WO2016029580A1 - 有机电致发光器件及其制造方法、显示装置 - Google Patents

有机电致发光器件及其制造方法、显示装置 Download PDF

Info

Publication number
WO2016029580A1
WO2016029580A1 PCT/CN2014/092697 CN2014092697W WO2016029580A1 WO 2016029580 A1 WO2016029580 A1 WO 2016029580A1 CN 2014092697 W CN2014092697 W CN 2014092697W WO 2016029580 A1 WO2016029580 A1 WO 2016029580A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating base
layer
organic electroluminescent
electroluminescent device
Prior art date
Application number
PCT/CN2014/092697
Other languages
English (en)
French (fr)
Inventor
井口真介
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/769,258 priority Critical patent/US9666838B2/en
Publication of WO2016029580A1 publication Critical patent/WO2016029580A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited

Definitions

  • Embodiments of the present invention relate to an organic electroluminescent device, a method of fabricating the same, and a display device.
  • FIG. 1 is a schematic cross-sectional view showing a solution of an electroluminescent material in a bank structure by an inkjet method in the prior art
  • FIG. 2 is a schematic structural view of a bank structure and a first electrode.
  • the bank structure 4 is formed above the base substrate 1 and the thin film transistor 2, the bank structure 4 defining an ink ejection region 16, in which the first electrode 3 is formed.
  • an electroluminescent material solution 5 is dripped over the first electrode 3 by an inkjet method, and the electroluminescent material solution 5 is collected in the ink ejection region 16, and then the drying device is used for the inkjet region 16.
  • the electroluminescent material solution 5 is subjected to a drying treatment to form an electroluminescent layer over the first electrode 3.
  • FIG. 3a is a schematic cross-sectional view of the electroluminescent layer formed by the drying treatment when the inside of the bank structure exhibits lyophilicity
  • FIG. 3b is a schematic cross-sectional view of the electroluminescent layer formed by the drying process when the inside of the bank structure exhibits lyophobicity.
  • Figures 3a and 3b during the drying process, if the inside of the bank structure 4 exhibits lyophilicity, a portion of the electroluminescent material solution 5 will adhere to the inner wall of the bank structure 4, so that the final electricity is formed.
  • the thickness of the peripheral region of the luminescent layer 6 is large, while the thickness of the intermediate region is small, that is, the electroluminescent layer 6 exhibits a "recessed" morphology.
  • the electroluminescent material solution 5 will accumulate toward the middle portion, so that the thickness of the peripheral region of the finally formed electroluminescent layer 6 is small, and the thickness of the intermediate portion is large, that is, electricity.
  • the luminescent layer 6 exhibits a "bumped" topography. It can be seen from the above that the film thickness of the finally formed electroluminescent layer is not uniform regardless of whether the inside of the bank structure is lyophilic or lyophobic, and the electroluminescent layer having uneven thickness is liable to cause color loss when emitting light or The color is uneven, which affects the performance of the electroluminescent device.
  • Some embodiments of the present invention provide a method of fabricating an organic electroluminescent device, the method of fabricating the organic electroluminescent device comprising:
  • An upper surface of the first electrode and an upper surface of the insulating base not covered with the first electrode are surface-treated to make the upper surface of the first electrode lyophilic, the insulating base
  • the upper surface not covered with the first electrode has lyophobicity
  • a second electrode is formed over the electroluminescent layer.
  • the step of forming an electroluminescent layer over the first electrode comprises:
  • the electroluminescent material solution is dried to form the electroluminescent layer.
  • the surface treatment is a plasma treatment.
  • the process conditions of the plasma treatment are:
  • the reaction pressure is normal pressure, and the reaction gas is carbon tetrafluoride.
  • the contact angle of the electroluminescent material solution with the first electrode is less than or equal to 40°.
  • the thickness d of the insulating base ranges from 2 ⁇ m ⁇ d ⁇ 10 ⁇ m.
  • the area ratio p of the area of the upper surface of the insulating base to the area of the predetermined area is: 1.0 ⁇ p ⁇ 3.0.
  • the area ratio p ranges from 1.2 ⁇ p ⁇ 2.0.
  • the cross section of the insulating base in the thickness direction thereof has an inverted trapezoidal shape.
  • the material of the insulating base is polyimide.
  • the step of forming the first electrode above the insulating base further includes:
  • An insulating pedestal is formed over the base substrate and the thin film transistor, and a via hole is formed on a position corresponding to a drain of the thin film transistor on the insulating pedestal;
  • the step of forming a first electrode over the insulating base includes:
  • the step of forming an insulating pedestal over the base substrate and the thin film transistor includes:
  • the insulating base substrate is patterned to form the insulating base and the via.
  • Some embodiments of the present invention also provide an organic electroluminescent device, the organic electroluminescent device comprising:
  • a first electrode formed above a predetermined area of the insulating base, an upper surface of the first electrode having lyophilic properties, and an upper surface of the insulating base not covered with the first electrode having liquid repellency ;
  • a second electrode is formed over the electroluminescent layer.
  • the organic electroluminescent device further includes: a thin film transistor formed over the substrate;
  • the insulating base is formed above the base substrate and the thin film transistor, and a via hole is formed on the insulating base at a position corresponding to a drain of the thin film transistor.
  • the upper surface of the insulating base is a flat surface.
  • the thickness d of the insulating base ranges from 2 ⁇ m ⁇ d ⁇ 10 ⁇ m.
  • the area ratio p of the area of the upper surface of the insulating base to the area of the predetermined area is: 1.0 ⁇ p ⁇ 3.0.
  • the area ratio p ranges from 1.2 ⁇ p ⁇ 2.0.
  • the cross section of the insulating base along its thickness direction has an inverted trapezoidal shape.
  • the material of the insulating base is polyimide.
  • the organic electroluminescent device further includes: a hole injection layer formed between the first electrode and the electroluminescent layer, and an electron injection layer, the electron injection layer Formed between the second electrode and the electroluminescent layer.
  • the organic electroluminescent device further includes an electron blocking layer and a hole blocking layer formed between the hole injection layer and the electroluminescent layer, the hole blocking A layer is formed between the electron injecting layer and the electroluminescent layer.
  • Some embodiments of the present invention also provide a display device comprising: an organic electroluminescent device employing the above-described organic electroluminescent device.
  • Some embodiments of the present invention provide an organic electroluminescent device, a method of fabricating the same, and a display device, wherein the method of fabricating the organic electroluminescent device includes: forming a first electrode over a predetermined region of the insulating base; The upper surface of the first electrode and the upper surface of the insulating base not covered with the first electrode are surface-treated such that the upper surface of the first electrode has lyophilic properties, and the upper surface of the insulating base not covered with the first electrode has Liquid repellency; forming an electroluminescent layer over the first electrode; forming a second electrode over the electroluminescent layer.
  • the thickness of the electroluminescent layer is relatively uniform, so that the organic electroluminescent device can generate light of a uniform color, thereby improving the performance of the organic electroluminescent device.
  • the organic electroluminescent device is provided in the display device, the display effect of the display device can also be effectively improved.
  • FIG. 1 is a schematic cross-sectional view showing a method of forming an electroluminescent material in a bank structure by an inkjet method in the prior art
  • FIG. 2 is a schematic structural view of a bank structure and a first electrode
  • 3a is a schematic cross-sectional view of an electroluminescent layer formed by a drying treatment when the inner side of the bank structure exhibits lyophilicity;
  • Figure 3b is a schematic cross-sectional view of the electroluminescent layer formed by the drying process when the inside of the bank structure is lyophobic;
  • 5a is a schematic cross-sectional view showing the first electrode formed above a predetermined region of the insulating base in the first embodiment
  • Figure 5b is a plan view of the insulating substrate of the first embodiment
  • FIG. 6 is a schematic cross-sectional view showing a solution of an electroluminescent material formed on a first electrode in the first embodiment
  • FIG. 8 is a schematic cross-sectional view showing a second electrode formed above the electroluminescent layer in the first embodiment
  • FIG. 9 is a flow chart of a method of fabricating an organic electroluminescent device according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic cross-sectional view showing a thin film transistor formed over a base substrate in Embodiment 2;
  • FIG. 11 is a schematic cross-sectional view showing an insulating base formed on a base substrate and a thin film transistor in Embodiment 2;
  • Figure 12 is a schematic structural view of the insulating base of Figure 11;
  • FIG. 13 is a schematic cross-sectional view showing the first electrode formed in a via hole and a predetermined region of the insulating base in the second embodiment
  • Figure 14 is a schematic structural view of the insulating base and the first electrode of Figure 13;
  • FIG. 15 is a schematic cross-sectional view showing a solution of an electroluminescent material formed in a via hole and above a first electrode by an inkjet method in Embodiment 2;
  • Figure 16 is an enlarged schematic view showing the structure of Figure A in Figure 15;
  • 17 is a schematic cross-sectional view showing a method of drying an electroluminescent material solution to form an electroluminescent layer in the second embodiment
  • FIG. 18 is a schematic cross-sectional view showing a second electrode formed above the electroluminescent layer in the second embodiment
  • Figure 19 is a schematic cross-sectional view showing an organic electroluminescent device according to a fifth embodiment of the present invention.
  • the first electrode is an anode of an organic electroluminescent device
  • the second electrode is a cathode of an organic electroluminescent device.
  • the manufacturing method includes:
  • Step 101 Form a first electrode over a predetermined area of the insulating base.
  • Figure 5a is a cross section of the first electrode formed above the predetermined region 9 of the insulating base in the first embodiment.
  • FIG. 5b is a top view of the insulating substrate in the first embodiment.
  • the upper surface of the insulating base 7 is a flat surface, and an indium tin oxide (ITO) film layer is formed on the insulating base 7 by a coating technique, and the ITO film layer pattern is formed by a patterning process.
  • the first electrode 3 is formed.
  • the predetermined region 9 is not in contact with the edge of the upper surface of the insulating base 7, and the area of the upper surface of the insulating base 7 and the area of the predetermined region 9 (the area of the upper surface of the first electrode 3)
  • the range of the area ratio p is: 1.0 ⁇ p ⁇ 3.0. In some embodiments, the area ratio p ranges from 1.2 ⁇ p ⁇ 2.0. The setting of the range of the area ratio p will be described in detail below.
  • the patterning process in the present application means at least a process of photoresist coating, exposure, development, etching, photoresist stripping, and the like.
  • Step 102 performing surface treatment on the upper surface of the first electrode and the upper surface of the insulating base not covered with the first electrode, so that the upper surface of the first electrode is lyophilic, and the insulating base is not covered with the first electrode.
  • the upper surface is lyophobic.
  • step 102 the surface of the upper surface of the first electrode 3 (corresponding to the predetermined region 9) and the insulating substrate 7 not covered with the first electrode 3 (corresponding to the unscheduled region 10) are subjected to surface treatment, after surface treatment
  • the upper surface of the first electrode 3 has lyophilic properties, and the upper surface of the insulating base 7 not covered with the first electrode 3 has liquid repellency.
  • the surface treatment is plasma treatment
  • the reaction pressure at the time of plasma treatment is normal pressure
  • the reaction gas is carbon tetrafluoride (chemical formula CF 4 ).
  • the degree of lyophilicity of the upper surface of the first electrode 3 can be controlled by adjusting factors such as treatment time, reaction gas, gas flow rate, etc. during plasma processing, and controlling the insulating substrate 7 not covered with the upper surface of the first electrode 3 The degree of liquid.
  • Step 103 Forming an electroluminescent layer over the first electrode.
  • Step 103 includes, for example:
  • Step 1031 forming an electroluminescent material solution over the first electrode by an inkjet method.
  • FIG. 6 is a schematic cross-sectional view showing the formation of an electroluminescent material solution over the first electrode in the first embodiment.
  • an electroluminescent material solution 5 is formed over the first electrode 3 by an inkjet method. Since the upper surface of the first electrode 3 is lyophilic, and the insulating substrate 7 is not covered with the liquid repellency of the upper surface of the first electrode 3, the electroluminescent material solution 5 can be produced on the upper surface of the first electrode 3. Proper accumulation.
  • Step 1032 Drying the electroluminescent material solution to form an electroluminescent layer.
  • Fig. 7 is a schematic cross-sectional view showing the electroluminescent material solution dried in the first embodiment to form an electroluminescent layer.
  • the electroluminescent material solution 5 is dried to form an electroluminescent layer 6 over the first electrode 3.
  • the electroluminescent layer 6 formed after the drying process does not occur in the prior art. The problem of "depression” or "protrusion” that occurs. At this time, the formed electroluminescent layer has a uniform thickness.
  • Step 104 Forming a second electrode over the electroluminescent layer.
  • Figure 8 is a schematic cross-sectional view showing the formation of a second electrode over the electroluminescent layer in the first embodiment.
  • a conductive film is formed over the electroluminescent layer 6 by a film formation technique, and the conductive film is patterned by a patterning process to form the second electrode 11.
  • the material of the conductive layer may be a conductive material such as silver, magnesium, magnesium silver alloy. Under the action of the first electrode 3 and the second electrode 11, for example, an appropriate voltage is applied to the first electrode 3 and the second electrode 11, and the electroluminescent layer 6 can emit light.
  • the case where the first electrode is an anode and the second electrode is a cathode in the embodiment only serves as an exemplary function, and does not limit the technical solution of the present application.
  • the first electrode can also be used as the cathode and the second electrode can be used as the anode, which will not be described in detail.
  • the organic electroluminescent device provided by the first embodiment of the present invention has a more uniform thickness of the electroluminescent layer of the organic electroluminescent device of the present embodiment than the organic electroluminescent device of the prior art.
  • Organic electroluminescent devices are capable of producing uniform color light, thereby enhancing the performance of organic electroluminescent devices.
  • FIG. 9 is a flowchart of a method for fabricating an organic electroluminescent device according to Embodiment 2 of the present invention. As shown in FIG. 9, the manufacturing method includes:
  • Step 201 Form a thin film transistor over the base substrate.
  • step 201 is a schematic cross-sectional view showing a thin film transistor formed over a base substrate in the second embodiment.
  • step 201 a plurality of patterning processes are performed to form a gate pattern, an active layer pattern, and a source pattern. And the drain pattern, thereby fabricating the thin film transistor 2 on the base substrate 1.
  • the structure of the thin film transistor 2 can be any type of thin film transistor 2 existing in the prior art, and the thin film transistor 2 can be prepared by any thin film transistor production process existing in the prior art. Let me repeat.
  • Step 202 forming an insulating base over the base substrate and the thin film transistor, on the insulating base A via hole is formed at a position corresponding to the drain of the thin film transistor.
  • step 202 includes:
  • Step 2021 Form an insulating base substrate over the base substrate 1 and the thin film transistor 2.
  • an insulating base substrate is formed over the base substrate 1 and the thin film transistor 2.
  • the insulating base substrate as a polyimide as an example, a polyimide film layer formed over the insulating base and the thin film transistor is applied by a coating process.
  • the thickness d of the polyimide ranges from 2 ⁇ m ⁇ d ⁇ 10 ⁇ m.
  • the thickness of the insulating base substrate in this embodiment can be adjusted accordingly according to actual production needs.
  • Step 2022 Perform a patterning process on the insulating base substrate to form an insulating base and vias.
  • FIG. 11 is a schematic cross-sectional view showing the insulating base 7 formed on the base substrate and the thin film transistor in the second embodiment
  • FIG. 12 is a schematic structural view of the insulating base in FIG.
  • the polyimide film layer is patterned by a patterning process to form an insulating base 7 and via holes 8.
  • the cross-sectional shape of the insulating base 7 formed by the patterning in the vertical direction is an inverted trapezoid, that is, the cross-sectional area of the insulating base 7 in the horizontal direction gradually increases from the bottom to the top.
  • the insulating base 7 may have a rectangular shape in a direction parallel to the surface of the substrate substrate.
  • the cross-sectional shape of the insulating base 7 in a direction perpendicular to the surface of the base substrate and perpendicular to one side of the above-mentioned rectangle is an inverted trapezoid. That is, the cross section of the insulating base 7 in the thickness direction thereof has an inverted trapezoidal shape.
  • the undercut of the inverted trapezoid is smaller than the size of the bottom side of the substrate.
  • the insulating base 7 in FIG. 11 partially covers the thin film transistor 2, and the upper surface of the insulating base 7 includes a predetermined region 9 and a peripheral region 10 surrounding the predetermined region 9.
  • Step 203 forming a first electrode above the predetermined area.
  • FIG. 13 is a schematic cross-sectional view showing a first electrode formed in a via hole and a predetermined region of the insulating base in the second embodiment
  • FIG. 14 is a schematic structural view of the insulating base and the first electrode in FIG.
  • a layer of indium tin oxide (chemical ITO) film is formed in the via 8 and the insulating base 7 by a coating technique, and the ITO film layer is patterned by a patterning process to form First electrode 3.
  • the first electrode 3 is located in the via 8 and above the predetermined region 9 of the insulating base 7.
  • the area ratio p of the product is in the range of 1.0 ⁇ p ⁇ 3.0. In some embodiments, the area ratio p ranges from 1.2 ⁇ p ⁇ 2.0. The setting of the range of the area ratio p will be described in detail below.
  • Step 204 performing surface treatment on the upper surface of the first electrode and the upper surface of the insulating base not covered with the first electrode, so that the upper surface of the first electrode is lyophilic, and the insulating base is not covered with the first electrode.
  • the upper surface is lyophobic.
  • the process of the step 204 is the same as the process of the step 102 in the first embodiment.
  • the process of the step 204 is the same as the process of the step 102 in the first embodiment.
  • Step 205 forming an electroluminescent material solution over the first electrode by an inkjet method.
  • FIGS. 15 and 16 are schematic cross-sectional views showing the formation of an electroluminescent material solution in a via hole and a first electrode by an ink-jet method in Embodiment 2, and Figure 16 is an enlarged schematic view showing the structure of Figure A in Figure 15.
  • an electroluminescent material solution 5 is formed in the via 8 and over the first electrode 3 by an inkjet method. Since the upper surface of the first electrode 3 is lyophilic, and the insulating substrate 7 is not covered with the liquid repellency of the upper surface of the first electrode 3, the electroluminescent material solution 5 can be produced on the upper surface of the first electrode 3. Proper accumulation.
  • the contact angle of the electroluminescent material solution 5 with the first electrode 3 is ⁇ .
  • the contact angle ⁇ of the electroluminescent material solution 5 with the first electrode 3 can be made by controlling the degree of lyophilicity of the upper surface of the first electrode 3 and the degree of lyophobicity of the insulating substrate 7 not covered with the upper surface of the first electrode 3. Less than or equal to 40°.
  • the electroluminescent material solution 5 can be made to have better wettability in the via holes, so that formation of bubbles at the corners of the via holes 8 can be avoided. Further, since the insulating base around the first electrode 3 has liquid repellency, the solution flow from the first electrode 3 to the peripheral insulating base is hindered.
  • the cross-sectional shape of the insulating base 7 is set to an inverted trapezoid. If droplets are dropped on the edge of the insulating base, the gas-solid surface tension will be deflected in the direction of the inside of the base parallel to the inverted trapezoidal side, in order to offset the solid-liquid interfacial tension and the gas-solid surface tension. For the horizontal component, the liquid-air interfacial tension needs to be deflected away from the susceptor, thus causing an increase in the contact angle.
  • the angle (contact angle) between the edge of the insulating base 7 and the organic electroluminescent material solution is excessively large, thereby further preventing the ink. overflow.
  • the setting of the range of the area ratio p will be described in detail below.
  • the area of the predetermined region 9 (the area of the upper surface of the first electrode 3) is smaller than the upper surface of the insulating base 7 in consideration of the need for a lyophobic surface at the periphery of the first electrode 3.
  • the area ratio of the area of the upper surface of the insulating base 7 to the area of the predetermined area 9 is larger than 1.
  • the area of the predetermined area 9 cannot be too small.
  • the area of the predetermined area 9 accounts for at least One-third of the area of the upper surface of the entire insulating base 7, that is, the area ratio p of the area of the upper surface of the insulating base 7 to the area of the predetermined area 9 is less than or equal to three.
  • the area ratio p has a value ranging from 1.2 ⁇ p ⁇ 2.0.
  • Step 206 Drying the electroluminescent material solution to form an electroluminescent layer.
  • FIG. 17 is a schematic cross-sectional view showing the electroluminescent material solution dried in the second embodiment to form an electroluminescent layer.
  • the electroluminescent material solution 5 is dried to form an electroluminescent layer 6 over the first electrode 3.
  • the electroluminescent layer 6 formed after the drying process does not occur in the prior art. The problem of "depression” or "protrusion” that occurs.
  • the thickness of the electroluminescent layer 6 formed by the step 206 is larger than that at the via hole 8, the thickness of other regions is uniform, and when the electroluminescent layer 6 emits light,
  • the cross-sectional area of the hole 8 is much smaller than the area of the upper surface of the entire electroluminescent layer 6, so that the unevenness of the light emission at the via hole does not affect the light-emitting effect of the entire electroluminescent layer 6, and the electroluminescent layer
  • the 6 surface also produces a uniform color of light.
  • Step 207 forming a second electrode over the electroluminescent layer.
  • Figure 18 is a schematic cross-sectional view showing the formation of a second electrode over the electroluminescent layer in the second embodiment.
  • a conductive film is formed on the electroluminescent layer 6 by a coating technique, and the conductive film is patterned by a patterning process to form a second electrode 11.
  • the material of the conductive layer may be silver. Conductive materials such as magnesium and magnesium silver alloys. Under the action of the first electrode 3 and the second electrode 11, the electroluminescent layer 6 can emit light.
  • the predetermined area 9 in FIG. 7 is rectangular does not limit the technical solution of the present invention.
  • the predetermined area 9 may also be other figures, such as a circle or a triangle. , polygons, etc.
  • the organic electroluminescent device provided by the second embodiment of the present invention has a more uniform thickness of the electroluminescent layer of the organic electroluminescent device of the present embodiment than the organic electroluminescent device of the prior art. Therefore, the organic electroluminescent device can generate light of a uniform color, thereby improving the performance of the organic electroluminescent device.
  • Embodiment 3 of the present invention provides an electroluminescent device.
  • the organic electroluminescent device includes an insulating base 7, a first electrode 3, an electroluminescent layer 6, and a second electrode 11.
  • the upper surface of the insulating base is a flat surface
  • the first electrode is formed above a predetermined area of the insulating base
  • the upper surface of the first electrode has lyophilic property
  • the upper surface of the insulating base not covered with the first electrode has lyophobic liquid
  • the electroluminescent layer is formed above the first electrode
  • the second electrode is formed above the electroluminescent layer.
  • the electroluminescent device provided in this embodiment can be prepared by the method for manufacturing the electroluminescent device provided in the first embodiment. For the specific process, reference may be made to the description in the first embodiment, and details are not described herein again.
  • Embodiment 3 of the present invention provides an organic electroluminescent device in which the thickness of the electroluminescent layer is uniform, so that the organic electroluminescent device can generate light of uniform color, thereby improving organic electroluminescence The performance of the light emitting device.
  • Embodiment 4 of the present invention provides an organic electroluminescent device.
  • the organic electroluminescent device comprises: a substrate substrate 1, a thin film transistor 2, an insulating base 7, a first electrode 3, and an electrolysis The light emitting layer 6 and the second electrode 11.
  • the thin film transistor 2 is formed above the base substrate 1.
  • the insulating base 7 is formed above the base substrate 1 and the thin film transistor 2.
  • the insulating base 7 is formed with a via 8 at a position corresponding to the drain of the thin film transistor 2.
  • An electrode is formed in the via hole 8 and above a predetermined region of the insulating base 7, the upper surface of the first electrode has lyophilic properties, and the upper surface of the insulating substrate not covered with the first electrode has liquid repellency, electroluminescence
  • the layer 6 is formed above the first electrode 3 and the second electrode 11 is formed above the electroluminescent layer 6.
  • the area ratio p of the area of the upper surface of the insulating base 7 to the area of the predetermined area is: 1.0 ⁇ p ⁇ 3.0. Further preferably, the area ratio p ranges from 1.2 ⁇ p ⁇ 2.0.
  • the cross-sectional shape of the insulating base 7 is an inverted trapezoid.
  • the material of the insulating base 7 is polyimide.
  • the thickness d of the insulating base 7 ranges from 2 ⁇ m ⁇ d ⁇ 10 ⁇ m.
  • electroluminescent device provided in this embodiment can be prepared by the manufacturing method of the organic electroluminescent device provided in the second embodiment.
  • the specific process reference may be made to the above embodiment. Description, no longer repeat here.
  • Embodiment 4 of the present invention provides an organic electroluminescent device in which the thickness of the organic electroluminescent layer is uniform, so that the organic electroluminescent device can generate light of uniform color, thereby improving organic electricity.
  • the performance of the electroluminescent device is uniform.
  • the organic electroluminescent device includes: a substrate substrate 1, a thin film transistor 2, an insulating base 7, and a first electrode. 3.
  • the drain of the thin film transistor 2 is formed with a via 8 formed in the via 8 and above a predetermined region of the insulating pedestal 7.
  • the upper surface of the first electrode has lyophilic properties, and the insulating pedestal is not covered.
  • the upper surface of the first electrode is lyophobic, the electroluminescent layer 6 is formed above the first electrode 3, and the second electrode 11 is formed above the electroluminescent layer 6.
  • the first electrode 3 is the anode of the electroluminescent device, and the second electrode 11 is the cathode of the electroluminescent device.
  • the electroluminescent device further includes: a hole injection layer 12 and an electron injection layer 15, the hole injection layer 12 is formed between the first electrode 3 and the electroluminescent layer 6, and the electron injection layer 15 is formed on the Between the two electrodes 11 and the electroluminescent layer 6, the hole injecting layer 12 serves to increase the number of holes moving from the first electrode 3 into the electroluminescent layer 6, and the electron injecting layer 15 is used to raise the second electrode. 11 The number of electrons moving into the electroluminescent layer 6.
  • the hole injection layer 12 and the electron injection layer 15 by providing the hole injection layer 12 and the electron injection layer 15, the number of electrons and holes in the electroluminescent layer 6 can be effectively increased, the recombination ratio of electrons and holes can be increased, and the electroluminescent layer 6 can be further improved. Luminous efficiency.
  • the electroluminescent device further includes an electron blocking layer 13 and a hole blocking layer 14 formed between the hole injection layer 12 and the electroluminescent layer 6, and the hole blocking layer 14 is formed.
  • the electron blocking layer 13 serves to block electrons in the electroluminescent layer 6 from moving toward the first electrode 3, thereby ensuring the number of electrons in the light emitting layer 6;
  • a hole blocking layer 14 is for blocking the movement of holes in the electroluminescent layer 6 toward the second electrode 11, thereby ensuring the number of holes in the electroluminescent layer 6.
  • the number of electrons and holes in the electroluminescent layer 6 can be effectively increased, the recombination ratio of electrons and holes can be increased, and the electroluminescence of the electroluminescent layer can be improved. effectiveness.
  • Embodiment 5 of the present invention provides an organic electroluminescent device, the organic electroluminescent device
  • the thickness of the electroluminescent layer is uniform, so that the organic electroluminescent layer can generate light of uniform color, thereby effectively improving the performance of the organic electroluminescent device.
  • Embodiment 6 of the present invention provides a display device comprising an organic electroluminescent device, and the organic electroluminescent device may be the organic electroluminescent device provided in any one of Embodiments 3 to 5 above.
  • the display device can display any product or component having a display function such as a panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • Embodiment 6 of the present invention provides a display device comprising the electroluminescent device provided in the above-mentioned Embodiment 3 and/or Embodiment 4 and/or Embodiment 5, since the electroluminescent device can generate uniform light
  • the display device can display stable pixels, thereby improving the display effect of the display device.

Abstract

一种有机电致发光器件及其制造方法、显示装置。该有机电致发光器件的制造方法包括:在绝缘基座(7)的预定区域的上方形成第一电极(3);对第一电极的上表面和绝缘基座未覆盖有第一电极的上表面进行表面处理,以使第一电极的上表面具有亲液性,绝缘基座未覆盖有第一电极的上表面具有疏液性;在第一电极的上方形成电致发光层(6);在电致发光层的上方形成第二电极(11)。在采用该制造方法所形成的有机电致发光器件中,电致发光层的厚度相对均匀。

Description

有机电致发光器件及其制造方法、显示装置 技术领域
本发明的实施例涉及有机电致发光器件及其制造方法、显示装置。
背景技术
近年来,在显示装置中形成电致发光器件时,需要涂布不同颜色的电致发光材料,采用喷墨方法来进行电致发光材料的涂布其效率最高且所形成的图形最精确。
在采用喷墨方法来涂布电致发光材料时,为限定出涂布区域以及避免电致发光材料溶液流入到相邻的像素,因此需要在显示装置上形成堤结构。图1为现有技术中采用喷墨方法在堤结构中形成电致发光材料溶液的截面示意图,图2为堤结构和第一电极的结构示意图。如图1和图2所示,该堤结构4形成于衬底基板1和薄膜晶体管2的上方,该堤结构4限定出喷墨区域16,在喷墨区域16内形成有第一电极3。现有技术中采用喷墨方法在第一电极3的上方滴注电致发光材料溶液5,电致发光材料溶液5在喷墨区域16内聚集,然后再使用干燥装置对喷墨区域16内的电致发光材料溶液5进行干燥处理,从而在第一电极3的上方形成电致发光层。
图3a为堤结构内侧呈现亲液性时经干燥处理所形成的电致发光层的截面示意图,图3b为堤结构内侧呈现疏液性时经干燥处理所形成的电致发光层的截面示意图。如图3a和3b所示,在进行干燥处理的过程中,若堤结构4内侧呈现亲液性时,则部分电致发光材料溶液5会粘在堤结构4的内壁上,使得最终形成的电致发光层6的周边区域的厚度较大,而中间区域的厚度较小,即电致发光层6呈现“凹陷”的形貌。若堤结构4内侧呈现疏液性时,则电致发光材料溶液5会向中部聚集,使得最终形成的电致发光层6的周边区域的厚度较小,而中间区域的厚度较大,即电致发光层6呈现“凸起”的形貌。由上可见,无论堤结构内侧呈现亲液性还是疏液性,最终形成的电致发光层的膜厚都是不均匀的,而厚度不均匀的电致发光层在发光时容易造成颜色损失或颜色不均,从而影响了电致发光器件的性能。
发明内容
本发明的一些实施例提供一种有机电致发光器件的制造方法,该有机电致发光器件的制造方法包括:
在绝缘基座的预定区域的上方形成第一电极;
对所述第一电极的上表面和所述绝缘基座未覆盖有所述第一电极的上表面进行表面处理,以使所述第一电极的上表面具有亲液性,所述绝缘基座未覆盖有所述第一电极的上表面具有疏液性;
在所述第一电极的上方形成电致发光层;
在所述电致发光层的上方形成第二电极。
在一个示例中,所述在所述第一电极的上方形成电致发光层的步骤包括:
通过喷墨方法在所述第一电极的上方形成电致发光材料溶液;
对所述电致发光材料溶液进行干燥处理以形成所述电致发光层。
在一个示例中,所述表面处理为等离子体处理。
在一个示例中,所述等离子体处理的工艺条件为:
反应压强为常压,反应气体为四氟化碳。
在一个示例中,所述电致发光材料溶液与所述第一电极的接触角小于或等于40°。
在一个示例中,所述绝缘基座的厚度d的范围为:2μm≤d≤10μm。
在一个示例中,所述绝缘基座的上表面的面积与所述预定区域的面积的面积比值p的范围为:1.0<p≤3.0。
在一个示例中,所述面积比值p的范围为:1.2≤p≤2.0。
在一个示例中,所述绝缘基座的沿其厚度方向上的截面具有倒梯形的形状。
在一个示例中,所述绝缘基座的材料为聚酰亚胺。
在一个示例中,所述在绝缘基座的上方形成第一电极的步骤之前还包括:
在衬底基板的上方形成薄膜晶体管;
在所述衬底基板和所述薄膜晶体管的上方形成绝缘基座,所述绝缘基座上对应所述薄膜晶体管的漏极的位置形成有过孔;
所述在绝缘基座的上方形成第一电极的步骤包括:
在所述绝缘基座的上表面和所述过孔内形成第一电极,所述第一电极通 过所述过孔与所述漏极电连接。
在一个示例中,所述在所述衬底基板和所述薄膜晶体管的上方形成绝缘基座的步骤包括:
在所述绝缘基座的上方和所述薄膜晶体管的上方形成绝缘基座基材;
对所述绝缘基座基材进行构图工艺以形成所述绝缘基座和所述过孔。
本发明的一些实施例还提供一种有机电致发光器件,该有机电致发光器件包括:
绝缘基座;
第一电极,形成于所述绝缘基座的预定区域的上方,所述第一电极的上表面具有亲液性,所述绝缘基座未覆盖有所述第一电极的上表面具有疏液性;
电致发光层,形成于所述第一电极的上方;
第二电极,形成于所述电致发光层的上方。
在一个示例中,有机电致发光器件还包括:形成于衬底基板的上方的薄膜晶体管;
所述绝缘基座形成于所述衬底基板和所述薄膜晶体管的上方,所述绝缘基座上对应所述薄膜晶体管的漏极的位置形成有过孔。
在一些示例中,所述绝缘基座的上表面为一个平面。
在一些示例中,所述绝缘基座的厚度d的范围为:2μm≤d≤10μm。
在一些示例中,所述绝缘基座的上表面的面积与所述预定区域的面积的面积比值p的范围为:1.0<p≤3.0。
在一些示例中,所述面积比值p的范围为:1.2≤p≤2.0。
在一些示例中,所述绝缘基座的沿其厚度方向上的截面具有倒梯形的形状。
在一些示例中,所述绝缘基座的材料为聚酰亚胺。
在一些示例中,有机电致发光器件还包括:空穴注入层和电子注入层,所述空穴注入层形成于所述第一电极和所述电致发光层之间,所述电子注入层形成于所述第二电极和所述电致发光层之间。
在一个示例中,有机电致发光器件还包括:电子阻挡层和空穴阻挡层,所述电子阻挡层形成于所述空穴注入层和所述电致发光层之间,所述空穴阻挡层形成于所述电子注入层和所述电致发光层之间。
本发明的一些实施例还提供一种显示装置,包括:有机电致发光器件,该有机电致发光器件采用上述的有机电致发光器件。
本发明的一些实施例提供了一种有机电致发光器件及其制造方法、显示装置,其中,该有机电致发光器件的制造方法包括:在绝缘基座的预定区域的上方形成第一电极;对第一电极的上表面和绝缘基座未覆盖有第一电极的上表面进行表面处理,以使第一电极的上表面具有亲液性,绝缘基座未覆盖有第一电极的上表面具有疏液性;在第一电极的上方形成电致发光层;在电致发光层的上方形成第二电极。在采用上述方法所形成的有机电致发光器件中,电致发光层的厚度相对均匀,从而使得有机电致发光器件能产生均匀颜色的光,进而提升了有机电致发光器件的性能。当在显示装置中设置该有机电致发光器件时,也可有效提升显示装置的显示效果。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为现有技术中采用喷墨方法在堤结构中形成电致发光材料溶液的截面示意图;
图2为堤结构和第一电极的结构示意图;
图3a为堤结构内侧呈现亲液性时经干燥处理所形成的电致发光层的截面示意图;
图3b为堤结构内侧呈现疏液性时经干燥处理所形成的电致发光层的截面示意图;
图4为本发明实施例一提供的有机电致发光器件的制造方法的流程图;
图5a为实施例一中在绝缘基座的预定区域的上方形成第一电极的截面示意图;
图5b为实施例一中绝缘基板的俯视图;
图6为实施例一中在第一电极的上方形成电致发光材料溶液的截面示意图;
图7为实施例一中对电致发光材料溶液进行干燥处理以形成电致发光层 的截面示意图;
图8为实施例一中在电致发光层的上方形成第二电极的截面示意图;
图9为本发明实施例二提供的有机电致发光器件的制造方法的流程图;
图10为实施例二中在衬底基板的上方形成薄膜晶体管的截面示意图;
图11为实施例二中在衬底基板和薄膜晶体管的上方形成绝缘基座的截面示意图;
图12为图11中绝缘基座的结构示意图;
图13为实施例二中在过孔内和绝缘基座的预定区域的上方形成第一电极的截面示意图;
图14为图13中绝缘基座和第一电极的结构示意图;
图15为实施例二中通过喷墨方法在过孔内和第一电极的上方形成电致发光材料溶液的截面示意图;
图16为图15中A结构的放大示意图;
图17为实施例二中对电致发光材料溶液进行干燥处理以形成电致发光层的截面示意图;
图18为实施例二中在电致发光层的上方形成第二电极的截面示意图;
图19为本发明实施例五提供的有机电致发光器件的截面示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
图4为本发明实施例一提供的有机电致发光器件的制造方法的流程图。如图4所示,以第一电极为有机电致发光器件的阳极,第二电极为有机电致发光器件的阴极为例,该制造方法包括:
步骤101:在绝缘基座的预定区域的上方形成第一电极。
图5a为实施例一中在绝缘基座的预定区域9的上方形成第一电极的截面 示意图,图5b为实施例一中绝缘基板的俯视图。如图5a和5b所示,绝缘基座的7上表面为一个平面,通过镀膜技术在绝缘基座7上形成一层氧化铟锡(ITO)膜层,再利用构图工艺对该ITO膜层图形化,以形成第一电极3。
需要说明的是,该预定区域9与绝缘基座7的上表面的边缘不接触,且绝缘基座7的上表面的面积与预定区域9的面积(第一电极的3上表面的面积)的面积比值p的范围为:1.0<p≤3.0。在一些实施例中,该面积比值p的范围为1.2≤p≤2.0。对于面积比值p的范围的设定将在下面的内容中进行详细的描述。
此外,本申请中的构图工艺是指至少可包括:光刻胶涂覆、曝光、显影、刻蚀、光刻胶剥离等工艺。
步骤102:对第一电极的上表面和绝缘基座未覆盖有第一电极的上表面进行表面处理,以使第一电极的上表面具有亲液性,绝缘基座未覆盖有第一电极的上表面具有疏液性。
在步骤102中,通过对第一电极3的上表面(对应预定区域9)以及绝缘基座7未覆盖有第一电极3的上表面(对应非预定区域10)进行表面处理,经过表面处理后的第一电极3的上表面具有亲液性,绝缘基座7未覆盖有第一电极3的上表面具有疏液性。
例如,表面处理为等离子体处理,在进行等离子体处理时的反应压强为常压,反应气体为四氟化碳(化学式CF4)。在等离子体处理过程中通过调整处理时间、反应气体、气体流量等因素可以控制第一电极3的上表面的亲液程度,以及控制绝缘基座7未覆盖有第一电极3的上表面的疏液程度。
步骤103:在第一电极的上方形成电致发光层。
步骤103例如包括:
步骤1031:通过喷墨方法在第一电极的上方形成电致发光材料溶液。
图6为实施例一中在第一电极的上方形成电致发光材料溶液的截面示意图。如图6所示,在步骤1031中,通过喷墨方法在第一电极3的上方形成电致发光材料溶液5。由于第一电极3的上表面具有亲液性,而绝缘基座7未覆盖有第一电极3的上表面具有疏液性,因此电致发光材料溶液5可以在第一电极3的上表面产生适当的堆积。
步骤1032:对电致发光材料溶液进行干燥处理以形成电致发光层。
图7为实施例一中对电致发光材料溶液进行干燥处理以形成电致发光层的截面示意图。如图7所示,对电致发光材料溶液5进行干燥处理从而在第一电极3的上方形成电致发光层6。本实施例在对电致发光材料溶液5进行干燥处理时,由于电致发光材料溶液5的侧面不与任何结构接触,因此在干燥处理后所形成电致发光层6不会发生现有技术中出现的“凹陷”或“突起”的问题。此时,形成的电致发光层其厚度均匀。
步骤104:在电致发光层的上方形成第二电极。
图8为实施例一中在电致发光层的上方形成第二电极的截面示意图。如图8所示,通过成膜技术在电致发光层6的上方形成一层导电膜,再利用构图工艺对该导电膜图形化,以形成第二电极11。该导电层的材料可以为银、镁、镁银合金等导电材料。在第一电极3和第二电极11的作用下,例如,在第一电极3和第二电极11上施加适当的电压,电致发光层6可进行发光。
需要说明的是,本实施例中第一电极为阳极,第二电极为阴极的情况仅起到示例性的作用,并不对本申请的技术方案产生限制。本申请中也可将第一电极作为阴极,第二电极作为阳极,该种情况不再进行详细的描述。
本发明实施例一提供的有机电致发光器件与现有技术中的有机电致发光器件相比,本实施例中的有机电致发光器件的电致发光层的厚度更为均匀,因此该电有机致发光器件能产生均匀颜色的光,从而提升了有机电致发光器件的性能。
实施例二
图9为本发明实施例二提供的有机电致发光器件的制造方法的流程图,如图9所示,该制造方法包括:
步骤201:在衬底基板的上方形成薄膜晶体管。
图10为实施例二中在衬底基板的上方形成薄膜晶体管的截面示意图,如图10所示,在步骤201中,通过多次构图工艺以形成栅极图形、有源层图形、源极图形和漏极图形,从而在衬底基板1上制备出该薄膜晶体管2。该薄膜晶体管2的结构可以为现有技术中存在的任一类型的薄膜晶体管2,且该薄膜晶体管2可采用现有技术中存在的任一薄膜晶体管生产工艺得以制备,具体制备过程此处不再赘述。
步骤202:在衬底基板和薄膜晶体管的上方形成绝缘基座,绝缘基座上 对应薄膜晶体管的漏极的位置形成有过孔。
可选地,步骤202包括:
步骤2021:在衬底基板1和薄膜晶体管2的上方形成绝缘基座基材。
在步骤2021中,在衬底基板1和薄膜晶体管2的上方形成绝缘基座基材。以绝缘基座基材为聚酰亚胺为例,通过涂布工艺以在绝缘基座和薄膜晶体管的上方形成的聚酰亚胺膜层。可选地,该聚酰亚胺的厚度d的范围为:2μm≤d≤10μm。
需要说明的是,本实施例中的绝缘基座基材的厚度可根据实际生产需要进行相应的调整。
步骤2022:对绝缘基座基材进行构图工艺以形成绝缘基座和过孔。
图11为实施例二中在衬底基板和薄膜晶体管的上方形成绝缘基座7的截面示意图,图12为图11中绝缘基座的结构示意图。如图11和图12所示,在步骤2022中,通过构图工艺对该聚酰亚胺膜层进行图形化,从而形成绝缘基座7和过孔8。例如,经图形化后所形成的绝缘基座7的竖直方向的截面形状为倒梯形,即绝缘基座7在水平方向的截面面积由下至上逐渐增大。例如,在平行于衬底基板表面的方向上,绝缘基座7可以为矩形形状。绝缘基座7的在垂直于衬底基板的表面且垂直于上述矩形的一个边的方向上的截面形状为倒梯形。也就是说,该绝缘基座7的沿其厚度方向上的截面具有倒梯形形状。该倒梯形的靠近衬底基板的底边尺寸小于远离衬底基板的底边的尺寸。
需要说明的是,在图11中的绝缘基座7部分覆盖薄膜晶体管2,该绝缘基座7的上表面包括预定区域9和围绕预定区域9的外围区域10。
步骤203:在预定区域的上方形成第一电极。
图13为实施例二中在过孔内和绝缘基座的预定区域的上方形成第一电极的截面示意图,图14为图13中绝缘基座和第一电极的结构示意图。如图13和图14所示,通过镀膜技术在过孔8内以及绝缘基座7上形成一层氧化铟锡(化学式ITO)膜层,再利用构图工艺对该ITO膜层图形化,以形成第一电极3。第一电极3位于过孔8内和绝缘基座7的预定区域9的上方。
需要说明的是,该预定区域9与绝缘基座7的上表面的边缘不接触,且绝缘基座7的上表面的面积与预定区域9的面积(第一电极的3上表面的面 积)的面积比值p的范围为:1.0<p≤3.0。在一些实施例中,该面积比值p的范围为1.2≤p≤2.0。对于面积比值p的范围的设定将在下面的内容中进行详细的描述。
步骤204:对第一电极的上表面和绝缘基座未覆盖有第一电极的上表面进行表面处理,以使第一电极的上表面具有亲液性,绝缘基座未覆盖有第一电极的上表面具有疏液性。
步骤204的过程与上述实施例一中的步骤102的过程相同,具体内容可参见上述实施例一中对步骤102的描述,此处不再赘述。
步骤205:通过喷墨方法在第一电极的上方形成电致发光材料溶液。
图15为实施例二中通过喷墨方法在过孔内和第一电极的上方形成电致发光材料溶液的截面示意图,图16为图15中A结构的放大示意图。如图15和16所示,在步骤205中,通过喷墨方法在过孔8内和第一电极3的上方形成电致发光材料溶液5。由于第一电极3的上表面具有亲液性,而绝缘基座7未覆盖有第一电极3的上表面具有疏液性,因此电致发光材料溶液5可以在第一电极3的上表面产生适当的堆积。该电致发光材料溶液5与第一电极3的接触角为θ。通过控制第一电极3的上表面的亲液程度和绝缘基座7未覆盖有第一电极3的上表面的疏液程度,可使得电致发光材料溶液5与第一电极3的接触角θ小于或等于40°。
此外,由于第一电极3的上表面具有亲液性,可使得电致发光材料溶液5在过孔内有较好的浸润性,从而可避免在过孔8的角落处形成气泡。此外,由于第一电极3周围的绝缘基座具有疏液性,从第一电极3向周边绝缘基座的溶液流动被阻碍。
当然,本实施例中上述将绝缘基座7的截面形状设置为倒梯形。如果有液滴滴到绝缘基座的边缘,由于气-固液面张力会平行于倒梯形侧边而向基座内部的方向偏转,那么为了抵消固-液界面张力和气-固液面张力的水平分量,则液-气界面张力需要向远离基座的方向偏转,因此,会造成接触角的增大。这样,即便有电致发光材料溶液5滴加到绝缘基座7的边缘,也会由于绝缘基座7边缘与有机电致发光材料溶液间的角度(接触角)过大,从而进一步地防止墨水溢流。
下面对面积比值p的范围的设定进行详细说明。在步骤103中设定面积 比值p的范围时,考虑到在第一电极3的周边需要存在疏液性的表面,因此预定区域9的面积(第一电极3的上表面的面积)要小于绝缘基座7的上表面的面积,则绝缘基座7的上表面的面积与预定区域9的面积的面积比值p要大于1。同时,为了保证电致发光器件的有效发光面积(与预定区域9的面积大小相等),因此预定区域9的面积又不能太小,作为本实施例的可选方案,预定区域9的面积至少占整个绝缘基座7的上表面的面积的三分之一,即绝缘基座7的上表面的面积与预定区域9的面积的面积比值p小于或等于3。当然,作为本发明的一些实施例,面积比值p的取值范围为1.2≤p≤2.0。
步骤206:对电致发光材料溶液进行干燥处理以形成电致发光层。
图17为实施例二中对电致发光材料溶液进行干燥处理以形成电致发光层的截面示意图。如图17所示,对电致发光材料溶液5进行干燥处理,从而在第一电极3的上方形成电致发光层6。本实施例在对电致发光材料溶液5进行干燥处理时,由于电致发光材料溶液5的侧面不与任何结构接触,因此在干燥处理后所形成电致发光层6不会发生现有技术中出现的“凹陷”或“突起”的问题。需要说明的是,通过步骤206所形成的电致发光层6除了在过孔8处的厚度较大外,其他区域的厚度都是均匀的,在该电致发光层6进行发光时,由于过孔8的横截面积远远小于整个电致发光层6的上表面的面积,因此过孔处的发光不均匀不会对整个电致发光层6的发光效果产生影响,则该电致发光层6表面也能产生均匀颜色的光。
步骤207:在电致发光层的上方形成第二电极。
图18为实施例二中在电致发光层的上方形成第二电极的截面示意图。如图18所示,通过镀膜技术在电致发光层6的上方形成一层导电膜,再利用构图工艺对该导电膜图形化,以形成第二电极11,该导电层的材料可以为银、镁、镁银合金等导电材料。在第一电极3和第二电极11的作用下,电致发光层6可进行发光。
需要说明的是,在图7中的预定区域9的形状为矩形的情况并不对本发明的技术方案产生限制,在本发明中,预定区域9还了可以为其他图形,例如:圆形、三角形、多边形等。
本发明实施例二提供的有机电致发光器件与现有技术中的有机电致发光器件相比,本实施例中的有机电致发光器件的电致发光层的厚度更为均匀, 因此该有机电致发光器件能产生均匀颜色的光,从而提升了有机电致发光器件的性能。
实施例三
本发明实施例三提供了一种电致发光器件,参考图8所示,该有机电致发光器件包括:绝缘基座7、第一电极3、电致发光层6和第二电极11。绝缘基座的上表面为一个平面,第一电极形成于绝缘基座的预定区域的上方,第一电极的上表面具有亲液性,绝缘基座未覆盖有第一电极的上表面具有疏液性,电致发光层形成于第一电极的上方,第二电极形成于电致发光层的上方。
本实施例提供的电致发光器件可通过上述实施例一提供的电致发光器件的制造方法进行制备,具体过程可参考上述实施例一中的描述,此处不再赘述。
本发明实施例三提供了一种有机电致发光器件,该有机电致发光器件中电致发光层的厚度均匀,因此该有机电致发光器件能产生均匀颜色的光,从而提升了有机电致发光器件的性能。
实施例四
本发明实施例四提供了一种有机电致发光器件,参考图18所示,该有机电致发光器件包括:衬底基板1、薄膜晶体管2、绝缘基座7、第一电极3、电致发光层6和第二电极11。薄膜晶体管2形成于衬底基板1的上方,绝缘基座7形成于衬底基板1和薄膜晶体管2的上方,绝缘基座7上对应薄膜晶体管2的漏极的位置形成有过孔8,第一电极形成于过孔8内和绝缘基座7的预定区域的上方,第一电极的上表面具有亲液性,绝缘基座未覆盖有第一电极的上表面具有疏液性,电致发光层6形成于第一电极3的上方,第二电极形11成于电致发光层6的上方。
可选地,绝缘基座7的上表面的面积与预定区域的面积的面积比值p的范围为:1.0<p≤3.0。进一步优选地,该面积比值p的范围为:1.2≤p≤2.0。
可选地,绝缘基座7的截面形状为倒梯形。
可选地,绝缘基座7的材料为聚酰亚胺。
可选地,该绝缘基座7的厚度d的范围为:2μm≤d≤10μm。
需要说明的是,本实施例提供的电致发光器件可通过上述实施例二提供的有机电致发光器件的制造方法进行制备,具体过程可参考上述实施例中的 描述,此处不再赘述。
本发明实施例四提供了一种有机电致发光器件,该有机电致发光器件中有机电致发光层的厚度均匀,因此该有机电致发光器件能产生均匀颜色的光,从而提升了有机电致发光器件的性能。
实施例五
图19为本发明实施例五提供的有机电致发光器件的截面示意图,如图19所示,该有机电致发光器件包括:衬底基板1、薄膜晶体管2、绝缘基座7、第一电极3、电致发光层6和第二电极11,其中,薄膜晶体管2形成于衬底基板1的上方,绝缘基座7形成于衬底基板1和薄膜晶体管2的上方,绝缘基座7上对应薄膜晶体管2的漏极的位置形成有过孔8,第一电极形成于过孔8内和绝缘基座7的预定区域的上方,第一电极的上表面具有亲液性,绝缘基座未覆盖有第一电极的上表面具有疏液性,电致发光层6形成于第一电极3的上方,第二电极形11成于电致发光层6的上方。在本发明实施例五中,第一电极3为电致发光器件的阳极,第二电极11为电致发光器件的阴极。
可选地,该电致发光器件还包括:空穴注入层12和电子注入层15,空穴注入层12形成于第一电极3和电致发光层6之间,电子注入层15形成于第二电极11和电致发光层6之间,空穴注入层12用于提高从第一电极3移动至电致发光层6中的空穴的数量,电子注入层15用于提高从第二电极11移动至电致发光层6中的电子的数量。本实施例中通过设置空穴注入层12和电子注入层15,可有效的增加电致发光层6中电子和空穴数量,提高电子和空穴的复合比例,进而提高了电致发光层6的发光效率。
进一步可选地,该电致发光器件还包括:电子阻挡层13和空穴阻挡层14,电子阻挡层13形成于空穴注入层12和电致发光层6之间,空穴阻挡层14形成于电子注入层15和电致发光层6之间,电子阻挡层13用于阻挡电致发光层6中的电子向第一电极3移动,从而保证发光层6中电子的数量;空穴阻挡层14用于阻挡电致发光层6中的空穴向第二电极11移动,从而保证电致发光层6中空穴的数量。本实施例中通过设置电子阻挡层13和空穴阻挡层14,可有效增加电致发光层6中电子和空穴数量,提高电子和空穴的复合比例,进而提高了电致发光层的发光效率。
本发明实施例五提供了一种有机电致发光器件,该有机电致发光器件的 电致发光层的厚度均匀,因此该有机电致发光层可产生均匀颜色的光,从而能有效提升有机电致发光器件的性能。
实施例六
本发明实施例六提供了一种显示装置,该显示装置包括有机电致发光器件,该有机电致发光器件可采用上述实施例三至实施例五中任一提供的有机电致发光器件,该显示装置可以显示面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本发明实施例六提供了一种显示装置,该显示装置包括上述实施例三和/或实施例四和/或实施例五提供的电致发光器件,由于该电致发光器件能产生均匀的光线,使得显示装置中能显示稳定的像素,从而提升了显示装置的显示效果。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2014年8月26日递交的中国专利申请第201410426332.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种有机电致发光器件的制造方法,包括:
    在绝缘基座的预定区域的上方形成第一电极;
    对所述第一电极的上表面和所述绝缘基座未覆盖有所述第一电极的上表面进行表面处理,以使所述第一电极的上表面具有亲液性,所述绝缘基座未覆盖有所述第一电极的上表面具有疏液性;
    在所述第一电极的上方形成电致发光层;
    在所述电致发光层的上方形成第二电极。
  2. 根据权利要求1所述的有机电致发光器件的制造方法,其中,所述在所述第一电极的上方形成电致发光层的步骤包括:
    通过喷墨方法在所述第一电极的上方形成电致发光材料溶液;
    对所述电致发光材料溶液进行干燥处理以形成所述电致发光层。
  3. 根据权利要求1或2所述的有机电致发光器件的制造方法,其中,所述表面处理为等离子体处理。
  4. 根据权利要求3所述的有机电致发光器件的制造方法,其中,所述等离子体处理的工艺条件为:
    反应压强为常压,反应气体为四氟化碳。
  5. 根据权利要求2-4中任一项所述的有机电致发光器件的制造方法,其中,所述电致发光材料溶液与所述第一电极的接触角小于或等于40°。
  6. 根据权利要求1-5中任一项所述的有机电致发光器件的制造方法,其中,所述绝缘基座的沿其厚度方向上的截面具有倒梯形形状。
  7. 根据权利要求1-6中任一项所述的有机电致发光器件的制造方法,其中,所述绝缘基座的材料为聚酰亚胺。
  8. 根据权利要求1-7中任一项所述的有机电致发光器件的制造方法,其中,所述在绝缘基座的上方形成第一电极的步骤之前还包括:
    在衬底基板的上方形成薄膜晶体管;
    在所述衬底基板和所述薄膜晶体管的上方形成绝缘基座,所述绝缘基座上对应所述薄膜晶体管的漏极的位置形成有过孔;
    所述在绝缘基座的上方形成第一电极的步骤包括:
    在所述绝缘基座的上表面和所述过孔内形成第一电极,所述第一电极通过所述过孔与所述漏极电连接。
  9. 根据权利要求8所述的有机电致发光器件的制造方法,其中,所述在所述衬底基板和所述薄膜晶体管的上方形成绝缘基座的步骤包括:
    在所述绝缘基座的上方和所述薄膜晶体管的上方形成绝缘基座基材;
    对所述绝缘基座基材进行构图工艺以形成所述绝缘基座和所述过孔。
  10. 一种有机电致发光器件,包括:
    绝缘基座;
    第一电极,形成于所述绝缘基座的预定区域的上方,所述第一电极的上表面具有亲液性,所述绝缘基座未覆盖有所述第一电极的上表面具有疏液性;
    电致发光层,形成于所述第一电极的上方;
    第二电极,形成于所述电致发光层的上方。
  11. 根据权利要求10所述的有机电致发光器件,还包括:形成于衬底基板的上方的薄膜晶体管;
    所述绝缘基座形成于所述衬底基板和所述薄膜晶体管的上方,所述绝缘基座上对应所述薄膜晶体管的漏极的位置形成有过孔。
  12. 根据权利要求10或11所述的有机电致发光器件,其中,所述绝缘基座的上表面为一个平面。
  13. 根据权利要求10-12中任一项所述的有机电致发光器件,其中,所述绝缘基座的厚度d的范围为:2μm≤d≤10μm。
  14. 根据权利要求10-13中任一项所述的有机电致发光器件,其中,所述绝缘基座的上表面的面积与所述预定区域的面积的面积比值p的范围为:1.0<p≤3.0。
  15. 根据权利要求14所述的有机电致发光器件,其中,所述面积比值p的范围为:1.2≤p≤2.0。
  16. 根据权利要求10-15中任一项所述的有机电致发光器件,其中,所述绝缘基座的沿其厚度方向上的截面具有倒梯形的形状。
  17. 根据权利要求10-16中任一项所述的有机电致发光器件,其中,所述绝缘基座的材料为聚酰亚胺。
  18. 根据权利要求10-17中任一项所述的有机电致发光器件,还包括:空 穴注入层和电子注入层,所述空穴注入层形成于所述第一电极和所述电致发光层之间,所述电子注入层形成于所述第二电极和所述电致发光层之间。
  19. 根据权利要求18所述的有机电致发光器件,还包括:电子阻挡层和空穴阻挡层,所述电子阻挡层形成于所述空穴注入层和所述电致发光层之间,所述空穴阻挡层形成于所述电子注入层和所述电致发光层之间。
  20. 一种显示装置,包括如上述权利要求10-19中任一项所述的有机电致发光器件。
PCT/CN2014/092697 2014-08-26 2014-12-01 有机电致发光器件及其制造方法、显示装置 WO2016029580A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/769,258 US9666838B2 (en) 2014-08-26 2014-12-01 Organic electroluminescent device and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410426332.6A CN104218190B (zh) 2014-08-26 2014-08-26 有机电致发光器件及其制造方法、显示装置
CN201410426332.6 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016029580A1 true WO2016029580A1 (zh) 2016-03-03

Family

ID=52099485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092697 WO2016029580A1 (zh) 2014-08-26 2014-12-01 有机电致发光器件及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US9666838B2 (zh)
CN (1) CN104218190B (zh)
WO (1) WO2016029580A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628114A (zh) * 2020-05-20 2020-09-04 深圳市华星光电半导体显示技术有限公司 显示面板及显示面板的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1446028A (zh) * 2002-03-20 2003-10-01 精工爱普生株式会社 配线基板、电子装置、电光学装置,及电子仪器
CN101785363A (zh) * 2007-06-28 2010-07-21 住友化学株式会社 薄膜的形成方法、有机电致发光元件的制造方法、半导体元件的制造方法及光学元件的制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3328297B2 (ja) 1998-03-17 2002-09-24 セイコーエプソン株式会社 表示装置の製造方法
JP2002015866A (ja) 2000-06-30 2002-01-18 Seiko Epson Corp 有機el表示体の製造方法
US7148508B2 (en) 2002-03-20 2006-12-12 Seiko Epson Corporation Wiring substrate, electronic device, electro-optical device, and electronic apparatus
JP2004055177A (ja) * 2002-07-16 2004-02-19 Dainippon Printing Co Ltd エレクトロルミネッセンス表示装置および製造方法
US20050153114A1 (en) * 2004-01-14 2005-07-14 Rahul Gupta Printing of organic electronic devices
CN101027608A (zh) * 2004-09-24 2007-08-29 昭和电工株式会社 构图和膜形成方法、电致发光器件及其制造方法以及电致发光显示装置
JP5089212B2 (ja) * 2007-03-23 2012-12-05 シャープ株式会社 発光装置およびそれを用いたledランプ、発光装置の製造方法
JP2009048980A (ja) * 2007-08-23 2009-03-05 Seiko Epson Corp 電気光学装置、および電気光学装置の製造方法
JP5376961B2 (ja) * 2008-02-01 2013-12-25 株式会社半導体エネルギー研究所 半導体装置
WO2009101983A1 (ja) * 2008-02-15 2009-08-20 Showa Denko K.K. 電極の表面処理方法および電極ならびに有機エレクトロルミネッセンス素子の製造方法
KR100976454B1 (ko) * 2008-03-04 2010-08-17 삼성에스디아이 주식회사 태양 전지 및 이의 제조 방법
JP2011210407A (ja) * 2010-03-29 2011-10-20 Sumitomo Chemical Co Ltd 発光装置
JP5836846B2 (ja) * 2011-03-11 2015-12-24 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
TW201316584A (zh) * 2011-10-11 2013-04-16 Hon Hai Prec Ind Co Ltd 有機發光二極體的製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1446028A (zh) * 2002-03-20 2003-10-01 精工爱普生株式会社 配线基板、电子装置、电光学装置,及电子仪器
CN101785363A (zh) * 2007-06-28 2010-07-21 住友化学株式会社 薄膜的形成方法、有机电致发光元件的制造方法、半导体元件的制造方法及光学元件的制造方法

Also Published As

Publication number Publication date
CN104218190B (zh) 2017-02-15
US20160064463A1 (en) 2016-03-03
US9666838B2 (en) 2017-05-30
CN104218190A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
US10886343B2 (en) Pixel defining layer and method for manufacturing the same, display panel and method for manufacturing the same, and display device
WO2016019643A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
US9935287B2 (en) Array substrate and manufacturing method therefor, and display device
US9722005B2 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
US11127798B2 (en) Pixel definition layer and manufacturing method thereof, display substrate, and display panel
WO2016165233A1 (zh) 有机发光二极管显示面板及其制作方法、显示装置
WO2019196587A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
JP2020531882A (ja) Oled表示マザーボード及びその製造方法、oled表示パネルの製造方法及びそのoled表示装置
US10818866B2 (en) Organic electroluminescent device, production method thereof, and display apparatus
CN114759071A (zh) 显示基板及其制造方法、显示装置
KR102459070B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
CN105742313B (zh) 有机发光显示装置及其制造方法
WO2017147952A1 (zh) 一种基于喷墨打印技术的有机发光显示装置及其制造方法
CN103928497A (zh) Oled显示器件及其制作方法、显示装置
JP2010073700A (ja) 有機elデバイスおよび有機elディスプレイパネル
WO2020010847A1 (zh) 显示面板及其制造方法和显示装置
CN108428719B (zh) 像素界定层的制作方法、显示基板及制作方法、显示装置
WO2018120362A1 (zh) Oled基板及其制作方法
WO2021233070A1 (zh) 显示基板及其制作方法、显示面板及显示装置
CN110164941B (zh) 像素界定层和制作方法、显示面板和制作方法、显示装置
JP2004063359A (ja) エレクトロルミネッセンス表示装置および製造方法
WO2020151057A1 (zh) 一种显示面板及其制作方法、显示装置
WO2021238645A1 (zh) 显示用基板及其制备方法、显示装置
JP2005203215A (ja) 有機el素子
WO2019192421A1 (zh) Oled基板及其制备方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14769258

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (28.06.17)

122 Ep: pct application non-entry in european phase

Ref document number: 14900679

Country of ref document: EP

Kind code of ref document: A1