WO2016031689A1 - 電気的接続構造 - Google Patents

電気的接続構造 Download PDF

Info

Publication number
WO2016031689A1
WO2016031689A1 PCT/JP2015/073461 JP2015073461W WO2016031689A1 WO 2016031689 A1 WO2016031689 A1 WO 2016031689A1 JP 2015073461 W JP2015073461 W JP 2015073461W WO 2016031689 A1 WO2016031689 A1 WO 2016031689A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
current collector
electrical connection
connection structure
conductive member
Prior art date
Application number
PCT/JP2015/073461
Other languages
English (en)
French (fr)
Inventor
大澤 康彦
佐藤 一
赤間 弘
堀江 英明
水野 雄介
浩志 福本
仁寿 大倉
康裕 進藤
都藤 靖泰
Original Assignee
日産自動車株式会社
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 三洋化成工業株式会社 filed Critical 日産自動車株式会社
Priority to CN201580045688.8A priority Critical patent/CN106797033B/zh
Priority to EP15835510.7A priority patent/EP3188292B1/en
Priority to US15/506,084 priority patent/US10312524B2/en
Priority to JP2016545478A priority patent/JP6346291B2/ja
Priority to KR1020177004981A priority patent/KR101975126B1/ko
Publication of WO2016031689A1 publication Critical patent/WO2016031689A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrical connection structure.
  • a bipolar secondary battery uses a bipolar electrode in which a positive electrode is formed on one surface of a current collector and a negative electrode is formed on the other surface.
  • a plurality of such bipolar electrodes are laminated so that the positive electrode and the negative electrode face each other through a separator including an electrolyte layer. Therefore, in this bipolar secondary battery, one battery cell (single cell) is constituted by the positive electrode, the negative electrode, and the separator (electrolyte layer) between the current collector and the current collector.
  • Patent Document 1 proposes to use a current collector containing a polymer material and a conductive filler.
  • an object of the present invention is to provide means for improving the output performance of a battery.
  • the present inventors have accumulated earnest research. As a result, the above problem is solved by an electrical connection structure in which a conductive member that is in electrical contact with the conductive filler contained in the conductive resin layer is provided for the current collector having the conductive resin layer. I found out.
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat type (stacked type) bipolar type, which is an embodiment of a lithium ion secondary battery.
  • 10a is a lithium ion secondary battery
  • 11 is a positive electrode current collector
  • 12 is a negative electrode current collector
  • 13 is a positive electrode active material layer
  • 15 is a negative electrode active material layer
  • 17 is an electrolyte layer.
  • 19 is a cell layer
  • 21 is a power generation element
  • 25 is a positive current collector plate
  • 27 is a negative current collector plate
  • 29 is a battery exterior material.
  • 10b is a lithium ion secondary battery
  • 11 is a positive electrode current collector
  • 11a is a positive electrode side outermost layer current collector
  • 11b is a negative electrode side outermost layer current collector
  • 12 is a negative electrode current collector
  • 13 is a positive electrode active material layer
  • 15 is a negative electrode active material layer
  • 17 is an electrolyte layer
  • 19 is a single cell layer
  • 21 is a power generation element
  • 25 is a positive current collector
  • Reference numeral 29 denotes a battery casing material
  • 31 denotes a seal portion. It is a section schematic diagram showing one embodiment of an electrical connection structure.
  • SEM scanning electron microscope
  • an electrical connection structure in one embodiment, includes a current collector having a conductive resin layer including a polymer material and a conductive filler, and a conductive member that is in electrical contact with the conductive filler. Is done.
  • the electroconductive filler in the electroconductive resin layer which a collector has and the electroconductive member provided on the collector are in electrical contact. For this reason, the contact resistance between the current collector having the conductive resin layer and the current collector plate is reduced.
  • the lithium ion secondary battery that is the subject of the present embodiment is not particularly limited as long as it uses an electrical connection structure described below.
  • the lithium ion secondary battery when distinguished by form / structure, it can be applied to any conventionally known form / structure such as a stacked (flat) battery or a wound (cylindrical) battery. Is.
  • a stacked (flat) battery structure By adopting a stacked (flat) battery structure, long-term reliability can be secured by a sealing technique such as simple thermocompression bonding, which is advantageous in terms of cost and workability.
  • a solution electrolyte type battery using a solution electrolyte such as a nonaqueous electrolyte solution for the electrolyte layer, a polymer battery using a polymer electrolyte for the electrolyte layer, etc. It can be applied to any conventionally known electrolyte layer type.
  • the polymer battery is further divided into a gel electrolyte type battery using a polymer gel electrolyte (also simply referred to as gel electrolyte) and a solid polymer (all solid) type battery using a polymer solid electrolyte (also simply referred to as polymer electrolyte). It is done.
  • FIG. 1 is a schematic cross-sectional view schematically showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”) that is not a flat (stacked) bipolar type.
  • the stacked battery 10 a of this embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a battery exterior material 29 that is an exterior body.
  • the power generation element 21 has a configuration in which a positive electrode, an electrolyte layer 17, and a negative electrode are stacked.
  • the positive electrode has a structure in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11.
  • the negative electrode has a structure in which the negative electrode active material layers 15 are disposed on both surfaces of the negative electrode current collector 12. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. . Thereby, the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10a shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the positive electrode active material layer 13 is disposed on only one side of the outermost positive electrode current collector located on both outermost layers of the power generation element 21, but active material layers may be provided on both sides. That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector.
  • the arrangement of the positive electrode and the negative electrode is reversed from that in FIG. 1, so that the outermost layer negative electrode current collector is positioned on both outermost layers of the power generation element 21, and the outermost layer negative electrode current collector is disposed on one or both surfaces.
  • a negative electrode active material layer may be disposed.
  • the positive electrode current collector 11 and the negative electrode current collector 12 are respectively attached with a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and are sandwiched between end portions of the battery exterior material 29. Thus, it has a structure led out of the battery exterior material 29.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode, respectively, via a positive electrode lead and a negative electrode lead (not shown) as necessary. Or resistance welding or the like.
  • FIG. 2 is a schematic cross-sectional view schematically showing the basic structure of a bipolar non-aqueous electrolyte lithium ion secondary battery (hereinafter also simply referred to as “bipolar battery”) 10b.
  • the bipolar battery 10b shown in FIG. 2 has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate film 29 that is a battery exterior material.
  • the power generation element 21 of the bipolar battery 10 b has a positive electrode active material layer 13 that is electrically coupled to one surface of the current collector 11, and is formed on the opposite surface of the current collector 11. It has a plurality of bipolar electrodes 23 in which a negative electrode active material layer 15 that is electrically coupled is formed. Each bipolar electrode 23 is laminated via the electrolyte layer 17 to form the power generation element 21.
  • the electrolyte layer 17 has a configuration in which an electrolyte is held at the center in the surface direction of a separator as a base material.
  • the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of another bipolar electrode 23 adjacent to the one bipolar electrode 23 face each other through the electrolyte layer 17.
  • the bipolar electrodes 23 and the electrolyte layers 17 are alternately stacked. That is, the electrolyte layer 17 is interposed between the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of another bipolar electrode 23 adjacent to the one bipolar electrode 23. ing.
  • the adjacent positive electrode active material layer 13, electrolyte layer 17, and negative electrode active material layer 15 constitute one unit cell layer 19. Therefore, it can be said that the bipolar battery 10b has a configuration in which the single battery layers 19 are stacked. Further, for the purpose of preventing liquid junction due to leakage of the electrolytic solution from the electrolyte layer 17, a seal portion (insulating layer) 31 is disposed on the outer peripheral portion of the unit cell layer 19.
  • a positive electrode active material layer 13 is formed only on one side of the positive electrode outermost layer current collector 11 a located in the outermost layer of the power generation element 21.
  • the negative electrode active material layer 15 is formed only on one surface of the outermost current collector 11b on the negative electrode side located in the outermost layer of the power generation element 21.
  • the positive electrode active material layer 13 may be formed on both surfaces of the outermost layer current collector 11a on the positive electrode side.
  • the negative electrode active material layer 15 may be formed on both surfaces of the outermost layer current collector 11b on the negative electrode side.
  • the positive electrode current collector plate 25 is disposed so as to be adjacent to the outermost layer current collector 11a on the positive electrode side, and this is extended and led out from the laminate film 29 which is a battery exterior material.
  • the negative electrode current collector plate 27 is disposed so as to be adjacent to the outermost layer current collector 11b on the negative electrode side, and similarly, this is extended and led out from the laminate film 29 which is an exterior of the battery.
  • a seal portion 31 is usually provided around each single cell layer 19.
  • the purpose of the seal portion 31 is to prevent the adjacent current collectors 11 in the battery from coming into contact with each other and a short circuit caused by a slight irregularity at the end of the unit cell layer 19 in the power generation element 21. Provided. By installing such a seal portion 31, long-term reliability and safety can be ensured, and a high-quality bipolar battery 10b can be provided.
  • the power generation element 21 is preferably sealed in a laminate film 29 that is a battery exterior material, and the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are taken out of the laminate film 29.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of the electrical connection structure.
  • the electrical connection structure 40 shown in FIG. 3 has a conductive member 42 on the surface of a current collector 41 having a conductive resin layer.
  • Patent Document 1 proposes to use a current collector containing a polymer material and a conductive filler.
  • a current collector containing a polymer material and a conductive filler it was found that the output performance of the secondary battery using this current collector is insufficient. Therefore, when the present inventors examined this problem in detail, the contact resistance between the current collector containing the polymer material and the conductive filler and the current collector plate mainly composed of metal is high. I guessed it was one cause. For this reason, the present inventors paid attention to the electrical contact between the current collector and the current collector plate.
  • FIG. 4 is a scanning electron microscope (SEM) photograph in which the surface of the current collector having a conductive resin layer made of polypropylene containing 20% by mass of acetylene black as a conductive filler is observed from the upper 45 ° direction.
  • SEM scanning electron microscope
  • acetylene black appears white and polypropylene appears black.
  • the surface of the current collector has irregularities of about 1 ⁇ m, and acetylene black is exposed at the irregularities.
  • FIG. 5 is a photograph of a cross section of the same current collector similarly observed with an SEM. However, a large amount of acetylene black is present inside the current collector, and the ratio of acetylene black exposed on the surface is small. found.
  • a current collector having a conductive resin layer and a current collector plate mainly made of metal are partly in point contact with each other and are sufficiently two-dimensional and three-dimensional. Since contact was not possible, it was assumed that it was difficult to make an electrical connection and the contact resistance would increase.
  • FIG. 6 is a cross-sectional SEM photograph showing a part of an electrical connection structure in which an acetylene black layer is provided as a conductive member on the surface of a current collector having a conductive resin layer made of polypropylene containing 20% by mass of acetylene black. is there.
  • acetylene black (AB) in the conductive resin layer (“20% AB / PP” in FIG.
  • the “AB layer”) is in intimate contact.
  • a two-dimensional relationship between the current collector and the current collector plate having a conductive resin layer containing a polymer material and a conductive filler is provided. And / or 3D contact can be increased and contact resistance can be reduced. Thereby, the output performance of a battery can be improved.
  • the electrical connection structure includes a current collector having a conductive resin layer including a polymer material and a conductive filler.
  • the polymer material may be a conductive polymer or a polymer that does not have conductivity.
  • the polymers can be used alone or in combination of two or more. Further, the polymer may be a commercial product or a synthetic product.
  • the conductive polymer is selected from materials that are conductive and have no conductivity with respect to ions used as a charge transfer medium. These conductive polymers are considered to be conductive because the conjugated polyene system forms an energy band.
  • a polyene-based conductive polymer that has been put into practical use in an electrolytic capacitor or the like can be used. Specific examples include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, polyoxadiazole, and mixtures thereof. Polyaniline, polypyrrole, polythiophene, and polyacetylene are more preferable from the viewpoint of electronic conductivity and stable use in the battery.
  • polymer materials having no electrical conductivity include, for example, polyethylene (PE) (high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polystyrene (PS), polyethylene terephthalate ( PET), polyether nitrile (PEN), polyimide (PI), polyamide (PA), polyamideimide (PAI), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl Examples include acrylate (PMA), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), polyvinylidene chloride (PVDC), or mixtures thereof.
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PS polypropylene
  • PS polystyrene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • These materials have a very wide potential window, are stable with respect to both the positive electrode potential and the negative electrode potential, and are lightweight, so that the output density of the battery can be increased.
  • various polyolefins such as polypropylene and polyethylene, and copolymers and mixtures thereof are preferable from the viewpoint of durability against the electrolytic solution used.
  • the conductive filler used is selected from conductive materials.
  • a material that does not have conductivity with respect to ions used as the charge transfer medium it is preferable to use a material that does not have conductivity with respect to ions used as the charge transfer medium.
  • conductive fillers include, but are not limited to, carbon materials, aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, titanium, nickel, and the like.
  • These conductive fillers may be used alone or in combination of two or more.
  • these alloy materials such as stainless steel (SUS) may be used. From the viewpoint of corrosion resistance, aluminum, stainless steel, carbon material, and nickel are preferable, and carbon material and nickel are more preferable.
  • these conductive fillers may be those obtained by coating the metal shown above with a plating or the like around a particulate ceramic material or resin material.
  • Examples of the carbon material include acetylene black, carbon black, Vulcan (registered trademark), black pearl (registered trademark), carbon nanofiber, ketjen black (registered trademark), carbon nanotube, carbon nanohorn, carbon nanoballoon, hard Examples thereof include at least one selected from the group consisting of carbon and fullerene.
  • These carbon materials have a very wide potential window, are stable in a wide range with respect to both the positive electrode potential and the negative electrode potential, and are excellent in conductivity. Also, since the carbon material is very light, the increase in mass is minimized. Further, since carbon materials are often used as conductive aids for electrodes, even if they come into contact with these conductive aids, the contact resistance is very low because of the same material. When carbon materials are used as conductive fillers, it is possible to reduce the compatibility of the electrolyte by applying a hydrophobic treatment to the surface of the carbon material, making it possible for the electrolyte to hardly penetrate into the current collector holes. It is.
  • the shape of the conductive filler is not particularly limited, and a known shape such as a particle shape, a powder shape, a fiber shape, a plate shape, a lump shape, a cloth shape, or a mesh shape can be appropriately selected.
  • a particulate conductive filler when it is desired to impart conductivity over a wide range, it is preferable to use a particulate conductive filler.
  • the average particle diameter of the conductive filler is not particularly limited, but is preferably about 0.01 to 10 ⁇ m, more preferably 0.01 to 3 ⁇ m, and further preferably about 0.01 to 1 ⁇ m.
  • particle diameter means the maximum distance L among the distances between any two points on the contour line of the conductive filler.
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the average fiber length is not particularly limited, but is preferably 0.1 to 100 ⁇ m.
  • the average fiber length is the fiber length of fibers observed in several to several tens of fields using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). A value calculated as an average value shall be adopted.
  • the average diameter is not particularly limited, but is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 3 ⁇ m, and more preferably 0.01 to 1 ⁇ m. More preferably it is.
  • the content of the polymer material in the conductive resin layer is not particularly limited, but the total amount of the polymer material and the conductive filler in the conductive resin layer is 100 parts by mass, preferably 10 to 95 parts by mass. More preferably, it is 12 to 90 parts by mass.
  • the content of the conductive filler in the conductive resin layer is not particularly limited.
  • the content of the conductive filler is preferably 5 to 90 parts by mass, more preferably 10 to 88 parts by mass, with the total amount of the polymer material and the conductive filler in the conductive resin layer being 100 parts by mass. Part.
  • the conductive resin layer may contain other additives.
  • other additives include carboxylic acid-modified polypropylene such as maleic anhydride-modified polypropylene.
  • the addition amount of other additives is not particularly limited, but is preferably 1 to 25 parts by mass with respect to 100 parts by mass in total of the polymer material and the conductive filler.
  • the thickness of the current collector having the conductive resin layer is preferably 1 to 200 ⁇ m, more preferably 3 to 150 ⁇ m, and still more preferably 5 to 100 ⁇ m.
  • the method for producing the current collector having the conductive resin layer is not particularly limited, for example, after melt-kneading the polymer material, the conductive filler, and, if necessary, each component of the additive by an extruder or the like, A method of rolling the melt-kneaded material with a hot press machine can be mentioned.
  • the current collector may have a single-layer structure or a laminated structure in which layers made of these materials are appropriately combined.
  • the current collector may have another layer in addition to the conductive resin layer.
  • the other layer include a conductive resin layer and a metal layer made of a resin having conductivity from the viewpoint of reducing the weight of the current collector.
  • the former is preferable from the viewpoint of reducing the weight of the current collector.
  • the latter is preferable from the viewpoint of blocking the movement of lithium ions between unit cells.
  • the electrical connection structure may be provided on the outermost layer current collector on the positive electrode side, may be provided on the outermost layer current collector on the negative electrode side, or may be provided on the outermost layer current collector on both the positive electrode side and the negative electrode side.
  • the electric body may be provided.
  • the electrical connection structure has a conductive member that is in electrical contact with the conductive filler contained in the conductive resin layer of the current collector.
  • the material of the conductive member is not particularly limited, but is a metal having a smaller ionization tendency than iron, at least one metal selected from the group consisting of iron, titanium, zirconium, tantalum, and niobium, and an alloy containing the metal as a main component. And at least one conductive material selected from the group consisting of conductive carbon. This is because these materials are difficult to form an insulating oxide film on the surface, and electrical contact with the conductive filler is maintained for a long period of time.
  • the metal having a lower ionization tendency than iron examples include cobalt, nickel, tin, antimony, copper, silver, palladium, iridium, platinum, gold and the like. Since a metal having a smaller ionization tendency than iron has a low resistance even if an oxide film is formed, the contact resistance between the current collector and the current collector plate can be reduced.
  • the alloy include stainless steel (SUS).
  • the conductive carbon include, for example, acetylene black, carbon black, Vulcan (registered trademark), black pearl (registered trademark), carbon nanofiber, ketjen black (registered trademark), carbon nanotube, and carbon nanohorn. And at least one selected from the group consisting of carbon nanoballoons, hard carbon, and fullerenes.
  • the shape of the conductive member is not particularly limited, and a known shape such as a particle shape, a powder shape, a fiber shape, a plate shape, a lump shape, a cloth shape, or a mesh shape can be appropriately selected.
  • the average particle diameter of the conductive member material is not particularly limited, but is preferably about 0.01 to 10 ⁇ m, and preferably about 0.01 to 3 ⁇ m. More preferably, it is about 0.01 to 1 ⁇ m. If it is such a magnitude
  • particle diameter means the maximum distance L among the distances between any two points on the contour line of the conductive filler.
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • size of the material of an electroconductive member is described in the Example as a standard particle diameter range of a primary particle, it is preferable that the said standard particle diameter range is contained in the range of the said average particle diameter.
  • the average fiber length is not particularly limited, but is preferably 0.1 to 100 ⁇ m.
  • the average fiber length is the fiber length of particles observed in several to several tens of fields using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). A value calculated as an average value shall be adopted.
  • the average diameter is not particularly limited, but is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 3 ⁇ m, More preferably, the thickness is 0.01 to 1 ⁇ m. If it is such a magnitude
  • the conductive filler is fibrous, it is preferable because even when a small amount is added, two-dimensional (lateral) electrical contact can be increased.
  • the conductive member is made of conductive carbon from the viewpoint of easy availability and easy functioning as a conductive auxiliary. It is preferred that
  • the conductive member may include a polymer material in addition to the above conductive material.
  • the polymer material used in the conductive member include, for example, conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, polyoxadiazole; polyethylene (high density polyethylene) (HDPE), low density polyethylene (LDPE), etc.), polypropylene, polystyrene, polyethylene terephthalate, polyether nitrile, polyimide, polyamide, polyamide imide, polytetrafluoroethylene, styrene-butadiene rubber, polyacrylonitrile, polymethyl acrylate, polymethyl Non-conductive thermoplastic polymers such as methacrylate, polyvinyl chloride, polyvinylidene fluoride, polyvinylidene chloride, and epoxy resins Beauty thermosetting polymer and the like having no conductivity of unsaturated polyester resin.
  • the content of the conductive material is preferably 20 to 95% by mass, and preferably 50 to 90% by mass with respect to the total mass of the conductive member. More preferably.
  • the conductive material content in the conductive member is preferably greater than the conductive filler content in the conductive resin layer. With such a configuration, the contact resistance can be further reduced.
  • the conductive member is provided on the current collector, but the shape in the surface direction may be provided on the entire surface of the current collector, or makes electrical contact with the conductive filler contained in the conductive resin layer. Therefore, it may be provided only in an area necessary for this purpose. Moreover, you may provide continuously in a surface direction and may provide partially or intermittently. Examples of the shape include various shapes such as a mesh shape, a stripe shape, a lattice shape, a dot shape, and a belt shape.
  • the conductive member is preferably provided on at least a surface of the current collector that contacts the current collector plate, but may be provided on both surfaces of the current collector.
  • the thickness of the conductive member is preferably 0.01 to 50 ⁇ m, more preferably 0.1 to 30 ⁇ m.
  • the electrical connection structure is preferably obtained by forming a conductive member on the current collector by applying an ink containing a conductive material and a solvent to the current collector to form a coating film. Moreover, you may further heat-press with respect to the electroconductive member formed on the electrical power collector. That is, the electrical connection structure is formed by applying a heat-pressed material after forming a conductive member on the current collector by applying an ink containing a conductive material and a solvent to the current collector to form a coating film. May be obtained.
  • the ink contains a precursor of a thermosetting polymer (a non-crosslinked polymer having a crosslinking point and a crosslinked polymer). Agent) and the like.
  • a suitable base material for example, a polyimide film
  • the film is obtained by forming a coating film (conductive member) integrally with the current collector by hot pressing or the like, and further peeling the substrate from the conductive member.
  • the conductive member is embedded in the surface of the conductive resin layer of the current collector, that is, a structure or current collector embedded in the surface of the conductive resin layer of the current collector. It is preferable to have a structure that exists inside the conductive resin layer beyond the surface of the conductive resin that the body has. With such a structure, the conductive filler in the conductive resin layer and the conductive member are more easily contacted, and the contact resistance is further reduced.
  • the electrical connection structure is obtained by bonding the conductive member and the current collector together with the conductive adhesive member. By bonding with a conductive adhesive member, in-plane variation in contact resistance is reduced. That is, the electrical connection structure is preferably formed by disposing a conductive adhesive member between the conductive resin layer and the current collector.
  • the electrical connection structure is preferably formed by disposing a conductive adhesive member between at least two conductive members when the conductive member has a laminated structure of two or more layers.
  • the electroconductive adhesive member used for these electrical connection structures it demonstrates in the term of the manufacturing method of the following electrical connection structure.
  • the manufacturing method of the electrical connection structure is not particularly limited, but 1) a method of transferring a conductive member prepared separately from the current collector onto the current collector; 2) a conductive material manufactured separately from the current collector.
  • Examples of a method for producing a conductive member separately from the current collector include a method in which an ink containing a conductive material and a solvent is applied on a heat resistant film such as a polyimide film and dried.
  • a heat resistant film such as a polyimide film
  • the conductive member includes a conductive material and a polymer material
  • the conductive member includes a conductive material and a polymer material
  • the conductive material and the polymer material preferably a thermoplastic polymer
  • the melt-kneaded material is heat-pressed or the like It can also be obtained by a rolling method or the like.
  • an ink containing a conductive material is applied to a current collector having a conductive resin layer containing a polymer material and a conductive filler to form a coating film on the current collector.
  • the manufacturing method of the electrical connection structure of this invention which has the process of obtaining the laminated body which carried out, and the process of carrying out the hot press of the said laminated body is provided.
  • Examples of the solvent used in the ink include ketones such as acetone, aromatic hydrocarbon solvents such as toluene and xylene, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), Polar solvents such as dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and acetonitrile can be used. These may be used alone or in combination of two or more.
  • ketones such as acetone
  • aromatic hydrocarbon solvents such as toluene and xylene
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • Polar solvents such as dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and acetonitrile can be used. These may be used alone or in combination of two or more.
  • the concentration of the conductive material in the ink is not particularly limited.
  • the application method is not particularly limited, and examples thereof include application with a brush, a bar coating method, a spray coating method, a screen printing method, and an ink jet method.
  • the appropriate coating amount of the conductive material differs depending on the type of the conductive material, and it cannot be generally stated, but the contact resistance with the current collector is small and the amount is not too thick with respect to the thickness of the current collector. It is preferable to do.
  • the drying temperature and drying time are not particularly limited, but may be appropriately determined within a range where the material does not deteriorate depending on the solvent used.
  • the conductive adhesive member includes a monomer or oligomer having two or more polymerizable groups in one molecule, a conductive substance, a polymerization initiator, and the like.
  • Examples of the monomer or oligomer include, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and propylene glycol di (meth).
  • (meth) acrylate refers to methacrylate and / or acrylate.
  • the conductive substance carbon materials such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube, and metal powders such as gold, silver, copper, aluminum, nickel, magnesium, etc.
  • the polymerization initiator include dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxybenzoyl, t-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, and the like.
  • the above monomers or oligomers, conductive materials, and polymerization initiators may be used alone or in combination of two or more.
  • the hot pressing can be performed using a known hot roll device, a hot pressing device, or the like.
  • the heat pressing is performed under a pressure condition in which the conductive resin layer does not become thin in a temperature range of 170 to 200 ° C. Is preferred.
  • Such a temperature range is preferable because at least a part of the polymer material is melted and the conductive filler in the conductive resin layer and the conductive member are easily brought into electrical contact.
  • the hot press is preferable because a structure in which at least a part of the conductive member as described above is embedded in the surface of the conductive resin layer can be obtained more easily.
  • the method (1) or (3) is preferable, and the method (3) is more preferable. That is, in the above manufacturing method, a current collector having a conductive resin layer containing a polymer material and a conductive filler is coated with an ink containing a conductive material to form a coating film on the current collector. It is preferable to have a step of obtaining a laminate composed of an electric body and a conductive member, and it is further preferable to have a step of hot pressing the laminate.
  • the method for producing an electrical connection structure of the present invention includes an ink containing a conductive material on a current collector having a conductive resin layer containing a polymer material and a conductive filler. There are a step of obtaining a laminate in which a coating film is formed on the current collector by coating, and a step of hot-pressing the laminate to form a conductive member on the current collector. This is because according to the embodiment, the electrical contact between the conductive filler in the conductive resin layer and the conductive member is efficiently and stably formed, and the contact resistance can be further reduced.
  • the conductive member has a laminated structure of two or more layers, it is preferable that at least two layers of the conductive members are bonded together by a conductive adhesive member. By bonding using a conductive adhesive member, in-plane variation in contact resistance can be reduced.
  • the conductive adhesive member used at this time is the same as that described in the above section (2), and is not particularly limited.
  • the contact resistance of the electrical connection structure obtained as described above is preferably 6 ⁇ or less, more preferably 2 ⁇ or less when the pressing pressure is 0.5 kg / cm 2 .
  • the contact resistance can be measured by the method described in Examples.
  • each electrical connection structure may be the same or different.
  • the number of electrical connection structures in the latter case is not particularly limited, but is preferably 2 to 3.
  • the electrical connection structure is preferably used for a lithium ion secondary battery.
  • a lithium ion secondary battery for example, in the non-bipolar lithium ion secondary battery 10a shown in FIG. 1, the connection between the positive electrode current collector plate 25 attached to the end of the battery and the positive electrode current collector 11, and / or the end of the battery. It is suitably used for connecting the positive electrode current collectors 11 to each other. Further, it is also suitably used for connection between the negative electrode current collector plate 27 attached to the end of the battery and the negative electrode current collector 12, and / or connection between the negative electrode current collectors 12 at the end of the battery.
  • connection between the outermost layer current collector 11a on the positive electrode side and the positive electrode current collector plate 25 and / or the outermost layer current collector 11b on the negative electrode side and the negative electrode current collector are provided. It is preferably used for connection to the electric plate 27 and the like.
  • the lithium ion secondary battery is not limited to a stacked flat shape, and may be a wound lithium ion secondary battery.
  • the wound lithium ion secondary battery may have a cylindrical shape, or may have a shape that is a flattened rectangular shape by deforming such a cylindrical shape.
  • a laminate film may be used for the exterior material, and the conventional cylindrical can (metal can) may be used, for example, It does not restrict
  • the power generation element is covered with an aluminum laminate film. With this configuration, weight reduction can be achieved.
  • lithium ion secondary battery conventionally known knowledge is appropriately adopted for main constituent members (active material layer, electrolyte layer, lead, exterior material, etc.) other than the electrical connection structure. Moreover, said lithium ion secondary battery can be manufactured with a conventionally well-known manufacturing method.
  • the material which comprises the current collector plate (25, 27) which can be connected with the said electrical connection structure is not restrict
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable.
  • the same material may be used for the positive electrode current collecting plate 27 and the negative electrode current collecting plate 25, and different materials may be used.
  • the lithium ion secondary battery having the above-mentioned electrical connection structure is a power source for driving a vehicle or an auxiliary device that requires high mass energy density, high mass output density, etc., such as an electric vehicle, a hybrid electric vehicle, a fuel cell vehicle and a hybrid fuel cell vehicle. It can be suitably used as a power source.
  • the present invention is not limited to lithium ion secondary batteries, and the electrical connection structure can be applied to other types of secondary batteries and further to primary batteries.
  • the electrical connection structure will be described in more detail using the following examples and comparative examples, but is not limited to the following examples and comparative examples.
  • the current collectors 1 and 2 and the polymer material-containing conductive member 3 used in Examples and Comparative Examples were produced as follows. In the following description, the operation was performed at room temperature (25 ° C.) unless otherwise specified.
  • current collector 1 having a conductive resin layer
  • polypropylene (PP) (trade name "Sun Allomer (registered trademark) PL500A", manufactured by Sun Allomer Co., Ltd.) 75% by mass
  • Acetylene black (AB) (Denka Black (registered trademark) HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd., (average particle size of primary particles: 36 nm) 20% by mass
  • dispersant manufactured by Sanyo Chemical Industries, Ltd., product
  • maleic anhydride-modified polypropylene was melt-kneaded under the conditions of 180 ° C., 100 rpm, and residence time of 10 minutes to obtain a current collector material 1.
  • the amount of the component represents the mixing ratio, and the total of polypropylene, acetylene black and dispersant is 100% by mass.
  • the current collector 1 (also referred to as “20% AB-PP”) having a thickness of 100 ⁇ m was obtained by rolling, and the current collector 1 was assumed to be the outermost layer current collector on the positive electrode side. It was produced.
  • current collector 2 having a conductive resin layer Nickel (Ni) filler T255 manufactured by Nikko Rica Co., Ltd. (standard particle size of primary particles: 2.2 to 2.8 ⁇ m), 81% by mass, polypropylene (PP) (trade name “Sun Allomer (registered trademark) PL500A”, Sun Allomer Co., Ltd.) 14% by mass, and a dispersant (manufactured by Sanyo Chemical Industries, Ltd., trade name “YUMEX ( (Registered trademark) 1001 ", maleic anhydride-modified polypropylene) 5% by mass was melt kneaded under conditions of 180 ° C, 100 rpm, residence time 10 minutes to obtain a current collector material 2.
  • PP polypropylene
  • YUMEX (Registered trademark) 1001 ", maleic anhydride-modified polypropylene
  • the quantity of each said component represents a mixing ratio, and the sum total of a nickel (Ni) filler, a polypropylene, and a dispersing agent is 100 mass%.
  • the obtained current collector material 2 was rolled with a hot press to produce a current collector 2 (also referred to as “81% Ni—PP”) having a thickness of 100 ⁇ m.
  • the current collector 2 is manufactured assuming an outermost layer current collector on the negative electrode side.
  • HDPE high-density polyethylene
  • AB acetylene black
  • a dispersant trade name “Yumex (registered trademark) 1001, manufactured by Sanyo Chemical Industries, Ltd., maleic anhydride modified polypropylene
  • the quantity of each said component represents a mixing ratio, and the sum total of a high density polyethylene, acetylene black, and a dispersing agent is 100 mass%.
  • the obtained conductive member material 3 was rolled by a hot press to obtain a polymer material-containing conductive member 3 (also referred to as “50% AB-HDPE”) having a thickness of 30 ⁇ m.
  • the contact resistance was measured as follows. That is, the sample was sandwiched between two gold-plated disks with a diameter of 20 mm, and a constant load of 0.5 kg / cm 2 was applied as the pressing pressure. With the contact resistance measuring device, the frequency was lowered from 10 kHz by the four-terminal method, and the resistance value of the real axis when the real component of impedance was constant at 1061 Hz in all samples was adopted as the value of contact resistance. In addition, the sample is cut into a strip of 1 cm width, and the resistance is measured in the same manner by the four-terminal method, and the bulk resistance of the sample itself, the resistance of the metal foil, the resistance of the metal foil, etc.
  • the contact resistance was measured separately and subtracted. Thus, it calculated so that only the contact resistance of the part of "/" in the description of "electrical connection structure” of Table 1 might be included by the contact resistance per unit area ((ohm) / cm ⁇ 2 >).
  • Example 1 Acetylene black (AB) (DENKA BLACK (registered trademark) HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.) (average particle size of primary particles: 36 nm) dispersed in N-methyl-2-pyrrolidone (NMP) (AB concentration: 20% by mass)
  • NMP N-methyl-2-pyrrolidone
  • the above dispersion was applied on a polyimide (Kapton (registered trademark), manufactured by Toray DuPont Co., Ltd.) film at a coating amount of 0.25 mg / cm 2 . After drying at 90 ° C.
  • the obtained film with the conductive member was stacked on both surfaces of the current collector 1 produced above so that the conductive member and the current collector 1 were in contact with each other, and hot-pressed at 180 ° C. Thereafter, the polyimide film was removed, and an electrical connection structure in which layers (thickness: 10 ⁇ m) of acetylene black as a conductive member were fixed to both surfaces of the current collector 1 was obtained.
  • the air connection structure was punched out at a diameter of 20 mm, pressed with aluminum foil of the same size (thickness: 20 ⁇ m) from both sides, and sandwiched between two gold-plated disks from both sides, and fixed to a contact resistance measuring device manufactured by Imoto Seisakusho Co., Ltd. Then, the contact resistance was measured as described above.
  • Example 2 Contact resistance was measured in the same manner as in Example 1 except that copper foil was used instead of aluminum foil.
  • Comparative Example 2 Contact resistance was measured in the same manner as in Comparative Example 1 except that copper foil was used instead of aluminum foil.
  • Example 3 Contact resistance was measured in the same manner as in Example 1 except that stainless steel (SUS316L) foil was used instead of aluminum foil.
  • Comparative Example 3 Contact resistance was measured in the same manner as in Comparative Example 1 except that stainless steel (SUS316L) foil was used instead of aluminum foil.
  • Example 4 Two electrical connection structures obtained in Example 1 were stacked, sandwiched between two gold-plated disks from both sides, and contact resistance was measured by the above method.
  • Example 5 A 5 mass% NMP solution of carbon nanotubes (LB100, average particle diameter: 11 nm, aspect ratio: 100 to 10000) manufactured by Sea Nano Co., Ltd. was applied to both sides of the current collector 1 with a brush at an application amount of about 0.3 mg / cm 2. Applied. Thereafter, drying was performed under conditions of a drying temperature of 90 ° C. and a drying time of 3 hours, and conductive members (thickness: 12 ⁇ m) were formed on both surfaces of the current collector to obtain an electrical connection structure. The obtained electrical connection structure was punched into a circle with a diameter of 20 mm, pressed against both sides with aluminum foil, and sandwiched between two gold-plated disks from both sides, and the contact resistance was measured by the above method.
  • Example 6 Contact resistance was measured in the same manner as in Example 5 except that a hot press roll was further applied at 180 ° C. after the coating film was dried.
  • Example 7 The polymer material-containing conductive member 3 was placed on both sides of the current collector 1. Further, a hot press roll was applied at 190 ° C. to obtain an electrical connection structure in which the polymer material-containing conductive member 3 (thickness: 10 ⁇ m) was provided on both surfaces of the current collector 1. Thereafter, the obtained electrical connection structure was sandwiched between two copper foils and further sandwiched between two gold-plated disks from both sides, and the contact resistance was measured by the above method.
  • Example 8 A dispersion in which nickel (Ni) filler T255 (standard particle size of primary particles: 2.2 to 2.8 ⁇ m) made by Nikko Jamaica Co., Ltd. was dispersed in an NMP solution of polyvinylidene fluoride (PVdF) was prepared, and 6 mg / cm 2 of coating amount of polyimide (Kapton (registered trademark), Du Pont-Toray Co., Ltd.) was coated on the film. The mass ratio of PVdF and Ni filler at this time was 1:99. After drying under the conditions of a drying temperature of 90 ° C. and a drying time of 3 hours, the conductive member and the current collector 2 are in contact with both surfaces of the current collector 2 produced as described above.
  • PVdF polyvinylidene fluoride
  • a hot press roll was applied at 190 ° C. Thereafter, the polyimide film was removed to obtain an electrical connection structure in which conductive members (thickness: 30 ⁇ m) containing nickel filler were formed on both surfaces of the current collector 2. Two of the obtained electrical connection structures were punched out to a diameter of 20 mm and overlapped, sandwiched between two gold-plated disks from both sides, and contact resistance was measured by the above method.
  • Example 5 The contact resistance was measured in the same manner as in Example 8 except that the Ni filler dispersion was not applied to both surfaces of the current collector 2.
  • Example 9 The electrical connection structure obtained in Example 1 and the electrical connection structure obtained in Example 8 were overlapped to obtain a laminate.
  • the obtained laminate was sandwiched between two gold-plated disks, and the contact resistance was measured by the above method.
  • Example 10 7% by mass of carbon nanotubes (trade name: FloTube 9000, average diameter: 10 to 15 nm, average fiber length: 10 ⁇ m), 70% by mass of trimethylolpropane triacrylate, 18% by mass of tetraethylene glycol diacrylate, and di-
  • a conductive adhesive member (A) was prepared by stirring and mixing 5% by mass of t-butyl peroxide. The amount of each component represents a mixing ratio, and the total of carbon nanotubes, trimethylolpropane triacrylate, tetraethylene glycol diacrylate and di-t-butyl peroxide is 100% by mass.
  • the conductive adhesive member (A) was applied to both sides of the current collector 1 obtained above so that the thickness after drying was about 20 ⁇ m, and the film with the conductive member obtained in Example 1 was further applied.
  • the conductive adhesive member (A) and the conductive member are overlapped so that they are in contact with each other, and after standing at room temperature (25 ° C.) for half a day, the polyimide film is removed to collect the conductive member acetylene black layer (thickness: 10 ⁇ m).
  • An electrical connection structure fixed to both surfaces of the electric body 1 by the conductive adhesive member (A) was obtained.
  • the obtained electrical connection structure was punched out with a diameter of 20 mm, pressed with copper foil of the same size from both sides, and sandwiched between two gold-plated disks from both sides, and contact resistance was measured by the above method.
  • Example 11 The thickness after drying the conductive adhesive member (A) on one side of the electrical connection structure obtained in Example 1 and one side of the electrical connection structure obtained in Example 8 is about 20 ⁇ m.
  • the electrical connection structure of Example 1 and the electrical connection structure of Example 8 were overlapped to obtain a laminate.
  • the laminate was sandwiched between two gold-plated disks from the outside and kept at 45 ° C. for 30 minutes, and then contact resistance was measured by the above method.
  • Example 12 7 parts by mass of liquid epoxy resin [Celoxide 2021P (alicyclic epoxy resin; manufactured by Daicel)], 15 parts by mass of polyfunctional epoxy resin [Malproof G2050M (manufactured by NOF)], 75 parts by mass of methyl ethyl ketone, 3 parts by mass of acetylene black and 0.5 parts by mass of a curing agent [Sun Aid SI-60 (manufactured by Sanshin Chemical Industry)] was mixed to prepare an ink for a conductive member.
  • a conductive member ink was applied to both surfaces of the current collector 1 produced above using an applicator with a gap of 30 ⁇ m, and then vacuum-dried at 110 ° C. for 3 hours to remove and cure the acetylene black.
  • An electrical connection structure in which layers of a conductive member made of an epoxy resin were fixed to both surfaces of the current collector 1 was obtained.
  • the obtained electrical connection structure was punched out with a diameter of 20 mm, the same size aluminum foil (thickness: 20 ⁇ m) was pressed from both sides, and sandwiched between two gold-plated disks from both sides, and the contact resistance was measured in the same manner as in Example 1. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明は、電池の出力性能を向上させる手段を提供する。 本発明の電気的接続構造は、高分子材料および導電性フィラーを含む導電性樹脂層を有する集電体と、前記導電性フィラーに電気的に接触する導電性部材とを有する。

Description

電気的接続構造
 本発明は、電気的接続構造に関する。
 近年、環境・エネルギー問題の解決へ向けて、種々の電気自動車の普及が期待されている。これら電気自動車の普及の鍵を握るモータ駆動用電源などの車載電源として、二次電池の開発が鋭意行われている。しかしながら、広く普及するためには電池を高性能にして、より安くする必要がある。また、電気自動車については、一充電走行距離をガソリンエンジン車に近づける必要があり、より高いエネルギー密度を有する電池が望まれている。電池を高エネルギー密度にするためには、電池反応に直接かかわらない電池部材をできるだけ減らす必要がある。電池単セルの集電タブや単セル間接続のためのバスバーなどが節約できて、非常に体積効率がよく車載に適した電池として、双極型の二次電池が提案されている。双極型二次電池は、一枚の集電体の一方の面に正極、他方の面に負極が形成された双極型電極を用いている。そしてこの双極型電極を、電解質層を含んだセパレータを介して正極と負極とが向かい合うように複数積層した構造となっている。したがって、この双極型二次電池は、集電体と集電体との間の正極、負極およびセパレータ(電解質層)によって一つの電池セル(単電池)が構成されている。
 例えば、二次電池の重量当たりの出力密度向上を目的として、特許文献1では、高分子材料および導電性フィラーを含む集電体を用いることが提案されている。
特開2006-190649号公報(US 2008/0220330 A1に対応)
 しかしながら、上記特許文献1に記載の技術では、電池の出力性能が不十分であり、出力性能のさらなる向上が求められている。
 そこで、本発明は、電池の出力性能を向上させる手段を提供することを目的とする。
 本発明者らは、鋭意研究を積み重ねた。その結果、導電性樹脂層を有する集電体に対して、前記の導電性樹脂層に含まれる導電性フィラーと電気的に接触する導電性部材を設けた電気的接続構造により上記課題が解決することを見出した。
リチウムイオン二次電池の一実施形態である、扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。図1中、10aはリチウムイオン二次電池を;11は正極集電体を;12は負極集電体を;13は正極活物質層を;15は負極活物質層を;17は電解質層を;19は単電池層を;21は発電要素を;25は正極集電板を;27は負極集電板を;29は電池外装材を、それぞれ、示す。 リチウムイオン二次電池の他の実施形態である、双極型リチウムイオン二次電池の基本構成を示す断面概略図である。図2中、10bはリチウムイオン二次電池を;11は正極集電体を;11aは正極側の最外層集電体を;11bは負極側の最外層集電体を;12は負極集電体を;13は正極活物質層を;15は負極活物質層を;17は電解質層を;19は単電池層を;21は発電要素を;25は正極集電板を;27は負極集電板を;29は電池外装材を;31はシール部を、それぞれ、示す。 電気的接続構造の一実施形態を示す断面概略図である。図3中、40は電気的接続構造を;41は導電性樹脂層を有する集電体を;42は導電性部材を、それぞれ、示す。 アセチレンブラックを20質量%含むポリプロピレンからなる導電性樹脂層を有する集電体の表面を、上方45°方向から観察した走査型電子顕微鏡(SEM)の写真である。 図4に示す集電体の断面をSEMで観察した写真である。 アセチレンブラックを20質量%含むポリプロピレンからなる導電性樹脂層を有する集電体の表面に、導電性部材としてアセチレンブラック層を設けた電気的接続構造を示す断面SEM写真である。
 本発明の一態様では、高分子材料および導電性フィラーを含む導電性樹脂層を有する集電体と、前記導電性フィラーに電気的に接触する導電性部材とを有する、電気的接続構造が提供される。上記態様によると、集電体が有する導電性樹脂層中の導電性フィラーと、集電体上に設けられた導電性部材とが電気的に接触する。このため、導電性樹脂層を有する集電体と集電板との接触抵抗が低減する。
 まず、一実施形態による電気的接続構造が好適に用いられるリチウムイオン二次電池について説明するが、以下の実施形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本実施形態の対象となるリチウムイオン二次電池は、以下に説明する電気的接続構造を用いてなるものであればよく、他の構成要件に関しては、特に制限されるべきものではない。
 例えば、上記リチウムイオン二次電池を形態・構造で区別した場合には、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。
 また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、非双極型(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用し得るものである。
 リチウムイオン二次電池内の電解質層の種類で区別した場合には、電解質層に非水系の電解液等の溶液電解質を用いた溶液電解質型電池、電解質層に高分子電解質を用いたポリマー電池など従来公知のいずれの電解質層のタイプにも適用し得るものである。該ポリマー電池は、さらに高分子ゲル電解質(単にゲル電解質ともいう)を用いたゲル電解質型電池、高分子固体電解質(単にポリマー電解質ともいう)を用いた固体高分子(全固体)型電池に分けられる。
 図1は、扁平型(積層型)の双極型ではない非水電解質リチウムイオン二次電池(以下、単に「積層型電池」ともいう)の基本構成を模式的に表した断面概略図である。図1に示すように、本実施形態の積層型電池10aは、実際に充放電反応が進行する略矩形の発電要素21が、外装体である電池外装材29の内部に封止された構造を有する。ここで、発電要素21は、正極と、電解質層17と、負極とを積層した構成を有している。正極は、正極集電体11の両面に正極活物質層13が配置された構造を有する。負極は、負極集電体12の両面に負極活物質層15が配置された構造を有する。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10aは、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。
 なお、発電要素21の両最外層に位置する最外層正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層負極集電体が位置するようにし、該最外層負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。
 正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、電池外装材29の端部に挟まれるようにして電池外装材29の外部に導出される構造を有している。正極集電板25および負極集電板27はそれぞれ、必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
 図2は、双極型非水電解質リチウムイオン二次電池(以下、単に「双極型電池」ともいう)10bの基本構成を模式的に表した断面概略図である。図2に示す双極型電池10bは、実際に充放電反応が進行する略矩形の発電要素21が、電池外装材であるラミネートフィルム29の内部に封止された構造を有する。
 図2に示すように、双極型電池10bの発電要素21は、集電体11の一方の面に電気的に結合した正極活物質層13が形成され、集電体11の反対側の面に電気的に結合した負極活物質層15が形成された複数の双極型電極23を有する。各双極型電極23は、電解質層17を介して積層されて発電要素21を形成する。なお、電解質層17は、基材としてのセパレータの面方向中央部に電解質が保持されてなる構成を有する。この際、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15とが電解質層17を介して向き合うように、各双極型電極23および電解質層17が交互に積層されている。すなわち、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15との間に電解質層17が挟まれて配置されている。
 隣接する正極活物質層13、電解質層17、および負極活物質層15は、一つの単電池層19を構成する。したがって、双極型電池10bは、単電池層19が積層されてなる構成を有するともいえる。また、電解質層17からの電解液の漏れによる液絡を防止する目的で、単電池層19の外周部にはシール部(絶縁層)31が配置されている。なお、発電要素21の最外層に位置する正極側の最外層集電体11aには、片面のみに正極活物質層13が形成されている。また、発電要素21の最外層に位置する負極側の最外層集電体11bには、片面のみに負極活物質層15が形成されている。ただし、正極側の最外層集電体11aの両面に正極活物質層13が形成されてもよい。同様に、負極側の最外層集電体11bの両面に負極活物質層15が形成されてもよい。
 さらに、図2に示す双極型電池10bでは、正極側の最外層集電体11aに隣接するように正極集電板25が配置され、これが延長されて電池外装材であるラミネートフィルム29から導出している。一方、負極側の最外層集電体11bに隣接するように負極集電板27が配置され、同様にこれが延長されて電池の外装であるラミネートフィルム29から導出している。
 図2に示す双極型電池10bにおいては、通常、各単電池層19の周囲にシール部31が設けられる。このシール部31は、電池内で隣り合う集電体11どうしが接触したり、発電要素21における単電池層19の端部の僅かな不揃いなどに起因する短絡が起こったりするのを防止する目的で設けられる。かようなシール部31の設置により、長期間の信頼性および安全性が確保され、高品質の双極型電池10bが提供されうる。
 なお、単電池層19の積層回数は、所望する電圧に応じて調節する。また、双極型電池10bでは、電池の厚みを極力薄くしても十分な出力が確保できれば、単電池層19の積層回数を少なくしてもよい。双極型電池10bでも、使用する際の外部からの衝撃、環境劣化を防止する必要がある。よって、発電要素21を電池外装材であるラミネートフィルム29に減圧封入し、正極集電板25および負極集電板27をラミネートフィルム29の外部に取り出した構造とするのがよい。
 図3は、電気的接続構造の一実施形態を示す断面概略図である。図3に示す電気的接続構造40は、導電性樹脂層を有する集電体41の表面上に導電性部材42を有する。
 二次電池の重量当たりの出力密度向上を目的として、特許文献1では、高分子材料および導電性フィラーを含む集電体を用いることが提案されている。しかしながら、この集電体を用いた二次電池の出力性能が不十分であることが分かった。そこで、本発明者らがこの問題を詳細に検討したところ、高分子材料および導電性フィラーを含む集電体と、主に金属から構成される集電板との間の接触抵抗が高いことが一つの原因であると推測した。このため、本発明者らは、集電体と集電板との電気的接触について注目した。図4は、導電性フィラーとしてアセチレンブラックを20質量%含むポリプロピレンからなる導電性樹脂層を有する集電体の表面を、上方45°方向から観察した走査型電子顕微鏡(SEM)の写真である。図4中、白く見えているのがアセチレンブラックであり、黒く見えているのがポリプロピレンである。図4から分かるように、集電体の表面には1μm程度の凹凸があり、その凹凸の所々でアセチレンブラックが露出している。図5は、同じ集電体の断面を同様にSEMで観察した写真であるが、集電体内部にアセチレンブラックが多く存在しており、表面に露出しているアセチレンブラックの割合は少ないことが判明した。このような観察結果から、本発明者らは、導電性樹脂層を有する集電体と主に金属から構成される集電板とが一部点接触し、2次元的および3次元的に十分接触はできないため、電気的接続が取りにくく、接触抵抗が大きくなるためではないかと推測した。
 かような問題を解決するために、本発明者らは鋭意検討した。その結果、高分子材料および導電性フィラーを含む導電性樹脂層を有する集電体上に、導電性フィラーと電気的に接続する導電性部材を設けることにより、接触抵抗が小さくなることを見出した。図6は、アセチレンブラックを20質量%含むポリプロピレンからなる導電性樹脂層を有する集電体の表面に、導電性部材としてアセチレンブラック層を設けた電気的接続構造の一部を示す断面SEM写真である。図6に示す電気的接続構造部分において、導電性樹脂層(図6の「20%AB/PP」)中のアセチレンブラック(AB)と、その表面上に設けられたアセチレンブラック層(図6の「AB層」)とが密に接触していることが分かる。このような導電性部材を集電体と集電板との間に配置することにより、高分子材料および導電性フィラーを含む導電性樹脂層を有する集電体と集電板との2次元的および/または3次元的な接触を増加させ、接触抵抗を低減することができる。これにより、電池の出力性能を向上させることができる。
 なお、上記は推測であり、本発明は上記によって限定されない。
 以下、上記電気的接続構造について、さらに詳細に説明する。
 [導電性樹脂層を含む集電体]
 上記電気的接続構造は、高分子材料および導電性フィラーを含む導電性樹脂層を有する集電体を含む。該高分子材料は導電性高分子であってもよいし、導電性を有さない高分子であってもよい。また、該高分子は単独でもまたは2種以上混合しても用いることができる。さらに、該高分子は市販品でもよいし合成品でもよい。
 導電性高分子は、導電性を有し、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料から選択される。これらの導電性高分子は、共役したポリエン系がエネルギー帯を形成し導電性を示すと考えられている。代表的な例としては電解コンデンサなどで実用化が進んでいるポリエン系導電性高分子を用いることができる。具体的には、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、ポリオキサジアゾール、またはこれらの混合物などが挙げられる。電子伝導性および電池内で安定に使用できるという観点から、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレンがより好ましい。
 導電性を有さない高分子材料の例としては、例えば、ポリエチレン(PE)(高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニリデン(PVDC)、またはこれらの混合物が挙げられる。これらの材料は電位窓が非常に広く正極電位、負極電位のいずれに対しても安定であり、また軽量であるため、電池の高出力密度化が可能となる。中でも、使用する電解液に対する耐久性の観点から、ポリプロピレン、ポリエチレン等の種々のポリオレフィンやそれらの共重合体および混合物が好ましい。
 用いられる導電性フィラーは、導電性を有する材料から選択される。好ましくは、導電性樹脂層内のイオン透過を抑制する観点から、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料を用いるのが好ましい。
 具体的には、カーボン材料、アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、アンチモン、チタン、ニッケルなどが挙げられるが、これらに限定されるものではない。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。また、ステンレス(SUS)等のこれらの合金材が用いられてもよい。耐食性の観点から、好ましくはアルミニウム、ステンレス、カーボン材料、ニッケル、より好ましくはカーボン材料、ニッケルである。また、これらの導電性フィラーは、粒子系セラミック材料や樹脂材料の周りに、上記で示される金属をメッキ等でコーティングしたものであってもよい。
 上記カーボン材料としては、例えば、アセチレンブラック、カーボンブラック、バルカン(登録商標)、ブラックパール(登録商標)、カーボンナノファイバー、ケッチェンブラック(登録商標)、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、ハードカーボン、およびフラーレンからなる群より選択される少なくとも1種が挙げられる。これらのカーボン材料は電位窓が非常に広く、正極電位および負極電位の双方に対して幅広い範囲で安定であり、さらに導電性に優れている。また、カーボン材料は非常に軽量なため、質量の増加が最小限になる。さらに、カーボン材料は、電極の導電助剤として用いられることが多いため、これらの導電助剤と接触しても、同材料であるがゆえに接触抵抗が非常に低くなる。なお、カーボン材料を導電性フィラーとして用いる場合には、カーボン材料の表面に疎水性処理を施すことにより電解質のなじみ性を下げ、集電体の空孔に電解質が染み込みにくい状況を作ることも可能である。
 導電性フィラーの形状は、特に制限はなく、粒子状、粉末状、繊維状、板状、塊状、布状、またはメッシュ状などの公知の形状を適宜選択することができる。例えば、広範囲に亘って導電性を付与したい場合は、粒子状の導電性フィラーを使用することが好ましい。一方、特定方向への導電性をより向上させたい場合は、繊維状等の形状に一定の方向性を有するような導電性フィラーを使用することが好ましい。
 導電性フィラーの平均粒子径は、特に限定されるものではないが、0.01~10μm程度であることが好ましく、0.01~3μmがより好ましく、0.01~1μm程度がさらに好ましい。なお、本明細書中において、「粒子径」とは、導電性フィラーの輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
 導電性フィラーが繊維状である場合、その平均繊維長は特に制限されるものではないが、0.1~100μmであることが好ましい。なお、本明細書中において、平均繊維長は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される繊維の繊維長の平均値として算出される値を採用するものとする。また、導電性フィラーが繊維状である場合の、その平均直径もまた特に制限されるものではないが、0.01~10μmが好ましく、0.01~3μmがより好ましく、0.01~1μmであることがさらに好ましい。
 導電性樹脂層中の高分子材料の含有量は特に制限されないが、導電性樹脂層中の高分子材料と導電性フィラーとの合計量を100質量部として、好ましくは10~95質量部であり、より好ましくは12~90質量部である。
 また、導電性樹脂層中の導電性フィラーの含有量も特に制限はない。しかしながら、導電性フィラーの含有量は、導電性樹脂層中の高分子材料と導電性フィラーとの合計量を100質量部として、好ましくは5~90質量部であり、より好ましくは10~88質量部である。かような量の導電性フィラーを高分子材料に添加することにより、集電体の質量増加を抑制しつつ、集電体に十分な導電性を付与することができる。
 上記導電性樹脂層には、高分子材料および導電性フィラーの他、他の添加剤を含んでいてもよい。他の添加剤の例としては、無水マレイン酸変性ポリプロピレン等のカルボン酸変性ポリプロピレン等が挙げられる。他の添加剤の添加量としては、特に制限されないが、高分子材料と導電性フィラーとの合計100質量部に対して、1~25質量部が好ましい。
 導電性樹脂層を有する集電体の厚さは、好ましくは1~200μm、より好ましくは3~150μm、さらに好ましくは5~100μmである。
 導電性樹脂層を有する集電体の製造方法は、特に制限されず、例えば、押出機等により、高分子材料、導電性フィラー、および必要に応じて添加剤の各成分を溶融混練した後、溶融混練済材料を熱プレス機により圧延する方法が挙げられる。
 なお、上記集電体(導電性樹脂層)は、単層構造であってもよいしあるいはこれらの材料からなる層を適宜組み合わせた積層構造であっても構わない。または、上記集電体は、上記導電性樹脂層に加えて、他の層を有していてもよい。他の層としては、例えば、集電体の軽量化の観点からは、導電性を有する樹脂からなる導電性樹脂層や金属層がある。前者は、集電体の軽量化の観点から好ましい。また、後者は、単電池層間のリチウムイオンの移動を遮断する観点からは、好ましい。
 上記電気的接続構造は、正極側の最外層集電体に設けられてもよいし、負極側の最外層集電体に設けられてもよいし、正極側および負極側の両方の最外層集電体に設けられてもよい。
 [導電性部材]
 該電気的接続構造は、上記集電体が有する導電性樹脂層に含まれる導電性フィラーと電気的に接触する導電性部材を有する。
 導電性部材の材料としては特に制限されないが、鉄よりイオン化傾向の小さい金属、鉄、チタン、ジルコニウム、タンタル、およびニオブからなる群より選択される少なくとも一種の金属、前記金属を主成分とする合金、ならびに導電性カーボンからなる群より選択される少なくとも一種の導電性材料を含むことが好ましい。これらの材料は、その表面に絶縁性を有する酸化膜を形成しにくく、導電性フィラーとの電気的な接触が長期間に亘って維持されるためである。
 さらに具体的には、上記鉄よりイオン化傾向の小さい金属の具体例としては、例えば、コバルト、ニッケル、スズ、アンチモン、銅、銀、パラジウム、イリジウム、白金、金等が挙げられる。鉄よりイオン化傾向の小さい金属は、たとえ酸化被膜が形成されたとしても、抵抗が小さいため、集電体と集電板との接触抵抗を低減することが可能である。上記合金の例としては、ステンレス(SUS)等が挙げられる。
 また、上記導電性カーボンの具体例としては、例えば、アセチレンブラック、カーボンブラック、バルカン(登録商標)、ブラックパール(登録商標)、カーボンナノファイバー、ケッチェンブラック(登録商標)、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、ハードカーボン、およびフラーレンからなる群より選択される少なくとも1種が挙げられる。
 導電性部材の形状は、特に制限はなく、粒子状、粉末状、繊維状、板状、塊状、布状、またはメッシュ状などの公知の形状を適宜選択することができる。
 導電性部材の材料の平均粒子径(一次粒子の平均粒子径)は、特に限定されるものではないが、0.01~10μm程度であることが好ましく、0.01~3μm程度であることがより好ましく、0.01~1μm程度であることがさらに好ましい。このような大きさであれば、導電性フィラーは集電体表面の凹凸と有効に接触できる。このため、集電体と導電性部材との電気的接触をより高めることができる。なお、本明細書中において、「粒子径」とは、導電性フィラーの輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。なお、実施例では、導電性部材の材料の大きさを一次粒子の標準粒子径範囲として記載しているが、当該標準粒子径範囲が上記平均粒子径の範囲に含まれていることが好ましい。
 導電性フィラーが繊維状である場合、その平均繊維長は特に制限されるものではないが、0.1~100μmであることが好ましい。なお、本明細書中において、平均繊維長は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の繊維長の平均値として算出される値を採用するものとする。また、導電性フィラーが繊維状である場合の、その平均直径もまた特に制限されるものではないが、0.01~10μmであることが好ましく、0.01~3μmであることがより好ましく、0.01~1μmであることがさらに好ましい。このような大きさであれば、導電性フィラーは集電体表面の凹凸と有効に接触できる。このため、集電体と導電性部材との電気的接触をより高めることができる。また、導電性フィラーが繊維状である場合には、少量の添加でも、2次元的な(横方向の)電気的接触を増大できるため、好ましい。
 これらの中でも、上記したように表面に絶縁性の膜を形成しにくい点に加え、入手容易であり、導電助剤としても有効に機能しやすいといった観点から、導電性部材は導電性カーボンから構成されることが好ましい。
 また、導電性部材は、上記の導電性材料に加えて、高分子材料を含んでもよい。導電性部材で用いられる高分子材料の例としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、ポリオキサジアゾールなどの導電性高分子;ポリエチレン(高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート、ポリエーテルニトリル、ポリイミド、ポリアミド、ポリアミドイミド、ポリテトラフルオロエチレン、スチレン-ブタジエンゴム、ポリアクリロニトリル、ポリメチルアクリレート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリ塩化ビニリデン等の導電性を有さない熱可塑性高分子、ならびにエポキシ樹脂および不飽和ポリエステル樹脂の導電性を有さない熱硬化性高分子等が挙げられる。これらは単独でもまたは2種以上混合して用いてもよい。
 導電性部材が導電性材料と高分子材料とを含む場合、導電性材料の含有量は、導電性部材の全質量に対して20~95質量%であることが好ましく、50~90質量%であることがより好ましい。前記導電性部材における導電性材料の含有量は、前記導電性樹脂層における導電性フィラーの含有量より多いことが好ましい。かような構成であれば、接触抵抗がより低減できる。
 該導電性部材は集電体上に設けられるが、その面方向の形状は、集電体の全面に設けてもよいし、導電性樹脂層に含まれる導電性フィラーと電気的な接触を行うために必要な領域のみに設けてもよい。また、面方向に連続的に設けてもよいし、部分的や間欠的に設けてもよい。その形状としては、網目状、ストライプ状、格子状、ドット状、帯状等の各種形状が挙げられる。また、該導電性部材は、少なくとも集電体の集電板と接する面上に設けられることが好ましいが、集電体の両方の面に設けられてもよい。
 導電性部材の厚さは、好ましくは0.01~50μm、より好ましくは0.1~30μmである。
 該電気的接続構造は、集電体に導電性材料及び溶媒を含むインクを塗布して塗膜を形成することによって前記集電体上に導電性部材を形成することによって得られることが好ましい。また、集電体上に形成された導電性部材に対してさらに熱プレスを行ってもよい。すなわち、電気的接続構造は、集電体に導電性材料及び溶媒を含むインクを塗布して塗膜を形成することによって前記集電体上に導電性部材を形成した後、熱プレスすることによって得られてもよい。導電性材料及び溶媒を含むインクの塗布によって得られる導電性部材が熱硬化性高分子を含む場合、該インクには熱硬化性高分子の前駆体(架橋点を有する非架橋型高分子及び架橋剤等)を含んでもよい。また、電気的接続構造としては、適当な基材(例えば、ポリイミドフィルム)に導電性材料を含むインクを塗布して導電性部材となる塗膜を形成し、前記塗膜と前記集電体とを積層した後、熱プレス等により塗膜(導電性部材)を集電体上と一体に形成し、さらに前記基材を導電性部材から剥がすことによって得られることも好ましい。かような構造であれば、導電性樹脂層中の導電性フィラーと導電性部材とがより接触しやすくなり、接触抵抗がより低減する。
 さらに、導電性部材の少なくとも一部は、集電体が有する導電性樹脂層の表面にめり込んでいる、すなわち集電体が有する導電性樹脂層の表面から内部に埋没している構造または集電体が有する導電性樹脂の表面を超えて前記導電性樹脂層内部に存在した構造を有することが好ましい。かような構造であれば、導電性樹脂層中の導電性フィラーと導電性部材とがさらにより接触しやすくなり、接触抵抗がさらにより低減する。
 また、該電気的接続構造は、導電性部材と集電体とを、導電性接着部材により貼り合わせることによって得られることもまた好ましい。導電性接着部材で貼り合わせることにより、接触抵抗の面内バラツキが低減される。すなわち、該電気的接続構造は、導電性樹脂層と集電体との間に導電性接着部材を配置してなることが好ましい。
 さらに、導電性部材が2層以上の積層構造である場合、少なくとも2層の導電性部材は、導電性接着部材により貼り合わせてなることが好ましい。このような構造を有することにより、接触抵抗の面内バラツキを低減することができる。すなわち、該電気的接続構造は、導電性部材が2層以上の積層構造である場合、少なくとも2層の導電性部材の間に導電性接着部材を配置してなることが好ましい。なお、これらの電気的接続構造に用いられる導電性接着部材については、下記の電気的接続構造の製造方法の項で説明する。
 [電気的接続構造の製造方法]
 電気的接続構造の製造方法は、特に制限されないが、1)集電体とは別途に作製した導電性部材を集電体上に転写する方法;2)集電体とは別途に作製した導電性部材と集電体とを、導電性接着部材により貼り合わせる方法;3)導電性樹脂層を有する集電体上に導電性材料を含むインクを塗布して塗膜を前記集電体上に形成した積層体を得る工程を有する方法;等が挙げられる。これらの製造方法について説明する。
 〔(1)導電性部材を集電体上に転写する方法〕
 本方法では、導電性樹脂層を有する集電体とは別途に作製した導電性部材を集電体上に転写する。
 集電体とは別途に導電性部材を作製する方法としては、例えば、ポリイミドフィルム等の耐熱性フィルム上に、導電性材料および溶媒を含むインクを塗布し乾燥して得る方法が挙げられる。また、導電性部材が導電性材料と高分子材料とを含む場合は、本方法を採用することが好ましい。なお、導電性部材が導電性材料と高分子材料とを含む場合は、導電性材料と高分子材料(好ましくは熱可塑性高分子)とを溶融混合した後、溶融混練済材料を熱プレス機等により圧延する方法等により得ることもできる。すなわち、本発明の一形態によると、高分子材料および導電性フィラーを含む導電性樹脂層を有する集電体に、導電性材料を含むインクを塗布して塗膜を前記集電体上に形成した積層体を得る工程、および前記積層体を熱プレスする工程を有する、本発明の電気的接続構造の製造方法が提供される。
 上記インクに用いられる溶媒としては、例えばアセトン等のケトン類、トルエン、キシレン等の芳香族炭化水素溶媒、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、テトラヒドロフラン(THF)、アセトニトリル等の極性溶媒などを用いることができる。これらは1種単独で用いてもよいし、2種以上混合して用いてもよい。
 上記インク中の導電性材料の濃度は、特に制限されない。塗布方法も特に制限されず、刷毛での塗布、バーコート法、スプレーコート法、スクリーン印刷法、インクジェット法等が挙げられる。導電性材料の適切な塗布量は、導電性材料の種類により異なり、一概には言えないが、集電体との接触抵抗が小さく、しかも集電体の厚さに対して厚過ぎない量とすることが好ましい。乾燥温度、乾燥時間は特に制限されないが、使用する溶媒に応じて材料の劣化が起こらない範囲で適宜決定すればよい。
 上記乾燥後得られた導電性部材、または溶融混合および圧延等により得られた導電性部材の集電体上への転写方法としては、公知の熱ロール装置、熱プレス装置等を用いた熱プレス等の方法が挙げられる。
 耐熱性フィルム上に導電性部材を作製した場合は、転写後、耐熱性フィルムを剥離することにより、電気的接続構造が得られる。
 〔(2)導電性部材と集電体とを導電性接着部材により貼り合わせる方法〕
 本方法では、導電性樹脂層を有する集電体とは別途に作製した導電性部材を、集電体上に導電性接着部材を用いて貼り合わせる。集電体とは別途に導電性部材を製造する方法としては、上記の項で説明した内容と同様であるため、ここでは説明を省略する。
 導電性接着部材は、熱重合可能な重合基を1分子中に2個以上有するモノマーまたはオリゴマー、導電性物質、重合開始剤などを含む。
 上記モノマーまたはオリゴマーの例としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートなどの2官能(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの3官能(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどの4官能(メタ)アクリレートなどが挙げられる。上記の他に、ウレタン(メタ)アクリレートなどのモノマー、これらの共重合体オリゴマーやアクリロニトリルとの共重合体オリゴマーが挙げられるが、これらに限定されるものではない。なお、本明細書において「(メタ)アクリレート」は、メタクリレートおよび/またはアクリレートを指すものである。
 また、導電性物質としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等のカーボン材料や、金、銀、銅、アルミニウム、ニッケル、マグネシウム等の金属粉末が挙げられる。重合開始剤としては、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエール、t-ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。
 上記のモノマーもしくはオリゴマー、導電性物質、および重合開始剤は、それぞれ単独で用いてもよいし2種以上混合して用いてもよい。
 このような製造方法で得られる電気的接続構造においては、接触抵抗の面内バラツキが低減される。
 〔(3)集電体上にインクを塗布する方法〕
 本方法では、集電体上に導電性材料を含むインクを塗布し、集電体上に塗膜を形成して集電体と導電性部材とからなる積層体を得る。なお、得られた積層体をさらに熱プレスすると導電性フィラーと導電性部材との電気的な接触がより効率的になり、接触抵抗をより低減させることができ好ましい。
 インクに用いられる溶媒、インク中の導電性材料の濃度、塗布方法、乾燥条件等は、上記(1)の項で説明した内容と同様であるため、ここでは説明を省略する。
 積層体を得た後に熱プレスを行う場合、熱プレスは、公知の熱ロール装置、熱プレス装置等を用いて行うことができる。熱プレスの条件の一例を挙げれば、導電性樹脂層に含まれている高分子材料がポリプロピレンの場合は、170~200℃の温度範囲で、導電性樹脂層が薄くならない加圧条件で行うことが好ましい。特に、導電性樹脂層に含まれている高分子材料の融点よりも少し高い温度で熱プレスを行うことが好ましい。このような温度範囲であれば、高分子材料の少なくとも一部が溶融し、導電性樹脂層中の導電性フィラーと導電性部材とが電気的に接触しやすくなるため好ましい。また、熱プレスは、上述したような導電性部材の少なくとも一部が前記導電性樹脂層の表面にめり込んでいる構造をより容易に得ることができることから、好ましい。
 これら(1)~(3)の方法の中でも、(1)または(3)の方法が好ましく、(3)の方法がより好ましい。すなわち、上記製造方法は、高分子材料および導電性フィラーを含む導電性樹脂層を有する集電体に、導電性材料を含むインクを塗布して塗膜を前記集電体上に形成して集電体と導電性部材とからなる積層体を得る工程を有することが好ましく、さらに前記積層体を熱プレスする工程を有することがさらに好ましい。すなわち、本発明のより好ましい形態によると、本発明の電気的接続構造の製造方法は、高分子材料および導電性フィラーを含む導電性樹脂層を有する集電体に、導電性材料を含むインクを塗布して塗膜を前記集電体上に形成した積層体を得る工程、および前記積層体を熱プレスして導電性部材を集電体上に形成する工程を有する。当該形態によると、導電性樹脂層中の導電性フィラーと導電性部材との電気的な接触が効率よくかつ安定して形成され、接触抵抗をより低減させることができるからである。
 導電性部材が2層以上の積層構造である場合、少なくとも2層の導電性部材は、導電性接着部材により貼り合わせてなることが好ましい。導電性接着部材を用いて貼り合わせることにより、接触抵抗の面内バラツキを低減することができる。この際用いられる導電性接着部材は、上記(2)の項で説明したものと同様のものが用いられ、特に制限されない。
 上記のようにして得られる電気的接続構造の接触抵抗は、押しつけ圧力が0.5kg/cmのときに好ましくは6Ω以下、より好ましくは2Ω以下である。該接触抵抗は、具体的には、実施例に記載の方法により測定することができる。
 上記電気的接続構造は、1つを単独で使用しても、または2以上を組み合わせて(積層して)使用してもよい。後者の場合、各電気的接続構造は、同じものであってもまたは異なるものであってもよい。また、後者の場合の電気的接続構造の数は、特に制限されないが、2~3であることが好ましい。
 上記電気的接続構造は、リチウムイオン二次電池に好適に用いられる。例えば、図1に示す双極型ではないリチウムイオン二次電池10aにおいては、電池の端部に取り付けられた正極集電板25と正極集電体11との接続、および/または電池の端部における正極集電体11同士の接続等に好適に用いられる。さらに、電池の端部に取り付けられた負極集電板27と負極集電体12との接続、および/または電池の端部における負極集電体12同士の接続等にも好適に用いられる。図2に示す双極型のリチウムイオン二次電池10bにおいては、正極側の最外層集電体11aと正極集電板25との接続、および/または負極側の最外層集電体11bと負極集電板27との接続等に好適に用いられる。
 リチウムイオン二次電池は、積層型の扁平な形状のものに制限されるものではなく、巻回型のリチウムイオン二次電池であってもよい。巻回型のリチウムイオン二次電池では、円筒型形状のものであってもよいし、こうした円筒型形状のものを変形させて、長方形状の扁平な形状にしたようなものであってもよいなど、特に制限されるものではない。上記円筒型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。
 上記リチウムイオン二次電池において、電気的接続構造の以外の主要な構成部材(活物質層、電解質層、リード、外装材等)については、従来公知の知見が適宜採用される。また、上記のリチウムイオン二次電池は、従来公知の製造方法により製造することができる。
 上記電気的接続構造と接続し得る集電板(25、27)を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板27と負極集電板25とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
 上記電気的接続構造を有するリチウムイオン二次電池は、電気自動車やハイブリッド電気自動車、燃料電池車やハイブリッド燃料電池自動車などの高質量エネルギー密度、高質量出力密度等が求められる車両駆動用電源や補助電源として好適に用いることができる。
 また、リチウムイオン二次電池に限定されるわけではなく、当該電気的接続構造は他のタイプの二次電池、さらには一次電池にも適用できる。
 上記電気的接続構造を、以下の実施例および比較例を用いてさらに詳細に説明するが、以下の実施例および比較例のみに限定されるわけではない。なお、実施例および比較例で用いられる集電体1~2および高分子材料含有導電性部材3は、以下のようにして作製した。なお、以下において、特記しない限り、操作は、室温(25℃)で行った。
 ・導電性樹脂層を有する集電体1(集電体1)の作製
 二軸押出機にて、ポリプロピレン(PP)(商品名「サンアロマー(登録商標)PL500A」、サンアロマー株式会社製)75質量%、アセチレンブラック(AB)(デンカブラック(登録商標)HS-100、電気化学工業株式会社製、(一次粒子の平均粒子径:36nm)20質量%、および分散剤(三洋化成工業株式会社製、商品名「ユーメックス(登録商標)1001」、無水マレイン酸変性ポリプロピレン)5質量%を、180℃、100rpm、滞留時間10分の条件で溶融混練し集電体用材料1を得た。なお、上記各成分の量は混合比を表わし、ポリプロピレン、アセチレンブラック及び分散剤の合計が100質量%である。得られた集電体用材料1を、熱プレス機により圧延することで、厚さ100μmの集電体1(「20%AB-PP」とも称する)を得た。なお、この集電体1は、正極側の最外層集電体を想定して作製されたものである。
 ・導電性樹脂層を有する集電体2(集電体2)の作製
 二軸押出機にて、日興リカ株式会社製のニッケル(Ni)フィラー T255(一次粒子の標準粒子径:2.2~2.8μm)を81質量%、ポリプロピレン(PP)(商品名「サンアロマー(登録商標)PL500A」、サンアロマー株式会社製)14質量%、および分散剤(三洋化成工業株式会社製、商品名「ユーメックス(登録商標)1001」、無水マレイン酸変性ポリプロピレン)5質量%を用いて、180℃、100rpm、滞留時間10分の条件で溶融混練し集電体用材料2を得た。なお、上記各成分の量は混合比を表わし、ニッケル(Ni)フィラー、ポリプロピレン及び分散剤の合計が100質量%である。得られた集電体用材料2を熱プレス機で圧延することにより、厚さ100μmの集電体2(「81%Ni-PP」とも称する)を作製した。なお、この集電体2は、負極側の最外層集電体を想定して作製されたものである。
 ・高分子材料含有導電性部材3の作製
 二軸押出機にて、高密度ポリエチレン(HDPE)(サンテック(商標)B680、旭化成ケミカルズ株式会社製)45質量%、アセチレンブラック(AB)(デンカブラック(登録商標)NH-100、電気化学工業株式会社製)50質量%、および分散剤(三洋化成工業株式会社製、商品名「ユーメックス(登録商標)1001」、無水マレイン酸変性ポリプロピレン)5質量%を用いて、180℃、100rpm、滞留時間10分の条件で溶融混練し導電性部材用材料3を得た。なお、上記各成分の量は混合比を表わし、高密度ポリエチレン、アセチレンブラック及び分散剤の合計が100質量%である。得られた導電性部材用材料3を熱プレス機により圧延することで、厚さ30μmの高分子材料含有導電性部材3(「50%AB-HDPE」とも称する)を得た。
 ・接触抵抗の測定
 接触抵抗の測定は、次のようにして行った。すなわち、直径20mmの2枚の金メッキディスクにサンプルを挟み、押しつけ圧力として0.5kg/cmの一定荷重をかけた。接触抵抗測定装置にて、4端子法で周波数を10kHzから下げていき、インピーダンスの実数成分がすべてのサンプルで一定になった1061Hzのときの実軸の抵抗値を接触抵抗の値として採用した。また、サンプルを幅1cmの短冊状に切り、4端子法で同様にして抵抗測定を行い、膜厚方向の貫通抵抗から膜厚換算したサンプル自体のバルク抵抗、金属箔の抵抗、その他の部分の接触抵抗を別途測定して差し引いた。このようにして、表1の「電気的接続構造」の表記で「/」の部分の接触抵抗のみを、単位面積あたりの接触抵抗(Ω/cm)で含むように算出した。
 (実施例1)
 アセチレンブラック(AB)(デンカブラック(登録商標)HS-100、電気化学工業株式会社製、(一次粒子の平均粒子径:36nm)をN-メチル-2-ピロリドン(NMP)に分散させた分散液(ABの濃度:20質量%)を準備した。ポリイミド(カプトン(登録商標)、東レ・デュポン株式会社製)フィルムの上に、0.25mg/cmの塗布量で上記分散液を塗布した。90℃で3時間乾燥後、得られた導電性部材付きフィルムを、上記で作製した集電体1の両面に、導電性部材と集電体1とが接するように重ね、180℃で熱プレスロールをかけた。その後、ポリイミドフィルムを取り除き、導電性部材であるアセチレンブラックの層(厚さ:10μm)が集電体1の両表面に固定された電気的接続構造を得た。得られた電気的接続構造を直径20mmで打ち抜き、両側から同サイズのアルミニウム箔(厚み:20μm)を押し当て、さらに両側から2枚の金メッキディスクで挟み、株式会社井元製作所製の接触抵抗測定装置に固定した。そして、上記のようにして接触抵抗を測定した。
 (比較例1)
 アセチレンブラックの層を両表面に貼り付けていない集電体1の両面に直接アルミニウム箔を押し当て、さらにその両側から金メッキディスクで挟み、実施例1と同様に接触抵抗を測定した。
 (実施例2)
 アルミニウム箔の代わりに銅箔を用いたこと以外は、実施例1と同様にして、接触抵抗を測定した。
 (比較例2)
 アルミニウム箔の代わりに銅箔を用いたこと以外は、比較例1と同様にして、接触抵抗を測定した。
 (実施例3)
 アルミニウム箔の代わりにステンレス(SUS316L)箔を用いたこと以外は、実施例1と同様にして、接触抵抗を測定した。
 (比較例3)
 アルミニウム箔の代わりにステンレス(SUS316L)箔を用いたこと以外は、比較例1と同様にして、接触抵抗を測定した。
 (実施例4)
 実施例1で得られた電気的接続構造を2枚重ねて、それを両側から2枚の金メッキディスクで挟み、上記の方法で接触抵抗を測定した。
 (比較例4)
 集電体1を2枚重ねて、それを両側から2枚の金メッキディスクで挟み、上記の方法で接触抵抗を測定した。
 (実施例5)
 集電体1の両面に、シーナノ社製のカーボンナノチューブ(LB100、平均粒子径:11nm、アスペクト比:100~10000)の5質量%NMP溶液を刷毛で約0.3mg/cmの塗布量で塗布した。その後、乾燥温度90℃、乾燥時間3時間の条件で乾燥して、導電性部材(厚さ:12μm)を集電体の両表面に形成し、電気的接続構造を得た。得られた電気的接続構造を、直径20mmの円形に打ち抜き、両面にアルミニウム箔を押し当て、さらに両側から2枚の金メッキディスクで挟み、上記の方法で接触抵抗を測定した。
 (実施例6)
 塗膜の乾燥後に、さらに180℃で熱プレスロールをかけたこと以外は、実施例5と同様にして、接触抵抗を測定した。
 (実施例7)
 集電体1の両面に、上記の高分子材料含有導電性部材3を置いた。さらに190℃で、熱プレスロールをかけ、集電体1の両面に高分子材料含有導電性部材3(厚さ:10μm)が設けられた電気的接続構造を得た。その後、得られた電気的接続構造を2枚の銅箔で挟み、さらに両側から2枚の金メッキディスクで挟んで、上記の方法で接触抵抗を測定した。
 (実施例8)
 日興リカ株式会社製のニッケル(Ni)フィラー T255(一次粒子の標準粒子径:2.2~2.8μm)をポリフッ化ビニリデン(PVdF)のNMP溶液に分散させた分散液を準備し、6mg/cmの塗布量でポリイミド(カプトン(登録商標)、東レ・デュポン株式会社製)フィルム上に塗布した。このときのPVdFとNiフィラーとの質量比は1:99であった。乾燥温度90℃、乾燥時間3時間の条件で乾燥後、得られた導電性部材付きフィルムを、上記で作製した集電体2の両面に、導電性部材と集電体2とが接するように重ね、190℃で、熱プレスロールをかけた。その後、ポリイミドフィルムを取り除き、ニッケルフィラーを含む導電性部材(厚さ:30μm)が集電体2の両表面に形成された、電気的接続構造を得た。得られた電気的接続構造を直径20mmに2枚打ち抜いて重ねて、それを両側から2枚の金メッキディスクで挟んで、上記の方法で接触抵抗を測定した。
 (比較例5)
 集電体2の両面にNiフィラーの分散液を塗布しなかったこと以外は、実施例8と同様にして、接触抵抗を測定した。
 (実施例9)
 実施例1で得られた電気的接続構造と実施例8で得られた電気的接続構造とを重ね、積層体を得た。得られた積層体を2枚の金メッキディスクで挟み、上記の方法で接触抵抗を測定した。
 (比較例6)
 集電体1と集電体2とを重ね、積層体を得た。得られた積層体を2枚の金メッキディスクで挟み、上記の方法で接触抵抗を測定した。
 (実施例10)
 カーボンナノチューブ(シーナノ社製、商品名:FloTube9000、平均直径:10~15nm、平均繊維長:10μm)7質量%、トリメチロールプロパントリアクリレート 70質量%、テトラエチレングリコールジアクリレート 18質量%、およびジ-t-ブチルパーオキサイド 5質量%を攪拌混合し、導電性接着部材(A)を調製した。なお、上記各成分の量は混合比を表わし、カーボンナノチューブ、トリメチロールプロパントリアクリレート、テトラエチレングリコールジアクリレート及びジ-t-ブチルパーオキサイドの合計が100質量%である。
 上記で得られた集電体1の両面に、乾燥後の厚さが約20μmとなるように導電性接着部材(A)を塗布し、さらに実施例1で得られた導電性部材付きフィルムを導電性接着部材(A)と導電性部材とが接するように重ね、室温(25℃)で半日放置した後にポリイミドフィルムを取り除き、導電性部材であるアセチレンブラックの層(厚さ:10μm)が集電体1の両表面に導電性接着部材(A)によって固定された電気的接続構造を得た。得られた電気的接続構造を直径20mmで打ち抜き、両側から同サイズの銅箔を押し当て、さらに両側から2枚の金メッキディスクで挟み、上記の方法で接触抵抗を測定した。
 (実施例11)
 実施例1で得られた電気的接続構造の片面、および実施例8で得られた電気的接続構造の片面に、上記の導電性接着部材(A)を乾燥後の厚さが約20μmとなるように塗り、実施例1の電気的接続構造と実施例8の電気的接続構造とを重ね、積層体を得た。該積層体を、外側から2枚の金メッキディスクで挟み、45℃で30分間保った後、上記の方法で接触抵抗を測定した。
 (実施例12)
 液状エポキシ樹脂[セロキサイド2021P(脂環式エポキシ樹脂;ダイセル製)]7質量部、多官能エポキシ樹脂[マープルーフG2050M(日油製)]15質量部、メチルエチルケトン75質量部、アセチレンブラック3質量部および硬化剤[サンエイドSI-60(三新化学工業製)]0.5質量部を混合して導電性部材用インキを調製した。
 上記で作製した集電体1の両面に、導電性部材用インキをギャップ30μmのアプリケータを用いて塗布し、続いて110℃で3時間真空乾燥することで脱溶剤及び硬化してアセチレンブラックとエポキシ樹脂とからなる導電性部材の層が集電体1の両表面に固定された電気的接続構造を得た。得られた電気的接続構造を直径20mmで打ち抜き、両側から同サイズのアルミニウム箔(厚み:20μm)を押し当て、さらに両側から2枚の金メッキディスクで挟み、実施例1と同様に接触抵抗を測定した。
 各実施例および各比較例の接触抵抗の測定結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、導電性樹脂層を有する集電体の表面に導電性部材を設けるけることにより、集電体と集電板として用いられる金属板との間の接触抵抗が大幅に低減できることが分かり、集電体同士の接触抵抗も大幅に低減できることが分かった。特に、集電体表面に導電性部材を熱プレスで貼り付けた電気的接続構造は、導電性接着部材を介しても、接触抵抗が大幅に低減できることが分かった。
 なお、本出願は、2014年8月25日に出願された日本特許出願第2014-170633号に基づいており、その開示内容は、参照により全体として引用されている。

Claims (11)

  1.  高分子材料および導電性フィラーを含む導電性樹脂層を有する集電体と、
     前記導電性フィラーに電気的に接触する導電性部材と、
    を有する、電気的接続構造。
  2.  前記電気的接続構造は、前記集電体に導電性材料を含むインクを塗布して塗膜を前記集電体上に形成して得られる、請求項1に記載の電気的接続構造。
  3.  前記導電性部材は、鉄よりイオン化傾向の小さい金属、鉄、チタン、ジルコニウム、タンタルおよびニオブからなる群より選択される少なくとも一種の金属、前記金属を主成分とする合金、ならびに導電性カーボンからなる群より選択される少なくとも一種の導電性材料を含む、請求項1または2に記載の電気的接続構造。
  4.  押しつけ圧力が0.5kg/cmのときの接触抵抗が6Ω以下である、請求項1~3のいずれか1項に記載の電気的接続構造。
  5.  押しつけ圧力が0.5kg/cmのときの前記接触抵抗が2Ω以下である、請求項4に記載の電気的接続構造。
  6.  前記導電性部材は、鉄よりイオン化傾向の小さい金属、鉄、チタン、ジルコニウム、タンタルおよびニオブからなる群より選択される少なくとも一種の金属、前記金属を主成分とする合金、ならびに導電性カーボンからなる群より選択される少なくとも一種の導電性材料と、高分子材料と、を含み、
     前記導電性部材における導電性材料の含有量が、前記導電性樹脂層における導電性フィラーの含有量より多い、請求項1~5のいずれか1項に記載の電気的接続構造。
  7.  前記導電性部材が導電性カーボンから構成される、請求項1~5のいずれか1項に記載の電気的接続構造。
  8.  前記導電性部材の少なくとも一部が、前記導電性樹脂層の表面を超えて前記導電性樹脂層内部に存在した構造を有する、請求項1~7のいずれか1項に記載の電気的接続構造。
  9.  前記導電性部材と前記集電体との間に導電性接着部材を配置してなる、請求項1および3~8のいずれか1項に記載の電気的接続構造。
  10.  前記導電性部材が2層以上の積層構造を有し、少なくとも2層の前記導電性部材の間に導電性接着部材を配置してなる、請求項1~9のいずれか1項に記載の電気的接続構造。
  11.  高分子材料および導電性フィラーを含む導電性樹脂層を有する集電体に、導電性材料を含むインクを塗布して塗膜を前記集電体上に形成した積層体を得る工程を有する、請求項1~10のいずれか1項に記載の電気的接続構造の製造方法。
PCT/JP2015/073461 2014-08-25 2015-08-21 電気的接続構造 WO2016031689A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580045688.8A CN106797033B (zh) 2014-08-25 2015-08-21 电连接结构
EP15835510.7A EP3188292B1 (en) 2014-08-25 2015-08-21 Electrical connection structure
US15/506,084 US10312524B2 (en) 2014-08-25 2015-08-21 Electrical connection structure
JP2016545478A JP6346291B2 (ja) 2014-08-25 2015-08-21 電気的接続構造
KR1020177004981A KR101975126B1 (ko) 2014-08-25 2015-08-21 전기적 접속 구조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014170633 2014-08-25
JP2014-170633 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031689A1 true WO2016031689A1 (ja) 2016-03-03

Family

ID=55399582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073461 WO2016031689A1 (ja) 2014-08-25 2015-08-21 電気的接続構造

Country Status (6)

Country Link
US (1) US10312524B2 (ja)
EP (1) EP3188292B1 (ja)
JP (1) JP6346291B2 (ja)
KR (1) KR101975126B1 (ja)
CN (1) CN106797033B (ja)
WO (1) WO2016031689A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018198197A (ja) * 2017-05-23 2018-12-13 三洋化成工業株式会社 樹脂集電体の製造方法、リチウムイオン電池用電極の製造方法、及び、リチウムイオン電池の製造方法
JP2018198196A (ja) * 2017-05-23 2018-12-13 三洋化成工業株式会社 樹脂集電体、リチウムイオン電池用電極、及び、リチウムイオン電池
JP2019153587A (ja) * 2018-03-05 2019-09-12 三洋化成工業株式会社 樹脂集電体、及び、リチウムイオン電池
JP2020087918A (ja) * 2018-11-16 2020-06-04 三洋化成工業株式会社 全固体リチウムイオン二次電池
JP2020102387A (ja) * 2018-12-25 2020-07-02 三洋化成工業株式会社 正極用樹脂集電体
US10916796B1 (en) 2018-02-02 2021-02-09 Apple Inc. Selective charging matrix for rechargeable batteries
US10923728B1 (en) 2017-06-16 2021-02-16 Apple Inc. Current collector structures for rechargeable battery
US11018343B1 (en) 2017-06-01 2021-05-25 Apple Inc. Current collector surface treatment
US11043703B1 (en) 2017-09-28 2021-06-22 Apple Inc. Stacked battery components and configurations
US11189834B1 (en) 2017-08-09 2021-11-30 Apple Inc. Multiple electrolyte battery cells
US11228074B2 (en) 2017-05-19 2022-01-18 Apple Inc. Rechargeable battery with anion conducting polymer
US11296361B2 (en) 2015-07-07 2022-04-05 Apple Inc. Bipolar battery design
US11335977B1 (en) 2017-09-21 2022-05-17 Apple Inc. Inter-cell connection materials
US11532824B2 (en) 2016-09-22 2022-12-20 Apple Inc. Current collector for a stacked battery design
US11588155B1 (en) 2020-09-08 2023-02-21 Apple Inc. Battery configurations for cell balancing
US11600891B1 (en) 2020-09-08 2023-03-07 Apple Inc. Battery configurations having balanced current collectors
US11677120B2 (en) 2020-09-08 2023-06-13 Apple Inc. Battery configurations having through-pack fasteners
US11791470B2 (en) 2017-04-21 2023-10-17 Apple Inc. Battery cell with electrolyte diffusion material
US11862801B1 (en) 2017-09-14 2024-01-02 Apple Inc. Metallized current collector for stacked battery
US11923494B2 (en) 2020-09-08 2024-03-05 Apple Inc. Battery configurations having through-pack fasteners

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916741B1 (en) * 2017-08-08 2021-02-09 Apple Inc. Metallized current collector devices and materials
CN109638223B (zh) * 2018-12-05 2022-08-19 宁波维科新能源科技有限公司 一种锂离子电池的硅基负极及其制备方法和应用
KR20220055282A (ko) 2020-10-26 2022-05-03 에스케이온 주식회사 이차전지용 전극, 이를 포함하는 이차전지용 배터리 셀 및 이를 제조하기 위한 이차전지용 배터리 셀 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215762A (ja) * 1985-07-11 1987-01-24 Sumitomo Bakelite Co Ltd 電池集電体
JPH01100864A (ja) * 1987-10-09 1989-04-19 Japan Storage Battery Co Ltd 密閉形鉛電池
JP2010073421A (ja) * 2008-09-17 2010-04-02 Nissan Motor Co Ltd 双極型電極およびその製造方法
JP2010157449A (ja) * 2008-12-27 2010-07-15 Nissan Motor Co Ltd 双極型電極およびそれを用いた双極型電池
JP2010251159A (ja) * 2009-04-16 2010-11-04 Nissan Motor Co Ltd 双極型二次電池
JP2010287549A (ja) * 2009-06-15 2010-12-24 Nissan Motor Co Ltd 双極型二次電池用の集電体、双極型二次電池、組電池、車両、双極型二次電池の制御装置、および双極型二次電池の制御方法
WO2012161180A1 (ja) * 2011-05-23 2012-11-29 株式会社カネカ 複層導電性フィルム、これを用いた集電体、電池および双極型電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171460B1 (en) * 1993-05-10 2001-01-09 John L. Bill Chemically protected electrode system
JP5098150B2 (ja) 2004-12-07 2012-12-12 日産自動車株式会社 バイポーラ電池およびその製造方法
JP5177301B2 (ja) * 2009-11-20 2013-04-03 日産自動車株式会社 双極型二次電池用集電体
JP2013026057A (ja) * 2011-07-22 2013-02-04 Sharp Corp 集電体および非水系二次電池
US8597996B1 (en) * 2012-05-10 2013-12-03 Universal Supercapacitors Llc Method of manufacturing heterogeneous electrochemical capacitors having a double electric layer and of manufacturing and balancing the coulombic capacities of electrodes for use therein
CN103427087B (zh) * 2012-05-17 2016-03-09 清华大学 集流体、电化学电池电极及电化学电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215762A (ja) * 1985-07-11 1987-01-24 Sumitomo Bakelite Co Ltd 電池集電体
JPH01100864A (ja) * 1987-10-09 1989-04-19 Japan Storage Battery Co Ltd 密閉形鉛電池
JP2010073421A (ja) * 2008-09-17 2010-04-02 Nissan Motor Co Ltd 双極型電極およびその製造方法
JP2010157449A (ja) * 2008-12-27 2010-07-15 Nissan Motor Co Ltd 双極型電極およびそれを用いた双極型電池
JP2010251159A (ja) * 2009-04-16 2010-11-04 Nissan Motor Co Ltd 双極型二次電池
JP2010287549A (ja) * 2009-06-15 2010-12-24 Nissan Motor Co Ltd 双極型二次電池用の集電体、双極型二次電池、組電池、車両、双極型二次電池の制御装置、および双極型二次電池の制御方法
WO2012161180A1 (ja) * 2011-05-23 2012-11-29 株式会社カネカ 複層導電性フィルム、これを用いた集電体、電池および双極型電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188292A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296361B2 (en) 2015-07-07 2022-04-05 Apple Inc. Bipolar battery design
US11532824B2 (en) 2016-09-22 2022-12-20 Apple Inc. Current collector for a stacked battery design
US11791470B2 (en) 2017-04-21 2023-10-17 Apple Inc. Battery cell with electrolyte diffusion material
US11228074B2 (en) 2017-05-19 2022-01-18 Apple Inc. Rechargeable battery with anion conducting polymer
US11888112B2 (en) 2017-05-19 2024-01-30 Apple Inc. Rechargeable battery with anion conducting polymer
JP2018198196A (ja) * 2017-05-23 2018-12-13 三洋化成工業株式会社 樹脂集電体、リチウムイオン電池用電極、及び、リチウムイオン電池
JP7055694B2 (ja) 2017-05-23 2022-04-18 三洋化成工業株式会社 樹脂集電体、リチウムイオン電池用電極、及び、リチウムイオン電池
JP2018198197A (ja) * 2017-05-23 2018-12-13 三洋化成工業株式会社 樹脂集電体の製造方法、リチウムイオン電池用電極の製造方法、及び、リチウムイオン電池の製造方法
JP7055059B2 (ja) 2017-05-23 2022-04-15 三洋化成工業株式会社 樹脂集電体の製造方法、リチウムイオン電池用電極の製造方法、及び、リチウムイオン電池の製造方法
US11018343B1 (en) 2017-06-01 2021-05-25 Apple Inc. Current collector surface treatment
US10923728B1 (en) 2017-06-16 2021-02-16 Apple Inc. Current collector structures for rechargeable battery
US11189834B1 (en) 2017-08-09 2021-11-30 Apple Inc. Multiple electrolyte battery cells
US11862801B1 (en) 2017-09-14 2024-01-02 Apple Inc. Metallized current collector for stacked battery
US11335977B1 (en) 2017-09-21 2022-05-17 Apple Inc. Inter-cell connection materials
US11699815B1 (en) 2017-09-28 2023-07-11 Apple Inc. Stacked battery components and configurations
US11043703B1 (en) 2017-09-28 2021-06-22 Apple Inc. Stacked battery components and configurations
US10916796B1 (en) 2018-02-02 2021-02-09 Apple Inc. Selective charging matrix for rechargeable batteries
JP7194048B2 (ja) 2018-03-05 2022-12-21 三洋化成工業株式会社 樹脂集電体、及び、リチウムイオン電池
JP2019153587A (ja) * 2018-03-05 2019-09-12 三洋化成工業株式会社 樹脂集電体、及び、リチウムイオン電池
JP7394580B2 (ja) 2018-11-16 2023-12-08 三洋化成工業株式会社 全固体リチウムイオン二次電池
JP2020087918A (ja) * 2018-11-16 2020-06-04 三洋化成工業株式会社 全固体リチウムイオン二次電池
JP2020102387A (ja) * 2018-12-25 2020-07-02 三洋化成工業株式会社 正極用樹脂集電体
JP7227760B2 (ja) 2018-12-25 2023-02-22 三洋化成工業株式会社 正極用樹脂集電体
US11677120B2 (en) 2020-09-08 2023-06-13 Apple Inc. Battery configurations having through-pack fasteners
US11600891B1 (en) 2020-09-08 2023-03-07 Apple Inc. Battery configurations having balanced current collectors
US11588155B1 (en) 2020-09-08 2023-02-21 Apple Inc. Battery configurations for cell balancing
US11923494B2 (en) 2020-09-08 2024-03-05 Apple Inc. Battery configurations having through-pack fasteners

Also Published As

Publication number Publication date
JPWO2016031689A1 (ja) 2017-07-06
EP3188292B1 (en) 2020-04-08
EP3188292A1 (en) 2017-07-05
US20180226654A1 (en) 2018-08-09
JP6346291B2 (ja) 2018-06-27
CN106797033A (zh) 2017-05-31
KR101975126B1 (ko) 2019-08-23
EP3188292A4 (en) 2017-07-05
KR20170032454A (ko) 2017-03-22
US10312524B2 (en) 2019-06-04
CN106797033B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6346291B2 (ja) 電気的接続構造
JP5359562B2 (ja) 双極型電池用集電体
JP6620102B2 (ja) 電極
JP6346290B2 (ja) 積層型電池およびその製造方法
JP5493443B2 (ja) 双極型二次電池
JP5200367B2 (ja) 双極型電池用電極
JP5387672B2 (ja) 双極型電池用集電体及び双極型電池
JP5418088B2 (ja) リチウムイオン二次電池用集電体
JP5434397B2 (ja) 双極型電池用集電体
JP2020061221A (ja) 双極型二次電池
JP5251409B2 (ja) 双極型二次電池用集電体
JP2011060559A (ja) リチウムイオン二次電池用電極
JP5515257B2 (ja) 双極型二次電池
WO2019198453A1 (ja) 電池の製造方法
WO2019198454A1 (ja) 電池の製造方法
WO2019198495A1 (ja) 電池の製造方法
JP2021048045A (ja) 全固体電池
JP2012253000A (ja) 電極
JP7033436B2 (ja) 双極型二次電池
JP2010212093A (ja) 双極型電池
WO2020021683A1 (ja) 電池パック
JP2011034891A (ja) 非水電解質二次電池
JP7107088B2 (ja) 電池パック
KR20120127183A (ko) 전극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835510

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016545478

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177004981

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015835510

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835510

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15506084

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE