WO2016021540A1 - シンチレータパネル及び放射線検出器 - Google Patents
シンチレータパネル及び放射線検出器 Download PDFInfo
- Publication number
- WO2016021540A1 WO2016021540A1 PCT/JP2015/071931 JP2015071931W WO2016021540A1 WO 2016021540 A1 WO2016021540 A1 WO 2016021540A1 JP 2015071931 W JP2015071931 W JP 2015071931W WO 2016021540 A1 WO2016021540 A1 WO 2016021540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scintillator panel
- phosphor
- panel according
- porosity
- press
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims description 26
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 153
- 238000005192 partition Methods 0.000 claims abstract description 103
- 238000000034 method Methods 0.000 claims abstract description 81
- 239000000758 substrate Substances 0.000 claims abstract description 52
- 239000010410 layer Substances 0.000 claims description 111
- 239000011521 glass Substances 0.000 claims description 71
- 239000000843 powder Substances 0.000 claims description 65
- 238000011049 filling Methods 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 39
- 230000004888 barrier function Effects 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000011241 protective layer Substances 0.000 claims description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims description 11
- 150000004706 metal oxides Chemical class 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 10
- KRIJWFBRWPCESA-UHFFFAOYSA-L strontium iodide Chemical compound [Sr+2].[I-].[I-] KRIJWFBRWPCESA-UHFFFAOYSA-L 0.000 claims description 10
- 229910001643 strontium iodide Inorganic materials 0.000 claims description 10
- 239000010409 thin film Substances 0.000 claims description 10
- 229910010272 inorganic material Inorganic materials 0.000 claims description 4
- 239000011147 inorganic material Substances 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 14
- 239000010408 film Substances 0.000 description 35
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 27
- 238000000576 coating method Methods 0.000 description 25
- 239000011248 coating agent Substances 0.000 description 21
- 238000010304 firing Methods 0.000 description 21
- 239000000463 material Substances 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 16
- 239000013078 crystal Substances 0.000 description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- 239000002585 base Substances 0.000 description 13
- 239000000178 monomer Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000006089 photosensitive glass Substances 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 235000009518 sodium iodide Nutrition 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- -1 steatite Chemical compound 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 238000001887 electron backscatter diffraction Methods 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000003570 air Substances 0.000 description 4
- 238000000149 argon plasma sintering Methods 0.000 description 4
- 238000009694 cold isostatic pressing Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010191 image analysis Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 150000002923 oximes Chemical class 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 238000009461 vacuum packaging Methods 0.000 description 3
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- KYIKRXIYLAGAKQ-UHFFFAOYSA-N abcn Chemical compound C1CCCCC1(C#N)N=NC1(C#N)CCCCC1 KYIKRXIYLAGAKQ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000000462 isostatic pressing Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- 239000004034 viscosity adjusting agent Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- CNGTXGHYZBQUQS-UHFFFAOYSA-N ((1-(2-methoxyethoxy)ethoxy)methyl)benzene Chemical compound COCCOC(C)OCC1=CC=CC=C1 CNGTXGHYZBQUQS-UHFFFAOYSA-N 0.000 description 1
- MLIWQXBKMZNZNF-PWDIZTEBSA-N (2e,6e)-2,6-bis[(4-azidophenyl)methylidene]-4-methylcyclohexan-1-one Chemical compound O=C1\C(=C\C=2C=CC(=CC=2)N=[N+]=[N-])CC(C)C\C1=C/C1=CC=C(N=[N+]=[N-])C=C1 MLIWQXBKMZNZNF-PWDIZTEBSA-N 0.000 description 1
- UZNOMHUYXSAUPB-UNZYHPAISA-N (2e,6e)-2,6-bis[(4-azidophenyl)methylidene]cyclohexan-1-one Chemical compound C1=CC(N=[N+]=[N-])=CC=C1\C=C(/CCC\1)C(=O)C/1=C/C1=CC=C(N=[N+]=[N-])C=C1 UZNOMHUYXSAUPB-UNZYHPAISA-N 0.000 description 1
- GJZFGDYLJLCGHT-UHFFFAOYSA-N 1,2-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=C(CC)C(CC)=CC=C3SC2=C1 GJZFGDYLJLCGHT-UHFFFAOYSA-N 0.000 description 1
- YFKBXYGUSOXJGS-UHFFFAOYSA-N 1,3-Diphenyl-2-propanone Chemical compound C=1C=CC=CC=1CC(=O)CC1=CC=CC=C1 YFKBXYGUSOXJGS-UHFFFAOYSA-N 0.000 description 1
- SFSLTRCPISPSKB-UHFFFAOYSA-N 10-methylideneanthracen-9-one Chemical compound C1=CC=C2C(=C)C3=CC=CC=C3C(=O)C2=C1 SFSLTRCPISPSKB-UHFFFAOYSA-N 0.000 description 1
- PLGAYGHFBSTWCA-UHFFFAOYSA-N 10-phenylsulfanylacridin-9-one Chemical compound C1(=CC=CC=C1)SN1C=2C=CC=CC2C(C2=CC=CC=C12)=O PLGAYGHFBSTWCA-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- BIVJXJNCTSUKAT-UHFFFAOYSA-N 2-[2-[2-[2-(2-methylprop-2-enoyloxy)propoxy]propoxy]propoxy]propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(C)OCC(C)OCC(C)OCC(C)OC(=O)C(C)=C BIVJXJNCTSUKAT-UHFFFAOYSA-N 0.000 description 1
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- DZZAHLOABNWIFA-UHFFFAOYSA-N 2-butoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCCCC)C(=O)C1=CC=CC=C1 DZZAHLOABNWIFA-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- FEWFXBUNENSNBQ-UHFFFAOYSA-N 2-hydroxyacrylic acid Chemical compound OC(=C)C(O)=O FEWFXBUNENSNBQ-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- MYISVPVWAQRUTL-UHFFFAOYSA-N 2-methylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3SC2=C1 MYISVPVWAQRUTL-UHFFFAOYSA-N 0.000 description 1
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 description 1
- YTPSFXZMJKMUJE-UHFFFAOYSA-N 2-tert-butylanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(C(C)(C)C)=CC=C3C(=O)C2=C1 YTPSFXZMJKMUJE-UHFFFAOYSA-N 0.000 description 1
- UVNIWYMQSYQAIS-UHFFFAOYSA-N 3-(4-azidophenyl)-1-phenylprop-2-en-1-one Chemical compound C1=CC(N=[N+]=[N-])=CC=C1C=CC(=O)C1=CC=CC=C1 UVNIWYMQSYQAIS-UHFFFAOYSA-N 0.000 description 1
- OKISUZLXOYGIFP-UHFFFAOYSA-N 4,4'-dichlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=C(Cl)C=C1 OKISUZLXOYGIFP-UHFFFAOYSA-N 0.000 description 1
- BMVWCPGVLSILMU-UHFFFAOYSA-N 5,6-dihydrodibenzo[2,1-b:2',1'-f][7]annulen-11-one Chemical compound C1CC2=CC=CC=C2C(=O)C2=CC=CC=C21 BMVWCPGVLSILMU-UHFFFAOYSA-N 0.000 description 1
- XAHUQPLRZPTJGH-UHFFFAOYSA-N 6-[2-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]hexyl 2-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound C=1C(C(C)(C)C)=C(O)C(C(C)(C)C)=CC=1C(C)C(=O)OCCCCCCOC(=O)C(C)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 XAHUQPLRZPTJGH-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- NQSMEZJWJJVYOI-UHFFFAOYSA-N Methyl 2-benzoylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 NQSMEZJWJJVYOI-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- 239000007875 V-40 Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- BRHJUILQKFBMTL-UHFFFAOYSA-N [4,4-bis(dimethylamino)cyclohexa-1,5-dien-1-yl]-phenylmethanone Chemical compound C1=CC(N(C)C)(N(C)C)CC=C1C(=O)C1=CC=CC=C1 BRHJUILQKFBMTL-UHFFFAOYSA-N 0.000 description 1
- XQAXGZLFSSPBMK-UHFFFAOYSA-M [7-(dimethylamino)phenothiazin-3-ylidene]-dimethylazanium;chloride;trihydrate Chemical compound O.O.O.[Cl-].C1=CC(=[N+](C)C)C=C2SC3=CC(N(C)C)=CC=C3N=C21 XQAXGZLFSSPBMK-UHFFFAOYSA-M 0.000 description 1
- MCVAAHQLXUXWLC-UHFFFAOYSA-N [O-2].[O-2].[S-2].[Gd+3].[Gd+3] Chemical compound [O-2].[O-2].[S-2].[Gd+3].[Gd+3] MCVAAHQLXUXWLC-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- NDKBVBUGCNGSJJ-UHFFFAOYSA-M benzyltrimethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)CC1=CC=CC=C1 NDKBVBUGCNGSJJ-UHFFFAOYSA-M 0.000 description 1
- VYHBFRJRBHMIQZ-UHFFFAOYSA-N bis[4-(diethylamino)phenyl]methanone Chemical compound C1=CC(N(CC)CC)=CC=C1C(=O)C1=CC=C(N(CC)CC)C=C1 VYHBFRJRBHMIQZ-UHFFFAOYSA-N 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910021387 carbon allotrope Inorganic materials 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000000572 ellipsometry Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- DASJFYAPNPUBGG-UHFFFAOYSA-N naphthalene-1-sulfonyl chloride Chemical compound C1=CC=C2C(S(=O)(=O)Cl)=CC=CC2=C1 DASJFYAPNPUBGG-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VHXJRLYFEJAIAM-UHFFFAOYSA-N quinoline-2-sulfonyl chloride Chemical compound C1=CC=CC2=NC(S(=O)(=O)Cl)=CC=C21 VHXJRLYFEJAIAM-UHFFFAOYSA-N 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000004846 x-ray emission Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K4/00—Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/2002—Optical details, e.g. reflecting or diffusing layers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/202—Measuring radiation intensity with scintillation detectors the detector being a crystal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
Definitions
- the present invention relates to a scintillator panel and a radiation detector using the same.
- radiographic images using a film have been widely used in the medical field.
- digital methods such as computed radiography (CR) and flat panel radiation detectors (hereinafter referred to as “FPD”) have been adopted.
- Radiation detectors have been developed.
- a scintillator panel is used to convert radiation into visible light.
- the scintillator panel includes a radiation phosphor, and the radiation phosphor emits visible light in accordance with the irradiated radiation, and the emitted light is electrically converted by a TFT (thin film transistor) or a CCD (charge-coupled device). By converting it into a signal, radiation information is converted into digital image information.
- the FPD has a problem that when the radiation phosphor emits light, visible light is scattered by the radiation phosphor itself and the S / N ratio is lowered.
- a method of partitioning phosphors by partition walls has been proposed. More specifically, fluorescent light is separated in a space partitioned by preformed partition walls, that is, in a cell. Methods for filling the body have been proposed.
- Known methods for forming the partition walls in advance include silicon wafer etching, screen printing using a glass powder-containing paste, or photosensitive paste (Patent Documents 1 to 4).
- Patent Documents 1 to 4 a method is known in which a single crystal of phosphor is mechanically processed to form a groove and a partition wall is embedded in the groove.
- an object of the present invention is to provide a scintillator panel having a high brightness and a high sharpness, which can be manufactured more easily at a low cost.
- the scintillator panel includes a light shielding layer between the partition and the phosphor, and the light shielding layer contains a metal as a main component.
- (10) Produced by a method comprising a step of press-filling a phosphor selected from the group of CsI: Tl, NaI: Tl, SrI2: Eu into cells partitioned by barrier ribs, (1) to (9) The scintillator panel according to any one of the above.
- a scintillator panel having high brightness and high sharpness can be provided more easily and at low cost.
- FIG. 1 is a cross-sectional view schematically showing a configuration of a radiation detector having a scintillator panel of the present invention.
- FIG. 2 is a perspective view schematically showing the configuration of the scintillator panel of the present invention.
- the radiation detector 1 includes a scintillator panel 2, an output substrate 3, and a power supply unit 11.
- the scintillator panel 2 has a phosphor layer 6, that is, a phosphor, and the phosphor absorbs energy of incident radiation, so that an electromagnetic wave having a wavelength in the range of 300 to 800 nm, that is, visible light, mainly from ultraviolet light. Radiates electromagnetic waves (light) in the range of infrared light.
- the scintillator panel 2 includes a substrate 4, a partition wall 5 for forming a space defined on the substrate 4, that is, a cell, and a light shielding layer 12 formed on a surface of the partition wall 5 and a portion on the substrate 4 where the partition wall is not formed. , A reflective layer 13, a protective layer 14, and a phosphor layer 6 made of a phosphor filled in a space defined by the partition walls 5.
- the output substrate 3 has a photoelectric conversion layer 8 and an output layer 9 on a substrate 10 in which pixels composed of photoelectric conversion elements and TFTs are two-dimensionally formed.
- the radiation detector 1 is obtained by bonding or adhering the light-emitting surface of the scintillator panel 2 and the photoelectric conversion layer 8 of the output substrate 3 via the diaphragm layer 7 made of polyimide resin or the like.
- the diaphragm layer 7 made of polyimide resin or the like.
- each cell is partitioned by a partition wall, so that the size and pitch of the pixels of the photoelectric conversion elements arranged in a lattice pattern are matched with the size and pitch of the cells of the scintillator panel.
- Each pixel of the photoelectric conversion element can be associated with each cell of the scintillator panel.
- the scintillator panel of the present invention comprises a substrate, a partition placed on the substrate, and a phosphor filled in a cell partitioned by the partition, and the porosity of the phosphor is 20% or less. And the phosphor has a grain boundary.
- “Substrate” refers to a plate-like support on which a partition wall is placed.
- the material for the substrate include polymers, ceramics, semiconductors, metals, and glasses having radiation transparency.
- the polymer compound include polyester, cellulose acetate, polyamide, polyimide, polycarbonate, or carbon fiber reinforced resin.
- the ceramic include alumina, aluminum nitride, mullite, steatite, silicon nitride, and silicon carbide.
- Examples of the semiconductor include silicon, germanium, gallium arsenide, gallium phosphide, and gallium nitrogen.
- the metal include aluminum, iron, copper, and metal oxide.
- the glass include quartz, borosilicate glass, and chemically tempered glass.
- the thickness of the substrate is preferably 1 mm or less in order to suppress radiation absorption by the substrate.
- the reflectance of the substrate is preferably 90% or more.
- the reflectance refers to the SCI reflectance at a wavelength of 530 nm measured using a spectrocolorimeter (for example, CM-2600d; manufactured by Konica Minolta).
- FIG. 3 is a cross-sectional view schematically showing the configuration of the scintillator panel of the present invention.
- the height L1 of the partition wall 5 is preferably 100 to 3000 ⁇ m, and more preferably 160 to 1000 ⁇ m.
- L1 exceeds 3000 ⁇ m, the phosphor itself absorbs the emitted light significantly, and the luminance may be lowered.
- L1 is less than 100 ⁇ m, the amount of phosphor that can be filled decreases, and the brightness of the scintillator panel may decrease.
- the interval L2 between adjacent partition walls is preferably 30 to 1000 ⁇ m.
- L2 is less than 30 ⁇ m, it is difficult to fill the phosphor in the cell.
- L2 exceeds 1000 ⁇ m, the sharpness of the scintillator panel may be lowered.
- the bottom width L3 of the partition wall is preferably 5 to 150 ⁇ m, more preferably 10 to 100 ⁇ m. If L3 is less than 5 ⁇ m, pattern defects are likely to occur. On the other hand, if L3 exceeds 150 ⁇ m, the amount of phosphor that can be filled decreases, and the brightness of the scintillator panel may decrease.
- the top width L4 of the partition wall is preferably 5 to 80 ⁇ m.
- L4 is less than 5 ⁇ m, the strength of the partition walls is reduced, and pattern defects are likely to occur.
- L4 exceeds 80 ⁇ m, the area from which the emitted light of the phosphor can be extracted becomes narrow, and the brightness of the scintillator panel may be reduced.
- the aspect ratio (L1 / L3) of the height L1 of the partition wall to the bottom width L3 of the partition wall is preferably 1.0 to 50.0.
- the aspect ratio (L1 / L2) of the partition wall height L1 to the partition wall interval L2 is preferably 0.5 to 5.0, and more preferably 1.0 to 5.0.
- a cross section perpendicular to the substrate is exposed by a polishing apparatus such as a cross section polisher, and the cross section is observed with a scanning electron microscope (for example, S2400; manufactured by Hitachi, Ltd.) And can be measured.
- a scanning electron microscope for example, S2400; manufactured by Hitachi, Ltd.
- the width of the partition wall at the contact portion between the partition wall and the substrate is L3.
- the width of the topmost part of the partition is L4.
- the partition wall is preferably made of an inorganic material in order to increase its strength and heat resistance.
- the inorganic substance means a simple part of a carbon compound (a carbon allotrope such as graphite or diamond) and a compound composed of an element other than carbon.
- the term “consisting of inorganic substances” does not exclude the existence of components other than inorganic substances in a strict sense, but is not limited to impurities contained in the raw material inorganic substances themselves or impurities mixed in the process of manufacturing the partition walls. The presence of components other than is permissible.
- the porosity of the partition walls is preferably 25% or less. When the porosity exceeds 25%, the strength of the partition walls tends to be insufficient.
- the porosity of the partition wall is obtained by taking a cross-sectional image of the partition wall perpendicular to the substrate with a scanning electron microscope, distinguishing the solid part and the cavity part of the partition wall by binarization, and analyzing the ratio of the cavity part by image analysis. Can be measured.
- the Young's modulus of the partition wall is preferably 10 GPa or more. When the Young's modulus is 10 GPa or more, the strength of the barrier ribs is increased, and the barrier ribs are not easily broken when the phosphor is filled.
- the Young's modulus of the partition wall can be measured by a nanoindentation method which is a micro area indentation method.
- the partition wall is preferably composed mainly of glass.
- the glass refers to an inorganic amorphous solid containing a silicate.
- the main component of the barrier rib is glass, the strength and heat resistance of the barrier rib are increased, and the barrier rib is less likely to be broken when filled with the phosphor.
- “mainly composed of glass” means that 50 to 100% by mass of the material constituting the partition walls is glass.
- phosphors selected from the group of CsI: Tl, NaI: Tl, and SrI2: Eu are filled in the cells partitioned by the partition walls.
- CsI: Tl means cesium iodide doped with thallium as a dopant.
- NaI: Tl refers to sodium iodide doped with thallium as a dopant
- SrI2: Eu refers to strontium iodide doped with europium as a dopant.
- the phosphor does not substantially contain an organic substance such as a binder resin.
- substantially containing no organic matter means that the content of the organic matter in the phosphor filled in the barrier rib is 1% by weight or less.
- the phosphor is preferably made of only a phosphor selected from the group of CsI: Tl, NaI: Tl, and SrI2: Eu, but may contain other phosphor dopants or impurities.
- the porosity of the phosphor filled in the cell needs to be 20% or less, preferably 10% or less, and more preferably 5% or less.
- the porosity of the phosphor filled in the cell is preferably 0.1% or more.
- the porosity of the phosphor is 20% or less, the filling amount of the phosphor is increased, and light scattering in the phosphor is suppressed, so that the brightness and sharpness of the scintillator panel are improved.
- the porosity of the phosphor is 0.1% or more, the phosphor tends to have an appropriate grain boundary, and the brightness of the scintillator panel is likely to be improved.
- the porosity of the filled phosphor can be measured by the same method as that for the partition walls.
- the analysis range of the cross-sectional image of the phosphor taken with a scanning electron microscope should not include barrier ribs and substrates, and 10 cells selected at random.
- the average value calculated by performing image analysis for each is taken as the porosity of the phosphor.
- the phosphor filled in the cell needs to have a grain boundary.
- the grain boundary means a discontinuous boundary surface generated between crystals of a plurality of phosphors.
- the brightness and sharpness of the scintillator panel are improved.
- this mechanism is not clear, in the X-ray emission image of a phosphor having a grain boundary, it can be seen that the grain boundary part emits light particularly strongly, so that the grain boundary functions as a waveguide for the emitted light. I guess that. Further, it is assumed that the presence of grain boundaries on the surface of the phosphor layer facing the output substrate facilitates efficient extraction of emitted light from the phosphor to the output substrate via the grain boundaries.
- the presence or absence of grain boundaries in the phosphor filled in the cell can be determined by observing a cross-sectional image of the phosphor perpendicular to the substrate with a scanning electron microscope.
- a scanning electron microscope although it may be difficult to judge the outline of a grain shape with a normal scanning microscope, it can be clearly confirmed by using an EBSD (Electron Back Scatter Diffraction Patterns) method.
- the average particle diameter of the phosphor filled in the cell is preferably 1 to 200 ⁇ m.
- the average particle diameter of the phosphor is less than 1 ⁇ m, the scattering of emitted light becomes excessive, and the brightness of the scintillator panel may be lowered.
- the average particle diameter of the phosphor exceeds 200 ⁇ m, the distribution of grain boundaries and voids becomes inappropriate, and the brightness of the scintillator panel may be lowered.
- a more preferred particle size is 10 to 100 ⁇ m, and even more preferred is 20 to 60 ⁇ m.
- the average particle size of the phosphors filled in the cells is 3 cells randomly selected by scanning the image of the phosphor cross section in the cross section of the scintillator panel perpendicular to the substrate with a scanning electron microscope. Is obtained by analyzing each single crystal of the phosphor divided at the grain boundary as one particle and using the image analysis software for all the particles in the cell. Note that, similarly to the determination of the presence or absence of grain boundaries, by acquiring an image using the EBSD method, it is possible to observe the region partitioned by the grain boundaries more clearly.
- the phosphor filled in the cell is preferably granular. That the phosphor is granular means that images of a cross section of the phosphor in the cross section of the scintillator panel are taken with a scanning electron microscope, and 10 randomly selected phosphor crystals partitioned by grain boundaries are selected. For crystals, the major axis and minor axis of the cross section are measured, and the average value of the values obtained by dividing the major axis by the minor axis is 10 or less.
- impurities such as moisture are less likely to enter the crystal as compared to a non-grain phosphor such as a columnar crystal, and thus the phosphor layer tends to be less likely to deteriorate.
- the scintillator panel of the present invention preferably has a reflective layer containing a metal oxide between the partition walls and the phosphor layer.
- having a reflective layer between the barrier rib and the phosphor layer refers to, for example, a state in which the reflective layer is formed on the surface of the substrate and the barrier rib in contact with the phosphor layer.
- the reflective layer preferably contains a metal oxide as a main component.
- that a metal oxide is a main component means that the ratio of the metal oxide in the reflective layer is 50% by volume or more.
- the average thickness of the reflective layer is preferably 5 to 20 ⁇ m.
- the average thickness of the reflective layer is a value obtained by dividing the area of the reflective layer of 10 cells randomly selected in the cross section of the scintillator panel perpendicular to the substrate by the formation length of the reflective layer.
- the formation length of the reflection layer refers to the total extension of the length of the portion where the reflection layer and its lower layer (such as a partition wall or a light shielding layer) are in contact in the cross section of the 10 cells. More specifically, the average thickness of the reflective layer is calculated by exposing the cross section of the scintillator panel perpendicular to the substrate with a polishing apparatus, observing the cross section with a scanning electron microscope, and performing image processing. Can do.
- the reflectivity may be insufficient.
- the thickness exceeds 20 ⁇ m, the volume of the phosphor layer becomes insufficient, and the brightness of the scintillator panel may be reduced.
- the metal oxide contained in the reflective layer is preferably a compound selected from the group consisting of titanium oxide, zirconium oxide, and aluminum oxide in order to achieve more suitable reflectance.
- a reflective layer composed of these oxides is preferable because it has an appropriate reflectance.
- the scintillator panel provided in the inspection apparatus for large structures of the present invention preferably has a light shielding layer containing metal between the partition walls and the phosphor layer. Since the scintillator panel has a light shielding layer containing metal between the partition walls and the phosphor layer, leakage of scintillation light to adjacent cells can be suppressed.
- the light shielding layer is preferably composed mainly of metal.
- that metal is a main component means that the proportion of metal in the light shielding layer is 50% by volume or more.
- Examples of the light shielding layer forming method include a vacuum film forming method such as a vacuum deposition method, a sputtering method or a CVD method, a plating method, a paste coating method, or a spraying method by spraying.
- Examples of the metal contained in the light shielding layer include aluminum, chromium, silver, tungsten, molybdenum, and lead.
- the average thickness of the light shielding layer is preferably 20 to 1000 nm. When the average thickness of the light shielding layer is less than 20 nm, the effect of suppressing leakage of scintillation light and the effect of absorbing X-rays tend to be insufficient.
- the average thickness of the light shielding layer can be calculated by the same method as the average thickness of the reflective layer.
- the reflection layer is formed on the light shielding layer in order to avoid insufficient reflectance due to absorption by the light shielding layer. It is preferable.
- a protective layer is formed so that the light shielding layer and the reflective layer do not fall off when the phosphor is filled in the cell.
- the protective layer is formed between the light shielding layer and the phosphor layer after the light shielding layer is formed.
- the protective layer is formed between the reflective layer and the phosphor layer after the reflective layer is formed.
- the material for the protective layer include materials such as glass, SiO 2 , and resin that are thin, dense, strong, and low in reactivity.
- the resin polyparaxylylene is more preferred because of its low reactivity.
- Examples of the method for forming the protective layer include a vacuum film forming method, a plating method, and a spray spraying method, but a vacuum film forming method is preferable in order to form a denser film.
- a vacuum film forming method is preferable in order to form a denser film.
- the thickness of the film is increased, the amount of the composition containing the inorganic material filled in the cell is reduced. Therefore, it is preferable that the light-shielding layer and the reflective layer be formed to be the thinnest in the range in which the film does not fall off. Is preferably 1 to 5 ⁇ m.
- the method for manufacturing a scintillator panel of the present invention includes a step of press-filling phosphors in cells partitioned by partition walls.
- Press filling refers to a method of filling a cell partitioned by partition walls by applying pressure to the phosphor.
- a phosphor selected from the group of CsI: Tl, NaI: Tl, SrI2: Eu has a unique property that the crystal is plastically deformed even at low temperature and low pressure. Therefore, even in relatively low temperature and low pressure, Can be filled uniformly and with a low porosity.
- the phosphor is not plastically deformed, and the porosity of the phosphor layer after filling the barrier ribs cannot be reduced to 20% or less, and the phosphor itself is deteriorated by pressurization. For this reason, there is a problem that deformation or destruction of the partition walls cannot be avoided because high temperature and high pressure are required, and it is very difficult to perform press filling.
- Examples of the method of applying pressure to the phosphor include a uniaxial press, a cold isostatic press, and a hot isostatic press.
- the pressure in the press filling is preferably 10 to 1000 MPa, more preferably 50 to 400 MPa. Yes. If it is less than 10 MPa, the plastic deformation of the phosphor becomes insufficient, the porosity is not lowered, and the scattering of the emitted light becomes excessive, and the brightness of the scintillator panel may be lowered. On the other hand, if it exceeds 1000 MPa, the phosphor may be single-crystallized and the brightness of the scintillator panel may be reduced, and the partition walls are likely to be deformed or broken.
- the temperature in press filling is preferably 0 to 630 ° C.
- the phosphor may be single-crystallized to lower the brightness of the scintillator panel, and the partition walls are likely to be deformed or broken.
- the temperature is more preferably 500 ° C. or lower, and even more preferably 300 ° C. or lower.
- the press filling is preferably performed under vacuum.
- the method of filling under vacuum is not particularly limited, but the method of pressing the pressurizing mechanism of the press machine under vacuum, or the object to be pressed was placed in a plastic bag or a metal thin film container that was hermetically molded into a bag. Thereafter, the inside of the bag may be depressurized to form a vacuum, and then the whole bag may be pressed.
- the method of applying pressure to the bag-like object is classified into several types depending on the medium used, the heating temperature, and the like, and examples thereof include the CIP method, the WIP method, and the HIP method.
- the CIP method cold isostatic pressing method: Cold Isostatic Pressing method
- the WIP method warm isostatic pressing method: Warm Isostatic Pressing method
- Method refers to a method of heating at 15 to 200 ° C. using a liquid such as water or silicone oil as a medium
- the HIP method hot isostatic pressing method
- the phosphor to be used for press filling is preferably in the form of a powder or a thin film (sheet), and more preferably in the form of a thin film.
- a method for obtaining a thin-film phosphor a method in which a powder phosphor is press-molded is preferable.
- the porosity of the phosphor layer can be further reduced by forming the phosphor into a thin film, placing the phosphor on the opening surface of the cell, and press-filling.
- the excess composition may be wiped off with a solvent or mechanically polished. If the surplus phosphor is thick, light emission is likely to be scattered in the horizontal direction of the display member. Accordingly, the thickness of the composition is adjusted at the time of filling so that the height of the filled composition is equal to the height of the partition walls, or after wiping with a solvent or the like, or after filling the excess composition by polishing. It is preferable to remove.
- a photosensitive paste method is preferable because the shape can be easily controlled.
- the partition wall mainly composed of glass is obtained by, for example, applying a photosensitive paste containing glass powder to the surface of a base material to obtain a coating film, exposing and developing the coating film, and baking the partition wall. It can be formed by a pattern forming step of obtaining a previous pattern and a firing step of firing the pattern to obtain a partition pattern.
- a partition mainly composed of glass 50 to 100% by mass of the inorganic component contained in the glass powder-containing paste used in the coating step needs to be glass powder.
- the glass powder contained in the glass powder-containing paste is preferably glass that softens at the firing temperature, and more preferably low-softening point glass having a softening temperature of 700 ° C. or lower.
- the softening temperature is determined by calculating the endothermic end temperature at the endothermic peak from the DTA curve obtained by measuring the sample using a differential thermal analyzer (eg, differential type differential thermal balance TG8120; manufactured by Rigaku Corporation) by the tangent method. It can be obtained by inserting. More specifically, first, using a differential thermal analyzer, using alumina powder as a standard sample, the temperature is raised from room temperature at 20 ° C./min to measure the inorganic powder serving as a measurement sample to obtain a DTA curve. Then, from the obtained DTA curve, the softening point Ts obtained by extrapolating the endothermic end temperature at the endothermic peak by the tangent method can be used as the softening temperature.
- a differential thermal analyzer eg, differential type differential thermal balance TG8120; manufactured by Rigaku Corporation
- a metal oxide selected from the group consisting of lead oxide, bismuth oxide, zinc oxide and alkali metal oxides, which is an effective compound for lowering the softening point of glass is used.
- the softening temperature of the glass is adjusted using an alkali metal oxide.
- the alkali metal refers to a metal selected from the group consisting of lithium, sodium and potassium.
- the proportion of the alkali metal oxide in the low softening point glass is preferably 2 to 20% by mass.
- the proportion of the alkali metal oxide is less than 2% by mass, the softening temperature becomes high, and it becomes necessary to perform the firing step at a high temperature, and defects are likely to occur in the partition walls.
- the ratio of the alkali metal oxide exceeds 20% by mass, the viscosity of the glass is excessively lowered in the firing step, and the shape of the obtained grid-like post-firing pattern tends to be distorted.
- the low softening point glass preferably contains 3 to 10% by mass of zinc oxide in order to optimize the viscosity at high temperature.
- the proportion of zinc oxide in the low softening point glass is less than 3% by mass, the viscosity at high temperature increases.
- the content of zinc oxide exceeds 10% by mass, the production cost of the low softening point glass increases.
- the low softening point glass is a metal selected from the group consisting of oxides of silicon oxide, boron oxide, aluminum oxide and alkaline earth metal for the purpose of adjusting stability, crystallinity, transparency, refractive index or thermal expansion characteristics. It is preferable to contain an oxide.
- the alkaline earth metal refers to a metal selected from the group consisting of magnesium, calcium, barium and strontium.
- An example of the composition range of a preferred low softening point glass is shown below. Alkali metal oxide: 2 to 20% by mass Zinc oxide: 3-10% by mass Silicon oxide: 20-40% by mass Boron oxide: 25-40% by mass Aluminum oxide: 10-30% by mass Alkaline earth metal oxide: 5 to 15% by mass.
- the particle diameter of the inorganic powder containing glass powder can be measured using a particle size distribution measuring device (for example, MT3300; manufactured by Nikkiso Co., Ltd.). More specifically, the measurement can be performed after the inorganic powder is introduced into the sample chamber of the particle size distribution measuring apparatus filled with water and subjected to ultrasonic treatment for 300 seconds.
- a particle size distribution measuring device for example, MT3300; manufactured by Nikkiso Co., Ltd.
- the 50% volume average particle diameter (hereinafter referred to as “D50”) of the low softening point glass powder is preferably 1.0 to 4.0 ⁇ m.
- D50 volume average particle diameter
- the glass powder is aggregated, and uniform dispersibility cannot be obtained, and the flow stability of the paste is lowered.
- D50 exceeds 4.0 ⁇ m, the surface unevenness of the post-baking pattern obtained in the baking process becomes large, and this tends to cause the partition wall to be destroyed later.
- the glass powder-containing paste is not only a low softening point glass but also a high softening point glass having a softening temperature exceeding 700 ° C.
- Ceramic particles such as silicon oxide, aluminum oxide, titanium oxide or zirconium oxide may be contained as a filler.
- the proportion of the filler in the entire inorganic component is preferably 50% by mass or less in order to prevent the strength of the partition walls from being reduced due to inhibition of the sintering of the glass powder.
- the filler D50 is preferably the same as that of the low softening point glass powder.
- the refractive index n1 of the glass powder and the refractive index n2 of the organic component are -0.1 ⁇ It is preferable that the relationship of n1-n2 ⁇ 0.1 is satisfied, more preferably the relationship of -0.01 ⁇ n1-n2 ⁇ 0.01, and the relationship of ⁇ 0.005 ⁇ n1-n2 ⁇ 0.005. It is further preferable to satisfy In addition, the refractive index of glass powder can be suitably adjusted with the composition of the metal oxide which glass powder contains.
- the refractive index of glass powder can be measured by the Becke line detection method. Moreover, the refractive index of an organic component can be calculated
- the photosensitive organic component contained in the photosensitive glass powder-containing paste examples include a photosensitive monomer, a photosensitive oligomer, and a photosensitive polymer.
- the photosensitive monomer, photosensitive oligomer or photosensitive polymer refers to a monomer, oligomer or polymer whose chemical structure is changed by a reaction such as photocrosslinking or photopolymerization upon irradiation with actinic rays.
- a compound having an active carbon-carbon unsaturated double bond is preferable.
- examples of such a compound include a compound having a vinyl group, an acryloyl group, a methacryloyl group, or an acrylamide group.
- Functional methacrylate compounds are preferred.
- the photosensitive oligomer or photosensitive polymer is preferably an oligomer or polymer having an active carbon-carbon unsaturated double bond and a carboxyl group.
- oligomers or polymers include, for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid or their anhydrides, carboxyl group-containing monomers, methacrylic acid esters, acrylic acid esters , Styrene, acrylonitrile, vinyl acetate or 2-hydroxyacrylate.
- Examples of a method for introducing an active carbon-carbon unsaturated double bond into an oligomer or polymer include acrylic acid chloride, methacrylic acid chloride, or a mercapto group, amino group, hydroxyl group or carboxyl group of the oligomer or polymer.
- Examples thereof include a method of reacting an allylic chloride, an ethylenically unsaturated compound having a glycidyl group or an isocyanate group, or a carboxylic acid such as maleic acid.
- the photosensitive glass powder-containing paste may contain a photopolymerization initiator as necessary.
- the photopolymerization initiator refers to a compound that generates radicals upon irradiation with actinic rays.
- the photopolymerization initiator include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamino) benzophenone, 4,4-bis (diethylamino) benzophenone, 4,4-dichlorobenzophenone, 4-benzoyl- 4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone , Diethylthioxanthone, benzyl, benzylmethoxyeth
- the solubility in an alkaline aqueous solution during development is improved.
- the acid value of the polymer having a carboxyl group is preferably 50 to 150 mgKOH / g.
- the acid value is 150 mgKOH / g or less, the development margin becomes wide.
- the acid value is 50 mgKOH / g or more, the solubility in an alkaline aqueous solution is not lowered, and a high-definition pattern can be obtained.
- the photosensitive glass powder-containing paste can be obtained by preparing various components so as to have a predetermined composition and then uniformly mixing and dispersing them with a three-roller or a kneader.
- the viscosity of the photosensitive glass powder-containing paste can be appropriately adjusted depending on the addition ratio of inorganic powder, thickener, organic solvent, polymerization inhibitor, plasticizer, anti-settling agent, etc., but the range is 2 to 200 Pa. -S is preferable.
- a viscosity of 2 to 5 Pa ⁇ s is preferable, and when applied to a substrate by a blade coater method or a die coater method, A viscosity of 10 to 50 Pa ⁇ s is preferred.
- a photosensitive glass powder-containing paste is applied by a single screen printing method to obtain a coating film having a thickness of 10 to 20 ⁇ m, a viscosity of 50 to 200 Pa ⁇ s is preferable.
- the coating step is a step of applying a glass powder-containing paste to the entire surface or a part of the surface of the substrate to obtain a coating film.
- a highly heat-resistant support such as a glass plate or a ceramic plate can be used.
- the method for applying the glass powder-containing paste include a screen printing method, a bar coater, a roll coater, a die coater, and a blade coater.
- the thickness of the resulting coating film can be adjusted by the number of coatings, the screen mesh size, the viscosity of the paste, or the like.
- the coating film obtained in the coating process is exposed through a photomask having a predetermined opening, and a portion soluble in the developer in the coating film after exposure is dissolved. And a developing step to be removed.
- the exposure process is a process in which a necessary part of the coating film is photocured by exposure or an unnecessary part of the coating film is photodecomposed to make any part of the coating film soluble in the developer.
- the development step is a step of obtaining a lattice-shaped pre-baking pattern in which only a necessary portion remains by dissolving and removing a portion soluble in the developer in the coating film after exposure with the developer.
- an arbitrary pattern may be directly drawn with a laser beam or the like without using a photomask.
- An example of the exposure apparatus is a proximity exposure machine.
- Examples of the actinic rays irradiated in the exposure step include near infrared rays, visible rays, and ultraviolet rays, and ultraviolet rays are preferable.
- Examples of the light source include a low pressure mercury lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, a halogen lamp, and a germicidal lamp, and an ultra high pressure mercury lamp is preferable.
- exposure conditions vary depending on the thickness of the coating film, exposure is usually carried out for 0.01 to 30 minutes using an ultrahigh pressure mercury lamp with an output of 1 to 100 mW / cm 2 .
- Examples of the development method in the development process include an immersion method, a spray method, and a brush method.
- a solvent capable of dissolving unnecessary portions in the coating film after exposure may be appropriately selected, but an aqueous solution containing water as a main component is preferable.
- an alkaline aqueous solution can be selected as the developer.
- the alkaline aqueous solution examples include an inorganic alkaline aqueous solution such as sodium hydroxide, sodium carbonate or calcium hydroxide, or an organic alkaline aqueous solution such as tetramethylammonium hydroxide, trimethylbenzylammonium hydroxide, monoethanolamine or diethanolamine.
- An organic alkali aqueous solution is preferable because it can be easily removed in the firing step.
- the concentration of the alkaline aqueous solution is preferably 0.05 to 5% by mass, and more preferably 0.1 to 1% by mass. If the alkali concentration is less than 0.05% by mass, unnecessary portions in the coated film after exposure may not be sufficiently removed. On the other hand, when the alkali concentration exceeds 5% by mass, there is a risk of peeling or corrosion of the lattice-shaped pattern before firing.
- the development temperature is preferably 20 to 50 ° C. to facilitate process control.
- the glass powder-containing paste applied in the coating process needs to be photosensitive. That is, the glass powder-containing paste needs to contain a photosensitive organic component.
- the proportion of the organic component in the photosensitive glass powder-containing paste is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass.
- the organic component is less than 30% by mass, the dispersibility of the inorganic component in the paste is lowered, and not only is the defect easily generated in the baking process, but the paste viscosity is increased and the applicability is lowered. Stability is also likely to decrease.
- the organic component exceeds 80% by mass, the shrinkage rate of the lattice pattern in the baking process is increased and defects are easily generated.
- the glass powder contained in the photosensitive glass powder-containing paste preferably has a softening temperature of 480 ° C. or higher in order to remove organic components almost completely in the firing step and ensure the strength of the partition wall finally obtained.
- the softening temperature is less than 480 ° C., the glass powder is softened before the organic components are sufficiently removed in the firing step, and the organic components remain in the glass after sintering, which induces coloring of the partition walls. There is a concern that the brightness of the scintillator panel is lowered.
- the lattice-shaped pre-fired pattern obtained in the pattern forming step is fired to decompose and remove the organic components contained in the glass powder-containing paste, and the glass powder is softened and sintered, thereby firing the lattice.
- This is a step of obtaining a post pattern, that is, a partition wall.
- the firing conditions vary depending on the composition of the glass powder-containing paste and the type of substrate, but can be fired in a firing furnace in an air, nitrogen or hydrogen atmosphere, for example. Examples of the firing furnace include a batch-type firing furnace or a belt-type continuous firing furnace.
- the firing temperature is preferably 500 to 1000 ° C., more preferably 500 to 800 ° C., and further preferably 500 to 700 ° C.
- the firing temperature is lower than 500 ° C., the organic components are not sufficiently decomposed and removed.
- the firing temperature exceeds 1000 ° C., the base material that can be used is limited to a high heat-resistant ceramic plate or the like.
- the firing time is preferably 10 to 60 minutes.
- the obtained cell filled with the phosphor in the cell partitioned by the partition may be used as it is as a scintillator panel (in this case, the base material used is the substrate in the scintillator panel of the present invention), press After filling, the barrier ribs and the phosphor may be peeled from the base material and placed on a separately prepared substrate to complete the scintillator panel.
- the base material used is the substrate in the scintillator panel of the present invention
- the analysis range of the cross-sectional image of the phosphor should not include barrier ribs and substrates, and further, image analysis was performed for each of 10 randomly selected cells. The calculated average value was taken as the porosity of the phosphor. (Judgment method of presence / absence of grain boundary, measuring method of average particle size) A measurement sample was produced in the same manner as the measurement of the porosity. Thereafter, a cross-sectional crystal orientation image was obtained by the EBSD method using JSM-6500F (manufactured by JEOL) equipped with DVC type EBSD (manufactured by TSL).
- the crystal grain boundary of the phosphor was detected as a closed boundary having an angle of 5 degrees or more. Also, when a grain boundary was detected inside the phosphor, it was determined that there was a grain boundary. Moreover, the average particle diameter calculated the area average particle diameter about the crystal grain in the said three cells using attached software. In addition, when there was no grain boundary inside the phosphor, the average particle diameter was calculated with the phosphor contained in one cell as one particle.
- Photosensitive monomer M-1 Trimethylolpropane triacrylate
- photosensitive monomer M-2 Tetrapropylene glycol dimethacrylate
- Photopolymerization initiator 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1 (IC369; manufactured by BASF)
- Polymerization inhibitor 1,6-hexanediol-bis [(3,5-di-tert-butyl-4-hydroxyphenyl) propionate])
- Ultraviolet absorber solution Sudan IV (manufactured by Tokyo Oh
- the raw materials used for the production of the reflective layer paste are as follows.
- Filler Titanium oxide (Ishihara Sangyo)
- Binder solution Mixed solution monomer of 5% by mass of ethyl cellulose (manufactured by Dow Chemical) and 95% by mass of terpineol (manufactured by Nippon Terpene): 30% by mass of dipentaerythritol pentaacrylate and 70% by mass of dipentaerythritol hexaacrylate (Both manufactured by Toagosei Co., Ltd.)
- Mixture polymerization initiator 1,1′-azobis (cyclohexane-1-carbonitrile) (V-40; manufactured by Wako Pure Chemical Industries, Ltd.).
- a soda glass plate of 125 mm ⁇ 125 mm ⁇ 0.7 mm was used as a substrate.
- the glass powder-containing paste was applied to the surface of the substrate with a die coater so that the thickness after drying was 500 ⁇ m and dried to obtain a coating film of the glass powder-containing paste.
- a glass powder-containing paste coating film is applied to an ultrahigh pressure mercury lamp through a photomask having an opening corresponding to a desired pattern (a chrome mask having a grid-like opening with a pitch of 194 ⁇ m and a line width of 20 ⁇ m). It was used and exposed at an exposure dose of 500 mJ / cm 2 .
- the exposed coating film was developed in a 0.5% by mass ethanolamine aqueous solution, and the unexposed portion was removed to obtain a lattice-shaped pre-baking pattern.
- the obtained lattice-shaped pre-fired pattern was fired in air at 585 ° C. for 15 minutes to form lattice-shaped partition walls mainly composed of glass.
- the partition wall porosity was 2.5%
- the partition wall height L1 was 350 ⁇ m
- the partition wall spacing L2 was 194 ⁇ m
- the partition wall bottom width L3 was 35 ⁇ m
- the partition wall top width L4 was 20 ⁇ m
- the partition wall Young's modulus was 20 GPa. .
- Example 1 After supplying 0.11 g / cm 2 of CsI: Tl powder onto the base material on which the grid-like partition walls are formed, and flattening with a squeegee, it is put in a nylon (registered trademark) bag, and the bag opening The parts were heat sealed and sealed.
- This bag was set in an isotropic pressure pressing device (manufactured by Kobe Steel), and press-filled at a pressure of 400 MPa and a temperature of 25 ° C. to produce a scintillator panel 1.
- CsI: Tl filled in the cell had a grain boundary.
- the porosity of CsI: Tl filled in the cell was 5%, and the average particle size was 25 ⁇ m.
- the produced scintillator panel 1 was set in FPD (PaxScan3030; manufactured by Varian) to produce a radiation detector.
- the radiation detector was irradiated with X-rays having a tube voltage of 60 kVp from the substrate side of the scintillator panel 1, the amount of light emitted from the scintillator layer was detected by FPD, and the luminance of the scintillator panel 1 was evaluated. Further, the image sharpness of the scintillator panel 1 was visually evaluated based on the captured image of the rectangular wave chart. The brightness and image sharpness of the scintillator panel 1 were both good.
- Example 2 A scintillator panel was prepared and evaluated in the same manner as in Example 1 except that the press filling pressure was 60 MPa and the temperature was 150 ° C. The phosphor filled in the cell of the obtained scintillator panel 2 had a grain boundary, the porosity was 2%, and the average particle size was 35 ⁇ m. When the luminance of the scintillator panel 1 is 100, the relative value of the luminance of the scintillator panel 2 is 110, which is favorable. Also, the image sharpness was good.
- Example 3 The reflective layer paste was printed on the surface of the base material on which the grid-like partition walls were formed, and allowed to stand for 5 minutes, and then the attached reflective layer paste was scraped with a rubber squeegee having a hardness of 80 °. Thereafter, each was dried in a hot air oven at 80 ° C. and 130 ° C. for 30 minutes, and a reflective layer was formed on the surface of the partition walls and on the substrate where the partition walls were not formed. Then, after supplying CsI: Tl powder like Example 1, the scintillator panel 3 was produced by press filling and evaluated.
- the phosphor filled in the cells of the obtained scintillator panel 3 had grain boundaries, the porosity was 5%, and the average particle size was 25 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 2 is 130, which is good.
- the image sharpness was good.
- Example 4 In the same manner as in Example 3, a reflective layer was formed on the surface of the base material on which grid-like partition walls were formed. Thereafter, 0.11 g / cm 2 of CsI: Tl powder was supplied onto the substrate, and after flattening with a squeegee, it was put in a nylon (registered trademark) bag.
- the phosphor filled in the cell of the obtained scintillator panel 4 had grain boundaries, the porosity was 4%, and the average particle size was 30 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 6 is 135, which is good.
- the image sharpness was good.
- a rubber sheet having a thickness of about 1 mm was cut into a rubber frame larger than the filling area and placed on a SUS plate, and 0.11 g / cm 2 of CsI: Tl powder was supplied into the cut frame and leveled flat.
- a SUS plate, a rubber frame, and CsI: Tl powder were put in a nylon (registered trademark) bag.
- a vacuum packaging machine Tospack V-280; manufactured by TOSEI
- This bag was set in an isotropic pressure pressing device (manufactured by Kobe Steel), and pressed at a pressure of 400 MPa and a temperature of 25 ° C., thereby producing a CsI: Tl press-molded film 1.
- Example 3 In the same manner as in Example 3, a reflective layer was formed on the surface of the base material on which grid-like partition walls were formed. Thereafter, the press-molded membrane 1 was supplied onto the base material and put in a nylon (registered trademark) bag. Next, it was evacuated with a vacuum packaging machine (Tospack V-280; manufactured by TOSEI) for 30 seconds, and then heat-sealed and sealed. Thereafter, the scintillator panel 5 was produced by press filling in the same manner as in Example 3 and evaluated.
- a vacuum packaging machine Tospack V-280; manufactured by TOSEI
- the phosphor filled in the cells of the obtained scintillator panel 5 had grain boundaries, the porosity was 3%, and the average particle size was 30 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 6 is 140, which is good.
- the image sharpness was good.
- Example 6 A light shielding layer was formed by forming 0.4 ⁇ m of an aluminum film on the surface of the base material on which the lattice-shaped partition walls were formed by sputtering. Thereafter, as in Example 5, the press-molded film 1 was press-filled to produce a scintillator panel 6 and evaluated.
- the phosphor filled in the cell of the obtained scintillator panel 6 had grain boundaries, the porosity was 3%, and the average particle size was 30 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 6 is 80, which is relatively good. Further, the image sharpness was extremely good.
- Example 7 A reflective layer was formed in the same manner as in Example 3 on the surface of the base material on which the lattice-shaped partition walls were formed.
- a protective layer was formed by forming 4 ⁇ m of a polyparaxylylene film on the substrate after forming the reflective layer by vapor deposition polymerization. Thereafter, as in Example 5, the press-molded film 1 was press-filled to produce a scintillator panel 7 and evaluated.
- the phosphor filled in the cell of the obtained scintillator panel 7 had grain boundaries, the porosity was 3%, and the average particle size was 30 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 7 is 150, which is good.
- the image sharpness was good.
- a light shielding layer was formed in the same manner as in Example 6 on the surface of the base material on which the lattice-shaped partition walls were formed.
- a reflective layer was formed on the base material on which the light shielding layer was formed in the same manner as in Example 3.
- Example 5 Further, a protective layer was formed on the base material on which the light shielding layer and the reflective layer were formed in the same manner as in Example 7. Thereafter, as in Example 5, the press-molded film 1 was press-filled to produce a scintillator panel 8 and evaluated.
- the phosphor filled in the cell of the obtained scintillator panel 8 had a grain boundary, the porosity was 3%, and the average particle size was 30 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 8 is 130, which is good. Further, the image sharpness was extremely good.
- Example 9 A scintillator panel 9 was produced and evaluated in the same manner as in Example 5 except that the pressure during press filling was 200 MPa and the temperature was 150 ° C.
- the phosphor filled in the cell of the obtained scintillator panel 9 had grain boundaries, the porosity was 0.6%, and the average particle size was 45 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 9 is 150, which is good.
- the image sharpness was good.
- the mediator was changed to a metal foil capsule with a thickness of 100 ⁇ m (sealed with a metal foil capsule encapsulating device (Kobe Steel)), the press pressure was 400 MPa, and the temperature was 300 ° C. Were the same as in Example 5 to produce and evaluate the scintillator panel 10.
- the phosphor filled in the cells of the obtained scintillator panel 10 had grain boundaries, the porosity was 0.2%, and the average particle size was 50 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 10 is 150, which is good.
- the image sharpness was good.
- the phosphor filled in the cells of the obtained scintillator panel 11 had grain boundaries, the porosity was 0%, and the average particle size was 55 ⁇ m.
- the luminance of the scintillator panel 1 is set to 100, the relative value of the luminance of the scintillator panel 11 is 140, which is good although a slight decrease is seen as compared with Example 10. Also, the image sharpness was good.
- Example 12 A scintillator panel 12 was prepared and evaluated in the same manner as in Example 5 except that the pressure during press filling was 50 MPa and the temperature was 25 ° C.
- the phosphor filled in the cells of the obtained scintillator panel 12 had grain boundaries, the porosity was 20%, and the average particle size was 10 ⁇ m.
- the luminance of the scintillator panel 1 is set to 100, the relative value of the luminance of the scintillator panel 12 is 105, which is lower than that of Example 5 but good. Also, the image sharpness was good.
- Example 13 A scintillator panel 13 was prepared and evaluated in the same manner as in Example 5 except that the pressure during press filling was 100 MPa and the temperature was 25 ° C.
- the phosphor filled in the cells of the obtained scintillator panel 13 had grain boundaries, the porosity was 8%, and the average particle size was 20 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 13 is 120, which is favorable.
- the image sharpness was good.
- a scintillator panel 14 was produced and evaluated in the same manner as in Example 5 except that the pressure during press filling was 980 MPa and the temperature was 25 ° C.
- the phosphor filled in the cell of the obtained scintillator panel 14 had grain boundaries, the porosity was 2%, and the average particle size was 25 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 14 is 130, which is good.
- the image sharpness was relatively good, although a slight deterioration was observed as compared with Example 5. It is estimated that the cause of the deterioration was that a part of the partition wall was damaged by filling with high pressure.
- Example 15 A scintillator panel 15 was produced and evaluated in the same manner as in Example 5 except that NaI: Tl was used as the phosphor and the amount of the phosphor supplied at the time of producing the press-molded film was 0.09 g / cm 2 .
- the phosphor filled in the cells of the obtained scintillator panel 15 had grain boundaries, the porosity was 3%, and the average particle size was 30 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 15 is 130, which is good.
- the image sharpness was good.
- a scintillator panel 16 was produced and evaluated in the same manner as in Example 5 except that SrI 2 : Eu was used as the phosphor and the amount of the phosphor supplied at the time of producing the press-molded film was 0.14 g / cm 2 . .
- the phosphor filled in the cells of the obtained scintillator panel 16 had grain boundaries, the porosity was 3%, and the average particle size was 30 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 16 is 160, which is good.
- the image sharpness was good.
- a scintillator panel 17 was prepared and evaluated in the same manner as in Example 1 except that 0.11 g / cm 2 of GOS: Tb was used as the phosphor.
- GOS: Tb filled in the cells of the obtained scintillator panel 17 had grain boundaries, the porosity was 40%, and the average particle size was 10 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 17 is 70, which is defective.
- the scintillator panel 17 has a high porosity, the light scattering of emitted light becomes excessive, and the image sharpness is also poor.
- the phosphor filled in the cells of the obtained scintillator panel 19 had grain boundaries, the porosity was 30%, and the average particle size was 10 ⁇ m.
- the luminance of the scintillator panel 1 is 100
- the relative value of the luminance of the scintillator panel 9 is 60, which is defective.
- the porosity is high, the light scattering of the emitted light becomes excessive, and the image sharpness is also poor.
- the scintillator panel of the present invention contributes to a significant improvement in the brightness and image sharpness of the scintillator panel in the radiation detector.
- the present invention can be usefully used as a scintillator panel constituting a radiation detector used in a medical diagnostic apparatus or a nondestructive inspection instrument.
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conversion Of X-Rays Into Visible Images (AREA)
- Measurement Of Radiation (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
Abstract
Description
(1) 基板、該基板上に載置された隔壁、及び、該隔壁により区画されたセル内に充填された蛍光体からなり、 前記蛍光体が、CsI:Tl、NaI:Tl、SrI2:Euの群から選ばれる化合物であり、 前記蛍光体の空隙率が20%以下であり、かつ、前記蛍光体が粒界を有する、シンチレータパネル。
(2) 前記蛍光体の空隙率が0.1%以上である、(1)記載のシンチレータパネル。
(3) 前記蛍光体の平均粒子径が、1~200μmである、(1)又は(2)記載のシンチレータパネル。
(4) 前記隔壁が、無機物からなり、かつ、前記隔壁の空隙率が、25%以下である、(1)~(3)のいずれか一項記載のシンチレータパネル。
(5) 前記隔壁のヤング率が、10GPa以上である、(1)~(4)のいずれか一項記載のシンチレータパネル。
(6) 前記隔壁が、ガラスを主成分とする、(1)~(5)のいずれか一項記載のシンチレータパネル。
(7) 前記シンチレータパネルが、前記隔壁と前記蛍光体との間に、反射層を有し、該反射層は、金属酸化物を主成分として含有する、(1)~(6)のいずれか一項記載のシンチレータパネル。
(8) 前記シンチレータパネルが、前記隔壁と前記蛍光体との間に、遮光層を有し、該遮光層は、金属を主成分として含有する、(1)~(7)のいずれか一項記載のシンチレータパネル。
(9) 前記シンチレータパネルが、前記反射層と前記蛍光体との間、または前記遮光層と前記蛍光体との間に、保護層を有する、(7)または(8)のいずれか一項記載のシンチレータパネル。
(10) 隔壁により区画されたセル内に、CsI:Tl、NaI:Tl、SrI2:Euの群から選ばれる蛍光体をプレス充填する工程を備える方法により製造された、(1)~(9)のいずれか一項記載のシンチレータパネル。
(11) 前記プレス充填における圧力が、10~1000MPaである、(10)記載のシンチレータパネル。
(12) 前記プレス充填における温度が、0~630℃である、(10)または(11)記載のシンチレータパネル。
(13) 前記プレス充填が、真空下で行われる、(10)~(12)のいずれか一項記載のシンチレータパネル。
(14) 前記プレス充填する工程に供される、前記蛍光体の形状が薄膜状である、(10)~(13)のいずれか一項記載のシンチレータパネル。
(15) 前記薄膜状の蛍光体が、蛍光体粉末をプレス成型することによって得られる、(14)記載のシンチレータパネル。
(16) (1)~(15)のいずれか一項記載のシンチレータパネルを具備する、放射線検出器。
アルカリ金属酸化物 : 2~20質量%
酸化亜鉛 : 3~10質量%
酸化ケイ素 : 20~40質量%
酸化ホウ素 : 25~40質量%
酸化アルミニウム : 10~30質量%
アルカリ土類金属酸化物 : 5~15質量%。
(空隙率の測定方法)
シンチレータパネルを割断した後、割断面をイオンミリング法にて研磨して基板に対して垂直な断面を露出させ、導電処理(Ptコート)して測定試料を作製した。その後、電界放射型走査電子顕微鏡S-4800(日立ハイテクノロジーズ製)を用いて断面画像を取得した。得られた画像について、固体部分と空隙部分とを2値化により区別し、空隙部分の比率を画像解析で求めて空隙率を測定した。なお、測定誤差をできるだけ排除するため、蛍光体の断面の画像の解析範囲には、隔壁及び基板等が含まれないようにし、さらには、無作為に選択した10セルについてそれぞれ画像解析をして算出した平均値を、蛍光体の空隙率とした。
(粒界の有無の判断方法、平均粒子径の測定方法)
空隙率の測定と同様にして、測定試料を作製した。その後、DVC型のEBSD(TSL社製)を搭載したJSM-6500F(JEOL社製)を用いて、EBSD法により断面結晶方位画像を取得した。得られた画像において、無作為に選択した3個のセルについて、付属のソフトウェアを用いて解析し、蛍光体の結晶粒界を5度以上の角度をもつ閉じた境界として検出し、いずれのセルにおいても蛍光体の内部に粒界が検出された場合、粒界ありと判定した。また、平均粒子径は、上記3個のセル内の結晶粒について、付属のソフトウェアを用いて面積平均粒子径を算出した。なお、蛍光体内部に粒界が存在しない場合は、1セルに含まれる蛍光体を1つの粒子として平均粒子径を算出した。
CsI:Tl、NaI:Tl、SrI2:Euの粉末は、市販の蛍光体単結晶を乾燥空気下で粉砕し、ふるいを通過させて粗大粒子を除去したものを用いた。GOS:Tb(Tbをドープした酸硫化ガドリニウム)については市販品をそのまま用いた。
感光性のガラス粉末含有ペーストの作製に用いた原料は次のとおりである。
感光性モノマーM-1 : トリメチロールプロパントリアクリレート
感光性モノマーM-2 : テトラプロピレングリコールジメタクリレート
感光性ポリマー : メタクリル酸/メタクリル酸メチル/スチレン=40/40/30の質量比からなる共重合体のカルボキシル基に対して0.4当量のグリシジルメタクリレートを付加反応させたもの(重量平均分子量43000;酸価100)
光重合開始剤 : 2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1(IC369;BASF社製)
重合禁止剤 : 1,6-ヘキサンジオール-ビス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート])
紫外線吸収剤溶液 : スダンIV(東京応化工業株式会社製)のγ-ブチロラクトン0.3質量%溶液
粘度調整剤 : フローノンEC121(共栄社化学社製)
溶媒 : γ-ブチロラクトン
低軟化点ガラス粉末:
SiO2 27質量%、B2O3 31質量%、ZnO 6質量%、Li2O 7質量%、MgO 2質量%、CaO 2質量%、BaO 2質量%、Al2O3 23質量%、屈折率(ng)1.56、ガラス軟化温度588℃、熱膨張係数70×10-7(K-1)、平均粒子径2.3μm
高軟化点ガラス粉末:
SiO2 30質量%、B2O3 31質量%、ZnO 6質量%、MgO 2質量%、CaO 2質量%、BaO 2質量%、Al2O3 27質量%、屈折率(ng)1.55、軟化温度790℃、熱膨張係数32×10-7(K-1)、平均粒子径2.3μm。
4質量部の感光性モノマーM-1、6質量部の感光性モノマーM-2、24質量部の感光性ポリマー、6質量部の光重合開始剤、0.2質量部の重合禁止剤及び12.8質量部の紫外線吸収剤溶液を、38質量部の溶媒に、温度80℃で加熱溶解した。得られた溶液を冷却した後、9質量部の粘度調整剤を添加して、有機溶液1を得た。得られた有機溶液1をガラス板に塗布して乾燥することにより得られた有機塗膜の屈折率(ng)は、1.555であった。
反射層ペーストの作製に用いた原料は次のとおりである。
フィラー : 酸化チタン(石原産業社製)
バインダー溶液 : 5質量%のエチルセルロース(ダウケミカル社製)及び95質量%のターピネオール(日本テルペン社製)の混合溶液
モノマー : 30質量%のジペンタエリスリトールペンタアクリレート及び70質量%のジペンタエリスリトールヘキサアクリレート(いずれも東亞合成社製)の混合物
重合開始剤 : 1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)(V-40;和光純薬社製)。
50質量部のフィラー、45質量部のバインダー溶液、4.5質量部のモノマー及び1.5質量部の重合開始剤を3本ローラー混練機にて混練し、反射層ペーストを得た。
基材として、125mm×125mm×0.7mmのソーダガラス板を用いた。基材の表面に、ガラス粉末含有ペーストを、乾燥後の厚さが500μmになるようにダイコーターで塗布して乾燥し、ガラス粉末含有ペーストの塗布膜を得た。次に、所望のパターンに対応する開口部を有するフォトマスク(ピッチ194μm、線幅20μmの、格子状開口部を有するクロムマスク)を介して、ガラス粉末含有ペーストの塗布膜を、超高圧水銀灯を用いて500mJ/cm2の露光量で露光した。露光後の塗布膜は、0.5質量%のエタノールアミン水溶液中で現像し、未露光部分を除去して、格子状の焼成前パターンを得た。得られた格子状の焼成前パターンを、空気中585℃で15分間焼成して、ガラスを主成分とする、格子状の隔壁を形成した。隔壁の空隙率は2.5%、隔壁の高さL1は350μm、隔壁の間隔L2は194μm、隔壁の底部幅L3は35μm、隔壁の頂部幅L4は20μm、隔壁のヤング率は20GPaであった。
格子状の隔壁を形成した基材の上に、0.11g/cm2のCsI:Tl粉末を供給し、スキージにより平坦化した後、ナイロン(登録商標)製の袋に入れて、袋の開口部を熱融着して密閉した。この袋を等方圧プレス装置(神戸製鋼製)にセットし、圧力400MPa、温度25℃でプレス充填して、シンチレータパネル1を作製した。
プレス充填の圧力を60MPa、温度を150℃とした以外は、実施例1と同様にシンチレータパネルを作製し、評価した。得られたシンチレータパネル2のセル内に充填された蛍光体は粒界を有しており、空隙率は2%であり、平均粒子径は35μmであった。シンチレータパネル1の輝度を100とした場合の、シンチレータパネル2の輝度の相対値は110であり、良好であった。また、画像鮮鋭度も良好であった。
(実施例3)
格子状の隔壁を形成した基材の表面に反射層ペーストを印刷し、5分間静置してから、付着した反射層ペーストを硬度80°のゴム製スキージでかきとった。その後、80℃及び130℃の熱風オーブンでそれぞれ30分ずつ乾燥し、隔壁の表面及び基板上の隔壁の形成されていない部分に反射層を形成した。その後、実施例1と同様にCsI:Tl粉末を供給した後、プレス充填してシンチレータパネル3を作製し、評価した。
(実施例4)
実施例3と同様にして格子状の隔壁を形成した基材の表面に反射層を形成した。その後、基材上に0.11g/cm2のCsI:Tl粉末を供給し、スキージにより平坦化した後、ナイロン(登録商標)製の袋に入れた。次に、真空包装機(トスパックV-280;TOSEI製)で30秒間真空引きした後、熱融着して密閉した。その後は実施例3と同様にしてシンチレータパネル4を作製し、評価した。
(実施例5)
厚み約1mmのゴムシートを充填面積よりも大きく切り抜きゴム枠としSUS板の上に乗せ、切り抜いた枠内にCsI:Tl粉末を、0.11g/cm2供給し、平らに均した。その後、SUS板、ゴム枠、CsI:Tl粉末を、ナイロン(登録商標)製の袋に入れた。次に、真空包装機(トスパックV-280;TOSEI製)で30秒間真空引きした後、熱融着して密閉した。この袋を等方圧プレス装置(神戸製鋼製)にセットし、圧力400MPa、温度25℃でプレスすることにより、CsI:Tlプレス成型膜1を作製した。
(実施例6)
格子状の隔壁を形成した基材の表面に、スパッタ法によりアルミ膜を0.4μm形成することにより、遮光層を形成した。その後、実施例5と同様に、プレス成型膜1をプレス充填してシンチレータパネル6を作製し、評価した。
(実施例7)
格子状の隔壁を形成した基材の表面に、実施例3と同様にして反射層を形成した。次に、反射層形成後の基材上に、蒸着重合によりポリパラキシリレン膜を4μm形成することにより保護層を形成した。その後、実施例5と同様に、プレス成型膜1をプレス充填してシンチレータパネル7を作製し、評価した。
(実施例8)
格子状の隔壁を形成した基材の表面に、実施例6と同様にして遮光層を形成した。次に、遮光層が形成された基材に、実施例3と同様にして反射層を形成した。さらに、遮光層、反射層が形成された基材に、実施例7と同様にして保護層を形成した。その後、実施例5と同様に、プレス成型膜1をプレス充填してシンチレータパネル8を作製し、評価した。
(実施例9)
プレス充填時の圧力を200MPa、温度を150℃とした以外は、実施例5と同様にして、シンチレータパネル9を作製し、評価した。
(実施例10)
プレス充填時に用いる梱包用の袋剤として、媒介物を厚さ100μmの金属箔カプセル(金属箔カプセル封入装置(神戸製鋼)で密閉)に変更し、プレス圧力を400MPa、温度を300℃とした以外は、実施例5と同様にして、シンチレータパネル10を作製し、評価した。
(実施例11)
プレス充填時の圧力を400MPa、温度を550℃とした以外は、実施例10と同様にしてシンチレータパネル11を作製し、評価した。
(実施例12)
プレス充填時の圧力を50MPa、温度を25℃とした以外は、実施例5と同様にして、シンチレータパネル12を作製し、評価した。
(実施例13)
プレス充填時の圧力を100MPa、温度を25℃とした以外は、実施例5と同様にして、シンチレータパネル13を作製し、評価した。
(実施例14)
プレス充填時の圧力を980MPa、温度を25℃とした以外は、実施例5と同様にして、シンチレータパネル14を作製し、評価した。
(実施例15)
蛍光体として、NaI:Tlを用い、プレス成型膜作製時の蛍光体供給量を0.09g/cm2とした以外は、実施例5と同様にして、シンチレータパネル15を作製し、評価した。
(実施例16)
蛍光体として、SrI2:Euを用い、プレス成型膜作製時の蛍光体供給量を0.14g/cm2とした以外は、実施例5と同様にして、シンチレータパネル16を作製し、評価した。
蛍光体として0.11g/cm2のGOS:Tbを用いた以外は、実施例1と同様にシンチレータパネル17を作製し、評価した。得られたシンチレータパネル17のセル内に充填されたGOS:Tbは粒界を有しており、空隙率は40%であり、平均粒子径は10μmであった。シンチレータパネル1の輝度を100とした場合の、シンチレータパネル17の輝度の相対値は70であり、不良であった。またシンチレータパネル17は、空隙率が高いため発光光の光散乱が過剰となり、画像鮮鋭度も不良であった。
格子状の隔壁を形成した基材の上に、0.11g/cm2のCsI:Tl粉末を供給し、スキージにより平坦化した。その後、減圧下で630℃まで昇温してCsI:Tlを融解させ、セル内に充填することでシンチレータパネル18を作製し、評価した。得られたシンチレータパネル18のセル内に充填されたCsI:Tlは粒界を有しておらず、空隙率は1.3%であった。シンチレータパネル1の輝度を100とした場合の、シンチレータパネル18の輝度の相対値は50であり、不良であった。また、630℃まで昇温したことにより隔壁が一部溶融して変形したため、画像鮮鋭度も不良であった。
(比較例3)
プレス充填時の圧力を5MPa、温度を25℃とした以外は、実施例1と同様にして、シンチレータパネル19を作製し、評価した。
2 シンチレータパネル
3 出力基板
4 基板
5 隔壁
6 蛍光体層
7 隔膜層
8 光電変換層
9 出力層
10 基板
11 電源部
12 遮光層
13 反射層
14 保護層
Claims (16)
- 基板、該基板上に載置された隔壁、及び、該隔壁により区画されたセル内に充填された蛍光体からなり、前記蛍光体が、CsI:Tl、NaI:Tl、SrI2:Euの群から選ばれる化合物であり、前記蛍光体の空隙率が20%以下であり、かつ、前記蛍光体が粒界を有する、シンチレータパネル。
- 前記蛍光体の空隙率が0.1%以上である、請求項1記載のシンチレータパネル。
- 前記蛍光体の平均粒子径が、1~200μmである、請求項1又は2記載のシンチレータパネル。
- 前記隔壁が、無機物からなり、かつ、前記隔壁の空隙率が、25%以下である、請求項1~3のいずれか一項記載のシンチレータパネル。
- 前記隔壁のヤング率が、10GPa以上である、請求項1~4のいずれか一項記載のシンチレータパネル。
- 前記隔壁が、ガラスを主成分とする、請求項1~5のいずれか一項記載のシンチレータパネル。
- 前記シンチレータパネルが、前記隔壁と前記蛍光体との間に、反射層を有し、該反射層は、金属酸化物を主成分として含有する、請求項1~6のいずれか一項記載のシンチレータパネル。
- 前記シンチレータパネルが、前記隔壁と前記蛍光体との間に、遮光層を有し、該遮光層は、金属を主成分として含有する、請求項1~7のいずれか一項記載のシンチレータパネル。
- 前記シンチレータパネルが、前記反射層と前記蛍光体との間、または前記遮光層と前記蛍光体との間に、保護層を有する、請求項7または8のいずれか一項記載のシンチレータパネル。
- 隔壁により区画されたセル内に、CsI:Tl、NaI:Tl、SrI2:Euの群から選ばれる蛍光体をプレス充填する工程を備える方法により製造された、請求項1~9のいずれか一項記載のシンチレータパネル。
- 前記プレス充填における圧力が、10~1000MPaである、請求項10記載のシンチレータパネル。
- 前記プレス充填における温度が、0~630℃である、請求項10または11記載のシンチレータパネル。
- 前記プレス充填が、真空下で行われる、請求項10~12のいずれか一項記載のシンチレータパネル。
- 前記プレス充填する工程に供される、前記蛍光体の形状が薄膜状である、請求項10~13のいずれか一項記載のシンチレータパネル。
- 前記薄膜状の蛍光体が、蛍光体粉末をプレス成型することによって得られる、請求項14記載のシンチレータパネル。
- 請求項1~15のいずれか一項記載のシンチレータパネルを具備する、放射線検出器。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177002647A KR102179765B1 (ko) | 2014-08-08 | 2015-08-03 | 신틸레이터 패널 및 방사선 검출기 |
US15/501,984 US10580547B2 (en) | 2014-08-08 | 2015-08-03 | Scintillator panel and radiation detector |
CN201580041703.1A CN106663488B (zh) | 2014-08-08 | 2015-08-03 | 闪烁体面板和放射线检测器 |
JP2016540214A JP6658527B2 (ja) | 2014-08-08 | 2015-08-03 | シンチレータパネル及びその製造方法ならびに放射線検出器 |
EP15830425.3A EP3179480B1 (en) | 2014-08-08 | 2015-08-03 | Scintillator panel and radiation detector |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014162144 | 2014-08-08 | ||
JP2014-162144 | 2014-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016021540A1 true WO2016021540A1 (ja) | 2016-02-11 |
Family
ID=55263806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/071931 WO2016021540A1 (ja) | 2014-08-08 | 2015-08-03 | シンチレータパネル及び放射線検出器 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10580547B2 (ja) |
EP (1) | EP3179480B1 (ja) |
JP (1) | JP6658527B2 (ja) |
KR (1) | KR102179765B1 (ja) |
CN (1) | CN106663488B (ja) |
TW (1) | TWI654620B (ja) |
WO (1) | WO2016021540A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160282480A1 (en) * | 2015-03-27 | 2016-09-29 | Konica Minolta, Inc. | Scintillator panel and method for manufacturing the same |
WO2017187854A1 (ja) * | 2016-04-27 | 2017-11-02 | 東レ株式会社 | シンチレータパネルおよびその製造方法、並びに、放射線検出装置 |
JP2019074358A (ja) * | 2017-10-13 | 2019-05-16 | 株式会社小糸製作所 | シンチレータ材料および放射線検出器 |
WO2019181444A1 (ja) | 2018-03-23 | 2019-09-26 | 東レ株式会社 | シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法 |
WO2020179322A1 (ja) * | 2019-03-01 | 2020-09-10 | 東レ株式会社 | シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法 |
JPWO2021200327A1 (ja) * | 2020-03-30 | 2021-10-07 | ||
DE102022120811A1 (de) | 2021-08-23 | 2023-03-09 | Fujifilm Corporation | Strahlungsdetektor |
JP7532641B2 (ja) | 2021-03-09 | 2024-08-13 | 株式会社東芝 | シンチレータアレイ、およびそれを用いた放射線検出器、放射線検査装置 |
CN113498481B (zh) * | 2019-03-01 | 2024-10-22 | 东丽株式会社 | 闪烁体面板、放射线检测器和闪烁体面板的制造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109389789B (zh) * | 2017-08-09 | 2023-03-21 | 中国辐射防护研究院 | 一种基于闪烁体的放射源警示装置 |
CN109386801A (zh) * | 2017-08-09 | 2019-02-26 | 中国辐射防护研究院 | 一种无放射源无外部能量的照明装置 |
CN109386742B (zh) * | 2017-08-09 | 2022-12-09 | 中国辐射防护研究院 | 一种含放射源无外部能量的照明装置 |
JP6898193B2 (ja) * | 2017-09-27 | 2021-07-07 | 浜松ホトニクス株式会社 | シンチレータパネル及び放射線検出器 |
KR101969024B1 (ko) * | 2017-12-12 | 2019-04-15 | 주식회사 비투지코리아 | 섬광체 구조 및 그 제조 방법, 그리고 이를 포함하는 엑스선 영상 검출기 |
US10649098B2 (en) * | 2018-01-29 | 2020-05-12 | Samsung Electronics Co., Ltd. | Light converting nanoparticle, method of making the light converting nanoparticle, and composition and optical film comprising the same |
JP7108364B2 (ja) * | 2018-09-04 | 2022-07-28 | キヤノン電子管デバイス株式会社 | 放射線検出器、放射線検出器の製造方法および装置、並びにシンチレータパネル、シンチレータパネルの製造方法および装置 |
CN111337969B (zh) * | 2018-12-19 | 2022-01-21 | 同方威视技术股份有限公司 | 闪烁体反射层制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01191084A (ja) * | 1988-01-27 | 1989-08-01 | Hitachi Medical Corp | 放射線検出器 |
JP2011207937A (ja) * | 2010-03-29 | 2011-10-20 | Hitachi Metals Ltd | 蛍光材料の製造方法 |
JP2011257339A (ja) * | 2010-06-11 | 2011-12-22 | Konica Minolta Medical & Graphic Inc | 放射線画像検出装置 |
JP2014106022A (ja) * | 2012-11-26 | 2014-06-09 | Toray Ind Inc | シンチレータパネル |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE376375B (ja) | 1973-10-01 | 1975-05-26 | Alfa Laval Ab | |
JPS5188148A (ja) | 1975-01-31 | 1976-08-02 | ||
JPS51131264A (en) * | 1975-05-10 | 1976-11-15 | Toshiba Corp | The input of x-ray fluorescence intensifying tube |
US4242221A (en) * | 1977-11-21 | 1980-12-30 | General Electric Company | Ceramic-like scintillators |
JPH0560871A (ja) | 1991-09-04 | 1993-03-12 | Hamamatsu Photonics Kk | 放射線検出素子 |
JPH05188148A (ja) | 1992-01-13 | 1993-07-30 | Hamamatsu Photonics Kk | 放射線検出素子 |
JP4087093B2 (ja) * | 2001-10-15 | 2008-05-14 | 株式会社日立メディコ | 蛍光体素子、それを用いた放射線検出器及び医用画像診断装置 |
US7122299B2 (en) * | 2002-11-06 | 2006-10-17 | Fuji Photo Film Co., Ltd. | Silver halide photographic light-sensitive material |
JP2004317300A (ja) | 2003-04-16 | 2004-11-11 | Toshiba Corp | 放射線平面検出器及びその製造方法 |
JP2005009872A (ja) * | 2003-06-16 | 2005-01-13 | Canon Inc | シンチレーションプレートおよびその製造方法 |
US7308074B2 (en) * | 2003-12-11 | 2007-12-11 | General Electric Company | Multi-layer reflector for CT detector |
JP2006250639A (ja) * | 2005-03-09 | 2006-09-21 | Fuji Photo Film Co Ltd | 放射線像変換パネル |
JP2006310280A (ja) * | 2005-03-31 | 2006-11-09 | Toray Ind Inc | プラズマディスプレイ用背面板およびプラズマディスプレイパネル |
JP5060871B2 (ja) | 2007-08-22 | 2012-10-31 | セイコーインスツル株式会社 | 可変分圧回路及び磁気センサ回路 |
JP5188148B2 (ja) | 2007-11-09 | 2013-04-24 | キヤノン株式会社 | 表示装置及び方法及びプログラム |
JP2011007552A (ja) | 2009-06-24 | 2011-01-13 | Konica Minolta Medical & Graphic Inc | シンチレータパネル、放射線検出装置、及びシンチレータパネルの製造方法 |
JP2012002627A (ja) * | 2010-06-16 | 2012-01-05 | Konica Minolta Medical & Graphic Inc | 放射線検出用二次元アレイ型シンチレータ |
JP5460572B2 (ja) * | 2010-12-27 | 2014-04-02 | 富士フイルム株式会社 | 放射線画像検出装置及びその製造方法 |
JP5325872B2 (ja) * | 2010-12-27 | 2013-10-23 | 富士フイルム株式会社 | 放射線画像検出装置及びその製造方法 |
US9625586B2 (en) * | 2011-03-31 | 2017-04-18 | Japan Atomic Energy Agency | Scintillator plate, radiation measuring apparatus, radiation imaging apparatus, and scintillator plate manufacturing method |
CN103563006B (zh) * | 2011-05-26 | 2016-08-24 | 东丽株式会社 | 闪烁体面板以及闪烁体面板的制造方法 |
CN102850047A (zh) * | 2011-06-29 | 2013-01-02 | 圣戈本陶瓷及塑料股份有限公司 | 基于掺杂的镥铝石榴石(LuAG)或其他镥铝氧化物的透明陶瓷闪烁体的制造方法 |
US9564253B2 (en) * | 2012-11-16 | 2017-02-07 | Toray Industries, Inc. | Scintillator panel |
JP6075028B2 (ja) * | 2012-11-26 | 2017-02-08 | 東レ株式会社 | シンチレータパネル |
CN104798141B (zh) * | 2012-11-26 | 2017-09-05 | 东丽株式会社 | 闪烁体面板及其制备方法 |
JP6217076B2 (ja) * | 2012-11-26 | 2017-10-25 | 東レ株式会社 | シンチレータパネルおよびシンチレータパネルの製造方法 |
KR102142962B1 (ko) * | 2013-01-08 | 2020-08-10 | 비바모스 리미티드 | 다층 코팅을 포함하는 x-선 섬광체 |
-
2015
- 2015-08-03 KR KR1020177002647A patent/KR102179765B1/ko active IP Right Grant
- 2015-08-03 CN CN201580041703.1A patent/CN106663488B/zh active Active
- 2015-08-03 EP EP15830425.3A patent/EP3179480B1/en active Active
- 2015-08-03 WO PCT/JP2015/071931 patent/WO2016021540A1/ja active Application Filing
- 2015-08-03 US US15/501,984 patent/US10580547B2/en active Active
- 2015-08-03 JP JP2016540214A patent/JP6658527B2/ja active Active
- 2015-08-05 TW TW104125395A patent/TWI654620B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01191084A (ja) * | 1988-01-27 | 1989-08-01 | Hitachi Medical Corp | 放射線検出器 |
JP2011207937A (ja) * | 2010-03-29 | 2011-10-20 | Hitachi Metals Ltd | 蛍光材料の製造方法 |
JP2011257339A (ja) * | 2010-06-11 | 2011-12-22 | Konica Minolta Medical & Graphic Inc | 放射線画像検出装置 |
JP2014106022A (ja) * | 2012-11-26 | 2014-06-09 | Toray Ind Inc | シンチレータパネル |
Non-Patent Citations (1)
Title |
---|
See also references of EP3179480A4 * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9748013B2 (en) * | 2015-03-27 | 2017-08-29 | Konica Minolta, Inc. | Scintillator panel and method for manufacturing the same |
US20160282480A1 (en) * | 2015-03-27 | 2016-09-29 | Konica Minolta, Inc. | Scintillator panel and method for manufacturing the same |
TWI713728B (zh) * | 2016-04-27 | 2020-12-21 | 日商東麗股份有限公司 | 閃爍器面板及其製造方法、以及放射線檢測裝置 |
WO2017187854A1 (ja) * | 2016-04-27 | 2017-11-02 | 東レ株式会社 | シンチレータパネルおよびその製造方法、並びに、放射線検出装置 |
CN108475550A (zh) * | 2016-04-27 | 2018-08-31 | 东丽株式会社 | 闪烁体面板和其制造方法、以及放射线检测装置 |
KR20180136430A (ko) * | 2016-04-27 | 2018-12-24 | 도레이 카부시키가이샤 | 신틸레이터 패널 및 그 제조 방법, 및 방사선 검출 장치 |
JPWO2017187854A1 (ja) * | 2016-04-27 | 2019-02-28 | 東レ株式会社 | シンチレータパネルおよびその製造方法、並びに、放射線検出装置 |
CN108475550B (zh) * | 2016-04-27 | 2022-06-14 | 东丽株式会社 | 闪烁体面板和其制造方法、以及放射线检测装置 |
US10741298B2 (en) | 2016-04-27 | 2020-08-11 | Toray Industries, Inc. | Scintillator panel and production method for same, and radiation detection apparatus |
KR102197808B1 (ko) * | 2016-04-27 | 2021-01-04 | 도레이 카부시키가이샤 | 신틸레이터 패널 및 그 제조 방법, 및 방사선 검출 장치 |
JP2019074358A (ja) * | 2017-10-13 | 2019-05-16 | 株式会社小糸製作所 | シンチレータ材料および放射線検出器 |
US11249201B2 (en) | 2017-10-13 | 2022-02-15 | Koito Manufacturing Co., Ltd. | Scintillator material and radiation detector |
JPWO2019181444A1 (ja) * | 2018-03-23 | 2021-02-04 | 東レ株式会社 | シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法 |
US11287538B2 (en) | 2018-03-23 | 2022-03-29 | Toray Industries, Inc. | Scintillator panel, radiation detector, and method for manufacturing scintillator panel |
TWI823912B (zh) * | 2018-03-23 | 2023-12-01 | 日商東麗股份有限公司 | 閃爍器面板、放射線檢測器及閃爍器面板之製造方法 |
KR20200135283A (ko) | 2018-03-23 | 2020-12-02 | 도레이 카부시키가이샤 | 신틸레이터 패널, 방사선 검출기 및 신틸레이터 패널의 제조 방법 |
JP7151702B2 (ja) | 2018-03-23 | 2022-10-12 | 東レ株式会社 | シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法 |
WO2019181444A1 (ja) | 2018-03-23 | 2019-09-26 | 東レ株式会社 | シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法 |
TWI821527B (zh) * | 2019-03-01 | 2023-11-11 | 日商東麗股份有限公司 | 閃爍器面板、放射線檢測器、及閃爍器面板之製造方法 |
WO2020179322A1 (ja) * | 2019-03-01 | 2020-09-10 | 東レ株式会社 | シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法 |
CN113498481A (zh) * | 2019-03-01 | 2021-10-12 | 东丽株式会社 | 闪烁体面板、放射线检测器和闪烁体面板的制造方法 |
JP7136188B2 (ja) | 2019-03-01 | 2022-09-13 | 東レ株式会社 | シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法 |
JPWO2020179322A1 (ja) * | 2019-03-01 | 2020-09-10 | ||
CN113498481B (zh) * | 2019-03-01 | 2024-10-22 | 东丽株式会社 | 闪烁体面板、放射线检测器和闪烁体面板的制造方法 |
JP7092261B2 (ja) | 2020-03-30 | 2022-06-28 | 東レ株式会社 | シンチレータパネルおよびシンチレータパネルの製造方法 |
WO2021200327A1 (ja) * | 2020-03-30 | 2021-10-07 | 東レ株式会社 | シンチレータパネルおよびシンチレータパネルの製造方法 |
JPWO2021200327A1 (ja) * | 2020-03-30 | 2021-10-07 | ||
US12055670B2 (en) | 2020-03-30 | 2024-08-06 | Toray Industries, Inc. | Scintillator panel and scintillator panel manufacturing method |
JP7532641B2 (ja) | 2021-03-09 | 2024-08-13 | 株式会社東芝 | シンチレータアレイ、およびそれを用いた放射線検出器、放射線検査装置 |
DE102022120811A1 (de) | 2021-08-23 | 2023-03-09 | Fujifilm Corporation | Strahlungsdetektor |
US11852759B2 (en) | 2021-08-23 | 2023-12-26 | Fujifilm Corporation | Radiation detector |
Also Published As
Publication number | Publication date |
---|---|
CN106663488B (zh) | 2019-05-14 |
KR20170039659A (ko) | 2017-04-11 |
JPWO2016021540A1 (ja) | 2017-05-18 |
US20170236609A1 (en) | 2017-08-17 |
EP3179480A1 (en) | 2017-06-14 |
KR102179765B1 (ko) | 2020-11-17 |
TW201611037A (zh) | 2016-03-16 |
TWI654620B (zh) | 2019-03-21 |
EP3179480A4 (en) | 2018-04-11 |
US10580547B2 (en) | 2020-03-03 |
JP6658527B2 (ja) | 2020-03-04 |
EP3179480B1 (en) | 2019-09-25 |
CN106663488A (zh) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016021540A1 (ja) | シンチレータパネル及び放射線検出器 | |
EP2717272B1 (en) | Scintillator panel and method for manufacturing scintillator panel | |
TWI648551B (zh) | Scintillator panel | |
US10132937B2 (en) | Method for manufacturing three-dimensional structure, method for manufacturing scintillator panel, three-dimensional structure, and scintillator panel | |
US9791576B2 (en) | Scintillator panel and method for manufacturing scintillator panel | |
WO2014021415A1 (ja) | シンチレータパネルおよびシンチレータパネルの製造方法 | |
EP3151247A1 (en) | Scintillator panel, radiographic image detection device, and method for manufacturing same | |
JP6555267B2 (ja) | 表示部材の製造方法 | |
JP6217076B2 (ja) | シンチレータパネルおよびシンチレータパネルの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15830425 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016540214 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177002647 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015830425 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015830425 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |