WO2015114922A1 - 光電変換装置および光電変換装置の製造方法 - Google Patents

光電変換装置および光電変換装置の製造方法 Download PDF

Info

Publication number
WO2015114922A1
WO2015114922A1 PCT/JP2014/080840 JP2014080840W WO2015114922A1 WO 2015114922 A1 WO2015114922 A1 WO 2015114922A1 JP 2014080840 W JP2014080840 W JP 2014080840W WO 2015114922 A1 WO2015114922 A1 WO 2015114922A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
region
type dopant
photoelectric conversion
substrate
Prior art date
Application number
PCT/JP2014/080840
Other languages
English (en)
French (fr)
Inventor
善之 奈須野
和仁 西村
伊坂 隆行
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015114922A1 publication Critical patent/WO2015114922A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion device used for a solar cell module and the like, and a method for manufacturing the photoelectric conversion device.
  • n-electrode is provided on the light-receiving surface that receives sunlight
  • a p-electrode is provided on the back surface that is the opposite surface of the light-receiving surface.
  • the n-electrode provided on the light-receiving surface side is indispensable for taking out the current obtained by photoelectric conversion.
  • sunlight is incident on the substrate where the n-electrode is formed by shielding the n-electrode. Therefore, if the electrode area is large, the conversion efficiency decreases. Such loss of conversion efficiency due to the electrode on the light receiving surface side is called shadow loss.
  • FIG. 8 is a schematic cross-sectional view showing the structure of a conventional back electrode type photoelectric conversion device.
  • An IBC (Interdigitated Back Contact) solar cell 100 which is a back electrode type photoelectric conversion device, includes a p contact 107 and an n contact 108 on the back surface thereof.
  • the top surface of the IBC solar cell 100 is an antireflection film 101.
  • Below the antireflection film 101 are an FSF (Front Surface Field) region 102 and a base 103.
  • Below the base 103 are an emitter 104 and a BSF (Back Surface Field) region 105.
  • a protective layer 106 Below the emitter 104 and the back surface electric field 105.
  • the p contact 107 and the n contact 108 can contact the emitter 104 and the back surface electric field 105 through the protective layer 106.
  • a grid 110 typically made of a conductive metal, attaches to the p-contact 107 and the n-contact 108.
  • the emitter 104 and the back surface electric field 105 it is necessary to perform a photolithography step and a diffusion step once at the time of forming the emitter 104 and the back surface electric field 105, respectively.
  • the n-type dopant is selectively doped from above, thereby reducing one photolithography process. be able to.
  • the back surface electric field 105 includes both a previously doped p-type dopant and a later doped n-type dopant.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a photoelectric conversion device having high power generation efficiency using a counter dope process.
  • the photoelectric conversion device of the present invention includes both an n-type region and a p-type region on a substrate and a surface opposite to the light-receiving surface of the substrate, and the n-type region contains both an n-type dopant and a p-type dopant.
  • the n-type dopant is contained deeper in the thickness direction of the substrate than the p-type dopant.
  • the p-type dopant in the n-type region is contained shallower in the thickness direction of the substrate than the p-type dopant in the p-type region.
  • the n-type dopant is any one of phosphorus, arsenic, and nitrogen
  • the p-type dopant is any one of boron, aluminum, and gallium.
  • the method for producing a photoelectric conversion device of the present invention includes a step of containing a p-type dopant in substantially the entire surface of one main surface of a substrate, and a partial n-type in the same main surface of the substrate containing a p-type dopant.
  • the process includes a step of containing a dopant and a heat treatment step of the substrate in this order. In the region containing the n-type dopant, the n-type dopant is diffused deeper in the thickness direction of the substrate than the p-type dopant.
  • the step of diffusing the p-type dopant and the n-type dopant is a heat treatment at a temperature of 850 ° C. or higher and 1050 ° C. or lower.
  • the method for producing a photoelectric conversion device of the present invention includes a step of partially containing an n-type dopant on one main surface of a substrate, and a p-type dopant substantially on the same main surface containing the n-type dopant of the substrate. In this order, the step of containing the entire surface and the heat treatment step of the substrate are diffused deeper in the thickness direction of the substrate than the p-type dopant in the region containing the n-type dopant.
  • the step of diffusing the p-type dopant and the n-type dopant is a heat treatment at a temperature of 750 ° C. or more and less than 950 ° C.
  • the present invention it is possible to increase the n-type dopant concentration at a deep position from the substrate back side of the n-type region, and as a result, the internal electric field between pn is strengthened to reduce the recombination loss of photocarriers, A good photoelectric conversion device can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing a process of forming a photoelectric conversion device according to the present invention.
  • an n-type silicon substrate 10 which is a single crystal semiconductor substrate is prepared.
  • B boron
  • n-type A p + region 11 is entirely formed on the surface of the silicon substrate. This surface is the back surface opposite to the light receiving surface.
  • phosphorus (P) is ion-implanted (counter-doped) in accordance with the shape of the n-type contact layer to be fabricated, as shown in FIG.
  • the n dopant implantation region 12 is patterned.
  • the previously ion-implanted boron diffuses to a deeper position inside the n-type silicon substrate than the boron diffusion region in the region not counter-doped due to the extrusion effect. Therefore, the p + region 13 diffused by the extrusion effect exists below the n dopant implantation region 12.
  • the concentration of counter-doped phosphorus is about 7 ⁇ 10 14 ions / cm 2 .
  • the n-type silicon substrate 10 is heated and annealed to activate the ion-implanted dopant and repair crystal defects caused by the ion implantation.
  • the annealing process in the region where both phosphorus and boron are mixed, diffusion of boron in the substrate depth direction is suppressed. Therefore, if annealing is sufficiently performed, phosphorus diffuses deeper than boron in the depth direction with reference to the surface opposite to the light receiving surface of the n-type silicon substrate.
  • the substrate temperature in the annealing treatment is preferably 850 ° C. or higher and 1050 ° C. or lower, more preferably 900 ° C. or higher and 1000 ° C. or lower.
  • the highly doped region 14 where only the n-type dopant exists as a dopant is formed at a position deeper than the p + region 11.
  • the side closer to the surface than the highly doped region 14 is a mixed region 15 in which n-type dopant phosphorus and p-type dopant boron are mixed.
  • the highly doped region 14 and the mixed region 15 together behave as an n-type region 16 exhibiting n + conductivity.
  • the mixed region 15 is formed from the surface of the ion-implanted n-type silicon substrate to a depth of 200 to 300 nm.
  • the highly doped region 14 is formed to a depth of 300 to 400 nm from the surface of the n-type silicon substrate immediately below the mixed region 15.
  • An n-type region 16 is constituted by the highly doped region 14 and the mixed region 15. Further, the p + region 11 in the portion where phosphorus is not ion-implanted constitutes the p-type region 17. Thereafter, a passivation layer, a p-electrode, an n-electrode, and an antireflection film on the light-receiving surface are formed, and a photoelectric conversion device is formed.
  • FIG. 2 is a schematic cross-sectional view showing the photoelectric conversion device according to the present invention formed through the process of FIG.
  • An n-type region 16 and a p-type region 17 are formed on the surface opposite to the light receiving surface of the n-type silicon substrate 10 of the first conductivity type.
  • the n-type region 16 includes a highly doped region 14 and a mixed region 15.
  • the p-type region 17 is the p + region 11 in which phosphorus is not ion-implanted.
  • the n-type region 16 is formed to a position deeper than the surface of the surface opposite to the light receiving surface than the p-type region 17.
  • a passivation layer 18 is formed on the n-type region 16 and the p-type region 17.
  • silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, or the like is used, and can be formed using a plasma CVD method or the like.
  • the opening 18a is provided in the passivation layer 18.
  • the opening 18 a is provided at a position corresponding to the n-type region 16.
  • the n electrode 19 provided on the passivation layer 18 is electrically connected to the n-type region 16 through the opening 18a.
  • the passivation layer 18 is provided with an opening 18b.
  • the opening 18 b is provided at a position corresponding to the p-type region 17.
  • the p electrode 20 provided in the passivation layer 18 is electrically connected to the p-type region 17 through the opening 18b.
  • the n electrode 19 and the p electrode 20 are formed by printing a paste containing silver, aluminum, copper or the like, or these metals are formed by vapor deposition or sputtering.
  • the light receiving surface side of the n-type silicon substrate 10 is textured, and an antireflection film 21 made of silicon nitride or the like is formed. Since the antireflection film 21 also has a passivation function of the light receiving surface of the n-type silicon substrate 10, it can contribute to improvement of power generation efficiency.
  • FIG. 3 is a diagram showing a profile in the depth direction from the substrate rear surface side of the dopant after ion implantation.
  • FIGS. 3A to 3D show the depths when the annealing process is performed at 950 ° C., 1000 ° C., and 1050 ° C. after ion implantation, respectively.
  • This is a vertical profile, and the origin of the horizontal axis indicates the surface of the n-type silicon substrate 10 in the n-type region.
  • FIGS. 3A to 3D description will be given focusing on a region where the concentration of boron and phosphorus shown on the vertical axis is 1.0 ⁇ 10 18 [atoms / cm 3 ] or more.
  • FIG. 3A where the annealing treatment is not performed, it can be seen that the boron concentration at the same depth is higher than the phosphorus concentration, and boron exists even at a position deeper than phosphorus.
  • FIG. 3B annealed at 950 ° C., the phosphorus concentration at the same depth is higher than the boron concentration, and phosphorus exists even deeper than boron. It can be seen that the profile of boron and phosphorus is reversed with respect to a). As described above, by performing the annealing process at an appropriate temperature, phosphorus can be disposed deeper than boron.
  • an ion implantation method is used as a process of containing boron which is a p-type dopant.
  • a method of applying PBF (polyboron film) as a boron source is used.
  • boron is diffused in the substrate thickness direction by baking at a temperature of 900 ° C. or higher after the PBF application.
  • phosphorus, which is an n-type dopant is partially ion-implanted, and then heat treatment is performed to diffuse phosphorus and boron in the substrate thickness direction.
  • a diffusion mask is patterned in a portion other than a region where an n-type region is to be formed, and vapor phase diffusion using POCl 3 as a phosphorus source is performed. Alternatively, it may be formed by removing the diffusion mask.
  • FIG. 4 is a schematic cross-sectional view showing a process of forming the photoelectric conversion device according to Embodiment 3 of the present invention.
  • the order of ion implantation of the n-type dopant and the p-type dopant is different from that of the first embodiment.
  • phosphorus (P) is selectively ion-implanted to the surface opposite to the light receiving surface of the n-type silicon substrate 10 with a pattern mask of about 7 ⁇ 10 14 ions / cm 2.
  • an n + region 31 is selectively formed on the surface of the n-type silicon substrate opposite to the light receiving surface.
  • boron is ion-implanted into the entire surface of the n-type silicon substrate 10 opposite to the light-receiving surface at about 1.5 ⁇ 10 15 ions / cm 2 .
  • the surface other than the n + region 31 becomes the p + region 32.
  • the surface of the n + region 31 is amorphous as a result of ion implantation of phosphorus when forming the n + region 31.
  • boron in the n + region 31 is formed.
  • the depth of implantation becomes shallower than the implantation depth of boron in a region where phosphorus is not ion-implanted.
  • a highly doped region 33 containing phosphorus more than boron is formed below the n + region 31, and the depth at which phosphorus is implanted deeper than boron is formed. This is a vertical profile.
  • the n-type silicon substrate 10 is heated and annealed to activate the ion-implanted dopant and repair crystal defects caused by the ion implantation.
  • the substrate temperature during annealing is preferably 750 ° C. or higher and lower than 950 ° C., more preferably 800 ° C. or higher and lower than 950 ° C.
  • annealing treatment was performed at 900 ° C. ⁇ 10 ° C. for 10 to 30 minutes.
  • the second embodiment has a structure in which phosphorus is already arranged deeper than boron in a state before the annealing treatment, and therefore, a high temperature for diffusing phosphorus more deeply.
  • the thermal annealing temperature can be reduced compared to the first embodiment.
  • the open-circuit voltage and the fill factor can be improved and high conversion efficiency can be obtained by suppressing the bulk lifetime reduction of the n-type silicon substrate due to the high heat treatment temperature.
  • FIG. 4D showing the state after the annealing treatment has the same profile in the depth direction as FIG. 4C, and the profile in which phosphorus exists at a position deeper than boron is maintained. That is, the highly doped region 33 where only the n-type dopant exists as a dopant is formed at a position deeper than the p + region 32. Further, a mixed region 34 in which n-type dopant phosphorus and p-type dopant boron are mixed is formed on the side close to the surface of the highly doped region 33. The mixed region 34 is formed from the surface of the ion-implanted n-type silicon substrate to a depth of 100 to 200 nm.
  • the highly doped region 33 is formed to a depth of 200 to 300 nm from the surface of the n-type silicon substrate immediately below the mixed region 34.
  • the highly doped region 33 and the mixed region 34 together constitute an n-type region 35 that exhibits n + conductivity.
  • the p + region 32 where the phosphorus is not ion-implanted constitutes the p-type region 36.
  • a passivation layer, a p-electrode, an n-electrode, and an antireflection film on the light-receiving surface are formed to form a photoelectric conversion device.
  • FIG. 5 is a schematic cross-sectional view of the photoelectric conversion device of the photoelectric conversion device according to Embodiment 3 of the present invention.
  • An n-type region 35 and a p-type region 36 are formed on the surface opposite to the light receiving surface of the n-type silicon substrate 10 of the first conductivity type.
  • the n-type region 35 includes a highly doped region 33 and a mixed region 34.
  • the p-type region 36 is a p + region in which phosphorus is not ion-implanted.
  • a passivation layer 18 is formed on the n-type region 35 and the p-type region 36.
  • silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, or the like is used, and can be formed using a plasma CVD method or the like.
  • an ion implantation method was used as a process of first containing phosphorus as an n-type dopant.
  • a phosphorus source is formed.
  • phosphorus may be contained by vapor phase diffusion using POCl 3 .
  • the n-type region can be patterned by removing the diffusion mask after vapor phase diffusion.
  • boron which is a p-type dopant, may be ion-implanted over the entire surface, and then heat treatment may be performed to diffuse phosphorus and boron in the substrate thickness direction.
  • a process of containing boron which is a p-type dopant you may form by baking after apply
  • the opening 18a is provided in the passivation layer 18.
  • the opening 18 a is provided at a position corresponding to the n-type region 16.
  • the n electrode 19 provided on the passivation layer 18 is electrically connected to the n-type contact layer 35 through the opening 18a.
  • the passivation layer 18 is provided with an opening 18b.
  • the opening 18 b is provided at a position corresponding to the p-type region 17.
  • the p-electrode 20 provided in the passivation layer 18 is connected to the p-type region 36 through the opening 18b.
  • the light receiving surface side of the n-type silicon substrate 10 is textured, and an antireflection film 21 made of silicon nitride or the like is formed. Since the antireflection film 21 also has a passivation function of the light receiving surface of the n-type silicon substrate 10, it can contribute to improvement of power generation efficiency.
  • FIG. 6 is a schematic cross-sectional view of a photoelectric conversion device which is a comparative example of the present invention.
  • An n-type region 16 ′ and a p-type region 17 ′ are formed on the surface opposite to the light receiving surface of the n-type silicon substrate 10 of the first conductivity type.
  • a p + region 22 is formed at a position deeper than the n-type region 16 ′ when viewed from the surface opposite to the light receiving surface of the n-type silicon substrate 10.
  • the comparative example is made by the counter-doping method as shown in FIG. 1, but phosphorus is diffused sufficiently deeply in the annealing process (around 850 ° C., 10 to 30 minutes) after forming the structure of FIG. 1 (c). For this reason, there is a p + region 22 in which boron is diffused at a position deeper than the n-type region 16 ′.
  • the p-type region 17 ' is a portion of the p + region where phosphorus is not ion-implanted. Such a depth profile of phosphorus and boron can be obtained when the annealing temperature and processing time are not sufficient.
  • a passivation layer 18 is formed on the n-type region 16 ′ and the p-type region 17 ′.
  • the passivation layer silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, or the like is used, and can be formed by a plasma CVD method or the like.
  • the opening 18a is provided in the passivation layer 18.
  • the opening 18a is provided at a position corresponding to the n-type region 16 '.
  • the n electrode 19 provided on the passivation layer 18 is electrically connected to the n-type region 21 through the opening 18a.
  • the passivation layer 18 is provided with an opening 18b.
  • the opening 18b is provided at a position corresponding to the p-type region 17 '.
  • the p-electrode 20 provided in the passivation layer 18 is connected to the p-type region 17 ′ through the opening 18 b.
  • FIG. 7 is a diagram comparing the performance of each embodiment of the present invention and the photoelectric conversion device of the comparative example. Relative values of the short-circuit current (I SC ), fill factor (FF), open-circuit voltage (V oc ), and power generation efficiency ( ⁇ ) of the photoelectric conversion devices described in Embodiments 1 and 2 with reference to the comparative example. Show. It can be seen that the photoelectric conversion device described in Embodiment 1 has a conversion efficiency ⁇ improved by 1% with respect to the comparative example.
  • I SC short-circuit current
  • FF fill factor
  • V oc open-circuit voltage
  • power generation efficiency
  • the structure is an n-type region 16 ′ / p + region 22 / n-type silicon substrate in order from the back side of the n-type semiconductor substrate, photocarriers generated on the light incident side of the n-type semiconductor substrate are Since there is the p + region 22 in the path until the n-type region 16 ′ on the back side is collected, the internal electric field between the n-type region 16 ′ and the p-type region 17 ′ is weakened, and the recombination loss of photocarriers Will increase.
  • the conversion efficiency can be improved by adopting a structure in which the n-type dopant is diffused deeper in the substrate than the p-type dopant in contact with the n-electrode.
  • Embodiment 2 it can be seen that the conversion efficiency ⁇ is improved by 1.2% over the comparative example. Also in this embodiment, since the n-type dopant diffuses deeper in the n-type semiconductor substrate than the p-type dopant as in the first embodiment, the n-type silicon is more than the n + region 33 of the n-type contact layer 35. Since there is no p-type region that weakens the internal electric field on the substrate side, loss due to carrier recombination is reduced as compared with the comparative example, and the open circuit voltage and fill factor can be improved to obtain high conversion efficiency.
  • the heat treatment temperature in the second embodiment is lower than that in the first embodiment, the n-type contact layer can be formed thin. Therefore, the contact resistance between the n-type contact layer and the n-electrode can be reduced, and the power generation efficiency can be further increased.
  • the heat treatment temperature can be made lower than that in the first embodiment, the decrease in bulk lifetime can be prevented, the open-circuit voltage and the fill factor can be improved, and high conversion efficiency can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

裏面電極型の光電変換装置をカウンタードープ法を使って作成した場合、発電効率が小さくなる場合があるが、本発明によれば、基板と、基板の受光面と反対側の面にn型領域およびp型領域の両方を備える光電変換装置において、n型領域は、n型ドーパントとp型ドーパントの両方を含有しており、n型ドーパントは前記p型ドーパントよりも前記基板の厚さ方向に深く含有されてなることにより発電効率を上げることができる。

Description

光電変換装置および光電変換装置の製造方法
 本発明は、太陽電池モジュールなどに使用される光電変換装置および光電変換装置の製造方法に関するものである。
 太陽光エネルギーを直接電気エネルギーに変換する光電変換装置に対しては、近年、特に地球環境問題の観点から、次世代のエネルギー源としての期待が急激に高まっている。光電変換装置用の材料としては化合物半導体や有機材料などが利用されてきたが、現在はシリコン結晶が主流となっている。現在最も多く生産、販売されている光電変換装置では、太陽光を受ける受光面にはn電極が、受光面の反対面である裏面にはp電極が設けられている。受光面側に設けられたn電極は、光電変換により得られた電流の取り出しのために必要不可欠であるが、n電極が形成された部位の基板には該n電極による遮蔽によって太陽光が入射しないため、電極面積が大きいと変換効率が低下する。受光面側の電極によるこのような変換効率の損失をシャドウロスという。
 一方、受光面に電極がない裏面電極型光電変換装置においては、電極によるシャドウロスがなく、入射する太陽光をほぼ100%光電変換装置に取り込むことができるため、原理的に高変換効率が実現可能である。このような裏面電極型光電変換装置の例として、特表2011-513998号公報が挙げられる。
 図8は、従来の裏面電極型の光電変換装置の構造を示す概略断面図である。裏面電極型の光電変換装置である、IBC(Interdigitated Back Contact)太陽電池100は、その背面にpコンタクト107及びnコンタクト108を含む。IBC太陽電池100の上面は反射防止膜101である。反射防止膜101の下部は、FSF(Front Surface Field)領域102及びベース103である。ベース103の下部は、エミッタ104及びBSF(Back Surface Field)領域105である。エミッタ104及び背面電界105の下部は、保護層106である。pコンタクト107及びnコンタクト108は、保護層106を通過して、エミッタ104及び背面電界105に接触することができる。典型的に導電性の金属で作られているグリッド110は、pコンタクト107及びnコンタクト108に取り付ける。
 通常、エミッタ104および背面電界105を形成するためには、エミッタ104と背面電界105形成時に、それぞれ、フォトリソグラフィステップ及び拡散ステップを1回ずつ実施する必要があるが、上述の裏面電極型の光電変換装置においては、受光面と反対側の面全体にp型のドーパントをドープしたあと、続いてその上から、n型のドーパントを選択的にドーピングすることにより、1つのフォトリソグラフィ工程を削減することができる。背面電界105には先にドーピングされたp型ドーパントと、後からドーピングされたn型ドーパントの両方が存在している。このようなカウンタドーピング法を採用することにより、フォトリソグラフィ工程数を削減することができ、太陽電池の製造における生産性の向上および製造コストの低減を図ることができる。
特表2011-513998号公報
 しかしながら、裏面電極型の光電変換装置をカウンタードープ法を使って作成した場合、p型、n型のドーパントをそれぞれ別の領域にドープした光電変換装置に比べ、発電効率が悪かった。
 本発明は、上述の問題点を鑑みなされたものであり、カウンタードープ工程を使用した発電効率の高い光電変換装置を提供することを目的とする。
 発明者らは、鋭意研究の結果、カウンタードープされた領域のp型、n型それぞれのドーパントの分布が発電効率に影響することを見出した。
 本発明の光電変換装置は、基板と、基板の受光面と反対側の面にn型領域およびp型領域の両方を備え、n型領域は、n型ドーパントとp型ドーパントの両方を含有しており、n型ドーパントは前記p型ドーパントよりも前記基板の厚さ方向に深く含有されてなるものである。
 また、本発明の光電変換装置は、n型領域におけるp型ドーパントは、p型領域におけるp型ドーパントよりも前記基板の厚さ方向に浅く含有されてなるものである。
 また、本発明の光電変換装置は、n型ドーパントはリン、ヒ素、窒素のいずれかであり、p型ドーパントはホウ素、アルミニウム、ガリウムのいずれかであるものである。
 本発明の光電変換装置の製造方法は、基板の一方の主面の略全面に、p型ドーパントを含有させる工程と、基板のp型ドーパントを含有させた同一主面に、部分的にn型ドーパントを含有させる工程と、基板の熱処理工程をこの順に有し、n型ドーパントを含有させた領域において、n型ドーパントをp型ドーパントよりも前記基板の厚さ方向に深く拡散させるものである。
 また、本発明の光電変換装置の製造方法は、p型ドーパントとn型ドーパントを拡散させる工程は、850℃以上1050℃以下の温度で熱処理するものである。
 本発明の光電変換装置の製造方法は、基板の一方の主面に、n型ドーパントを部分的に含有させる工程と、基板のn型ドーパントを含有させた同一主面に、p型ドーパントを略全面に含有させる工程と、基板の熱処理工程をこの順に有し、n型ドーパントを含有させた領域において、n型ドーパントをp型ドーパントよりも基板の厚さ方向に深く拡散させるものである。
 また、p型ドーパントとn型ドーパントを拡散させる工程は、750℃以上950℃未満の温度で熱処理するものである。
 本発明によれば、n型領域の基板裏面側から深い位置のn型ドーパント濃度を高めることができ、結果としてpn間の内部電界を強めてフォトキャリアの再結合損失を低減し、発電効率の良好な光電変換装置を得ることができる。
本発明の実施の形態1に係る光電変換装置を形成する工程を示す模式的断面図である。 本発明の実施の形態1に係る光電変換装置を示す模式的断面図である。 イオン注入後ドーパントの基板裏面側からの深さ方向プロファイルを示す図である。 本発明の実施の形態3に係る光電変換装置を形成する工程を示す模式的断面図である。 本発明の実施の形態3に係る光電変換装置の光電変換装置の模式的断面図である。 本発明の比較例を示す光電変換装置の模式的断面図である。 本発明の各実施の形態と比較例の光電変換装置の性能を比較した図である。 従来の裏面電極型の光電変換装置の模式的断面図である。
 以下、図面を参照しつつ、本発明の実施の形態に係る説明する。以下の説明では同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについて詳細な説明は繰り返さない。
 (実施の形態1)
 図1は、本発明に係る光電変換装置を形成する工程を示す模式的断面図である。図1(a)に示すように、単結晶半導体基板であるn型シリコン基板10を準備する。2つの主面を有するn型シリコン基板10の一方の表面にホウ素(B)を1.5×1015ion/cm程度イオン注入することにより、図1(b)に示すように、n型シリコン基板の表面に、p+領域11を全体的に形成する。この面は、受光面とは反対側の裏面になる。
 次に、ホウ素をイオン注入した領域に重ねて、作製すべきn型コンタクト層の形状に合わせて、リン(P)をイオン注入(カウンタードープ)することにより、図1(c)に示すように、nドーパント注入領域12をパターン形成する。この時、カウンタードープしたnドーパント注入領域12において、先にイオン注入したホウ素は、押出効果によってカウンタードープしていない領域のホウ素の拡散領域よりもn型シリコン基板の内部の深い位置まで拡散する。そのため、nドーパント注入領域12の下方には、押出効果で拡散したp+領域13が存在している。カウンタードープしたリンの濃度は7×1014ion/cm程度である。
 次に、n型シリコン基板10を加熱してアニール処理を行い、イオン注入したドーパントを活性化させるとともに、イオン注入によって生じた結晶欠陥を修復する。アニール処理の際、リンとホウ素が両方混在する領域では、ボロンの基板深さ方向への拡散が抑制される。したがって、アニール処理を十分行うことで、n型シリコン基板の受光面と反対側の表面を基準にして深さ方向に対して、リンがホウ素よりも深く拡散することになる。アニール処理の際の基板の温度は、850℃以上1050℃以下が好ましく、より好ましくは、900℃以上1000℃以下で処理するとよい。ここでは、1000±10℃で10分から30分かけてアニール処理を行った。その結果、図1(d)に示すように、ドーパントとしてn型ドーパントのみが存在するハイドープ領域14がp+領域11よりも深い位置に形成される。ハイドープ領域14よりも表面に近い側は、n型ドーパントのリンとp型ドーパントのホウ素が混在する混在領域15である。ハイドープ領域14と混在領域15を合わせてn+の導電性を示すn型領域16として振る舞う。混在領域15はイオン注入したn型シリコン基板表面から200~300nmの深さまで形成されている。また、ハイドープ領域14は、混在領域15の直下にn型シリコン基板表面から300~400nmの深さまで形成されている。
 ハイドープ領域14と混在領域15でn型領域16を構成する。また、リンをイオン注入しなかった部分のp+領域11は、p型領域17を構成する。その後、パッシベーション層、p電極、n電極、および受光面の反射防止膜を形成し、光電変換装置が形成される。
 図2は、図1の工程を経て形成された、本発明に係る光電変換装置を示す模式的断面図である。第1導電型であるn型シリコン基板10の受光面と反対側の面に、n型領域16と、p型領域17が形成されている。n型領域16は、ハイドープ領域14と混在領域15からなる。また、p型領域17は、リンがイオン注入されなかったp+領域11である。n型領域16は、p型領域17よりも、受光面と反対側の面の表面からみて深い位置まで形成されている。
 n型領域16およびp型領域17上には、パッシベーション層18が形成されている。パッシベーション層18としては、酸化シリコン、窒化シリコン、酸窒化シリコン、酸化アルミニウムなどが用いられ、プラズマCVD法などを用いて形成することができる。
 パッシベーション層18には、開口部18aが設けられている。開口部18aは、n型領域16に対応する位置に設けられている。パッシベーション層18上に設けられたn電極19は、開口部18aを介してn型領域16上に電気的に接続している。また、パッシベーション層18には、開口部18bが設けられている。開口部18bは、p型領域17に対応する位置に設けられている。パッシベーション層18に設けられたp電極20は、開口部18bを介してp型領域17に電気的に接続している。n電極19、p電極20は、銀、アルミニウム、銅などを含むペーストの印刷により形成したり、これらの金属を蒸着、あるいはスパッタ法により形成される。
 n型シリコン基板10の受光面側は、テクスチャ加工がされてなり、窒化シリコンなどからなる反射防止膜21が形成されている。反射防止膜21はn型シリコン基板10の受光面のパッシベーション機能も有するので発電効率の向上に寄与することができる。
 以上のようにして作製した光電変換装置のn型領域において、n型ドーパントであるリンとp型ドーパントであるボロンの基板裏面側からの深さ方向プロファイルを、SIMS分析により測定した。図3は、イオン注入後ドーパントの基板裏面側からの深さ方向プロファイルを示す図である。
 図3(a)はイオン注入後のアニール処理を行わない場合、図3(b)~(d)は、イオン注入後にそれぞれ950℃、1000℃、1050℃でアニール処理を行った場合の、深さ方向プロファイルであり、横軸の原点はn型シリコン基板10のn型領域における表面を示す。
 図3(a)~(d)において、縦軸に示すボロンおよびリンの濃度が1.0×1018[atoms/cm]以上の領域に注目して説明する。アニール処理をしていない図3(a)では同じ深さにおけるボロン濃度がリン濃度より高くなっており、ボロンがリンより深い位置にまで存在していることが判る。これに対し、950℃でアニール処理した図3(b)では、同じ深さにおけるリン濃度がボロン濃度よりも高くなっており、リンがボロンよりも深い位置にまで存在しており、図3(a)に対しボロンとリンが逆転したプロファイルになっていることが判る。このように、適切な温度でアニール処理を行うことにより、リンをボロンよりも深い位置に配置させることができる。
 さらにアニール温度を高めた図3(c)、(d)では、アニール温度が高くなるほど、ボロン、リンともに深さ方向の拡散が進む。ただし、図3(c)と図3(d)を比べると、アニール温度が高い図3(d)では、ボロンとリンの深さ方向の濃度差がより減少しており、ボロンとリンの深さ方向の濃度差を出すという観点では、図3(b)の950℃アニールの条件が好ましいといえる。
 (実施の形態2)
 実施の形態1では、p型ドーパントであるホウ素を含有させるプロセスとしてイオン注入法を用いたが、本実施例では、ホウ素源としてPBF(ポリボロンフィルム)を塗布する方法を用いる。この場合、PBF塗布後に、900℃以上の温度で焼成することでホウ素を基板厚さ方向に拡散させる。その後に、n型ドーパントであるリンを部分的にイオン注入し、その後に熱処理を行うことにより、リンおよびホウ素を基板厚さ方向に拡散させる。また、n型ドーパントであるリンを含有させるプロセスとしては、n型領域を形成しようとする領域以外の部分に拡散マスクをパターン形成し、リン源としてPOClを用いた気相拡散を行ったのち、拡散マスクを除去することにより形成してもよい。
 その他の工程においては、実施の形態1と同様の処理を行う。
 (実施の形態3)
 図4は、本発明の実施の形態3に係る光電変換装置を形成する工程を示す模式的断面図である。実施の形態1とは、n型ドーパントとp型ドーパントのイオン注入の順序が異なる。
 図4(a)において、n型シリコン基板10の受光面とは反対側の表面にリン(P)を7×1014ion/cm程度、パターンマスクを用いて選択的にイオン注入することにより、図4(b)に示すように、n型シリコン基板の受光面とは反対側の面に、n+領域31を選択的にパターン形成する。
 次に、図4(c)に示すように、n型シリコン基板10の受光面とは反対側の表面全体に、ホウ素を1.5×1015ion/cm程度イオン注入する。n+領域31以外の表面はp+領域32となる。n+領域31の表面は、n+領域31を形成する際のリンのイオン注入を行った結果としてアモルファス状になっており、アモルファス状の表面に対してホウ素をイオン注入した場合、n+領域31におけるホウ素の打ち込み深さは、リンをイオン注入していない領域のホウ素の打ち込み深さより浅くなる。このようにして、図4(c)に示すように、n+領域31の下方には、リンがホウ素よりも多く含有されたハイドープ領域33が形成され、リンがボロンよりも深く打ちこまれた深さ方向プロファイルとなる。
 次に、n型シリコン基板10を加熱してアニール処理を行い、イオン注入したドーパントを活性化させるとともに、イオン注入によって生じた結晶欠陥を修復する。アニール処理の際の基板の温度は、750℃以上950℃未満が好ましく、より好ましくは800℃以上950℃未満が好ましい。具体的には、900℃±10℃で10分から30分かけてアニール処理を行った。この際、本実施の形態2は実施の形態1と異なり、アニール処理前の状態において既に、リンがボロンよりも深く配置された構造となっているため、リンをより深く拡散させるための高い温度での熱処理を行う必要がない。すなわち、実施の形態1に対して熱アニール処理温度を低減することができる。結果として、高い熱処理温度によるn型シリコン基板のバルクのライフタイム低下を抑制することで開放電圧およびフィルファクターを向上し高い変換効率を得ることができる。
 その結果、アニール処理後の状態を示す図4(d)は図4(c)と同様の深さ方向プロファイルとなり、リンがボロンより深い位置に存在するプロファイルが維持される。すなわち、ドーパントとしてn型ドーパントのみが存在するハイドープ領域33がp+領域32よりも深い位置に形成される。また、ハイドープ領域33の表面に近い側に、n型ドーパントのリンとp型ドーパントのホウ素が混在する混在領域34が形成されている。混在領域34は、イオン注入したn型シリコン基板表面から100~200nmの深さまで形成されている。また、ハイドープ領域33は、混在領域34の直下にn型シリコン基板表面から200~300nmの深さまで形成されている。ハイドープ領域33と混在領域34とを合わせてn+の導電性を示すn型領域35を構成する。また、リンをイオン注入しなかった部分のp+領域32は、p型領域36を構成する。さらに、パッシベーション層、p電極、n電極、および受光面の反射防止膜を形成し、光電変換装置を形成する。
 図5は、本発明の実施の形態3に係る光電変換装置の光電変換装置の模式的断面図である。第1導電型であるn型シリコン基板10の受光面と反対側の面に、n型領域35と、p型領域36が形成されている。n型領域35は、ハイドープ領域33と混在領域34からなる。また、p型領域36は、リンをイオン注入されなかったp+領域である。n型領域35およびp型領域36上には、パッシベーション層18が形成されている。パッシベーション層18としては、酸化シリコン、窒化シリコン、酸窒化シリコン、酸化アルミニウムなどが用いられ、プラズマCVD法などを用いて形成することができる。
 上記は、最初にn型ドーパントであるリンを含有させるプロセスとしてイオン注入法を用いたが、代わりに、n型領域を形成しようとする領域以外の部分に拡散マスクをパターン形成したのち、リン源としてPOClを用いた気相拡散によりリンを含有させてもよい。この場合、気相拡散後に拡散マスクを除去することで、n型領域をパターン形成することができる。その後に、p型ドーパントであるホウ素を全面にイオン注入し、その後に熱処理を行うことにより、リンおよびホウ素を基板厚さ方向に拡散させてもよい。また、p型ドーパントであるホウ素を含有させるプロセスとしては、ホウ素源としてPBF(ポリボロンフィルム)を塗布した後に焼成することにより形成してもよい。
 パッシベーション層18には、開口部18aが設けられている。開口部18aは、n型領域16に対応する位置に設けられている。パッシベーション層18上に設けられたn電極19は、開口部18aを介してn型コンタクト層35に電気的に接続している。また、パッシベーション層18には、開口部18bが設けられている。開口部18bは、p型領域17に対応する位置に設けられている。パッシベーション層18に設けられたp電極20は、開口部18bを介してp型領域36に接続している。また、n型シリコン基板10の受光面側は、テクスチャ加工がされてなり、窒化シリコンなどからなる反射防止膜21が形成されている。反射防止膜21はn型シリコン基板10の受光面のパッシベーション機能も有するので発電効率の向上に寄与することができる。
 (比較例)
 図6は、本発明の比較例である光電変換装置の模式的断面図である。第1導電型であるn型シリコン基板10の受光面と反対側の面に、n型領域16’と、p型領域17’が形成されている。n型シリコン基板10の受光面と反対側の面から見てn型領域16’よりも深い位置に、p+領域22が形成されている。
 比較例は、図1に示すようなカウンタードープ法で作られるが、図1(c)の構造を形成した後のアニール処理工程(850℃前後、10~30分)において、リンが充分深く拡散していないために、n型領域16’よりも深い位置にホウ素が拡散したp+領域22が存在している。p型領域17’は、リンをイオン注入されなかった部分のp+領域である。このようなリンおよびホウ素の深さ方向プロファイルは、アニール処理温度や処理時間が充分でなかった場合になり得る。
 n型領域16’およびp型領域17’上には、パッシベーション層18が形成されている。パッシベーション層としては、酸化シリコン、窒化シリコン、酸窒化シリコン、酸化アルミニウムなどが用いられ、プラズマCVD法などを用いて形成することができる。
 パッシベーション層18には、開口部18aが設けられている。開口部18aは、n型領域16’に対応する位置に設けられている。パッシベーション層18上に設けられたn電極19は、開口部18aを介してn型領域21上に電気的に接続している。また、パッシベーション層18には、開口部18bが設けられている。開口部18bは、p型領域17’に対応する位置に設けられている。パッシベーション層18に設けられたp電極20は、開口部18bを介してp型領域17’に接続している。
 図7は、本発明の各実施の形態と比較例の光電変換装置の性能を比較した図である。比較例を基準として、実施の形態1および実施の形態2に示す光電変換装置の短絡電流(ISC)、フィルファクター(FF)、開放電圧(VOC)、発電効率(η)の相対値を示す。実施の形態1に示す光電変換装置は、変換効率ηが比較例に対して1%向上していることがわかる。
 比較例の場合、n型半導体基板の裏面側から順に、n型領域16’/p+領域22/n型シリコン基板、の構造となるため、n型半導体基板の光入射側で発生したフォトキャリアが裏面側のn型領域16’に収集されるまでの経路にp+領域22があるために、n型領域16’とp型領域17’間の内部電界が弱められて、フォトキャリアの再結合損失が増加する。
 これに対して、実施の形態1においては、n型領域16のn+領域14よりn型シリコン基板側に内部電界を弱めるp型の領域が存在しないので、キャリアの再結合による損失が比較例よりも低減される。すなわち、n電極にコンタクトするp型のドーパントより、n型のドーパントを基板の深い位置に拡散した構造とすることにより、変換効率を向上させることができる。
 また、実施の形態2において、変換効率ηが比較例に対して1.2%向上していることが分かる。本形態においても、実施の形態1と同様に、n型ドーパントがp型ドーパントよりもn型半導体基板の内部により深く拡散しているために、n型コンタクト層35のn+領域33よりn型シリコン基板側に内部電界を弱めるp型の領域が存在しないので、キャリアの再結合による損失が比較例よりも低減され、開放電圧およびフィルファクターを向上して高い変換効率を得ることができる。
 また、実施の形態2は、実施の形態1よりも熱処理温度が低いので、n型コンタクト層を薄く形成できる。したがって、n型コンタクト層とn電極間のコンタクト抵抗が軽減できるので、発電効率をより高めることができる。また、実施の形態1よりも熱処理温度を低温にすることができ、バルクライフタイムの低下を防ぐことができ、開放電圧およびフィルファクターを向上して高い変換効率を得ることができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10…n型シリコン基板
14、33…n+領域
15、34…混在領域
16、35…n型領域
17、36…p型領域
19…n電極
20…p電極

Claims (7)

  1.  基板と、
     前記基板の受光面と反対側の面にn型領域およびp型領域の両方を備え、
     前記n型領域は、n型ドーパントとp型ドーパントの両方を含有しており、前記n型ドーパントは前記p型ドーパントよりも前記基板の厚さ方向に深く含有されている光電変換装置。
  2.  前記n型領域におけるp型ドーパントは、前記p型領域におけるp型ドーパントよりも前記基板の厚さ方向に浅く含有されている、請求項1記載の光電変換装置。
  3.  前記n型ドーパントはリン、ヒ素、窒素のいずれかであり、前記p型ドーパントはホウ素、アルミニウム、ガリウムのいずれかである請求項1乃至2記載の光電変換装置。
  4.  基板の一方の主面の略全面に、p型ドーパントを含有させる工程と、
     前記基板の前記p型ドーパントを含有させた同一主面に、部分的にn型ドーパントを含有させる工程と、
     前記基板の熱処理工程をこの順に有し、
     前記n型ドーパントを含有させた領域において、n型ドーパントをp型ドーパントよりも前記基板の厚さ方向に深く拡散させる光電変換装置の製造方法。
  5.  前記p型ドーパントとn型ドーパントを拡散させる工程は、
    850℃以上1050℃以下の温度で熱処理する工程である請求項4記載の光電変換装置の製造方法。
  6.  基板の一方の主面に、n型ドーパントを部分的に含有させる工程と、
     前記基板の前記n型ドーパントを含有させた同一主面に、p型ドーパントを略全面に含有させる工程と、
     前記基板の熱処理工程をこの順に有し、
     前記n型ドーパントを含有させた領域において、n型ドーパントをp型ドーパントよりも前記基板の厚さ方向に深く拡散させる
     光電変換装置の製造方法。
  7.  前記p型ドーパントとn型ドーパントを拡散させる工程は、
    750℃以上950℃未満の温度で熱処理する工程である請求項6記載の光電変換装置の製造方法。
PCT/JP2014/080840 2014-01-31 2014-11-21 光電変換装置および光電変換装置の製造方法 WO2015114922A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014016267A JP2015144149A (ja) 2014-01-31 2014-01-31 光電変換装置および光電変換装置の製造方法
JP2014-016267 2014-01-31

Publications (1)

Publication Number Publication Date
WO2015114922A1 true WO2015114922A1 (ja) 2015-08-06

Family

ID=53756516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080840 WO2015114922A1 (ja) 2014-01-31 2014-11-21 光電変換装置および光電変換装置の製造方法

Country Status (2)

Country Link
JP (1) JP2015144149A (ja)
WO (1) WO2015114922A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023780A1 (de) * 2014-08-11 2016-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Verfahren zum erzeugen von dotierbereichen in einer halbleiterschicht eines halbleiterbauelementes
JP2017059762A (ja) * 2015-09-18 2017-03-23 シャープ株式会社 光電変換素子及びその製造方法
JP2017059764A (ja) * 2015-09-18 2017-03-23 シャープ株式会社 光電変換素子及びその製造方法
WO2017047311A1 (ja) * 2015-09-18 2017-03-23 シャープ株式会社 光電変換素子及びその製造方法
WO2021187275A1 (ja) * 2020-03-16 2021-09-23 国立研究開発法人産業技術総合研究所 太陽電池および半導体装置の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10686087B2 (en) * 2016-09-19 2020-06-16 Lg Electronics Inc. Solar cell and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368238A (ja) * 2001-06-07 2002-12-20 Toyota Motor Corp タンデム型太陽電池およびその製造方法
JP2011233656A (ja) * 2010-04-27 2011-11-17 Sharp Corp 半導体装置の製造方法
JP2013516082A (ja) * 2010-01-18 2013-05-09 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド 裏面電極型の太陽電池の製造方法
JP2013183004A (ja) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp 太陽電池の製造方法
JP2013219355A (ja) * 2012-04-04 2013-10-24 Samsung Sdi Co Ltd 光電素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368238A (ja) * 2001-06-07 2002-12-20 Toyota Motor Corp タンデム型太陽電池およびその製造方法
JP2013516082A (ja) * 2010-01-18 2013-05-09 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド 裏面電極型の太陽電池の製造方法
JP2011233656A (ja) * 2010-04-27 2011-11-17 Sharp Corp 半導体装置の製造方法
JP2013183004A (ja) * 2012-03-01 2013-09-12 Mitsubishi Electric Corp 太陽電池の製造方法
JP2013219355A (ja) * 2012-04-04 2013-10-24 Samsung Sdi Co Ltd 光電素子の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023780A1 (de) * 2014-08-11 2016-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Verfahren zum erzeugen von dotierbereichen in einer halbleiterschicht eines halbleiterbauelementes
JP2017059762A (ja) * 2015-09-18 2017-03-23 シャープ株式会社 光電変換素子及びその製造方法
JP2017059764A (ja) * 2015-09-18 2017-03-23 シャープ株式会社 光電変換素子及びその製造方法
WO2017047311A1 (ja) * 2015-09-18 2017-03-23 シャープ株式会社 光電変換素子及びその製造方法
WO2021187275A1 (ja) * 2020-03-16 2021-09-23 国立研究開発法人産業技術総合研究所 太陽電池および半導体装置の製造方法
JP7418869B2 (ja) 2020-03-16 2024-01-22 国立研究開発法人産業技術総合研究所 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2015144149A (ja) 2015-08-06

Similar Documents

Publication Publication Date Title
CA2684967C (en) Formation of high quality back contact with screen-printed local back surface field
WO2015114922A1 (ja) 光電変換装置および光電変換装置の製造方法
KR101138174B1 (ko) 태양전지의 후면전극 형성방법
KR20100138565A (ko) 태양전지 및 그 제조방법
KR20130124783A (ko) 태양 전지 및 이의 제조 방법
US20120264253A1 (en) Method of fabricating solar cell
JP2010080578A (ja) 光電変換素子およびその製造方法
JP5645734B2 (ja) 太陽電池素子
KR20120078904A (ko) 후면 전극형 태양전지 및 이의 제조방법
JP2010080576A (ja) 光電変換素子およびその製造方法
KR20130057285A (ko) 광전변환소자 및 그 제조 방법
KR20080050863A (ko) 태양전지의 제조방법 및 태양전지
KR101406955B1 (ko) 태양전지 및 그 제조방법
KR101382047B1 (ko) 태양전지의 선택적 에미터 형성방법
KR101356849B1 (ko) 결정질 실리콘 태양 전지 및 이의 제조방법
Kim et al. P-type hybrid heterojunction solar cells naturally incorporating gettering and bulk hydrogenation
JP2012129407A (ja) 太陽電池素子の製造方法
KR101223055B1 (ko) 태양전지의 제조방법 및 그를 이용하여 제조되는 태양전지
KR101274423B1 (ko) 태양전지의 선택적 에미터 형성방법
JP6639169B2 (ja) 光電変換素子及びその製造方法
KR101089018B1 (ko) 태양전지의 전면전극 형성방법
KR20140072957A (ko) 태양전지의 제조방법
KR101627028B1 (ko) 양면형 태양전지의 제조방법
KR101338642B1 (ko) 결정질 실리콘 태양 전지의 제조방법
JP2012253253A (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881147

Country of ref document: EP

Kind code of ref document: A1