WO2024087551A1 - 一种软模板法制备银纳米线的方法 - Google Patents

一种软模板法制备银纳米线的方法 Download PDF

Info

Publication number
WO2024087551A1
WO2024087551A1 PCT/CN2023/090289 CN2023090289W WO2024087551A1 WO 2024087551 A1 WO2024087551 A1 WO 2024087551A1 CN 2023090289 W CN2023090289 W CN 2023090289W WO 2024087551 A1 WO2024087551 A1 WO 2024087551A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver nanowires
template
silver
lactose
reaction
Prior art date
Application number
PCT/CN2023/090289
Other languages
English (en)
French (fr)
Inventor
李艳玲
曾西平
叶晃青
Original Assignee
深圳市华科创智技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华科创智技术有限公司 filed Critical 深圳市华科创智技术有限公司
Publication of WO2024087551A1 publication Critical patent/WO2024087551A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to the technical field of silver nanowire preparation, and in particular to a method for preparing silver nanowires using a soft template method.
  • Nanowires also known as one-dimensional nanomaterials, refer to materials with a one-dimensional size between 1 and 100 nm. Metal particles will show special effects different from macroscopic metals or single metal atoms when they enter the nanometer level, such as small size effect, interface effect, quantum size effect, macroscopic quantum tunneling effect and dielectric confinement effect, etc. Therefore, metal nanowires have great application potential in the fields of electricity, optics, thermal, magnetism and catalysis. Among them, silver nanowires have a wide range of applications in many fields such as energy, catalysis, biology, electronics, etc., because of their excellent conductivity, excellent light transmittance and flexibility due to the nanometer-level size effect.
  • Silver nanowires are generally synthesized by physical or chemical methods and are widely used in drug delivery, nanomedicine, chemical sensing, photocatalysis, etc.
  • the main feature of the template method as an effective method for preparing nanomaterials and its difference from the direct synthesis method is that no matter whether the chemical reaction occurs in the liquid phase or the gas phase, the reaction is carried out in an effectively controlled area.
  • the template method for synthesizing nanomaterials has many advantages, mainly manifested in: 1 Using the template as a carrier to accurately control the size and shape, structure and properties of nanomaterials; 2 Realizing the integration of nanomaterial synthesis and assembly, and at the same time solving the problem of dispersion stability of nanomaterials; 3 The synthesis process is relatively simple, and many methods are suitable for mass production.
  • the template method is divided into a hard template method and a soft template method.
  • the hard template method usually uses porous membranes, carbon nanotubes, DNA, etc. as templates for the growth of silver nanowires.
  • Chinese patent CN103752850B discloses a method for preparing silver nanowires using an alumina template.
  • the porous alumina is used as a template. After ultrasonic treatment, it is placed in an aqueous solution of a reducing agent containing a surfactant, soaked, washed, and dried, and then placed on the surface of a soluble silver salt aqueous solution.
  • the capillary effect is used to allow the silver salt solution to slowly enter the pores of the template to undergo a reduction reaction to generate silver nanowires. After the reaction is completed, the alumina template is dissolved with hydrochloric acid to obtain silver nanowires.
  • This method has high requirements for the morphology of the alumina template and the preparation process is very complicated. The process has many steps, and the template needs to be removed. At the same time, the solution is adsorbed by capillary effect to synthesize silver nanowires. However, due to the low adsorption efficiency, the yield is low and industrial production cannot be carried out.
  • Chinese patent CN105665742A discloses a method for batch preparation of high aspect ratio nano silver wire dispersion with controllable wire diameter, using polyvinyl pyrrolidone or polyvinyl alcohol as template agents, halide as control agent, and using liquid polyhydroxy alcohol to reduce soluble silver salts to prepare silver nanowires.
  • This method consumes a large amount of alcohol reagents, and using polyvinyl pyrrolidone or polyvinyl alcohol as template agents is not conducive to environmental protection and increases costs.
  • Chinese patent CN110181074B discloses a method for preparing silver nanowires with high aspect ratio in a green way by a composite soft template method, wherein an organic diacid and polyvinyl alcohol are used as composite soft templates, and gallic acid is used as a reducing agent to reduce silver salt to prepare silver nanowires.
  • this method provides a new soft template material, an organic diacid, it still needs to be compounded with polyvinyl alcohol as a composite template, resulting in a large consumption of organic reagents.
  • the reaction time of this method is 1-3 days, and the preparation cycle is long, which is not conducive to improving production efficiency.
  • the present invention provides a method for preparing silver nanowires by a soft template method, wherein lactose is used as a template and tea polyphenols are used as a reducing agent, and a hydrothermal reaction is directly carried out with silver nitrate under the action of a control agent to prepare silver nanowires.
  • the reaction is mild and the raw materials for the reactions are cheap and easily available, and no other chemical reagents need to be added, which meets the requirements of green synthesis.
  • a method for preparing silver nanowires using a soft template method comprises the following steps:
  • Tea polyphenols, lactose and a control agent are sequentially added to deionized water, ultrasonically mixed, and then silver nitrate is added thereto, reacted under hydrothermal conditions to obtain a mother liquor containing silver nanowires, and silver nanowires are obtained after washing.
  • the present invention uses tea polyphenols as a reducing agent and lactose as a template, both of which are natural organic raw materials with a wide range of sources, low cost and no toxic side effects, which greatly reduces the production cost of silver nanowires and Wastewater treatment cost.
  • Tea polyphenols is a general term for polyphenols in tea leaves, which are rich in reducing catechins, which can act as a reducing agent to reduce free silver ions into silver atoms.
  • Lactose is a carbohydrate unique to human and mammalian milk, and is a disaccharide composed of glucose and galactose. With lactose as a template, under hydrothermal conditions, lactose gradually decomposes to release glucose and galactose.
  • Glucose and galactose are hydrothermally carbonized at a suitable release rate to form a one-dimensional tubular soft template with open channels.
  • the soft template adsorbs free silver ions. Therefore, the silver atoms generated by the reduction of catechins in tea polyphenols grow along a one-dimensional direction under the induction of the one-dimensional tubular soft template to obtain silver nanowires.
  • the silver nanoparticles grow into discontinuous silver nanorods. As the reaction proceeds, the silver nanorods fuse with each other to eventually form a well-shaped silver nanowire. Due to the presence of the template, the growth of the silver nanowires has a spatial limitation and directional induction effect. The fusion of the silver nanorods achieves the extension of the material length, thereby obtaining a one-dimensional nanowire material with a certain aspect ratio.
  • the mass ratio of the tea polyphenols, the lactose, the control agent and the silver nitrate is (1-2):(2-4):(2-3):4.
  • the mass ratio of the tea polyphenols, the lactose, the control agent and the silver nitrate is 1:2:2:4.
  • the concentration of silver nitrate in the reaction solution is 5.0-6.0 mg/mL.
  • control agent is selected from one of potassium chloride, sodium chloride, ferric chloride and copper chloride.
  • control agent is selected from potassium chloride.
  • the ultrasonic mixing time is 5-10 min, and the power is 100-200 W.
  • the ultrasonic mixing time is 8 min, and the power is 150 W.
  • reaction time under hydrothermal conditions is 5-6 hours, and the temperature is 140-160° C.
  • the reaction time is 5 hours, and the reaction temperature is 150° C.
  • the washing treatment is washing with deionized water and ethanol in sequence, and then centrifuging.
  • centrifugal treatment time is 3-5 minutes, and the maximum rotation speed is 7000-10000 rpm.
  • the average diameter of the prepared silver nanowires is 90-100 nm, the average length is 8-10 um, and the purity is greater than 92%.
  • the present invention has the following beneficial effects:
  • the method for preparing silver nanowires by the soft template method of the present invention uses lactose as a template agent and tea polyphenols as a reducing agent, and hydrothermally reduces silver ions under the action of a control agent to obtain silver nanowires.
  • the overall process is simple and easy to operate; the template agent and the reducing agent are natural animal and plant extracts, which are widely available and inexpensive.
  • the reaction process uses water as a solvent, and no additional alcohol organic reagents or surfactants are required, which greatly reduces the production cost of silver nanowires and the cost of wastewater treatment.
  • the prepared silver nanowires have high purity, good uniformity, are easy to disperse, and have good application value.
  • the method for preparing silver nanowires by the soft template method of the present invention uses lactose as a template. Lactose is wrapped on the surface of silver particles and gradually hydrolyzed during the hydrothermal reaction to slowly release glucose and galactose, forming a one-dimensional tubular template with a certain shape, thereby providing spatial confinement and directional induction, so that the generated nanosilver short rods are radially fused to obtain a one-dimensional silver nanowire with a certain aspect ratio.
  • Disaccharide is used as a template agent, and its slow hydrolysis is used to control the release rate of glucose and galactose during the reaction process, thereby regulating the generation of a tubular soft template to ensure that a one-dimensional structure of silver nanowires is obtained.
  • lactose and tea polyphenols are appropriately mixed in a ratio, which can balance the formation rate of the template and the reduction rate of silver ions, thereby giving full play to the guiding role of the template to obtain silver nanowires with uniform shape; and the present invention adopts a conventional hydrothermal method for preparation, which is applicable to the existing production system and suitable for industrial large-scale production applications.
  • FIG1 is a SEM image of silver nanowires prepared in Example 1 of the present invention.
  • FIG2 is a diameter distribution diagram of the silver nanowires prepared in Example 1 of the present invention.
  • FIG3 is a length distribution diagram of the silver nanowires prepared in Example 1 of the present invention.
  • FIG4 is an SEM image of the reaction solution at different reaction stages of Example 1 of the present invention, wherein FIGS. 4a, b, c, d, e, and f correspond to the SEM images of the reaction solution when the reaction time is 25 min, 50 min, 75 min, 100 min, 150 min, and 300 min in Example 1, respectively;
  • FIG5 is a schematic diagram of the reaction mechanism of preparing silver nanowires by the soft template method of the present invention.
  • FIG6 is a SEM image of silver nanowires prepared in Example 2 of the present invention.
  • FIG7 is a SEM image of silver nanowires prepared in Example 3 of the present invention.
  • FIG8 is a SEM image of the product prepared in Comparative Example 1 of the present invention.
  • FIG9 is a SEM image of the product prepared in Comparative Example 2 of the present invention.
  • FIG10 is a SEM image of the product prepared in Comparative Example 3 of the present invention.
  • FIG11 is a SEM image of the product prepared in Comparative Example 4 of the present invention.
  • FIG12 is a SEM image of the product prepared in Comparative Example 5 of the present invention.
  • FIG13 is a SEM image of the product prepared in Comparative Example 6 of the present invention.
  • FIG. 14 is a SEM image of the product prepared in Comparative Example 7 of the present invention.
  • the term “multiple” refers to two or more than two.
  • “And/or” describes the relationship between related objects, indicating that three relationships may exist.
  • a and/or B can mean: A, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the objects before and after are in an "or” relationship.
  • Figures 1, 2 and 3 they are the SEM image, diameter distribution diagram and length distribution diagram of the silver nanowires prepared in Example 1. It can be seen from Figure 1 that the product prepared in Example 1 is a nanowire structure with uniform size and good dispersion; further from Figures 2 and 3, it can be seen that the average diameter of the silver nanowires prepared in Example 1 is 91nm, the average length is 10um, and the purity is 96%.
  • FIG4 it is a scanning electron microscope image of the reaction solution at different reaction stages in Example 1, and FIG4a, b, c, d, e, and f correspond to the SEM images of the reaction solution at 25min, 50min, 75min, 100min, 150min, and 300min of reaction, respectively; as shown in FIG5, it is a schematic diagram of the reaction mechanism of preparing silver nanowires by the soft template method of the present invention, and the reaction times represented by FIG5a, b, c, d, e, and f are consistent with FIG4. It can be seen from FIG5a that at 25min, i.e., the initial stage of the reaction, some small spherical silver nanoparticles are covered by yarn-like colloids.
  • FIG5b shows that when the reaction is carried out to 50min, the number of silver nanoparticles increases significantly and shows a regular arrangement
  • FIG5c shows that when the reaction is carried out to 75min, the average particle size of the silver nanoparticles increases, and the biomass layer is tightly wrapped around the silver nanoparticles.
  • the organic layer is gradually hydrothermally carbonized into a one-dimensional tubular soft template
  • Figure 5d shows that when the reaction proceeds to 100 min, a one-dimensional tubular soft template with a width of about 100 nm appears, and a small amount of silver nanoparticles are adsorbed on the tube.
  • FIG6 is a SEM image of the silver nanowires prepared in Example 2.
  • the silver nanowires prepared in Example 2 have an average diameter of 96 nm, an average length of 9 um, and a purity of 92%.
  • FIG. 7 is a SEM image of the silver nanowires prepared in Example 3.
  • the silver nanowires prepared in Example 3 have an average diameter of 100 nm, an average length of 8 um, and a purity of 93%.
  • 150 mg of tea polyphenols and 100 mg of potassium chloride were added to 35 mL of deionized water, and ultrasonic treatment was performed for 8 min at 150 W power; 200 mg of silver nitrate was then dissolved in the ultrasonically treated solution to obtain a reaction mixture, and the reaction mixture was transferred to the inner lining of a 50 mL polytetrafluoroethylene hydrothermal reactor, and the closed reactor was reacted in a constant temperature blast oven, and the hydrothermal reaction temperature was set to 150 ° C and the reaction time was 5 h. After the reaction, a mother liquor containing silver nanowires was obtained, and the mother liquor was washed with deionized water and ethanol in turn, and then centrifuged at 8000 rpm for 3 min to obtain the product.
  • FIG9 is a SEM image of the product obtained in Comparative Example 2. It can be seen from the figure that the product obtained in Comparative Example 2 is in the form of agglomerated particles with poor dispersibility, and one-dimensional silver nanowires cannot be obtained. Analysis shows that due to the excess of tea polyphenols, the silver ion reduction rate is greater than the soft template formation rate. Without the induction of the soft template, the silver ions are quickly reduced to form silver nanoparticles, and one-dimensional silver nanowires cannot be formed.
  • Example 1 The difference between this comparative example and Example 1 is that the lactose in the raw material is replaced by its hydrolysis products glucose and galactose, wherein the molar ratio of glucose to galactose is 1:1.
  • the specific preparation steps are as follows:
  • FIG10 is a SEM image of the product obtained in Comparative Example 3. It can be seen from the figure that the product obtained in Comparative Example 3 is in the form of irregular large particles with small particles attached to the surface of the large particles, and one-dimensional silver nanowires cannot be obtained. This is because lactose is replaced with the corresponding monosaccharide, and no hydrolysis process occurs in the hydrothermal reaction, so a template cannot be formed and anisotropic growth of silver nanowires cannot be induced.
  • FIG. 11 is a SEM image of the product obtained in Comparative Example 4. It can be seen from the image that the product obtained in Comparative Example 4 is agglomerated silver nanoparticles. This is because the excessive lactose hydrolysis releases an increased amount of monosaccharides, which makes it impossible to form a template, and thus cannot form silver nanowires.
  • FIG12 is a SEM image of the product obtained in Comparative Example 5. It can be seen from the image that the product obtained in Comparative Example 4 is irregular granular. This is because too little lactose is hydrolyzed to release a reduced amount of monosaccharides, making it impossible to form a template, and thus unable to form silver nanowires.
  • FIG13 is a SEM image of the product obtained in Example 6. It can be seen from the image that the product obtained in Example 5 is agglomerated silver nanoparticles. This is because the excess tea polyphenols quickly reduce silver ions and quickly accumulate on the lactose-formed template, resulting in the aggregation of silver nanoparticles.
  • FIG14 is a SEM image of the product obtained in Example 7. It can be seen from the image that the product obtained in Example 6 is irregularly shaped silver nanoparticles. This is because less tea polyphenols cannot be reduced in time. Silver ions cause them to agglomerate with biomass to form large particles.
  • embodiments 1-3 are for preparing silver nanowires by the soft template method of the present invention, using tea polyphenols as a reducing agent and lactose as a template agent, and through a suitable ratio, silver nanowires with uniform size, good dispersibility and high purity are prepared;
  • comparative examples 1-7 are comparative experiments relative to embodiment 1, wherein comparative example 1 only adds lactose, and comparative example 2 only adds tea polyphenols, and both fail to obtain nano-sized silver nanowires;
  • comparative example 3 directly uses lactose hydrolysis products glucose and galactose to replace lactose, and since the content of glucose and galactose in the reaction system cannot be controlled by the sustained release effect of gradual hydrolysis, the direct use of the hydrolyzed product results in too high a content, and it is impossible to form a template by coating, and thus it is impossible to obtain silver nanowires or silver particles; in comparative examples 4-5 and comparative examples 6-7, the content of lac
  • the soft template method of the present invention is simple to operate and low in cost.
  • the prepared silver nanowires have uniform size and high purity, and have good promotion and application value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种软模板法制备银纳米线的方法,包括如下步骤:将茶多酚、乳糖与控制剂依次加入到去离子水中,超声混合均匀,然后向其中加入硝酸银,水热条件下进行反应得到含银纳米线的母液,洗涤处理后得到银纳米线。该方法,以乳糖作为模板剂、茶多酚作为还原剂,通过合适的配比,在控制剂作用下水热法还原银离子得到银纳米线,整体工艺流程简单,易于操作,制得的银纳米线纯度高、均一性好,易于分散,具有良好的应用价值。

Description

一种软模板法制备银纳米线的方法 技术领域
本发明涉及银纳米线制备技术领域,具体涉及一种软模板法制备银纳米线的方法。
背景技术
纳米线又称一维纳米材料,是指材料在一维方向上的尺度在1~100nm之间,而金属粒子在进入纳米级别会呈现出与宏观金属或单个金属原子不同的特殊效应,如小尺寸效应、介面效应、量子尺寸效应、宏观量子隧道效应和介电限域效应等,因此金属纳米线在电学、光学、热学、磁学和催化等领域拥有极大的应用潜力。其中银纳米线因其具有银优良的导电性,以及由于纳米级别的尺寸效应而具有的优异的透光性、耐曲挠性等性能,在能源、催化、生物、电子等诸多领域有着广泛的应用。
银纳米线一般采用物理法或者化学法合成,其广泛应用于药物传输、纳米医学、化学传感、光催化等方面。模板法作为一种制备纳米材料的有效方法,其主要特点及相对于直接合成法的区别是无论是在液相中或是气相中发生的化学反应,其反应都是在有效控制的区域内进行的。模板法合成纳米材料与直接合成相比具有诸多优点,主要表现在:①以模板为载体精确控制纳米材料的尺寸和形状、结构和性质;②实现纳米材料合成与组装一体化,同时可以解决纳米材料的分散稳定性问题;③合成过程相对简单,很多方法适合批量生产。
根据模板材料的不同,模板法分为硬模板法和软模板法,其中,硬模板法通常选用多孔膜、碳纳米管、DNA等作为银纳米线生长的模板,例如中国专利CN103752850B公开了一种利用氧化铝模板制备银纳米线的方法,以多孔氧化铝作为模板,经过超声处理后置于含有表面活性剂的还原剂水溶液中浸泡、清洗、晾干,然后放置在可溶性银盐水溶液的表面,利用毛细管效应使银盐溶液缓慢进入模板孔隙中发生还原反应生成银纳米线,反应完成后用盐酸溶解去除氧化铝模板即可得到银纳米线。该方法对于氧化铝模板形貌要求较高,并且制备过 程工艺步骤较多,需要去除模板,同时利用毛细效应吸附溶液从而合成银纳米线,由于吸附效率较低,会造成产率较低问题,无法进行工业化生产。
为了克服硬模板法的缺点,研究人员以生物蛋白质、植物体细胞和聚合物等物质构筑成软性模板,控制合成一定形貌、尺寸的纳米材料,但是现有的软模板法制备银纳米线的方法多数采用乙二醇、丙三醇等有机试剂作为溶剂,同时以聚乙烯吡咯烷酮(PVP)或聚乙烯醇(PVA)作为模板,通过醇还原法还原银盐制备银纳米线。例如中国专利CN105665742A公开了一种线径可控批量制备高长径比纳米银线分散液的方法,以聚乙烯吡咯烷酮或聚乙烯醇作为模板剂,以卤化物作为控制剂,利用液态多羟基醇还原可溶性银盐制备银纳米线,该方法对于醇类试剂消耗量较大,并且以聚乙烯吡咯烷酮或聚乙烯醇作为模板剂,不利于环保,同时造成成本增加。中国专利CN110181074B公开了一种复合软模板法绿色制备高长径比银纳米线的方法,利用有机二酸和聚乙烯醇作为复合软模板,以没食子酸作为还原剂还原银盐制备得到银纳米线,该方法尽管提供了一种新型软模板材料——有机二酸,但其仍然需要与聚乙烯醇复合作为复合模板,有机试剂消耗量较大,并且该方法反应时间为1-3天,制备周期较长,不利于生产效率的提高。
发明内容
为了解决上述问题,本发明提供了一种软模板法制备银纳米线的方法,以乳糖作为模板,以茶多酚作为还原剂,直接在控制剂作用下与硝酸银进行水热反应制备得到银纳米线,反应温和且各反应原料廉价易得,无需添加其它的化学试剂,符合绿色合成的要求。
一种软模板法制备银纳米线的方法,包括如下步骤:
将茶多酚、乳糖与控制剂依次加入到去离子水中,超声混合均匀,然后向其中加入硝酸银,水热条件下进行反应得到含银纳米线的母液,洗涤处理后得到银纳米线。
本发明选用茶多酚作为还原剂,乳糖作为模板剂,二者均属于天然有机原料,来源广泛、成本低廉且无毒副作用,大大降低了银纳米线的生产成本以及 废水处理成本。茶多酚是茶叶中多酚类物质的总称,其中富含具有还原性的儿茶素,能够作为还原剂将游离的银离子还原成银原子;乳糖是人类和哺乳动物乳汁中特有的碳水化合物,是由葡萄糖和半乳糖组成的双糖,以乳糖作为模板,在水热条件下,乳糖逐渐分解释放出葡萄糖和半乳糖,葡萄糖和半乳糖在合适的释放速率下水热碳化形成具有开放通道的一维管状软模板,软模板吸附游离的银离子,因此经茶多酚中的儿茶素还原生成的银原子在一维管状软模板的诱导作用下沿一维方向生长,得到银纳米线。
常规的水热合成制备银纳米线的方法通常为奥斯特-瓦尔德熟化机理,即溶质中的较小型的结晶或溶胶颗粒溶解并再次沉积到较大型的结晶或溶胶颗粒上,类似于重结晶过程。申请人研究发现,本方法的合成机理区别于奥斯特-瓦尔德熟化机理,本申请利用软模板法制备银纳米线,银离子首先被茶多酚还原,同时被少量乳糖形成的胶状物包裹,随着反应进行,银纳米颗粒直径逐渐增加,乳糖也行成形状明确的一维管状软模板,银纳米颗粒生长为不连续的银纳米棒,随着反应进行,银纳米短棒间相互融合,最终形成形状良好的银纳米线,由于模板的存在,对于银纳米线生长具有空间限位和定向诱导作用,通过银纳米短棒的融合实现材料长度的延伸,从而得到具有一定长径比的一维纳米线材料。
进一步地,所述茶多酚、所述乳糖、所述控制剂、所述硝酸银的质量比为(1-2):(2-4):(2-3):4。
优选地,所述茶多酚、所述乳糖、所述控制剂、所述硝酸银的质量比为1:2:2:4。
进一步地,所述硝酸银在反应液中的浓度为5.0-6.0mg/mL。
进一步地,所述控制剂选自氯化钾、氯化钠、氯化铁、氯化铜中的一种。优选地,所述控制剂选自氯化钾。
进一步地,超声混合的时间为5-10min,功率为100-200W。优选地,超声混合的时间为8min,功率为150W。
进一步地,水热条件下进行反应的时间为5-6h,温度为140-160℃。优选地,反应时间为5h,反应温度为150℃。
进一步地,洗涤处理为依次用去离子水、乙醇清洗,然后离心处理。
进一步地,离心处理的时间为3-5min,最大转速为7000-10000rpm。
进一步地,所制得的银纳米线的平均直径为90-100nm,平均长度为8-10um,纯度大于92%。
与现有技术相比,本发明的有益效果是:
(1)本发明的软模板法制备银纳米线的方法,以乳糖作为模板剂、茶多酚作为还原剂,在控制剂作用下水热法还原银离子得到银纳米线,整体工艺流程简单,易于操作;模板剂和还原剂为天然动植物提取物,来源广泛且价格低廉容易获得,反应过程以水做溶剂,不需要添加额外的醇类有机试剂或者表面活性剂,大大降低了银纳米线的生产成本以及废水处理成本。制得的银纳米线纯度高、均一性好,易于分散,具有良好的应用价值。
(2)本发明的软模板法制备银纳米线的方法,利用乳糖作为模板,乳糖包裹在银粒子表面并且在水热反应过程逐渐水解缓慢释放出葡萄糖和半乳糖,形成具有确定形状的一维管状模板,从而提供空间限位和定向诱导作用,使得生成的纳米银短棒沿径向融合得到具有一定长径比的一维银纳米线。采用二糖作为模板剂,利用其缓慢水解从而控制反应过程葡萄糖和半乳糖的释放速率,进而调控生成管状软模板,保证得到一维结构的银纳米线。
(3)本发明的软模板法制备银纳米线的方法,乳糖和茶多酚配比适当,能够平衡模板的形成速度以及银离子的还原速度,从而充分发挥模板的导向作用得到形状均一的银纳米线;并且本发明采用常规水热法进行制备,适用于现有的生产体系,适合进行工业化大规模的生产应用。
附图说明
为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见的,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1为本发明实施例1制备得到的银纳米线的SEM图;
图2为本发明实施例1制备得到的银纳米线的直径分布图;
图3为本发明实施例1制备得到的银纳米线的长度分布图;
图4为本发明实施例1不同反应阶段反应液的SEM图,其中图4a、b、c、d、e、f分别对应实施例1反应25min、50min、75min、100min、150min、300min时反应液的SEM图;
图5为本发明软模板法制备银纳米线的反应机理示意图;
图6为本发明实施例2制备得到的银纳米线的SEM图;
图7为本发明实施例3制备得到的银纳米线的SEM图;
图8为本发明对比例1制备得到的产物的SEM图;
图9为本发明对比例2制备得到的产物的SEM图;
图10为本发明对比例3制备得到的产物的SEM图;
图11为本发明对比例4制备得到的产物的SEM图;
图12为本发明对比例5制备得到的产物的SEM图;
图13为本发明对比例6制备得到的产物的SEM图;
图14为本发明对比例7制备得到的产物的SEM图。
具体实施方式
本发明下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。实施例中所用到的各种常用化学试剂,均为市售产品。
除非另有定义,本发明所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不用于限制本发明。
本发明的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤的过程、方法、装置、产品或设备没有限定于已列出的步骤或模块,而是可选地还包括没有列出的步骤,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤。
在本发明中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在 A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
下面将结合具体实施例,对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通的技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明的保护范围。
实施例1
在35mL去离子水中依次添加50mg茶多酚、100mg乳糖和100mg氯化钾,150W功率下超声处理8min;然后将200mg硝酸银溶解于超声处理后的溶液中得到反应混合液,将反应混合液转移至50mL的聚四氟乙烯水热反应釜的内衬中,密闭反应釜在恒温鼓风烘箱中进行反应,设置水热反应的温度为150℃,反应时间为5h。反应结束后得到含有银纳米线的母液,将母液依次用去离子水和乙醇洗涤,然后在8000rpm转速下离心3min,得到银纳米线。
如图1、图2和图3所示分别是实施例1制得的银纳米线的SEM图、直径分布图和长度分布图,从图1可以看出实施例1所制备的产物为纳米线状结构,尺寸均匀且分散性较好;进一步从图2、图3可知实施例1制得的银纳米线的平均直径为91nm,平均长度为10um,纯度为96%。
如图4所示是实施例1中不同反应阶段反应液的扫描电镜图,图4a、b、c、d、e、f分别对应反应25min、50min、75min、100min、150min、300min时反应液的SEM图;如图5时本发明软模板法制备银纳米线的反应机理示意图,图5a、b、c、d、e、f所代表反应时间与图4一致。从图5a可以看出在25min时,即反应的初始阶段,其中一些小的球形银纳米颗粒被纱状的胶质物覆盖。这表明,游离银离子首先被吸附,随后被生物质还原为银原子,从而聚集成被生物质覆盖的银纳米粒子;图5b显示在反应进行到50min时,银纳米粒子的数量显著增加,并显示出规则的排列;图5c显示在反应进行到75min时,银纳米粒子的平均粒径增大,生物量层紧紧包裹在银纳米粒子周围。并且,有机层逐渐水热碳化为一维管状软模板;图5d显示在反应进行到100min时,出现约100nm宽的一维管状软模板,并且管道上吸附了少量银纳米粒子。此外,在管状软模板中, 可以观察到宽度约为50nm的不连续银纳米棒(用箭头指示),这表明一维软管道模板诱导银纳米线沿一维方向生长,因此,不需要额外添加诱导剂PVP;图5e显示在反应进行到150min时,这些不连续的纳米棒合并形成具有V形缺口的银纳米线(用箭头指示);图5f显示在反应进行到300min时,获得形状明确的银纳米线。
实施例2
在35mL去离子水中依次添加50mg茶多酚、200mg乳糖和100mg氯化钠,100W功率下超声处理10min;然后将200mg硝酸银溶解于超声处理后的溶液中得到反应混合液,将反应混合液转移至50mL的聚四氟乙烯水热反应釜的内衬中,密闭反应釜在恒温鼓风烘箱中进行反应,设置水热反应的温度为160℃,反应时间为6h。反应结束后得到含有银纳米线的母液,将母液依次用去离子水和乙醇洗涤,然后在10000rpm转速下离心4min,得到银纳米线。
如图6所示是实施例2制得的银纳米线的SEM图,实施例2所制备的银纳米线的平均直径为96nm,平均长度为9um,纯度为92%。
实施例3
在35mL去离子水中依次添加100mg茶多酚、100mg乳糖和100g氯化铁,200W功率下超声处理5min;然后将200mg硝酸银溶解于超声处理后的溶液中得到反应混合液,将反应混合液转移至50mL的聚四氟乙烯水热反应釜的内衬中,密闭反应釜在恒温鼓风烘箱中进行反应,设置水热反应的温度为140℃,反应时间为5h。反应结束后得到含有银纳米线的母液,将母液依次用去离子水和乙醇洗涤,然后在7000rpm转速下离心5min,得到银纳米线。
如图7所示是实施例3制得的银纳米线的SEM图,实施例3所制备的银纳米线的平均直径为100nm,平均长度为8um,纯度为93%。
对比例1
本对比例与实施例1的区别在于原料中不添加茶多酚,同时对应增加乳糖用量以补充茶多酚的缺乏,具体制备步骤如下:
在35mL去离子水中依次添加150mg乳糖和100mg氯化钾,150W功率下超声处理8min;然后将200mg硝酸银溶解于超声处理后的溶液中得到反应 混合液,将反应混合液转移至50mL的聚四氟乙烯水热反应釜的内衬中,密闭反应釜在恒温鼓风烘箱中进行反应,设置水热反应的温度为150℃,反应时间为5h。反应结束后得到含有银纳米线的母液,将母液依次用去离子水和乙醇洗涤,然后在8000rpm转速下离心3min,得到产物。
如图8所示是对比例1制得的产物的SEM图,从图中可以看出,对比例1制得的产物主要为管状结构,平均直径为1um,平均长度为10um,可视范围内还分散有不规则的小颗粒;分析可知,管状结构的产物为一维的软模板,不规则颗粒为还原的银颗粒,这是由于未添加还原成分茶多酚,而乳糖水解碳化形成管状软模板的速度大于乳糖及其水解产物作为还原糖还原银离子得到单质银的速度,导致大部分银离子无法被还原,从而无法得到银材料。
对比例2
本对比例与实施例1的区别在于原料中不添加乳糖,同时对应增加茶多酚用量以补充乳糖的缺乏,具体制备步骤如下:
在35mL去离子水中依次添加150mg茶多酚和100mg氯化钾,150W功率下超声处理8min;然后将200mg硝酸银溶解于超声处理后的溶液中得到反应混合液,将反应混合液转移至50mL的聚四氟乙烯水热反应釜的内衬中,密闭反应釜在恒温鼓风烘箱中进行反应,设置水热反应的温度为150℃,反应时间为5h。反应结束后得到含有银纳米线的母液,将母液依次用去离子水和乙醇洗涤,然后在8000rpm转速下离心3min,得到产物。
如图9所示是对比例2制得的产物的SEM图,从图中可以看出,对比例2制得的产物为团聚的颗粒状,分散性较差,无法的得到一维的银纳米线,分析可知由于茶多酚过量,银离子还原速率大于软模板的形成速率,银离子在没有软模板的诱导下,快速被还原形成银纳米颗粒,无法形成一维银纳米线。
对比例3
本对比例与实施例1的区别在于将原料中的乳糖替换成其水解产物葡萄糖和半乳糖,其中葡糖糖和半乳糖的摩尔比为1:1,具体制备步骤如下:
在35mL去离子水中依次添加50mg茶多酚、34.5mg葡萄糖、65.5mg半乳糖和100mg氯化钾,150W功率下超声处理8min;然后将200mg硝酸银溶解 于超声处理后的溶液中得到反应混合液,将反应混合液转移至50mL的聚四氟乙烯水热反应釜的内衬中,密闭反应釜在恒温鼓风烘箱中进行反应,设置水热反应的温度为150℃,反应时间为5h。反应结束后得到含有银纳米线的母液,将母液依次用去离子水和乙醇洗涤,然后在8000rpm转速下离心3min,得到产物。
如图10所示是对比例3制得的产物的SEM图,从图中可以看出,对比例3制得的产物为不规则的大颗粒状,大颗粒表面附着有小尺寸颗粒,无法的得到一维的银纳米线,这是由于将乳糖更换为相应的单糖,在水热反应中不会发生水解过程,无法形成模板,无法诱导银纳米线各向异性生长。
对比例4
本对比例与实施例1的区别在于原料中乳糖用量比例不同,具体制备步骤如下:
在35mL去离子水中依次添加50mg茶多酚、300mg乳糖和100mg氯化钾,150W功率下超声处理8min;然后将200mg硝酸银溶解于超声处理后的溶液中得到反应混合液,将反应混合液转移至50mL的聚四氟乙烯水热反应釜的内衬中,密闭反应釜在恒温鼓风烘箱中进行反应,设置水热反应的温度为150℃,反应时间为5h。反应结束后得到含有银纳米线的母液,将母液依次用去离子水和乙醇洗涤,然后在8000rpm转速下离心3min,得到产物。
如图11所示是对比例4制得的产物的SEM图,从图中可以看出,对比例4制得的产物团聚的银纳米颗粒,这是由于过量的乳糖水解释放单糖量增加,使之不能形成模板,因此无法形成银纳米线。
对比例5
本对比例与实施例1的区别在于原料中乳糖用量比例不同,具体制备步骤如下:
在35mL去离子水中依次添加50mg茶多酚、20mg乳糖和100mg氯化钾,150W功率下超声处理8min;然后将200mg硝酸银溶解于超声处理后的溶液中得到反应混合液,将反应混合液转移至50mL的聚四氟乙烯水热反应釜的内衬中,密闭反应釜在恒温鼓风烘箱中进行反应,设置水热反应的温度为150℃, 反应时间为5h。反应结束后得到含有银纳米线的母液,将母液依次用去离子水和乙醇洗涤,然后在8000rpm转速下离心3min,得到产物。
如图12所示是对比例5制得的产物的SEM图,从图中可以看出,对比例4制得的产物为不规则的颗粒状,这是由于过少的乳糖水解释放单糖量减少,使之不能形成模板,因此无法形成银纳米线。
对比例6
本对比例与实施例1的区别在于原料中茶多酚用量比例不同,具体制备步骤如下:
在35mL去离子水中依次添加200mg茶多酚、100mg乳糖和100mg氯化钾,150W功率下超声处理8min;然后将200mg硝酸银溶解于超声处理后的溶液中得到反应混合液,将反应混合液转移至50mL的聚四氟乙烯水热反应釜的内衬中,密闭反应釜在恒温鼓风烘箱中进行反应,设置水热反应的温度为150℃,反应时间为5h。反应结束后得到含有银纳米线的母液,将母液依次用去离子水和乙醇洗涤,然后在8000rpm转速下离心3min,得到产物。
如图13所示是对比例6制得的产物的SEM图,从图中可以看出,对比例5制得的产物为团聚的银纳米颗粒,这是由于过量的茶多酚快速还原银离子,快速堆积在乳糖形成模板上,导致银纳米颗粒聚集。
对比例7
本对比例与实施例1的区别在于原料中茶多酚用量比例不同,具体制备步骤如下:
在35mL去离子水中依次添加20mg茶多酚、100mg乳糖和100mg氯化钾,150W功率下超声处理8min;然后将200mg硝酸银溶解于超声处理后的溶液中得到反应混合液,将反应混合液转移至50mL的聚四氟乙烯水热反应釜的内衬中,密闭反应釜在恒温鼓风烘箱中进行反应,设置水热反应的温度为150℃,反应时间为5h。反应结束后得到含有银纳米线的母液,将母液依次用去离子水和乙醇洗涤,然后在8000rpm转速下离心3min,得到产物。
如图14所示是对比例7制得的产物的SEM图,从图中可以看出,对比例6制得的产物为不规则形状的银纳米颗粒,这是由于较少的茶多酚无法及时还原 银离子,致使其与生物质团聚形成大颗粒。
对上述实施例和对比例进一步进行分析,其中,实施例1-3为采用本发明的软模板法制备银纳米线,以茶多酚作为还原剂、乳糖作为模板剂,通过合适的配比,制得了尺寸均匀、分散性好且纯度较高的银纳米线;对比例1-7是相对于实施例1的对比实验,其中对比例1仅添加乳糖、对比例2仅添加茶多酚,均无法得到纳米尺寸的银纳米线;对比例3直接使用乳糖水解产物葡萄糖和半乳糖替代乳糖,由于无法通过逐步水解的缓释作用控制其葡萄糖和半乳糖在反应体系中的含量,直接使用水解后的产品导致其含量过高,无法进行包覆形成模板,进而无法得到银纳米线或银颗粒;对比例4-5以及对比例6-7中乳糖、茶多酚含量分别过高以及过低,均无法得到银纳米线。
综上所述,本发明的软模板法制备的操作简单、成本低廉,制得的银纳米线尺寸均匀,纯度较高,具有良好的推广应用价值。
以上借助具体实施例对本发明做了进一步描述,但是应该理解的是,这里具体的描述,不应理解为对本发明的实质和范围的限定,本领域内的普通技术人员在阅读本说明书后对上述实施例做出的各种修改,都属于本发明所保护的范围。

Claims (10)

  1. 一种软模板法制备银纳米线的方法,其特征在于,包括如下步骤:
    将茶多酚、乳糖和控制剂依次加入到去离子水中,超声混合均匀,然后向其中加入硝酸银,水热条件下进行反应得到含银纳米线的母液,洗涤处理后得到银纳米线。
  2. 根据权利要求1所述的一种模板法制备银纳米线的方法,其特征在于,所述茶多酚、所述乳糖、所述控制剂、所述硝酸银的质量比为(1-2):(2-4):(2-3):4。
  3. 根据权利要求2所述的一种模板法制备银纳米线的方法,其特征在于,所述茶多酚、所述乳糖、所述控制剂、所述硝酸银的质量比为1:2:2:4。
  4. 根据权利要求1-3任一项所述的一种模板法制备银纳米线的方法,其特征在于,所述硝酸银在反应液中的浓度为5.0-6.0mg/mL。
  5. 根据权利要求1-3任一项所述的一种模板法制备银纳米线的方法,其特征在于,所述控制剂选自氯化钾、氯化钠、氯化铁、氯化铜中的一种。
  6. 根据权利要求1所述的一种模板法制备银纳米线的方法,其特征在于,超声混合的时间为5-10min,功率为100-200W。
  7. 根据权利要求1所述的一种模板法制备银纳米线的方法,其特征在于,水热条件下进行反应的时间为5-6h,温度为140-160℃。
  8. 根据权利要求1所述的一种模板法制备银纳米线的方法,其特征在于,洗涤处理为依次用去离子水、乙醇清洗,然后离心处理。
  9. 根据权利要求8所述的一种模板法制备银纳米线的方法,其特征在于,离心处理的时间为3-5min,最大转速为7000-10000rpm。
  10. 根据权利要求1所述的一种模板法制备银纳米线的方法,其特征在于,所制得的银纳米线的平均直径为90-100nm,平均长度为8-10um,纯度大于92%。
PCT/CN2023/090289 2022-10-25 2023-04-24 一种软模板法制备银纳米线的方法 WO2024087551A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211309727.9A CN115647380A (zh) 2022-10-25 2022-10-25 一种软模板法制备银纳米线的方法
CN202211309727.9 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024087551A1 true WO2024087551A1 (zh) 2024-05-02

Family

ID=84992322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090289 WO2024087551A1 (zh) 2022-10-25 2023-04-24 一种软模板法制备银纳米线的方法

Country Status (2)

Country Link
CN (1) CN115647380A (zh)
WO (1) WO2024087551A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115647380A (zh) * 2022-10-25 2023-01-31 深圳市华科创智技术有限公司 一种软模板法制备银纳米线的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180098973A (ko) * 2017-02-28 2018-09-05 국민대학교산학협력단 고압수열합성법을 이용하여 은 나노와이어를 제조하는 방법 및 이를 이용한 투명 전도성 전극 필름
CN110181074A (zh) * 2019-06-26 2019-08-30 江苏汇诚医疗科技有限公司 一种复合软模板法绿色制备高长径比银纳米线的方法
CN112496337A (zh) * 2020-11-30 2021-03-16 哈尔滨工业大学 一种高长径比银纳米线的水热合成方法
CN112605392A (zh) * 2020-11-30 2021-04-06 哈尔滨工业大学 一种制备银纳米线的方法
CN114505489A (zh) * 2020-10-27 2022-05-17 深圳市华科创智技术有限公司 一种银纳米线的制备方法
CN115647380A (zh) * 2022-10-25 2023-01-31 深圳市华科创智技术有限公司 一种软模板法制备银纳米线的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180098973A (ko) * 2017-02-28 2018-09-05 국민대학교산학협력단 고압수열합성법을 이용하여 은 나노와이어를 제조하는 방법 및 이를 이용한 투명 전도성 전극 필름
CN110181074A (zh) * 2019-06-26 2019-08-30 江苏汇诚医疗科技有限公司 一种复合软模板法绿色制备高长径比银纳米线的方法
CN114505489A (zh) * 2020-10-27 2022-05-17 深圳市华科创智技术有限公司 一种银纳米线的制备方法
CN112496337A (zh) * 2020-11-30 2021-03-16 哈尔滨工业大学 一种高长径比银纳米线的水热合成方法
CN112605392A (zh) * 2020-11-30 2021-04-06 哈尔滨工业大学 一种制备银纳米线的方法
CN115647380A (zh) * 2022-10-25 2023-01-31 深圳市华科创智技术有限公司 一种软模板法制备银纳米线的方法

Also Published As

Publication number Publication date
CN115647380A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN104070177B (zh) 一种银、金纳米粒子的制备方法
CN107413354B (zh) 一种负载银的氧化铜纳米复合材料的制备方法
CN104209538B (zh) 一种在水相介质中制备纳米银线的方法
CN105127441B (zh) 一种铂纳米微晶分散体系的制备方法
WO2024087551A1 (zh) 一种软模板法制备银纳米线的方法
CN112496337A (zh) 一种高长径比银纳米线的水热合成方法
CN112605392A (zh) 一种制备银纳米线的方法
CN100463745C (zh) 一种制备内嵌碳纳米管铜基复合颗粒的方法
CN108899575B (zh) 四氧化三铁协同银颗粒/氧化石墨烯自组装银纳米链的制备方法
CN105537613B (zh) 一种微波辅助水热制备长银纳米线的方法
CN106673049B (zh) 一种多孔分等级球活性氧化铜粉的制备方法
CN110842212A (zh) 一种超细Pd四面体纳米材料及其制备方法和应用
CN108452816A (zh) 一种小粒径金属磷化物纳米粒子/还原型石墨烯复合材料及其制备方法
CN102653396A (zh) 具有高分散性的金属纳米点规则修饰的石墨烯片复合材料及原位制备方法
Li et al. Controllable growth of superfine silver nanowires by self-seeding polyol process
CN108971509A (zh) 一种可控粒径的铁镍合金纳米材料的制备方法
CN116037954B (zh) 一种金铱核壳纳米线及其制备方法
CN110078031B (zh) 一种Te纳米线三维气凝胶、其制备方法及其应用
CN110064752B (zh) 一种介孔金属铂纳米球的制备方法
CN115400753B (zh) 一种金银核壳纳米双锥-二氧化铈复合材料的制备方法
CN112876807B (zh) 一种Fe2O3/Ag/酚醛树脂三明治结构纳米盘的制备方法
CN115488348A (zh) 一种具有藤蔓状结构的金属纳米粉及其制备方法和应用
CN110648839B (zh) 一种具有单分散和超顺磁性的金磁复合微球及其制备方法
CN109865483A (zh) 一种金/多孔钯核壳结构纳米颗粒的超声制备方法
CN113798491A (zh) 哑铃形含铜复合贵金属纳米材料及其合成方法