WO2016033862A1 - 一种在水相介质中制备纳米银线的方法 - Google Patents

一种在水相介质中制备纳米银线的方法 Download PDF

Info

Publication number
WO2016033862A1
WO2016033862A1 PCT/CN2014/090182 CN2014090182W WO2016033862A1 WO 2016033862 A1 WO2016033862 A1 WO 2016033862A1 CN 2014090182 W CN2014090182 W CN 2014090182W WO 2016033862 A1 WO2016033862 A1 WO 2016033862A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction solution
alkaline earth
suspension
earth metal
alkali metal
Prior art date
Application number
PCT/CN2014/090182
Other languages
English (en)
French (fr)
Inventor
孙晓明
王成
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2016033862A1 publication Critical patent/WO2016033862A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to the field of nano silver wire preparation methods.
  • nano-silver wires have attracted much attention due to their broad application prospects. Because nano-silver wire has small volume, large specific surface, good chemical and catalytic properties, and excellent antibacterial properties and biocompatibility, it is currently important in optics, electronics, catalysis, information storage, medicine, energy, etc. application. In addition to the excellent conductivity, ductility and tensile properties of traditional silver materials, nano-silver wires have a series of electrical and optical properties different from those of bulk materials due to their unique nano-scale features. Features can be used as the main raw material in new transparent conductive films.
  • Patent No. CN103157807A is a patent entitled "Preparation Method of Nano Silver Wire", which relates to preparation of nano silver wire by alcohol thermal method. It uses an alcohol as a solvent, and a salt of a heavy metal of Cu, Sn or Ni is used as a metal precursor to accelerate the rate of silver wire precipitation.
  • the use of the alcohol solvent increases the preparation cost of the nano silver wire and requires an additional solvent post-treatment process; in addition, during the preparation process, heavy metal ions are also reduced to form impurities, which affect the purity of the prepared nano silver wire;
  • the use of heavy metal salts is bound to cause environmental pollution.
  • the aspect ratio of the nano-silver wire produced by the method (referred to as the aspect ratio in the patent) is not high, generally greater than 50, and the maximum aspect ratio recorded in the embodiment is 286, such a low aspect ratio.
  • the application of the nano silver wire is limited.
  • the present invention relates to a method of preparing a nanosilver wire in an aqueous medium comprising the following steps:
  • the preparation method of the present invention further comprises, after step b, step c: centrifuging and concentrating the nano silver wire suspension to obtain a concentrated silver nanowire suspension.
  • the molar ratio of silver nitrate: polyvinylpyrrolidone: glucose: (halide or thiocyanate) is 1: (2.2-10): (2.7-20): (0.001-0.05).
  • the silver nitrate polyvinylpyrrolidone: grape
  • the molar ratio of sugar: (silicate or sulfate or oxalate) is 1: (2.2-10): (2.7-20): (0.0005-0.025).
  • the hydrothermal reduction reaction lasts from 2 to 20 hours.
  • the above nanosilver suspension can be concentrated by centrifugation to obtain a concentrated nanosilver suspension.
  • the centrifugal concentration comprises dissolving the nano silver wire suspension obtained by the reaction in ethanol, and centrifuging and concentrating several times to obtain a concentrated nano silver wire suspension.
  • an organic solvent may also be added to the reaction solution, the organic solvent comprising acetone, ethanol, methanol, acetonitrile and N,N-dimethylformamide (abbreviated as DMF), added
  • DMF N,N-dimethylformamide
  • a nano-silver wire having a smaller diameter is obtained by adding more organic matter to the reaction solution.
  • the specific operation steps of the preparation method of the present invention are as follows: first, silver nitrate, polyvinylpyrrolidone, glucose and a nucleating sustained release agent are added to deionized water at a normal temperature to form a reaction solution.
  • an organic solvent such as acetone, ethanol, methanol, acetonitrile, DMF, or the like may be added to the reaction solution, and these organic solvents may be miscible with water because the volume ratio of the organic solvent to the reaction solution is 1%. -25%, so after adding these organic solvents, the reaction solution still uses water as the main medium, so it can still be called an aqueous medium.
  • the above reaction solution was added to the reaction vessel and vigorously stirred to form a uniform solution.
  • the stirring may be performed by mechanical stirring or magnetic stirring, and the mechanical stirring device or the magnetizer is taken out after the solution is uniformly dispersed.
  • the reaction vessel was sealed and placed in an oven, and a hydrothermal reaction was carried out under autogenous pressure at a temperature between 120 ° C and 200 ° C for 2 to 20 hours to obtain a nanosilver wire suspension.
  • the closed reaction vessel was taken out and cooled to room temperature. After that, if necessary, the above nano silver wire suspension can be concentrated by centrifugation. To the concentrated nanosilver suspension.
  • the centrifugal concentration comprises dissolving the nano silver wire suspension obtained by the reaction in ethanol, centrifuging and concentrating several times to obtain a concentrated nano silver wire suspension, for example, centrifuging and concentrating twice, at a rotation speed of 3000 rpm to 8000 rpm, and the time is about 20min.
  • the specific centrifugal concentration process conditions can be selected by the technician according to the actual situation.
  • the polyvinylpyrrolidone is a protective agent
  • the glucose is a reducing agent.
  • glucose When glucose is mixed with silver nitrate, at a suitable temperature, glucose reduces silver ions in the silver nitrate to form a silver crystal with a five-fold twin structure.
  • the action of polyvinylpyrrolidone is to limit the adsorption of silver ions on the ⁇ 100 ⁇ crystal plane of the silver nanoparticles, so that the silver nanoparticles grow in one dimension, and finally form a one-dimensional nano silver wire.
  • nucleating sustained release agent not only allows the initial concentration of silver nitrate during the hydrothermal reduction reaction to be significantly higher, but also reduces the amount of the reducing agent glucose and the protective agent polyvinylpyrrolidone, and further, the obtained nano silver wire
  • the aspect ratio can be freely controlled between tens and more, as shown in the following embodiments. In this regard, the inventors have no technically reasonable explanation.
  • the nucleating sustained release agent forms a poorly soluble substance with silver ions in silver nitrate, reducing the concentration of silver ions in the aqueous solution, thereby reducing the said Silver nanoparticles nucleation rate to achieve better control of their aspect ratio.
  • a small amount of insoluble matter can play such an obvious role relative to the total amount of Ag + .
  • organic solvent can adjust the diameter of the silver nanowires, probably because these organic solvents change the solubility of silver nitrate and the vapor pressure during the reaction, but do not rule out the possibility of other explanations as the development progresses.
  • the invention uses water as the main solvent, avoids the use of the alcohol solvent by the traditional alcohol heat method, is safer, more environmentally friendly and has lower cost;
  • the invention does not need to use heavy metal salt precursors such as Cu, Sn, Ni, etc., eliminates the contamination of the nano silver wire by the impurities generated by the reduction of these metal ions, and avoids the environmental pollution of the waste liquid containing heavy metals;
  • the nano silver wire with different aspect ratios can be prepared by the method of the invention, and the control of the aspect ratio can be realized, which can meet different requirements.
  • the diameter of the obtained nano silver wire can also be adjusted by adding different amounts of organic solvent to the aqueous medium, which has not been reported by previous researchers.
  • nucleating sustained release agent in the present invention can significantly increase the concentration of silver nitrate in the initial hydrothermal reaction solution to nearly 40 times the concentration of the prior art, and still obtain nano silver wires. This is very advantageous for increasing the production efficiency per unit volume of the reactor.
  • Example 2 is a low power electron scanning microscopy (SEM) image of a nanosilver wire prepared by Example 1 of the present invention.
  • Example 3 is a high power electron scanning microscopy (SEM) image of a nanosilver wire prepared by Example 1 of the present invention.
  • Example 4 is a high power electron scanning microscopy (SEM) image of a nanosilver wire prepared by Example 2 of the present invention.
  • Figure 5 is a low power electron scanning microscopy (SEM) image of a nanosilver wire prepared by Example 3 of the present invention.
  • Figure 6 is a high power electron scanning microscopy (SEM) image of a nanosilver wire prepared by Example 4 of the present invention.
  • Figure 7 is a low power electron scanning microscopy (SEM) image of a nanosilver wire prepared by Example 5 of the present invention.
  • Figure 8 is an ultra high magnification electron scanning microscopy (SEM) image of a nanosilver wire prepared by Example 5 of the present invention.
  • Figure 9 is a high power electron scanning microscopy (SEM) image of a nanosilver wire prepared by Example 6 of the present invention.
  • Figure 10 is a low power electron scanning microscopy (SEM) image of a nanosilver wire prepared by Example 7 of the present invention.
  • Figure 11 is a graph showing the ultraviolet absorption of a nanosilver wire prepared by Example 8 of the present invention.
  • Figure 12 is a graph showing the ultraviolet absorption of a nanosilver wire prepared by Example 9 of the present invention.
  • Figure 13 is a graph showing the ultraviolet absorption of a nanosilver wire prepared in Example 10 of the present invention.
  • Figure 14 is a graph showing the ultraviolet absorption of a nanosilver wire prepared by Example 11 of the present invention.
  • Figure 15 is a graph showing the ultraviolet absorption of a nanosilver wire prepared in Example 12 of the present invention.
  • Figure 16 is a low power electron scanning microscope (SEM) image of Example 12 of the present invention, the organic solvent being ethanol.
  • Figure 17 is a low power electron scanning microscope (SEM) image of Example 12 of the present invention, wherein the organic solvent is methanol.
  • Figure 18 is a low power electron scanning microscope (SEM) image of Example 12 of the present invention, the organic solvent being acetonitrile.
  • Figure 19 is a high power electron scanning microscope (SEM) image of Example 12 of the present invention, the organic solvent being DMF.
  • Figure 20 is an X-ray diffraction (XRD) pattern of a nanosilver wire prepared by Example 1 of the present invention.
  • the preparation method of the journal paper mentioned in the background art is different in that the concentration of silver nitrate in the final reactor is 40 times larger than that in the literature, and the specific process is as follows: 0.5 g of polyvinylpyrrolidone (PVP, protective agent) ), 1.0 g of glucose (reducing agent) and 0.34 g of AgNO 3 were dissolved in 35 ml of deionized water and stirred for 10 minutes to completely dissolve to form a uniform transparent solution. The obtained solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 160 ° C for 9 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 AgNO 3
  • FIG. 1 is an SEM image of the suspension prepared from this comparative example, and it was found that the silver therein was mainly present in the form of nanoparticles, and almost no signs of the presence of the nanosilver line were observed.
  • the experimental results are shown in Table 1.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 a uniform transparent solution
  • 20 uL of a 0.1 M NaBr solution was added, and a uniform colloidal solution was formed by vigorous stirring.
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 160 ° C for 9 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • the cooled suspension was transferred to a 100 mL beaker, 10 mL of ethanol was added and mixed uniformly, and the uniformly mixed suspension was introduced into a centrifuge tube and centrifuged at 3000 rpm for 20 min, and the supernatant was removed; the operation was repeated once.
  • the concentrated suspension was then dispersed with 3 mL of water. 2 and 3 are SEM images of the nanosilver wires prepared in the present embodiment. The experimental results are shown in Table 2.
  • the cooled suspension was transferred to a 100 mL beaker, 10 mL of ethanol was added and mixed uniformly, and the uniformly mixed suspension was introduced into a centrifuge tube and centrifuged at 6000 rpm for 20 min, and the supernatant was removed; the operation was repeated once.
  • the concentrated suspension was then dispersed with 3 mL of water.
  • 4 is an SEM image of a nanosilver wire prepared in the present embodiment. The experimental results are shown in Table 3.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 a uniform colloidal solution was formed by vigorous stirring.
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 180 ° C for 3 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 AgNO 3
  • 10 uL of a 0.1 M Na 2 SiO 3 solution was added, and a uniform colloidal solution was formed by vigorous stirring.
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 200 ° C for 2 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • the cooled suspension was transferred to a 100 mL beaker, 10 mL of ethanol was added and mixed uniformly, and the uniformly mixed suspension was introduced into a centrifuge tube at 4000 rpm for 20 min, and the supernatant was removed; the operation was repeated once.
  • the concentrated suspension was then dispersed with 3 mL of water.
  • 7 and 8 are SEM images of nano silver wires prepared in this example. The experimental results are shown in Table 6.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 a uniform colloidal solution was formed by vigorous stirring.
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 120 ° C for 20 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 a uniform transparent solution
  • 20 uL of a 0.1 M NaBr solution and 0.35 mL of acetone were added, and vigorously stirred to form a uniform colloidal solution.
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 160 ° C for 9 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • FIG. 10 is an SEM image of the nanosilver wire prepared in this example. The experimental results are shown in Table 8.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 a uniform transparent solution
  • 20 uL of a 0.1 M NaBr solution and a varying amount of acetone as shown in Table 9 below were added, and a uniform colloidal solution was formed by vigorous stirring.
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 160 ° C for 9 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • FIG. 11 is a graph showing the ultraviolet absorption of the nanosilver wire prepared in this example. The experimental results are shown in Table 9.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 a uniform transparent solution
  • 10 uL of a 0.1 M Na 2 SO 4 solution and varying amounts of acetone as shown in Table 10 below were added, and a uniform colloidal solution was formed by vigorous stirring.
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 180 ° C for 3 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • FIG. 12 is a graph showing the ultraviolet absorption of the nanosilver wire prepared in this example. The experimental results are shown in Table 10.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 a uniform transparent solution
  • 10 uL of a 0.1 M Na 2 SiO 3 solution and varying amounts of acetone as shown in Table 10 below were added, and a uniform colloidal solution was formed by vigorous stirring.
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 200 ° C for 2 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • FIG. 13 is a graph showing the ultraviolet absorption of the nanosilver wire prepared in this example. The experimental results are shown in Table 11.
  • FIG. 14 is a graph showing the ultraviolet absorption of the nanosilver wire prepared in this example. The experimental results are shown in Table 12.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 AgNO 3
  • 20 uL of a 0.1 M NaBr solution and 0.35 mL of four different organic solvents ethanol, methanol, acetonitrile and DMF, respectively
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 160 ° C for 9 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • the cooled suspension was transferred to a 100 mL beaker, 10 mL of ethanol was added and mixed uniformly, and the uniformly mixed suspension was introduced into a centrifuge tube and centrifuged at 3000 rpm for 20 min, and the supernatant was removed; the operation was repeated once.
  • the concentrated suspension was then dispersed with 3 mL of water.
  • 15 is an ultraviolet absorption diagram of the nano silver wire prepared in the present embodiment, and FIG.
  • FIG. 16 is an SEM image of the nano silver wire prepared when the organic solvent is ethanol in the embodiment
  • FIG. 17 is an organic solvent in the embodiment.
  • FIG. 18 is an SEM image of the nano silver wire prepared when the organic solvent is acetonitrile in the embodiment
  • FIG. 19 is the nano silver prepared in the present embodiment when the organic solvent is DMF. SEM image of the line.
  • Table 13 The experimental results are shown in Table 13.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 AgNO 3
  • 20 uL of a 0.1 M NaBr solution and varying amounts of four different organic solvents ethanol, methanol, acetonitrile and DMF, respectively
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 160 ° C for 9 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • the cooled suspension was transferred to a 100 mL beaker, 10 mL of ethanol was added and mixed uniformly, and the uniformly mixed suspension was introduced into a centrifuge tube and centrifuged at 3000 rpm for 20 min, and the supernatant was removed; the operation was repeated once.
  • the concentrated suspension was then dispersed with 3 mL of water.
  • Table 14 The results of the experiment are shown in Table 14, and the diameter of the silver wire in the table is in nm.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 AgNO 3
  • 10 uL of a 0.1 M Na 2 SO 4 solution and varying amounts of four different organic solvents ethanol, methanol, acetonitrile and DMF, respectively
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 180 ° C for 3 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • the cooled suspension was transferred to a 100 mL beaker, 10 mL of ethanol was added and mixed uniformly, and the uniformly mixed suspension was introduced into a centrifuge tube and centrifuged at 3000 rpm for 20 min, and the supernatant was removed; the operation was repeated once.
  • the concentrated suspension was then dispersed with 3 mL of water.
  • Table 15 The experimental results are shown in Table 15, and the diameter of the silver wire in the table is in nm.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 AgNO 3
  • 10 uL of a 0.1 M Na 2 SiO 3 solution and varying amounts of four different organic solvents as shown in Table 16 below were added, and a uniform colloidal solution was formed by vigorous stirring.
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 200 ° C for 2 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • the cooled suspension was transferred to a 100 mL beaker, 10 mL of ethanol was added and mixed uniformly, and the uniformly mixed suspension was introduced into a centrifuge tube and centrifuged at 3000 rpm for 20 min, and the supernatant was removed; the operation was repeated once.
  • the concentrated suspension was then dispersed with 3 mL of water.
  • Table 16 The experimental results are shown in Table 16, in which the diameter of the silver wire is in nm.
  • PVP polyvinylpyrrolidone
  • glucose reducing agent
  • AgNO 3 AgNO 3
  • 30 uL of a 0.1 M Na 2 C 2 O 4 solution and varying amounts of four different organic solvents (ethanol, methanol, acetonitrile and DMF, respectively) as shown in Table 16 below were added, and a uniform colloidal solution was formed by vigorous stirring.
  • the obtained colloidal solution was transferred to a 50 mL closed reaction vessel, and the closed reaction vessel was placed in an oven at 120 ° C for 20 hours, and then the closed reaction vessel was taken out and placed in the air to be naturally cooled.
  • the cooled suspension was transferred to a 100 mL beaker, 10 mL of ethanol was added and mixed uniformly, and the uniformly mixed suspension was introduced into a centrifuge tube and centrifuged at 3000 rpm for 20 min, and the supernatant was removed; the operation was repeated once.
  • the concentrated suspension was then dispersed with 3 mL of water.
  • Table 17 The experimental results are shown in Table 17, in which the diameter of the silver wire is in nm.
  • nucleating sustained release agents As can be seen from Examples 1-6, the use of various nucleating sustained release agents enumerated herein can be obtained by hydrothermal reduction even when the concentration of Ag + is significantly higher than that of the paper cited in the background section. Nano silver wire.
  • the addition of different nucleating sustained release agents or different concentrations of the same nucleating sustained release agent can obtain nano silver wires with different aspect ratios. It can be seen that the addition of nucleating sustained release agents achieves the aspect ratio of silver wires. Effective regulation, thereby making it possible to prepare nano silver wires with controllable aspect ratios to meet different needs.
  • nucleating sustained release agents exemplified in the present invention can be passed through a hydrothermal reduction method.
  • the nano silver wire is obtained, and in the case of the same nucleating sustained release agent, the more the amount of the organic solvent (acetone, ethanol, methanol, acetonitrile, DMF) is added, the smaller the diameter of the finally formed nano silver wire is, so that The amount of organic silver solvent (acetone, ethanol, methanol, acetonitrile, DMF) was added to control the diameter of the nanosilver wire to meet different needs.
  • organic solvent acetone, ethanol, methanol, acetonitrile, DMF

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种在水相介质中制备纳米银线的方法,其包括以下步骤:(a)制备反应溶液:将硝酸银、聚乙烯吡咯烷酮、葡萄糖和成核缓释剂加入至去离子水中,形成反应溶液,将上述反应溶液加入至密闭反应釜中;其中所述成核缓释剂选自碱金属卤化物或碱土金属卤化物、碱金属硅酸盐或碱土金属硅酸盐、碱金属硫酸盐或碱土金属硫酸盐、碱金属硫氰酸盐或碱土金属硫氰酸盐、碱金属草酸盐或碱土金属草酸盐;(b)水热还原反应:将该密闭反应釜置于烘箱内在120℃至200℃之间的温度下在自生压力下水热反应,得到纳米银线悬浮液。该方法使起始反应液中硝酸银浓度显著提高,实现了对纳米银线长径比的控制。

Description

一种在水相介质中制备纳米银线的方法 技术领域
本发明涉及纳米银线制备方法领域。
背景技术
贵金属纳米材料是纳米材料研究的一个重要分支,所述贵金属以金、银为代表,其中纳米银线因其广阔的应用前景而备受关注。由于纳米银线体积小、比表面大,具有良好的化学性能和催化性能,并且抗菌性能和生物相容性出色,目前其在光学、电子学、催化、信息存储、医药、能源等方面具有重要应用。纳米银线除了拥有传统银材料所具有的优秀的导电性、延展性和拉伸性能外,由于其独特的纳米尺度形貌特征,因而还具有与大块材料所不同的电学、光学等一系列特征,可以作为新型透明导电薄膜中的主要原材料。
传统的纳米银线制备多采用醇热法。专利公布号为CN103157807A的名称为《纳米银线之制备方法》的专利,涉及用醇热法制备纳米银线。其采用醇类物质作为溶剂,并且采用重金属Cu、Sn或Ni的盐作为金属前驱物来加速银线析出的速率。醇类溶剂的使用增加了纳米银线的制备成本且需要额外的溶剂后处理工序;另外,在制备过程中,重金属离子也会被还原从而形成杂质,影响制备的纳米银线的纯度;同时,重金属盐的使用势必会造成环境污染。此外,该方法产生的纳米银线的长径比(该专利中称为宽高比)不高,一般情况下大于50,实施例中记载的最大宽高比为286,如此低的长径比限制了该纳米银线的应用。
期刊论文Cylindrical Silver Nanowires:Preparation,Structure,and Optical Properties,Advanced Materials, 2005,17,2626-2630也公开了一种纳米银线的制备方法,其中纳米银线具有1200以上的高长径比。但发明人在基于该方法进行后续实验研究时发现,该方法中硝酸银的浓度不能过高,否则会产生大量的纳米银颗粒而非纳米银线,如本发明中的对比例1所示。但从提高纳米银线生产效率方面考虑,人们显然希望能有一种能允许使用更高浓度硝酸银的方法。
为了克服现有制备方法的缺陷,提出了本发明。
发明内容
本发明涉及一种在水相介质中制备纳米银线的方法,其包括以下步骤:
a.制备反应溶液:将硝酸银、聚乙烯吡咯烷酮、葡萄糖和成核缓释剂加入至去离子水中,形成反应溶液,将上述反应溶液加入至密闭反应釜中;其中所述成核缓释剂选自碱金属卤化物或碱土金属卤化物、碱金属硅酸盐或碱土金属硅酸盐、碱金属硫酸盐或碱土金属硫酸盐、碱金属硫氰酸盐或碱土金属硫氰酸盐、碱金属草酸盐或碱土金属草酸盐;
b.水热还原反应:将该密闭反应釜置于烘箱内在120℃至200℃之间的温度下在自生压力下水热反应,得到纳米银线悬浮液。
在优选实施方案中,本发明所述制备方法在步骤b之后还包括步骤c:离心浓缩上述纳米银线悬浮液,得到浓缩后的银纳米线悬浮液。
在优选实施方案中,硝酸银:聚乙烯吡咯烷酮:葡萄糖:(卤离子或硫氰酸根)的摩尔比为1:(2.2-10):(2.7-20):(0.001-0.05)。
在优选实施方案中,所述硝酸银:聚乙烯吡咯烷酮:葡萄 糖:(硅酸根或硫酸根或草酸根)的摩尔比为1:(2.2-10):(2.7-20):(0.0005-0.025)。
在优选实施方案中,所述水热还原反应持续2至20小时。
在优选的实施方案中,可以离心浓缩上述纳米银线悬浮液,得到浓缩后的纳米银线悬浮液。例如,所述离心浓缩包括将反应所得纳米银线悬浮液溶于乙醇中,离心浓缩若干次得到浓缩后的纳米银线悬浮液。
在优选的实施方案中,还可以向所述反应溶液中加入有机溶剂,所述有机溶剂包含丙酮、乙醇、甲醇、乙腈和N,N-二甲基甲酰胺(缩写为DMF),加入的所述有机溶剂与所述反应溶液的体积比为1%-25%。
在优选的实施方案中,通过向所述反应溶液中加入更多的有机物,来得到直径更小的纳米银线。
本发明所述制备方法的具体操作步骤为:首先在常温下将硝酸银、聚乙烯吡咯烷酮、葡萄糖和成核缓释剂按照一定的摩尔比加入至去离子水中,形成反应溶液。任选地,还可以向反应溶液中加入有机溶剂,例如丙酮、乙醇、甲醇、乙腈和DMF等,这些有机溶剂都可以与水混溶,因有机溶剂与所述反应溶液的体积比为1%-25%,故加入这些有机溶剂后,所述反应溶液仍以水为主要介质,故仍可称为水相介质。之后,将上述反应溶液加入至反应釜中并将其剧烈搅拌使其形成均一溶液。搅拌可以通过机械搅拌或磁力搅拌的方式,待所述溶液分散均匀后取出机械搅拌装置或磁子。再将反应釜密闭后置于烘箱中,在120℃至200℃之间的温度下、在自生压力下实施水热反应并持续2至20小时,得到纳米银线悬浮液。反应完成后取出密闭反应釜并冷却至室温。之后,如果需要的话,可以通过离心浓缩上述纳米银线悬浮液,得 到浓缩后的纳米银线悬浮液。例如,所述离心浓缩包括将反应所得纳米银线悬浮液溶于乙醇中,离心浓缩若干次得到浓缩后的纳米银线悬浮液,例如,离心浓缩两次,转速为3000rpm至8000rpm,时间为约20min。具体的离心浓缩的工艺条件可以由技术人员根据实际情况加以选择。
本发明中,所述聚乙烯吡咯烷酮为保护剂,所述葡萄糖为还原剂。当葡萄糖与硝酸银混合时,在合适的温度下,葡萄糖将硝酸银中的银离子还原,形成五重孪晶结构的银纳米微粒。聚乙烯吡咯烷酮的作用为限制银离子在所述银纳米微粒的{100}晶面系上的吸附,从而使所述银纳米微粒在一维方向上生长,最终形成一维纳米银线。
发明人惊讶地发现,尽管成核缓释剂与Ag+的摩尔比仅仅为千分之几到百分之几,其量貌似微乎其微,但其所起到的效果却是非常惊人的。加入该成核缓释剂后,不仅允许水热还原反应过程中硝酸银的起始浓度显著更高,而且减少了还原剂葡萄糖和保护剂聚乙烯吡咯烷酮的用量,此外,所得到的纳米银线的长径比可以在数十至一千多之间自由地控制,如下文的实施例所示。对此,发明人尚无技术上的合理解释,据推测,可能是其中所述成核缓释剂与硝酸银中的银离子形成了难溶物,减少水溶液中银离子的浓度,从而降低所述银纳米微粒成核速率,以达到更好的控制其长径比的目的。但相对于Ag+总量来说这么少的难溶物能起到这么明显的作用,确实是上述推测的机理所难以合理解释的,因此也不排除随着研发的深入而给出其他解释的可能性。加入不同量的有机溶剂可以调节银纳米线的直径,原因可能是这些有机溶剂改变了硝酸银的溶解度和反应时的蒸气压,但不排除随着研发的深入而给出其他解释的可能性。
本发明的有益效果是:
1、本发明以水作为主要溶剂,避免了传统的醇热法对醇类溶剂的使用,更加安全环保且成本低廉;
2、本发明无需使用Cu、Sn、Ni等重金属盐前驱体,消除了这些金属离子被还原后产生的杂质对纳米银线的污染,而且避免了含重金属的废液对环境的污染;
3、通过本发明的方法可以制备不同长径比的纳米银线,实现了对长径比的控制,可以满足不同的需求。
4、本发明中通过向水相介质中加入不同用量的有机溶剂,还可以调节制得的纳米银线的直径,这是前人未曾报道过的。
5、最重要的,本发明中成核缓释剂的使用,可以使起始水热反应液中的硝酸银浓度显著提高到现有技术浓度的近40倍,且仍能得到纳米银线,这非常有利于提高单位体积反应器的生产效率。
附图说明
图1是由本发明对比例1制备的纳米银颗粒的高倍电子扫描显微镜(SEM)图。
图2是由本发明实施例1制备的纳米银线的低倍电子扫描显微镜(SEM)图。
图3是由本发明实施例1制备的纳米银线的高倍电子扫描显微镜(SEM)图。
图4是由本发明实施例2制备的纳米银线的高倍电子扫描显微镜(SEM)图。
图5是由本发明实施例3制备的纳米银线的低倍电子扫描显微镜(SEM)图。
图6是由本发明实施例4制备的纳米银线的高倍电子扫描显微镜(SEM)图。
图7是由本发明实施例5制备的纳米银线的低倍电子扫描显微镜(SEM)图。
图8是由本发明实施例5制备的纳米银线的超高倍电子扫描显微镜(SEM)图。
图9是由本发明实施例6制备的纳米银线的高倍电子扫描显微镜(SEM)图。
图10是由本发明实施例7制备的纳米银线的低倍电子扫描显微镜(SEM)图。
图11是由本发明实施例8制备的纳米银线的紫外吸收图。
图12是由本发明实施例9制备的纳米银线的紫外吸收图。
图13是由本发明实施例10制备的纳米银线的紫外吸收图。
图14是由本发明实施例11制备的纳米银线的紫外吸收图。
图15是由本发明实施例12制备的纳米银线的紫外吸收图。
图16是本发明实施例12的低倍电子扫描显微镜(SEM)图,有机溶剂是乙醇。
图17是本发明实施例12的低倍电子扫描显微镜(SEM)图,有机溶剂是甲醇。
图18是本发明实施例12的低倍电子扫描显微镜(SEM)图,有机溶剂是乙腈。
图19是本发明实施例12的高倍电子扫描显微镜(SEM)图,有机溶剂是DMF。
图20是由本发明实施例1制备的纳米银线的X射线衍射(XRD)图谱。
具体实施方式
以下具体实施例用于举例说明本发明,不以任何方式限制本发明的范围。
对比例1
采用背景技术部分提到的期刊论文的制备方法,不同之处在于最终反应釜中的硝酸银的浓度与该文献相比扩大40倍,具体过程如下:将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。将所得溶液转移到50mL密闭反应釜中,将密闭反应釜置于160℃烘箱中反应9小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的胶体溶液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的胶体溶液导入离心管中在8000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的胶体颗粒,取样进行SEM分析。附图1是由本对比例制备的悬浮物的SEM图,发现其中的银主要以纳米颗粒的形式存在,几乎看不到纳米银线存在的迹象。实验结果如表1所示。
表1
Figure PCTCN2014090182-appb-000001
实施例1
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加入20uL浓度为0.1M的 NaBr溶液,经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于160℃烘箱中反应9小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在3000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。附图2和附图3是本实施案例制备的纳米银线的SEM图。实验结果如表2所示。
表2
Figure PCTCN2014090182-appb-000002
实施例2
将2.2g聚乙烯吡咯烷酮(PVP,保护剂)、7.2g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加1000uL浓度为0.1M的NaBr溶液,经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于140℃烘箱中反应9小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在6000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。附图4是本实施案例制备的纳米银线的SEM图。实验结果如表3所示。
表3
Figure PCTCN2014090182-appb-000003
实施例3
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解。再加入10uL浓度为0.1M的Na2SO4溶液,经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于180℃烘箱中反应3小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在4000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。附图5是本实施案例制备的纳米银线的SEM图。实验结果如表4所示。
表4
Figure PCTCN2014090182-appb-000004
实施例4
将2.2g聚乙烯吡咯烷酮(PVP,保护剂)、7.2g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟, 使其完全溶解。再加入500uL浓度为0.1M的Na2SO4溶液,经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于180℃烘箱中反应3小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在6000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。附图6是本实施案例制备的纳米银线的SEM图。实验结果如表5所示。
表5
Figure PCTCN2014090182-appb-000005
实施例5
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解。再加入10uL浓度为0.1M的Na2SiO3溶液,经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于200℃烘箱中反应2小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在4000rpm下离20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。附图7和附图8是本实施例制备的纳米银线的SEM图。实验结果如表6所示。
表6
Figure PCTCN2014090182-appb-000006
实施例6
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解。再加入30uL浓度为0.1M的Na2C2O4溶液,经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于120℃烘箱中反应20小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在4000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。附图9是本实施例制备的纳米银线的SEM图。实验结果如表7所示。
表7
Figure PCTCN2014090182-appb-000007
实施例7
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还 原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加入20uL浓度为0.1M的NaBr溶液和0.35mL的丙酮,经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于160℃烘箱中反应9小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在3000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。附图10是本实施例制备的纳米银线的SEM图。实验结果如表8所示。
表8
Figure PCTCN2014090182-appb-000008
实施例8
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加入20uL浓度为0.1M的NaBr溶液和如下表9所示的变化量的丙酮,经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于160℃烘箱中反应9小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在3000rpm下离心20min,移走上清液;重复操作一次。 然后用3mL水分散浓缩后的悬浮物。附图11是本实施例制备的纳米银线的紫外吸收图。实验结果如表9所示。
表9
Figure PCTCN2014090182-appb-000009
实施例9
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加入10uL浓度为0.1M的Na2SO4溶液和如下表10所示的变化量的丙酮,经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于180℃烘箱中反应3小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在3000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。附图12是本实施例制备的纳米银线的紫外吸收图。实验结果如表10所示。
表10
Figure PCTCN2014090182-appb-000010
实施例10
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加入10uL浓度为0.1M的Na2SiO3溶液和如下表10所示的变化量的丙酮,经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于200℃烘箱中反应2小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在3000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。附图13是本实施例制备的纳米银线的紫外吸收图。实验结果如表11所示。
表11
Figure PCTCN2014090182-appb-000011
实施例11
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加入30uL浓度为0.1M的Na2C2O4溶液和不同体积的丙酮,经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于120℃烘箱中反应20小时,然后将该密闭反应釜取出并置于空气 中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在3000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。附图14是本实施例制备的纳米银线的紫外吸收图。实验结果如表12所示。
表12
Figure PCTCN2014090182-appb-000012
实施例12
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加入20uL浓度为0.1M的NaBr溶液和0.35mL的四种不同有机溶剂(分别为乙醇、甲醇、乙腈和DMF),经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于160℃烘箱中反应9小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在3000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。附图15是本实施例制备的纳米银线的紫外吸收图,附图16是本实施例中有机溶剂为乙醇时制备的纳米银线的SEM图,附图17是本实施例中有机溶剂为甲醇时制备的纳米银线的 SEM图,附图18是本实施例中有机溶剂为乙腈时制备的纳米银线的SEM图,附图19是本实施例中有机溶剂为DMF时制备的纳米银线的SEM图。实验结果如表13所示。
表13
Figure PCTCN2014090182-appb-000013
实施例13
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加入20uL浓度为0.1M的NaBr溶液和如下表14所示的变化量的四种不同有机溶剂(分别为乙醇、甲醇、乙腈和DMF),经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于160℃烘箱中反应9小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在3000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物,实验结果如表14所示,表中银线的直径单位为nm。
表14
Figure PCTCN2014090182-appb-000014
实施例14
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加入10uL浓度为0.1M的Na2SO4溶液和如下表15所示的变化量的四种不同有机溶剂(分别为乙醇、甲醇、乙腈和DMF),经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于180℃烘箱中反应3小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在3000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。实验结果如表15所示,表中银线的直径单位为nm。
表15
Figure PCTCN2014090182-appb-000015
实施例15
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加入10uL浓度为0.1M的Na2SiO3溶液和如下表16所示的变化量的四种不同有机溶剂(分别为乙醇、甲醇、乙腈和DMF),经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于200℃烘箱中反应2小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在3000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。实验结果如表16所示,表中银线的直径单位为nm。
表16
Figure PCTCN2014090182-appb-000016
实施例16
将0.5g聚乙烯吡咯烷酮(PVP,保护剂)、1.0g葡萄糖(还原剂)和0.34g的AgNO3溶解于35ml去离子水中,搅拌10分钟,使其完全溶解,形成均一透明溶液。再加入30uL浓度为0.1M的Na2C2O4溶液和如下表16所示的变化量的四种不同有机溶剂(分别为乙醇、甲醇、乙腈和DMF),经剧烈搅拌形成均一胶体溶液。将所得胶体溶液转移到50mL密闭反应釜中,将密闭反应釜置于 120℃烘箱中反应20小时,然后将该密闭反应釜取出并置于空气中自然冷却。将冷却后的悬浮液转移至100mL的烧杯中,加入10mL乙醇并混合均匀,将混合均匀后的悬浮液导入离心管中在3000rpm下离心20min,移走上清液;重复操作一次。然后用3mL水分散浓缩后的悬浮物。实验结果如表17所示,表中银线的直径单位为nm。
表17
Figure PCTCN2014090182-appb-000017
由实施例1-6可以看出,使用本发明所列举的各种成核缓释剂,即便在Ag+浓度显著高于背景技术部分引用的论文的情况下,都能通过水热还原法得到纳米银线。此外,加入不同的成核缓释剂或者不同浓度的同一成核缓释剂可以得到不同长径比的纳米银线,由此可见,成核缓释剂的加入实现了对银线长径比有效的调控,由此可以制备可控长径比的纳米银线,以满足不同的需求。
由实施例7-16可以看出,在加入有机溶剂(丙酮,乙醇,甲醇,乙腈,DMF)的情况下,使用本发明所列举的各种成核缓释剂,都能通过水热还原法得到纳米银线,且在同一成核缓释剂的情况下,加入有机溶剂(丙酮,乙醇,甲醇,乙腈,DMF)的量越多,最终形成的纳米银线的直径越小,从而可以通过加入有机溶剂(丙酮,乙醇,甲醇,乙腈,DMF)的量控制纳米银线的直径,以满足不同的需求。

Claims (7)

  1. 一种在水相介质中制备纳米银线的方法,其包括以下步骤:
    a.制备反应溶液:将硝酸银、聚乙烯吡咯烷酮、葡萄糖和成核缓释剂加入至去离子水中,形成反应溶液,将上述反应溶液加入至密闭反应釜中;其中所述成核缓释剂选自碱金属卤化物或碱土金属卤化物、碱金属硅酸盐或碱土金属硅酸盐、碱金属硫酸盐或碱土金属硫酸盐、碱金属硫氰酸盐或碱土金属硫氰酸盐、碱金属草酸盐或碱土金属草酸盐;
    b.水热还原反应:将该密闭反应釜置于烘箱内在120℃至200℃之间的温度下在自生压力下水热反应,得到纳米银线悬浮液。
  2. 根据权利要求1的方法,其在步骤b之后还包括步骤c:离心浓缩上述纳米银线悬浮液,得到浓缩后的银纳米线悬浮液。
  3. 根据权利要求1的方法,其中硝酸银:聚乙烯吡咯烷酮:葡萄糖:(卤离子或硫氰酸根)的摩尔比为1:(2.2-10):(2.7-20):(0.001-0.05)
  4. 根据权利要求1的方法,其中所述硝酸银:聚乙烯吡咯烷酮:葡萄糖:(硅酸根或硫酸根或草酸根)的摩尔比为1:(2.2-10):(2.7-20):(0.0005-0.025)。
  5. 根据权利要求1的方法,其中所述水热还原反应持续2至20小时。
  6. 根据权利要求1的方法,其中还向所述反应溶液中加入有机溶剂,所述有机溶剂选自丙酮、乙醇、甲醇、乙腈和N,N-二甲基甲酰胺,加入的所述有机溶剂与所述反应溶液的体积比为1%-25%。
  7. 根据权利要求6的方法,其中在所述有机溶剂与所述反应溶液的体积比为1%-25%的范围内,通过向所述反应溶液中加入更多的上述有机溶剂,来得到直径更小的纳米银线。
PCT/CN2014/090182 2014-09-02 2014-11-03 一种在水相介质中制备纳米银线的方法 WO2016033862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410444039.2 2014-09-02
CN201410444039.2A CN104209538B (zh) 2014-09-02 2014-09-02 一种在水相介质中制备纳米银线的方法

Publications (1)

Publication Number Publication Date
WO2016033862A1 true WO2016033862A1 (zh) 2016-03-10

Family

ID=52091665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090182 WO2016033862A1 (zh) 2014-09-02 2014-11-03 一种在水相介质中制备纳米银线的方法

Country Status (2)

Country Link
CN (1) CN104209538B (zh)
WO (1) WO2016033862A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106670500A (zh) * 2016-12-29 2017-05-17 华中科技大学 一种利用有机胺还原制备银纳米线的方法
CN108436105A (zh) * 2018-06-07 2018-08-24 乐凯华光印刷科技有限公司 一种超长纳米银线分散液及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105537622A (zh) * 2016-01-07 2016-05-04 嘉兴禾浦光电科技有限公司 一种制备银纳米线的方法
CN110640163B (zh) * 2019-10-18 2021-11-30 上海交通大学 一种制备超细超高长径比银纳米线的方法
CN110576193B (zh) * 2019-10-29 2022-06-03 哈尔滨工业大学 一种以柠檬酸盐为还原剂制备超细银纳米线的方法
CN114515836B (zh) * 2020-11-02 2023-11-03 深圳市华科创智技术有限公司 一种水相低温的纳米银线的合成方法
CN113387726A (zh) * 2021-08-17 2021-09-14 广东新明珠陶瓷集团有限公司 一种抗菌陶瓷砖及其制备方法
CN113878127B (zh) * 2021-09-15 2023-05-05 昆明贵研新材料科技有限公司 一种以格氏试剂为助剂辅助合成超细纳米银线的方法
CN114029499B (zh) * 2021-11-08 2022-08-19 西北有色金属研究院 一种超长纳米银线材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261099A (ja) * 2009-04-30 2010-11-18 Samsung Mobile Display Co Ltd 蒸着ソース
CN102423808A (zh) * 2011-12-14 2012-04-25 天津工业大学 一种银纳米线的快速高浓度合成方法
CN103153844A (zh) * 2010-07-22 2013-06-12 公州大学校产学协力团 生产银纳米线的方法
CN103203468A (zh) * 2013-04-17 2013-07-17 苏州冷石纳米材料科技有限公司 一种银纳米线的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922787B2 (en) * 2008-02-02 2011-04-12 Seashell Technology, Llc Methods for the production of silver nanowires
TWI476160B (zh) * 2011-12-19 2015-03-11 Ind Tech Res Inst 奈米銀線之製備方法
CN102744421A (zh) * 2012-07-16 2012-10-24 浙江师范大学 一种水溶液中大批量制备Ag纳米线的方法
CN104870361A (zh) * 2012-12-14 2015-08-26 率路技术株式会社 使用离子液体制备银纳米线的方法
CN103084584A (zh) * 2013-01-29 2013-05-08 中国科学院理化技术研究所 一种利用水热法制备银纳米线的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261099A (ja) * 2009-04-30 2010-11-18 Samsung Mobile Display Co Ltd 蒸着ソース
CN103153844A (zh) * 2010-07-22 2013-06-12 公州大学校产学协力团 生产银纳米线的方法
CN102423808A (zh) * 2011-12-14 2012-04-25 天津工业大学 一种银纳米线的快速高浓度合成方法
CN103203468A (zh) * 2013-04-17 2013-07-17 苏州冷石纳米材料科技有限公司 一种银纳米线的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106670500A (zh) * 2016-12-29 2017-05-17 华中科技大学 一种利用有机胺还原制备银纳米线的方法
CN108436105A (zh) * 2018-06-07 2018-08-24 乐凯华光印刷科技有限公司 一种超长纳米银线分散液及其制备方法
CN108436105B (zh) * 2018-06-07 2023-06-20 乐凯华光印刷科技有限公司 一种超长纳米银线分散液及其制备方法

Also Published As

Publication number Publication date
CN104209538B (zh) 2016-09-07
CN104209538A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
WO2016033862A1 (zh) 一种在水相介质中制备纳米银线的方法
Yu et al. Synthesis and application of iron-based nanomaterials as anodes of lithium-ion batteries and supercapacitors
Fahad et al. Recent progress in the synthesis of silver nanowires and their role as conducting materials
WO2018082204A1 (zh) 一种具有高产率和量子产率的红光碳点及其制备方法
Zhou et al. Microsphere organization of nanorods directed by PEG linear polymer
CN103170645B (zh) 银纳米线的制备方法
Wang et al. Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology
Zhao et al. Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template
KR102070529B1 (ko) 균일한 종횡비를 갖는 노드가 있는 은 나노와이어의 신규한 제조방법
Yang et al. Dextran-controlled crystallization of silver microcrystals with novel morphologies
Luo et al. Shape-controlled synthesis of Cu2O nanocrystals assisted by Triton X-100
Yan et al. Titanium dioxide nanomaterials
CN1249276C (zh) 化学沉淀法制备稳定的纳米氧化亚铜晶须的方法
WO2019136822A1 (zh) 核壳型金-氧化钌纳米复合材料及其制备方法
Jiu et al. Ag nanowires: large-scale synthesis via a trace-salt-assisted solvothermal process and application in transparent electrodes
Liu et al. Biopolymer-assisted construction and gas-sensing study of uniform solid and hollow ZnSn (OH) 6 spheres
CN110181074B (zh) 一种复合软模板法绿色制备高长径比银纳米线的方法
CN105908220A (zh) 一种液相电沉积制备微纳米银枝晶的方法
WO2024087551A1 (zh) 一种软模板法制备银纳米线的方法
Eadi et al. Effect of surfactant on growth of ZnO nanodumbbells and their characterization
Viet et al. Controlled formation of silver nanoparticles on TiO2 nanotubes by photoreduction method
US10035193B2 (en) Method for synthesizing particles in the presence of a solid phase
CN113680291B (zh) 一种顺磁性金属氧化物/尖晶石/碳复合微球的制备方法
Yang et al. Facile synthesis of hematite nanoplates and their self-assembly generated by domain growth of NaCl
Rani et al. Nanoparticles of nickel oxide and nickel hydroxide using lyophilisomes of fibrinogen as template

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901272

Country of ref document: EP

Kind code of ref document: A1