときがある。
 さらに、分解処理における圧力は、1~40MPaであるのが好ましく、1.5~25MPaであるのがより好ましく、3~20MPaであるのがさらに好ましい。圧力が前記範囲内であれば、バイオマスの分解効率を画段差部に高めることができ、その結果、処理時間の短縮化を図ることができる。
 なお、分解工程の前処理として、バイオマスと前記溶媒とを十分に撹拌し、両者をなじませる工程を行うのが好ましい。これにより、バイオマスの分解を特に最適化することができる。撹拌温度は、0~150℃程度であるのが好ましく、10~130℃程度であるのがより好ましい。また、撹拌時間は、1~120分程度であるのが好ましく、5~60分程度であるのがより好ましい。さらに、撹拌方法としては、ボールミル、ビーズミル等の各種ミル、撹拌翼を備えた撹拌機等を用いた方法、ホモジナイザー、ジェットポンプなどによる水流撹拌を用いた方法等が挙げられる。
 また、溶媒中には、必要に応じて、分解処理を促進する触媒、酸化剤を添加するようにしてもよい。この触媒としては、例えば、炭酸ナトリウムのような無機塩基類、酢酸、ギ酸のような無機酸類等が挙げられ、酸化剤としては、過酸化水素等が挙げられる。これらの触媒および酸化剤の添加量は、水溶液中の濃度で0.1~10質量%程度であるのが好ましく、0.5~5質量%程度であるのがより好ましい。
 また、分解処理において用いる溶媒は、亜臨界または超臨界の状態(条件)で用いられるのが好ましい。亜臨界または超臨界の状態にある溶媒は、触媒等の特別な添加成分なしにバイオマスの分解処理を促進することができる。このため、煩雑な分離プロセスを用いずに、バイオマスを短時間で分解処理することが可能となり、リグニン誘導体の製造コストの低減および製造工程の簡略化を図ることができる。
 一例として、水の臨界温度は約374℃、臨界圧力は、約22.1MPaである。
 [2-a]
 耐圧容器内の処理物を濾過する。そして濾液を除去し、濾別した固形成分を回収する。そして、回収した固形成分を、リグニン誘導体が可溶な溶媒に浸漬する。この溶媒に浸漬した固形成分をさらに濾過することにより、溶媒に溶解する成分(可溶分)と溶媒に不溶な成分(不溶分)とに分離する。
 リグニンが可溶な溶媒としては、各種極性有機溶媒が用いられ、特に、メタノール、エタノール等の低級アルコール類、アセトン、メチルエチルケトンのようなケトン類を含むものが好ましく用いられる。これらの極性有機溶媒を用いることにより、回収した固形成分から、極性有機溶媒に溶解するリグニン誘導体とこの極性有機溶媒に不溶なリグニン誘導体とを分離して抽出することができる。
 浸漬時間は、特に限定されないが、1~48時間程度であるのが好ましく、2~30時間程度であるのがより好ましい。また、浸漬時に溶媒の沸点以下で加温することも可能である。
 [2-b]
 耐圧容器内の処理物を濾過する。そして固形成分を除去し、濾別した濾液を回収する。
 [3]
 次に、分離工程により得られた濾液(溶解液)からリグニン誘導体が可溶な溶媒を留去し、乾燥させた溶質(リグニン誘導体)を回収する。
 分解処理に2種類以上の溶媒を用いた場合、濾液(溶解液)には2種類以上の溶媒が含まれている。
 リグニン誘導体が2種類以上の溶媒に対して均一に分散している場合は、まとめて溶媒を留去することが好ましい。
 濾液(溶解液)が、リグニン誘導体を含む層と、リグニン誘導体を含まない層とに相分離している場合は、まず、前記リグニン誘導体を含まない層を分離することにより、リグニン誘導体を含む溶液のみを回収する。次に、回収した溶液から、溶媒を留去するのが好ましい。
 溶媒を留去する方法として、例えば減圧して乾燥する(減圧乾燥)方法が挙げられるが、これに限定されない。減圧乾燥温度は留去する溶媒に合わせた温度にすることが好ましい。分離処理に用いる溶媒は、高沸点のもので210℃以下である。したがって、減圧乾燥温度は40~250℃が好ましく、50~230℃がより好ましい。
 減圧乾燥における時間は、特に限定されないが、0.5~48時間程度であるのが好ましく、1~24時間程度であるのがより好ましい。
 揮発成分量を制御することに有効な減圧乾燥の温度と時間は、乾燥するスケールによって異なる。用いる減圧乾燥機によって最適な温度と時間を選択すればよい。
 減圧乾燥における圧力は、0.1~60kPaが好ましく、0.5~50kPaがより好ましい。
 また、本発明のリグニン誘導体を製造する別な方法としては、前記のパルプ製造等に用いられるバイオマス蒸解プロセスが挙げられる。
 <リグニン誘導体製造法2 蒸解プロセス>
 蒸解プロセスとしては、いくつかの種類が知られており、例えば、クラフト蒸解プロセス、アルカリ蒸解プロセス、サルファイト蒸解プロセス、オルガノソルブプロセス等が挙げられ、各種蒸解プロセスを用いることができる。これらの蒸解プロセスの中でも、有機溶媒を含む薬剤を用いるオルガノソルブプロセスを用いるのが好ましい。
 その理由として、近年のオルガノソルブプロセスを木質に含まれる主要三成分を化学品として利用する動きがある。三成分のトータル利用ができれば、リグニン誘導体の製造コストの低コスト化、安定的な入手が可能になる。また、リグニンをより付加価値の高いゴム補強用または成形材料用の用途に利用することはバイオマスの高付加価値化という観点からも意義が深い。
 また、オルガノソルブプロセスによれば、有機溶媒に含まれる化合物由来の構造で修飾されたリグニン誘導体を得ることもできる。このようなリグニン誘導体は、樹脂材料やゴム材料との相溶性に優れる。したがって、オルガノソルブプロセスにより得られたリグニン誘導体は、樹脂材料やゴム材料に均一に混合することができる。このため、優れた弾性率および引張特性を有するゴム組成物、あるいは、優れた弾性率および機械的強度を有する成形材料が得られる。
 また、このようなリグニン誘導体は、硫黄分がほとんど含まれない。このため、成形材料に用いる場合に、硫黄による成形品の長期信頼性の悪化等の不具合が起きない。また、ゴム組成物に用いる場合に、加硫反応を生じるおそれが少なくなる。これにより、別途行う加硫剤の添加において加硫反応を開始させることができることとなり、加硫剤の添加量に応じて加硫反応の進行度合いを厳密に制御することができる。その結果、ゴム組成物において混練時のゴム粘度の上昇、また、オーバーキュア(過加硫)やアンダーキュア(未加硫)を制御することができ、ゴム特性に優れたゴム組成物を調製することができる。
 本発明に係るリグニン誘導体の硫黄含有率は、0.05質量%未満であるのが好ましく、0.03質量%以下であるのがより好ましい。このようなリグニン誘導体は、前述したように、ゴムと混合された場合でも、加硫反応がほとんど生じないので、加硫剤の添加によって加硫反応をより厳密に制御することができる。
 かかる有機溶媒としては、例えば、メタノール、エタノール、プロパノールのような低級アルコール類、メチルエチルケトン、アセトンのようなケトン類、テトラヒドロフラン、ジオキサンのような環状エーテル類、フェノール、クレゾールのようなフェノール類、酢酸のようなカルボン酸等が挙げられる。これらの中でも、特に低級アルコール類を含む溶液が好ましく用いられ、低級アルコール水溶液がより好ましく用いられる。このような溶液を用いることにより、リグニン誘導体に溶媒が導入されることにより、溶融性や樹脂材料との相溶性が向上する。また、必要以上に低分子量化していないリグニン誘導体を得ることが出来る。そのため、優れた弾性率および引張特性を有するリグニン樹脂組成物、ゴム組成物または成形材料を調製可能なリグニン誘導体が得られる。
 このような薬剤中の有機溶媒の含有量は、特に限定されないものの、10~90質量%程度であるのが好ましく、30~70質量%程度であるのがより好ましい。
 また、この薬剤には、必要に応じて、各種の添加剤が添加されていてもよい。添加剤としては、例えば、水酸化ナトリウム、水酸化カルシウム、水酸化カリウムなどのアルカリ成分、硫酸、塩酸、塩化アルミニウム、アルカリ土類金属塩等が挙げられる。
 また、オルガノソルブプロセスにおける処理温度は60~230℃であり、処理時間10~360分間であるのが好ましい。
 蒸解処理後に得られた黒液等からは、一般のオルガノソルブプロセス同様に、沈殿、液体-固体分離および乾燥により、リグニン誘導体を回収することができる。
 なお、オルガノソルブプロセスの中でも、低級アルコール水溶液を用いるアルセル(Alcell(登録商標))方法が好ましく用いられる。
 また、上述したようなオルガノソルブプロセスにより製造されたリグニン誘導体に対し、必要に応じて改質処理、溶媒抽出処理等の各種追加処理を施すようにしてもよい。
 改質処理としては、例えば、バイオマス蒸解プロセスにより製造されたリグニン誘導体に対して官能基を導入する処理が挙げられる。例えば、導入する官能基を含む化合物をリグニン誘導体に接触させる処理等が挙げられる。
 また、溶媒抽出は、前記工程により製造されたリグニン誘導体を、リグニン誘導体を溶解可能な溶媒に対して溶解させ、その後主に溶媒可溶分を取り出す処理(リグニン誘導体を精製する処理)である。
 溶媒可溶分を取り出す処理としては、例えば溶媒溶解後の固体残渣を濾過して可溶分を濃縮、乾燥すること等が挙げられる。このような溶媒抽出処理を経たリグニン誘導体は、低分子量で熱溶融性に優れるためフェノール系樹脂やゴムに混ざり易く、ゴム補強特性を向上させることができる。また、分子量や物性が均一であるため、均質なゴム組成物や成形材料を調製可能であるという点で有用である。
 なお、低級アルコールを含む薬剤を用いて、バイオマスからオルガノソルブプロセスによりリグニン誘導体を抽出した場合には、アセトンを用いて溶媒抽出処理を行うのがより好ましい。具体的な理由は不明であるが、リグニン誘導体と各溶媒(低級アルコール、アセトン)との分子間相互作用の違いにより、オルガノソルブプロセスにより抽出された段階のリグニン誘導体よりも、より低分子量であり、その分子量および物性が均一なリグニン誘導体を精製することができる。
 <リグニン樹脂組成物>
 次に、本発明のリグニン樹脂組成物について説明する。
 本発明のリグニン樹脂組成物は、リグニン誘導体と、樹脂材料と、を含む。このようなリグニン樹脂組成物とゴム材料とを混合することにより、ゴム弾性率と引張特性に優れたゴム組成物を調製することができる。特にフェノール系樹脂と混合することで、低ヒステリシスロス性、ゴム弾性、引張特性のバランスに優れたゴム組成物を調製することができる。
 (樹脂材料)
 リグニン誘導体と混合される樹脂材料は、特に限定されないが、フェノール系樹脂、エポキシ系樹脂、フラン系樹脂、ユリア系樹脂、メラミン系樹脂等が挙げられる。このうち、フェノール系樹脂が好ましく用いられる。
 リグニン樹脂組成物における樹脂材料の添加量は、リグニン誘導体100質量部に対し、樹脂材料が10~1000質量部程度であるのが好ましく、20~500質量部程度であるのがより好ましい。このような割合で樹脂材料を添加することにより、フェノール系樹脂とリグニン誘導体とをより過不足なく架橋させることができる。
 また、フェノール系樹脂としては、例えば、フェノール類、もしくは、フェノール類と変性化合物とを、アルデヒド類とともに反応させたもの、が挙げられる。このうち、フェノール類としては、例えば、o-クレゾール、m-クレゾール、p-クレゾール等のクレゾール類、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール等のエチルフェノール類、イソプロピルフェノール、ブチルフェノール、p-tert-ブチルフェノール等のブチルフェノール類、p-tert-アミルフェノール、p-オクチルフェノール、p-ノニルフェノール、p-クミルフェノール等の長鎖アルキルフェノール類等が挙げられ、これらのうちの1種または2種以上を混合して用いることができる。
 一方、変性化合物としては、例えば、2つ以上の水酸基を分子内に有するカテコール、ピロガロール、ビスフェノールF、ビスフェノールAのような芳香族構造を有する化合物、水酸基を有するナフトールのような多環芳香族構造を有する化合物、メラミン、テルペン類、フルフラールのようなフラン樹脂、桐油、亜麻仁油、カシューオイル、トール油のような植物由来成分等が挙げられる。なお、カシューオイル等はフェノール構造を有するために、フェノール系樹脂としてカシュー樹脂も含まれる。
 このうち、フェノール系樹脂は、カシュー変性フェノール樹脂、トール変性フェノール樹脂、アルキル変性フェノール樹脂およびカシュー樹脂のうちの少なくとも1種を含むのが好ましい。このようなフェノール系樹脂は、ゴム材料との相溶性に優れていることから、ゴム材料と混合したとき均一に分散し、均質なゴム組成物を調製することができると考えられる。すなわち、均質でかつゴム弾性率が大きいゴム組成物を得ることができる。
 なお、カシュー変性フェノール樹脂としては、例えば、側鎖に不飽和二重結合を有するカルダノールやカルドールを含む天然物であるカシューオイルを用い、これをフェノール類およびアルデヒド類とともに縮合または付加反応させて得られる。また、カシュー変性フェノール樹脂には、ノボラック型とレゾール型があり、いずれも用いられるが、コスト面等を考慮するとノボラック型が好ましく用いられる。
 また、トール変性フェノール樹脂は、トール油により変性したフェノール樹脂である。トール油が有する不飽和脂肪酸の二重結合がフェノール樹脂のフェノール環等と結合した形態や、フェノール樹脂中にトール油が分散混合した形態、あるいは、これらが混合した形態になっていると考えられる。
 また、アルキル変性フェノール樹脂としては、例えば、ビスフェノールA、または、ノニルフェノール、オクチルフェノール、ドデシルフェノールのようなアルキル基を有するフェノール類と、アルデヒド類とを反応させて得られる化合物が挙げられる。
 また、カシュー樹脂としては、例えば、側鎖に不飽和二重結合を有するカルダノールやカルドールを含む天然物であるカシューオイルもしくはその重合物、または、アルデヒド類や糖類で反応させた重合物等が挙げられる。
 なお、フェノール類と変性化合物とを反応させる際には、触媒として、例えば、塩酸、硫酸、リン酸、亜リン酸のような無機酸類、蓚酸、ジエチル硫酸、パラトルエンスルホン酸、有機ホスホン酸のような有機酸類、酢酸亜鉛のような金属塩類等を、1種または2種以上組み合わせて用いることができる。
 このようなフェノール系樹脂の分子量は、特に限定されないが、その数平均分子量が400~5000程度であるのが好ましく、500~3000程度であるのがより好ましい。フェノール系樹脂の数平均分子量を前記範囲内に設定することで、フェノール系樹脂の取り扱い性が良好になる。なお、フェノール系樹脂の数平均分子量が前記下限値を下回ると、フェノール系樹脂の組成によっては、フェノール系樹脂が高粘度な粘凋の物質になったり、固体化しても環境によって固結し易くなるおそれがある。一方、フェノール系樹脂の平均分子量が前記上限値を上回ると、フェノール系樹脂の組成によっては、フェノール系樹脂が溶媒に溶解し難くなったり、配合物との相溶性が低下するおそれがある。
 なお、フェノール系樹脂の数平均分子量は、前述したリグニン誘導体と同様の方法を用いて測定することができる。
 このような樹脂材料とリグニン誘導体とを用いて得られるリグニン樹脂組成物の形態は、特に限定されないが、例えば、粉末状、粒状、ペレット状、ワニス状等が挙げられる。なお、ゴム材料と混合する際の取り扱い性の観点から、リグニン樹脂組成物の形態は、粒状またはペレット状であるのが好ましい。
 また、本発明のゴム組成物は、この他に、後述するような充填剤や架橋剤、その他の成分を含んでいてもよい。
 また、リグニン樹脂組成物中の固形分濃度は、特に制限されないが、一例として、60~98質量%程度とされ、70~95質量%程度が好ましい。
 <リグニン樹脂組成物の製造方法>
 次に、前述したリグニン樹脂組成物の製造方法について説明する。
 リグニン樹脂組成物の製造方法は、特に限定されないが、例えば、混練機に上述した原料を投入し、混練する方法が挙げられる。なお、必要に応じて、任意の原料を予備混合した後、混練するようにしてもよい。また、上述した原料を混練する順序は、特に限定されず、全ての原料を同時に混練してもよく、任意の順序で順次混練するようにしてもよい。
 混練機としては、例えば、ミキサー、ニーダー、ロール等が挙げられる。
 また、混練するときには、必要に応じて、加熱してもよいし、有機溶媒を用いるようにしてもよい。有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセルソルブ、アセトン、メチルエチルケトン、メチルイソブチルケトン、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、N-メチル-2-ピロリドン、キノリン、シクロペンタノン、m-クレゾール、クロロホルム等が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。
 <ゴム組成物>
 次に、本発明のゴム組成物について説明する。
 本発明のゴム組成物は、少なくともゴム材料(原料ゴム)と、前述したリグニン誘導体と、を含む。あるいは、本発明のゴム組成物は、少なくともゴム材料と、前述したリグニン樹脂組成物と、を含む。このようなゴム組成物は、ゴム弾性率と低ヒステリシスロス性とのバランスが良好なものとなる。このようなゴム組成物は、例えば良好な操縦安定性と転がり抵抗の低減とを両立し得るタイヤ用ゴム組成物として有用なものとなる。
 (ゴム材料)
 ゴム材料としては、例えば、各種天然ゴム、各種合成ゴム等が挙げられる。具体的には、天然ゴム(NR)、改質天然ゴム、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)、エチレンプロピレンジエンゴム(EPDM)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)等が挙げられ、これらのうちの1種または2種以上を混合して用いることができる。特に、耐外傷性、耐摩耗性、耐疲労特性および耐屈曲亀裂成長性等の特性に優れることから、天然ゴム(NR)、改質天然ゴム、スチレンブタジエンゴム(SBR)およびブタジエンゴム(BR)のうちから選択される1種以上のゴムが好ましく用いられ、さらに、入手のし易さの点で、天然ゴムおよびブタジエンゴム(BR)のうちの少なくとも1種がより好ましく用いられる。
 スチレンブタジエンゴム(SBR)およびブタジエンゴム(BR)を配合する場合、SBRおよびBRの含有率は、ゴム組成物中でそれぞれ50質量%以下であることが好ましく、30質量%以下であることがより好ましい。SBRおよびBRの含有率が前記上限値以下である場合、ゴム組成物中の石油資源比率を低く抑え、環境への負荷をより小さくすることができる。
 また、本発明のゴム組成物は、アルコキシル基、アルコキシシリル基、エポキシ基、グリシジル基、カルボニル基、エステル基、ヒドロキシ基、アミノ基、およびシラノール基からなる群から選択される少なくとも1種の官能基を含む官能基含有天然ゴム(改質天然ゴム)、ならびに、官能基含有ジエン系ゴムのうちの少なくとも1種を含んでいてもよい。天然ゴムおよびジエン系ゴムがこれらの官能基を含む場合、これらのゴム材料が充填剤の表面と反応または相互作用することにより、ゴム組成物中の充填剤の分散性が良好になる。
 なお、上述した官能基は、ゴム材料の0.001~80モル%程度の割合で含まれているのが好ましく、0.01~50モル%程度の割合で含まれているのがより好ましく、0.02~25モル%程度の割合で含まれているのがさらに好ましい。官能基の含有量が前記範囲内であれば、充填剤の表面と反応または相互作用する効果がより良好に得られるとともに、未加硫ゴム(加硫剤を含まないゴム組成物)の製造時の粘度上昇が抑えられ、加工性が良好となる。
 ゴム材料に上述した官能基を含ませる方法としては、例えば、炭化水素溶媒中で有機リチウム開始剤を用いて重合されたスチレン-ブタジエン共重合体の重合末端に官能基を導入する方法や、天然ゴムあるいはジエン系ゴムをクロルヒドリン法、直接酸化法、過酸化水素法、アルキルヒドロペルオキシド法、過酸法等の方法によりエポキシ化する方法等が挙げられる。
 本発明のゴム組成物では、天然ゴム、改質天然ゴム、スチレンブタジエンゴム(SBR)およびブタジエンゴム(BR)のうちの少なくとも1種がゴム材料の50~100質量%を占めるように、ゴム成分の配合が設定されているのが好ましい。ゴム成分の配合が前記範囲内に設定されると、ゴム弾性率(貯蔵弾性率E’)を高めることができ、かつ、ヒステリシスロス性(60℃付近の損失正接tanδ)を低減させることができる。これにより、例えば良好な操縦安定性と転がり抵抗の低減とを両立し得るタイヤ用のゴム組成物を得ることができる。
 なお、環境負荷を低減させるという観点からは、天然ゴムや改質天然ゴムの割合を高めることが望ましいが、これらにスチレンブタジエンゴム(SBR)やブタジエンゴム(BR)等の他のゴム成分を添加することにより、ゴム組成物の耐摩耗性や耐屈曲亀裂成長性をより高めることができるので、このような観点に基づいてゴム成分を選択すればよい。
 ゴム材料の添加量は、特に限定されないが、リグニン誘導体と樹脂の合計100質量部に対して、100~10000質量部程度であるのが好ましく、200~5000質量部程度であるのがより好ましく、300~2000質量部程度であるのがさらに好ましい。ゴム材料の添加量を前記範囲内に設定することで、ゴム組成物の補強効果を十分に確保しつつ、ゴム組成物の硬度が高くなり過ぎて伸びが小さくなるのを抑制することができる。
 (充填剤)
 また、本発明のゴム組成物は、上述した成分の他に、充填剤を含んでいてもよい。
 充填剤としては、樹脂組成物やゴム組成物において通常用いられるものを採用できる。具体的には、カーボンブラック、シリカ、アルミナおよびセルロースファイバーよりなる群から選択される少なくとも1種が挙げられ、特にシリカおよびカーボンブラックから選択される少なくとも1種が好ましく用いられる。これらの充填剤を用いることにより、ゴム弾性率(貯蔵弾性率E’)を高めるとともに、ヒステリシスロス性(60℃付近の損失正接tanδ)を低減させることができる。
 充填剤の含有量は、ゴム材料100質量部に対して、10~150質量部程度であるのが好ましい。充填剤の含有量を前記下限値以上に設定することで、ゴム組成物のゴム弾性率を高めることができる。一方、充填剤の含有量を前記上限値以下に設定することで、ゴム弾性率が過度に上昇するのを抑制し、ゴム組成物の調製時の加工性を高めるとともに、ゴム組成物中の充填剤の分散性が悪化することによる耐摩耗性や破断伸び等の低下を抑制することができる。また、ゴム組成物のヒステリシスロス性の増大を抑制することができる。
 特に充填剤としてシリカが配合される場合、ゴム材料100質量部に対して、シリカを3~150質量部程度の割合で配合するとともに、シランカップリング剤を、シリカの含有量の1~20質量%程度の割合で配合するのが好ましい。シリカの含有量を前記下限値以上に設定することで、ゴム組成物のゴム弾性率を高めることができる。一方、シリカの含有量を前記上限値以下に設定することで、ゴム弾性率が過度に上昇するのを抑制しつつ、ゴム組成物の調製時の加工性を高めることができる。また、ゴム組成物中の充填剤の分散性が悪化することによる耐摩耗性や破断伸び等の低下を抑制することができる。また、ゴム組成物のヒステリシスロス性の増大を抑制することができる。
 なお、シリカの含有量は、ゴム材料100質量部に対して5~100質量部程度の割合であるのがより好ましく、10~80質量部程度の割合であるのがさらに好ましい。
 シリカとしては、従来ゴム補強用として慣用されているシリカが使用可能であり、例えば、乾式法シリカ、湿式法シリカ、コロイダルシリカ等が挙げられる。特に、シリカの窒素吸着比表面積(N2SA)が20~600m/gであるものが好ましく、40~500m/gであるものがより好ましく、50~450m/gであるものがさらに好ましい。シリカのN2SAが前記下限値以上である場合、ゴム組成物に対する補強効果が大きくなる。一方、シリカのN2SAが前記上限値以下である場合、ゴム組成物中でのシリカの分散性が良好になり、例えば低ヒステリシスロス性に優れたゴム組成物を得ることができる。
 また、充填剤は、上述した構成材料に限定されない。充填剤の構成材料としては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラスのようなケイ酸塩、酸化チタン、アルミナのような酸化物、ケイ酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトのような炭酸塩、酸化亜鉛、酸化マグネシウムのような酸化物、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムのような水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムのような硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムのようなホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素のような窒化物等が挙げられる。そして、充填剤には、これらの材料で構成された粉末や粒子、繊維片等が用いられる。
 この他、炭素繊維のような無機充填剤、木粉、パルプ粉砕粉、布粉砕粉、熱硬化性樹脂硬化物粉、アラミド繊維、タルクのような有機充填剤等も、リグニン樹脂組成物に含まれる充填剤として利用可能である。
 (架橋剤)
 また、本発明のゴム組成物は、上述した成分の他に、架橋剤を含んでいてもよい。
 架橋剤としては、ゴム材料およびリグニン誘導体のいずれか一方または双方と架橋し得るものであれば、特に限定されないが、下記式(4)で表される化合物を含むものが好ましく用いられる。
Figure JPOXMLDOC01-appb-C000002
 [式(4)中のZは、メラミン残基、尿素残基、グリコリル残基、イミダゾリジノン残基および芳香環残基のうちのいずれか1種である。また、mは2~14の整数を表す。また、Rは独立して炭素数1~4のアルキル基または水素原子である。ただし、-CHORは、メラミン残基の窒素原子、尿素残基の1級アミノ基の窒素原子、グリコリル残基の2級アミノ基の窒素原子、イミダゾリジノン残基の2級アミノ基の窒素原子および芳香環残基の芳香環の炭素原子のいずれかに直接結合している。]
 このような化合物を含むゴム組成物は、硬化後の機械的特性に優れるとともに、硬化物の耐久性および外観の向上に寄与する。これは、架橋剤中に含まれる上記式(4)で表される化合物が、多官能性の架橋点を形成し得るため、リグニン誘導体を高密度かつ均一に架橋し、均質で剛直な骨格を形成するからである。剛直な骨格によって硬化物の機械的特性および耐久性(耐煮沸性等)が向上するとともに、膨れや亀裂等の発生が抑制されるため硬化物の外観も向上する。
 また、-CHORは、前述したようにメラミン残基の窒素原子、尿素残基の1級アミノ基の窒素原子、グリコリル残基の2級アミノ基の窒素原子、イミダゾリジノン残基の2級アミノ基の窒素原子および芳香環残基の芳香環の炭素原子のうちのいずれかに直接結合しているが、同一の窒素原子または炭素原子に2つ以上の「-CHOR」が結合している場合、そのうちの少なくとも1つの「-CHOR」が含む「R」はアルキル基であるのが好ましい。これにより、リグニン誘導体(A)を確実に架橋させることができる。
 なお、本明細書においてメラミン残基とは、下記式(A)で表されるメラミン骨格を有する基のことをいう。
Figure JPOXMLDOC01-appb-C000003
 また、本明細書において尿素残基とは、下記式(B)で表される尿素骨格を有する基のことをいう。
Figure JPOXMLDOC01-appb-C000004
 また、本明細書においてグリコリル残基とは、下記式(C)で表されるグリコリル骨格を有する基のことをいう。
Figure JPOXMLDOC01-appb-C000005
 また、本明細書においてイミダゾリジノン残基とは、下記式(D)で表されるイミダゾリジノン骨格を有する基のことをいう。
Figure JPOXMLDOC01-appb-C000006
 また、本明細書において芳香環残基とは、芳香環(ベンゼン環)を有する基のことをいう。
 また、上記式(4)で表される化合物としては、特に、下記式(5)~(8)のうちのいずれかで表される化合物が好ましく用いられる。これらは、リグニン誘導体中のフェノール骨格に含まれる芳香環上の架橋反応点に対して反応し、リグニン誘導体を確実に架橋するとともに、官能基同士の自己縮合反応により自己架橋を生じる。その結果、特に均質で剛直な骨格を有し、機械的特性、耐久性および外観に優れた硬化物が得られる。
Figure JPOXMLDOC01-appb-C000007
[式(5)中、XはCHORまたは水素原子であり、Rは独立して炭素数1~4のアルキル基または水素原子である。また、nは1~3の整数を表す。]
Figure JPOXMLDOC01-appb-C000008
[式(6)中、Rは独立して炭素数1~4のアルキル基または水素原子である。]
Figure JPOXMLDOC01-appb-C000009
[式(7)中、Rは独立して炭素数1~4のアルキル基または水素原子である。]
Figure JPOXMLDOC01-appb-C000010

[式(8)中、Rは独立して炭素数1~4のアルキル基または水素原子である。]
 また、上記式(5)で表される化合物としては、特に、下記式(9)または下記式(10)で表される化合物が好ましく用いられる。これらは、リグニン誘導体中のフェノール骨格に含まれる芳香環上の架橋反応点に対して反応しリグニン誘導体を特に確実に架橋するとともに、官能基同士の自己縮合反応により自己架橋を生じる。その結果、とりわけ均質で剛直な骨格を有し、機械的特性、耐久性および外観に優れた硬化物が得られる。
Figure JPOXMLDOC01-appb-C000011
[式(9)中、nは1~3の整数を表す。]
Figure JPOXMLDOC01-appb-C000012
[式(10)中、nは1~3の整数を表す。]
 また、上記架橋剤は、上記式(4)で表される化合物に代えて、またはこの化合物とともに、ヘミサメチレンテトラミン、キヌクリジンおよびピジンのうちの少なくとも1種の化合物を含んでいてもよい。このような架橋剤を含む硬化物は、優れた機械的強度(耐久性等)を有するとともに、優れた外観を有する。これは、ヘキサメチレンテトラミン、キヌクリジンおよびピジンがリグニン誘導体を高密度かつ均一に架橋し、均質で剛直な骨格を形成するからである。
 また、架橋剤には、上記化合物以外の架橋剤成分が含まれていてもよい。上記化合物以外の架橋剤成分としては、例えば、オルソクレゾールノボラックエポキシ樹脂、ビスフェノールA型エポキシ樹脂、エポキシ化グリセリン、エポキシ化亜麻仁油、エポキシ化大豆油のようなエポキシ樹脂、ヘキサメチレンジイソシアネート、トルエンジイソシアネートのようなイソシアネート化合物、リグニン誘導体の芳香環に対し親電子置換反応して架橋し得る化合物として、ホルムアルデヒド、アセトアルデヒド、パラホルムアルデヒド、フルフラールのようなアルデヒド類、ポリオキシメチレンのようなアルデヒド源、レゾール型フェノール樹脂等の通常のフェノール樹脂で公知の架橋剤、リグニン誘導体の芳香環に対し親電子置換反応して架橋し得る化合物等を挙げることができる。そして、架橋剤中におけるこれらの架橋剤成分の含有率は、架橋反応前において80質量%以上であるのが好ましい。
 なお、架橋剤の添加量は、特に限定されないが、リグニン誘導体100質量部に対して、5~120質量部程度であるのが好ましく、10~100質量部程度であるのがより好ましい。
 (その他の成分)
 また、本発明のゴム組成物は、上述した成分の他に、その他の成分を含んでいてもよい。
 その他の成分としては、例えば、軟化剤、粘着付与剤、酸化防止剤、オゾン劣化防止剤、老化防止剤、硫黄その他の加硫剤、加硫促進剤、加硫促進助剤、過酸化物、酸化亜鉛、ステアリン酸等が挙げられる。
 加硫剤としては、例えば、有機過酸化物または硫黄系加硫剤を使用できる。
 このうち、有機過酸化物としては、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、1,3-ビス(t-ブチルパーオキシプロピル)ベンゼン等が挙げられる。
 一方、硫黄系加硫剤としては、例えば、硫黄、モルホリンジスルフィド等が挙げられる。これらの中では特に硫黄が好ましく用いられる。
 加硫促進剤としては、例えば、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド-アミン系、アルデヒド-アンモニア系、イミダゾリン系、キサンテート系の各種加硫促進剤等が挙げられ、これらのうち少なくとも1種を含むものが用いられる。
 老化防止剤としては、例えば、アミン系、フェノール系、イミダゾール系の各化合物や、カルバミン酸金属塩、ワックス等が適宜選択されて用いられる。
 本発明のゴム組成物は、さらに、ステアリン酸、酸化亜鉛といったような、通常ゴム工業にて使用される配合剤を適宜配合することができる。
 また、ゴム組成物中の固形分濃度は、特に制限されないが、一例として、60~98質量%程度であり、70~95質量%程度が好ましい。
 このようなゴム組成物は、従来のゴム組成物のあらゆる用途に適用可能であり、具体的には、タイヤ、ベルト、ゴムクローラー、防振ゴム、靴等の用途に適用可能である。
 <ゴム組成物の製造方法>
 次に、前述したゴム組成物の製造方法について説明する。
 ゴム組成物の製造方法は、特に限定されないが、例えば、ゴム材料と、リグニン誘導体と、その他の原料と、を混練する工程を含む。なお、必要に応じて、任意の原料を予備混合した後、混練するようにしてもよい。また、上述した原料を混練する順序は、特に限定されず、全ての原料を同時に混練してもよく、任意の順序で順次混練するようにしてもよい。
 混練機としては、例えば、ミキサー、ニーダー、ロール等が挙げられる。
 また、混練するときには、必要に応じて、有機溶媒を用いるようにしてもよい。有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセルソルブ、アセトン、メチルエチルケトン、メチルイソブチルケトン、N、N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、N-メチル-2-ピロリドン、キノリン、シクロペンタノン、m-クレゾール、クロロホルム等が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。
 ここで、ゴム組成物の製造方法の一例を工程ごとに説明する。
 まず、(1)リグニン誘導体と樹脂とを混合し、混合樹脂を得る。
 次に、(2)ゴム材料と、混合樹脂と、任意成分(加硫剤および加硫促進剤を除く。)とを、密閉式混練機により混練して、加硫系を含有していないゴム組成物(未加硫のゴム組成物)を得る。このとき、混練条件(混練温度、混練時間等)は混練機に応じて適宜設定される。
 次に、(3)上記(2)により得られたゴム組成物に対し、オープンロール等のロール類を含む前記混練機を用いて加硫剤および加硫促進剤を添加し、再度混練して、加硫系を含有するゴム組成物を得る。
 <ゴム組成物の硬化方法>
 次に、ゴム組成物の硬化物を得る工程について説明する。
 ゴム組成物の硬化物は、ゴム組成物を成形し、硬化させることによって得ることができる。成形方法は、用途によって異なるため、特に限定されるものではないが、金型を用いて成形する場合は、作製したゴム組成物を、油圧プレスを備えた金型を用いて成形する方法である。これにより、目的の形状に成形されたゴム組成物の硬化物を得る。
 また、本発明のゴム組成物は、一例としてタイヤ用のゴム組成物として使用することが可能である。例えば、本発明のゴム組成物をタイヤのキャップトレッド用ゴム組成物として用いる場合は、通常の方法により製造される。すなわち、未加硫のゴム組成物をタイヤのトレッド部の形状に押出加工した後、押出加工されたゴム組成物をタイヤ成形機により通常の方法で貼り合わせて未加硫タイヤを成形する。次いで、未加硫タイヤを加硫機中で加熱・加圧してタイヤを得ることができる。
 成形温度は、100~280℃程度であるのが好ましく、120~250℃程度であるのがより好ましく、130~230℃程度であるのがさらに好ましい。なお、成形温度が前記上限値を上回ると、ゴムが劣化するおそれがあり、一方、成形温度が前記下限値を下回ると、十分な成形ができないおそれがある。
 <成形材料>
 次に、本発明の成形材料について説明する。
 本発明の成形材料は、前述したリグニン誘導体を含む。あるいは、本発明の成形材料は、前述したリグニン樹脂組成物(主に、リグニン誘導体および樹脂材料)を含む。このような成形材料は、優れた弾性率と機械的強度とを有する。
 また、本発明の成形材料は、植物由来の物質(リグニン誘導体)を含むので、例えば焼却廃棄された場合でも、かかる物質を含まない場合に比べて、大気中の二酸化炭素の増加量を抑えることができる。このため、本発明の成形材料は、環境負荷の低減を図ることができる。
 なお、本発明の成形材料は、前述したゴム組成物の製造方法と同様の方法で製造することができ、また、前述したゴム組成物の効果方法と同様の方法で硬化させることができる。
 以上、本発明のリグニン誘導体、リグニン誘導体の製造方法、リグニン樹脂組成物、ゴム組成物および成形材料について説明したが、本発明はこれに限定されない。例えば、リグニン樹脂組成物、ゴム組成物および成形材料には、それぞれ任意の成分が添加されていてもよい。
 次に、本発明の具体的実施例について説明するが、本発明はこれに限定されない。
 1.ゴム組成物の製造
 以下、実施例1A~10Aおよび比較例1A~9Aにおいて用いた各種原料について列挙する。
  天然ゴム :東知製RSS3
  硬化剤 :ヘキサメチレンテトラミン
  カーボンブラック :三菱化学社製、HAF
  シリカ :エボニック社製、Ultrasil VN3(BET比表面積:175m/g)
  シランカップリング剤 :エボニック社製、Si-69
  酸化亜鉛 :堺化学工業社製
  ステアリン酸 :日油社製ビーズステアリン酸YR
  硫黄 :細井化学工業社製、微粉硫黄
  加硫促進剤 :大内新興化学工業社製、MSA-G
  フェノール樹脂 :住友ベークライト社製、PR-50731
  カシュー変性ノボラック型フェノール樹脂 :住友ベークライト社製、PR-12686
  トール変性ノボラック型フェノール樹脂 :住友ベークライト社製、PR-13349
 (実施例1A)
 (1)リグニン誘導体
 スギのチップ300g(絶乾量)と純水1600gとを、容量2.4Lの回転型オートクレーブに導入した。そして、内容物を回転数300rpmで撹拌しながら、処理温度300℃、処理圧力9MPaで60分間処理してスギのチップを分解した。
 次いで、分解物を濾過し、純水で洗浄することにより、水不溶部を分離した。この水不溶部をアセトンに浸漬し、その後、濾過し、アセトン可溶部を回収した。
 次いで、アセトン可溶部からアセトンを留去し、リグニン誘導体を得た。
 (2)ゴム組成物の作製
 次に、リグニン誘導体50質量部と、カシュー変性フェノール樹脂50質量部とを、あらかじめ130℃の熱板において溶融混合し、粉砕して混合樹脂を得た。
 次いで、得られた混合樹脂100質量部と、天然ゴム化合物500質量部と、カーボンブラック350質量部と、樹脂架橋剤としてヘキサメチレンテトラミン10質量部と、加硫剤として硫黄15質量部と、加硫促進剤としてMSA-G7.5質量部と、加硫促進助剤として酸化亜鉛25質量部と、離型剤としてステアリン酸10質量部とを、バンバリーミキサーにおいて100℃で混練し、ゴム組成物を得た。
 (実施例2A)
 リグニン誘導体を100質量部とし、フェノール樹脂系物質を添加しない以外は、実施例1Aと同様にしてゴム組成物を得た。
 (実施例3A)
 カシュー変性フェノールに換えてトール変性フェノール樹脂を50質量部添加するようにした以外は、実施例1Aと同様にしてゴム組成物を得た。
 (実施例4A)
 カシュー変性フェノールに換えてノボラック型変性フェノール樹脂を50質量部添加するようにした以外は、実施例1Aと同様にしてゴム組成物を得た。
 (実施例5A)
 リグニン誘導体を75質量部と、カシュー変性フェノール樹脂を25質量部変更した以外は、実施例1Aと同様にしてゴム組成物を得た。
 (実施例6A)
 リグニン誘導体を25質量部と、カシュー変性フェノール樹脂を75質量部変更した以外は、実施例1Aと同様にしてゴム組成物を得た。
 (実施例7A)
 バイオマスがユーカリ由来である以外は、実施例1Aと同様にしてゴム組成物を得た。
 (実施例8A)
 バイオマスがユーカリ由来である以外は、実施例2Aと同様にしてゴム組成物を得た。
 (実施例9A)
 実施例1Aにおいて、処理圧力3MPaで180分間処理してスギのチップを分解した以外は実施例1Aと同様にしてゴム組成物を得た。
 (実施例10A)
 オルガノソルブプロセスの一つであるアルセル(Alcell(登録商標))法により得られたリグニン誘導体(Lignol Lignin(Powder):Lignol社製)を150℃で乾燥して粉砕したのちに、10倍量のアセトンに溶解し、ろ過して固体残さを除去して上澄み液を得た。その後、上澄み液を濃縮、乾燥してリグニン誘導体を得た以外は、実施例1Aと同様にしてゴム組成物を得た。
 (比較例1A)
 (1)バイオマス分解プロセス
 スギのチップ300g(絶乾量)と純水1600gとを、容量2.4Lの回転型オートクレーブに導入した。そして、内容物を回転数300rpmで撹拌しながら、処理温度300℃、処理圧力9MPaで60分間処理してスギのチップを分解した。
 次いで、分解物を濾過し、純水で洗浄することにより、水不溶部を分離した。この水不溶部をリグニン誘導体として用いた。
 (2)ゴム組成物の作製
 次に、実施例1Aと同様にして、ゴム組成物を得た。
 (比較例2A)
 リグニン誘導体を100質量部とし、フェノール樹脂系物質を添加しない以外は、比較例1Aと同様にしてゴム組成物を得た。
 (比較例3A)
 バイオマスがユーカリ由来である以外は、比較例1Aと同様にしてゴム組成物を得た。
 (比較例4A)
 バイオマスがユーカリ由来である以外は、比較例2Aと同様にしてゴム組成物を得た。
 (比較例5A)
 比較例1Aにおいて、処理圧力3MPaで180分間処理してスギのチップを分解した以外は比較例1Aと同様にしてゴム組成物を得た。
 (比較例6A)
 アルセル(Alcell(登録商標))法により得られたリグニン誘導体(Lignol Lignin(Powder):Lignol社製)を150℃で乾燥して粉砕して使用した以外は、比較例1Aと同様にしてゴム組成物を得た。
 (比較例7A)
 リグニン誘導体、フェノール樹脂を用いず、実施例1記載のゴム、充填剤、樹脂架橋剤、加硫剤、加硫促進剤、加硫促進助剤、および離型剤を用いてゴム組成物を合成した以外は実施例1Aと同様にしてゴム組成物を得た。
 (比較例8A)
 比較例7Aにノボラック型フェノールを100質量部加えた以外は比較例7Aと同様にしてゴム組成物を得た。
 (比較例9A)
 比較例7Aにカシュー変性フェノールを100質量部加えた以外は比較例7Aと同様にしてゴム組成物を得た。
 上記のようにして得られた各実施例および各比較例のリグニン誘導体およびゴム組成物の組成を表1、2に示す。
 2.ゴム組成物の評価
 まず、実施例1A~10Aおよび比較例1A~9Aで得られたゴム組成物を、それぞれ、油圧プレスにより160℃で20分間加硫して、厚さ2mmの加硫ゴムシートを作製した。
 2.1 切断時引張応力および切断時引張伸びの測定
 次に、ゴムシートについて、JIS K 6251に規定の方法に準拠して、東洋精機社製ストログラフを用いて切断時引張応力および切断時引張伸びを測定した。なお、測定時の引張速度は50mm/分とした。また、試験片はダンベル型、つかみ具間距離は60mm、幅は5mm、測定温度は25℃であった。
 次いで、比較例7Aで得られたゴムシートについての測定結果を100としたときの各実施例および各比較例で得られたゴムシートについての測定結果の相対値を求めた。算出結果を表1、2に示す。
 2.2 貯蔵弾性率E’および損失正接tanδの測定
 次に、ゴムシートについて、TAインスツルメント社製動的粘弾性測定装置を用い、動的歪2%の条件下で、30℃における貯蔵弾性率E’および60℃における損失正接tanδの逆数を測定した。
 なお、試験片の長さを22mm、幅を10mm、昇温速度を5℃/分、歪みを2%、測定周波数を1Hzとした。
 次いで、比較例7Aで得られたゴムシートについての測定結果を100としたときの各実施例および各比較例で得られたゴムシートについての測定結果の相対値を求めた。算出結果を表1、2に示す。
 なお、損失正接tanδの逆数の値が大きいということは、粘弾性特性の損失正接tanδが小さいこと、すなわちヒステリシスロス性が小さいことを意味し、ひいては繰り返し変形で発生する熱エネルギーを抑えられることを意味するので、例えば各実施例および各比較例で得られたゴム組成物をタイヤ用ゴム組成物に適用した場合、転がり抵抗の小さいタイヤを得ることができる。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表1、2から明らかなように、実施例1A~10Aで得られたゴム組成物の硬化物は、リグニン誘導体が添加されることによって、ゴム組成物の硬化物の貯蔵弾性率E’と切断時引張応力の双方を高め得ることが認められた。
 また、リグニン誘導体とともに樹脂を添加することによって、樹脂を添加しない場合に比べて、60℃における損失正接tanδの逆数を大きくすることができ、ゴム組成物の硬化物のヒステリシスロス性を小さくし得ることが認められた。
 したがって、リグニン誘導体と樹脂とを添加することによって(リグニン樹脂組成物を添加することによって)、ゴム弾性率とヒステリシスロス性のバランスが良好になることが認められた。
 なお、実施例1A~10Aで用いたリグニン誘導体中の可溶成分の数平均分子量は、300~2000の範囲内であった。また、実施例1A~10Aで用いたリグニン誘導体中の可溶成分の軟化点は、100~180℃であった。また、実施例1A~10Aで用いたリグニン誘導体中におけるアセトンに可溶な成分の含有率(アセトン溶解率)は、いずれも80質量%以上であった。
 3.ゴム組成物の製造
 以下、実施例1B~12Bおよび比較例1B~3Bにおいて用いた各種原料について列挙する。
 天然ゴム :東知製RSS3
 硬化剤 :ヘキサメチレンテトラミン
 カーボンブラック :三菱化学社製、HAF
 シリカ :エボニック社製、Ultrasil VN3(BET比表面積:175m/g)
 シランカップリング剤 :エボニック社製、Si-69
 酸化亜鉛 :堺化学工業社製
 ステアリン酸 :日油社製ビーズステアリン酸YR
 硫黄 :細井化学工業社製、微粉硫黄
 加硫促進剤 :大内新興化学工業社製、MSA-G
 フェノール樹脂 :住友ベークライト社製、PR-50731
 カシュー変性ノボラック型フェノール樹脂 :住友ベークライト社製、PR-12686
 トール変性ノボラック型フェノール樹脂 :住友ベークライト社製、PR-13349
 (実施例1B)
 (1)リグニン誘導体
 アルセル(Alcell(登録商標))法により得られたリグニン誘導体(Lignol Lignin(Powder):Lignol社製)を10質量倍のアセトンに溶解し、濾過して固体残渣を除去して上澄み液を得た。その後、上澄み液を濃縮、乾燥してリグニン誘導体を得た。
 (2)ゴム組成物の作製
 次に、リグニン誘導体50質量部と、トール変性フェノール樹脂50質量部とを、あらかじめ130℃の熱板において溶融混合し、粉砕して混合樹脂を得た。
 次いで、得られた混合樹脂100質量部と、天然ゴム化合物500質量部と、カーボンブラック350質量部と、樹脂架橋剤としてヘキサメチレンテトラミン10質量部と、加硫剤として硫黄15質量部と、加硫促進剤としてMSA-G7.5質量部と、加硫促進助剤として酸化亜鉛25質量部と、離型剤としてステアリン酸10質量部とを、バンバリーミキサーにおいて100℃で混練し、ゴム組成物を得た。
 (実施例2B)
 トール変性フェノール樹脂に代えて、ノボラック型フェノール樹脂を添加するようにした以外は、実施例1Bと同様にしてゴム組成物を得た。
 (実施例3B)
 トール変性フェノール樹脂に代えて、カシュー変性フェノール樹脂を添加するようにした以外は、実施例1Bと同様にしてゴム組成物を得た。
 (実施例4B)
 リグニン誘導体の添加量とカシュー変性フェノール樹脂の添加量をそれぞれ表3に示すように変更した以外は、実施例3Bと同様にしてゴム組成物を得た。
 (実施例5B)
 リグニン誘導体の添加量とカシュー変性フェノール樹脂の添加量をそれぞれ表3に示すように変更した以外は、実施例3Bと同様にしてゴム組成物を得た。
 (実施例6B)
 トール変性フェノール樹脂の添加を省略するとともに、リグニン誘導体を100質量部にした以外は、実施例1Bと同様にしてゴム組成物を得た。
 (実施例7B)
 充填剤として、さらにシリカを添加するとともに、カーボンブラックの添加量を表1に示すように変更した以外は、実施例3Bと同様にしてゴム組成物を得た。
 (実施例8B)
 リグニン誘導体(Lignol Lignin(Powder):Lignol社製)をそのまま使用した以外は、実施例6Bと同様にしてゴム組成物を得た。
 (実施例9B)
 リグニン誘導体(Lignol Lignin(Powder):Lignol社製)をそのまま使用した以外は、実施例3Bと同様にしてゴム組成物を得た。
 (実施例10B)
 ヘキサメチレンテトラミンを使用しなかった以外は、実施例6Bと同様にしてゴム組成物を得た。
 (実施例11B)
 (1)バイオマス分解プロセス
 スギのチップ300g(絶乾量)と純水1600gとを、容量2.4Lの回転型オートクレーブに導入した。そして、内容物を回転数300rpmで撹拌しながら、処理温度300℃、処理圧力9MPaで180分間処理してスギのチップを分解した。
 次いで、分解物を濾過し、純水で洗浄することにより、水不溶部を分離した。この水不溶部をアセトンに浸漬し、その後、濾過し、アセトン可溶部を回収した。
 次いで、アセトン可溶部からアセトンを留去し、リグニン誘導体を得た。
 (2)ゴム組成物の作製
 次に、実施例3Bと同様にして、ゴム組成物を得た。
 (実施例12B)
 カシュー変性フェノール樹脂の添加を省略するとともに、リグニン誘導体を100質量部にした以外は、実施例11Bと同様にしてゴム組成物を得た。
 (比較例1B)
 リグニン誘導体の添加、カシュー変性フェノール樹脂の添加および樹脂架橋剤の添加をそれぞれ省略した以外は、実施例11Bと同様にしてゴム組成物を得た。
 (比較例2B)
 リグニン誘導体の添加およびカシュー変性フェノール樹脂の添加をそれぞれ省略するとともに、ノボラック型フェノール樹脂を100質量部添加した以外は、実施例11Bと同様にしてゴム組成物を得た。
 (比較例3B)
 リグニン誘導体の添加を省略するとともに、カシュー変性フェノール樹脂を100質量部添加した以外は、実施例11Bと同様にしてゴム組成物を得た。
 4.ゴム組成物の評価
 まず、実施例1B~12Bおよび比較例1B~3Bで得られたゴム組成物を、それぞれ、油圧プレスにより160℃で20分間加硫して、厚さ2mmの加硫ゴムシートを作製した。
 4.1 切断時引張応力および切断時引張伸びの測定
 次に、ゴムシートについて、JIS K 6251に規定の方法に準拠して、東洋精機社製ストログラフを用いて切断時引張応力および切断時引張伸びを測定した。なお、測定時の引張速度は50mm/分とした。また、試験片の形状はダンベル型、つかみ具間距離は60mm、幅は5mm、測定温度は25℃であった。
 次いで、比較例1Bで得られたゴムシートについての測定結果を100としたときの各実施例および各比較例で得られたゴムシートについての測定結果の相対値を求めた。算出結果を表3に示す。
 4.2 貯蔵弾性率E’および損失正接tanδの測定
 次に、ゴムシートについて、TAインスツルメント社製動的粘弾性測定装置を用い、動的の条件下で、30℃における貯蔵弾性率E’および60℃における損失正接tanδの逆数を測定した。
 なお、試験片の長さを22mm、幅を10mm、昇温速度を5℃/分、歪みを2%、測定周波数を1Hzとした。
 次いで、比較例1Bで得られたゴムシートについての測定結果を100としたときの各実施例および各比較例で得られたゴムシートについての測定結果の相対値を求めた。算出結果を表3に示す。
Figure JPOXMLDOC01-appb-T000015
 表3から明らかなように、実施例1B~12Bで得られたゴム組成物の硬化物は、リグニン誘導体が添加されることによって、ゴム組成物の硬化物の貯蔵弾性率E’と切断時引張応力の双方を高め得ることが認められた。
 また、リグニン誘導体とともに樹脂を添加することによって、樹脂を添加しない場合に比べて、60℃における損失正接tanδの逆数を大きくすることができ、ゴム組成物の硬化物のヒステリシスロス性を小さくし得ることが認められた。
 したがって、リグニン誘導体と樹脂材料とを添加することによって(リグニン樹脂組成物を添加することによって)、ゴム弾性率とヒステリシスロス性のバランスが良好になることが認められた。
 なお、実施例1B~12Bで用いたリグニン誘導体中の可溶成分の数平均分子量は、300~2000の範囲内であった。また、実施例1B~12Bで用いたリグニン誘導体中の可溶成分の軟化点は、100~200℃であった。また、実施例1B~12Bで用いたリグニン誘導体中におけるアセトンに可溶な成分の含有率(アセトン溶解率)は、いずれも80質量%以上であった。
 5.成形材料の製造および評価
 次に、リグニン誘導体、および、フェノール樹脂(PR-53194、住友ベークライト(株))を用いて樹脂成形体を調製した。そして、以下の方法により外観および曲げ強度の評価を行った。評価結果を表4に示す。
 (実施例13B~18Bおよび比較例4B、5B)
 5.1 リグニン樹脂組成物の調製
 リグニン誘導体、フェノール樹脂(PR-53194、住友ベークライト(株)製)、およびヘキサメチレンテトラミンを、表4に示す割合で常温にて添加し、粉砕混合してリグニン樹脂組成物を調製した。
 なお、実施例13B~16Bでは、実施例1Bと同じリグニン誘導体を用いた。また、実施例17Bでは実施例8Bと同じリグニン誘導体を用いた。また、実施例18Bでは、実施例11Bと同じリグニン誘導体を用いた。
 また、比較例5Bでは、以下の方法を用いて得られたリグニン誘導体を用いた。
 スギのチップ300g(絶乾量)と純水1600gとを、容量2.4Lの回転型オートクレーブに導入した。そして、内容物を回転数300rpmで撹拌しながら、処理温度300℃、処理圧力9MPaで60分間処理してスギのチップを分解した。次いで、分解物を濾過し、純水で洗浄することにより、水不溶部を分離した。この水不溶部をリグニン誘導体として用いた。
 そして、表4に示す配合になるように、各成分の添加量を設定し、実施例13B~18Bおよび比較例4B、5Bの各リグニン樹脂組成物を調製した。
 5.2 樹脂成形体の調製
 実施例13B~18Bおよび比較例4Bのリグニン樹脂組成物に対し、ガラス繊維(ガラスミルドファイバー、日東紡績(株)製、基準繊維径10±1.5μm、平均繊維長90μm)を、リグニン樹脂組成物との混合比率で50.5重量%となるように添加した。ラボプラストミルにて90℃、50rpmにて混練し、得られた混練物を175℃、3minの条件にて圧縮成形を行い、その後硬化させた。これにより、幅10mm、長さ100mm、高さ4mmの樹脂成形体を得た。一方、上記と同様の方法を用いて、比較例5Bのリグニン樹脂組成物とガラス繊維とを混練したが、リグニン樹脂組成物とガラス繊維とを均一に混合することができなかった。そのため、圧縮成形により所定の寸法の樹脂成形体を得ることができなかった。
 5.3 常温曲げ強度の測定
 得られた各樹脂成形体を用い、JIS K 6911に準拠して、25℃下での曲げ強度を求めた。具体的には、精密万能試験機(島津製作所社製 オートグラフAG-Xplus)を用い、2mm/minの速度で荷重をかけて三点曲げ試験を行った。
Figure JPOXMLDOC01-appb-T000016
 表4から明らかなように、実施例13B~18Bの成形材料の硬化物は、比較例4Bの成形材料の硬化物よりも室温における曲げ応力が大きく、かつ、弾性率も大きいことが認められた。
 したがって、実施例13B~18Bの成形材料の硬化物は、リグニン誘導体が添加されることによって、弾性率と機械的強度の双方を高め得ることが認められた。また、耐熱環境下での機械的強度を高め得ることも認められた。
 本発明によれば、所定の数平均分子量であり、極性有機溶媒に可溶な成分(可溶成分)を含むリグニン誘導体を含ませることにより、優れた低ヒステリシスロス性、弾性率または引張特性を有するリグニン樹脂組成物、ゴム組成物または成形材料を得ることができる。また、上記可溶成分として、熱溶融性を有する成分を用いることにより、より優れた前記特性を有するリグニン樹脂組成物、ゴム組成物または成形材料を得ることができる。特に、フェノール系樹脂を含むことにより、得られるリグニン樹脂組成物、ゴム組成物または成形材料は、優れた低ヒステリシスロス性を示し、かつ弾性率、成形性、引張特性のバランスに優れる。したがって、本発明は、産業上の利用可能性を有する。

Claims (16)

  1.  バイオマスより抽出され、ゴム補強用または成形材料用に用いられるリグニン誘導体であって、
     当該リグニン誘導体は、数平均分子量が300~2000であり、極性有機溶媒に可溶な成分を80質量%以上の量で含んでいることを特徴とするリグニン誘導体。
  2.  前記極性有機溶媒は、アセトンである請求項1に記載のリグニン誘導体。
  3.  当該リグニン誘導体は、前記成分を95質量%以上の量で含んでいる請求項1または2に記載のリグニン誘導体。
  4.  前記成分の数平均分子量は、300~750である請求項1ないし3のいずれか1項に記載のリグニン誘導体。
  5.  前記成分の軟化温度は、80~160℃である請求項1ないし4のいずれか1項に記載のリグニン誘導体。
  6.  当該リグニン誘導体は、有機溶媒を含む薬剤を用いたオルガノソルブプロセスによって、バイオマスを蒸解することにより抽出される請求項1ないし5のいずれか1項に記載のリグニン誘導体。
  7.  前記有機溶媒は、アルコール類、ケトン類およびエーテル類のうちの少なくとも1種を含む請求項6に記載のリグニン誘導体。
  8.  前記有機溶媒は、低級アルコールを含む請求項6または7に記載のリグニン誘導体。
  9.  前記有機溶媒は、低級アルコールを含み、
     前記他の有機溶媒は、アセトンを含む請求項8に記載のリグニン誘導体。
  10.  請求項1ないし9のいずれか1項に記載のリグニン誘導体と、樹脂材料とを含むことを特徴とするリグニン樹脂組成物。
  11.  前記樹脂材料は、フェノール系樹脂を含む請求項10に記載のリグニン樹脂組成物。
  12.  前記フェノール系樹脂は、カシュー変性フェノール樹脂、トール変性フェノール樹脂、アルキル変性フェノール樹脂およびカシュー樹脂のうちの少なくとも1種を含む請求項11に記載のリグニン樹脂組成物。
  13.  請求項1ないし9のいずれか1項に記載のリグニン誘導体と、ゴム材料とを含むことを特徴とするゴム組成物。
  14.  前記ゴム材料は、天然ゴム、ブタジエンゴムおよびスチレンブタジエンゴムのうちの少なくとも1種を含む請求項13に記載のゴム組成物。
  15.  架橋剤、および/または充填剤をさらに含む請求項13または14に記載のゴム組成物。
  16.  請求項1ないし9のいずれか1項に記載のリグニン誘導体と、樹脂材料とを含むことを特徴とする成形材料。
PCT/JP2015/074766 2014-09-12 2015-08-31 リグニン誘導体、リグニン樹脂組成物、ゴム組成物および成形材料 WO2016039213A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016547387A JP6733546B2 (ja) 2014-09-12 2015-08-31 ゴム組成物およびリグニン誘導体の製造方法
CN201580049132.6A CN106687507A (zh) 2014-09-12 2015-08-31 木质素衍生物、木质素树脂组合物、橡胶组合物以及成型材料
EP15840209.9A EP3192825A4 (en) 2014-09-12 2015-08-31 Lignin derivative, lignin resin composition, rubber composition, and molding material
US15/509,331 US10138377B2 (en) 2014-09-12 2015-08-31 Lignin derivative, lignin resin composition, rubber composition, and molding material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014186031 2014-09-12
JP2014-186849 2014-09-12
JP2014186849 2014-09-12
JP2014-186031 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016039213A1 true WO2016039213A1 (ja) 2016-03-17

Family

ID=55458964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074766 WO2016039213A1 (ja) 2014-09-12 2015-08-31 リグニン誘導体、リグニン樹脂組成物、ゴム組成物および成形材料

Country Status (5)

Country Link
US (1) US10138377B2 (ja)
EP (1) EP3192825A4 (ja)
JP (1) JP6733546B2 (ja)
CN (1) CN106687507A (ja)
WO (1) WO2016039213A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171275A1 (ja) * 2015-04-24 2016-10-27 花王株式会社 樹脂用添加剤
JP2016204664A (ja) * 2015-04-24 2016-12-08 花王株式会社 樹脂用添加剤
EP3279268A3 (en) * 2016-08-04 2018-03-07 Akebono Brake Industry Co., Ltd. Thermosetting resin composition, friction material and method for producing thermosetting resin composition
EP3372646A1 (en) * 2017-03-08 2018-09-12 Compagnie Industrielle De La Matiere Vegetale CIMV Process for the simultaneous extraction of lignin and silica from biomass and elastomer reinforced with a mixture of lignin and silica
US10233988B2 (en) 2015-09-23 2019-03-19 Akebono Brake Industry Co., Ltd Friction material
JP2019535592A (ja) * 2016-11-29 2019-12-12 株式会社ブリヂストン 官能化リグニンを含む空気入りタイヤ用の高剛性配合物
CN112940209A (zh) * 2021-01-22 2021-06-11 福建船政交通职业学院 一种羟甲基化改性木质素酚醛树脂吸附微球及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204682A1 (en) * 2015-06-15 2016-12-22 Ren Fuel K2B Ab Composition comprising derivatized lignin for fuel production
CN107958933B (zh) * 2016-10-17 2020-05-26 中芯国际集成电路制造(北京)有限公司 半导体装置及其制造方法
CN110914341B (zh) * 2017-08-10 2023-02-21 出光兴产株式会社 改质木质素的制造方法和改质木质素、以及含改质木质素的树脂组成材料
CN111801154B (zh) * 2017-10-26 2023-09-05 阿尔托大学注册基金会 水性木质素分散体及其制备方法
WO2019183394A1 (en) * 2018-03-23 2019-09-26 Domtar Paper Company, Llc Methods of reducing odor in extruded lignin and extruded lignin with reduced odor
CA3103993A1 (en) * 2018-06-26 2020-01-02 Suzano Canada Inc. Rheologically defined lignin compositions
EP3632974B1 (de) * 2018-10-05 2023-07-19 Continental Reifen Deutschland GmbH Verfahren zur herstellung einer füllstoff-haltigen kautschukmischung
CN113402788B (zh) * 2020-03-17 2022-09-20 中国石油化工股份有限公司 含有阻尼改性剂的硫化组合物、硫化橡胶及其制备方法和应用
CN111718591B (zh) * 2020-07-06 2021-05-07 安徽农业大学 一种含有木质素的生物基复合材料及其制备方法
WO2023034119A1 (en) * 2021-08-30 2023-03-09 The Goodyear Tire & Rubber Company Silane modified fatty acid derivatives for rubber additives
KR102660376B1 (ko) * 2021-09-30 2024-04-23 한국타이어앤테크놀로지 주식회사 지질기반 바이오매스 유래 타이어용 고무 조성물 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084320A (ja) * 2007-09-27 2009-04-23 Sumitomo Bakelite Co Ltd リグニン誘導体及びその二次誘導体
JP2011032492A (ja) * 2010-11-16 2011-02-17 Sumitomo Bakelite Co Ltd リグニン誘導体の製造方法およびリグニン二次誘導体の製造方法
JP2011042806A (ja) * 2010-11-16 2011-03-03 Sumitomo Bakelite Co Ltd リグニン誘導体の製造方法およびリグニン二次誘導体の製造方法
JP2013035886A (ja) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd リグニン、このリグニンを含む組成物及びこのリグニンの製造方法
JP2013227470A (ja) * 2012-03-30 2013-11-07 Sumitomo Bakelite Co Ltd リグニン樹脂組成物およびリグニン樹脂成形材料
JP2013227469A (ja) * 2012-03-30 2013-11-07 Sumitomo Bakelite Co Ltd リグニン樹脂組成物、リグニン樹脂成形材料およびリグニン誘導体の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU711068A1 (ru) * 1978-07-07 1980-01-25 Всесоюзный Научно-Исследовательский Институт Теплоизоляционных И Акустических Строительных Материалов И Изделий Полимерное св зующее
US4239666A (en) * 1979-03-02 1980-12-16 The Bendix Corporation Lignin modified friction material
US4361677A (en) * 1979-06-18 1982-11-30 Sumitomo Rubber Industries, Ltd. Curable composition for hard rubber and the use thereof
US4764596A (en) * 1985-11-05 1988-08-16 Repap Technologies Inc. Recovery of lignin
US5177169A (en) * 1989-04-03 1993-01-05 Colorado State University Research Foundation Method for recovering and using lignin in adhesive resins
US5196460A (en) * 1990-05-29 1993-03-23 Repap Technologies Inc. Rubber compositions containing high purity lignin derivatives
ATE136317T1 (de) * 1991-11-07 1996-04-15 Ruetgerswerke Ag Ligninmodifizierte bindemittelgemische und verfahren zur deren herstellung
CA2157260A1 (en) * 1995-08-30 1997-03-01 Shinji Yamamoto Fine fiber-reinforced thermoplastic elastomer composition and process for producing same
JP5640269B2 (ja) 2007-05-21 2014-12-17 住友ゴム工業株式会社 タイヤ用ゴム組成物およびこれを用いた空気入りタイヤ
US9133227B2 (en) * 2007-10-17 2015-09-15 Nippon Steel & Sumikin Chemical Co., Ltd. Production methods for solubilized lignin, saccharide raw material and monosaccharide raw material, and solubilized lignin
JP2011522085A (ja) 2008-05-30 2011-07-28 ソシエテ ド テクノロジー ミシュラン タイヤ部品中のリグニン
JP5678435B2 (ja) * 2009-08-27 2015-03-04 住友ベークライト株式会社 摩擦材用フェノール樹脂組成物および摩擦材用熱硬化性フェノール樹脂組成物
WO2011099544A1 (ja) * 2010-02-10 2011-08-18 日立化成工業株式会社 樹脂組成物、成形体及び複合成形体
EP2614108A2 (en) * 2010-09-07 2013-07-17 Lignol Innovations Ltd. Biomass extraction process
JP2012201828A (ja) * 2011-03-25 2012-10-22 Sumitomo Bakelite Co Ltd リグニン誘導体の製造方法、リグニン二次誘導体の製造方法、リグニン誘導体およびリグニン二次誘導体
JP2012229330A (ja) 2011-04-26 2012-11-22 Gun Ei Chem Ind Co Ltd タッキファイヤー、ゴム組成物およびタイヤ
JP5898525B2 (ja) * 2012-02-27 2016-04-06 曙ブレーキ工業株式会社 摩擦材用樹脂組成物の製造方法
US9534650B2 (en) * 2012-03-23 2017-01-03 Akebono Brake Industry Co., Ltd. Friction material
JP5918585B2 (ja) * 2012-03-23 2016-05-18 曙ブレーキ工業株式会社 摩擦材の製造方法
ES2677554T3 (es) * 2013-10-16 2018-08-03 Sumitomo Bakelite Co., Ltd. Composición de resina y composición de caucho

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084320A (ja) * 2007-09-27 2009-04-23 Sumitomo Bakelite Co Ltd リグニン誘導体及びその二次誘導体
JP2011032492A (ja) * 2010-11-16 2011-02-17 Sumitomo Bakelite Co Ltd リグニン誘導体の製造方法およびリグニン二次誘導体の製造方法
JP2011042806A (ja) * 2010-11-16 2011-03-03 Sumitomo Bakelite Co Ltd リグニン誘導体の製造方法およびリグニン二次誘導体の製造方法
JP2013035886A (ja) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd リグニン、このリグニンを含む組成物及びこのリグニンの製造方法
JP2013227470A (ja) * 2012-03-30 2013-11-07 Sumitomo Bakelite Co Ltd リグニン樹脂組成物およびリグニン樹脂成形材料
JP2013227469A (ja) * 2012-03-30 2013-11-07 Sumitomo Bakelite Co Ltd リグニン樹脂組成物、リグニン樹脂成形材料およびリグニン誘導体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3192825A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171275A1 (ja) * 2015-04-24 2016-10-27 花王株式会社 樹脂用添加剤
JP2016204664A (ja) * 2015-04-24 2016-12-08 花王株式会社 樹脂用添加剤
US10717852B2 (en) 2015-04-24 2020-07-21 Kao Corporation Additive for resins
US11879513B2 (en) 2015-09-23 2024-01-23 Akebono Brake Industry Co., Ltd. Friction material
US11092205B2 (en) 2015-09-23 2021-08-17 Akebono Brake Industry Co., Ltd. Friction material
US10233988B2 (en) 2015-09-23 2019-03-19 Akebono Brake Industry Co., Ltd Friction material
US10690207B2 (en) 2015-09-23 2020-06-23 Akebono Brake Industry Co., Ltd Friction material
US10598240B2 (en) 2016-08-04 2020-03-24 Akebono Brake Industry Co., Ltd. Thermosetting resin composition, friction material and method for producing thermosetting resin composition
EP3279268A3 (en) * 2016-08-04 2018-03-07 Akebono Brake Industry Co., Ltd. Thermosetting resin composition, friction material and method for producing thermosetting resin composition
JP2019535592A (ja) * 2016-11-29 2019-12-12 株式会社ブリヂストン 官能化リグニンを含む空気入りタイヤ用の高剛性配合物
CN110446757A (zh) * 2017-03-08 2019-11-12 植物材料工业公司 从生物质同时提取木质素和二氧化硅的方法以及用木质素和二氧化硅的混合物增强的弹性体
WO2018162207A1 (en) * 2017-03-08 2018-09-13 Compagnie Industrielle De La Matiere Vegetale - Cimv Process for the simultaneous extraction of lignin and silica from biomass and elastomer reinforced with a mixture of lignin and silica
EP3372646A1 (en) * 2017-03-08 2018-09-12 Compagnie Industrielle De La Matiere Vegetale CIMV Process for the simultaneous extraction of lignin and silica from biomass and elastomer reinforced with a mixture of lignin and silica
EA038783B1 (ru) * 2017-03-08 2021-10-19 Компани Эндюстриель Де Ля Матьер Вежеталь - Кимв Способ одновременного извлечения лигнина и диоксида кремния из биомассы и эластомер, армированный смесью лигнина и диоксида кремния
AU2018232379B2 (en) * 2017-03-08 2023-06-15 Compagnie Industrielle De La Matiere Vegetale - Cimv Process for the simultaneous extraction of lignin and silica from biomass and elastomer reinforced with a mixture of lignin and silica
CN112940209A (zh) * 2021-01-22 2021-06-11 福建船政交通职业学院 一种羟甲基化改性木质素酚醛树脂吸附微球及其制备方法

Also Published As

Publication number Publication date
EP3192825A4 (en) 2018-03-14
EP3192825A1 (en) 2017-07-19
JPWO2016039213A1 (ja) 2017-06-22
US20170253740A1 (en) 2017-09-07
JP6733546B2 (ja) 2020-08-05
CN106687507A (zh) 2017-05-17
US10138377B2 (en) 2018-11-27

Similar Documents

Publication Publication Date Title
JP6733546B2 (ja) ゴム組成物およびリグニン誘導体の製造方法
JP6541007B2 (ja) フェノール変性リグニン樹脂及びその製造方法、並びに、樹脂組成物、ゴム組成物、及び硬化物
JP6555531B2 (ja) 樹脂組成物、およびゴム組成物
JP6422708B2 (ja) ゴム補強用のリグニン誘導体の製造方法、リグニン樹脂組成物の製造方法およびゴム組成物の製造方法
JP6406948B2 (ja) ゴム補強用のリグニン誘導体、ゴム補強用のリグニン誘導体の製造方法、リグニン樹脂組成物およびゴム組成物
JP2023024831A (ja) 改質リグニンの製造方法及び改質リグニン、並びに改質リグニン含有樹脂組成材料
WO2015056757A1 (ja) 樹脂組成物、ゴム組成物、および硬化物
US20160215143A1 (en) Resin composition, molded body, and production method
TW201726769A (zh) 純化木質素之製造方法、純化木質素、樹脂組成物及成形體
JPWO2019031609A1 (ja) 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料
JP7215046B2 (ja) フェノール変性リグニン樹脂を含有する樹脂材料の製造方法、それを用いた構造体の製造方法
JP2007002032A (ja) 変性フェノール樹脂とその製造方法、および変性フェノール樹脂組成物
JP6645440B2 (ja) リグニン樹脂組成物、硬化物および成形物
JP2010229364A (ja) 変性フェノール樹脂とその製造方法、変性フェノール樹脂組成物、及び、ゴム配合組成物
JP2012162603A (ja) 空気入りタイヤ
JP7279865B2 (ja) リグニン変性ノボラック型フェノール樹脂の製造方法
JP2014051573A (ja) ゴム組成物、硬化物およびタイヤ
WO2022145280A1 (ja) リグニン組成物及びその使用
EP4321548A1 (en) Heat-curable resin composition for friction material, and friction material
JP2012180438A (ja) ゴム配合用変性フェノール樹脂組成物
JP2013049746A (ja) ゴム配合用フェノール樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547387

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15509331

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015840209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015840209

Country of ref document: EP