WO2016031927A1 - 半導体デバイスの製造方法、及び半導体デバイス - Google Patents
半導体デバイスの製造方法、及び半導体デバイス Download PDFInfo
- Publication number
- WO2016031927A1 WO2016031927A1 PCT/JP2015/074276 JP2015074276W WO2016031927A1 WO 2016031927 A1 WO2016031927 A1 WO 2016031927A1 JP 2015074276 W JP2015074276 W JP 2015074276W WO 2016031927 A1 WO2016031927 A1 WO 2016031927A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- passivation layer
- electrode region
- silicon
- electrode
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000002161 passivation Methods 0.000 claims abstract description 161
- 239000002019 doping agent Substances 0.000 claims abstract description 138
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 133
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 133
- 239000010703 silicon Substances 0.000 claims abstract description 133
- 239000000758 substrate Substances 0.000 claims abstract description 115
- 238000000034 method Methods 0.000 claims abstract description 58
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 36
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000010304 firing Methods 0.000 claims abstract description 7
- 239000011856 silicon-based particle Substances 0.000 claims description 96
- 238000002347 injection Methods 0.000 claims description 68
- 239000007924 injection Substances 0.000 claims description 68
- 239000006185 dispersion Substances 0.000 claims description 57
- 239000000463 material Substances 0.000 claims description 24
- 238000002513 implantation Methods 0.000 claims description 20
- 230000001678 irradiating effect Effects 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 9
- 239000011164 primary particle Substances 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 230000002265 prevention Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 29
- 125000004429 atom Chemical group 0.000 description 20
- 238000011156 evaluation Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000002679 ablation Methods 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000002612 dispersion medium Substances 0.000 description 6
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 5
- 238000007650 screen-printing Methods 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000007641 inkjet printing Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000003321 atomic absorption spectrophotometry Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000000005 dynamic secondary ion mass spectrometry Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method for manufacturing a semiconductor device.
- the invention also relates to a semiconductor device obtainable by the method of the invention.
- a dopant such as phosphorus or boron is selected for the silicon layer or substrate. Implanting into a region and doping only selected regions is performed.
- the back contact solar cell (40) has an n-type (or p-type or intrinsic) silicon substrate (45), and the light receiving surface of the silicon substrate (45).
- the passivation layer (46) is arranged on the side, and the back side electrodes (42, 44) and the passivation layer (48) are arranged on the back side of the silicon substrate (45).
- the silicon substrate (45) of the back contact solar cell has n-type or p-type highly doped electrode regions (back contact layers) (45a, 45b) that are in contact with the back side electrodes (42, 44). And a surface electric field layer (45c) which is highly doped in the n-type on the light receiving surface side.
- the PERL solar cell (50) has an n-type (or p-type or intrinsic) silicon substrate (55), and a light-receiving surface on the light-receiving surface side of the silicon substrate (55).
- the side electrode (52) and the passivation layer (56) are disposed, and the back surface side electrode (54) and the passivation layer (58) are disposed on the back surface side of the silicon substrate (55).
- the silicon substrate (55) of this PERL solar cell is highly doped in a p-type highly doped electrode region (55a) in contact with the electrode (54) on the back surface side and n-type on the light receiving surface side. It has a surface electric field layer (55c).
- the electrode region on the back side of the silicon substrate is doped with p-type and n-type dopants, and the electrode is formed so as to be in contact with the doped electrode region. ing.
- the electrode region on the back side of the substrate is doped with a p-type or n-type dopant, and a metal electrode is formed so as to be in contact with the doped electrode region. It has been broken.
- a diffusion mask layer (72) is formed on a silicon layer or a substrate (65) (FIGS. 6A and 6B), and holes (72a) are formed in selected regions of the diffusion mask layer (72).
- the silicon layer or the substrate (65) was exposed by opening (FIG. 6 (c)), and was formed with a doping gas such as phosphorus oxychloride (POCl 3 ), a coating type doping agent, or the like through the hole (72a).
- a doping gas such as phosphorus oxychloride (POCl 3 ), a coating type doping agent, or the like through the hole (72a).
- the dopant region is doped into the silicon layer or the electrode region (65a) of the substrate by the dopant implantation layer (74) (FIG. 6 (d)), and the diffusion mask layer (72) and the dopant implantation layer (74) are removed (FIG. 6).
- the electrode (62) to be formed is formed.
- Patent Documents 1 and 2 photolithography, laser light, and the like have been used to make holes in the diffusion mask layer and the passivation layer.
- a dispersion containing doped silicon particles is applied to the silicon layer or the substrate to form a dispersion layer.
- a method has also been proposed in which the dispersion layer is formed, dried and baked to dope the silicon layer or substrate, and then the layer derived from the silicon particles is removed (Patent Document 3).
- a dopant injection layer made of doped silicon particles is formed on the passivation layer of the silicon layer or the base material in order to simultaneously perform the drilling of the passivation layer and the doping of the silicon layer or the base material without using the diffusion mask layer. It has also been proposed to remove the dopant injection layer and the passivation layer as well as dope the silicon layer or the substrate by forming and irradiating the dopant injection layer with light (Patent Document 4).
- the silicon layer with the passivation layer or the electrode region of the substrate is doped and passed through the through holes of the passivation layer. Forming an electrode in electrical contact with the electrode region.
- a metal paste such as an aluminum paste is applied to the electrode region of the silicon layer or the base material through the through hole of the passivation layer, and then baked to form the electrode. Has been done.
- This problem of deterioration of electrical contact can be solved by increasing the minimum diameter of the through hole of the passivation layer and improving the inflow property of the metal paste into the through hole.
- the function of the passivation layer in the semiconductor device that is, the function of suppressing recombination of electrons and holes when the semiconductor device is a solar cell, for example, is achieved.
- the ratio of the parts that cannot be increased, and thus the function of the obtained semiconductor device such as a solar cell is deteriorated.
- the inventor of the present invention has come up with the following present invention as a result of intensive studies.
- a semiconductor comprising forming an electrode in electrical contact with an electrode region of the silicon layer or substrate through a through-hole of the passivation layer on a silicon layer or substrate having a passivation layer
- a device manufacturing method comprising: Applying an aluminum paste to the electrode region through the through hole, and firing the aluminum paste to form the electrode, The minimum diameter of the through-hole is 50 ⁇ m or less, and the surface dopant concentration of the electrode region is 7 ⁇ 10 18 atoms / cm 3 or more, or the sheet resistance value of the electrode region is 70 ⁇ or less.
- ⁇ 3> The method according to ⁇ 1> or ⁇ 2>, wherein the passivation layer is formed of a material selected from the group consisting of silicon nitride, silicon oxide, aluminum oxide, and combinations thereof.
- the semiconductor device is a solar cell.
- ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 4> above, further comprising forming the through hole in the passivation layer and doping the electrode region by the following steps.
- the electrode region is doped by irradiating the region on the dopant injection layer of the laminate or the dopant injection layer of the second passivation layer, and the dopant injection layer and the passivation are doped. Removing the layer at least partially to form the through-hole.
- ⁇ 6> The method according to ⁇ 5>, wherein the through hole is formed in the passivation layer and the electrode region is doped by the following steps: Forming the first passivation layer on the silicon layer or substrate; Applying a doped silicon particle dispersion containing doped silicon particles to a region on the electrode region of the first passivation layer; The applied doped silicon particle dispersion is dried to form the dopant injection layer, and the dopant injection layer is irradiated with light, thereby doping the electrode region, the dopant injection layer, and the first Removing one passivation layer at least partially to form the through-hole.
- ⁇ 7> The method according to ⁇ 5> above, wherein the through hole is formed in the passivation layer and the electrode region is doped by the following steps: Applying a doped silicon particle dispersion containing doped silicon particles to the electrode region; Drying the applied doped silicon particle dispersion to form the dopant injection layer; By forming the second passivation layer on the silicon layer or the substrate and the dopant injection layer, and by irradiating the region on the electrode region of the second passivation layer with the light, Doping the electrode region and at least partially removing the dopant injection layer and the second passivation layer to form the through hole.
- ⁇ 8> The method according to ⁇ 5>, wherein the through hole is formed in the passivation layer and the electrode region is doped by the following steps: Forming the first passivation layer on the silicon layer or substrate; Applying a doped silicon particle dispersion containing doped silicon particles to a region on the electrode region of the first passivation layer; Drying the applied doped silicon particle dispersion to form the dopant injection layer; Forming the second passivation layer on the first passivation layer and the dopant implantation layer, and irradiating the region of the second passivation layer on the electrode region with light; Doping the region and at least partially removing the dopant injection layer and the first and second passivation layers to form the through hole.
- ⁇ 9> The method according to any one of ⁇ 5> to ⁇ 8>, further including a step of removing the doped silicon particles remaining on the silicon layer or the substrate before applying the aluminum paste.
- ⁇ 10> The method according to any one of ⁇ 5> to ⁇ 9>, wherein the average primary particle diameter of the doped silicon particles is 100 nm or less.
- ⁇ 11> The method according to any one of ⁇ 5> to ⁇ 10>, wherein the dopant concentration of the doped silicon particles is 1 ⁇ 10 20 atoms / cm 3 or more.
- ⁇ 12> a silicon layer or base material having a passivation layer, and an electrode that is in electrical contact with the electrode region of the silicon layer or base material through the through hole of the passivation layer,
- a semiconductor device comprising: The minimum diameter of the through-hole is 50 ⁇ m or less, and the surface dopant concentration of the electrode region is 7 ⁇ 10 18 atoms / cm 3 or more, or the sheet resistance value of the electrode region is 70 ⁇ or less.
- Semiconductor device. ⁇ 13> The semiconductor device according to ⁇ 12>, which is a solar cell.
- the electrode and the silicon layer or the substrate While preventing the problem of worsening electrical contact, the minimum diameter of the through hole of the passivation layer is reduced, thereby preventing the loss of the function of the passivation layer, i.e. for example in the case of solar cells It becomes possible to prevent the loss of the function of suppressing recombination with holes.
- the through-hole of the passivation layer is improved while improving the electrical contact between the silicon layer or the substrate and the electrode penetrating the through-hole of the passivation layer on the silicon layer or the substrate. It is possible to reduce the minimum diameter of the film, thereby preventing the loss of the function of the passivation layer.
- FIG. 1 is a diagram for explaining a first embodiment of the method of the present invention.
- FIG. 2 is a diagram for explaining a second embodiment of the method of the present invention.
- FIG. 3 is a diagram for explaining a third aspect of the method of the present invention.
- FIG. 4 is a diagram for explaining an example of the back contact solar cell.
- FIG. 5 is a diagram for explaining an example of a PERL solar cell.
- FIG. 6 is a diagram for explaining a conventional method for forming an electrode in electrical contact with an electrode region of a silicon layer or a substrate.
- FIG. 7 is a diagram showing the relationship between the back electrode (laser irradiation) line width and the conversion efficiency (%).
- FIG. 8 is a diagram showing the relationship between the back electrode (laser irradiation) line width and the open circuit voltage (mV).
- FIG. 9 is a diagram showing the relationship between the back electrode (laser irradiation) line width and the short-circuit current (mA).
- FIG. 10 is a diagram showing the relationship between the back electrode (laser irradiation) line width and the fill factor (%).
- the method of the present invention for manufacturing a semiconductor device forms an electrode in electrical contact with an electrode region of a silicon layer or substrate through a through-hole of the passivation layer on a silicon layer or substrate having a passivation layer. Including doing.
- the electrode is formed by applying an aluminum paste to the electrode region through the through hole and baking the aluminum paste.
- the “electrode region” means a region of the silicon layer or substrate that contacts the electrode.
- the minimum diameter of the through hole may be 50 ⁇ m or less, 45 ⁇ m or less, or 40 ⁇ m or less.
- the minimum diameter may be 10 ⁇ m or more, 20 ⁇ m or more, or 30 ⁇ m or more.
- the “minimum diameter” of the through hole of the passivation layer means the longest diameter in the direction orthogonal to the longest diameter of the through hole. Therefore, when the through hole is a perfect circle, this “minimum diameter” means the diameter of a perfect circle, and when the through hole is an ellipse, this “minimum diameter” means the minor diameter of the ellipse. If the through hole is linear, this “minimum diameter” means the line width of the line.
- the electrode when the minimum diameter of the through-hole of the passivation layer is small, when the electrode is formed by baking a metal paste, particularly an aluminum paste, the electrode is in electrical contact with the silicon layer or the electrode region of the substrate. could get worse.
- the present inventors have found that the deterioration of the electrical contact when using the aluminum paste is caused by the Kirkendall effect together with the deterioration of the inflow property of the aluminum paste into the through hole. That is, it is also caused by the effect that the aluminum constituting the electrode diffuses into the silicon layer or the base material, thereby forming a void in the electrode near the interface between the electrode and the silicon layer or the base material. I found it.
- the inventors have increased the surface dopant concentration in the electrode region of the silicon layer or substrate to suppress the Kirkendall effect, thereby forming voids in the aluminum electrode, and the resulting electrical It was found that deterioration of general contact can be suppressed.
- the surface dopant concentration of the electrode region of the silicon layer or the substrate is 7 ⁇ 10 18 atoms / cm 3 or more, 8 ⁇ 10 18 atoms / cm 3 or more, 9 ⁇ 10 18 atoms / cm 3. As described above, it may be 1 ⁇ 10 19 atoms / cm 3 or more.
- the surface dopant concentration was 1 ⁇ 10 21 atoms / cm 3 or less, 5 ⁇ 10 20 atoms / cm 3 or less, 1 ⁇ 10 20 atoms / cm 3 or less, or 5 ⁇ 10 19 atoms / cm 3 or less. It's okay.
- the surface dopant concentration in the electrode region can be measured by dynamic secondary ion mass spectrometry (Dynamic SIMS). Specifically, the surface dopant concentration can be measured by using IMS-7f of CAMECA as a dynamic SIMS device, and measuring conditions as primary ion species O 2 + , primary acceleration voltage 3.0 kV, and detection region 30 ⁇ m ⁇ . it can.
- “surface dopant concentration” means the dopant concentration of the surface, that is, the portion of 0 nm depth in the Dynamic SIMS measurement result.
- the sheet resistance value of the electrode region may be 70 ⁇ or less, 60 ⁇ or less, 50 ⁇ or less, or 45 ⁇ or less.
- the sheet resistance value may be 10 ⁇ or more, 20 ⁇ or more, 30 ⁇ or more, or 35 ⁇ or more.
- the function of the passivation layer has been to reduce the minimum diameter of the through hole of the passivation layer while maintaining electrical contact between the electrode and the silicon layer or the electrode region of the substrate as in the method of the present invention. That is, for example, in the case of a solar cell, it is preferable to satisfactorily achieve the function of suppressing recombination of electrons and holes. Therefore, the method of the present invention can be particularly preferably used for the production of solar cells as semiconductor devices, such as back contact solar cells and PERL solar cells.
- any silicon layer or substrate can be used.
- the silicon layer or substrate can include a silicon wafer, an amorphous silicon layer, and a crystalline silicon layer.
- the silicon layer or the base material may be doped in advance in whole or in part.
- the passivation layer that can be used in the method of the present invention can have any thickness that can function as a passivation layer, for example, a thickness of 1 nm or more, 5 nm or more, 10 nm or more, 30 nm or more, 50 nm or more. Can have.
- the passivation layer may have a thickness of 300 nm or less, 200 nm or less, 100 nm or less, 50 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less. When this thickness is too thin, the property as a passivation layer may be inferior.
- the formation of the through-hole and the electrode region in the step described below for forming the through-hole and doping the electrode region using the dopant injection layer made of doped silicon particles and light irradiation Doping may not be performed sufficiently.
- the passivation layer may be formed of any material that can function as a passivation layer, such as silicon nitride (SiN), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and combinations thereof. It may be made of a material selected from the group consisting of:
- the aluminum paste that can be used in the method of the present invention is a paste containing fine particles and / or compounds of aluminum and pasting components such as a resin and a solvent, and can be made into an aluminum electrode by firing. Any aluminum paste.
- the firing temperature of such an aluminum paste may be 50 ° C. or higher, 60 ° C. or higher, 80 ° C. or higher, 100 ° C. or higher, 150 ° C. or higher, 200 ° C. or higher, 250 ° C. or higher, or 300 ° C. or higher. Moreover, this temperature may be 500 degrees C or less, 450 degrees C or less, or 400 degrees C or less.
- Formation of the through hole in the passivation layer can be performed by any method using photolithography, laser light, or the like.
- the silicon layer or the electrode region of the substrate can be doped by any method using a doping gas, a coating-type dopant, doped silicon particles, or the like.
- through holes can be formed in the passivation layer and the electrode region can be doped by the following steps.
- a laminate having the following (i) and (ii) is provided: (i) first and / or second passivation layers disposed on a silicon layer or substrate, and (ii) ) A dopant implantation layer that is disposed in a region on the electrode region above the first passivation layer and below the second passivation layer, the dopant implantation layer comprising doped silicon particles.
- the electrode region of the silicon layer or the substrate is doped, and the dopant injection layer, and The passivation layer is at least partially removed to form a through hole in the passivation layer.
- Formation of the through-hole using doped silicon particles and light irradiation and doping of the electrode region can be performed in a first embodiment including the following steps: Forming a first passivation layer on a silicon layer or substrate; Applying a doped silicon particle dispersion containing doped silicon particles to a region on the electrode region of the first passivation layer; The applied doped silicon particle dispersion is dried to form a dopant injection layer, and by performing light irradiation on the dopant injection layer, the electrode region is doped, the dopant injection layer, and the first passivation layer, At least partially remove to form a through hole.
- a passivation layer (18) is formed on a silicon layer or substrate (15) (FIGS. 1 (a) and (b)), and the first passivation layer (18)
- a doped silicon particle dispersion containing doped silicon particles is applied to a region on the electrode region of the electrode, and the dispersion is dried to form a dopant injection layer (2) (FIG. 1C). 2) is irradiated with light (5) to dope the electrode region (15a) and on the dopant injection layer (2) of the dopant injection layer (2) and the first passivation layer (18). The region is at least partially removed (FIG. 1 (d)).
- an aluminum paste is applied to the electrode region (15a) through the through-hole, and the aluminum paste is baked to pass through the through-hole of the passivation layer (18) to form the electrode region of the silicon layer or the substrate.
- An electrode (12) in electrical contact with (15a) can be formed (FIG. 1 (e)).
- the application of the doped silicon particle dispersion may be particularly beneficial for shortening the manufacturing process by using a printing method such as inkjet printing or screen printing without using photolithography. .
- Formation of the through-hole using doped silicon particles and light irradiation and doping of the electrode region can be performed in a second manner including the following steps: Applying a doped silicon particle dispersion containing doped silicon particles to the electrode region; Drying the applied dope silicon particle dispersion to form a dopant injection layer; Doping the electrode region by forming a second passivation layer on the silicon layer or the substrate and the dopant injection layer, and irradiating the region on the electrode region of the second passivation layer with light. Removing the dopant implantation layer and the second passivation layer at least partially to form a through hole.
- a doped silicon particle dispersion containing doped silicon particles is applied to the electrode region of the silicon layer or the base material (25), and this dispersion is dried to form a dopant injection layer ( 2) (FIGS. 2A and 2B), a second passivation layer (28) is formed on the silicon layer or substrate (25) and the dopant injection layer (2) (FIG. 2C). ), By irradiating the region on the dopant injection layer (2) of the second passivation layer (28) with light irradiation (5), thereby doping the electrode region (25a) of the silicon layer or the substrate and the dopant. The region on the dopant injection layer (2) in the implantation layer (2) and the second passivation layer (28) is at least partially removed (FIG. 2D).
- an aluminum paste is applied to the electrode region (25a) through the through-hole, and the aluminum paste is baked to pass through the through-hole in the passivation layer (28) to form an electrode region of the silicon layer or the substrate.
- An electrode (22) in electrical contact with the electrode can be formed (FIG. 2 (e)).
- Formation of the through-hole using doped silicon particles and light irradiation and doping of the electrode region can be performed in a third embodiment including the following steps: Forming a first passivation layer on a silicon layer or substrate; Applying a doped silicon particle dispersion containing doped silicon particles to a region on the electrode region of the first passivation layer; Drying the applied dope silicon particle dispersion to form a dopant injection layer; Doping the electrode region by forming a second passivation layer on the first passivation layer and the dopant implantation layer, and by irradiating the region on the electrode region of the second passivation layer with light. Removing the dopant implantation layer and the first and second passivation layers at least partially to form a through hole.
- a first passivation layer (38a) is formed on a silicon layer or a substrate (35) (FIGS. 3A and 3B), and the first passivation layer ( 38a), a doped silicon particle dispersion containing doped silicon particles is applied to a region on the electrode region, and this dispersion is dried to form a dopant injection layer (2) (FIG. 3 (c)). Then, a second passivation layer (38b) is formed on the first passivation layer (38a) and the dopant implantation layer (2) (FIG.
- the region on the dopant injection layer (2) is irradiated with light (5) to dope the electrode region (35a) of the silicon layer or the substrate, the dopant injection layer (2), and the first and Second The passivation layer (38a, 38b) a region on the dopant-implanted layer (2) of the at least partially removed (FIG. 3 (e)).
- an aluminum paste is applied to the electrode region (35a) through the through hole, and the aluminum paste is fired to pass through the through hole of the passivation layer (38a, 38b).
- An electrode (32) in electrical contact with the electrode region can be formed (FIG. 3 (f)).
- the application of the doped silicon particle dispersion containing the doped silicon particles is not particularly limited as long as the dispersion can be applied with a desired thickness and uniformity.
- an inkjet printing method, a spin coating method, or a screen printing method is used.
- using a printing method such as inkjet printing or screen printing may be particularly beneficial for applying the dispersion to specific areas and shortening the manufacturing process.
- the thickness of the dopant injection layer obtained when the dispersion layer is dried is 100 nm or more, 200 nm or more, 300 nm or more, 400 nm or more, or 500 nm or more, and is 2000 nm or less, 1500 nm or less, 1200 nm.
- it can be performed so that it is 1000 nm or less or 800 nm or less.
- the thickness of the dopant implantation layer includes the degree of doping of the electrode region of the silicon layer or substrate constituting the semiconductor device to be obtained, the thickness of the doped implantation layer that can be removed by laser light, the silicon substrate or layer
- the thickness can be determined in consideration of the thickness of the doped implantation layer that is allowed to remain in the layer.
- the thickness of the dopant injection layer is not particularly limited as long as the effects of the present invention can be obtained.
- the dispersion medium of the doped silicon particle dispersion is not limited as long as the object and effect of the present invention are not impaired, and therefore, for example, an organic solvent that does not react with the doped silicon particles used in the dispersion can be used.
- the dispersion medium is a non-aqueous solvent such as alcohol, alkane, alkene, alkyne, ketone, ether, ester, aromatic compound, or nitrogen-containing ring compound, particularly isopropyl alcohol (IPA), N-methyl-2. - May be pyrrolidone (NMP) or the like.
- glycol (dihydric alcohol) like ethylene glycol can also be used as alcohol.
- the dispersion medium is preferably a dehydrated solvent in order to suppress oxidation of the doped silicon particles used in the dispersion.
- the doped silicon particles of the doped silicon particle dispersion are not limited as long as the objects and effects of the present invention are not impaired as long as they are silicon particles doped with a p-type or n-type dopant.
- examples of the silicon particles include silicon particles obtained by a laser photothermal decomposition method, particularly a laser photothermal decomposition method using CO 2 laser light.
- the doped silicon particles in the dispersion may have a relatively low crystallinity of the particles and / or a relatively small particle size for injecting the dopant from the particles by light irradiation.
- the average primary particle diameter of the doped silicon particles may be 1 nm or more, or 3 nm or more, and may be 100 nm or less, 50 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less.
- the average primary particle diameter of the doped silicon particles is directly determined based on a photographed image by observation with a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like.
- the number average primary particle diameter can be obtained by measuring the projected area equivalent circle diameter and analyzing the particle group having the aggregate number of 100 or more.
- the dopant doping the particles of the dispersion may be either a p-type or n-type dopant, for example, boron (B), aluminum (Al), gallium (Ga), indium (In), titanium (Ti ), Phosphorus (P), arsenic (As), antimony (Sb), or a combination thereof.
- B boron
- Al aluminum
- Ga gallium
- In indium
- Ti titanium
- Au arsenic
- Sb antimony
- the degree to which the particles of the dispersion are doped can be determined depending on the dopant injection layer and the desired dopant concentration in the silicon layer or substrate.
- the doped silicon particles include a dopant at a concentration of 1 ⁇ 10 20 atoms / cm 3 or more, 5 ⁇ 10 20 atoms / cm 3 or more, or 1 ⁇ 10 21 atoms / cm 3 or more. it can.
- the dopant concentration may be, for example, 1 ⁇ 10 22 atoms / cm 3 or less, or 1 ⁇ 10 21 atoms / cm 3 or less.
- the dopant concentration of the doped silicon particles can be measured by inductively coupled plasma mass spectrometry (ICP-MS: Inductively Coupled Plasma-Mass Spectrometry).
- ICP-MS Inductively Coupled Plasma-Mass Spectrometry
- the dope silicon particle dispersion is put in a quartz beaker, heated on a hot plate, the solvent is volatilized, the obtained silicon particles are weighed, and then dissolved in hydrofluoric acid and nitric acid. It is possible to prepare a solution, add a volatilization inhibitor to a part of the solution, concentrate it to obtain a measurement solution, and perform ICP-MS on this measurement solution.
- the ICP-MS apparatus for example, 7500 type manufactured by Agilent Technologies can be used.
- the dopant concentration of the doped silicon particles can be measured by inductively coupled plasma atomic emission spectrometry (ICP-AES: Inductively Coupled Plasma Atomic Emission Spectroscopy).
- ICP-AES Inductively Coupled Plasma Atomic Emission Spectroscopy
- a silicon particle dispersion is placed in a quartz beaker, heated on a hot plate, the solvent is evaporated, the obtained silicon particles are weighed, and then dissolved and dissolved with hydrofluoric acid and nitric acid. It is possible to prepare a solution and dilute a part of the solution to obtain a measurement solution, and ICP-AES can be performed on the measurement solution.
- the ICP-AES device for example, PS7800 manufactured by Hitachi High-Tech can be used.
- the concentration of the dopant is phosphorus and the concentration is relatively low (for example, less than 10 20 atoms / cm 3 )
- measuring the concentration of the dopant by P—Mo complex extraction-flameless atomic absorption spectrophotometry is related to accuracy. It may be preferable.
- the drying of the doped silicon particle dispersion is not particularly limited as long as the dispersion medium can be substantially removed from the dispersion.
- a silicon layer or a substrate having the dispersion is placed on a hot plate. Can be performed in a heated atmosphere.
- the drying temperature can be selected so as not to deteriorate the particles of the silicon layer, the base material, or the dispersion. 300 ° C. or lower, 400 ° C. or lower, 500 ° C. or lower, 600 ° C. or lower, 700 ° C. or lower, or 800 ° C. or lower.
- Light irradiation with respect to the dopant injection layer or the like diffuses the p-type or n-type dopant contained in the dopant injection layer into the silicon layer or the electrode region of the base material, and the dopant injection layer and the first and / or second passivation layers.
- the region on the dopant injection layer may be any light irradiation that can be at least partially removed.
- “at least partially removed” means that at least a part of the dopant injection layer and the first and / or second passivation layer is removed. Not only are these layers removed to the extent that electrodes can be formed on the silicon layer or the electrode region of the substrate, but further layers such as dopant implantation layers are removed by further processing such as etching and cleaning. Including when necessary.
- the dopant injection layer and the passivation layer, and the surface portion of the underlying silicon layer or substrate are quickly cooled by heat transfer to the silicon layer or the body portion of the substrate. Is done. Therefore, when such light irradiation is used, the electrode region of the silicon layer or the substrate can be doped without exposing the main part of the silicon layer or the substrate to high heat.
- any light can be used as long as the doping of the electrode region of the silicon layer or the substrate can be achieved as described above.
- the irradiated light laser light having a single wavelength, particularly laser light having a wavelength of 600 nm or less, 500 nm or less, or 400 nm or less and having a wavelength of 300 nm or more can be used.
- the electrode region can be doped by using a flash lamp that irradiates light in a wavelength range of a specific band (for example, 200 to 1100 nm) at a time, for example, a xenon flash lamp.
- a flash lamp that irradiates light in a wavelength range of a specific band (for example, 200 to 1100 nm) at a time, for example, a xenon flash lamp.
- light such as pulsed light or continuously oscillated light can be arbitrarily used. It is effective to perform irradiation using light having a wavelength that is absorbed by the doped silicon particles.
- the number of pulsed light irradiations is, for example, 1 or more, 2 or more, 5 or more, or 10 or more, and 300 or less, 200 Times or less, or 150 times or less.
- the irradiation energy of pulsed light is, for example, 100 mJ / (cm 2 ⁇ shot) or more, 200 mJ / (cm 2 ⁇ shot) or more, 300 mJ / (cm 2 ⁇ shot) or more, 400 mJ / (cm 2 ⁇ shot).
- the irradiation energy 5000mJ / (cm 2 ⁇ shot ) or less, 4000mJ / (cm 2 ⁇ shot ) or less, 3000mJ / (cm 2 ⁇ shot ) or less, 2000mJ / (cm 2 ⁇ shot ) or less, 1500 mJ / ( cm 2 ⁇ shot) or less, or 1000 mJ / (cm 2 ⁇ shot) or less.
- the irradiation time of the pulsed light can be set to, for example, 200 nanoseconds / shot or less, 100 nanoseconds / shot or less, or 50 nanoseconds / shot or less.
- the irradiation energy of light is too small, desired dopant implantation and removal of the dopant implantation layer and the passivation layer may not be achieved.
- the irradiation energy of light is too large, the silicon layer or the substrate may be damaged.
- the optimum conditions such as irradiation energy and number of irradiations depend on the wavelength of light irradiation used, the characteristics of the particles, etc., and those skilled in the art can optimally carry out experiments by referring to the present specification. Can be obtained.
- the light irradiation for sintering the dispersion particles is performed in a non-oxidizing atmosphere, for example, an atmosphere including hydrogen, a rare gas, nitrogen, and a combination thereof.
- a non-oxidizing atmosphere for example, an atmosphere including hydrogen, a rare gas, nitrogen, and a combination thereof.
- examples of the rare gas include argon, helium, and neon.
- the atmosphere containing hydrogen has a reducing action of the dispersion particles, and may be preferable for reducing the oxidized surface portion to form a continuous layer.
- the oxygen content of the atmosphere can be 1% by volume or less, 0.5% by volume or less, 0.1% by volume or less, or 0.01% by volume or less.
- the semiconductor device of the present invention has a silicon layer or substrate having a passivation layer, and an electrode that is in electrical contact with an electrode region of the silicon layer or substrate through a through hole of the passivation layer.
- the minimum diameter of the through hole is 50 ⁇ m or less.
- the surface dopant concentration of the electrode region is 1 ⁇ 10 19 atoms / cm 3 or more, or the sheet resistance value of the electrode region is 70 ⁇ or less.
- Such semiconductor devices are, for example, solar cells or thin layer transistors, in particular solar cells, more particularly back contact solar cells and PERL solar cells.
- the manufacturing method of the semiconductor device of the present invention is not particularly limited, and for example, it can be obtained by the method of the present invention for manufacturing a semiconductor device. Moreover, the description regarding the method of this invention which manufactures a semiconductor device can be referred for the detail of each component of the semiconductor device of this invention.
- Example 1 (Preparation of boron (B) doped silicon particles) Silicon particles were produced by a laser photothermal decomposition (LP) method using monosilane (SiH 4 ) gas as a raw material and using carbon dioxide (CO 2 ) laser light. At this time, diborane (B 2 H 6 ) gas was introduced together with SiH 4 gas to obtain boron-doped silicon particles.
- LP laser photothermal decomposition
- the dopant concentration of the obtained boron-doped silicon particles was 1 ⁇ 10 21 atoms / cm 3 as measured with an ICP-MS apparatus (Agilent Technologies, Model 7500).
- the obtained boron-doped silicon particles had an average primary particle size of about 20 nm.
- the average primary particle size of the silicon particles was calculated based on a set of 500 or more by performing image analysis at a magnification of 100,000 times by TEM observation.
- a silicon substrate having a thickness of 200 ⁇ m having an n-type diffusion layer and a passivation layer on the light-receiving surface side and a passivation layer on the back surface side was provided.
- the passivation layer an aluminum oxide layer (10 nm) and a silicon nitride layer (100 nm) were formed on a silicon base material in this order by a plasma enhanced chemical vapor deposition method (PE-CVD method). Is.
- PE-CVD method plasma enhanced chemical vapor deposition method
- a silicon particle dispersion was formed into a film by screen printing on a specific portion on the back side of the silicon substrate.
- the substrate coated with the silicon particle dispersion is dried in an oven at 200 ° C. to remove propylene glycol, which is a dispersion medium in the silicon particle dispersion, and thereby a dopant injection layer containing silicon particles (film thickness 800 nm). ) Was formed in a specific portion on the back side of the silicon substrate.
- the dopant injection layer is irradiated with green laser light (wavelength 532 nm) using a laser light irradiation apparatus (trade name PowerLine E20, manufactured by Rofin), and the dopant is injected into the silicon substrate, and Ablation of the passivation layer for forming a linear through hole was performed. Therefore, the line width of this laser light irradiation corresponds to the minimum diameter of the through hole of the passivation layer.
- Laser light irradiation conditions were irradiation energy of 3500 mJ / (cm 2 ⁇ shot), 20 shots, and laser light irradiation was performed in the atmosphere.
- the laser beam irradiation was performed on a linear region with a line width of 40 ⁇ m and a line pitch of 1 mm, and a linear through hole was formed in the passivation layer.
- the ratio of the passivation layer coverage that is, the ratio of the area of the portion other than the through hole to the entire area of the passivation layer was 96.3%.
- the dopant injection layer was formed under the same conditions as above, and the sheet resistance value of the silicon substrate irradiated with the laser beam was measured with a four-terminal meter (Made by Mitsubishi Chemical Analytech, Loresta AX MCP-T370). According to this, the sheet resistance value was 40 ⁇ / sq.
- the surface dopant concentration in the region of the silicon substrate irradiated with laser light was measured with a Dynamic SIMS apparatus (IMS-7f, CAMECA).
- the measurement conditions were a primary ion species Cs +, a primary acceleration voltage: 15.0 kV, and a detection region of 30 ⁇ m ⁇ . According to this, the surface dopant concentration was 1 ⁇ 10 19 atoms / cm 3 and the dopant diffusion depth was 5 ⁇ m.
- a general aluminum (Al) paste (film thickness: 20 ⁇ m) that is not dedicated to PERL is applied on the backside passivation layer by screen printing, and the aluminum paste is applied to the electrode region of the silicon substrate through the through hole of the passivation layer. To reach. A silver (Ag) paste was applied to the light receiving surface side.
- an electrode was formed by baking an aluminum and silver paste at 350 ° C. for 30 seconds and at 820 ° C. for 3.8 seconds in a beam conveyance type baking furnace, to obtain a PERL solar cell.
- the back surface side aluminum electrode of this solar cell had a line width and pitch corresponding to the line width and pitch of laser light irradiation.
- the current-voltage (IV) characteristics of the fabricated solar cell were evaluated using a solar simulator (manufactured by Yamashita Denso). According to this, the conversion efficiency was 19.1%, the open circuit voltage was 655 mV, the short circuit current was 37.3 mA, and the fill factor was 77.9%. In addition, the conversion efficiency is calculated
- Example 1 The outline and evaluation results of Example 1 are shown in Table 1 below. The evaluation results of Example 1 are shown in FIGS.
- Example 2 The same as in Example 1 except that after the laser light irradiation, the silicon substrate was immersed in a 1% by mass-potassium hydroxide (KOH) solution for 30 seconds to remove silicon particles remaining on the surface of the silicon substrate. Then, dopant injection, ablation of a passivation layer, and creation of solar cells were performed.
- KOH mass-potassium hydroxide
- Example 1 the sheet resistance value and the surface dopant concentration in the region of the silicon substrate irradiated with laser light were measured. In addition, the current-voltage characteristics of the produced solar cell were evaluated in the same manner as in Example 1.
- Example 2 The outline and evaluation results of Example 2 are shown in Table 1 below. The evaluation results of Example 2 are shown in FIGS.
- Example 1 the sheet resistance value and the surface dopant concentration in the region of the silicon substrate irradiated with laser light were measured. In addition, the current-voltage characteristics of the produced solar cell were evaluated in the same manner as in Example 1.
- Comparative Example 1 The outline of Comparative Example 1 and the evaluation results are shown in Table 1 below. The evaluation results of Comparative Example 1 are shown in FIGS.
- Comparative example 2 Comparative Example 1 except that laser beam irradiation was performed on a linear region having a line width of 70 ⁇ m and a line pitch of 1 mm to form a linear through hole in the passivation layer, and the passivation layer coverage was 93.5%. In the same manner, dopant implantation, ablation of the passivation layer, and creation of solar cells were performed.
- Example 1 the sheet resistance value and the surface dopant concentration in the region of the silicon substrate irradiated with laser light were measured. In addition, the current-voltage characteristics of the produced solar cell were evaluated in the same manner as in Example 1.
- Comparative Example 2 The outline of Comparative Example 2 and the evaluation results are shown in Table 1 below. The evaluation results of Comparative Example 2 are shown in FIGS.
- Example 1 the sheet resistance value of the region of the silicon substrate irradiated with laser light was measured. In addition, the current-voltage characteristics of the produced solar cell were evaluated in the same manner as in Example 1.
- Example 3 Except that the laser beam irradiation width was 50 ⁇ m, dopant injection, passivation layer ablation, and production of solar cells were performed in the same manner as in Example 1.
- Example 1 the sheet resistance value and the surface dopant concentration in the region of the silicon substrate irradiated with laser light were measured. In addition, the current-voltage characteristics of the produced solar cell were evaluated in the same manner as in Example 1.
- Example 3 The outline and evaluation results of Example 3 are shown in Table 1 below. The evaluation results of Example 3 are shown in FIGS.
- Example 1 the sheet resistance value and the surface dopant concentration in the region of the silicon substrate irradiated with laser light were measured. In addition, the current-voltage characteristics of the produced solar cell were evaluated in the same manner as in Example 1.
- Comparative Example 4 The outline of Comparative Example 4 and the evaluation results are shown in Table 1 below. The evaluation results of Comparative Example 4 are shown in FIGS.
- Example 1 the sheet resistance value and the surface dopant concentration in the region of the silicon substrate irradiated with laser light were measured. In addition, the current-voltage characteristics of the produced solar cell were evaluated in the same manner as in Example 1.
- Comparative Example 5 The outline of Comparative Example 5 and the evaluation results are shown in Table 1 below. The evaluation results of Comparative Example 5 are shown in FIGS.
- Example 2 In Example 2 similar to Example 1 except that the silicon particles remaining on the surface of the silicon substrate were removed with a potassium hydroxide solution, as shown in Table 1, as in Example 1, A combination of good open circuit voltage, short circuit current and fill factor, and thereby good conversion efficiency could be achieved.
- the deterioration of the electrical contact is caused by the Kirkendall effect, that is, the aluminum constituting the electrode diffuses into the silicon base material, thereby the vicinity of the interface between the electrode and the silicon layer or the base material. This is considered to be due to the effect that voids are formed in the electrode.
- the conversion efficiency of the solar cell of Comparative Example 1 was inferior to that of Examples 1 to 3 due to the combination of a good open-circuit voltage, inferior short-circuit current, and fill factor.
- Comparative Example 2 As shown in Table 1, in the solar cell of Comparative Example 2, which is the same as Comparative Example 1 except that the line width of the backside electrode is increased, and thereby the passivation layer coverage is decreased. In addition, the open circuit voltage was lower than that of Comparative Example 1. This is considered to be because the recombination of holes and electrons could not be effectively suppressed due to the decrease in the passivation layer coverage. On the other hand, in the solar cell of Comparative Example 2, a good short-circuit current and a fill factor were obtained as compared with Comparative Example 1. This is due to the fact that good electrical contact between the electrode and the silicon substrate was achieved by compensating for the deterioration of electrical contact due to the Kirkendall effect by increasing the line width of the back side electrode. it is conceivable that.
- the conversion efficiency of the solar cell of Comparative Example 2 was inferior to that of Examples 1 to 3 due to the combination of inferior open-circuit voltage, good short-circuit current, and fill factor.
- Comparative Example 3 The solar cell of Comparative Example 3 which is similar to Example 1 except that the dopant injection layer containing silicon particles was not formed and therefore the electrode region of the silicon substrate was not doped is shown in Table 1. Thus, as compared with Examples 1 to 3, all of the open circuit voltage, the short circuit current, and the fill factor were decreased.
- the decrease in the open circuit voltage is considered to be due to the fact that the recombination of holes and electrons in the vicinity of the electrode region could not be effectively suppressed because the electrode region of the silicon substrate was not doped.
- the short circuit current and the reduction of the fill factor are considered to be because good electrical contact between the electrode and the silicon substrate could not be achieved because the electrode region of the silicon base material was not doped. .
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Ceramic Engineering (AREA)
- Photovoltaic Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
上記貫通孔を通して上記電極領域にアルミニウムペーストを塗布し、そして上記アルミニウムペーストを焼成することによって、上記電極を形成し、
上記貫通孔の最小径が50μm以下であり、かつ
上記電極領域の表面ドーパント濃度が7×1018atoms/cm3以上、又は上記電極領域のシート抵抗値が70Ω以下である、
半導体デバイスの製造方法。
〈2〉上記パッシベーション層が、1~300nmの層厚を有する、上記〈1〉項に記載の方法。
〈3〉上記パッシベーション層が、窒化シリコン、酸化シリコン、酸化アルミニウム、及びそれらの組合せからなる群より選択される材料で形成されている、上記〈1〉又は〈2〉項に記載の方法。
〈4〉上記半導体デバイスが太陽電池である、上記〈1〉~〈3〉項のいずれか一項に記載の方法。
〈5〉下記の工程によって、上記パッシベーション層に上記貫通孔を形成し、かつ上記電極領域のドープを行うことを更に含む、上記〈1〉~〈4〉項のいずれか一項に記載の方法:
下記の(i)及び(ii)を有する積層体を提供すること:(i)上記シリコン層又は基材上に配置されている第1及び/又は第2のパッシベーション層、並びに(ii)第1のパッシベーション層の上側であって第2のパッシベーション層の下側において上記電極領域上の領域に配置されているドーパント注入層であって、ドープシリコン粒子からなるドーパント注入層、
上記積層体の上記ドーパント注入層、又は上記第2のパッシベーション層のうちの上記ドーパント注入層上の領域に光照射を行うことによって、上記電極領域をドープすると共に、上記ドーパント注入層、及び上記パッシベーション層を、少なくとも部分的に除去して、上記貫通孔を形成すること。
〈6〉下記の工程によって、上記パッシベーション層に上記貫通孔を形成し、かつ上記電極領域のドープを行う、上記〈5〉項に記載の方法:
上記シリコン層又は基材上に、上記第1のパッシベーション層を形成すること、
上記第1のパッシベーション層のうちの、上記電極領域上の領域に、ドープシリコン粒子を含有するドープシリコン粒子分散体を塗布すること、
塗布した上記ドープシリコン粒子分散体を乾燥して、上記ドーパント注入層とすること、並びに
上記ドーパント注入層に光照射を行うことによって、上記電極領域をドープすると共に、上記ドーパント注入層、及び上記第1のパッシベーション層を、少なくとも部分的に除去して、上記貫通孔を形成すること。
〈7〉下記の工程によって、上記パッシベーション層に上記貫通孔を形成し、かつ上記電極領域のドープを行う、上記〈5〉項に記載の方法:
上記電極領域に、ドープシリコン粒子を含有するドープシリコン粒子分散体を塗布すること、
塗布した上記ドープシリコン粒子分散体を乾燥して、上記ドーパント注入層とすること、
上記シリコン層又は基材及び上記ドーパント注入層上に、上記第2のパッシベーション層を形成すること、並びに
上記第2のパッシベーション層のうちの上記電極領域上の領域に光照射を行うことによって、上記電極領域をドープすると共に、上記ドーパント注入層、及び上記第2のパッシベーション層を、少なくとも部分的に除去して、上記貫通孔を形成すること。
〈8〉下記の工程によって、上記パッシベーション層に上記貫通孔を形成し、かつ上記電極領域のドープを行う、上記〈5〉項に記載の方法:
上記シリコン層又は基材上に、上記第1のパッシベーション層を形成すること、
上記第1のパッシベーション層のうちの、上記電極領域上の領域に、ドープシリコン粒子を含有するドープシリコン粒子分散体を塗布すること、
塗布した上記ドープシリコン粒子分散体を乾燥して、上記ドーパント注入層とすること、
上記第1のパッシベーション層及び上記ドーパント注入層上に、第2のパッシベーション層を形成すること、並びに
上記第2のパッシベーション層のうちの上記電極領域上の領域に光照射を行うことによって、上記電極領域をドープすると共に、上記ドーパント注入層、並びに上記第1及び第2のパッシベーション層を、少なくとも部分的に除去して、上記貫通孔を形成すること。
〈9〉上記アルミニウムペーストを塗布する前に、上記シリコン層又は基材上に残留している上記ドープシリコン粒子を除去する工程を更に含む、上記〈5〉~〈8〉項のいずれか一項に記載の方法。
〈10〉上記ドープシリコン粒子の平均一次粒子径が100nm以下である、上記〈5〉~〈9〉項のいずれか一項に記載の方法。
〈11〉上記ドープシリコン粒子のドーパント濃度が1×1020atoms/cm3以上である、上記〈5〉~〈10〉項のいずれか一項に記載の方法。
〈12〉パッシベーション層を有するシリコン層又は基材、及び
上記パッシベーション層の貫通孔を通って上記シリコン層又は基材の電極領域に電気的に接触している電極、
を有する半導体デバイスであって、
上記貫通孔の最小径が50μm以下であり、かつ
上記電極領域の表面ドーパント濃度が7×1018atoms/cm3以上、又は上記電極領域のシート抵抗値が70Ω以下である、
半導体デバイス。
〈13〉太陽電池である、上記〈12〉項に記載の半導体デバイス。
半導体デバイスを製造する本発明の方法は、パッシベーション層を有するシリコン層又は基材上に、パッシベーション層の貫通孔を通ってシリコン層又は基材の電極領域に電気的に接触している電極を形成することを含む。ここでは、貫通孔を通して電極領域にアルミニウムペーストを塗布し、そしてアルミニウムペーストを焼成することによって、電極を形成する。なお、本発明に関して「電極領域」は、シリコン層又は基材のうちの、電極に接触する領域を意味している。
本発明で使用できるシリコン層又は基材としては、任意のシリコン層又は基材を用いることができる。したがって、シリコン層又は基材としては、シリコンウェハー、アモルファスシリコン層、及び結晶質シリコン層を挙げることができる。また、シリコン層又は基材は、その全体又は一部が、予めドープされていてもよい。
本発明の方法において用いることができるパッシベーション層は、パッシベーション層として機能させることができる任意の厚さを有することができ、例えば1nm以上、5nm以上、10nm以上、30nm以上、50nm以上の厚さを有することができる。また、パッシベーション層は、300nm以下、200nm以下、100nm以下、50nm以下、30nm以下、20nm以下、又は10nm以下の厚さを有することができる。この厚さが薄すぎる場合、パッシベーション層としての性質に劣る可能性がある。また、この厚さが厚すぎる場合、ドープシリコン粒子からなるドーパント注入層及び光照射を用いて貫通孔の形成及び電極領域のドープを行う下記で説明する工程において、貫通孔の形成及び電極領域のドープを十分に行えないことがある。
本発明の方法において用いることができるアルミニウムペーストは、アルミニウムの微粒子及び/又は化合物と、樹脂及び溶媒等のペースト化成分とを含有するペーストであって、焼成することによってアルミニウム電極にすることができる任意のアルミニウムペーストである。
パッシベーション層の貫通孔の形成は、フォトリソグラフィー、レーザー光等を用いる任意の方法で行うことができる。また、シリコン層又は基材の電極領域のドープは、ドーピングガス、塗布型ドーピング剤、ドープシリコン粒子等を用いる任意の方法で行うことができる。
ドープシリコン粒子及び光照射を用いる貫通孔の形成及び電極領域のドープは、下記の工程を含む第1の態様で行うことができる:
シリコン層又は基材上に、第1のパッシベーション層を形成すること、
第1のパッシベーション層のうちの、電極領域上の領域に、ドープシリコン粒子を含有するドープシリコン粒子分散体を塗布すること、
塗布したドープシリコン粒子分散体を乾燥して、ドーパント注入層とすること、並びに
ドーパント注入層に光照射を行うことによって、電極領域をドープすると共に、ドーパント注入層、及び第1のパッシベーション層を、少なくとも部分的に除去して、貫通孔を形成すること。
ドープシリコン粒子及び光照射を用いる貫通孔の形成及び電極領域のドープは、下記の工程を含む第2の態様で行うことができる:
電極領域に、ドープシリコン粒子を含有するドープシリコン粒子分散体を塗布すること、
塗布したドープシリコン粒子分散体を乾燥して、ドーパント注入層とすること、
シリコン層又は基材及びドーパント注入層上に、第2のパッシベーション層を形成すること、並びに
第2のパッシベーション層のうちの電極領域上の領域に光照射を行うことによって、電極領域をドープすると共に、ドーパント注入層、及び第2のパッシベーション層を、少なくとも部分的に除去して、貫通孔を形成すること。
ドープシリコン粒子及び光照射を用いる貫通孔の形成及び電極領域のドープは、下記の工程を含む第3の態様で行うことができる:
シリコン層又は基材上に、第1のパッシベーション層を形成すること、
第1のパッシベーション層のうちの、電極領域上の領域に、ドープシリコン粒子を含有するドープシリコン粒子分散体を塗布すること、
塗布したドープシリコン粒子分散体を乾燥して、ドーパント注入層とすること、
第1のパッシベーション層及びドーパント注入層上に、第2のパッシベーション層を形成すること、並びに
第2のパッシベーション層のうちの電極領域上の領域に光照射を行うことによって、電極領域をドープすると共に、ドーパント注入層、並びに第1及び第2のパッシベーション層を、少なくとも部分的に除去して、貫通孔を形成すること。
ドープシリコン粒子を含有するドープシリコン粒子分散体の塗布は、分散体を所望の厚さ及び均一性で塗布できる方法であれば特に限定されず、例えばインクジェット印刷法、スピンコーティング法、又はスクリーン印刷法等によって行うことができ、特にインクジェット印刷やスクリーン印刷のような印刷法を用いて行うことが、特定の領域に分散体を塗布し、かつ製造工程を短くするために特に有益なことがある。
ドープシリコン粒子分散体の分散媒は、本発明の目的及び効果を損なわない限り制限されるものではなく、したがって例えば分散体で用いるドープシリコン粒子と反応しない有機溶媒を用いることができる。具体的にはこの分散媒は、非水系溶媒、例えばアルコール、アルカン、アルケン、アルキン、ケトン、エーテル、エステル、芳香族化合物、又は含窒素環化合物、特にイソプロピルアルコール(IPA)、N-メチル-2-ピロリドン(NMP)等であってよい。また、アルコールとしては、エチレングリコールのようなグリコール(2価アルコール)を用いることもできる。なお、分散媒は、分散体で用いるドープシリコン粒子の酸化を抑制するために、脱水溶媒であることが好ましい。
ドープシリコン粒子分散体のドープシリコン粒子は、p型又はn型ドーパントによってドープされているシリコン粒子であれば、本発明の目的及び効果を損なわない限り制限されるものではない。具体的には、このシリコン粒子としては、レーザー光熱分解法、特にCO2レーザー光を用いたレーザー光熱分解法によって得られたシリコン粒子を挙げることができる。
ドープシリコン粒子分散体の乾燥は、分散体から分散媒を実質的に除去することができる方法であれば特に限定されず、例えば分散体を有するシリコン層又は基材を、ホットプレート上に配置して行うこと、加熱雰囲気に配置して行うこと等ができる。
ドーパント注入層等に対する光照射は、ドーパント注入層に含まれるp型又はn型ドーパントをシリコン層又は基材の電極領域に拡散させると共に、ドーパント注入層、並びに第1及び/又は第2のパッシベーション層のうちのドーパント注入層上の領域を、少なくとも部分的に除去することができる任意の光照射であってよい。なお、本発明に関して、「少なくとも部分的に除去」は、ドーパント注入層、並びに第1及び/又は第2のパッシベーション層の少なくとも一部が除去されることを意味しており、この除去によって、そのままシリコン層又は基材の電極領域上に電極を形成できる程度までこれらの層が除去される場合だけでなく、エッチング、洗浄のような更なる処理によって残存するドーパント注入層等の層をさらに除去する必要がある場合を含む。
ドーパント注入層等に対して照射される光としては、上記のようにしてシリコン層又は基材の電極領域のドープ等を達成できれば任意の光を用いることができる。例えば、照射される光としては、単一波長からなるレーザー光、特に波長600nm以下、500nm以下又は400nm以下であって、300nm以上の波長を有するレーザー光を用いることができる。また、電極領域のドープ等は、特定の帯域の波長範囲(例えば200~1100nm)の光を一度に照射するフラッシュランプ、例えばキセノンフラッシュランプを用いて行うこともできる。また、上記のようにして電極領域のドープ等を達成できれば、パルス状の光、連続発振される光などの光を任意に用いることができる。なお、ドープシリコン粒子に吸収される波長の光を用いて照射を行うことが有効である。
分散体粒子を焼結するための光照射は、非酸化性雰囲気、例えば水素、希ガス、窒素、及びそれらの組合せからなる雰囲気において行うことが、半導体デバイスの特性に与える影響を小さくするために好ましい。ここで、希ガスとしては、特にアルゴン、ヘリウム、及びネオンを挙げることができる。なお、雰囲気が水素を含有することは、分散体粒子の還元作用があり、酸化された表面部分を還元して、連続層を形成するために好ましいことがある。また、非酸化性雰囲気とするために、雰囲気の酸素含有率は、1体積%以下、0.5体積%以下、0.1体積%以下、又は0.01体積%以下とすることができる。
本発明の半導体デバイスは、パッシベーション層を有するシリコン層又は基材、及びパッシベーション層の貫通孔を通ってシリコン層又は基材の電極領域に電気的に接触している電極を有する。この本発明の半導体デバイスでは、貫通孔の最小径が50μm以下である。また、この本発明の半導体デバイスでは、電極領域の表面ドーパント濃度が1×1019atoms/cm3以上、又は電極領域のシート抵抗値が70Ω以下である。
(ホウ素(B)ドープシリコン粒子の作成)
シリコン粒子は、モノシラン(SiH4)ガスを原料として、二酸化炭素(CO2)レーザー光を用いたレーザー光熱分解(LP:Laser Pyrolysis)法により作製した。このとき、SiH4ガスと共にジボラン(B2H6)ガスを導入して、ホウ素ドープシリコン粒子を得た。
上記のようにして得たホウ素ドープシリコン粒子を、プロピレングリコール(PG)中に分散させて、固形分濃度5質量%のシリコン粒子分散体を得た。
受光面側にn型拡散層及びパッシベーション層を有し、かつ裏面側にパッシベーション層を有する厚さ200μmのシリコン基材を提供した。ここで、パッシベーション層は、シリコン基材上に、酸化アルミニウム層(10nm)及び窒化ケイ素層(100nm)をこの順でプラズマ・エンハンスド・ケミカル・ベーパー・デポジション法(PE-CVD法)によって形成したものである。このパッシベーション層によれば、酸化アルミニウム層がシリコン基材に接していることによって、シリコン基材に電荷を与え、それによってキャリアのライフタイムを長くすることができる。
上記のシリコン基材の裏面側の特定部分に対して、シリコン粒子分散体をスクリーン印刷で成膜した。
シリコン粒子分散体が塗布された基板を、200℃のオーブンで乾燥させることによって、シリコン粒子分散体中の分散媒であるプロピレングリコールを除去し、それによってシリコン粒子を含むドーパント注入層(膜厚800nm)を、シリコン基材の裏面側の特定部分に形成した。
次に、このドーパント注入層に対して、レーザー光照射装置(Rofin社製、商品名PowerLineE20)を用いてグリーンレーザー光(波長532nm)を照射して、シリコン基材中へのドーパントの注入、及び線状の貫通孔するためのパッシベーション層のアブレーションを行った。したがって、このレーザー光照射の線幅が、パッシベーション層の貫通孔の最小径に対応している。なお、レーザー光照射条件は、照射エネルギー3500mJ/(cm2・shot)、ショット数20回であり、レーザー光照射は、大気中で行った。
上記と同じ条件でドーパント注入層を形成し、そしてレーザー光照射をしたシリコン基板のシート抵抗値を、4端子計(三菱化学アナリテック製、ロレスタAX MCP-T370)で測定した。それによれば、シート抵抗値は40Ω/sqであった。
シリコン基板のレーザー光照射をした領域の表面ドーパント濃度を、Dynamic SIMS装置(CAMECA社のIMS-7f)で測定した。測定条件は一次イオン種Cs+、一次加速電圧:15.0kV、検出領域30μmΦであった。それによれば、表面ドーパント濃度が1×1019atoms/cm3、ドーパント拡散深さが5μmであった。
裏面側のパッシベーション層上に、スクリーン印刷によってPERL専用ではない一般的なアルミニウム(Al)ペースト(膜厚20μm)を塗布して、パッシベーション層の貫通孔を通して、アルミニウムペーストがシリコン基材の電極領域に達するようにした。また、受光面側には銀(Ag)ペーストを塗布した。
作製された太陽電池の電流-電圧(I-V)特性評価を、ソーラーシミュレータ(山下電装製)を用いて行った。それによれば、変換効率が19.1%、開放電圧が655mV、短絡電流が37.3mA、及び曲線因子(Fill Factor)が77.9%であった。なお、変換効率は、開放電圧、短絡電流、及び曲線因子の積で求めている。
レーザー光照射後に、シリコン基材を1質量%-水酸化カリウム(KOH)溶液に30秒間にわたって浸漬させてシリコン基材表面に残存しているシリコン粒子を除去したことを除いて実施例1と同様にして、ドーパントの注入、パッシベーション層のアブレーション、及び太陽電池セルの作成を行った。
ドーパント注入層に対するレーザー光照射条件を、照射エネルギー2500mJ/(cm2・shot)、及びショット数20回にしたことを除いて実施例1と同様にして、ドーパントの注入、パッシベーション層のアブレーション、及び太陽電池セルの作成を行った。
レーザー光照射を線幅70μm及び線ピッチ1mmの線状の領域について行って、線状の貫通孔をパッシベーション層に形成し、パッシベーション層被覆率を93.5%としたことを除いて比較例1と同様にして、ドーパントの注入、パッシベーション層のアブレーション、及び太陽電池セルの作成を行った。
シリコン粒子を含むドーパント注入層を形成せず、したがってシリコン基材の電極領域をドープしなかったことを除いて実施例1と同様にして、パッシベーション層のアブレーション、及び太陽電池セルの作成を行った。
レーザー光照射幅を50μmにしたことを除いて、実施例1と同様にして、ドーパントの注入、パッシベーション層のアブレーション、及び太陽電池セルの作製を行った。
レーザー光照射幅を60μmにしたことを除いて、実施例1と同様にして、ドーパントの注入、パッシベーション層のアブレーション、及び太陽電池セルの作製を行った。
レーザー光照射幅を60μmにしたことを除いて、実施例1と同様にして、ドーパントの注入、パッシベーション層のアブレーション、及び太陽電池セルの作製を行った。
実施例1及び3の太陽電池では、表1及び図7~10で示されているように、比較例1~5と同程度の又はそれよりも良好な開放電圧が得られた。これは、大きいパッシベーション層被覆率によって正孔と電子との再結合を効果的に抑制できたことによると考えられる。また、実施例1及び3の太陽電池では、比較例1~5と同程度の又はそれよりも良好な短絡電流及び曲線因子が得られた。これは、裏面側電極の線幅が40μmと細いにも関わらず、電極とシリコン基板との間の良好な電気的な接触が達成されていることによると考えられる。
水酸化カリウム溶液でシリコン基材表面に残存しているシリコン粒子を除去したことを除いて実施例1と同様な実施例2では、表1で示されているように、実施例1と同様に良好な開放電圧、短絡電流及び曲線因子の組合せ、並びにそれによる良好な変換効率が達成できた。
レーザー光照射条件の変更によって実施例1よりもシリコン基材の表面ドーパント濃度が低下している比較例1では、表1で示されているように、いずれも貫通孔の線幅が40μmである実施例1と比較して、同程度の良好な開放電圧が得られたものの、短絡電流及び曲線因子が低下した。
裏面側電極の線幅が増大しており、それによってパッシベーション層被覆率が低下していることを除いて比較例1と同様である比較例2の太陽電池では、表1で示されているように、比較例1と比較して開放電圧が低下した。これは、パッシベーション層被覆率が低下したことによって、正孔と電子との再結合を効果的に抑制できなかったことによると考えられる。他方で、この比較例2の太陽電池では、比較例1と比較して良好な短絡電流及び曲線因子が得られた。これは、裏面側電極の線幅が増大したことによって、カーケンドール効果による電気的な接触の悪化を補って、電極とシリコン基板との間の良好な電気的な接触が達成されていることによると考えられる。
シリコン粒子を含むドーパント注入層を形成せず、したがってシリコン基材の電極領域をドープしなかったことを除いて実施例1と同様である比較例3の太陽電池では、表1で示されているように、実施例1~3と比較して、開放電圧、短絡電流及び曲線因子のすべてが低下していた。
5 レーザー光
12、22、32、42、44、52、54 電極
15、25、35、45、55、65 シリコン層又は基材
15a、25a、35a、45a、45b、55a、65a シリコン層又は基材の電極領域
18、28、38a、38b、46、48、56、58、68 パッシベーション層
40 バックコンタクト太陽電池
50 PERL太陽電池
45c、45c 表面電界層
68a パッシベーション層の孔
100 太陽電池に入射する光
Claims (13)
- パッシベーション層を有するシリコン層又は基材上に、前記パッシベーション層の貫通孔を通って前記シリコン層又は基材の電極領域に電気的に接触している電極を形成することを含む、半導体デバイスの製造方法であって、
前記貫通孔を通して前記電極領域にアルミニウムペーストを塗布し、そして前記アルミニウムペーストを焼成することによって、前記電極を形成し、
前記貫通孔の最小径が50μm以下であり、かつ
前記電極領域の表面ドーパント濃度が7×1018atoms/cm3以上、又は前記電極領域のシート抵抗値が70Ω以下である、
半導体デバイスの製造方法。 - 前記パッシベーション層が、1~300nmの層厚を有する、請求項1に記載の方法。
- 前記パッシベーション層が、窒化シリコン、酸化シリコン、酸化アルミニウム、及びそれらの組合せからなる群より選択される材料で形成されている、請求項1又は2に記載の方法。
- 前記半導体デバイスが太陽電池である、請求項1~3のいずれか一項に記載の方法。
- 下記の工程によって、前記パッシベーション層に前記貫通孔を形成し、かつ前記電極領域のドープを行うことを更に含む、請求項1~4のいずれか一項に記載の方法:
下記の(i)及び(ii)を有する積層体を提供すること:(i)前記シリコン層又は基材上に配置されている第1及び/又は第2のパッシベーション層、並びに(ii)第1のパッシベーション層の上側であって第2のパッシベーション層の下側において前記電極領域上の領域に配置されているドーパント注入層であって、ドープシリコン粒子からなるドーパント注入層、
前記積層体の前記ドーパント注入層、又は前記第2のパッシベーション層のうちの前記ドーパント注入層上の領域に光照射を行うことによって、前記電極領域をドープすると共に、前記ドーパント注入層、及び前記パッシベーション層を、少なくとも部分的に除去して、前記貫通孔を形成すること。 - 下記の工程によって、前記パッシベーション層に前記貫通孔を形成し、かつ前記電極領域のドープを行う、請求項5に記載の方法:
前記シリコン層又は基材上に、前記第1のパッシベーション層を形成すること、
前記第1のパッシベーション層のうちの、前記電極領域上の領域に、ドープシリコン粒子を含有するドープシリコン粒子分散体を塗布すること、
塗布した前記ドープシリコン粒子分散体を乾燥して、前記ドーパント注入層とすること、並びに
前記ドーパント注入層に光照射を行うことによって、前記電極領域をドープすると共に、前記ドーパント注入層、及び前記第1のパッシベーション層を、少なくとも部分的に除去して、前記貫通孔を形成すること。 - 下記の工程によって、前記パッシベーション層に前記貫通孔を形成し、かつ前記電極領域のドープを行う、請求項5に記載の方法:
前記電極領域に、ドープシリコン粒子を含有するドープシリコン粒子分散体を塗布すること、
塗布した前記ドープシリコン粒子分散体を乾燥して、前記ドーパント注入層とすること、
前記シリコン層又は基材及び前記ドーパント注入層上に、前記第2のパッシベーション層を形成すること、並びに
前記第2のパッシベーション層のうちの前記電極領域上の領域に光照射を行うことによって、前記電極領域をドープすると共に、前記ドーパント注入層、及び前記第2のパッシベーション層を、少なくとも部分的に除去して、前記貫通孔を形成すること。 - 下記の工程によって、前記パッシベーション層に前記貫通孔を形成し、かつ前記電極領域のドープを行う、請求項5に記載の方法:
前記シリコン層又は基材上に、前記第1のパッシベーション層を形成すること、
前記第1のパッシベーション層のうちの、前記電極領域上の領域に、ドープシリコン粒子を含有するドープシリコン粒子分散体を塗布すること、
塗布した前記ドープシリコン粒子分散体を乾燥して、前記ドーパント注入層とすること、
前記第1のパッシベーション層及び前記ドーパント注入層上に、第2のパッシベーション層を形成すること、並びに
前記第2のパッシベーション層のうちの前記電極領域上の領域に光照射を行うことによって、前記電極領域をドープすると共に、前記ドーパント注入層、並びに前記第1及び第2のパッシベーション層を、少なくとも部分的に除去して、前記貫通孔を形成すること。 - 前記アルミニウムペーストを塗布する前に、前記シリコン層又は基材上に残留している前記ドープシリコン粒子を除去する工程を更に含む、請求項5~8のいずれか一項に記載の方法。
- 前記ドープシリコン粒子の平均一次粒子径が100nm以下である、請求項5~9のいずれか一項に記載の方法。
- 前記ドープシリコン粒子のドーパント濃度が1×1020atoms/cm3以上である、請求項5~10のいずれか一項に記載の方法。
- パッシベーション層を有するシリコン層又は基材、及び
前記パッシベーション層の貫通孔を通って前記シリコン層又は基材の電極領域に電気的に接触している電極、
を有する半導体デバイスであって、
前記貫通孔の最小径が50μm以下であり、かつ
前記電極領域の表面ドーパント濃度が7×1018atoms/cm3以上、又は前記電極領域のシート抵抗値が70Ω以下である、
半導体デバイス。 - 太陽電池である、請求項12に記載の半導体デバイス。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016531717A JP6076545B2 (ja) | 2014-08-29 | 2015-08-27 | 半導体デバイスの製造方法 |
CN201580046174.4A CN106663701A (zh) | 2014-08-29 | 2015-08-27 | 半导体器件的制造方法以及半导体器件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-176556 | 2014-08-29 | ||
JP2014176556 | 2014-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016031927A1 true WO2016031927A1 (ja) | 2016-03-03 |
Family
ID=55399811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/074276 WO2016031927A1 (ja) | 2014-08-29 | 2015-08-27 | 半導体デバイスの製造方法、及び半導体デバイス |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6076545B2 (ja) |
CN (1) | CN106663701A (ja) |
TW (1) | TW201620022A (ja) |
WO (1) | WO2016031927A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107221568A (zh) * | 2017-07-10 | 2017-09-29 | 苏州腾晖光伏技术有限公司 | 一种选择发射极双面perc电池的制备方法 |
CN113555470A (zh) * | 2021-07-21 | 2021-10-26 | 苏州腾晖光伏技术有限公司 | 一种太阳能电池及其制作方法、光伏组件 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09199738A (ja) * | 1996-01-19 | 1997-07-31 | Hitachi Ltd | 太陽電池 |
JP2002246625A (ja) * | 2001-02-21 | 2002-08-30 | Sharp Corp | 太陽電池の製造方法 |
WO2013147202A1 (ja) * | 2012-03-30 | 2013-10-03 | 帝人株式会社 | 半導体積層体及びその製造方法、半導体デバイスの製造方法、半導体デバイス、ドーパント組成物、ドーパント注入層、並びにドープ層の形成方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120244723A1 (en) * | 2009-09-18 | 2012-09-27 | Applied Materials, Inc. | Laser drilling of vias in back contact solar cells |
CN102332484A (zh) * | 2010-07-14 | 2012-01-25 | 雷纳有限公司 | 用于太阳能电池制作的金属化方法 |
KR101386271B1 (ko) * | 2010-12-10 | 2014-04-18 | 데이진 가부시키가이샤 | 반도체 적층체, 반도체 디바이스, 및 그들의 제조 방법 |
CN102637766B (zh) * | 2011-02-15 | 2014-04-30 | 上海凯世通半导体有限公司 | 太阳能晶片掺杂方法、掺杂晶片、太阳能电池及制作方法 |
JP2014072474A (ja) * | 2012-10-01 | 2014-04-21 | Sharp Corp | 光電変換素子の製造方法及び光電変換素子 |
-
2015
- 2015-08-27 WO PCT/JP2015/074276 patent/WO2016031927A1/ja active Application Filing
- 2015-08-27 CN CN201580046174.4A patent/CN106663701A/zh active Pending
- 2015-08-27 JP JP2016531717A patent/JP6076545B2/ja active Active
- 2015-08-28 TW TW104128403A patent/TW201620022A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09199738A (ja) * | 1996-01-19 | 1997-07-31 | Hitachi Ltd | 太陽電池 |
JP2002246625A (ja) * | 2001-02-21 | 2002-08-30 | Sharp Corp | 太陽電池の製造方法 |
WO2013147202A1 (ja) * | 2012-03-30 | 2013-10-03 | 帝人株式会社 | 半導体積層体及びその製造方法、半導体デバイスの製造方法、半導体デバイス、ドーパント組成物、ドーパント注入層、並びにドープ層の形成方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6076545B2 (ja) | 2017-02-08 |
TW201620022A (zh) | 2016-06-01 |
JPWO2016031927A1 (ja) | 2017-04-27 |
CN106663701A (zh) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5472304B2 (ja) | ペースト及びそれを用いた太陽電池の製造方法 | |
CN107039532B (zh) | 掺杂剂注入层、其形成方法及半导体装置的制造方法 | |
KR101457427B1 (ko) | 태양전지 및 그 제조방법 | |
JP6050376B2 (ja) | 太陽電池及びその製造方法 | |
JP5156059B2 (ja) | ダイオードとその製造方法 | |
WO2015114922A1 (ja) | 光電変換装置および光電変換装置の製造方法 | |
JP6076545B2 (ja) | 半導体デバイスの製造方法 | |
JP5253561B2 (ja) | 半導体デバイスの製造方法、半導体デバイス、並びに分散体 | |
Muduli et al. | Effect of diffusion doping-induced defects on shunt resistance affecting Si-nanowire solar cell performance | |
JP2017183648A (ja) | ドーパント組成物、ドーパント注入層、ドープ層の形成方法、及び半導体デバイスの製造方法 | |
JP6868975B2 (ja) | 半導体デバイス及びその製造方法 | |
Tsuji et al. | Fine line screen-printing aluminum for front side p+ metallization of high efficiency solar cells | |
JP2016189424A (ja) | 半導体デバイスの製造方法 | |
WO2023153255A1 (ja) | 不純物拡散組成物、およびこれを用いた太陽電池の製造方法 | |
WO2016072048A1 (ja) | 太陽電池及びその製造方法 | |
JP2016063069A (ja) | 半導体装置とその製造方法 | |
WO2017146110A1 (ja) | イオン注入マスク形成用分散体、イオン注入マスクの形成方法及び半導体デバイス製造方法 | |
Wang et al. | Realization of point contact for stacks Al2O3/SiNx rear surface passivated solar cells | |
WO2016031826A1 (ja) | ドーピング方法、及びドーピング用積層体 | |
Maity et al. | Improvement of Front Side Contact by Light Induced Plating of c-Si Solar Cell | |
JP2017199881A (ja) | イオン注入用マスクの形成方法及び半導体デバイス製造方法 | |
Heinrichs | Parameter Optimization of Laser-doped Selective Emitters for Applications in the Silicon Photovoltaic Industry | |
JP2018006388A (ja) | 半導体層又は基材のドープ方法、pn接合又はpin構造の形成方法、及びフォトダイオードの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15835217 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016531717 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.06.2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15835217 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15835217 Country of ref document: EP Kind code of ref document: A1 |