WO2016028078A1 - 고강도 공중합 아라미드 섬유 및 그의 제조방법 - Google Patents

고강도 공중합 아라미드 섬유 및 그의 제조방법 Download PDF

Info

Publication number
WO2016028078A1
WO2016028078A1 PCT/KR2015/008650 KR2015008650W WO2016028078A1 WO 2016028078 A1 WO2016028078 A1 WO 2016028078A1 KR 2015008650 W KR2015008650 W KR 2015008650W WO 2016028078 A1 WO2016028078 A1 WO 2016028078A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
para
cyano
phenylenediamine
neutralizing agent
Prior art date
Application number
PCT/KR2015/008650
Other languages
English (en)
French (fr)
Inventor
구남대
노경환
Original Assignee
코오롱인더스트리(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리(주) filed Critical 코오롱인더스트리(주)
Priority to EP15834440.8A priority Critical patent/EP3184675B1/en
Priority to US15/502,820 priority patent/US20170241048A1/en
Priority to CN201580044655.1A priority patent/CN106661774B/zh
Priority to JP2017507428A priority patent/JP6629296B2/ja
Publication of WO2016028078A1 publication Critical patent/WO2016028078A1/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • D01F6/805Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides from aromatic copolyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Definitions

  • the present invention relates to a high-strength copolymerized aramid fiber and a method for producing the same, specifically, consisting of an aramid copolymer containing an aromatic group substituted with a cyano group (-CN), high intrinsic viscosity (IV), polydispersity index (PDI) It is related with the high strength copolymer aramid fiber with low) and high strength and high modulus.
  • a cyano group cyano group
  • IV high intrinsic viscosity
  • PDI polydispersity index
  • the present invention by removing the hydrogen chloride (HCl) generated during the polymerization reaction of the aramid copolymer with a neutralizing agent dispersed in an organic solvent and at the same time to be converted into a metal salt does not produce acid crumbs rather than generating an additional salt
  • the gelation due to acid crumb is delayed, that is, the polymerization time is increased to increase the intrinsic viscosity (IV) of the polymerized aramid copolymer and to narrow the molecular weight distribution while producing the additional salt for the organic solvent.
  • the present invention also relates to a method for producing high strength copolymerized aramid fibers by improving the solubility of aramid polymer and spinning the aramid copolymer having a high intrinsic viscosity (IV) as described above with good radioactivity without using sulfuric acid.
  • Aromatic polyamides collectively referred to as aramids, include para-aramids and meta-aramids having a structure in which benzene rings are linearly connected through an amide group (CONH).
  • Para-aramid has excellent properties such as high strength, high elasticity and low shrinkage.
  • the 5mm thick thread produced therefrom has a strong strength enough to lift 2 tons of automobiles and is used not only for bulletproof but also for various uses in high-tech industries in the aerospace field.
  • aramid is carbonized at 500 ° C or higher, and therefore has been in the spotlight in fields requiring high heat resistance.
  • the method for producing aramid fibers is well described in the applicant's Korean Patent No. 10-0910537. According to this registered patent, an aromatic diamine is dissolved in a polymerization solvent to prepare a mixed solution, and aromatic dieside is added thereto to prepare an aramid polymer. Subsequently, the aramid fiber is finally finished by dissolving the aramid polymer in a sulfuric acid solvent to prepare a spinning dope and spinning it, followed by solidification, washing, and drying processes.
  • the sulfuric acid solvent used to dissolve aramid polymer having high chemical resistance and removed after spinning should be treated properly after use because it causes environmental pollution.
  • the cost of treating such waste sulfuric acid is economical of aramid fiber. Lowers.
  • terephthaloyl dichloride is added and reacted with an organic solvent in which paraphenylenediamine and cyano-para-phenylenediamine are dissolved to prepare a solid aramid copolymer, followed by polymerization as described above.
  • a neutralizing agent such as calcium hydroxide was added to uniformly dissolve the solid aramid copolymer to prepare a spinning dope, and then the spinning dope was spun and solidified to prepare a copolymerized aramid fiber.
  • the conventional method can produce aramid fibers without using a sulfuric acid solvent, but the acid debris (HCl) generated by the reaction of paraphenylene and cyano-para-phenylenediamine and terephthaloyl dichloride (HCl) Acid crumb) occurred and gelation occurred quickly.
  • the reaction time was shortened, so that the intrinsic viscosity of the copolymer of polymerized aramid was low at 5.0 level, and the polydispersity index (PDI) was 2.2. Therefore, the spinning dope manufactured by the conventional method has a bad liquid crystallinity, and radioactivity falls, and there existed a limit in improving the strength and elastic modulus of the copolymerized aramid fiber manufactured by the conventional method.
  • the polydispersity index (PDI) of the aramid copolymer is 2.2 level
  • the molecular weight distribution is widened, so that the distribution of small molecular chains (short polymer chains) increases, and the small molecular chains (short length) Polymer chain) is located in the skin layer of the spun copolymerized aramid fiber (end), the end of the polymer chain in the skin layer increases, and the end of the polymer chain is first broken when the copolymerized aramid fiber is stretched (defect) ), The strength and modulus were lowered.
  • PDI polydispersity index
  • a neutralizing agent is added to the aramid copolymer obtained after the polymerization reaction to uniformly dissolve the solid aramid polymer to prepare a spinning dope, which takes a lot of time of 24 hours or more, thereby lowering the productivity of the spinning dope.
  • An object of the present invention consists of an aramid copolymer containing an aromatic group substituted with a cyano group (-CN) has a high intrinsic viscosity (IV), low polydispersity index (PDI), narrow molecular weight distribution, high strength and high elastic modulus It is to provide copolymerized aramid fibers.
  • Another object of the present invention is to remove paraphenylenediamine, cyano-para-phenylenediamine and terephthaloyl dichloride from hydrogen chloride (HCl) generated during the polymerization reaction with a neutralizing agent dispersed in an organic solvent.
  • HCl hydrogen chloride
  • a neutralizing agent dispersed in an organic solvent.
  • a spinning dope for copolymerized aramid fibers by sequentially adding and reacting paraphenylenediamine, cyano-para-phenylenediamine and terephthaloyl dichloride to an organic solvent, Before the reaction of paraphenylenediamine and cyano-para-phenylenediamine dissolved in the organic solvent with terephthaloyl dichloride, a neutralizing agent is added and dispersed in the organic solvent.
  • a neutralizing agent is added to and dispersed in an organic solvent in which paraphenylenediamine and cyano-para-phenylenediamine are not dissolved, or as another embodiment, paraphenylenediamine and cyano-para-phenylenediamine Before dissolving terephthal chloride in the dissolved organic solvent, a neutralizing agent is first added and dispersed.
  • the organic solvent is -10 prior to adding and reacting terephthaloyl dichloride to the organic solvent in which the neutralizing agent is dispersed and in which paraphenylenediamine and cyano-para-phenylenediamine are dissolved. Cool down to -1 °C.
  • hydrogen chloride (HCl) generated by the polymerization of paraphenylenediamine and cyano-para-phenylenediamine and terephthaloyl dichloride is immediately removed by a neutralizing agent dispersed in a solvent and converted into a metal salt. Since no crumbs are formed but additional salts are formed, the gelation due to acid crumbs is delayed, that is, the reaction time is long, resulting in high intrinsic viscosity (IV) and low polydispersity index (PDI).
  • the aramid copolymer having excellent solubility in organic solvents can be prepared by addition of a salt, and high strength copolymerized aramid fibers can be produced with good radioactivity without using sulfuric acid by using the aramid copolymer.
  • the method for producing copolymerized aramid fibers comprises the steps of (i) adding a neutralizing agent to an organic solvent to disperse it; (ii) dissolving paraphenylenediamine and cyano-para-phenylenediamine in a molar ratio of 1: 9 to 9: 1 in an organic solvent in which the neutralizing agent is dispersed; (iii) terephthaloyl dichloride is dissolved in the organic solvent in which the neutralizing agent is dispersed, and in which paraphenylenediamine and cyano-para-phenylenediamine are dissolved, paraphenylenediamine and cyano-para-phenylenediamine Preparing a spinning dope by adding and reacting in the same molar amount (Molar accout); And (iv) spinning the spinning dope to produce copolymerized aramid fibers.
  • the present invention is (i) dissolving paraphenylenediamine and cyano-para-phenylenediamine in an organic solvent in a molar ratio of 1: 9-9: 1; (ii) adding and dispersing a neutralizing agent in the organic solvent in which paraphenylenediamine and cyano-para-phenylenediamine are dissolved; (iii) terephthaloyl dichloride is dissolved in the organic solvent in which the neutralizing agent is dispersed, and in which paraphenylenediamine and cyano-para-phenylenediamine are dissolved, paraphenylenediamine and cyano-para-phenylenediamine Preparing a spinning dope by adding and reacting in the same molar amount (Molar accout); And (iv) spinning the spinning dope to produce copolymerized aramid fibers.
  • the neutralizing agent may be added to the organic solvent in advance, or paraphenylenediamine and cyano- to the organic solvent.
  • a neutralizing agent may be added to the organic solvent.
  • neutralizing agent calcium hydroxide, calcium oxide, pure sodium or lithium carbonate is used, and the amount of neutralizing agent is preferably 50 to 120 mol% based on the organic solvent.
  • the neutralizer removes hydrogen chloride (HCl) generated during the polymerization of paraphenylenediamine and cyano-para-phenylenediamine and terephthaloyl dichloride, and simultaneously generates additional salts to improve solubility of the polymer in the radiation dope. Play a role.
  • HCl hydrogen chloride
  • organic solvent examples include N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAc), hexamethylphosphoamide (HMPA), N, N, N ', N'- Tetramethyl urea (TMU), N, N-dimethylformamide (DMF), or mixtures thereof.
  • the neutralizer is first dispersed in an organic solvent.
  • paraphenylenediamine and cyano-para-phenylenediamine are dissolved in an organic solvent in which the neutralizing agent is dispersed in a molar ratio of 1: 9 to 9: 1.
  • an inorganic salt it is preferable to add an inorganic salt to increase the degree of polymerization.
  • the inorganic salt is added to increase the degree of polymerization of the aromatic polyamide, and specific examples thereof include halogenated alkali metal salts or halogenated alkaline earth metal salts such as CaCl 2 , LiCl, NaCl, KCl, LiBr and KBr. These inorganic salts may be added alone or in the form of a mixture of two or more thereof.
  • the amount of the inorganic salt added is preferably about 2 to 5% by weight based on the weight of the organic solvent.
  • the neutralizing agent is dispersed, and terephthaloyl dichloride is dissolved in the organic solvent in which paraphenylenediamine and cyano-para-phenylenediamine are dissolved.
  • the paraphenylenediamine and cyano-para-phenylene A spin dope is prepared by adding and reacting in a molar amount (Molar accout) equal to the total amount of diamine, and then the spin dope is spun to prepare a copolymerized aramid fiber.
  • the spinning dope is spun through spinneret and then coagulated, washed, stretched and wound to prepare copolymerized aramid fibers.
  • the neutralizing agent is dispersed as described above, and before the reaction of terephthaloyl dichloride is added to the organic solvent in which paraphenylenediamine and cyano-para-phenylenediamine are dissolved, the neutralizing agent is dispersed and paraphenyl
  • the method may further include a step of cooling the organic solvent in which the rendiamine and cyano-para-phenylenediamine are dissolved to -10 ° C to -1 ° C.
  • the cooling process is paraphenylenediamine because it suppresses the heat of polymerization generated by the polymerization reaction of paraphenylenediamine and cyano-para-phenylenediamine and terephthal chloride and the heat of neutralization caused by the neutralization reaction of neutralizing agent and hydrogen chloride (HCl). And the polymerization of cyano-para-phenylenediamine and terephthalchloride is maintained for a longer time, which results in higher intrinsic viscosity (IV) of the polymerized aramid copolymer.
  • the present invention removes hydrogen chloride (HCl) generated by the polymerization of paraphenylenediamine and cyano-para-phenylenediamine and terephthaloyl dichloride with a neutralizing agent dispersed in an organic solvent and at the same time converts the acid into a metal salt.
  • HCl hydrogen chloride
  • a neutralizing agent dispersed in an organic solvent
  • the addition of salts improves the solubility of the aramid polymer in the organic solvent, thereby spinning the aramid copolymer having a high intrinsic viscosity (IV) as described above with good radioactivity without using sulfuric acid to produce high strength copolymerized aramid fibers can do.
  • the polydispersity index (PDI) of the aramid copolymer is 1.5 to 2.0 level, the molecular weight distribution is narrowed, so that the distribution of polymer chains having a large molecular weight (long polymer chains) increases, and the polymer chains having a large molecular weight (length Long polymer chain) is located in the skin layer of the spun copolymerized aramid fiber (copolymer produced by reducing the end of the polymer chain that acts as a defect that is first cut when the copolymerized aramid fiber is tensile) The strength and elastic modulus of the aramid fibers are greatly improved.
  • PDI polydispersity index
  • the polydispersity index (PDI) of the aramid copolymer is 1.5 to 2.0 level, the molecular weight distribution is narrowed, so that the distribution of the polymer (chain) having a large molecular chain (length) with a large molecular weight increases, so that the liquid crystals of the radiation dope are dissolved. The castle is better and the radioactivity is improved.
  • the intrinsic viscosity (IV) of the aramid copolymer is 6.0 to 8.5 level, the length of the polymer chain is increased, thereby improving the strength and elastic modulus of the copolymerized aramid fiber.
  • the spin dope was extruded through a spinneret, and then sequentially passed through an air gap and a coagulating solution to form a multifilament having a linear density of 3,000 denier.
  • the spin pack pressure was 2,800 psi and the spinning speed was 600 mpm (meter per minuite).
  • the multifilament was washed with water and the washed multifilament was dried and stretched on a drying roller set at a temperature of 150 ° C., and then the stretched multifilament was heat-treated at 250 ° C. and wound to prepare copolymerized aramid fibers.
  • the spin dope was extruded through a spinneret, and then sequentially passed through an air gap and a coagulating solution to form a multifilament having a linear density of 3,000 denier.
  • the spin pack pressure was 2,800 psi and the spinning speed was 600 mpm (meter per minuite).
  • the multifilament was washed with water and the washed multifilament was dried and stretched on a drying roller set at a temperature of 150 ° C., and then the stretched multifilament was heat-treated at 250 ° C. and wound to prepare copolymerized aramid fibers.
  • the mixed solution in which the neutralizing agent is dispersed and paraphenylenediamine and cyano-para-phenylenediamine are dissolved is cooled to -5 ° C, and then 25.78 g of terephthaloyl dichloride is added thereto.
  • the reaction was carried out to prepare a spinning dope in which the aramid polymer was uniformly dissolved.
  • the spin dope was extruded through a spinneret, and then sequentially passed through an air gap and a coagulating solution to form a multifilament having a linear density of 3,000 denier.
  • the spin pack pressure was 2,800 psi and the spinning speed was 600 mpm (meter per minuite).
  • the multifilament was washed with water, and the washed multifilament was dried and stretched on a drying roller set at a temperature of 150 ° C., and then the stretched multifilament was heat-treated at 250 ° C. and wound to prepare aramid fibers.
  • the spin dope was extruded through a spinneret, and then sequentially passed through an air gap and a coagulating solution to form a multifilament having a linear density of 3,000 denier.
  • the spin pack pressure was 2,800 psi and the spinning speed was 600 mpm (meter per minuite).
  • the multifilament was washed with water, and the washed multifilament was dried and stretched on a drying roller set at a temperature of 150 ° C., and then the stretched multifilament was heat-treated at 250 ° C. and wound to prepare aramid fibers.
  • N-methyl-2-pyrrolidone (organic solvent) containing 3% by weight of calcium chloride (inorganic salt) was placed in a reactor under a nitrogen atmosphere, where 5.7 g of paraphenylenediamine and cyano-para-phenylenediamine were added. 10.55 g was dissolved in an organic solvent in the reactor to prepare a mixed solution.
  • the aramid copolymer prepared as described above was dissolved in calcium hydroxide (neutralizing agent) for 12 hours to prepare a spinning dope.
  • the spin dope was extruded through a spinneret, and then sequentially passed through an air gap and a coagulating solution to form a multifilament having a linear density of 3,000 denier.
  • the spin pack pressure was 2,800 psi and the spinning speed was 600 mpm (meter per minuite).
  • the multifilament was washed with water and the washed multifilament was dried and stretched on a drying roller set at a temperature of 150 ° C., and then the stretched multifilament was heat-treated at 250 ° C. and wound to prepare copolymerized aramid fibers.
  • the molecular weight distribution of the copolymerized aramid fiber was evaluated by the following method.
  • the aramid fibers were dissolved in dimethylformamide (DMF) to prepare a sample, and the prepared sample was shown in a water manual injector kit at a temperature of 35 ° C. and a flow rate of 10 ml / min.
  • a weight average molecular weight and a number average molecular weight were obtained in a Gel Permeation Chromatography equipped with a Refraction Index detector using a Shodex GPC column, from which Equation 1 was used. The molecular weight distribution is measured.
  • Mw is a weight average molecular weight
  • Mn is a number average molecular weight
  • the strength and modulus of the aramid fibers were measured according to the ASTM D885 test method.
  • the tensile speed was 300 m / min, and the super load was fineness x 1/30 g.
  • the elastic modulus was obtained from the slope on the S-S curve, and the strength was obtained from the maximum load.
  • Intrinsic viscosity (I.V.) is defined by the equation
  • C is the concentration of the polymer solution (solution in which 0.5 g of the polymer is dissolved in 100 ml of concentrated sulfuric acid), and the relative viscosity ⁇ rel is the flow time ratio between the polymer solution and the solvent measured by a capillary viscometer at 30 ° C. Unless stated otherwise, intrinsic viscosity values were determined using 95-98% concentrated sulfuric acid solvent.
  • High-strength copolymerized aramid fibers according to the present invention can be used as a material for the fiber / resin composite material used in bulletproof material or automobile parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polyamides (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명의 고강도 공중합 아라미드 섬유는 시아노기(-CN)가 치환된 방향족기를 포함하는 아라미드 공중합체로 이루어져 고유점도가(IV)가 6.0~8.5이고, 다분산지수(PDI)가 1.5~2.0이고, 강도가 23~32g/d이고, 탄성율이 1,100~1,300g/d이다. 상기 고강도 공중합 아라미드 섬유는 유기용매에 파라페닐렌디아민 및 시아노-파라-페닐렌디아민과 테레프탈로일 디클로라이드를 차례로 첨가, 반응시켜 공중합 아라미드 섬유를 제조할 때, 유기용매에 용해된 파라페닐렌디아민 및 시아노-파라-페닐렌디아민과 테레프탈로일 디클로라이드가 반응하기 이전단계에 상기 유기용매에 중화제를 투입, 분산시켜 주는 방법으로 제조할 수 있다. 본 발명은 파라페닐렌디아민 및 시아노-파라-페닐렌디아민과 테레프탈로일 디클로라이드의 중합반응으로 발생되는 염화수소(HCl)이 용매중에 분산되어 있는 중화제에 의해 바로 제거됨과 동시에 금속염으로 변하게 되어 산 부스러기(Acid crumb)가 생기지 않고 오히려 추가염이 생성되기 때문에, 산 부스러기(Acid crumb)로 인한 겔화가 지연되어, 다시 말해 반응시간이 길어져 높은 고유점도(IV)와 낮은 다분산지수(PDI)를 구비하면서도, 추가염 생성으로 유기용매에 대한 용해성이 뛰어난 아라미드 공중합체를 제조할 수 있고, 상기 아라미드 공중합체를 사용하여 고강도의 공중합 아라미드 섬유를 황산사용 없이도 양호한 방사성으로 제조할 수 있다.

Description

고강도 공중합 아라미드 섬유 및 그의 제조방법
본 발명은 고강도 공중합 아라미드 섬유 및 그의 제조방법에 관한 것으로서, 구체적으로는, 시아노기(-CN)가 치환된 방향족기를 포함하는 아라미드 공중합체로 이루어져 고유점도(IV)가 높고, 다분산지수(PDI)가 낮고, 강도 및 탄성율이 높은 고강도 공중합 아라미드 섬유에 관한 것이다. 또한 본 발명은 상기 아라미드 공중합체의 중합반응 중 발생되는 염화수소(HCl)를 유기용매 중에 분산되어 있는 중화제로 바로 제거함과 동시에 금속염으로 변하게 하여 산 부스러기(Acid crumb)가 생기지 않고 오히려 추가염을 생성하므로써, 산 부스러기(Acid crumb)로 인한 겔화가 지연되어, 다시 말해 중합반응 시간을 길게하여 중합되는 아라미드 공중합체의 고유점도(IV)를 높혀주고 분자량 분포를 좁게하면서도 상기 추가염 생성으로 유기용매에 대한 아라미드 중합체의 용해성도 향상시켜 상기와 같이 높은 고유점도(IV)를 갖는 아라미드 공중합체를 황산사용 없이도 양호한 방사성으로 방사하여 고강도 공중합 아라미드 섬유를 제조하는 방법에 관한 것이다.
아라미드로 통칭되는 방향족 폴리아미드는, 벤젠 고리들이 아미드기(CONH)를 통해 직선적으로 연결된 구조를 갖는 파라계 아라미드와 그렇지 않은 메타계 아라미드를 포함한다.
파라계 아라미드는 고강도, 고탄성, 저수축 등의 우수한 특성을 가지고 있다. 이로부터 제조된 5㎜정도 굵기의 가느다란 실은 2톤의 자동차를 들어올릴 정도의 막강한 강도를 가지고 있어 방탄 용도로 사용될 뿐만 아니라, 우주항공 분야의 첨단 산업에서 다양한 용도로 사용되고 있다.
또한, 아라미드는 500℃이상에서 검게 탄화하므로 고내열성이 요구되는 분야에서도 각광을 받고 있다.
아라미드 섬유의 제조방법이 본 출원인의 대한민국 등록특허 제10-0910537호에 잘 설명되어 있다. 이 등록 특허에 의하면, 방향족 디아민을 중합용매에 녹여 혼합용액을 준비하고 이것에 방향족 디에시드를 첨가하여 아라미드 중합체를 제조한다. 이어서, 아라미드 중합체를 황산용매에 녹여 방사도프를 제조하고 이를 방사한 후 응고, 수세, 및 건조 공정들을 차례로 수행함으로써 아라미드 섬유가 최종적으로 완성된다.
그러나, 이와 같은 공정을 통해 아라미드 섬유를 제조할 경우, 고체 상태의 아라미드 중합체를 제조한 후 이를 다시 황산용매에 녹여 방사도프를 제조하여 방사하기 때문에, 제조공정이 복잡해지고 인체에 유해할 뿐만 아니라 장치가 부식에 따른 내구성 저하 등의 문제점들이 있다.
더욱이, 높은 내화학성을 갖는 아라미드 중합체를 녹이기 위하여 사용되고 방사 후에는 제거되는 황산용매는 환경 오염을 유발하기 때문에 사용 후에 적절하게 처리되어야 하는데, 이와 같은 폐황산의 처리에 소요되는 비용은 아라미드 섬유의 경제성을 저하시킨다.
상기 문제점을 해결하기 위해서, 대한민국 등록특허 제10-171994호 및 대한민국 공개특허 제10-2013-0075202호 등에서는 공중합된 아라미드 중합용액을 바로 방사도프로 이용함으로써 아라미드 중합용액을 바로 방사도프로 이용함으로써 황산용매의 사용 없이도 아라미드 섬유를 제조하는 방법을 게재하고 있다.
구체적으로 상기 종래기술에서는 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 유기용매에 테레프탈로일 디클로라이드를 첨가, 반응시켜 고체상 아라미드 공중합체를 제조한 다음, 상기와 같이 중합반응이 완료된 고체상 아라미드 공중합체를 분쇄 후 수산화칼슘 등의 중화제를 첨가하여 고체상 아라미드 공중합체를 균일하게 용해시켜 방사도프를 제조한 다음, 상기 방사도프를 방사, 응고하여 공중합 아라미드 섬유를 제조하였다.
상기 종래방법은 황산용매의 사용 없이도 아라미드 섬유를 제조할 수는 있으나, 파라페닐렌 및 시아노-파라-페닐렌디아민과 테레프탈로일 디클로라이드가 반응하면서 생성되는 염화수소(HCl)에 의해서 산 부스러기(Acid crumb)가 발생되어 겔화가 빨리 일어나 다시 말해 반응시간이 짧아져 중합된 아라미드의 공중합체의 고유점도가 5.0 수준으로 낮고, 다분산지수(PDI)가 2.2 수준으로 분자량 분포가 넓게되는 문제가 있었고, 그로 인해 종래방법으로 제조되는 방사도프는 액정성이 나빠서 방사성이 저하되고, 종래방법으로는 제조된 공중합 아라미드 섬유의 강도 및 탄성율을 향상시키는데 한계가 있었다.
구체적으로, 아라미드 공중합체의 다분산지수(PDI)가 2.2 수준인 경우 분자량분포가 넓어져 분자량이 작은 고분자쇄(길이가 짧은 고분자쇄)의 분포가 많아지고, 분자량이 작은 고분자쇄(길이가 짧은 고분자쇄)는 방사된 공중합 아라미드 섬유의 스킨층(Skin layer)에 위치하게 되어 결국 스킨층내 고분자쇄의 끝부분이 많아지고, 공중합 아라미드 섬유를 인장시 고분자쇄의 끝부분이 먼저 절단되는 결점(defect)으로 작용하여 강도 및 탄성율이 저하되었다.
또한, 아라미드 공중합체의 고유점도(IV)가 5.0 수준으로 낮아도 고분자쇄의 길이가 짧아져 상기와 같은 이유로 제조된 공중합 아라미드 섬유의 강도 및 탄성율이 저하되었다.
또한, 상기 종래방법은 중합반응 후 얻은 아라미드 공중합체에 중화제를 투입하여 고체상 아라미드 중합체를 균일하게 용해시켜 방사도프를 제조하는데는 24시간 이상의 많은 시간이 소요되고, 이로 인해 방사도프의 생산성이 저하되는 문제점이 있었다.
본 발명의 과제는 시아노기(-CN)가 치환된 방향족기를 포함하는 아라미드 공중합체로 이루어져 고유점도(IV)가 높고, 다분산지수(PDI)가 낮아 분자량 분포가 좁고, 강도 및 탄성율이 높은 고강도 공중합 아라미드 섬유를 제공하는 것이다.
본 발명의 또 다른 과제는 파라페닐렌디아민 및 시아노-파라-페닐렌디아민과 테레프탈로일 디클로라이드를 중합반응 중에 발생되는 염화수소(HCl)를 유기용매 중에 분산되어 있는 중화제로 바로 제거함과 동시에 금속염으로 변하게 하여 산 부스러기(Acid crumb)가 생기지 않고 오히려 추가염을 생성하므로써, 산 부스러기(Acid crumb)로 인한 겔화가 지연되어, 다시 말해 중합반응 시간을 길게하여 중합되는 아라미드 공중합체의 고유점도(IV)를 높혀주고 분자량 분포를 좁게하면서도 상기 추가염 생성으로 유기용매에 대한 아라미드 중합체의 용해성도 향상시켜 상기와 같이 높은 고유점도(IV)를 갖는 아라미드 공중합체를 황산사용 없이도 양호한 방사성으로 방사하여 고강도 공중합 아라미드 섬유를 제조하는 방법을 제공하는 것이다.
이와 같은 과제를 달성하기 위해서, 본 발명에서는 유기용매에 파라페닐렌디아민 및 시아노-파라-페닐렌디아민과 테레프탈로일 디클로라이드를 차례로 첨가, 반응시켜서 공중합 아라미드 섬유용 방사도프를 제조할 때, 상기 유기용매에 용해된 파라페닐렌디아민 및 시아노-파라-페닐렌디아민과 테레프탈로일 디클로라이드가 반응하기 이전단계에 상기 유기용매에 중화제를 투입, 분산시켜 준다.
구현일례로서, 파라페닐렌디아민 및 시아노-파라-페닐렌디아민이 용해되지 않는 유기용매에 중화제를 투입, 분산시키거나, 또 다른 구현일례로서 파라페닐렌디아민 및 시아노-파라-페닐렌디아민이 용해되어 있는 유기용매에 테레프탈클로라이드를 용해시키기 전에 중화제를 먼저 투입, 분산시켜 준다.
또 다른 구현일례로서, 중화제가 분산되어 있으며, 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매에 테레프탈로일 디클로라이드를 첨가, 반응시키기 전에 상기 유기용매를 -10℃ 내지 -1℃로 냉각시켜 준다.
본 발명은 파라페닐렌디아민 및 시아노-파라-페닐렌디아민과 테레프탈로일 디클로라이드의 중합반응으로 발생되는 염화수소(HCl)이 용매중에 분산되어 있는 중화제에 의해 바로 제거됨과 동시에 금속염으로 변하게 되어 산 부스러기(Acid crumb)가 생기지 않고 오히려 추가염이 생성되기 때문에, 산 부스러기(Acid crumb)로 인한 겔화가 지연되어, 다시 말해 반응시간이 길어져 높은 고유점도(IV)와 낮은 다분산지수(PDI)를 구비하면서도, 추가염 생성으로 유기용매에 대한 용해성이 뛰어난 아라미드 공중합체를 제조할 수 있고, 상기 아라미드 공중합체를 사용하여 고강도의 공중합 아라미드 섬유를 황산사용 없이도 양호한 방사성으로 제조할 수 있다.
이하, 본 발명을 상세하게 설명한다.
아래에서 설명되는 본 발명의 실시예들은 본 발명의 이해를 돕기 위한 예들에 불과한 것으로서 본 발명의 권리범위를 제한하지 않으며, 본 발명의 기술적 사상 및 범위를 벗어나지 않는 범위 내에서 본 발명의 다양한 변경 및 변형이 가능하다는 점은 당업자에게 자명할 것이다. 따라서, 본 발명은 특허청구범위에 기재된 발명 및 그 균등물의 범위 내에 드는 변경 및 변형을 모두 포함한다.
본 발명에 따른 공중합 아라미드 섬유의 제조방법은, (i) 유기용매에 중화제를 투입하여 분산시키는 공정; (ii) 중화제가 분산된 유기용매에 파라페닐렌디아민과 시아노-파라-페닐렌디아민을 1:9~9:1의 몰비로 용해시키는 공정; (iii) 중화제가 분산되어 있으며, 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매에 테레프탈로일 디클로라이드를 상기 파라페닐렌디아민과 시아노-파라-페닐렌디아민의 총량과 동일한 몰량(Molar accout)으로 첨가, 반응시켜 방사도프를 제조하는 공정; 및 (iv) 상기 방사도프를 방사하여 공중합 아라미드 섬유를 제조하는 공정;을 포함한다.
본 발명의 또 다른 구현일례로서, 본 발명은 (i) 유기용매에 파라페닐렌디아민과 시아노-파라-페닐렌디아민을 1:9~9:1의 몰비로 용해시키는 공정; (ii) 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매에 중화제를 투입하여 분산시키는 공정; (iii) 중화제가 분산되어 있으며, 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매에 테레프탈로일 디클로라이드를 상기 파라페닐렌디아민과 시아노-파라-페닐렌디아민의 총량과 동일한 몰량(Molar accout)으로 첨가, 반응시켜 방사도프를 제조하는 공정; 및 (iv) 상기 방사도프를 방사하여 공중합 아라미드 섬유를 제조하는 공정;을 포함한다.
구체적으로, 본 발명은 유기용매에 파라페닐렌디아민과 시아노-파라-페닐렌디아민을 투입하기 이전에 상기 유기용매에 미리 중화제를 투입할 수도 있고, 유기용매에 파라페닐렌디아민과 시아노-파라-페닐렌디아민을 투입한 후 테레프탈로일 디클로라이드를 투입하기 이전 사이에 상기 유기용매에 중화제를 투입할 수도 있다.
상기 중화제로는 수산화칼슘, 산화칼슘, 순산화나트륨 또는 탄산리튬 등을 사용하며, 중화제 첨가량은 유기용매 대비 50~120몰%인 것이 바람직하다.
상기 중화제는 파라페닐렌디아민 및 시아노-파라-페닐렌디아민과 테레프탈로일 디클로라이드의 중합반응시 발생되는 염화수소(HCl)을 제거함과 동시에 추가염을 생성하여 방사도프내 중합물의 용해성을 향상시키는 역할을 한다.
상기 유기용매의 구체적인 예로는 N-메틸-2-피롤리돈(NMP), N,N-디메틸아세트아미드(DMAc), 헥사메틸포스포아미드(HMPA), N,N,N',N'-테트라메틸 우레아(TMU), N,N-디메틸포름아미드(DMF), 또는 이들의 혼합물을 들 수 있다.
본 발명의 구현일례를 살펴보면, 먼저 유기용매 내에 중화제를 투입하여 분산시켜 준다.
다음으로는, 중화제가 분산된 유기용매에 파라페닐렌디아민과 시아노-파라-페닐렌디아민을 1:9~9:1의 몰비로 용해시켜 준다. 이때 중합도 증가를 위해 무기염을 첨가해 주는 것이 바람직하다.
상기 무기염은 방향족 폴리아미드의 중합도를 증가시키기 위하여 첨가하는 것으로서, 그 구체적인 예로는 CaCl2, LiCl, NaCl, KCl, LiBr 및 KBr 등과 같은 할로겐화 알칼리 금속염 또는 할로겐화 알칼리 토금속염을 들 수 있다. 이들 무기염은 단독으로 또는 2종 이상의 혼합물의 형태로 첨가될 수 있다.
상기 무기염의 첨가량은 유기용매 중량 대비 2~5중량% 정도인 것이 바람직하다.
다음으로는, 중화제가 분산되어 있으며, 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매에 테레프탈로일 디클로라이드를 상기 파라페닐렌디아민과 시아노-파라-페닐렌디아민의 총량과 동일한 몰량(Molar accout)으로 첨가, 반응시켜 방사도프를 제조한 다음, 상기 방사도프를 방사하여 공중합 아라미드 섬유를 제조한다.
구체적인 일례로, 상기 방사도프를 방사구금을 통해 방사한 후 응고,수세, 연신 및 권취하여 공중합 아라미드 섬유를 제조한다.
본 발명은 상기와 같이 중화제가 분산되어 있으며, 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매에 테레프탈로일 디클로라이드를 첨가 반응시키기 전에 중화제가 분산되어 있으며 파라페닐렌디아민 및 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매를 -10℃ 내지 -1℃로 냉각시켜 주는 공정을 추가로 더 포함할 수도 있다.
상기 냉각공정은 파라페닐렌디아민 및 시아노-파라-페닐렌디아민과 테레프탈클로라이드의 중합반응으로 발생되는 중합열과 중화제와 염화수소(HCl)의 중화반응으로 발생되는 중화열을 억제해 주기 때문에 파라페닐렌디아민 및 시아노-파라-페닐렌디아민과 테레프탈클로라이드의 중합반응이 보다 더 오랫동안 유지되고, 그로 인해 중합된 아라미드 공중합체의 고유점도(IV)는 보다 더 높아지게 된다.
본 발명은 파라페닐렌디아민 및 시아노-파라-페닐렌디아민과 테레프탈로일 디클로라이드의 중합반응으로 발생되는 염화수소(HCl)를 유기용매 중에 분산되어 있는 중화제로 바로 제거함과 동시에 금속염으로 변하게 하여 산 부스러기(Acid crumb)가 생기지 않고 오히려 추가염을 생성하므로써, 산 부스러기(Acid crumb)로 인한 겔화가 지연되어, 다시 말해 중합반응 시간을 길게하여 중합되는 아라미드 공중합체의 고유점도(IV)를 높혀주고 분자량 분포를 좁게하면서도 상기 추가염 생성으로 유기용매에 대한 아라미드 중합체의 용해성도 향상시켜 상기와 같이 높은 고유점도(IV)를 갖는 아라미드 공중합체를 황산사용 없이도 양호한 방사성으로 방사하여 고강도 공중합 아라미드 섬유를 제조할 수 있다.
구체적으로, 아라미드 공중합체의 다분산지수(PDI)가 1.5~2.0수준인 경우 분자량 분포가 좁아져 분자량이 큰 고분자쇄(길이가 긴 고분자쇄)의 분포가 많아지고, 분자량이 큰 고분자쇄(길이가 긴 고분자쇄)는 방사된 공중합 아라미드 섬유의 스킨층(Skin layer)에 위치하게 되어 결국 공중합 아라미드 섬유를 인장시 먼저 절단되는 결점(defect)으로 작용하는 고분자쇄의 끝부분이 적어져 제조된 공중합 아라미드 섬유의 강도 및 탄성율을 크게 향상시키게 된다.
또한, 아라미드 공중합체의 다분산지수(PDI)가 1.5~2.0 수준인 경우 분자량 분포가 좁아져 분자량이 큰 고분자쇄(길이)가 긴 고분자(쇄)의 분포가 많아져 이들이 용해된 방사도프의 액정성이 좋아지게 되고 그로 인해 방사성이 향상된다.
또한, 아라미드 공중합체의 고유점도(IV)가 6.0~8.5 수준으로 높으면 고분자쇄의 길이가 길어져 상기와 같은 이유로 공중합 아라미드 섬유의 강도 및 탄성율을 향상시키게 된다.
이하, 실시예 및 비교실시예들을 통하여 본 발명을 보다 구체적으로 살펴본다.
그러나, 하기 실시예들은 본 발명의 바람직한 구현일례에 불과한 것으로서, 본 발명의 보호범위가 하기 실시예만으로 한정, 해석되는 것은 아니다.
실시예 1
3중량%의 염화칼슘(무기염)을 포함하는 N-메틸-2-피롤리돈(유기용매) 30g을 질소 분위기 하에서 반응기 내에 넣고, 여기에 산화칼슘(중화제) 6.99g을 첨가하여 분산시켰다.
이어서, 상기와 같이 중화제가 분산된 유기용매에 파라페닐렌디아민 5.7g과 시아노-파라-페닐렌디아민 10.55g을 상기 반응기 내에 유기용매에 넣고 용해시켜 혼합용액을 제조하였다.
이어서, 상기와 같이 중화제가 분산되어 있으며 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 혼합용액에 테레프탈로일 디클로라이드 26.79g을 첨가, 반응시켜 아라미드 공중합체가 균일하게 용해되어 있는 방사도프를 제조하였다.
제조된 방사도프를 육안으로 관찰해본 결과 겔이나 고체상이 관찰되지 않아 방사도프내 아라미드 공중합체의 용해도가 우수함을 알 수 있었다.
이어서, 상기 방사도프를 방사구금을 통해 압출한 후 에어 갭 및 응고액을 순차적으로 통과하도록 함으로써 3,000 denier의 선밀도를 갖는 멀티필라멘트를 형성하였다. 방사팩의 압력은 2,800psi이었고, 방사속도는 600mpm(meter per minuite)이었다.
이어서, 상기 멀티필라멘트를 수세하고 수세된 멀티필라멘트를 150℃ 의 온도로 설정된 건조 롤러에서 건조 및 연신한 후 연신된 멀티필라멘트를 250℃ 에서 열처리하고 권취하여 공중합 아라미드 섬유를 제조하였다.
제조한 공중합 아라미드 섬유의 각종 물성을 측정한 결과는 표 1과 같았다.
실시예 2
3중량%의 염화칼슘(무기염)을 포함하는 N-메틸-2-피롤리돈(유기용매) 30g을 질소 분위기 하에서 반응기 내에 넣고, 여기에 산화칼슘(중화제) 6.99g을 첨가하여 분산시켰다.
이어서, 상기와 같이 중화제가 분산된 유기용매에 파라페닐렌디아민 5.7g과 시아노-파라-페닐렌디아민 10.55g을 상기 반응기 내에 유기용매에 넣고 용해시켜 혼합용액을 제조하였다.
이어서, 상기와 같이 중화제가 분산되어 있으며 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 혼합용액을 -90℃로 테레프탈로일 디클로라이드 26.79g을 첨가, 반응시켜 아라미드 공중합체가 균일하게 용해되어 있는 방사도프를 제조하였다.
제조된 방사도프를 육안으로 관찰해본 결과 겔이나 고체상이 관찰되지 않아 방사도프내 아라미드 공중합체의 용해도가 우수함을 알 수 있었다.
이어서, 상기 방사도프를 방사구금을 통해 압출한 후 에어 갭 및 응고액을 순차적으로 통과하도록 함으로써 3,000 denier의 선밀도를 갖는 멀티필라멘트를 형성하였다. 방사팩의 압력은 2,800psi이었고, 방사속도는 600mpm(meter per minuite)이었다.
이어서, 상기 멀티필라멘트를 수세하고 수세된 멀티필라멘트를 150℃ 의 온도로 설정된 건조 롤러에서 건조 및 연신한 후 연신된 멀티필라멘트를 250℃ 에서 열처리하고 권취하여 공중합 아라미드 섬유를 제조하였다.
제조한 공중합 아라미드 섬유의 각종 물성을 측정한 결과는 표 1과 같았다.
실시예 3
3중량%의 염화칼슘(무기염)을 포함하는 N-메틸-2-피롤리돈(유기용매) 300g을 질소 분위기 하에서 반응기 내에 넣고, 여기에 파라페닐렌디아민 5.7g과 시아노-파라-페닐렌디아민 10.55g을 넣어 용해시켰다.
이어서, 상기와 같이 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해된 유기용매에 산화칼슘(중화제) 6.99g을 첨가하여 분산시켰다.
이어서, 상기와 같이 중화제가 분산되어 있으며 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 혼합용액을 -5℃로 냉각한 다음, 여기에 테레프탈로일 디클로라이드 25.78g을 첨가, 반응시켜 아라미드 중합체가 균일하게 용해되어 있는 방사도프를 제조하였다.
제조된 방사도프를 육안으로 관찰해본 결과 겔이나 고체상이 관찰되지 않아 방사도프내 아라미드 중합체의 용해도가 우수함을 알 수 있었다.
이어서, 상기 방사도프를 방사구금을 통해 압출한 후 에어 갭 및 응고액을 순차적으로 통과하도록 함으로써 3,000 denier의 선밀도를 갖는 멀티필라멘트를 형성하였다. 방사팩의 압력은 2,800psi이었고, 방사속도는 600mpm(meter per minuite)이었다.
이어서, 상기 멀티필라멘트를 수세하고 수세된 멀티필라멘트를 150℃ 의 온도로 설정된 건조 롤러에서 건조 및 연신한 후 연신된 멀티필라멘트를 250℃ 에서 열처리하고 권취하여 아라미드 섬유를 제조하였다.
제조한 아라미드 섬유의 각종 물성을 측정한 결과는 표 1과 같았다.
실시예 4
3중량%의 염화칼슘(무기염)을 포함하는 N-메틸-2-피롤리돈(유기용매) 300g을 질소 분위기 하에서 반응기 내에 넣고, 여기에 파라페닐렌디아민 5.7g과 시아노-파라-페닐렌디아민 10.55g을 넣어 용해시켰다.
이어서, 상기와 같이 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해된 유기용매에 산화칼슘(중화제) 6.99g을 첨가하여 분산시켰다.
이어서, 상기와 같이 중화제가 분산되어 있으며 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 혼합용액에 테레프탈로일 디클로라이드 25.78g을 첨가, 반응시켜 아라미드 중합체가 균일하게 용해되어 있는 방사도프를 제조하였다.
제조된 방사도프를 육안으로 관찰해본 결과 겔이나 고체상이 관찰되지 않아 방사도프내 아라미드 중합체의 용해도가 우수함을 알 수 있었다.
이어서, 상기 방사도프를 방사구금을 통해 압출한 후 에어 갭 및 응고액을 순차적으로 통과하도록 함으로써 3,000 denier의 선밀도를 갖는 멀티필라멘트를 형성하였다. 방사팩의 압력은 2,800psi이었고, 방사속도는 600mpm(meter per minuite)이었다.
이어서, 상기 멀티필라멘트를 수세하고 수세된 멀티필라멘트를 150℃ 의 온도로 설정된 건조 롤러에서 건조 및 연신한 후 연신된 멀티필라멘트를 250℃ 에서 열처리하고 권취하여 아라미드 섬유를 제조하였다.
제조한 아라미드 섬유의 각종 물성을 측정한 결과는 표 1과 같았다.
비교실시예 1
3중량%의 염화칼슘(무기염)을 포함하는 N-메틸-2-피롤리돈(유기용매) 300g 질소 분위기 하에서 반응기 내에 넣고, 여기에 파라페닐렌디아민 5.7g과 시아노-파라-페닐렌디아민 10.55g을 상기 반응기 내에 유기용매에 넣고 용해시켜 혼합용액을 제조하였다.
이어서, 상기와 같이 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 혼합용액에 테레프탈로일 디클로라이드 26.79g을 첨가, 반응시켜 고체상 아라미드 공중합체를 제조하였다.
이어서, 상기와 같이 제조된 아라미드 공중합체를 수산화칼슘(중화제)로 12시간 동안 용해하여 방사도프를 제조하였다.
이어서, 상기 방사도프를 방사구금을 통해 압출한 후 에어 갭 및 응고액을 순차적으로 통과하도록 함으로써 3,000 denier의 선밀도를 갖는 멀티필라멘트를 형성하였다. 방사팩의 압력은 2,800psi이었고, 방사속도는 600mpm(meter per minuite)이었다.
이어서, 상기 멀티필라멘트를 수세하고 수세된 멀티필라멘트를 150℃ 의 온도로 설정된 건조 롤러에서 건조 및 연신한 후 연신된 멀티필라멘트를 250℃ 에서 열처리하고 권취하여 공중합 아라미드 섬유를 제조하였다.
제조한 공중합체 아라미드 섬유의 각종 물성을 측정한 결과는 표 1과 같았다.
구분 고유점도(IV) 다분산지수(PDI) 강도(g/d) 탄성율(g/d)
실시예 1 6.2 1.95 25 1,100
실시예 2 8.3 1.57 30 1,200
실시예 3 7.8 1.62 28 1,150
실시예 4 7.0 1.80 26 1,100
비교실시예 1 5.0 2.40 22 900
공중합 아라미드 섬유의 분자량 분포는 아래와 같은 방법으로 평가하였다.
다분산지수(PDI)
상기 아라미드 섬유를 디메틸포름아미드(Dimethylformamide:DMF)에 녹여 시료를 준비하고 준비된 시료를 35℃의 온도 및 10㎖/분의 흐름속도(flow rate) 하에서 워터 매뉴얼 인젝터 키트(Waters manual injector Kit)의 쇼덱스(Shodex) GPC 칼럼을 사용하여 굴절률 탐지기(Refraction Index detector)가 장착된 젤투과크로마토그래피(Gel Permeation Chromatography)에서 중량 평균 분자량 및 수 평균 분자량을 구하고, 이로부터, 다음의 수학식 1을 이용하여 분자량 분포도를 측정한다.
[수학식 1]
다분산지수(PDI) = Mw/Mn
이때, 상기 Mw는 중량 평균 분자량이고, Mn은 수 평균 분자량이다.
강도(g/d) 및 탄성율(g/d)
ASTM D885 시험방법에 따라 아라미드 섬유의 강도 및 탄성율을 측정하였다.
구체적으로는 인스트론 시험기(Instron Engineering Corp, cantion, Mass)에서 길이가 25㎝인 공중합 아라미드 섬유가 파단될때까지 인장시켜 강도 및 탄성율을 구하였다.
이대, 인장속도는 300m/분으로 하였고, 초하중은 섬도 × 1/30g으로 하였다.
샘플수는 5개를 테스트한 후 그 평균값으로 구하였다.
탄성율은 S-S curve상의 기울기로부터 구하였고, 강도는 최대하중으로 부터 구하였다.
고유점도(IV)
고유점도(I.V.)는 다음의 식에 의해 정의된다.
I.V. = ln(ηrel)/C
여기서, C는 중합체 용액의 농도(농황산 100ml에 중합체 0.5g을 용해시킨 용액)이고, 상대점도ηrel는 30℃에서 모세관 점도계로 측정한 중합체 용액과 용매 사이의 유동시간 비이다. 다른 언급이 없는 한, 고유점도 값은 95 내지 98%의 농황산 용매를 사용하여 측정하였다.
본 발명에 따른 고강도 공중합 아라미드 섬유는 방탄용 소재 또는 자동차 부품 등에 사용되는 섬유/수지 복합재료용 소재 등으로 이용될 수 있다.

Claims (15)

  1. 시아노기(-CN)가 치환된 방향족기를 포함하는 아라미드 공중합체로 이루어져 고유점도가(IV)가 6.0~8.5이고, 다분산지수(PDI)가 1.5~2.0이고, 강도가 23~32g/d인 것을 특징으로 하는 고강도 공중합 아라미드 섬유.
  2. 제1항에 있어서, 고강도 공중합 아라미드 섬유의 탄성율이 1,100~1,300g/d인 것을 특징으로 하는 고강도 공중합 아라미드 섬유.
  3. 제1항에 있어서, 시아노기(-CN)가 치환된 방향족기를 포함하는 아라미드 공중합체는 하기 일반식(Ⅰ)의 반복단위를 갖는 것을 특징으로 하는 고강도 공중합 아라미드 섬유.
    Figure PCTKR2015008650-appb-I000001
    [상기 식(Ⅰ)에서 Ar은 하기 일반식(Ⅱ)의 방향족기고, 상기 A는 하기 일반식(Ⅲ)의 방향족기 이거나 하기 일반식(Ⅱ)의 방향족기와 일반식(Ⅲ)의 방향족기의 비율이 1:9~9:1인 방향족기 이다]
    Figure PCTKR2015008650-appb-I000002
    Figure PCTKR2015008650-appb-I000003
  4. (i) 유기용매에 중화제를 투입하여 분산시키는 공정;
    (ii) 중화제가 분산된 유기용매에 파라페닐렌디아민과 시아노-파라-페닐렌디아민을 1:9~9:1의 몰비로 용해시키는 공정;
    (iii) 중화제가 분산되어 있으며, 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매에 테레프탈로일 디클로라이드를 상기 파라페닐렌디아민과 시아노-파라-페닐렌디아민의 총량과 동일한 몰량(Molar accout)으로 첨가, 반응시켜 방사도프를 제조하는 공정; 및
    (iv) 상기 방사도프를 방사하여 공중합 아라미드 섬유를 제조하는 공정;을 포함하는 것을 특징으로 하는 고강도 공중합 아라미드 섬유의 제조방법.
  5. 제4항에 있어서, 중화제가 분산되어 있으며, 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매에 테레프탈로일 디클로라이드를 첨가, 반응시키기 전에 상기 유기용매를 -10℃ 내지 -1℃로 냉각시켜 주는 공정을 추가로 더 포함하는 것을 특징으로 하는 고강도 공중합 아라미드 섬유의 제조방법.
  6. 제4항 또는 제5항에 있어서, 상기 중화제를 유기용매 대비 50~120몰% 첨가, 분산시키는 것을 특징으로 하는 고강도 공중합 아라미드 섬유의 제조방법.
  7. 제4항 또는 제5항에 있어서, 상기 중화제는 수산화칼슘, 산화칼슘, 수산화나트륨 및 탄산리튬 중에서 선택된 1종인 것을 특징으로 하는 고강도 공중합 아라미드 섬유의 제조방법.
  8. 제4항 또는 제5항에 있어서, 유기용매는 N-메틸-2-피롤리돈, N,N-디메틸아세트아미드, 헥사메틸포스포아미드, N,N,N'N'-테트라메틸우레아 및 N,N-디메틸포름아미드 중에서 선택된 1종인 것을 특징으로 하는 고강도 공중합 아라미드 섬유의 제조방법.
  9. 제4항 또는 제5항에 있어서, 방사도프를 방사구금을 통해 방사 후 응고, 수세, 연신 및 권취하는 것을 특징으로 하는 고강도 공중합 아라미드의 제조방법.
  10. (i) 유기용매에 파라페닐렌디아민과 시아노-파라-페닐렌디아민을 1:9~9:1의 몰비로 용해시키는 공정;
    (ii) 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매에 중화제를 투입하여 분산시키는 공정;
    (iii) 중화제가 분산되어 있으며, 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매에 테레프탈로일 디클로라이드를 상기 파라페닐렌디아민과 시아노-파라-페닐렌디아민의 총량과 동일한 몰량(Molar accout)으로 첨가, 반응시켜 방사도프를 제조하는 공정; 및
    (iv) 상기 방사도프를 방사하여 공중합 아라미드 섬유를 제조하는 공정;을 포함하는 것을 특징으로 하는 고강도 공중합 아라미드 섬유의 제조방법.
  11. 제10항에 있어서, 중화제가 분산되어 있으며, 파라페닐렌디아민과 시아노-파라-페닐렌디아민이 용해되어 있는 상기 유기용매에 테레프탈로일 디클로라이드를 첨가, 반응시키기 전에 상기 유기용매를 -10℃ 내지 -1℃로 냉각시켜 주는 공정을 추가로 더 포함하는 것을 특징으로 하는 고강도 공중합 아라미드 섬유의 제조방법.
  12. 제10항 또는 제11항에 있어서, 상기 중화제를 유기용매 대비 50~120몰% 첨가, 분산시키는 것을 특징으로 하는 고강도 공중합 아라미드 섬유의 제조방법.
  13. 제10항에 또는 제11항에 있어서, 상기 중화제는 수산화칼슘, 산화칼슘, 수산화나트륨 및 탄산리튬 중에서 선택된 1종인 것을 특징으로 하는 고강도 공중합 아라미드 섬유의 제조방법.
  14. 제10항 또는 제11항에 있어서, 유기용매는 N-메틸-2-피롤리돈, N,N-디메틸아세트아미드, 헥사메틸포스포아미드, N,N,N'N'-테트라메틸우레아 및 N,N-디메틸포름아미드 중에서 선택된 1종인 것을 특징으로 하는 고강도 공중합 아라미드 섬유의 제조방법.
  15. 제10항 또는 제11항에 있어서, 방사도프를 방사구금을 통해 방사 후 응고, 수세, 연신 및 권취하는 것을 특징으로 하는 고강도 공중합 아라미드의 제조방법.
PCT/KR2015/008650 2014-08-20 2015-08-19 고강도 공중합 아라미드 섬유 및 그의 제조방법 WO2016028078A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15834440.8A EP3184675B1 (en) 2014-08-20 2015-08-19 High-strength copolymerized aramid fiber and preparing method therefor
US15/502,820 US20170241048A1 (en) 2014-08-20 2015-08-19 High-strength copolymerized aramid fiber and preparing method therefor
CN201580044655.1A CN106661774B (zh) 2014-08-20 2015-08-19 高强度共聚芳族聚酰胺纤维及其制备方法
JP2017507428A JP6629296B2 (ja) 2014-08-20 2015-08-19 高強度共重合アラミド繊維及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140108345 2014-08-20
KR10-2014-0108345 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016028078A1 true WO2016028078A1 (ko) 2016-02-25

Family

ID=55350957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008650 WO2016028078A1 (ko) 2014-08-20 2015-08-19 고강도 공중합 아라미드 섬유 및 그의 제조방법

Country Status (6)

Country Link
US (1) US20170241048A1 (ko)
EP (1) EP3184675B1 (ko)
JP (1) JP6629296B2 (ko)
KR (1) KR102170294B1 (ko)
CN (1) CN106661774B (ko)
WO (1) WO2016028078A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479163A (zh) * 2022-01-04 2022-05-13 煤炭科学研究总院有限公司 一种改性对位芳纶纳米纤维气凝胶及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923073A (zh) * 2015-08-07 2018-04-17 可隆工业株式会社 高弹性共聚芳族聚酰胺纤维
KR102349084B1 (ko) * 2016-04-21 2022-01-07 코오롱인더스트리 주식회사 공중합 아라미드 필름을 이용한 아라미드 부직포의 제조방법
JP2020147861A (ja) * 2019-03-12 2020-09-17 帝人株式会社 パラ型全芳香族ポリアミド繊維及びその製造方法
CN112281244A (zh) * 2020-11-23 2021-01-29 蓝星(成都)新材料有限公司 一种原液染色芳纶1414纤维的制备方法
CN113062141A (zh) * 2021-03-30 2021-07-02 山东聚芳新材料股份有限公司 一种对位间位芳纶共聚沉析纤维增强对位芳纶纸及其制备工艺
CN115216857B (zh) * 2021-04-19 2023-12-22 中蓝晨光化工研究设计院有限公司 一种石墨烯改性高强高模杂环芳纶的制备方法
CN113373544A (zh) * 2021-06-29 2021-09-10 宁夏泰和芳纶纤维有限责任公司 一种高伸长对位芳纶纤维及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120168983A1 (en) * 2010-12-29 2012-07-05 Zhong Zhou Method for Preparing Meta-Aramid Fibers
US20130158171A1 (en) * 2007-04-05 2013-06-20 Teijin Aramid B.V. Particles comprising composite of para-aramid and additive material
KR20130075202A (ko) * 2011-12-27 2013-07-05 코오롱인더스트리 주식회사 아라미드 섬유 및 그 제조방법
KR20140007835A (ko) * 2011-01-13 2014-01-20 이 아이 듀폰 디 네모아 앤드 캄파니 중화된 공중합체 크럼 및 그의 제조 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0171994B1 (ko) * 1995-07-13 1999-03-30 구광시 방향족 폴리아미드, 광학적 이방성 도우프와 성형물, 및 이들의 제조방법
KR100749964B1 (ko) * 2005-07-06 2007-08-16 주식회사 코오롱 전방향족 폴리아미드 필라멘트 및 그의 제조방법
CN101983264B (zh) * 2008-03-31 2012-07-04 可隆工业株式会社 对位芳族聚酰胺纤维及其制备方法
KR101067338B1 (ko) * 2009-04-16 2011-09-23 경북대학교 산학협력단 방향족 폴리아미드와 비결정성 고분자의 분자 혼화성 블렌드 용액과 그 제조방법, 이를 이용한 방향족 폴리아미드 블렌드 섬유 및 그 염색방법
KR101410544B1 (ko) * 2010-12-14 2014-06-20 코오롱인더스트리 주식회사 아라미드 섬유의 제조방법
WO2013109311A1 (en) * 2011-07-29 2013-07-25 E. I. Du Pont De Nemours And Company Process for forming an aramid copolymer
CN102383218B (zh) * 2011-08-26 2013-05-22 南充易安新材料有限公司 高强高模的对位芳纶纤维及其制备方法
KR101509426B1 (ko) * 2012-08-23 2015-04-07 코오롱인더스트리 주식회사 아라미드 섬유의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130158171A1 (en) * 2007-04-05 2013-06-20 Teijin Aramid B.V. Particles comprising composite of para-aramid and additive material
US20120168983A1 (en) * 2010-12-29 2012-07-05 Zhong Zhou Method for Preparing Meta-Aramid Fibers
KR20140007835A (ko) * 2011-01-13 2014-01-20 이 아이 듀폰 디 네모아 앤드 캄파니 중화된 공중합체 크럼 및 그의 제조 방법
KR20130075202A (ko) * 2011-12-27 2013-07-05 코오롱인더스트리 주식회사 아라미드 섬유 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479163A (zh) * 2022-01-04 2022-05-13 煤炭科学研究总院有限公司 一种改性对位芳纶纳米纤维气凝胶及其制备方法和应用

Also Published As

Publication number Publication date
US20170241048A1 (en) 2017-08-24
EP3184675B1 (en) 2019-07-24
JP2017527705A (ja) 2017-09-21
CN106661774B (zh) 2019-06-21
JP6629296B2 (ja) 2020-01-15
EP3184675A1 (en) 2017-06-28
EP3184675A4 (en) 2018-03-21
KR102170294B1 (ko) 2020-10-26
KR20160022777A (ko) 2016-03-02
CN106661774A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2016028078A1 (ko) 고강도 공중합 아라미드 섬유 및 그의 제조방법
WO2014069853A1 (en) Aramid fiber product with excellent conductivity and method of manufacturing the same
KR102070137B1 (ko) 공중합 아라미드 원착사 및 그의 제조방법
CN107675283B (zh) 高强芳香族共聚酰胺纤维及其制备方法
WO2010120020A1 (ko) 방향족 폴리아미드와 비결정성 고분자의 분자 혼화성 블렌드 용액과 그 제조방법, 이를 이용한 방향족 폴리아미드 블렌드 섬유 및 그 염색방법
WO2009145446A1 (en) Para-aramid fiber and method of preparing the same
JPH0134254B2 (ko)
KR20140131710A (ko) 공중합 아라미드 섬유의 제조방법 및 이로 제조된 공중합 아라미드 섬유
JP5536904B2 (ja) 芳香族ジアミン及びその製造方法、アラミド繊維及びその製造方法
KR101432876B1 (ko) 아라미드 섬유 및 그 제조방법
KR101561545B1 (ko) 공중합 아라미드 섬유의 제조방법 및 이로 제조된 공중합 아라미드 섬유
KR20160072030A (ko) 공중합 아라미드 섬유의 제조방법 및 이로 제조된 공중합 아라미드 섬유
WO2017026746A1 (ko) 고강도 공중합 아라미드 섬유
WO2014104648A1 (en) Method of dry-spinning para-aramid fiber
WO2017026745A1 (ko) 고탄성 공중합 아라미드 섬유
KR20200076026A (ko) 강도 및 탄성율이 우수한 공중합 아라미드 섬유 및 그의 제조방법
KR20140134031A (ko) 공중합 아라미드 섬유의 제조방법
KR101946318B1 (ko) 공중합 아라미드 섬유의 제조방법 및 이로 제조된 공중합 아라미드 섬유
WO2017026748A1 (ko) 고신도 공중합 아라미드 섬유
KR20200076027A (ko) 강도 및 신도가 우수한 공중합 아라미드 섬유 및 그의 제조방법
KR101587046B1 (ko) 공중합 아라미드 섬유의 제조방법
WO2019013504A2 (ko) 고기능성 공중합 아라미드 섬유 및 그의 제조방법
KR20130063724A (ko) 아라미드 섬유 및 그 제조방법
WO2017003106A1 (ko) 활성탄소섬유의 제조방법
KR101570057B1 (ko) 공중합 파라 아라미드 섬유의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834440

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015834440

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015834440

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017507428

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15502820

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE