WO2016023140A1 - 一种用于细胞三维培养的基质支架及其构建方法和应用 - Google Patents

一种用于细胞三维培养的基质支架及其构建方法和应用 Download PDF

Info

Publication number
WO2016023140A1
WO2016023140A1 PCT/CN2014/000771 CN2014000771W WO2016023140A1 WO 2016023140 A1 WO2016023140 A1 WO 2016023140A1 CN 2014000771 W CN2014000771 W CN 2014000771W WO 2016023140 A1 WO2016023140 A1 WO 2016023140A1
Authority
WO
WIPO (PCT)
Prior art keywords
silk fibroin
solution
prepared
scaffold
culture
Prior art date
Application number
PCT/CN2014/000771
Other languages
English (en)
French (fr)
Inventor
王守立
Original Assignee
苏州堪赛尔生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州堪赛尔生物技术有限公司 filed Critical 苏州堪赛尔生物技术有限公司
Priority to US14/774,086 priority Critical patent/US20160206780A1/en
Priority to CN201480012266.6A priority patent/CN105431179A/zh
Priority to PCT/CN2014/000771 priority patent/WO2016023140A1/zh
Publication of WO2016023140A1 publication Critical patent/WO2016023140A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/34Materials or treatment for tissue regeneration for soft tissue reconstruction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/40Preparation and treatment of biological tissue for implantation, e.g. decellularisation, cross-linking
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/30Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from cancer cells, e.g. reversion of tumour cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins

Definitions

  • the invention relates to a matrix scaffold for three-dimensional culture of cells and a construction method and application thereof.
  • the scaffold acts as a substrate for replacing the extracellular matrix or tissues and organs, and is further useful for in vitro differentiation and expansion of cells, tissue organ remodeling, and tumor drug screening.
  • Cells are our common research objects, and the cytological level of our research is basically carried out in a two-dimensional culture state, because cells in the body (whether adherent or non-adherently grown cells) are in a certain matrix. Growth under the support, so the two-dimensional culture environment in vitro can not truly reflect the internal environment of the cells.
  • three-dimensional culture technology has gradually become a research hotspot in the field of cell culture. It uses various materials and methods to make cells grow in a three-dimensional space, and its growth is closer to the in vivo growth pattern of cells, forming a tissue structure similar to the body. Play its physiological functions.
  • the commonly used three-dimensional culture techniques mainly include dynamic culture and static culture.
  • Dynamic culture mainly includes spinner flask culture and rotary cell culture system. Although this kind of culture technique makes the cells function better through mechanical stimulation, it is difficult to promote the use due to higher requirements.
  • Static culture is to directly inoculate cells on a three-dimensional vector and culture without applying any physical methods.
  • pre-set matrix culture provides a scaffold environment similar to cell growth in vivo, and is relatively simple to operate, but is critically dependent on matrix material selection.
  • matrices are derived from animal gels such as collagen I, gelatin or extracted extracellular matrices, but animal gels are expensive and contain many uncertain components.
  • CN101445971A, CN103418029A discloses a biomimetic extracellular matrix silk fibroin/chitosan composite nanofiber made of silk fibroin and chitosan, which provides the best biomimetic physiological environment for cell growth and tissue regeneration.
  • the disadvantage is that the silk fibroin solution prepared by the invention has relatively low stability and is difficult to be industrially applied.
  • CN102010601A, CN101624472A and CN101624473A disclose the preparation of a hepatocyte-specific macroporous microcarrier scaffold material by silk fibroin and galactosylated chitosan under the action of a crosslinking agent, which is suitable for large-scale cultivation of hepatocytes.
  • the disadvantage is that the manufacturing process is cumbersome (chitosan is crosslinked by glycosylation and then filtered by a mesh sieve), and the prepared scaffold material is a large-aperture stent, and the application range is limited.
  • CN102942660A discloses a natural bio-crosslinked nano-composite three-dimensional gel scaffold, which is formed by in-situ radical polymerization of acrylamide monomer, inorganic nanoclay, biopolymer and biocrosslinker genipin dissolved in water. It can be used for medical transplantation, drug release and cell culture.
  • the disadvantage is that the main material used is that acrylamide is easily decomposed by high heat to release an irritating gas; and the acrylic acid converted into an acid-base environment has a strong toxic effect on cells.
  • CN103418029A discloses a silk fibroin/chitosan composite porous scaffold made of silk fibroin and chitosan.
  • the disadvantage is that the composite has poor stability and is not suitable for industrial production and wide application.
  • Chinese patent CN102952279A discloses a method for preparing a hydrogel by reacting a methyl vinyl ether/maleic acid copolymer with a crosslinking agent and its use in tumor tissue culture, but since the matrigel contains a large amount of cell growth factors (such as Epidermal growth factor, fibroblast growth factor and tissue plasminogen activator), the uncertainty of the role of these cytokines in cultured cells.
  • cell growth factors such as Epidermal growth factor, fibroblast growth factor and tissue plasminogen activator
  • the present invention provides a matrix scaffold material for three-dimensional culture of cells, which is similar to a scaffold of a cell body environment, and can be used for in vitro expansion, tissue and organ of difficult-to-cultivate cells. Reconstruction and screening of tumor drugs.
  • a matrix scaffold for three-dimensional culture of cells which is prepared by cross-linking reaction of silk fibroin-like substance, chitosan and cross-linking agent, characterized in that the silk fibroin-like substance is composed of silkworm pupa or silk
  • the silk fibroin powder is obtained by degumming, dissolving, dialysis and drying, and the silk fibroin powder is obtained by the following method:
  • step (2) dialysis of the dissolved silk fibroin solution of step (1) with a dialysis bag having a molecular weight cutoff of 3500 Da to prepare a dialyzed silk fibroin solution;
  • the dialysis bag containing the dialyzed silk fibroin solution prepared in the step (2) is placed in a polyethylene glycol 6000 powder for concentration, and the obtained concentrate is centrifuged, and the supernatant is taken, thereby obtaining the above-mentioned Silk fibroin-like substances.
  • cross-linking agent is preferably 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and N-hydroxyl Succinimide (NHS).
  • the above-mentioned matrix scaffold for three-dimensional culture of cells wherein the silk fibroin-like substance, shell
  • the reaction product obtained after the crosslinking reaction of the polysaccharide and the crosslinking agent is subjected to gradient freezing to obtain the matrix scaffold, and the gradient freezing process is as follows -
  • reaction product is pre-frozen in a refrigerator at 20 ° C for 12 to 48 h, then frozen in a -80 ° C low-temperature refrigerator for 12 to 48 h, and finally freeze-dried in a freeze dryer for 24 to 72 h.
  • the preliminary three-dimensional scaffold material obtained in the step (1) is immersed in a solution of anhydrous methanol and 10% sodium hydroxide (volume ratio 1: 1) for 12 to 48 hours, rinsed with deionized water, and then placed. After drying in a freeze dryer for 24 to 72 hours, it is taken out.
  • the matrix scaffold for cell three-dimensional culture described above is characterized by being obtained by a method comprising the following steps -
  • step 2) adding the dried silk fibroin prepared in the step 1) to the boiled 50% calcium chloride solution, stirring and dissolving, cooling and filtering;
  • the dissolved silk fibroin solution prepared in the step 4) is cooled to normal temperature, it is poured into a dialysis bag having a molecular weight cutoff of 3500 Da for 2-4 days to remove small molecular substances in the silk fibroin solution;
  • the dialyzed silk fibroin solution prepared in the step 5) is stored in a dialysis bag, placed in a polyethylene glycol 6000 powder, dried and concentrated, and the liquid is collected, and the supernatant is obtained by centrifugation;
  • step 3 The cross-linked reaction product of step 2) was pre-frozen in a -20 ⁇ refrigerator for 24 h, then frozen in a low-temperature refrigerator at _80 ° C for 24 h, and finally freeze-dried in a freeze dryer for 48 h to obtain a preliminary system.
  • Three-dimensional scaffold material
  • step 4) Immerse the scaffold material prepared in step 3) in a solution of anhydrous methanol and 10% sodium hydroxide (1:1 by volume) After 24 h, it was washed 3 times with deionized water, and then dried in a freeze dryer for 48 h, and then taken out, and the matrix scaffold for three-dimensional culture of cells was obtained.
  • the above-mentioned matrix scaffold for three-dimensional culture of cells wherein the concentration of the silk fibroin-like substance solution is 1% to 5%, and the concentration of the chitosan solution is 1% to 5%.
  • a matrix scaffold as described above, characterized in that it is used for in vitro expansion, tissue organ remodeling or drug screening of cells.
  • the use described above is for stem cell culture, tumor microenvironment construction, tumor drug screening or tissue organ reconstruction engineering.
  • the embryonic tissue is isolated for in vitro differentiation of myocytes, tumor tissue-associated tumor-associated macrophages (TAMs) or tumor-associated fibroblasts (TAFs).
  • TAMs tumor tissue-associated tumor-associated macrophages
  • TAFs tumor-associated fibroblasts
  • a method for in vitro expansion of a cell comprising using the matrix scaffold described above as a scaffold material for three-dimensional culture of cells.
  • the matrix framework of the present invention the silk fibroin substance obtained by the method is cross-linked with chitosan and a cross-linking agent, and the silk fibroin-type substance/chitosan solution and the cross-linking agent are adjusted. Concentrations and ratios to obtain three-dimensional matrix scaffolds of different pore sizes and/or conformations.
  • the present invention also provides a method for preparing a matrix scaffold for cell three-dimensional culture as described above.
  • the method includes the following steps -
  • the prepared silk fibroin liquid is stored in a dialysis bag, placed in a polyethylene glycol 6000 powder, dried and concentrated, and the liquid is collected, and the supernatant is centrifuged.
  • the silk fibroin solution prepared in the step 1 is mixed with the chitosan solution prepared in the step 2.
  • the use of the matrix scaffold of the present invention is preferably applied to in vitro differentiation of embryonic tissue-derived myocytes, tumor tissue-associated tumor-associated macrophages (TAMs), and tumor-associated fibroblasts (TAFs) in vitro expansion.
  • TAMs tumor tissue-associated tumor-associated macrophages
  • TAFs tumor-associated fibroblasts
  • the invention adopts silkworm cocoon shell or silk as raw material, and obtains natural silk fibroin substance through a specific extraction process, and uses the non-toxic cross-linking agent 1 as a raw material, and natural chitosan (CS) raw material.
  • Ethyl_3_[3-dimethylaminopropyl]carbodiimide (EDC) and N-hydroxysuccinimide (NHS) are cross-linked, and the conformation of the prepared three-dimensional matrix scaffold is close to the spatial conformation of the cell body.
  • EDC dimethylaminopropyl]carbodiimide
  • NHS N-hydroxysuccinimide
  • the silk fibroin-like substance and chitosan prepared from silkworm pupa or silk of the invention have been proved to have good biocompatibility and non-toxicity, and have simple operation, low cost, etc. compared with animal gel. advantage.
  • the three-dimensional matrix framework prepared by the present invention is suitable for both adherent cells and non-adherent cells. In this three-dimensional environment, cells exclude the contact inhibition effect in two-dimensional culture.
  • the results of in vitro studies in this system can more objectively reflect the life activities of the physiological state of the cells and improve the reliability of the research results.
  • three-dimensional matrix scaffolds with different pore sizes and conformations can be obtained. Different pore sizes can be selected according to the structural characteristics of the cells in the culture target cells.
  • a three-dimensional culture system with different matrix conformations, which is satisfied with the primary culture of cells of different tissue sources, should be The scope of use and its wide range can be applied to in vitro expansion, tissue organ reconstruction and tumor drug screening of difficult cultured cell bodies.
  • the conformation of the cell three-dimensional culture matrix material of the present invention is similar to the fiber tissue conformation in the microenvironment of the cell body, and the primary isolated cells can adapt to the growth environment in vitro as soon as possible, based on the cell biology in the three-dimensional (3D) culture process.
  • the learning behavior is close to the body, reducing the error of the experimental results in vitro and in vivo, and has significant social benefits.
  • Figure 1 Image of a matrix framework material prepared in Example 1 of the present invention under light microscopy and scanning electron microscopy.
  • FIG. 3 Proliferation (cell cycle) of primary myoblasts in a three-dimensional matrix culture prepared in Example 1 of the present invention.
  • Figure 4. Tumor-associated macrophages (TAMs) in a three-dimensional matrix culture prepared in Example 1.
  • Figure 6 Comparison of the effect of the matrix scaffold material of the present invention on the degradability of the scaffold material prepared by the existing silk fibroin.
  • Figure 7. The scaffold material of the present invention and the scaffold material prepared by the existing silk fibroin. Comparison of the effects of proliferative capacity
  • Figure 1 Three-dimensional matrix framework material after freeze-drying, optical microscope (Olympus CX21, Japan) observed by adjusting the concentration and ratio of silk fibroin/chitosan solution and cross-linking agent to obtain three-dimensional with different pore sizes Matrix scaffold, Figure 1A-B (magnification X 400); Scanning electron microscope (Philippines XL20, Netherlands) Electron microscopy of the matrix structure (see Figure 1C).
  • Fig. 2 It can be seen from the figure that the myotube formation rate of myoblasts in 3D and 2D cultures gradually increases with the prolongation of culture time, while the myotube formation rate of myoblasts cultured from 3D cultures is from the sixth of culture. The day begins until the 12th day and maintains a platform period. Myoblast myotube formation rates in 3D and 2D cultures were 17% and 33% on day 12, respectively.
  • Figure 4 It can be seen from the figure that the 0D values of 3D and 2D cultured TAMs increased significantly from the 4th day of culture, while the 0D values of 3D cultured TAMs started from the 6th day of culture until the 15th day. Maintain a higher platform period. 3D and 2D cultured The OD value of the TAMs was 0.63 and 0.43 on the 15th day.
  • Fig. 5 it can be seen from the figure that the 0D values of TAMs cultured in 3D and 2D increased significantly from the second day of culture, and the 0D values of 2D cultured TAMs began to decrease on the 10th day; and TAMs cultured in 3D The 0D value continued to rise until the 15th day before it began to decline.
  • the degradation rate of the three-dimensional scaffold prepared by using the silk fibroin solution prepared by the prior art is as high as 21. 2%, and the silk fibroin prepared by the method of the present invention is prepared.
  • the degradation rate of the three-dimensional scaffolds prepared by the material was not increased significantly with the lapse of time, only 9.4% after 7W.
  • the silk fibroin solution prepared by the prior art does not maintain the original physical and chemical properties of the silk fibroin, resulting in the degradation rate of the prepared three-dimensional scaffold with the silk fibroin solution.
  • the time is increased and the time is increased.
  • the substrate for three-dimensional culture of the cells provided by the invention is cross-linked by using the silk fibroin/chitosan solution of the invention and a cross-linking agent, by adjusting the silk fibroin/chitosan solution and cross-linking
  • concentration and ratio of the agent, three-dimensional matrix scaffolds with different pore sizes and conformations were obtained, and the three-dimensional matrix with different pore sizes was arranged according to the characteristics of the tissue structure of the cells in the culture target, and the attached cells were provided for the cells after inoculation, and the two-dimensional culture was excluded.
  • the contact inhibition effect causes the cells to grow in a state similar to the in vivo microenvironment.
  • Example 1 Matrix framework material for three-dimensional culture of cells and construction method thereof
  • the prepared silk fibroin liquid is stored in a dialysis bag, placed in a polyethylene glycol 6000 powder, dried and concentrated, and the liquid is collected, centrifuged at 3500 r/min for 15 min, and the supernatant is taken and placed at 4 ° C. It can be stored in the refrigerator for one week.
  • the silk fibroin concentration obtained in this example is about 2% to 3%.
  • the silk fibroin solution prepared in the step 1 is mixed with the chitosan solution prepared in the step 2.
  • the former contains the three-dimensional matrix of silk fibroin prepared in Example 1 (referred to as 3D culture, the same below), and the latter is a common culture plate (referred to as 2D culture). , the same below).
  • Myotube fusion rate is the ratio of the number of nuclei in the myotube to the number of all nuclei per unit of view.
  • the rate of myotube formation reflects the differentiation state of myoblasts.
  • a high rate of myotube formation indicates that a large number of cells have withdrawn from the cell cycle and entered a differentiated state. The experiment was repeated three times for statistical analysis.
  • the experimental results show that the three-dimensional matrix provides a similar environment-like scaffold for myoblasts, which is beneficial to the proliferation of myoblasts, thus slowing the induction of differentiation of myoblasts.
  • Example 1 As in the above 2) (1), a 24-well culture plate of the experimental group and the control group was separately established, and the former contained the three-dimensional matrix of silk fibroin prepared in Example 1, which was an ordinary culture plate.
  • the experimental results showed that the synthesis phase (S phase) cells of the myoblasts in the 2D medium at 1 day, 3 days and 6 days were 33%, 28% and 23%, respectively, while in the 3D medium, 1 day, 3 The S phase cells at day and 6 days were 32%, 39%, and 41%, respectively (see Figure 3).
  • the experimental results show that most of the myoblasts cultured in 2D exit the cell cycle and differentiate into terminal cells. In the 3D cultured cells, the proportion of cells in the synthesis phase is higher, and most of the cells are in In the proliferation phase, it is suggested that 3D medium can be used for in vitro expansion of difficult-to-culture cells.
  • Example 3 Culture and expansion of tumor mesenchymal cells extracted from tumor tissues in a three-dimensional matrix of silk fibroin
  • TMAs tumor-associated macrophages
  • Fresh colon cancer tissue was cut into 2 mm pieces, digested with a PBS containing 0.3% collagenase at 37 ° C to form a cell suspension, and the cell suspension was filtered through a 70 ra stainless steel mesh, centrifuged, and washed with PBS.
  • TAFs tumor-associated fibroblasts
  • Example 2 In the same manner as in 2) (1) of the above Example 2, a 24-well culture plate of the experimental group and the control group was separately established, and the former contained the three-dimensional matrix of silk fibroin prepared in Example 1, which was an ordinary culture plate.
  • TAMs and TAFs isolated and identified from the above tumor tissues were inoculated into two 24-well culture plates according to 5 ⁇ 10 OVml, and cultured in DMEM containing 10% calf serum for 1 day, and then changed to contain 5% small. Bovine serum was cultured in DMEM.
  • Example 4 Comparative test: Comparison of the degradation properties of the substrate scaffolds prepared by the method of the present invention and the silk fibroin prepared according to the prior art (CN103418029A)
  • Example 2 2) according to the steps of Example 1 of the present invention 1) to obtain a 3% silk fibroin solution;
  • the crosslinked scaffolds A and B were prepared by using the silk fibroin liquids prepared in 1) and 2), respectively, in the same manner as in the step 3) of the first embodiment.
  • the A scaffold is a matrix scaffold material prepared from silk fibroin prepared according to the prior art
  • the B scaffold is a matrix scaffold material prepared by using the silk fibroin-based material obtained by the method of the present invention as a raw material.
  • the artificial body fluid (SBF solution) is used as an in vitro degradation environment, and the degradation temperature is 37 °C.
  • brackets A and B separately (denoted as W.), place them in the SBF, and keep them moist at 37 °C.
  • the degradation rate of the multi-dimensional scaffold prepared by the silk fibroin solution prepared by the prior art is as high as 21. 2%, and the silk fibroin prepared by the method is used.
  • the degradation rate of the multi-dimensional scaffold prepared by the powder as a raw material does not increase significantly with the lapse of time, only 9.4% after 7W.
  • the matrix scaffold material prepared by the prior art silk fibroin is not stable, and the stability of the matrix scaffold material prepared by the method of the present invention is remarkably improved.
  • Example 5 Comparative experiment, the effect of the silk fibroin prepared by the method of the present invention and the matrix scaffold prepared by using the silk fibroin prepared by the prior art as a raw material on cell proliferation ability
  • the 1% to 5% silk fibroin solution prepared by the present invention is the same as the step 1) of the first embodiment.
  • Cross-linking scaffolds A and B were prepared using the silk fibroin liquid prepared in 1) after 2W and the silk fibroin liquid prepared in 2), respectively, in the same manner as in step 3) of Example 1.
  • the A scaffold is a matrix scaffold material prepared from silk fibroin prepared according to the prior art
  • the B scaffold is a matrix scaffold prepared by using the silk fibroin material prepared by the method of the present invention as a raw material. Shelf material.

Abstract

本发明提供一种用于细胞三维培养的基质支架及其构建方法和应用。所述基质支架是由蚕茧壳或蚕丝以特定方法制得的丝素蛋白类物质与壳聚糖、交联剂经交联反应而制得。该基质支架替代细胞外基质或组织、器官的基质的作用,进一步可用于细胞体外分化扩增、组织器官再造和肿瘤药物筛选。

Description

一种用于细胞三维培养的基质支架及其构建方法和应用 技术领域
本发明涉及一种用于细胞三维培养的基质支架及其构建方法和应用。 该支架起着 替代细胞外基质或组织、 器官的基质的作用, 进一步可用于细胞体外分化扩增、 组织 器官再造和肿瘤药物筛选。
背景技术
近年来,随着大量的生物靶向性药物的临床应用,陆续出现的毒副作用也越来越受到关 注。为何这些药物的毒副作用不能在临床前的研究结果中发现,主要的根源就是前期研究模 型与体内环境存在一定差距,成功构建接近人体真实环境的研究模型也许就是解决上述问题 的关键途径之一。
细胞是我们常用的研究对象,我们所从事的细胞学水平的研究也基本上是在二维培养状 态下进行,由于体内细胞(不论是贴壁还是非贴壁生长的细胞)均是在一定基质支撑下生长, 因此体外的二维培养环境不能真实反应细胞的体内环境。
近年来,三维培养技术逐渐成为细胞培养领域研究的热点,其利用各种材料与方法, 使 细胞附着在立体空间内生长,其生长更接近于细胞的体内生长模式,形成类似体内的组织结 构, 发挥其生理功能。根据培养方式的不同, 目前常用的三维培养技术主要包括动力性培养 和静止性培养两类。动力性培养主要包括旋转烧瓶培养和旋转细胞培养系统,这类培养技术 虽然通过力学刺激使细胞更好地发挥功能,但由于条件要求较高不易推广使用。静止性培养 是把细胞直接接种于三维载体上,在不施加任何物理方法下培养,常见的技术包括自发性细 胞聚集、基质覆盖培养、预置基质培养和微载体培养等。期中, 预置基质培养提供了与细胞 体内生长类似的支架环境, 且操作相对简单, 但关键取决于基质材料选择。
目前常用的基质来源于胶原蛋白 I、 明胶或提取的细胞外基质等动物性凝胶, 但动物性 凝胶价格昂贵且含有很多不确定成分。
CN101445971A, CN103418029A公幵了由丝素蛋白、 壳聚糖制成的一种仿生细胞外基质 丝素蛋白 /壳聚糖复合纳米纤维, 为细胞生长和组织再生提供最佳的仿生生理环境。 其缺点 在于该发明所制备的丝素蛋白溶液, 稳定性相对低, 难于工业化应用。 CN102010601A, CN101624472A和 CN101624473A公开了由丝素蛋白、半乳糖基化壳聚糖 在交联剂的作用下制得一种肝细胞特异性大孔微载体支架材料, 适合于大规模培养肝细胞。 其缺点在于制作工艺繁琐 (壳聚糖经过糖基化后交联, 后再用网筛过滤), 且所制备的支架 材料属大孔径支架, 应用范围有限。
CN102942660A公开了一种天然生物交联的纳米复合三维凝胶支架, 由丙烯酰胺类单体、 无机纳米粘土、生物高分子和生物交联剂京尼平溶于水原位自由基聚合而成,可用于医用移 植、药物释放和细胞培养。其缺点在于所使用的主要材料丙烯酰胺类受高热分解易释放出刺 激性气体; 且在酸碱环境下转变成的丙烯酸对细胞有较强的毒性作用。
CN103418029A公开了由丝素蛋白、壳聚糖制成的一种丝素 /壳聚糖复合多孔支架。其缺 点在于该复合物的稳定性较差, 不适于工业化生产和广泛应用。
中国专利 CN102952279A公布了用甲基乙烯基醚 /马来酸共聚物和交联剂反应制备水凝 胶的方法及其在肿瘤组织培养中运用,但由于该基质胶中含有大量细胞生长因子(如表皮生 长因子、 成纤维细胞生长因子及组织纤维酶原活化因子), 这些细胞因子对培养细胞作用的 不确定性。
发明内容
为克服现有技术存在的缺陷,本发明提供了一种用于细胞三维培养的基质支架材料,所 述的基质支架材料类似细胞体内环境的支架,可用于难培养细胞的体外扩增、组织器官再造 和肿瘤药物筛选。
本发明技术方案如下:
一种用于细胞三维培养的基质支架, 由丝素蛋白类物质、壳聚糖和交联剂经交联反应而 制得, 其特征在于所述的丝素蛋白类物质是由蚕茧壳或蚕丝经过脱胶、溶解、透析、干燥制 得丝素粉, 丝素粉再经如下方法制得所述的丝素蛋白类物质:
( 1 )将丝素粉溶解于溴化锂溶液中;
( 2 )将步骤(1 ) 的溶解后的丝素溶液用截流分子量为 3500Da的透析袋进行透析, 制得透 析后的丝素溶液;
( 3 )将装有步骤 (2 )所制得的透析后的丝素溶液的透析袋放入聚乙二醇 6000粉中进行浓 缩, 所得浓缩液离心后取上清液, 即得所述的丝素蛋白类物质。
上述所述的用于细胞三维培养的基质支架, 其中所述的交联剂, 优选为 1-乙基- 3- [3 - 二甲氨基丙基]碳化二亚胺 (EDC) 和 N-羟基琥珀酰亚胺 (NHS)。
优选地,上述所述的用于细胞三维培养的基质支架,其中将所述的丝素蛋白类物质、壳 聚糖和交联剂交联反应后所得反应产物经梯度冷冻得到所述的基质支架,所述的梯度冷冻过 程如下-
( 1 )将反应产物先放入- 20°C冰箱中预冷冻 12〜48 h, 再放入 -80'C低温冰箱中冷冻 12〜 48h, 最后放入冷冻干燥机冷冻干燥 24〜72 h, 得到初制的三维支架材料;
(2)将步骤(1 )制得的初制的三维支架材料浸入无水甲醇及 10%氢氧化钠 (体积比 1 : 1) 溶液浸泡 12〜48 h, 用去离子水冲洗后,置于冷冻干燥机内干燥 24〜72h后取出即得。
上述所述的用于细胞三维培养的基质支架, 其中通过改变丝素蛋白类物质、 壳聚糖和 / 或交联剂的用量以制得不同孔径和构象的用于细胞三维培养的基质支架。
优选地,上述所述的用于细胞三维培养的基质支架,其特征在于是通过包含如下步骤的 方法制得-
( 1 )制备丝素蛋白类物质的溶液
1 )将蚕茧壳剪成碎片后加入浓度为 0. 5%的碳酸钠溶液煮沸 2— 3遍, 再用去离子水洗 后进行烘干;
2)将步骤 1 ) 制得的干燥丝素加入煮沸的 50%氯化钙溶液搅拌溶解, 冷却后过滤;
3)将滤液装入透析袋中用去离子水透析制得丝素蛋白溶液, 用保鲜袋封装, 依次放入 -20度冰箱、 -80度冰箱, 最后放入冷冻干燥器中进行干燥制得丝素粉;
4)称取步骤 3)制得的丝素粉 10g,溶解于 9M溴化锂水溶液中, 室温下进行搅拌溶解;
5)将步骤 4)所制得的溶解后的丝素溶液冷却至常温后,倒入截流分子量为 3500Da的 透析袋中透析 2— 4天,以去除丝素溶液中的小分子物质;
6)将步骤 5)制得的透析后的丝素溶液存放于透析袋,放入聚乙二醇 6000粉剂中,干 燥浓缩,收集液体,离心取上清液即得;
(2) 制备壳聚糖溶液
1 )将 lmL冰醋酸用去离子水加至 100ml 得到 1%冰醋酸, 将 pH调至 4. 6;
2)称取壳聚糖(脱乙酰度〉 90%)加入上述冰醋酸, 配制成壳聚糖溶液;
(3)制备交联支架
1 )将步骤(1 )所制备的丝素蛋白类物质的溶液和步骤(2)所制备的壳聚糖溶液混合;
2 )浸入含 50匪 ol/l的 ED (:、 18醒 ol/lNHS的 95%乙醇水溶液中, 4° C下交联 24h;
3)将步骤 2) 的交联反应产物放入 -20Ό冰箱中预冷冻 24 h, 再放入 _80°C低温冰箱中 冷冻 24 h, 最后放入冷冻干燥机冷冻干燥 48 h, 得到初制的三维支架材料;
4)将步骤 3) 所制的支架材料浸入无水甲醇及 10%氢氧化钠 (体积比 1 : 1)溶液浸泡 24 h, 用去离子水冲洗 3遍后,置于冷冻干燥机内干燥 48 h后取出, 即得所述的用于 细胞三维培养的基质支架。
优选地,上述所述的用于细胞三维培养的基质支架,其中所述的丝素蛋白类物质溶液的 浓度为 1 %— 5%, 所述的壳聚糖溶液的浓度为 1 %— 5%。
作为本发明另一目的,还提供上述所述的基质支架的应用,其特征在于用于细胞的体外 扩增、 组织器官再造或者药物筛选。
优选地, 上述所述的应用, 其中用于干细胞培养、肿瘤微环境构建、肿瘤药物筛选或者 组织器官重建工程。
优选地,上述所述的应用,其中用于胚胎组织分离成肌细胞体外分化、肿瘤组织分离肿 瘤相关巨噬细胞(TAMs ) 或者肿瘤相关纤维母细胞(TAFs) 的体外扩增。
作为本发明另一目的,还提供一种细胞体外扩增的方法,包括使用上述所述的基质支架 作为细胞三维培养的支架材料。
本发明所述的基质构架,采用所述方法制得的丝素蛋白类物质与壳聚糖和交联剂进行交 联反应,通过调整丝素蛋白类物质 /壳聚糖溶液与交联剂的浓度和比例, 以得到不同孔径和 / 或构象的三维基质支架。
本发明还提供了上述所述的用于细胞三维培养的基质支架的制备方法。作为具体实施方 式之一, 所述方法包括如下步骤-
1、 制备 1%〜5%丝素蛋白液
( 1 ) 将蚕茧壳(或蚕丝)剪成碎片后加入浓度为 0. 5%的碳酸钠溶液煮沸 3-2遍, 再用去离子水洗两次再烘干。
(2) 将干燥的丝素加入煮沸的 50%氯化钙溶液搅拌, 冷却后过滤。
(3) 将滤液装入透析袋中用去离子水透析制得丝素蛋白溶液, 用保鲜袋封装, 依次放入 -20度冰箱、 -80度冰箱, 最后放入冷冻干燥器中。
(4) 称取丝素粉 10g,溶解于 9M溴化锂水溶液中, 室温下搅拌 2小时进行溶解。
( 5) 将以上溶解后的丝素溶液冷却至常温后,倒入截流分子量为 3500Da的透析 袋中透析三天,以去除丝素溶液中的小分子物质。
(6) 将制得的丝素蛋白液体存放透析袋,放入聚乙二醇 6000粉剂中,干燥浓缩, 收集液体,离心取上清液。
(7) 取 3个称量瓶编号洗净后放入 60° C恒温烘箱中烘干,充分冷却,称量三者 重量,记为 Ml。 各取 10 ml丝素蛋白液放入称量瓶,称重为 M2。 放入 60° C 供箱中 12h取出,冷却后称重记为 M3,按公式丝素蛋白溶液浓度 %= (M3-M1)
/ (M2— Μ1) χ100%。
2、 制备 1%〜5%壳聚糖溶液
( 1 ) 将 lmL冰醋酸用去离子水加至 100ml 得到 1%冰醋酸, 将 pH调至 4. 6。
(2) 称取 3〜5g壳聚糖 (脱乙酰度〉90%)加入上述冰醋酸。
3、 制备交联支架
( 1 ) 将步骤 1所制备的丝素蛋白溶液和步骤 2所制备的壳聚糖溶液混合。
(2) 浸入含 50ramol/l的 EDC;、 18mmol/lNHS的 95%乙醇水溶液中, 4° C下交联 24h。
(3) 放入 -20°C冰箱中预冷冻 24 h, 再放入 -80 °C低温冰箱中冷冻 24 h, 最后放入冷 冻干燥机冷冻干燥 48 h, 得到初制 S F/C S支架材料。
(4) 将所制支架浸入无水甲醇及 10%氢氧化钠(体积比 1 : 1)溶液浸泡 24 h, 用去 离子水冲洗 3遍后,置于冷冻干燥机内干燥 48 h后取出镜检。
另一方面,本发明所述的基质支架的应用,优选应用于在胚胎组织分离成肌细胞体外分 化、肿瘤组织分类肿瘤相关巨噬细胞(TAMs)和肿瘤相关纤维母细胞(TAFs)体外扩增中的 应用。
有益效果
本发明以蚕茧壳或蚕丝为原料,经过特定的提取工艺制得了天然丝素蛋白类物质, 以其 作为原料, 与天然的壳聚糖 (chitosan, CS) 原料, 运用无毒性交联剂 1-乙基 _3_ [3-二甲 氨基丙基]碳化二亚胺 (EDC)和 N羟基琥珀酰亚胺 (NHS)进行交联反应, 所制得的三维基 质支架的构象接近细胞体内的空间构象,细胞种植后能尽快形成细胞生长微环境,有利于细 胞尽快适应新的生长环境并发挥正常生理功能。 本发明的主要优点:
1. 本发明从蚕茧壳或蚕丝中制得的丝素蛋白类物质和壳聚糖均被证明具有良好生物相 容性和无毒性, 与动物性凝胶相比, 具有操作简单、 成本低廉等优点。
2. 大多数的哺乳动物细胞在体内和体外均附着于一定的支架而生长, 本发明所制得的 所述的三维基质构架既适合于贴壁细胞也适合非贴壁细胞的培养。 细胞在此三维环 境中排除了二维培养中的接触性抑制效应, 在此系统中进行的细胞体外研究结果, 更能客观反映细胞生理状态的生命活动, 提高研究结果的可靠性。
3. 通过调整丝素蛋白类物质 /壳聚糖溶液与交联剂的浓度和比例,可得到不同孔径和构 象的三维基质支架, 根据培养目的细胞所在体内的组织结构特点, 可选用不同孔径 和不同基质构象的三维培养系统, 满足于不同组织来源的细胞的原代体外培养, 应 用范围及其广泛, 可适用于难培养细胞体的体外扩增、 组织器官再造和肿瘤药物筛 选。
4. 本发明的细胞三维培养基质构架材料的构象类似于细胞体内微环境中的纤维组织构 象, 原代分离的细胞能尽快适应体外生长环境, 立足于此三维 (3D)培养过程中的 细胞生物学行为与体内接近, 减少体内外实验结果的误差, 具有重大的社会效益。
5. 为细胞三维培养研究提供了一个新的研究途径,这一研究的应用,将在干细胞培养、 肿瘤微环境构建、 肿瘤药物筛选、 组织器官重建工程等方面起着重要推动作用。 附图说明
图 1. 本发明实施例 1制备的基质构架材料在光学显微镜和扫描电子显微镜下的图像 图 2. 原代成肌细胞在本发明实施例 1制得的三维基质构架培养中的分化 (肌管融合率) 情况
图 3. 原代成肌细胞在本发明实施例 1制得的三维基质培养中的增殖 (细胞周期)情况 图 4. 肿瘤相关巨噬细胞 (TAMs )在实施例 1制得三维基质培养中的生长(MTT) 情况 图 5. 肿瘤相关纤维母细胞 (TAFs )在实施例 1制得的三维基质培养中的生长 (MTT) 情 况
图 6. 本发明的基质支架材料与现有的丝素蛋白制得的支架材料降解性的影响对比情况 图 7. 本发明的基质支架材料与现有的丝素蛋白制得的支架材料对细胞增殖能力的影响 对比情况
其中- 图 1中: 经过冷冻干燥后的三维基质构架材料, 光学显微镜 (日本 Olympus CX21 )观察 通过调整丝素蛋白类物质 /壳聚糖溶液与交联剂的浓度和比例, 得到不同孔径的三维基质支 架, 图 1A-B (放大倍数 X 400); 扫描电子显微镜(荷兰, Philips XL20) 电镜观察基质结构 (见图 1C)。
图 2中: 从图中看出, 随着培养时间的延长, 3D和 2D培养的成肌细胞肌管形成率开始逐 渐上升, 而 3D培养的成肌细胞的肌管形成率从培养的第 6天开始直到第 12天均保持一个平台 期。 3D和 2D培养的成肌细胞肌管形成率在第 12天分别为 17%和 33%。
图 3中: 从图中看出, 成肌细胞在 2D培养基中 1天、 3天和 6天时合成期(S期)细胞分别 为 33%、 28%和 23%, 而 3D培养基中 1天、 3天和 6天时 S期细胞分别为 32%、 39%和 41%。
图 4: 从图中看出, 从培养的第 4天开始, 3D和 2D培养的 TAMs的 0D值均明显上升, 而 3D 培养的 TAMs的 0D值从培养的第 6天开始直到第 15天均保持一个较高的平台期。 3D和 2D培养的 TAMs的 OD值在第 15天分别为 0. 63和 0. 43。
图 5中: 从图中看出, 从培养的第 2天开始, 3D和 2D培养的 TAMs的 0D值均明显上升, 2D 培养的 TAMs的 0D值至第 10天开始下降; 而 3D培养的 TAMs的 0D值持续升高到第 15天才开始下 降。
图 6中: 从图中看出, 用现有技术所制备的丝素蛋白液所制备的三维支架 7W后的降解率 高达 21. 2%, 而使用本发明方法制 _备的丝素蛋白类物质为原料制备的三维支架随着时间的延 长, 其降解率并不明显增加, 7W后仅为 9. 4%。
图 7中: 从图中看出, 用现有技术所制备的丝素蛋白溶液不能很好地保持丝素蛋白原有 的理化性质,导致所制备的三维支架的降解率随丝素蛋白溶液放置时间的延长而增高。而本 发明方法制备的丝素蛋白类物质为原料所制备的三维支架稳定性较好,因此有利于原代组织 细胞在新环境中的适应和增殖, 原代培养细胞在 2周仍能保持较高的增殖能力, 两组间有明 显差异 P=0. 031 ) 具体实施方式
本发明提供的细胞三维培养的基质是采用本发明所述的丝素蛋白类物质 /壳聚糖溶液与 交联剂进行交联反应, 通过调整丝素蛋白类物质 /壳聚糖溶液与交联剂的浓度和比例, 得到 不同孔径和构象的三维基质支架,根据培养目的细胞所在体内的组织结构特点,配置不同孔 径的三维基质, 为接种后细胞提供了附着支架,排除了二维培养中的接触性抑制效应, 使细 胞在类似体内微环境状态下生长。
实施例 1: 用于细胞三维培养的基质构架材料及其构建方法
1 )制备 1%〜5%丝素蛋白液
( 1 ) 将蚕茧壳剪成 lcm2的碎片, 加入浓度为 0. 5%的碳酸钠溶液浸没蚕茧壳煮沸 2-3 遍, 每次至少 1个小时。
(2) 先用自然水洗 2- 3次, 再用去离子水洗两次再烘干。
(3) 用 50%的氯化钙溶液加热至沸腾 (或溶解于 9M的溴化锂溶液中), 将干燥的丝素 加入搅拌, 使丝素充分溶解, 冷却至室温用布氏漏斗过滤。
(4) 将滤液装入透析袋中用去离子水透析 3-5天, 制得丝素蛋白溶液。
(5) 用保鲜袋封装, 放入 -20度冰箱 (12个小时), 再放入 -80度冰箱 (6个小时), 最后放入冷冻干燥器中至少 24个小时。
(6) 称取丝素粉 10g,溶解于 9M溴化锂水溶液中, 室温下搅拌 2 小时进行溶解。 (7) 将以上溶解后的丝素溶液冷却至常温后,倒入截流分子量为 3500Da的透析袋中, 用去离子水 4° C冰箱里透析三天,每隔 3小时换水一次,以去除丝素溶液中的小 分子物质。
(8) 将制得的丝素蛋白液体存放透析袋,放入聚乙二醇 6000粉剂中,干燥浓缩,收集 液体,将其以 3500r/min离心 15min, 取上清液, 置于 4° C冰箱中可保存一周。
(9) 取 3个称量瓶编号洗净后放入 60° C恒温烘箱中烘干,充分冷却,称量三者重量, 记为 Ml。各取 10 ml丝素蛋白液放入称量瓶,称重为 M2。放入 60° C供箱中 12h 取出,冷却后称重记为 M3,按公式丝素蛋白溶液浓度 %= (M3-M1) / (M2— Μ1) χ100%
( 10) 本实施例得出的丝素蛋白浓度为约为 2%〜3%。
)制备 1%〜5%壳聚糖溶液
( 1 ) 将 lmL冰醋酸用去离子水加至 100ml 得到 1%冰醋酸, 将 pH调至 4. 6。
(2) 称取 3. lg壳聚糖 (脱乙酰度〉 90%)加入上述冰醋酸。
( 3) 本实施例得到的是 1%的壳聚糖溶液。
)制备交联支架
( 1 ) 将步骤 1所制备的丝素蛋白溶液和步骤 2所制备的壳聚糖溶液混合。
(2) 浸入含 50mmol/l的 EDC、 18腿 ol/lNHS的 95%乙醇水溶液中, 4° C下交联 24h。
(3) 放入 -20°C冰箱中预冷冻 24 h, 再放入 -80°C低温冰箱中冷冻 24 h, 最后放入冷 冻干燥机冷冻干燥 48 h, 得到初制 S F/C S支架材料。
(4) 将所制支架浸入无水甲醇及 10%氢氧化钠(体积比 1 : 1)溶液浸泡 24 h, 用去 离子水冲洗 3遍后,置于冷冻干燥机内干燥 48 h后取出镜检。
(5) 镜下观察图像结构: 光学显微镜 (日本 Olympus CX21 )观察通过调整丝素蛋白 /壳聚糖溶液与交联剂的浓度和比例, 得到不同孔径的三维基质支架 (见图 1A-B); 扫描电子显微镜 (荷兰, Philips XL20) 电镜观察基质结构 (见图 1C) 实施例 2: 成肌细胞进行丝素蛋白三维培养后的增殖与分化情况
1) 原代成肌细胞的分离培养和鉴定
( 1 ) 用妊娠 15周自愿终止妊娠的健康妇女捐赠的引产胚胎, 无遗传病史。
(2) 无菌条件下, 取出骨骼肌组织, 除去筋膜和血管, 用胰蛋白酶、 胶原酶混合多步 消化法分离出成肌细胞, 差速贴壁纯化成肌细胞。
(3) 在含 10%小牛血清的 DMEM (生长培养基, GM) 培养 1天后, 置于含 3%小牛血 清的 DMEM (分化培养基, DM)中培养 6天后用相差倒置显微镜观察成肌细胞的肌 管形成; 用免疫组化鉴定肌球蛋白 (Myosin)表达。
) 成肌细胞进行丝素蛋白三维培养的分化情况
( 1 ) 分别设立实验组和对照组 24孔培养板,前者含有实施例 1中制备的丝素蛋白三维 基质 (称为 3D培养, 下同), 后者是普通的培养板 (称为 2D培养, 下同)。
(2) 分别将上述成肌细胞按照 5 X lOVml接种到两组 24孔培养板,用 GM培养 1天后, 改换成 DM培养, 于 1、 2、 4、 6、 8天时行 Giemsa染色, 观察成肌细胞融合成肌 管的现象。
(3) 肌管融合率为单位视野下肌管内细胞核数量与所有细胞核数量的比值, 肌管形成 率反映出成肌细胞的分化状态。 肌管形成率高表明大量细胞退出细胞周期, 进入 分化状态。 实验重复三次, 统计学分析。
(4) 实验结果显示, 从培养的第 4天开始, 3D和 2D培养的成肌细胞肌管形成率开始 逐渐上升, 2D培养的成肌细胞的肌管形成率直到培养的第 12天均保持的持续增 高趋势, 而 3D培养的成肌细胞的肌管形成率从培养的第 6天开始直到第 12天均 保持一个平台期。 3D和 2D培养的成肌细胞肌管形成率在第 12天分别为 17%和 33%
(见图 2)。
(5) 实验结果表明, 三维基质状态下为成肌细胞提供了类似体内环境的支架, 有利于 成肌细胞的增殖, 因而减缓成肌细胞的诱导分化进程。
) 成肌细胞进行丝素蛋白三维培养的细胞周期情况
( 1 ) 同上 2) ( 1 ), 分别设立实验组和对照组 24孔培养板, 前者含有实施例 1中制备 的丝素蛋白三维基质, 后者是普通的培养板。
(2) 同上 2) (2), 分别将上述成肌细胞按照 5 X 107ml接种到两组 24孔培养板,用含
10%小牛血清的 DMEM培养 1天后, 改换成含有含 3%小牛血清的 DMEM中培养。
( 3) 分别培养 6天时收集细胞, 用 PBS洗 5minX 2, 离心, 1, OOOrpm, 弃上清, 将细 胞重悬于 4Ό预冷的 PBS中, 缓慢加入冷乙醇, 使其终浓度为 70%, 4°C过夜。
(4) 离心后将等体积的细胞悬液和碘化丙啶(Propidium, PI )染液混合, 4°C, 30min; 流式细胞仪 (美国 C0ULTESR, Elite, ESP)进行检测, 实验重复三次, 统计学 分析。
(5) 实验结果显示, 成肌细胞在 2D培养基中 1天、 3天和 6天时合成期(S期)细胞 分别为 33%、 28%和 23%, 而 3D培养基中 1天、 3天和 6天时 S期细胞分别为 32 %、 39%和 41% (见图 3)。 (6) 实验结果表明, 经 2D培养的成肌细胞中,大部分细胞退出细胞周期, 向终末细胞 分化,而在 3D培养的细胞中, 处于合成期的细胞比例较高,大部分细胞处于增殖 阶段, 提示 3D培养基可用于难培养细胞的体外扩增。
实施例 3: 肿瘤组织提取的肿瘤间质细胞在丝素蛋白三维基质中的培养与扩增
1)肿瘤相关巨噬细胞 (TMAs) 的分离培养和鉴定
(1) 将新鲜结肠癌组织切成 2mm大小碎片,用含 0.3%胶原酶的 PBS在 37°C下消化成细 胞悬液, 用 70 ra不锈钢网过滤细胞悬液, 离心后用 PBS洗涤。
(2) 用不含血清的 RPMI-1640培养基重悬后加入培养瓶中培养 40分钟, 用 CD68荧光 标记鉴定贴壁的 TAMs。
2)肿瘤相关纤维母细胞 (TAFs) 的分离培养和鉴定
(1) 将新鲜结肠癌组织切成碎片, 接种含 15%FCS的 DMEM培养基, 5天后可见细胞从 团块中长出来, 胰酶消化传代。
(2) 根据 aSMA、 Vimentin、 Desmin表达和形态特点进行纯化。
)肿瘤间质细胞 TMAs和 TAFs在丝素蛋白三维基质培养中的扩增情况
(1) 同上实施例 2中的 2) (1), 分别设立实验组和对照组 24孔培养板, 前者含有实 施例 1中制备的丝素蛋白三维基质, 后者是普通的培养板。
( 1 ) 分别将上述肿瘤组织分离并鉴定出的 TAMs和 TAFs按照 5 X lOVml接种到两组 24 孔培养板, 用含 10%小牛血清的 DMEM培养 1天后, 改换成含有含 5%小牛血清 的 DMEM中培养。
(2) 分别于上述培养的第 1、 2、 4、 8、 16天时弃去培养液, 加 500 μ 1/孔 MTT培养液
(100μ1ΜΤΤ+400μ 1培养基), 置摇床震荡充分溶解结晶物。
(3) 用酶联免疫检测仪在 0D570nm处测各孔吸光值, 重复三次, 取平均值。
(6) 实验结果显示, TAMs从培养的第 4天开始, 3D和 2D培养的 TAMs的 0D值均明显 上升, 2D培养的 TAMs的 0D值直到培养的第 10天均保持的持续增高趋势, 之后 逐渐下降; 而 3D培养的 TAMs的 0D值从培养的第 6天开始直到第 15天均保持一 个较高的平台期。 3D和 2D培养的 TAMs的 0D值在第 15天分别为 0.63和 0.43(见 图 4)。 TAFs从培养的第 2天开始, 3D和 2D培养的 TAMs的 0D值均明显上升, 2D 培养的 TAMs的 0D值至第 10天开始下降; 而 3D培养的 TAMs的 0D值持续升高到 第 15天才开始下降 (见图 5)。
(7) 实验结果表明, 三维基质为 TAMs和 TAFs提供了类似体内环境的支架, 有利于细 胞的增殖培养。
实施例 4 : 对比试验: 分别用本发明方法所制丝素蛋白类物质与按现有技术 (CN103418029A)制得丝素蛋白为原料制得的基质支架材料降解性的影响对比
1 ) 按 CN103418029A的实施例五制得浓度 20%丝素蛋白溶液
2) 按本发明实施例 1之步骤 1 ) 制得 3%丝素蛋白溶液;
3) 制备 1%〜5%壳聚糖溶液, 同实施例 1之步骤 2);
4) 分别运用 1 )和 2)所制备的丝素蛋白液制备交联支架 A和 B, 同实施例 1之步骤 3)。
A支架是按现有技术制得的丝素蛋白为原料制得的基质支架材料, B支架是按本发明 方法制得的丝素蛋白类物质为原料制得的基质支架材料。
5) 降解性能检测
( 1 ) 将人工体液 (SBF溶液) 作为体外降解环境, 降解温度为恒温 37°C。
(2) 取配置好的无菌 SBF溶液 40ml放置体积为 50ml的塑料瓶内。
( 3) 将支架 A和 B分别称重 (记为 W。), 置于 SBF中, 置 37 °C恒温保湿。
(4) 分别于 ld, 7d, 14d, 21d, 28d, 35d, 42d, 49d 时的重量变化。 计算重量时, 先用去离子水冲洗干净, 60Ό烘箱烘干, 称重记为 , 公式为: 降解率 = (W„- W,) / W„ X 100%, 每个数据测 3各样本, 取均数士标准差。
6) 结果分析: 如本实验结果如图 6所示, 用现有技术所制备的丝素蛋白液所制备 的多维支架 7W后的降解率高达 21. 2%, 而使用本法制备的丝素粉为原料制备的多维支 架随着时间的延长, 其降解率并不明显增加, 7W后仅为 9. 4%。 现有技术所制备的丝素 蛋白为原料制得的基质支架材料稳定性不好, 而本发明方法制备的基质支架材料的稳定 性显著提高。
实施例 5: 对比试验, 分别用本发明方法所制的丝素蛋白类物质与运用现有技术制备的 丝素蛋白为原料制备的基质支架材料对细胞增殖能力的影响对比
1 ) 用现有技术所制备的丝素蛋白溶液
同实施例 4之步骤 1 );
2) 本发明所制备的 1%〜5%丝素蛋白液, 同实施例 1之步骤 1 )。
3) 制备 1%〜5%壳聚糖溶液, 同实施例 1之步骤 2)。
4) 分别运用放置 2W后的 1 ) 所制备的丝素蛋白液和 2 )所制备的丝素蛋白液制备交联 支架 A和 B, 同实施例 1之步骤 3)。 A支架是按现有技术制得的丝素蛋白为原料制得 的基质支架材料, B支架是按本发明方法制得的丝素蛋白类物质为原料制得的基质支 架材料。
5) MTT法检测上述三维支架 A和 B对原代培养结肠癌组织细胞增殖能力的影响
( 1 ) 取术后或活检标本,除去坏死和溃疡组织,用含双抗 PBS浸泡 10-20min后放置无 血清保存液 (DMEM/RPMI 1640+10%双抗) 中冰上保存。
(2) 将组织放入处理用 PBS (含 10%双抗和 1%FBS) 中剪碎组织 (冰上进行)
( 3) 组织与液体置于离心管, 1000r/min, 5min, 去除上清, 取沉淀, 用胰蛋白酶 +胶 原酶消化, 37°C培养箱培养 1小时左右, 每 10-15分钟摇晃一次。
(4) 离心, 去除消化液, 用 PBS低速离心洗 2-3次, 去除上清, 最后用培养基离心洗 1次, 用完全培养基悬浮, 并用吸管吹打分散制成细胞悬液, 接种在含 10%的 FBS 的 DMED (或 RPMI1640) 中, 37°C, 5%C02下分瓶 (皿) 培养。
(5) 分别于上述培养的第 1、 2、 4、 8、 16天时弃去培养液, 加 500 μ 1/孔 MTT培养液
( 100 μ 1ΜΤΤ+400 μ 1培养基), 置摇床震荡充分溶解结晶物。
(6) 用酶联免疫检测仪在 OD570nm处测各孔吸光值, 重复三次, 取平均值。
6) 结果分析: 结果如图 7所示。 由于现有技术所制备的丝素蛋白溶液不能很好地保持 丝素蛋白原有的理化性质, 导致所制备的基质支架材料的降解率随丝素蛋白溶液放 置时间的延长而增高, 进而影响细胞增殖能力。 而本法制备的丝素蛋白类物质为原 料所制备的基质支架材料稳定性较好, 因此有利于原代组织细胞在新环境中的适应 和增殖,原代培养细胞在 2周仍能保持较高的增殖能力,两组间有明显差异 031 ) 上述实施例只是为了说明本发明的技术构思, 目的是使一般技术人员了解本发明的 内容并据以实施, 但不能以此限制本发明的保护范围。 凡根据本发明的实质内容所做出 的等效变化及其不同领域的应用, 都涵盖在本发明的保护范围。

Claims

权利要求书
1、 一种用于细胞三维培养的基质支架, 由丝素蛋白类物质、 壳聚糖和交联剂经交联反应而 制得, 其特征在于所述的丝素蛋白类物质是由蚕茧壳或蚕丝经过脱胶、 溶解、 透析、 干 燥制得丝素粉, 丝素粉再经如下方法制得所述的丝素蛋白类物质:
( 1 )将丝素粉溶解于溴化锂溶液中;
(2)将步骤 (1 ) 的溶解后的丝素溶液用截流分子量为 3500Da的透析袋进行透析, 制得透 析后的丝素溶液;
(3)将装有步骤 (2)所制得的透析后的丝素溶液的透析袋放入聚乙二醇 6000粉中进行浓 缩, 所得浓缩液离心后取上清液, 即得所述的丝素蛋白类物质。
2、根据权利要求 1所述的用于细胞三维培养的基质支架,其中所述的交联剂为 1-乙基- 3- [3- 二甲氨基丙基]碳化二亚胺 (EDC)和 N-羟基琥珀酰亚胺 (NHS)。
3、 根据权利要求 1一 2所述的用于细胞三维培养的基质支架, 其中将所述的丝素蛋白类物 质、 壳聚糖和交联剂交联反应后所得反应产物经梯度冷冻得到所述的基质支架, 所述的梯 度冷冻过程如下:
( 1 )将反应产物先放入 -20°C冰箱中预冷冻 12〜48 h, 再放入 -80°C低温冰箱中冷冻 12〜 48h, 最后放入冷冻干燥机冷冻干燥 24〜72 h, 得到初制的三维支架材料;
(2)将步骤 (1 ) 制得的初制的三维支架材料浸入无水甲醇及 10%氢氧化钠(体积比 1 : 1) 溶液浸泡 12〜48 h, 用去离子水冲洗后,置于冷冻干燥机内干燥 24〜72 h后取出即得。
4、根据权利要求 1一 3所述的用于细胞三维培养的基质支架,其中通过改变丝素蛋白类物质、 壳聚糖和 /或交联剂的用量以制得不同孔径和构象的用于细胞三维培养的基质支架。
5、根据权利要求 1一 4所述的用于细胞三维培养的基质支架,其特征在于是通过包含如下步 骤的方法制得:
( 1 ) 制备丝素蛋白类物质的溶液
1 ) 将蚕茧壳剪成碎片后加入浓度为 0. 5%的碳酸钠溶液煮沸 2— 3遍, 再用去离子水 洗后进行烘干;
2 ) 将步骤 1 ) 制得的干燥丝素加入煮沸的 50%氯化钙溶液搅拌溶解, 冷却后过滤;
3) 将滤液装入透析袋中用去离子水透析制得丝素蛋白溶液, 用保鲜袋封装, 依次放 入 -20度冰箱、 -80度冰箱, 最后放入冷冻干燥器中进行干燥制得丝素粉; 4) 称取步骤 3)制得的丝素粉 10g,溶解于 9M溴化锂水溶液中, 室温下进行搅拌溶 解;
5) 将步骤 4)所制得的溶解后的丝素溶液冷却至常温后,倒入截流分子量为 3500Da 的透析袋中透析 2— 4天,以去除丝素溶液中的小分子物质;
6) 将步骤 5)制得的透析后的丝素溶液存放于透析袋,放入聚乙二醇 6000粉剂中,干 燥浓缩,收集液体,离心取上清液即得;
(2) 制备壳聚糖溶液
1 ) 将 lmL冰醋酸用去离子水加至 100ml 得到 1%冰醋酸, 将 pH调至 4. 6;
2 ) 称取壳聚糖 (脱乙酰度〉 90%)加入上述冰醋酸, 配制成壳聚糖溶液;
(3) 制备交联支架
1 ) 将步骤 (1 )所制备的丝素蛋白类物质的溶液和步骤 (2) 所制备的壳聚糖溶液 混合;
2 ) 浸入含 50隱 ol/l的 EDC:、 18瞧 ol/lNHS的 95%乙醇水溶液中, 4° C下交联 24h;
3) 将步骤 2) 的交联反应产物放入 -20°C冰箱中预冷冻 24 h, 再放入 - 80°C低温冰 箱中冷冻 24 h, 最后放入冷冻干燥机冷冻干燥 48 h, 得到初制的三维支架材料;
4) 将步骤 3)所制的支架材料浸入无水甲醇及 10%氢氧化钠 (体积比 1 : 1)溶液浸 泡 24 h, 用去离子水冲洗 3遍后,置于冷冻干燥机内干燥 48 h后取出, 即得所述 的用于细胞三维培养的基质支架。
6、 根据权利要求 5所述的用于细胞三维培养的基质支架, 其中所述的丝素蛋白类物质溶液 的浓度为 1 %—5%, 所述的壳聚糖溶液的浓度为 1 %—5%。
7—种权利要求 1一 6所述的基质支架的应用, 其特征在于用于细胞的体外扩增、 组织器官 再造或者药物筛选。
8、 根据权利要求 7所述的应用, 其中用于干细胞培养、 肿瘤微环境构建、 肿瘤药物筛选或 者组织器官重建工程。
9、 根据权利要求 7所述的应用, 其中用于胚胎组织分离成肌细胞体外分化、 肿瘤组织分离 肿瘤相关巨噬细胞 (TAMs) 或者肿瘤相关纤维母细胞 (TAFs) 的体外扩增。
10、 一种细胞体外扩增的方法, 包括使用权利要求 1一 6中所述的基质支架作为细胞三维培 养的支架材料。
PCT/CN2014/000771 2014-08-15 2014-08-15 一种用于细胞三维培养的基质支架及其构建方法和应用 WO2016023140A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/774,086 US20160206780A1 (en) 2014-08-15 2014-08-15 Matrix Scaffold for Three-Dimensional Cell Cultivation, Methods of Construction Thereof and Uses Thereof
CN201480012266.6A CN105431179A (zh) 2014-08-15 2014-08-15 一种用于细胞三维培养的基质支架及其构建方法和应用
PCT/CN2014/000771 WO2016023140A1 (zh) 2014-08-15 2014-08-15 一种用于细胞三维培养的基质支架及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/000771 WO2016023140A1 (zh) 2014-08-15 2014-08-15 一种用于细胞三维培养的基质支架及其构建方法和应用

Publications (1)

Publication Number Publication Date
WO2016023140A1 true WO2016023140A1 (zh) 2016-02-18

Family

ID=55303747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000771 WO2016023140A1 (zh) 2014-08-15 2014-08-15 一种用于细胞三维培养的基质支架及其构建方法和应用

Country Status (3)

Country Link
US (1) US20160206780A1 (zh)
CN (1) CN105431179A (zh)
WO (1) WO2016023140A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105963790A (zh) * 2016-05-05 2016-09-28 苏州大学 一种复合凝胶三维肿瘤模型支架的制备方法
US11840732B2 (en) 2016-11-07 2023-12-12 Iscaff Pharma Ab Diagnostic methods

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402059A (zh) * 2017-09-18 2019-03-01 武汉原生原代生物医药科技有限公司 体外用生物膜及其制备方法和用途
CN109402047A (zh) * 2017-09-18 2019-03-01 武汉原生原代生物医药科技有限公司 促组织粘附和生长生物粘合剂及其制备方法和用途
CN112899215A (zh) * 2017-11-30 2021-06-04 山西加乐医疗科技有限责任公司 一种细胞支架及其制备方法
CN108841776B (zh) * 2018-06-13 2022-05-10 河海大学常州校区 一种成分可调控的3d凝胶的制备方法及应用
CA3113528A1 (en) 2018-09-21 2020-03-26 Aufbau Medical Innovations Limited Compositions and methods for glaucoma
CN110066418B (zh) * 2019-04-16 2021-08-31 苏州大学 一种活性丝素多孔材料或活性丝素膜及其制备方法
EP4017537A4 (en) * 2019-08-20 2023-08-16 Evolved by Nature, Inc. SILK PERSONAL CARE COMPOSITIONS
CN113956506B (zh) * 2020-07-03 2023-07-21 中国科学院苏州纳米技术与纳米仿生研究所 一种双网络水凝胶及其制备方法与应用
CN112354011B (zh) * 2020-10-12 2022-10-14 华南师范大学 一种肝组织工程支架及其制备方法
WO2022246342A1 (en) 2021-05-21 2022-11-24 Cambridge Crops, Inc. d/b/a Mori Systems and methods for manufacturing a silk fibroin solution and powders containing silk fibroin
CN113201222B (zh) * 2021-05-24 2022-08-19 中国科学院西北高原生物研究所 一种牦牛皮胶/pmve-ma复合材料及其制备方法和用途
CN113929934A (zh) * 2021-07-09 2022-01-14 泸州国之荣耀酒业有限公司 抗降解性明胶微球、人工肝模型及其构建方法与应用
US11864569B2 (en) 2021-08-16 2024-01-09 Cambridge Crops, Inc. Systems and methods for improving the performance of cereal using a silk fibroin solution and powders containing silk fibroin
CN113634048B (zh) * 2021-09-10 2022-10-14 武汉纺织大学 天然蚕丝微纳米纤维复合多孔材料及其应用
CN114984313B (zh) * 2022-04-26 2023-06-20 江苏省中医药研究院(江苏省中西医结合医院) 一种提高丝素蛋白支架压电效应的方法
CN114874975B (zh) * 2022-05-09 2024-04-19 中山大学附属第七医院(深圳) 一种利用弹性蛋白水凝胶培养类器官的方法
CN115607726B (zh) * 2022-09-29 2023-12-22 重庆中医药学院 一种大黄炭-壳聚糖-丝素蛋白复合材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418029A (zh) * 2013-08-29 2013-12-04 中国人民解放军军事医学科学院卫生装备研究所 一种丝素/壳聚糖复合多孔支架的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445971A (zh) * 2008-12-19 2009-06-03 东华大学 仿生细胞外基质丝素蛋白/壳聚糖复合纳米纤维的制备方法
US9334473B2 (en) * 2012-08-17 2016-05-10 Jelena Vukasinovic Three dimensional cell culture compositions and methods of use
CN103436985A (zh) * 2013-07-22 2013-12-11 苏州三和开泰花线织造有限公司 一种丝素蛋白/壳聚糖共混纳米纤维的制备方法
CN103993422B (zh) * 2014-04-23 2017-03-15 东华大学 一种再生丝素蛋白/壳聚糖衍生物共混纤维毡及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418029A (zh) * 2013-08-29 2013-12-04 中国人民解放军军事医学科学院卫生装备研究所 一种丝素/壳聚糖复合多孔支架的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU , ZHIWEI: "Preparation of liver-Specific Silk Fibroin-based Macroporous Microcarrier Crosslinked by EDC/NHS", CHINA MASTER'S THESES FULL-TEXT DATABASE, vol. 05, 15 May 2012 (2012-05-15), pages E080 - 41 *
SILVA, S.S. ET AL.: "Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies", BIOMACROMOLECULES, vol. 9, no. 10, 25 September 2008 (2008-09-25), pages 2764 - 2774 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105963790A (zh) * 2016-05-05 2016-09-28 苏州大学 一种复合凝胶三维肿瘤模型支架的制备方法
US11840732B2 (en) 2016-11-07 2023-12-12 Iscaff Pharma Ab Diagnostic methods

Also Published As

Publication number Publication date
US20160206780A1 (en) 2016-07-21
CN105431179A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2016023140A1 (zh) 一种用于细胞三维培养的基质支架及其构建方法和应用
Razavi et al. Three‐dimensional cryogels for biomedical applications
CN103877617B (zh) 可注射蚕丝素蛋白-海藻酸盐双交联水凝胶及其制备方法和使用方法
CN103951831B (zh) 丝胶蛋白水凝胶的制备方法及其应用
Chopra et al. Fabrication of poly (vinyl alcohol)-Carrageenan scaffolds for cryopreservation: Effect of composition on cell viability
JP6581650B2 (ja) 温度感応性グリコールキトサン誘導体を利用したスフェロイド形成用培養容器及びそれを利用したスフェロイドの形成方法
CN104342405A (zh) 一种肿瘤微环境的体外构建方法及其在药敏筛选中的应用
CN112972760A (zh) 一种负载内皮细胞外基质的3d打印骨缺损修复支架及其制备方法
WO2021068743A1 (zh) 一种自支撑丝素蛋白导管支架的成型方法
Gan et al. GelMA/κ-carrageenan double-network hydrogels with superior mechanics and biocompatibility
Ghaffarinovin et al. Repair of rat cranial bone defect by using amniotic fluid-derived mesenchymal stem cells in polycaprolactone fibrous scaffolds and platelet-rich plasma
Sang et al. Photo-crosslinked hydrogels for tissue engineering of corneal epithelium
Li et al. Magnetic liquid metal scaffold with dynamically tunable stiffness for bone tissue engineering
CN107638590A (zh) 一种壳聚糖基梯度仿生复合支架材料及其构建方法
KR101383527B1 (ko) 합성 고분자, 폴리사카라이드 및 단백질을 포함하는 크라이오젤 스캐폴드 및 상기 스캐폴드를 이용한 조직 재생방법
CN102350009A (zh) 复合型骨基质明胶聚乳酸多孔生物活性材料的制备方法
CN112111162B (zh) 可快速固化的双网络水凝胶及其制备方法与应用
CN105031724B (zh) 一种组织工程软骨支架及其制备方法
Lu et al. Growth of fibroblast and vascular smooth muscle cells in fibroin/collagen scaffold
CN108084466A (zh) 一种基于蛋清和甲基丙烯酸衍生化聚合物的复合膜及其在培养干细胞方面的应用
CN204840394U (zh) 一种具有趋化功能的生物活性支架的制备和应用
CN211445769U (zh) 一种用于构建体外肿瘤模型的3d支架
CN108478864A (zh) 复合纤维支架
CN102989038B (zh) 可递送内皮抑制激素的胶原基复合角膜替代物的制备方法和应用
Chen et al. Sandwich-like scaffold for effective hemostasis and anti-adhesion in cardiac injury

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012266.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 14774086

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899600

Country of ref document: EP

Kind code of ref document: A1