WO2016038898A1 - 組成物 - Google Patents

組成物 Download PDF

Info

Publication number
WO2016038898A1
WO2016038898A1 PCT/JP2015/004639 JP2015004639W WO2016038898A1 WO 2016038898 A1 WO2016038898 A1 WO 2016038898A1 JP 2015004639 W JP2015004639 W JP 2015004639W WO 2016038898 A1 WO2016038898 A1 WO 2016038898A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transparent conductive
composition
carbon atoms
conductive film
Prior art date
Application number
PCT/JP2015/004639
Other languages
English (en)
French (fr)
Inventor
直子 荒井
師健 中村
佐々木 健一
篤史 八百
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2016547707A priority Critical patent/JPWO2016038898A1/ja
Publication of WO2016038898A1 publication Critical patent/WO2016038898A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a composition, a conductive material obtained from the composition, a transparent conductive film, a transparent conductive film-containing substrate containing the transparent conductive film, and a touch panel, a liquid crystal display, an organic EL display, an organic EL lighting, and a solar cell using these.
  • the present invention relates to a method for producing a transparent conductive layer-containing substrate using an electrical device such as a light control film, a light control glass and a transparent heater, and a composition.
  • the transparent conductive film is a transparent electrode such as a liquid crystal display (LCD), plasma display panel (PDP), organic electroluminescence (OLED), solar cell (PV) and touch panel (TP), antistatic (ESD) film and electromagnetic wave shielding ( It is used in various fields such as EMI) film and requires low surface resistance, high light transmittance, and high reliability.
  • ITO indium tin oxide
  • ITO indium tin oxide
  • indium used in ITO has problems of supply insecurity and price increase.
  • a manufacturing apparatus becomes large-scale and manufacturing time and cost are large.
  • the ITO film is easily broken due to cracks caused by physical stress such as bending.
  • high heat is generated during sputtering of the ITO film, the polymer of the flexible base material is damaged, so that it is difficult to apply to a base material provided with flexibility. Therefore, the search of the conductive layer material which can solve these problems instead of ITO is actively advanced.
  • Patent Document 1 conductive material containing metal nanowires
  • the transparent conductive film using metal nanowires has a technique of crimping the intersection of metal nanowires, plating metal nanowires, or firing at high temperature in order to reduce (that is, improve) the surface resistance.
  • the process becomes complicated.
  • high temperature baking has the problem that a base material is limited.
  • the objective of this invention is providing the composition which can manufacture the transparent conductive film which is excellent in surface resistance, board
  • compositions and the like are provided.
  • A a metal nanowire
  • B A composition comprising one or more selected from a polyanion and an anionic monomer.
  • 4. The composition according to any one of 1 to 3, wherein the metal nanowire is a silver nanowire. 5. 5.
  • the present invention it is possible to provide a composition capable of producing a transparent conductive film excellent in surface resistance, substrate adhesion and total light transmittance without complicated processes by low-temperature drying.
  • composition of the present invention comprises (A) metal nanowires and (B) one or more selected from polyanions and anionic monomers.
  • C) a dispersion medium (solvent) is usually included, and these components are dispersed or dissolved in the dispersion medium.
  • Metal nanowire forms a network in the coating film obtained from a composition, and provides electroconductivity to a coating film.
  • a metal constituting the metal nanowire any one selected from the group consisting of gold, silver, platinum, copper, nickel, iron, cobalt, zinc, ruthenium, rhodium, palladium, cadmium, osmium, iridium, or An alloy composed of two or more selected from the group can be used.
  • a metal nanowire may be used individually by 1 type, and may be used in combination of 2 or more type. From the viewpoint of obtaining high total light transmittance and high conductivity, gold nanowires, silver nanowires or copper nanowires are preferable, and silver nanowires are more preferable.
  • the shape of the metal nanowire can be any shape, such as a columnar shape, a rectangular parallelepiped shape, or a columnar shape with a polygonal cross section. However, in applications where high transparency is required, the columnar shape or the cross section is 5 What is a polygon more than a square is preferable.
  • the cross-sectional shape of the metal nanowire can be detected by applying a metal nanowire dispersion on the substrate and observing the cross-section with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the average diameter of the metal nanowires is preferably 150 nm or less, more preferably 100 nm or less, further preferably 50 nm or less, and particularly preferably 45 nm or less. In order to ensure durability, the average diameter of the metal nanowires is more preferably 5 nm or more, and may be 10 nm or more and 20 nm or more.
  • the average length of the metal nanowires is preferably 1 ⁇ m to 100 ⁇ m, more preferably 3 ⁇ m to 50 ⁇ m, and even more preferably 5 ⁇ m to 30 ⁇ m. If the average length of the metal nanowire is too long, there is a concern that aggregates are produced during the production of the metal nanowire, and if the average length is too short, sufficient conductivity may not be obtained.
  • the average diameter and average length of the metal nanowires can be measured using a transmission electron microscope (TEM), scanning electron microscope (SEM), or optical microscope, depending on the size of the metal nanowire. Measure by observing.
  • An average diameter can observe 100 metal nanowires, can measure the length of the shortest part by the measurement of each short-axis direction, and can make the average value an average diameter.
  • an average length can observe 100 metal nanowires, can measure each length, and can make the average value an average length.
  • the average diameter and average length of the metal nanowire in a transparent conductive layer measure about the metal nanowire observed in the visual field centering on the intersection of the diagonal line of a transparent conductive layer.
  • the field of view is further expanded to perform measurement.
  • the aspect ratio of the metal nanowire is not particularly limited as long as it is 10 or more and can be appropriately selected according to the purpose, but is preferably 50 to 1,000,000, more preferably 100 to 1,000,000. preferable.
  • the aspect ratio generally means the ratio between the long side and the short side of the fibrous material (ratio of average length / average diameter), and is calculated from the values of the average length and average diameter measured by the above method. it can.
  • a polyanion is a polymer having a structural unit having an anion group.
  • the anionic group include a sulfonic acid group (sulfo group), a monosubstituted sulfate group, a monosubstituted phosphate group, a phosphoric acid group, and a carboxyl group, and a sulfonic acid group, a phosphoric acid group, and a carboxyl group are preferable. That is, the polyanion is preferably a sulfonic acid group-containing polymer, a phosphoric acid group-containing polymer, or a carboxyl group-containing polymer.
  • the polyanion may be in a salt state.
  • sulfonic acid group-containing polymer examples include polystyrene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, and the like. Can be mentioned.
  • phosphoric acid group-containing polymer include polyphosphoric acid and polyphosphoric acid ester.
  • carboxyl group-containing polymer examples include polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic. An acid etc. are mentioned.
  • the polyanion may be contained alone or in combination of two or more. Further, a copolymer may be formed with a structural unit having an anionic group and a monomer having no anionic group, such as acrylate, methacrylate and styrene.
  • An anionic monomer is a polymerizable compound having an anionic group, and specifically, a compound containing an anionic group and a group having a carbon-carbon double bond is preferred.
  • the anionic group is as described above.
  • a vinyl group, an acrylic group, and the like are preferable.
  • the anionic monomer is preferably a vinyl monomer containing a sulfo group. Examples of the anionic monomer include vinyl sulfonic acid, 2-acrylamido-2-propyl sulfonic acid, and acrylamide t-butyl sulfonic acid.
  • An anionic monomer may be used independently and may combine 2 or more types. Moreover, you may combine with the anion group non-containing monomer.
  • the dispersion medium is not particularly limited as long as it can uniformly mix and disperse or dissolve the above components.
  • organic dispersion media such as alcohols, aromatic hydrocarbons, ethers, esters, etc.
  • specific examples of alcohols include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, and n-hexyl alcohol.
  • N-octyl alcohol ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether, 1-methoxy-2-propanol (propylene glycol monomethyl ether), propylene monomethyl ether acetate , Diacetone alcohol, methyl cellosolve, ethyl cellosolve, propyl cellosolve, butyl cellosolve, benzyl alcohol Mention may be made of the call and the like.
  • dispersion media examples include tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, xylene, dichloroethane, toluene, methyl acetate, ethyl acetate, ethoxyethyl acetate, and the like.
  • dispersion media water and alcohols are preferable from the viewpoint of performance as a dispersion medium.
  • Dispersion media may be used alone or in combination of two or more.
  • an organic solvent for example, alcohol such as ethanol or isopropyl alcohol
  • a mixed solvent of water and an organic solvent for example, alcohol such as ethanol or isopropyl alcohol
  • Water is excellent in dispersibility of silver nanowires, and an organic solvent can reduce the repelling of the composition on the substrate. Therefore, it is preferable to mix an organic solvent and water and use it as a mixed solvent.
  • the amount of water added relative to a total of 100 parts by mass of the components other than the dispersion medium (component (C)) in the composition is preferably 1000 to 20000 parts by mass when water is added. If it is 20000 mass parts or less, the flip on a board
  • the composition of the present invention may appropriately contain various known additive components used in conventional compositions as necessary.
  • additive components include various silane compounds, organic polymer fine particles, inorganic fine particles, polymerization initiators, dispersion stabilizers, leveling agents, lubricity imparting agents, antioxidants, antisulfurizing agents, and metal corrosion.
  • Antibacterial agents, antiseptics, bluing agents, antifoaming agents (antifoaming agents), light stabilizers, weathering agents, colorants, viscosity modifiers, fine particle dispersants (antisettling agents) and fine particle surface activity A modifier etc. can be mentioned.
  • silane compound examples include the following compounds (D-1) to (D-7).
  • (D-1) Silane Compound Having Amino Group and Alkoxy Group An amino group-containing organoalkoxysilane compound and a partial condensate thereof, which are silane compounds having an amino group and an alkoxy group, can be represented by the following formula (3), for example. it can.
  • R 4 represents an alkyl group having 1 to 4 carbon atoms; a phenyl group; or an amino group (—NH 2 group), an aminoalkyl group [— (CH 2 ) x —NH 2 group (wherein x is 1 to An integer of 3)])), an alkylamino group [—NHR group (wherein R is an alkyl group having 1 to 3 carbon atoms)] and an alkyl group having 1 to 3 carbon atoms substituted with one or more groups
  • at least one of R 4 is an alkyl group having 1 to 3 carbon atoms substituted with any of an amino group, an aminoalkyl group and an alkylamino group.
  • R 5 is an alkyl group having 1 to 4 carbon atoms, and b is 1 or 2. If R 4 is plural, R 4 may be the same or different, the plurality of OR 5 may be the same or different.
  • the alkyl group having 1 to 3 carbon atoms and the alkyl group having 1 to 4 carbon atoms are the same as those in formula (1) or (2) described later.
  • (D-2) Tetraalkoxysilane Compound The tetraalkoxysilane compound and the partial condensate thereof can be represented, for example, by the following formula (1), and the compound represented by the following formula (6) is particularly preferable.
  • Si (OR 1 ) 4 (1) [Wherein, R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkoxyalkyl group having 1 to 4 carbon atoms. A plurality of R 1 may be the same or different. ]
  • examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and various butyl groups.
  • the OR 1 is an alkoxyalkyl group having 1 to 4 carbon atoms, for example, 2-methoxyethoxy group, and 3-methoxypropoxy group.
  • Organoalkoxysilane compound containing no amino group, epoxy group or isocyanate group is preferably bifunctional alkoxysilanes and trifunctional alkoxysilanes.
  • it can be represented by the following formula (2), and a compound represented by the following formula (7) is particularly preferable.
  • R 2 is an alkyl group having 1 to 10 carbon atoms, a fluorinated alkyl group or phenyl group having 1 to 10 carbon atoms
  • R 3 is an alkyl group having 1 to 4 carbon atoms or an alkoxyalkyl having 1 to 4 carbon atoms.
  • a is 1 or 2.
  • R 2 are a plurality, the plurality of R 2 may be the same or different, a plurality of OR 3 may be the same or different.
  • the alkyl group having 1 to 10 carbon atoms may be linear or branched, and examples thereof include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • Examples of the fluorinated alkyl group include a trifluoroethyl group and a trifluoropropyl group.
  • Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • the alkyl group or alkoxyalkyl group having 1 to 4 carbon atoms is as described in the formula (1).
  • (D-4) Silane Compound Having Epoxy Group and Alkoxy Group The epoxy group-containing organoalkoxysilane compound and its partial condensate, which are silane compounds having an epoxy group and an alkoxy group, can be represented by the following formula (4), for example. it can.
  • R 6 is an alkyl group having 1 to 4 carbon atoms; a phenyl group; or a glycidoxy group or a 3,4-epoxycyclohexyl group substituted with one or more groups selected from 1 to 6 carbon atoms (preferably Is an alkyl group having 1 to 4 carbon atoms, and at least one R 6 has 1 to 6 carbon atoms (preferably 1 to 4 carbon atoms) substituted with a glycidoxy group or a 3,4-epoxycyclohexyl group. It is an alkyl group.
  • R 7 is an alkyl group having 1 to 4 carbon atoms, and c is 1 or 2. If R 6 is plural, R 6 may be the same or different, a plurality of OR 7 may be the same or different. ]
  • the alkyl group having 1 to 4 carbon atoms is as described in the above formula (1), and the alkyl group having 1 to 6 carbon atoms has 1 to 10 carbon atoms in the above formula (2).
  • R 6 has 1 to 6 carbon atoms (preferably 1 to 4 carbon atoms) substituted with one or more groups selected from alkyl groups having 1 to 4 carbon atoms, glycidoxy groups, and 3,4-epoxycyclohexyl groups.
  • an alkyl group having 1 to 4 carbon atoms (preferably 1 to 4 carbon atoms) substituted with an alkyl group having 1 to 4 carbon atoms or a glycidoxy group.
  • R 7 is an alkyl group having 1 to 4 carbon atoms.
  • c is 2.
  • (D-5) Blocked Isocyanate Silane Compound Having Alkoxy Group
  • the blocked isocyanate group-containing organoalkoxysilane compound and its partial condensate, which are blocked isocyanate silane compounds having an alkoxy group, are represented, for example, by the following formula (5): be able to.
  • R 8 is an alkyl group having 1 to 4 carbon atoms; a phenyl group; an alkyl group having 1 to carbon atoms which is substituted by or blocked isocyanate group 6 (preferably 1 to 4 carbon atoms), R 8 At least one of these is an alkyl group having 1 to 6 carbon atoms (preferably 1 to 4 carbon atoms) substituted with a blocked isocyanate group.
  • R 9 is an alkyl group having 1 to 4 carbon atoms, and d is 1 or 2. If R 8 is plural, R 8 may be the same or different, a plurality of OR 9 may be the same or different.
  • the alkyl group having 1 to 4 carbon atoms and the alkyl group having 1 to 6 carbon atoms are as described in the above formula (1) or (4).
  • R 8 is an alkyl group having 1 to 4 carbon atoms or an alkyl group having 1 to 6 carbon atoms (preferably having 1 to 4 carbon atoms) substituted with a blocked isocyanate group.
  • R 9 is an alkyl group having 1 to 4 carbon atoms.
  • d is 1.
  • (D-6) Silane compound having a carbon-carbon double bond (D-6)
  • the component is a silane compound containing a group having a carbon-carbon double bond such as a vinyl group, an acrylic group, or a methacryl group, preferably Contains an alkoxy group.
  • a silane compound having a carbon-carbon double bond such as a vinyl group, an acrylic group, or a methacryl group, preferably Contains an alkoxy group.
  • UV curing photocuring
  • EB curing electron beam curing
  • a silane compound having a carbon-carbon double bond and a partial condensate thereof can be represented, for example, by the following formula (20).
  • R 20 e Si (OR 21 ) 4-e (20) [Wherein R 20 represents an alkyl group having 1 to 4 carbon atoms; a vinyl group; or a carbon group having 1 to 6 carbon atoms substituted with a substituent having one or more groups selected from vinyl group, acrylic group and methacryl group.
  • at least one of R 20 is a carbon number substituted with a substituent having one or more groups selected from vinyl group, acrylic group and methacryl group. It is an alkyl group having 1 to 6 (preferably 1 to 4 carbon atoms).
  • R 21 is an alkyl group having 1 to 4 carbon atoms, and e is 1 or 2. If R 20 there are a plurality, the plurality of R 20 may be the same or different, a plurality of OR 21 may be the same or different. ]
  • the alkyl group having 1 to 6 carbon atoms and the alkyl group having 1 to 4 carbon atoms are as described in the formula (1) or (4).
  • R 20 has 1 to 6 carbon atoms (preferably 1 to 4 carbon atoms) substituted with one or more groups selected from an alkyl group having 1 to 4 carbon atoms, or a vinyl group, an acrylic group and a methacryl group. ) Alkyl group.
  • e is 1.
  • the alkyl group having 1 to 6 carbon atoms (preferably having 1 to 4 carbon atoms) substituted with a substituent having one or more groups selected from a vinyl group, an acrylic group and a methacryl group is preferably a vinyl group
  • a silane compound having a mercapto group and an alkoxy group is a silane compound containing a group having a thiol group (IUPAC; also known as a hydroxyl group, a mercapto group, or a sulfhydryl group). Including an alkoxy group.
  • IUPAC thiol group
  • Organic polymer fine particles examples include those obtained by polymerizing an ethylenically unsaturated compound (acrylic acid, methacrylic acid and derivatives thereof, styrene, vinyl acetate, etc.).
  • the organic polymer fine particles preferably have an average particle diameter in the range of 1 to 200 nm from the viewpoints of manufacturability, dispersibility in the composition, coating property of the composition, transparency of the coating film, and the like. What is in the range of 100 nm is more preferable.
  • the average particle size of the organic polymer fine particles can be measured by a dynamic light scattering method.
  • the dynamic light scattering method for example, a solution obtained by diluting organic polymer fine particles 100 times with ion-exchanged water is measured using a dynamic light scattering particle size distribution measuring device (Beckman Coulter Co., Ltd., Coulter Counter N5).
  • the average particle size is obtained by unimodal analysis (monodisperse mode analysis). This is repeated 5 times, and the average value of the average particle diameter for 5 times can be made the average particle diameter of the organic polymer.
  • the average particle diameter of the organic polymer fine particles is D and the average length of the conductive nanofibers is L, it is preferable that D / L ⁇ 0.010, and more preferably D / L ⁇ 0.0050.
  • the organic polymer fine particles are preferably used in a form dispersed in a dispersion medium.
  • the dispersion medium include water, methanol, ethanol, propanol, 1-methoxy-2-propanol, and the like.
  • Preferred examples include alcohols and cellosolves such as methyl cellosolve.
  • organic polymer fine particles include emulsion-based polymer ultraviolet absorbers ULS-700, ULS-1700, ULS-383MA, ULS-1383MA, ULS-383MG, ULS-385MG, and ULS manufactured by Otsuka Kogyo Co., Ltd. -1383MG, ULS-1385MG, ULS-635MH, etc., Nissin Chemical Industry Co., Ltd. Vinibrand 700, 701, 711, Nippon Zeon Co., Ltd. Nipol series, etc. are mentioned.
  • the organic polymer fine particles may be used alone or in combination of two or more.
  • the inorganic fine particles include metal fine particles such as silver and copper, and metal oxide fine particles such as colloidal silica, titanium oxide, cerium oxide, zirconium oxide, ITO, and ATO (antimony trioxide).
  • the inorganic fine particles are preferably colloidal silica.
  • Colloidal silica is also called colloidal silica or colloidal silicic acid. In water, it refers to a colloidal suspension of silicon oxide having Si—OH groups on its surface by hydration, and is formed when hydrochloric acid is added to an aqueous solution of sodium silicate.
  • new preparation methods have been developed one after another, including those dispersed in non-aqueous solutions and fine powders made by the gas phase method, and hollow types with particle sizes from several nanometers. It is various up to several ⁇ m.
  • the average particle diameter of the inorganic fine particles is preferably about 1 to 200 nm.
  • the composition of the particles is indeterminate, and some particles are polymerized by forming siloxane bonds (—Si—O—, —Si—O—Si—).
  • the particle surface is porous and is generally negatively charged in water.
  • the average particle diameter is assumed to be true particles after, for example, drying, firing and pulverizing inorganic fine particles, and then obtaining the BET specific surface area by a nitrogen adsorption method using a BET specific surface area measuring device (Monosorb MS-17). It can be measured by converting to the particle size of time. When the average particle system cannot be measured due to the BET specific surface area, it may be measured by the X-ray small angle scattering method.
  • the average particle diameter of the inorganic fine particles is D and the average length of the conductive nanofibers is L, it is preferably D / L ⁇ 0.010, and more preferably D / L ⁇ 0.0050.
  • colloidal silica includes “Ultra High-Purity Colloidal Silica” Quartron PL series (product names: PL-1, PL-3, PL-7) manufactured by Fuso Chemical Industry Co., Ltd., Nissan “High-Purity Organosol”, Nissan “Colloidal silica (product names: Snowtex 20, Snowtex 30, Snowtex 40, Snowtex O, Snowtex O-40, Snowtex C, Snowtex N, Snowtex S, Snowtex 20L, Snow Tex OL, etc.) and “organosilica sol (product names: methanol silica sol, MA-ST-MS, MA-ST-L, IPA-ST, IPA-ST-MS, IPA-ST-L, IPA-ST-ZL, IPA) -ST-UP, EG-ST, NPC-ST-30, MEK-ST, MEK-ST MS, MIBK-ST, XBA-ST, PMA-ST, DMAC-ST, PGM-ST, etc.) "can be mentioned.
  • the composition when an anionic monomer is used as the component (B), the composition preferably contains a polymerization initiator.
  • the polymerization initiator is decomposed by at least one of light and heat to generate radicals or cations to advance radical polymerization and cationic polymerization.
  • radical polymerization initiators, cationic polymerization initiators, radicals and cationic polymerization initiators can be appropriately selected and used.
  • the radical polymerization initiator may be any substance that can release a substance that initiates radical polymerization by light and / or heat.
  • photo radical polymerization initiators include imidazole derivatives, bisimidazole derivatives, N-aryl glycine derivatives, organic azide compounds, titanocenes, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, thioxanthone derivatives, and the like. It is done. Specific examples include those described in JP 2010-102123 A and JP 2010-120182 A.
  • the cationic polymerization initiator only needs to be capable of releasing a substance that initiates cationic polymerization by at least one of light and heat.
  • Cationic polymerization initiators include sulfonic acid esters, imide sulfonates, dialkyl-4-hydroxysulfonium salts, arylsulfonic acid-p-nitrobenzyl esters, silanol-aluminum complexes, ( ⁇ 6-benzene) ( ⁇ 5-cyclopentadienyl) Examples include iron (II). Specific examples include those described in JP 2010-102123 A and JP 2010-120182 A.
  • radical polymerization initiators and cationic polymerization initiators examples include aromatic iodonium salts, aromatic sulfonium salts, aromatic diazonium salts, aromatic phosphonium salts, triazine compounds, and iron arene complexes. Specific examples include those described in JP 2010-102123 A and JP 2010-120182 A.
  • a leveling agent can be added to the composition in order to improve the smoothness of the resulting coating film and the flowability during coating.
  • these additives include silicone leveling agents and fluorine leveling agents.
  • silicone leveling agent a copolymer of polyoxyalkylene and polydimethylsiloxane can be used.
  • Commercially available silicone leveling agents include FZ-2118, FZ-77, FZ-2161, etc. manufactured by Toray Dow Corning Co., Ltd., KP321, KP323, KP324, KP326, KP340, KP341, etc. manufactured by Shin-Etsu Chemical Co., Ltd., etc.
  • BYK-325, BYK-330, BYK-331, BYK-333, BYK-337, BYK-341, BYK-344, BYK-345, BYK-346, BY -348 may be mentioned BYK-377, BYK-378, BYK-UV3500, BYK-3510, BYK-3570 and the like polyether-modified silicone oil (polyoxyalkylene-modified silicone oil) and the like.
  • an aralkyl-modified silicone oil having a polyester modification or a benzene ring is suitable.
  • polyester-modified silicone oils include BYK-310, BYK-315, BYK-370, etc. manufactured by BYK Japan, Inc., and examples of BYK-310, BYK-315 manufactured by BYK Japan Japan, -322, BYK-323, and the like.
  • fluorine leveling agent a copolymer of polyoxyalkylene and fluorocarbon can be used.
  • fluorine leveling agents include MEGAFAC series manufactured by DIC Corporation, FC series manufactured by Sumitomo 3M Corporation, and the like.
  • acrylic leveling agents include BYK-350, BYK-352, BYK-354, BYK-355, BYK358N, BYK-361N, BYK-380N, BYK-382, BYK-392 manufactured by Big Chemie Japan Co., Ltd. And BYK-340 into which fluorine is introduced.
  • the finished appearance of the coating film is improved, and it can be uniformly applied as a thin film.
  • the amount of the leveling agent used is preferably 0.01 to 10% by mass, more preferably 0.02 to 5% by mass, based on the total amount of the composition.
  • it may be blended when preparing the composition, or may be blended into the composition immediately before forming the coating film, and further, preparation of the composition and formation of the coating film. You may mix
  • composition of this invention Although content of each component in the composition of this invention can be selected suitably, it is preferable to select so that it may become the range shown below, for example.
  • content of each component with respect to the total amount of the components in the composition is expressed by mass%, excluding the dispersion medium of component (C).
  • the dispersion medium is included in the component (C).
  • component (A) is, for example, 5 to 98% by mass (wt%), preferably 10 to 75% by mass, and more preferably 20 to 60% by mass. When it is 5% by mass or more, the conductivity is good, and when it is 98% by mass or less, the adhesion to the substrate is excellent.
  • component (B) is usually 2 to 95% by mass, preferably 5 to 90% by mass, and more preferably 5 to 70% by mass. When it is 2% by mass or more, the adhesiveness to the substrate is excellent, and when it is 95% by mass or less, the conductivity is good.
  • the composition of the present invention may consist essentially of the component (A), the component (B), the component (C) and the optional additive component. Moreover, you may consist only of (A) component, (B) component, (C) component, and arbitrary addition components. “Substantially only the component (A), the component (B), the component (C) and the optional additive component” means 95% by mass to 100% by mass (preferably 98% by mass to 100% by mass) of the composition. The following) means (A) component, (B) component, and (C) component, or (A) component, (B) component, (C) component, and optional addition components.
  • the composition may contain inevitable impurities in addition to the component (A), the component (B), the component (C), and the optional additive component as long as the effects of the present invention are not impaired.
  • composition of the present invention may or may not contain one or more selected from a polymer that does not contain an anionic group and a monomer that does not contain an anionic group.
  • a polymer that does not contain an anionic group examples include polyurethane, and examples of the monomer not containing an anionic group include acryloylmorpholine.
  • this component is usually 5 to 40% by mass and 10 to 35% by mass.
  • composition of this invention can be prepared by mixing said each component by a well-known method.
  • the component (A) and the component (B) may be previously dispersed in a dispersion medium and then mixed with other components.
  • a conductive substance can be obtained by drying the composition of the present invention.
  • a transparent conductive film (layer) can be obtained by applying and drying the composition of the present invention on a substrate or the like.
  • the component (A), the component (B) and the optional additive component are dispersed or dissolved in the film.
  • the transparent conductive film is obtained by forming a coating film by applying the composition onto a substrate.
  • the application is performed by a known method such as spin coater, spray, dipping, curtain flow, bar coater, die coater, blade coater, gravure coater, or roll coating.
  • the thickness of the coating film is preferably 10 to 500 nm, more preferably 30 to 200 nm. Thereafter, under appropriate drying conditions (usually 10 to 190 ° C., preferably 25 to 150 ° C., more preferably 80 to 140 ° C.), about 30 seconds to 24 hours, preferably 1 to 60 minutes, more preferably 2 A transparent conductive layer can be obtained by heat drying for 60 minutes.
  • composition of the present invention contains an anionic monomer as the component (B), photocuring (UV curing) and electron beam curing (EB curing) are possible.
  • UV curing photocuring
  • EB curing electron beam curing
  • Examples of the resin that can be used for the base material include polyethylene, polypropylene, cycloolefin resins (eg, “ARTON” manufactured by JSR Corporation, “ZEONOR” “ZEONEX” manufactured by Nippon Zeon Co., Ltd.), polymethylpentene, and the like.
  • Polyolefin resins polyethylene terephthalate, polybutylene terephthalate, polyester resins such as polyethylene naphthalate, cellulose resins such as diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, polystyrene, syndiotactic polystyrene, acrylonitrile butadiene, Styrene resins such as styrene resin (ABS resin), imide resins such as polyimide, polyetherimide and polyamideimide, polyamide resins such as nylon, polyether Ketone resins such as ketone and polyether ether ketone, sulfone resins such as polysulfone and polyethersulfone, vinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride, acrylic resins such as polymethyl methacrylate, polycarbonate resins , Polyphenylene sulfide, polyacetal, modified polyphenylene
  • polyester resins particularly polyethylene terephthalate
  • polyolefin resins and polycarbonate resins are preferable.
  • the base material made of these resins may be either transparent or translucent, may be colored, or may be uncolored, and may be appropriately selected depending on the application. It is excellent in transparency and preferably has no color. Moreover, a base material is not limited to a resin-made base material, A glass base material may be sufficient.
  • the thickness of the substrate is not particularly limited and is appropriately selected depending on the situation, but is usually about 5 ⁇ m to 30 mm, preferably 15 ⁇ m to 10 mm.
  • the composition of the present invention can form a coating film on a substrate with good adhesion, but in order to further improve the adhesion, at least the surface of the substrate on which the coating film is formed is optionally formed.
  • the surface treatment can be performed by an oxidation method, an unevenness method, or the like.
  • the oxidation method include corona discharge treatment, plasma treatment such as low pressure plasma method and atmospheric pressure plasma method, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, electron beam treatment, and intro treatment.
  • examples of the roughening method include a sand blast method and a solvent treatment method.
  • the corona discharge treatment method is preferably used from the viewpoints of curing and operability.
  • a surface treatment with a silane coupling agent or a primer layer can be provided. It is also possible to provide a layer having functions such as a hard coat layer for preventing scratches and an index coating layer for adjusting the refractive index.
  • the total light transmittance of the transparent conductive layer of the present invention is preferably 85 to 100%, more preferably 90 to 100%, still more preferably 95 to 100%.
  • the haze of the transparent conductive layer of the present invention is preferably 3.0% or less, more preferably 2.0% or less.
  • the surface resistance of the transparent conductive layer of the present invention is preferably 5 ⁇ / ⁇ or more and less than 200 ⁇ / ⁇ , more preferably 5 to 150 ⁇ / ⁇ , still more preferably 5 to 100 ⁇ / ⁇ , and particularly preferably 5 to 80 ⁇ / ⁇ , ⁇ 50 ⁇ / ⁇ . These physical properties are measured by the measuring methods described in the examples.
  • the transparent conductive layer of the present invention may be patterned.
  • a known wet etching process such as photolithography or a laser etching process can be applied as it is. It is also possible to print the pattern directly by screen printing, flexographic printing, ink jet printing or the like. Although a patterning process is not specifically limited, Wet etching and laser etching can be used suitably.
  • the patterning method by wet etching includes general photolithography using a photoresist and a photomask, a method of printing and applying an etchant in accordance with a pattern for forming a non-conductive region, and a method of applying an etchant through a non-corrosive mask and so on.
  • photolithography can be suitably used in terms of reproducibility and accuracy.
  • a dry film that transfers a photosensitive film can be used instead of the photoresist.
  • a resist solution is applied on the formed transparent conductive layer to form a resist layer.
  • the resist layer is patterned by irradiating the resist layer with ultraviolet rays using a photomask and then developing the resist layer.
  • the transparent conductive layer not covered with the resist layer is removed by etching, and the remaining resist portion is peeled off to obtain a patterned transparent conductive layer.
  • an acidic agent that dissolves the metal nanowires or cuts and shortens the metal nanowires can be used.
  • the metal nanowire such as silver nanowire
  • an inorganic acid such as hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, hydrochloric acid, acetic acid, or an organic acid such as methanesulfonic acid
  • the mixed acid containing these in combination can also be used.
  • hydrobromic acid and nitric acid are preferable.
  • Metal nanowires such as silver nanowires are, for example, iron (III) nitrate (ferric nitrate), iron (III) chloride (ferric chloride), and copper (II) chloride (second chloride).
  • An aqueous solution of a metal compound such as (copper solution), a hydrogen peroxide solution, a mixture thereof, or the like can be used.
  • it may be used by mixing with acid or alkali.
  • a mixed aqueous solution of copper (II) chloride and hydrochloric acid, a mixed solution of hydrogen peroxide water and ammonia water, and the like can be suitably used.
  • Alkaline etchants can also be used.
  • the alkaline etchant of metal nanowires such as silver nanowires include sodium hydroxide aqueous solution and potassium hydroxide aqueous solution.
  • Use commercially available etchants such as SEA-NW01, SEA-NW02, SEA-1, ITO-02 (manufactured by Kanto Chemical Co., Inc.), GNW203, GNW300, GNW410 (manufactured by Hayashi Junyaku Kogyo Co., Ltd., Pure Etch series). Can do.
  • the etching processing temperature and processing time are not particularly limited, but are preferably set according to the type of etching solution and the thickness of the sample. In the optimum state, the optical characteristics such as haze and total light transmittance are the same as those before the treatment, and the surface resistance of the etched region is 10 4 ⁇ / ⁇ or more. If the treatment is insufficient, the insulation properties are insufficient, and if the treatment is excessive, damage to the binder resin or the base material may occur to deteriorate the optical characteristics.
  • partial etching can be performed in which metal nanowires such as silver nanowires are not completely dissolved but are cut into short fibers to form non-conductive regions. .
  • electrical_connection part and a non-conduction part can be made small, and the visibility of a pattern can be made low.
  • Laser etching can be suitably used as a dry etching method for patterning the transparent conductive layer.
  • the conductive layer is made non-conductive by evaporating and removing the conductive layer with the condensed laser light.
  • the laser light source include pulsed laser light such as YAG and YVO 4 and continuous wave laser light such as a carbon dioxide gas laser.
  • a pulsed laser beam having a wavelength of 1064 nm such as YAG or YVO 4 or a second harmonic thereof having a wavelength of 532 nm is preferable.
  • the base material containing the transparent conductive film of the present invention can be used for various electric devices, for example, electric devices such as touch panels and liquid crystal displays. Moreover, these can be used for various display devices.
  • the transparent conductive film-containing substrate of the present invention can be produced by applying the composition of the present invention to a substrate.
  • the application method is as described above.
  • the film obtained by coating can be used for about 30 seconds to 24 hours, preferably 1 under appropriate drying conditions (usually 10 to 190 ° C., preferably 25 to 150 ° C., more preferably 80 to 140 ° C.). It is preferable to heat dry for ⁇ 60 minutes, more preferably for 2 minutes to 60 minutes.
  • the transparent conductive film-containing substrate of the present invention can be photocured (UV cured) and electron beam cured (EB cured) in the same manner as the transparent conductive layer, and can be simply patterned in the same manner as described above. can do.
  • 0.5 wt% silver nanowire ethanol dispersion “SLV-series Silver Nanols SLV-NW-35” manufactured by BlueNano (ethanol dispersion with a solid content concentration of 1.25 wt%, average diameter: 35 nm, average length: 10 ⁇ m Ethanol was added to a 0.5 wt% ethanol dispersion.
  • -0.5 wt% polystyrene sulfonic acid aqueous solution Ion exchange water was added to an 18 wt% polystyrene sulfonic acid aqueous solution manufactured by Akzo Nobel Co., Ltd. to obtain a 0.5 wt% aqueous solution.
  • IPA -0.5 wt% vinyl sulfonic acid IPA solution: IPA was added to "VSA-H" (solid content: 100%) manufactured by Asahi Kasei Finechem Co., Ltd. to obtain a 0.5 wt% IPA solution.
  • Example 1 To 100 g of 0.5 wt% silver nanowire IPA dispersion, 100 g of 0.5 wt% polystyrene sulfonic acid aqueous solution was added and stirred at room temperature to prepare a composition. The obtained composition was applied onto a glass substrate with a spin coater at 1500 rpm, and dried at 100 ° C. for 30 minutes to form a transparent conductive layer on the glass substrate.
  • the film thickness of the transparent conductive layer was measured using a stylus-type film thickness meter, and the average value of five points was taken as the film thickness.
  • the substrate was a resin substrate
  • the film thickness of the transparent conductive layer was measured using AFM, and the average of the minimum value and the maximum value of the distance from the substrate was taken as the film thickness.
  • the haze value of the transparent conductive layer is determined based on the base material using a laminate composed of the base material and the transparent conductive layer in accordance with ASTM D1003. It was measured.
  • the surface resistance of the transparent conductive layer was measured by a four-probe measurement method using a low resistivity meter (Loresta-GP MCP-T-610, manufactured by Mitsubishi Chemical Corporation) in accordance with JIS K 7194.
  • Adhesive evaluation A commercially available cellophane tape (Nichiban CT-24 (width: 24 mm)) was applied on the transparent conductive layer and adhered well with a finger pad, and then the cellophane tape was peeled off. Measure the surface resistance of the transparent conductive layer after peeling the cellophane tape. If the surface resistance before sticking the cellophane tape and the resistance after peeling are the same, “ ⁇ ”. If the surface resistance is higher than the equivalent range, It was set as “x”.
  • Example 2 A transparent conductive layer was formed and evaluated in the same manner as in Example 1 except that the composition of the composition was as shown in Table 1. The results are shown in Table 1.
  • Examples 3 and 4 A composition having the composition shown in Table 1 was prepared. The obtained composition was applied onto a glass substrate with a spin coater at 1500 rpm, heated and dried at 100 ° C. for 10 minutes, and then irradiated with UV (integrated light amount 250 mJ / cm 2 ) to form a transparent conductive layer on the glass substrate. Formed. The obtained transparent conductive layer was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Examples 5-7 A transparent conductive layer was formed and evaluated in the same manner as in Example 1 except that the composition of the composition was as shown in Table 1.
  • Example 8 The composition of Example 1 was applied onto a glass substrate with a bar coater using Bar # 6 (SA-203 ROD No. 6 manufactured by Tester Sangyo Co., Ltd.), dried at 100 ° C. for 1 minute, and then applied onto the glass substrate. A transparent conductive layer was formed. The transparent conductive layer was evaluated in the same manner as in Example 1.
  • Example 9 The composition of the composition was as shown in Table 1, and a transparent conductive layer was formed and evaluated in the same manner as in Example 8 except that bar # 8 (SA-203 ROD No. 8 manufactured by Tester Sangyo Co., Ltd.) was used.
  • Example 10 A transparent conductive layer was formed and evaluated in the same manner as in Example 9 except that the substrate was changed to an easily adhesive PET film (Lumirror U48 manufactured by Toray Industries, Inc., thickness 100 ⁇ m).
  • an easily adhesive PET film Limirror U48 manufactured by Toray Industries, Inc., thickness 100 ⁇ m.
  • Example 11 The composition of the composition was as shown in Table 1, and a transparent conductive layer was formed and evaluated in the same manner as in Example 8 except that bar # 8 (SA-203 ROD No. 8 manufactured by Tester Sangyo Co., Ltd.) was used.
  • Example 12 A transparent conductive layer was formed and evaluated in the same manner as in Examples 3 and 4 except that the composition of the composition was as shown in Table 1.
  • Comparative Examples 1 to 3 A transparent conductive layer was formed and evaluated in the same manner as in Example 1 except that the composition of the composition was as shown in Table 1. The results are shown in Table 1. In Comparative Example 3, the film thickness could not be measured because the film was not formed because the binder was not included.
  • the transparent conductive layer formed using the composition of the present invention is excellent in surface resistance.
  • conductive substances, substrates including transparent conductive films, etc. are touch panels, liquid crystal displays, organic EL displays, organic EL lighting, solar cells, light control films, light control glasses, and transparent heaters. It is suitably used for electrical equipment such as. Moreover, the said touch panel is used suitably for a display apparatus.

Abstract

(A)金属ナノワイヤーと、(B)ポリアニオン及びアニオンモノマーから選択される1以上とを含む組成物。

Description

組成物
 本発明は、組成物、それから得られる導電性物質及び透明導電膜、透明導電膜を含む透明導電膜含有基材、及びこれらを用いたタッチパネル、液晶ディスプレイ、有機ELディスプレイ、有機EL照明、太陽電池、調光フィルム、調光ガラス、透明ヒーター等の電気機器、及び組成物を用いた透明導電層含有基材の製造方法に関する。
 透明導電膜は、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、有機エレクトロルミネッセンス(OLED)、太陽電池(PV)及びタッチパネル(TP)等の透明電極、帯電防止(ESD)フィルム並びに電磁波遮蔽(EMI)フィルム等の種々の分野で使用されており、低い表面抵抗、高い光線透過率、高い信頼性が要求される。
 これらの透明電極に用いられる透明導電膜には、従来、ITO(酸化インジウム錫)が用いられてきた。
 しかしながら、ITOに用いられるインジウムは供給不安と価格高騰の問題を抱えている。また、ITOの製膜には、高真空を必要とするスパッタ法が用いられているため、製造装置が大規模となり製造時間とコストが大きい。さらに、ITO膜は曲げ等の物理的な応力によってクラックが発生し壊れ易い。また、ITO膜のスパッタの際に高熱が発生するため、フレキシブル基材の高分子がダメージを受けるので、フレキシブル性を付与した基材に対して適用することは困難である。
 そのため、これらの問題点を解消し得る、ITOに代わる導電層材料の探索が活発に進められている。
 ITOに代わる導電層材料の中でも、スパッタリングが不要で塗布製膜可能な様々な材料が注目を集めており、金属ナノワイヤーを含有する導電性材料(特許文献1及び非特許文献1)が報告されている。
特開2009-505358号公報 米国特許第8618531号明細書 国際公開第2009/035059号パンフレット
Shin-Hsiang Lai,Chun-Yao Ou,"SID 08 DIGEST",2008、P1200-1202
 金属ナノワイヤーを用いた透明導電膜は、表面抵抗を下げるため(即ち改善するため)に金属ナノワイヤーの交点を圧着したり、金属ナノワイヤーをめっきしたり、高温で焼成する手法が取られているが(特許文献2,3)、工程が煩雑になるという問題がある。また、高温焼成は基材が限定されるという問題がある。
 本発明の目的は、低温乾燥によって、複雑な工程を介さずに、表面抵抗、基板密着性及び全光線透過率に優れる透明導電膜を製造することができる組成物を提供することである。
 本発明によれば、以下の組成物等が提供される。
1.(A)金属ナノワイヤーと、
 (B)ポリアニオン及びアニオンモノマーから選択される1以上と
 を含む組成物。
2.前記(A)成分の質量比が、分散媒体を除く組成物中の成分全量に対して5~98wt%である1に記載の組成物。
3.前記金属ナノワイヤーの平均直径が5nm以上150nm以下であり、平均長が1μm以上100μm以下である1又は2に記載の組成物。
4.前記金属ナノワイヤーが銀ナノワイヤーである1~3のいずれかに記載の組成物。
5.前記ポリアニオンが、スルホ酸基含有ポリマー、リン酸基含有ポリマー及びカルボキシル基含有ポリマーから選択される1以上からなる1~4のいずれかに記載の組成物。
6.前記アニオンモノマーが、スルホ基を有するビニルモノマーである1~5のいずれかに記載の組成物。
7.透明導電層形成用組成物である1~6のいずれかに記載の組成物。
8.1~7のいずれかに記載の組成物を乾燥して得られる導電性物質。
9.1~7のいずれかに記載の組成物を塗布又は印刷して得られる透明導電膜。
10.9に記載の透明導電膜を含む透明導電膜含有基材。
11.8に記載の導電性物質、9に記載の透明導電膜、又は10に記載の透明導電膜含有基材を用いたタッチパネル。
12.11に記載のタッチパネルを用いた表示装置。
13.8に記載の導電性物質、9に記載の透明導電膜、又は10に記載の透明導電膜含有基材を用いた電気機器。
14.1~7のいずれかに記載の組成物を基材に塗布することを含む、透明導電層含有基材の製造方法。
 本発明によれば、低温乾燥によって、複雑な工程を介さずに表面抵抗、基板密着性及び全光線透過率に優れる透明導電膜を製造することができる組成物が提供できる。
[組成物]
 本発明の組成物は、(A)金属ナノワイヤーと、(B)ポリアニオン及びアニオンモノマーから選択される1以上とを含む。また、通常、(C)分散媒体(溶媒)を含み、分散媒体中にこれら成分が分散又は溶解した状態である。
 以下、各成分について説明する。
[(A)金属ナノワイヤー]
 金属ナノワイヤーは、組成物から得られる塗膜中でネットワークを形成して塗膜に導電性を与える。
 金属ナノワイヤーを構成する金属としては、金、銀、白金、銅、ニッケル、鉄、コバルト、亜鉛、ルテニウム、ロジウム、パラジウム、カドミウム、オスミウム、イリジウムからなる群から選択されるいずれか1つ、又は当該群から選択される2以上からなる合金等が挙げられる。金属ナノワイヤーは1種を単独で用いてもよく、2種以上を組合せて用いてもよい。高い全光線透過率及び高い導電性を得る観点から、好ましくは金ナノワイヤー、銀ナノワイヤー又は銅ナノワイヤーであり、より好ましくは銀ナノワイヤーである。
 金属ナノワイヤーの形状としては、例えば円柱状、直方体状、断面が多角形となる柱状等任意の形状をとることができるが、高い透明性が必要とされる用途では、円柱状や断面が5角形以上の多角形であるものが好ましい。
 金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより検知することができる。
 金属ナノワイヤーの平均直径は、150nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることがさらに好ましく、45nm以下であることが特に好ましい。耐久性を担保するため、金属ナノワイヤーの平均直径は5nm以上であることがより好ましく、10nm以上、20nm以上としてもよい。
 金属ナノワイヤーの平均長は、1μm~100μmであることが好ましく、3μm~50μmがより好ましく、5μm~30μmがさらに好ましい。金属ナノワイヤーの平均長が長すぎると金属ナノワイヤー製造時に凝集物が生じる懸念があり、平均長が短すぎると、十分な導電性を得ることができない場合がある。
 金属ナノワイヤーの平均直径及び平均長は、金属ナノワイヤーのサイズに応じ、透過型電子顕微鏡(TEM)や走査式電子顕微鏡(SEM)又は光学顕微鏡を用い、TEM像やSEM像、光学顕微鏡像を観察することにより測定する。
 平均直径は、100個の金属ナノワイヤーを観察し、それぞれの短軸方向の測定で最も短い箇所の長さを測定し、その平均値を平均直径とすることができる。また、平均長は、100個の金属ナノワイヤーを観察し、それぞれの長さを測定し、その平均値を平均長とすることができる。金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、及び曲率から算出される値の平均値を平均長とする。
 また、透明導電層中の金属ナノワイヤーの平均直径及び平均長は、透明導電層の対角線の交点を中心とした視野中にて観察される金属ナノワイヤーについて測定を行う。視野中に100個の金属ナノワイヤーがない場合はさらに視野を広げて測定を行う。
 金属ナノワイヤーのアスペクト比としては、10以上であれば特に制限はなく、目的に応じて適宜選択することができるが、50~1,000,000が好ましく、100~1,000,000がより好ましい。
 アスペクト比とは、一般的には繊維状の物質の長辺と短辺との比(平均長/平均直径の比)を意味し、上述の方法で測定した平均長及び平均直径の値から算出できる。
[(B)ポリアニオン(アニオン基含有高分子)]
 ポリアニオンとは、アニオン基を有する構成単位を有する重合体である。アニオン基としては、スルホン酸基(スルホ基)、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシル基等が挙げられ、スルホン酸基、リン酸基及びカルボキシル基が好ましい。即ち、ポリアニオンとしてはスルホン酸基含有ポリマー、リン酸基含有ポリマー及びカルボキシル基含有ポリマーが好ましい。また、ポリアニオンは塩の状態であってもよい。
 スルホン酸基含有ポリマーとしては、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸等が挙げられる。
 リン酸基含有ポリマーとしては、ポリリン酸、ポリリン酸エステル等が挙げられる。
 カルボキシル基含有ポリマーとしては、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。
 ポリアニオンは単独で含有してもよいし、2種類以上を組み合わせて含有してもよい。また、アニオン基を有する構造単位と有さないモノマー、例えばアクリレート、メタクリレート及びスチレン等と共重合体を形成してもよい。
[(B)アニオンモノマー]
 アニオンモノマーとは、アニオン基を有する重合性化合物であり、具体的には、アニオン基と炭素間二重結合を有する基を含む化合物が好ましい。アニオン基は上述した通りである。炭素間二重結合を有する基としては、ビニル基、アクリル基等が好ましい。アニオンモノマーは、スルホ基を含むビニルモノマーが好ましい。
 アニオンモノマーとしては、ビニルスルホン酸、2-アクリルアミド-2-プロピルスルホン酸、アクリルアミドt-ブチルスルホン酸等が挙げられる。アニオンモノマーは、単独で用いてもよく、2種以上を組み合わせてもよい。また、アニオン基非含有モノマーと組み合わせてもよい。
[(C)分散媒体(溶媒)]
 分散媒体は、上記成分を均一に混合し分散又は溶解できるものであれば特に限定されないが、例えば、水の他、アルコール類、芳香族炭化水素類、エーテル類、エステル類等の有機系分散媒体を挙げることができる。
 有機系分散媒体(有機溶媒)のうち、アルコール類の具体例としては、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、n-ヘキシルアルコール、n-オクチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、1-メトキシ-2-プロパノール(プロピレングリコールモノメチルエーテル)、プロピレンモノメチルエーテルアセテート、ジアセトンアルコール、メチルセロソルブ、エチルセロソルブ、プロピルセロソルブ、ブチルセロソルブ、ベンジルアルコール等を挙げることができる。
 その他の分散媒体の具体例としては、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、キシレン、ジクロロエタン、トルエン、酢酸メチル、酢酸エチル、酢酸エトキシエチル等が挙げられる。
 これらの分散媒体の中で、分散媒体としての性能の観点から、水及びアルコール類が好ましい。
 分散媒体は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。例えば、水のみ、有機溶媒(例えばエタノール又はイソプロピルアルコール等のアルコール)のみ、又は水と有機溶媒(例えばエタノール又はイソプロピルアルコール等のアルコール)の混合溶媒が挙げられる。
 水は銀ナノワイヤーの分散性に優れ、有機溶媒は基板上で組成物の弾きを低減することができる。そのため、有機溶媒と水を混合して混合溶媒として用いると好ましい。組成物中の分散媒((C)成分)以外の成分の合計100質量部に対する水の添加量は、水を添加する場合、好ましくは1000~20000質量部である。20000質量部以下であれば基板上での弾きを防止できる。また、水を問題なく除去でき、膜への残存を防止できる。1000質量部以上であれば、銀ナノワイヤーの分散性に優れ、表面抵抗をさらに向上することができる。
[任意添加成分]
 本発明の組成物には、上記成分以外に、必要に応じ、従来組成物に用いられる公知の各種添加成分を適宜含有させることができる。
 そのような添加成分としては、例えば、各種シラン化合物、有機高分子微粒子、無機微粒子、重合開始剤、分散安定剤、レベリング剤、さらには潤滑性付与剤、酸化防止剤、硫化防止剤、金属腐食防止剤、防腐剤、ブルーイング剤、消泡剤(発泡防止剤)、光安定化剤、耐候性付与剤、着色剤、粘度調整剤、微粒子の分散剤(沈降防止剤)や微粒子表面活性の改質剤等を挙げることができる。
〈シラン化合物〉
 シラン化合物としては以下の(D-1)~(D-7)の化合物が挙げられる。
(D-1)アミノ基及びアルコキシ基を有するシラン化合物
 アミノ基及びアルコキシ基を有するシラン化合物である、アミノ基含有オルガノアルコキシシラン化合物及びその部分縮合物は、例えば下記式(3)で表わすことができる。
    R Si(OR4-b    ・・・(3)
[式中、Rは炭素数1~4のアルキル基;フェニル基;又はアミノ基(-NH基)、アミノアルキル基〔-(CH-NH基(ただし、xは1~3の整数)〕)、アルキルアミノ基〔-NHR基(ただし、Rは炭素数1~3のアルキル基)〕の中から選ばれる1以上の基で置換された炭素数1~3のアルキル基であり、Rの少なくとも1つは、アミノ基、アミノアルキル基又はアルキルアミノ基のいずれかで置換された炭素数1~3のアルキル基である。Rは炭素数1~4のアルキル基であり、bは1又は2である。Rが複数ある場合、複数のRは同一でも異なっていてもよく、複数のORは同一でも異なっていてもよい。]
 上記式(3)において、炭素数1~3のアルキル基、炭素数1~4のアルキル基については、後述する式(1)又は(2)と同じである。
(D-2)テトラアルコキシシラン化合物
 テトラアルコキシシラン化合物及びその部分縮合物は、例えば下記式(1)で表すことができ、特に下記式(6)で表される化合物が好適である。
     Si(OR    (1)
[式中、Rは、炭素数1~4のアルキル基又は炭素数1~4のアルコキシアルキル基である。複数のRは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000001
[式中、Rは、上記と同じであり、nは1~15の整数である。]
 式(1)及び(6)において、炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、各種ブチル基が挙げられ、また、Rが炭素数1~4のアルコキシアルキル基であるORとしては、例えば、2-メトキシエトキシ基、3-メトキシプロポキシ基等が挙げられる。
(D-3)アミノ基、エポキシ基及びイソシアネート基を含まないオルガノアルコキシシラン化合物
 オルガノアルコキシシラン化合物として、オルガノアルコキシシラン化合物及びその部分縮合物は、好ましくは2官能アルコキシシラン、3官能アルコキシシランであり、例えば下記式(2)で表わすことができ、特に下記式(7)で表される化合物が好適である。
    R Si(OR4-a    ・・・(2)
[式中、Rは炭素数1~10のアルキル基、炭素数1~10のフッ素化アルキル基又はフェニル基、Rは炭素数1~4のアルキル基又は炭素数1~4のアルコキシアルキル基であり、aは1又は2である。Rが複数ある場合、複数のRは同一でも異なっていてもよく、複数のORは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000002
[式中、R及びRは上記と同じであり、mは1~15の整数である。]
 式(2)及び(7)において、炭素数1~10のアルキル基としては、直鎖状、分岐状のいずれであってもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ヘキシル基、各種オクチル基、各種デシル基等が挙げられ、フッ素化アルキル基としては、例えば、トリフルオロエチル基、トリフルオロプロピル基等が挙げられる。また、炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。炭素数1~4のアルキル基もしくはアルコキシアルキル基については、式(1)で説明した通りである。
(D-4)エポキシ基及びアルコキシ基を有するシラン化合物
 エポキシ基及びアルコキシ基を有するシラン化合物である、エポキシ基含有オルガノアルコキシシラン化合物及びその部分縮合物は、例えば下記式(4)で表わすことができる。
    R Si(OR4-c    ・・・(4)
[式中、Rは炭素数1~4のアルキル基;フェニル基;又はグリシドキシ基、3,4-エポキシシクロヘキシル基の中から選ばれる1以上の基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基であり、Rの少なくとも1つは、グリシドキシ基又は3,4-エポキシシクロヘキシル基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基である。Rは炭素数1~4のアルキル基であり、cは1又は2である。Rが複数ある場合、複数のRは同一でも異なっていてもよく、複数のORは同一でも異なっていてもよい。]
 上記式(4)において、炭素数1~4のアルキル基については、前記式(1)で説明した通りであり、炭素数1~6のアルキル基は前記式(2)の炭素数1~10のアルキル基のうち炭素数1~6のものである。好ましくはRは炭素数1~4のアルキル基又はグリシドキシ基、3,4-エポキシシクロヘキシル基の中から選ばれる1以上の基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基であり、より好ましくは炭素数1~4のアルキル基又はグリシドキシ基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基である。好ましくはRは炭素数1~4のアルキル基である。好ましくは、cは2である。
(D-5)アルコキシ基を有するブロック化イソシアネートシラン化合物
 アルコキシ基を有するブロック化イソシアネートシラン化合物である、ブロック化イソシアネート基含有オルガノアルコキシシラン化合物及びその部分縮合物は、例えば下記式(5)で表わすことができる。
    R Si(OR4-d    ・・・(5)
[式中、Rは炭素数1~4のアルキル基;フェニル基;又はブロック化イソシアネート基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基であり、Rの少なくとも1つは、ブロック化イソシアネート基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基である。Rは炭素数1~4のアルキル基であり、dは1又は2である。Rが複数ある場合、複数のRは同一でも異なっていてもよく、複数のORは同一でも異なっていてもよい。]
 上記式(5)において、炭素数1~4のアルキル基、炭素数1~6のアルキル基については、前記式(1)又は(4)で説明した通りである。好ましくはRは炭素数1~4のアルキル基又はブロック化イソシアネート基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基である。好ましくはRは炭素数1~4のアルキル基である。好ましくはdは1である。
(D-6)炭素間2重結合を有するシラン化合物
 (D-6)成分は、ビニル基、アクリル基、メタクリル基等の炭素間2重結合を有する基を含むシラン化合物であって、好ましくはアルコキシ基を含む。
 本発明の組成物は(D-6)炭素間2重結合を有するシラン化合物を含む場合、熱硬化に加え、光硬化(UV硬化)、電子線硬化(EB硬化)が可能となる。
 炭素間2重結合を有するシラン化合物及びその部分縮合物は、例えば下記式(20)で表すことができる。
    R20 Si(OR214-e    ・・・(20)
[式中、R20は炭素数1~4のアルキル基;ビニル基;又はビニル基、アクリル基及びメタクリル基の中から選ばれる1以上の基を有する置換基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基であり、R20の少なくとも1つは、ビニル基、アクリル基及びメタクリル基の中から選ばれる1以上の基を有する置換基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基である。R21は炭素数1~4のアルキル基であり、eは1又は2である。R20が複数ある場合、複数のR20は同一でも異なっていてもよく、複数のOR21は同一でも異なっていてもよい。]
 上記式(20)において、炭素数1~6のアルキル基、炭素数1~4のアルキル基については、式(1)又は(4)で説明した通りである。好ましくは、R20は炭素数1~4のアルキル基、又はビニル基、アクリル基及びメタクリル基の中から選ばれる1以上の基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基である。好ましくは、eは1である。
 ビニル基、アクリル基及びメタクリル基の中から選ばれる1以上の基を有する置換基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基は、好ましくは、ビニル基、ビニルオキシ基、アクリル基、アクリロキシ基、メタクリル基及びメタクリロキシ基の中から選ばれる1以上の基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基であり、より好ましくは、アクリル基、アクリロキシ基、メタクリル基及びメタクリロキシ基の中から選ばれる1以上の基で置換された炭素数1~6(好ましくは炭素数1~4)のアルキル基である。
(D-7)メルカプト基及びアルコキシ基を有するシラン化合物
 メルカプト基及びアルコキシ基を有するシラン化合物は、チオール基(IUPAC;別名は水硫基、メルカプト基、スルフヒドリル基)を有する基を含むシラン化合物であって、アルコキシ基を含む。
〈有機高分子微粒子、無機微粒子〉
 有機高分子微粒子としては、エチレン系不飽和化合物(アクリル酸、メタクリル酸及びそれらの誘導体、スチレン、酢酸ビニル等)を重合させたものが例示される。
 有機高分子微粒子は、製造性、組成物中における分散性、組成物の塗工性及び塗膜の透明性等の観点から、平均粒子径が1~200nmの範囲にあるものが好ましく、1~100nmの範囲にあるものがより好ましい。尚、この有機高分子微粒子の平均粒子径は、動的光散乱法により測定することができる。また、動的光散乱法によって測定できない場合は、X線小角散乱法によって測定してもよい。
 上記動的光散乱法は、例えば有機高分子微粒子をイオン交換水で100倍希釈した液を動的光散乱法粒子径分布測定装置(ベックマンコールター株式会社製、コールターカウンターN5)を用いて測定を行い、ユニモーダル解析(単分散モード解析)による平均粒子径を求める。これを5回繰り返し行い、5回分の平均粒子径の平均値を有機高分子の平均粒子径とすることができる。
 有機高分子微粒子の平均粒子径をD、導電性ナノ繊維の平均長をLとしたとき、D/L<0.010であることが好ましく、より好ましくはD/L<0.0050である。
 本発明においては、当該有機高分子微粒子は、分散媒体に分散させた形態で用いることが好ましく、分散媒体としては、例えば、水、メタノール、エタノール、プロパノール、1-メトキシ-2-プロパノール等の低級アルコール、メチルセロソルブ等のセロソルブ類等が好ましく挙げられる。このような分散媒体を用いることにより、有機高分子微粒子の分散性が向上し、沈降を防ぐことができる。
 有機高分子微粒子の具体例としては、一方社油脂工業株式会社製のエマルション系高分子紫外線吸収剤ULS-700、ULS-1700、ULS-383MA、ULS-1383MA、ULS-383MG、ULS-385MG、ULS-1383MG、ULS-1385MG、ULS-635MH等、日信化学工業株式会社製ビニブラン700、701、711、日本ゼオン株式会社製ニポールシリーズ等が挙げられる。
 前記有機高分子微粒子を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 無機微粒子としては、銀や銅等の金属微粒子、コロイダルシリカ、酸化チタン、酸化セリウム、酸化ジルコニウム、ITO、ATO(三酸化アンチモン)等の金属酸化物微粒子が挙げられる。
 無機微粒子は好ましくはコロイダルシリカである。コロイダルシリカとは、コロイドシリカ、コロイド珪酸ともいう。水中では、水和によって表面にSi-OH基を有する酸化ケイ素のコロイド懸濁液をいい、珪酸ナトリウムの水溶液に塩酸を加えると生成する。最近は、新しい調製法が次々に開発され、非水溶液中に分散したものや、気相法で作った微粉末状のものがあり、また、中空タイプのものもあり、粒子径も数nmから数μmのものまで多彩である。
 無機微粒子の平均粒子径としては1~200nm程度のものが好ましい。粒子の組成は不定で、シロキサン結合(-Si-O-、-Si-O-Si-)を形成して、高分子化しているものもある。粒子表面は多孔性で、水中では一般的に負に帯電している。
 尚、上記平均粒子径は例えば無機微粒子を乾燥・焼成・粉砕した後、BET比表面積測定装置(モノソーブMS-17)を用いて、窒素吸着法によりBET比表面積を求め、真状粒子と仮定したときの粒子径に換算することで測定できる。BET比表面積により平均粒子系が測定できない場合は、X線小角散乱法によって測定してもよい。
 無機微粒子の平均粒子径をD、導電性ナノ繊維の平均長をLとしたとき、D/L<0.010であることが好ましく、より好ましくはD/L<0.0050である。
 コロイダルシリカの市販品としては、扶桑化学工業株式会社製「超高純度コロイダルシリカ」クォートロンPLシリーズ(品名:PL-1、PL-3、PL-7)、同社製「高純度オルガノゾル」や、日産化学工業株式会社製「コロイダルシリカ(品名:スノーテックス20、スノーテックス30、スノーテックス40、スノーテックスO、スノーテックスO-40、スノーテックスC、スノーテックスN、スノーテックスS、スノーテックス20L、スノーテックスOL等)」や「オルガノシリカゾル(品名:メタノールシリカゾル、MA-ST-MS、MA-ST-L、IPA-ST、IPA-ST-MS、IPA-ST-L、IPA-ST-ZL、IPA-ST-UP、EG-ST、NPC-ST-30、MEK-ST、MEK-ST-MS、MIBK-ST、XBA-ST、PMA-ST、DMAC-ST、PGM-ST等)」が挙げられる。
 コロイダルシリカを、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
〈重合開始剤〉
 本発明において、(B)成分としてアニオンモノマーを用いる場合等、組成物は、好ましくは重合開始剤を含有する。
 重合開始剤は、光及び熱の少なくともいずれかにより分解されて、ラジカル又はカチオンを発生してラジカル重合とカチオン重合を進行させるものである。
 重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカルおよびカチオン重合開始剤等を適宜選択して用いることができる。
 ラジカル重合開始剤は、光及び熱の少なくともいずれかによりラジカル重合を開始させる物質を放出することが可能であればよい。例えば、光ラジカル重合開始剤としては、イミダゾール誘導体、ビスイミダゾール誘導体、N-アリールグリシン誘導体、有機アジド化合物、チタノセン類、アルミナート錯体、有機過酸化物、N-アルコキシピリジニウム塩、チオキサントン誘導体等が挙げられる。具体例としては、特開2010-102123号公報及び特開2010-120182号公報に記載のものを挙げることができる。
 カチオン重合開始剤は、光及び熱の少なくともいずれかによりカチオン重合を開始させる物質を放出することが可能であればよい。カチオン重合開始剤としては、スルホン酸エステル、イミドスルホネート、ジアルキル-4-ヒドロキシスルホニウム塩、アリールスルホン酸-p-ニトロベンジルエステル、シラノール-アルミニウム錯体、(η6-ベンゼン)(η5-シクロペンタジエニル)鉄(II)等が例示される。具体例としては、特開2010-102123号公報及び特開2010-120182号公報に記載のものを挙げることができる。
 ラジカル重合開始剤としてもカチオン重合開始剤としても用いられるものとしては、芳香族ヨードニウム塩、芳香族スルホニウム塩、芳香族ジアゾニウム塩、芳香族ホスホニウム塩、トリアジン化合物、鉄アレーン錯体等が例示される。具体例としては、特開2010-102123号公報及び特開2010-120182号公報に記載のものを挙げることができる。
〈レベリング剤〉
 組成物には、得られる塗膜の平滑性、並びにコートの際のフロー性を向上させるために、レベリング剤を添加することができ、それらの添加剤として、シリコーン系レベリング剤、フッ素系レベリング剤、アクリル系レベリング剤、ビニル系レベリング剤、並びに、フッ素系とアクリル系が複合化されたレベリング剤等が挙げられる。全て、塗膜表面に働き、表面張力を低下させる。各々特徴があり、目的に応じて使用することができる。表面張力の低下能力は、シリコーン系とフッ素系が強いが、アクリル系とビニル系はリコートを行う場合、濡れ不良が生じにくく有利である。
 シリコーン系レベリング剤の具体例としては、ポリオキシアルキレンとポリジメチルシロキサンの共重合体等を用いることができる。シリコーン系レベリング剤の市販品としては、東レ・ダウコーニング株式会社製FZ-2118、FZ-77、FZ-2161等、信越化学工業株式会社製KP321、KP323、KP324、KP326、KP340、KP341等、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製TSF4440、TSF4441、TSF4445、TSF4450、TSF4446、TSF4452、TSF4453、TSF4460等、ビックケミー・ジャパン株式会社製BYK-300、BYK-302、BYK-306、BYK-307、BYK-320、BYK-325、BYK-330、BYK-331、BYK-333、BYK-337、BYK-341、BYK-344、BYK-345、BYK-346、BYK-348、BYK-377、BYK-378、BYK-UV3500、BYK-3510、BYK-3570等のポリエーテル変性シリコーンオイル(ポリオキシアルキレン変性シリコーンオイル)等を挙げることができる。
 また、150℃以上の耐熱性が必要な場合は、ポリエステル変性やベンゼン環を有するアラルキル変性シリコーンオイルが適している。ポリエステル変性シリコーンオイルの市販品としては、ビックケミー・ジャパン株式会社製BYK-310、BYK-315、BYK-370等、ベンゼン環を有するアラルキル変性シリコーンオイルの市販品としては、ビックケミー・ジャパン株式会社製BYK-322、BYK-323等が挙げられる。
 フッ素系レベリング剤としては、ポリオキシアルキレンとフルオロカーボンとの共重合体等を用いることができる。
 フッ素系レベリング剤の市販品としては、DIC株式会社製のMEGAFACシリーズ、住友スリーエム株式会社製のFCシリーズ等を挙げられる。
 アクリル系レベリング剤の市販品としては、ビックケミー・ジャパン株式会社製のBYK-350、BYK-352、BYK-354、BYK-355、BYK358N、BYK-361N、BYK-380N、BYK-381、BYK-392等、フッ素を導入したBYK-340等が挙げられる。
 このようなレベリング剤を配合することにより、塗膜の仕上がり外観が改善され、薄膜としても均一に塗布することができる。レベリング剤の使用量は、組成物全量に対して、好ましくは0.01~10質量%、さらに好ましくは0.02~5質量%である。
 レベリング剤を配合する方法としては、組成物を調製する際に配合してもよいし、塗膜を形成する直前に組成物に配合してもよく、さらには組成物の調製と塗膜の形成直前の両方の段階で配合してもよい。
[各成分の含有量]
 本発明の組成物における各成分の含有量は適宜選定することができるが、例えば、以下に示す範囲になるように選定することが好ましい。
 以下、(C)成分の分散媒体を除き、組成物中の成分全量に対する各成分の含有量を質量%で表わす。尚、各成分が予め分散媒体に分散された状態で組成物中に加えられた場合でも、その分散媒体は(C)成分に含まれるものとする。
 (A)成分の含有量は、例えば5~98質量%(wt%)であり、好ましくは10~75質量%であり、より好ましくは20~60質量%である。5質量%以上であると導電性が良好であり、98質量%以下であると基材との密着性に優れる。
 (B)成分の含有量は、通常、2~95質量%、好ましくは5~90質量%であり、より好ましくは5~70質量%である。2質量%以上であると基材との密着性に優れ、95質量%以下であると導電性が良好である。
 本発明の組成物は、実質的に(A)成分、(B)成分、(C)成分及び任意添加成分のみからなっていてもよい。また、(A)成分、(B)成分、(C)成分及び任意添加成分のみからなっていてもよい。
 「実質的に(A)成分、(B)成分、(C)成分及び任意添加成分のみからなる」とは、組成物の95質量%以上100質量%以下(好ましくは98質量%以上100質量%以下)が(A)成分、(B)成分、及び(C)成分であるか、又は(A)成分、(B)成分、(C)成分及び任意添加成分であることを意味する。
 尚、組成物は本発明の効果を損なわない範囲で(A)成分、(B)成分、(C)成分及び任意添加成分の他に不可避不純物を含んでいてもよい。
 また、本発明の組成物は、アニオン基を含まないポリマー及びアニオン基を含まないモノマーから選択される1以上を含んでもよいし含まなくてもよい。アニオン基を含まないポリマーとしては、ポリウレタン等が挙げられ、アニオン基を含まないモノマーとしては、アクリロイルモルホリン等が挙げられる。
 本成分を含む場合、通常、5~40質量%、10~35質量%である。
[組成物の製造方法]
 本発明の組成物は、上記の各成分を公知の方法により混合することにより調製することができる。(A)成分及び(B)成分は予め分散媒体に分散させてから他の成分と混合してもよい。
[導電性物質・透明導電膜]
 本発明の組成物を乾燥することで導電性物質を得ることができる。特に、本発明の組成物を基材等に塗布、乾燥することで透明導電膜(層)を得ることができる。本発明の透明導電層は、膜中に(A)成分、(B)成分及び任意添加成分が分散又は溶解している。
 透明導電膜は、組成物を基材上に塗布することで塗膜を形成して得られる。塗布は、例えば、スピンコーター、スプレー、浸漬、カーテンフロー、バーコーター、ダイコーター、ブレードコーター、グラビアコーター、又はロールコーティング等の公知の方法により行う。
 塗膜の厚みは、好ましくは10~500nm、より好ましくは30~200nmである。
 その後、適当な乾燥条件(通常、10~190℃、好ましくは25℃~150℃、より好ましくは80~140℃)において、30秒~24時間程度、好ましくは1~60分、より好ましくは2分~60分加熱乾燥することにより、透明導電層が得られる。
 また、本発明の組成物が、(B)成分としてアニオンモノマーを含む場合等、光硬化(UV硬化)及び電子線硬化(EB硬化)も可能である。
 基材に用いることができる樹脂としては、例えば、ポリエチレン、ポリプロピレン、シクロオレフィン系樹脂(例:JSR株式会社製「ARTON」、日本ゼオン株式会社製「ZEONOR」「ZEONEX」)、ポリメチルペンテン等のポリオレフィン系樹脂、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリエチレンナフタレート等のポリエステル系樹脂、ジアセチルセルロース、トリアセチルセルロース、アセチルセルロースブチレート等のセルロース系樹脂、ポリスチレン、シンジオタクチックポリスチレン、アクリロニトリル・ブタジエン・スチレン樹脂(ABS樹脂)等のスチレン系樹脂、ポリイミド、ポリエーテルイミド、ポリアミドイミド等のイミド系樹脂、ナイロン等のポリアミド系樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン等のケトン系樹脂、ポリスルホン、ポリエーテルスルホン等のスルホン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン等の塩化ビニル系樹脂、ポリメタアクリル酸メチル等のアクリル系樹脂、ポリカーボネート樹脂、ポリフェニレンスルフィド、ポリアセタール、変性ポリフェニレンエーテル、ポリビニルアルコール、エポキシ樹脂、フッ素樹脂、プラスチックレンズ用樹脂ポリメチルメタクリレート、脂環式ポリオレフィン、アクリロニトリルスチレン共重合体、メタクリルスチレン共重合体、脂環式アクリル、ジグリコールジアリルカーボネート、ジアリルフタレート、ポリウレタン、ポリチオウレタン、エピスルフィド等を挙げることができ、前記ポリマーを複数混合したポリマーアロイ・ポリマーブレンドでもよい。また、上記樹脂を複数積層した積層構造体でもよい。上記樹脂の中でも、ポリエステル系樹脂(特にポリエチレンテレフタラート)、ポリオレフィン系樹脂及びポリカーボネート樹脂が好ましい。
 これらの樹脂を素材とする基材は、透明、半透明のいずれであってもよく、また着色されていてもよいし、無着色のものでもよく、用途に応じて適宜選択すればよい。透明性に優れ、無着色のものが好ましい。
 また、基材は樹脂製基材に限定されず、ガラス基材であってもよい。
 基材の厚さに特に制限はなく、状況に応じて適宜選定されるが、通常、5μm~30mm程度、好ましくは15μm~10mmである。
 本発明の組成物は、基材上に密着性よく塗膜を形成することができるが、その密着性をさらに向上させるために、基材の少なくとも塗膜が形成される側の表面に所望により、酸化法や凹凸化法等により表面処理を施すことができる。上記酸化法としては、例えば、コロナ放電処理、低圧プラズマ法や大気圧プラズマ法等のプラズマ処理、クロム酸処理(湿式)、火炎処理、熱風処理、オゾン・紫外線照射処理、電子線処理、イトロ処理等が挙げられ、また凹凸化法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。これらの表面処理法は基材の種類に応じて適宜選ばれるが、一般にはコロナ放電処理法が硬化及び操作性等の面から好ましく用いられる。また、シランカップリング剤での表面処理やプライマー層を設けることもできる。また、傷つき防止のハードコート層や、屈折率調整のためのインデックスコーチング層等の機能を有する層を設けることもできる。
 また、基材上に形成した透明導電層の上に保護層や金属層、金属酸化物層を設けてもよい。
 本発明の透明導電層の全光線透過率は、好ましくは85~100%であり、より好ましくは90~100%、さらに好ましくは95~100%である。
 本発明の透明導電層のヘイズは、好ましくは3.0%以下であり、より好ましくは2.0%以下である。
 本発明の透明導電層の表面抵抗は、好ましくは5Ω/□以上200Ω/□未満、より好ましくは5~150Ω/□、さらに好ましくは5~100Ω/□、特に好ましくは5~80Ω/□、5~50Ω/□である。
 これら物性は、実施例に記載の測定方法で測定する。
 本発明の透明導電層はパターニングされていてもよい。パターニングは公知のフォトリソグラフィ等のウェットエッチング工程やレーザーエッチング工程をそのまま適用できる。また、スクリーン印刷、フレキソ印刷、インクジェット印刷等で直接パターンを印刷することも可能である。パターニング工程は特に限定されないが、ウェットエッチング、レーザーエッチングを好適に用いることができる。
 ウェットエッチングによるパターニングの方法は、フォトレジストとフォトマスクを用いる一般的なフォトリソグラフィや、非導通領域を形成したいパターンに合わせてエッチャントを印刷塗布する方法、非腐食性のマスクを通してエッチャントを塗布する方法などがある。これらの中で、再現性や精度の点で、フォトリソグラフィを好適に用いることができる。また、フォトレジストの代わりに感光性フィルムを転写するドライフィルムを用いることもできる。
 フォトリソグラフィを用いる場合、形成された透明導電層の上にレジスト液を塗布してレジスト層を形成する。次に、このレジスト層を、フォトマスクを用いて紫外線照射し、その後、現像することによりレジスト層のパターニングを行う。次いで、レジスト層で被覆されていない透明導電層をエッチングして除去し、さらに残存するレジスト部分を剥離することでパターニングされた透明導電層を得る。
 エッチャントとしては、金属ナノワイヤーを溶解する、あるいは金属ナノワイヤーを切断して短くする効果をもたらす酸性の薬剤を用いることができる。銀ナノワイヤー等の金属ナノワイヤーは、例えば臭化水素酸、硝酸、硫酸、リン酸、塩酸、酢酸、などの無機酸や、メタンスルホン酸などの有機酸などを用いることができる。またこれらを複数組み合わせて含む混酸を用いることもできる。特に、臭化水素酸や硝酸が好ましい。
 金属を酸化溶解させる薬剤を用いることもできる。銀ナノワイヤー等の金属ナノワイヤーは、たとえば、硝酸鉄(III)液(硝酸第二鉄液)、塩化鉄(III)液(塩化第二鉄液)、塩化銅(II)液(塩化第二銅液)などの金属化合物の水溶液、過酸化水素水、これらの混合液などを用いることができる。反応を制御するために酸やアルカリと混合して用いてもよい。例えば、塩化銅(II)と塩酸の混合水溶液、過酸化水素水とアンモニア水の混合液などを、好適に用いることができる。
 アルカリ性のエッチャントを用いることもできる。銀ナノワイヤー等の金属ナノワイヤーのアルカリ性のエッチャントとしては、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液などが挙げられる。
 市販のエッチャントでは、SEA-NW01、SEA-NW02、SEA-1、ITO-02(関東化学株式会社製)、GNW203、GNW300、GNW410(林純薬工業株式会社製、Pure Etchシリーズ)などを用いることができる。
 これらの薬剤は、原液を直接用いてもよいし、水等の溶媒で希釈して用いてもよい。添加剤を加えて用いてもよい。エッチングの処理温度および処理時間は特に限定しないが、エッチング液の種類および試料の厚みに合わせて設定することが好ましい。最適の状態では、ヘイズや全光線透過率などの光学特性は処理前と同等であり、エッチングされた領域の面抵抗が10Ω/□以上となる。処理が不足すると絶縁性が不十分となり、処理が過剰であるとバインダ樹脂や基材へのダメージが生じて光学特性を悪化させる場合がある。また、処理温度および処理時間を適切に制御することで、銀ナノワイヤー等の金属ナノワイヤーを完全に溶解させずに短い繊維に切断して非導通領域を形成する、パーシャルエッチングを行うことができる。これにより、導通部と非導通部の反射率や光散乱の差を小さくすることができ、パターンの視認性を低くすることができる。
 透明導電層のパターニングにドライエッチングの一方法として、レーザーエッチングを好適に用いることができる。この場合、集光されたレーザー光で、導電層を蒸発除去することで、非導通化する。レジスト塗布、マスク露光、現像、エッチング、レジスト剥離、洗浄という一連の工程を必要とするウェットエッチングによるパターニングに比べ、簡便な設備と短い工程で、高精度なパターンを得ることができる。
 レーザー光源としては、YAGやYVO等のパルスレーザー光、炭酸ガスレーザー等の連続発振レーザー光が挙げられる。特に、YAGやYVO等の波長1064nmもしくはその2次高調波を使用した532nmのパルス状レーザー光が好ましい。
[透明導電膜含有基材]
 本発明の透明導電膜を含む基材は、各種電気機器に用いることができ、例えばタッチパネル、液晶ディスプレイ等の電気機器に用いることができる。また、これらは各種表示装置に用いることができる。
 本発明の透明導電膜含有基材は、本発明の組成物を基材に塗布することにより製造することができる。塗布方法は上記の通りである。
 また、塗布により得られた膜は、適当な乾燥条件(通常、10~190℃、好ましくは25℃~150℃、より好ましくは80~140℃)において、30秒~24時間程度、好ましくは1~60分、より好ましくは2分~60分加熱乾燥することが好ましい。
 また、本発明の透明導電膜含有基材は、上記の透明導電層と同様に、光硬化(UV硬化)及び電子線硬化(EB硬化)が可能であり、また、上記と同様に簡便にパターニングすることができる。
 実施例・比較例で使用した材料を以下に示す。
・0.5wt%銀ナノワイヤーIPA(イソプロピルアルコール)分散液:Seashell Technology社製「Silver Nanowires AgNW-25」(平均直径:25nm、平均長さ:23μm)
・0.5wt%銀ナノワイヤー水分散液:Seashell Technology社製「Silver Nanowires AgNW-25」(平均直径:25nm、平均長さ:23μm)
・0.5wt%銀ナノワイヤー水/IPA分散液:星光PMC株式会社製「銀ナノワイヤー水性分散液 T-AG103」(固形分濃度2wt%の水分散液、平均直径:40nm、平均長さ:20μm)にIPAを加え、0.5wt%の水/IPA分散液とした。
・0.5wt%銀ナノワイヤー水/エタノール分散液:星光PMC株式会社製「銀ナノワイヤー水性分散液 T-AG103」(固形分濃度2wt%の水分散液、平均直径:40nm、平均長さ:20μm)にエタノールを加え、0.5wt%の水/エタノール分散液とした。
・0.5wt%銀ナノワイヤーエタノール分散液:BlueNano社製「SLV-series Silver Nanowires SLV-NW-35」(固形分濃度1.25wt%のエタノール分散液、平均直径:35nm、平均長さ:10μm)にエタノールを加え、0.5wt%エタノール分散液とした。
・0.5wt%ポリスチレンスルホン酸水溶液:アクゾノーベル株式会社製の18wt%ポリスチレンスルホン酸水溶液にイオン交換水を加えて0.5wt%の水溶液とした。
・0.5wt%ビニルスルホン酸IPA溶液:旭化成ファインケム株式会社製「VSA-H」(固形分100%)にIPAを加え、0.5wt%IPA溶液とした。
・0.5wt%ポリウレタンIPA溶液:DIC株式会社製「クリスボンASPU112」(固形分濃度30wt%のIPA溶液)にIPAを加え、0.5wt%IPA溶液とした。
・0.5wt%アクリロイルモルホリンIPA溶液:興人ケミカル株式会社製「ACMO」(固形分100%)にIPAを加え、0.5wt%IPA溶液とした。
実施例1
 0.5wt%銀ナノワイヤーIPA分散液100gに、0.5wt%ポリスチレンスルホン酸水溶液100gを加え、室温で撹拌して組成物を調製した。得られた組成物をスピンコーターにより1500rpmでガラス基材上に塗布し、100℃で30分乾燥させて、ガラス基材上に透明導電層を形成した。
 得られた透明導電層について以下の評価を行った。結果を表1に示す。尚、表1中の%表記は、組成物中の(C)成分以外の成分全量に対する各成分の含有割合(質量%)を示す。また、部表記は、組成物中の(C)成分以外の成分の合計を100質量部としたときの(C)成分の質量部を示す。
 また、成分「B’」とは、本発明の(B)成分には含まれないが、(B)成分に対応する成分であることを示す。
(1)膜厚測定
 基材がガラス基板の場合は触針式膜厚計を用いて透明導電層の膜厚測定を行い、5点の平均値を膜厚とした。基材が樹脂基板の場合はAFMを用いて透明導電層の膜厚測定を行い、基板からの距離の最小値と最大値の平均を膜厚とした。
(2)全光線透過率
 ヘイズメーター(日本電色工業株式会社製、NDH5000)にて、ASTMD1003に準拠し、基材及び透明導電層からなる積層体を用いて基材を基準に透明導電層の全光線透過率を測定した。
(3)ヘイズ
 ヘイズメーター(日本電色工業株式会社製、NDH5000)にて、ASTMD1003に準拠し、基材及び透明導電層からなる積層体を用いて基材を基準に透明導電層のヘイズ値を測定した。
(4)表面抵抗測定
 低抵抗率計(Loresta-GP MCP-T-610、三菱化学製)にて、JIS K 7194に準拠し、四探針測定法により透明導電層の表面抵抗を測定した。
(5)密着性評価
 市販のセロハンテープ(ニチバン製CT‐24(幅24mm))を透明導電層上に貼り、指の腹でよく密着させたのち、セロハンテープを剥離した。セロハンテープ剥離後の透明導電層の表面抵抗を測定し、セロハンテープ密着前の表面抵抗と剥離後の抵抗が同等であれば「○」、表面抵抗が同等の範囲を超えて高くなった場合は「×」とした。
実施例2
 組成物の組成を表1に示すものとした他は、実施例1と同様にして透明導電層を形成し評価した。結果を表1に示す。
実施例3、4
 表1に示す組成を有する組成物を調製した。得られた組成物をスピンコーターにより1500rpmでガラス基材上に塗布し、100℃で10分間加熱乾燥後、UV照射(積算光量250mJ/cm2)を行い、ガラス基材上に透明導電層を形成した。得られた透明導電層について実施例1と同様に評価した。結果を表1に示す。
実施例5~7
 組成物の組成を表1に示すものとした他は、実施例1と同様にして透明導電層を形成し評価した。
実施例8
 実施例1の組成物を、バー#6(テスター産業株式会社製SA-203 RODNo.6)を用いてバーコーターでガラス基板上に塗布し、100℃で1分乾燥させて、ガラス基板上に透明導電層を形成した。実施例1と同様にして透明導電層を評価した。
実施例9
 組成物の組成を表1に示すものとし、バー#8(テスター産業株式会社製SA-203 RODNo.8)を使用した他は、実施例8と同様にして透明導電層を形成し評価した。
実施例10
 基板を易接着PETフィルム(東レ株式会社製ルミラーU48,厚さ100μm)に変更した他は、実施例9と同様にして透明導電層を形成し評価した。
実施例11
 組成物の組成を表1に示すものとし、バー#8(テスター産業株式会社製SA-203 RODNo.8)を使用した他は、実施例8と同様にして透明導電層を形成し評価した。
実施例12
 組成物の組成を表1に示すものとした他は、実施例3,4と同様にして透明導電層を形成し評価した。
比較例1~3
 組成物の組成を表1に示すものとした他は、実施例1と同様にして透明導電層を形成し評価した。結果を表1に示す。
 比較例3においては、バインダーが含まれないことにより膜が形成されなかったため、膜厚は測定できなかった。
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の組成物を用いて形成した透明導電層は表面抵抗に優れることが分かる。
 本発明の組成物から得られる物質や導電性物質、透明導電膜を含む基材等は、タッチパネル、液晶ディスプレイ、有機ELディスプレイ、有機EL照明、太陽電池、調光フィルム、調光ガラス、透明ヒーター等の電気機器に好適に使用される。また、当該タッチパネルは表示装置に好適に用いられる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (14)

  1.  (A)金属ナノワイヤーと、
     (B)ポリアニオン及びアニオンモノマーから選択される1以上と
     を含む組成物。
  2.  前記(A)成分の質量比が、分散媒体を除く組成物中の成分全量に対して5~98wt%である請求項1に記載の組成物。
  3.  前記金属ナノワイヤーの平均直径が5nm以上150nm以下であり、平均長が1μm以上100μm以下である請求項1又は2に記載の組成物。
  4.  前記金属ナノワイヤーが銀ナノワイヤーである請求項1~3のいずれかに記載の組成物。
  5.  前記ポリアニオンが、スルホ酸基含有ポリマー、リン酸基含有ポリマー及びカルボキシル基含有ポリマーから選択される1以上からなる請求項1~4のいずれかに記載の組成物。
  6.  前記アニオンモノマーが、スルホ基を有するビニルモノマーである請求項1~5のいずれかに記載の組成物。
  7.  透明導電層形成用組成物である請求項1~6のいずれかに記載の組成物。
  8.  請求項1~7のいずれかに記載の組成物を乾燥して得られる導電性物質。
  9.  請求項1~7のいずれかに記載の組成物を塗布又は印刷して得られる透明導電膜。
  10.  請求項9に記載の透明導電膜を含む透明導電膜含有基材。
  11.  請求項8に記載の導電性物質、請求項9に記載の透明導電膜、又は請求項10に記載の透明導電膜含有基材を用いたタッチパネル。
  12.  請求項11に記載のタッチパネルを用いた表示装置。
  13.  請求項8に記載の導電性物質、請求項9に記載の透明導電膜、又は請求項10に記載の透明導電膜含有基材を用いた電気機器。
  14.  請求項1~7のいずれかに記載の組成物を基材に塗布することを含む、透明導電層含有基材の製造方法。
PCT/JP2015/004639 2014-09-12 2015-09-11 組成物 WO2016038898A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547707A JPWO2016038898A1 (ja) 2014-09-12 2015-09-11 組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-186952 2014-09-12
JP2014186952 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016038898A1 true WO2016038898A1 (ja) 2016-03-17

Family

ID=55458666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004639 WO2016038898A1 (ja) 2014-09-12 2015-09-11 組成物

Country Status (3)

Country Link
JP (1) JPWO2016038898A1 (ja)
TW (1) TW201615764A (ja)
WO (1) WO2016038898A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173435A1 (ja) * 2017-03-21 2018-09-27 三菱ケミカル株式会社 熱可塑性樹脂組成物、成形体及び車両用部材
WO2018221559A1 (ja) * 2017-05-31 2018-12-06 日東電工株式会社 調光フィルム
KR20190018738A (ko) * 2016-12-01 2019-02-25 쇼와 덴코 가부시키가이샤 도전 패턴의 보호막용 조성물, 도전 패턴의 보호막, 보호막 제조 방법, 및 투명 도전 필름의 제조 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI675743B (zh) * 2018-12-20 2019-11-01 財團法人工業技術研究院 複合結構與分散液
US11142845B2 (en) 2018-12-20 2021-10-12 Industrial Technology Research Institute Composite structure and dispersion

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205924A (ja) * 2008-02-27 2009-09-10 Kuraray Co Ltd 透明導電膜、透明導電部材、銀ナノワイヤ分散液および透明導電膜の製造方法
JP2010287406A (ja) * 2009-06-11 2010-12-24 Chung-Shan Inst Of Science & Technology Armaments Bureau Ministry Of National Defense ポリマーを有する銀ナノワイヤーの化合物およびポリマーを有する金属ナノ構造の化合物。
JP2011018636A (ja) * 2009-06-09 2011-01-27 Fujifilm Corp 導電性組成物、並びに透明導電膜、表示素子及び集積型太陽電池
JP2011086482A (ja) * 2009-10-15 2011-04-28 Konica Minolta Holdings Inc 透明電極、透明電極の製造方法および有機エレクトロルミネッセンス素子
JP2011175828A (ja) * 2010-02-24 2011-09-08 Konica Minolta Holdings Inc 透明導電フィルム
JP2013008512A (ja) * 2011-06-23 2013-01-10 Fujifilm Corp 導電性組成物、これを用いた透明導電体、並びに、この透明導電体を含むタッチパネル及び太陽電池
JP2014505963A (ja) * 2010-12-07 2014-03-06 ロディア オペレーションズ 導電性ナノ構造、そのようなナノ構造を作製するための方法、そのようなナノ構造を含有する導電性ポリマーフィルム、およびそのようなフィルムを含有する電子デバイス
JP2014199837A (ja) * 2013-03-29 2014-10-23 東洋インキScホールディングス株式会社 熱電変換材料、熱電変換素子用組成物、熱電変換膜およびそれらを用いた熱電変換素子
WO2014196354A1 (ja) * 2013-06-07 2014-12-11 星光Pmc株式会社 金属ナノワイヤ含有組成物
JP2015176668A (ja) * 2014-03-13 2015-10-05 ナガセケムテックス株式会社 透明導電膜用リペア組成物及び透明導電膜
WO2015163258A1 (ja) * 2014-04-21 2015-10-29 ユニチカ株式会社 強磁性金属ナノワイヤー分散液およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205924A (ja) * 2008-02-27 2009-09-10 Kuraray Co Ltd 透明導電膜、透明導電部材、銀ナノワイヤ分散液および透明導電膜の製造方法
JP2011018636A (ja) * 2009-06-09 2011-01-27 Fujifilm Corp 導電性組成物、並びに透明導電膜、表示素子及び集積型太陽電池
JP2010287406A (ja) * 2009-06-11 2010-12-24 Chung-Shan Inst Of Science & Technology Armaments Bureau Ministry Of National Defense ポリマーを有する銀ナノワイヤーの化合物およびポリマーを有する金属ナノ構造の化合物。
JP2011086482A (ja) * 2009-10-15 2011-04-28 Konica Minolta Holdings Inc 透明電極、透明電極の製造方法および有機エレクトロルミネッセンス素子
JP2011175828A (ja) * 2010-02-24 2011-09-08 Konica Minolta Holdings Inc 透明導電フィルム
JP2014505963A (ja) * 2010-12-07 2014-03-06 ロディア オペレーションズ 導電性ナノ構造、そのようなナノ構造を作製するための方法、そのようなナノ構造を含有する導電性ポリマーフィルム、およびそのようなフィルムを含有する電子デバイス
JP2013008512A (ja) * 2011-06-23 2013-01-10 Fujifilm Corp 導電性組成物、これを用いた透明導電体、並びに、この透明導電体を含むタッチパネル及び太陽電池
JP2014199837A (ja) * 2013-03-29 2014-10-23 東洋インキScホールディングス株式会社 熱電変換材料、熱電変換素子用組成物、熱電変換膜およびそれらを用いた熱電変換素子
WO2014196354A1 (ja) * 2013-06-07 2014-12-11 星光Pmc株式会社 金属ナノワイヤ含有組成物
JP2015176668A (ja) * 2014-03-13 2015-10-05 ナガセケムテックス株式会社 透明導電膜用リペア組成物及び透明導電膜
WO2015163258A1 (ja) * 2014-04-21 2015-10-29 ユニチカ株式会社 強磁性金属ナノワイヤー分散液およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190018738A (ko) * 2016-12-01 2019-02-25 쇼와 덴코 가부시키가이샤 도전 패턴의 보호막용 조성물, 도전 패턴의 보호막, 보호막 제조 방법, 및 투명 도전 필름의 제조 방법
KR102025579B1 (ko) * 2016-12-01 2019-09-26 쇼와 덴코 가부시키가이샤 도전 패턴의 보호막용 조성물, 도전 패턴의 보호막, 보호막 제조 방법, 및 투명 도전 필름의 제조 방법
US10995235B2 (en) 2016-12-01 2021-05-04 Showa Denko K.K. Composition for forming protective film for electroconductive pattern, protective film for electroconductive pattern, method for producing protective film, and method for producing transparent electroconductive film
WO2018173435A1 (ja) * 2017-03-21 2018-09-27 三菱ケミカル株式会社 熱可塑性樹脂組成物、成形体及び車両用部材
WO2018221559A1 (ja) * 2017-05-31 2018-12-06 日東電工株式会社 調光フィルム
JP2018205425A (ja) * 2017-05-31 2018-12-27 日東電工株式会社 調光フィルム

Also Published As

Publication number Publication date
JPWO2016038898A1 (ja) 2017-07-06
TW201615764A (zh) 2016-05-01

Similar Documents

Publication Publication Date Title
WO2016038898A1 (ja) 組成物
JP5802043B2 (ja) 光学積層体、偏光板、表示装置および光学積層体の製造方法
JP6203796B2 (ja) 防眩フィルムおよびそれを用いた表示装置
JP5232448B2 (ja) 防眩材料
TW201100872A (en) Anti-glare film, method of manufacturing same, and display device
JP2011029037A (ja) 透明導電膜付き基材
JP2011253106A (ja) 光学積層体、偏光板および表示装置
CN104700927A (zh) 透明导体、制备其的方法以及包括其的光学显示器
JP6505370B2 (ja) 積層体およびインデックスマッチング層形成用組成物
KR20110025146A (ko) 광학 적층체, 편광판 및 그것을 이용한 표시장치
WO2015151489A1 (ja) 透明導電層形成用組成物
JP5554904B2 (ja) 透明被膜形成用塗料および透明被膜付基材
JP5254118B2 (ja) 樹脂組成物、防眩層形成用塗料、防眩フィルムおよびそれを用いた表示装置
JP5490487B2 (ja) 光学積層体
JP5753285B2 (ja) 光学積層体
JP2016060754A (ja) 組成物、組成物の製造方法、該組成物から得られる導電性物質、該組成物から得られる導電層付き基板及び透明導電層付き基板、並びに該透明導電層付き基板の製造方法
JP2010223985A (ja) 金属酸化物微粒子、塗料および光学積層体並びにその製造方法
JP5873237B2 (ja) 光学積層体、偏光板およびそれを用いた表示装置
JP2011242463A (ja) 低反射フィルム及びその製造方法
JP2016119305A (ja) 組成物、当該組成物から得られる導電体
JP2013156643A (ja) 光学積層体
JP2016062653A (ja) 表面抵抗が改善された導電体及びその製造方法
JP2011098445A (ja) 光学積層体およびその製造方法、並びにそれを用いた偏光板および表示装置
JP5426329B2 (ja) 光学積層体
JP5771362B2 (ja) 光学積層体、偏光板および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201800182

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160623