WO2020179322A1 - シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法 - Google Patents

シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法 Download PDF

Info

Publication number
WO2020179322A1
WO2020179322A1 PCT/JP2020/004166 JP2020004166W WO2020179322A1 WO 2020179322 A1 WO2020179322 A1 WO 2020179322A1 JP 2020004166 W JP2020004166 W JP 2020004166W WO 2020179322 A1 WO2020179322 A1 WO 2020179322A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator panel
group
partition wall
substituted
fluorine
Prior art date
Application number
PCT/JP2020/004166
Other languages
English (en)
French (fr)
Inventor
将 宮尾
貴広 谷野
松村 宣夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202080018201.8A priority Critical patent/CN113498481A/zh
Priority to JP2020506377A priority patent/JP7136188B2/ja
Publication of WO2020179322A1 publication Critical patent/WO2020179322A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the present invention relates to a scintillator panel, a radiation detector, and a method for manufacturing a scintillator panel.
  • FPDs use scintillator panels to convert radiation into visible light.
  • the scintillator panel contains a radiation phosphor.
  • the radiation phosphor emits visible light.
  • the emitted light is converted into an electric signal by a TFT (thin film transistor) or CCD (charge-coupled device), and radiation information is converted into digital image information.
  • TFT thin film transistor
  • CCD charge-coupled device
  • the scintillator panel has a problem that the light emitted from the radiation phosphor is scattered in the layer containing the phosphor (phosphor layer) and the sharpness is lowered.
  • a method in which the space is divided by the partition walls having a reflective layer on the surface, that is, the cell is filled with a phosphor.
  • a metal oxide powder having a high refractive index such as titanium oxide powder (Patent Document 1) or a method of using a metal having a high reflectance such as silver (Patent Documents 2 and 3) It has been known.
  • the reflective layer using the metal oxide powder described in Patent Document 1 does not have sufficient reflectance. Further, in order to obtain high reflectance, it is necessary to increase the thickness of the reflective layer. However, by thickening the reflective layer, the volume inside the cell is reduced, and the filling amount of the phosphor is reduced. As a result, the brightness of the scintillator panel decreases. Further, in the method using a metal reflective layer such as silver described in Patent Document 2, the reflectance tends to decrease due to corrosion of the metal reflective layer. Therefore, the brightness of the obtained scintillator panel is likely to decrease. Further, Patent Document 2 describes a method of forming a protective layer of acrylic resin on the surface of a metal reflective layer.
  • Patent Document 3 describes a method of forming a low refractive index resin layer containing colloidal silica on a metal reflective layer. This method forms a resin layer having a low refractive index on the metal reflective layer. However, the obtained scintillator panel has insufficient protection performance, and the brightness is lowered.
  • the present invention has been made in view of such conventional problems, and an object thereof is to provide a scintillator panel, a radiation detector, and a method of manufacturing a scintillator panel having high brightness and high sharpness.
  • the scintillator panel of the present invention to solve the above problems, a substrate, a lattice-shaped partition formed on the substrate, and has a phosphor layer in a cell partitioned by the partition, the partition, A scintillator panel having a metal reflective layer and an organic protective layer containing an amorphous fluorine-containing resin as a main component in this order on the surface of the partition wall.
  • the radiation detector of the present invention which solves the above-mentioned problems is a radiation detector including the scintillator panel.
  • the method for manufacturing a scintillator panel of the present invention which solves the above-mentioned problems, forming partition walls on a substrate, partitioning cells, a partition wall forming step, and forming a metal reflective layer on the surface of the partition walls, a reflective layer Forming step, forming an organic protective layer on the surface of the reflective layer, an organic protective layer forming step, and filling a phosphor in the cells partitioned by the partition wall, a filling step, the organic protective layer,
  • FIG. 1 is a sectional view schematically showing a radiation detector member including a scintillator panel according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a scintillator panel according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a radiation detector member 1 including a scintillator panel 2 of this embodiment.
  • the radiation detector member 1 has a scintillator panel 2 and an output substrate 3.
  • the scintillator panel 2 has a substrate 4, a partition wall 5, and a phosphor layer 6 in a cell partitioned by the partition wall 5.
  • the output substrate 3 includes a substrate 10, an output layer 9 formed on the substrate 10, and a photoelectric conversion layer 8 having a photodiode formed on the output layer 9.
  • a diaphragm layer 7 may be provided on the photoelectric conversion layer 8. It is preferable that the light emitting surface of the scintillator panel 2 and the photoelectric conversion layer 8 of the output substrate 3 are adhered or adhered to each other via the diaphragm layer 7. The light emitted from the phosphor layer 6 reaches the photoelectric conversion layer 8, is photoelectrically converted, and is output. Each will be described below.
  • the substrate 4 is a member provided on the scintillator panel 2 of the present embodiment.
  • the material constituting the substrate 4 is preferably a material having radiation permeability.
  • the materials constituting the substrate 4 are various types of glass, polymer materials, metals, and the like.
  • the glass is quartz, borosilicate glass, chemically tempered glass, or the like.
  • the polymer compound is polyester such as cellulose acetate or polyethylene terephthalate, polyamide, polyimide, triacetate, polycarbonate, carbon fiber reinforced resin and the like.
  • the metal include aluminum, iron and copper. These may be used in combination.
  • the material constituting the substrate 4 is preferably a polymer material having high radiation permeability.
  • the material constituting the substrate 4 is preferably a material having excellent flatness and heat resistance.
  • the thickness of the substrate 4 is preferably 2.0 mm or less, more preferably 1.0 mm or less in the case of a glass substrate. Further, the thickness of the substrate 4 is preferably 3.0 mm or less in the case of a substrate made of a polymer material.
  • Partition wall 5 The partition wall 5 is provided to form at least a partitioned space (cell).
  • the partition wall 5 has a metal reflective layer 11 and an organic protective layer 12 containing an amorphous fluorine-containing resin as a main component in this order.
  • the metal reflective layer 11 and the organic protective layer 12 may be provided on at least a part of the partition wall 5.
  • the metal reflective layer 11 has a high reflectance even if it is a thin film. Therefore, by providing the metal reflection layer 11 as a thin film, the filling amount of the phosphor 13 is less likely to decrease, and the scintillator panel 2 is likely to have improved brightness.
  • the metal forming the metal reflective layer 11 is not particularly limited.
  • the metal reflective layer 11 preferably contains a metal having high reflectance such as silver or aluminum as a main component, and more preferably contains silver as a main component.
  • the metal reflective layer 11 may be an alloy.
  • the metal reflection layer 11 preferably contains a silver alloy containing at least one of palladium and copper, and more preferably a silver alloy containing palladium and copper.
  • the metal reflective layer 11 made of such a silver alloy has excellent discoloration resistance in the atmosphere.
  • “containing as a main component” means containing a predetermined component in an amount of 50 to 100% by mass.
  • the thickness of the metal reflective layer 11 is not particularly limited.
  • the thickness of the metal reflective layer 11 is preferably 10 nm or more, and more preferably 50 nm or more.
  • the thickness of the metal reflective layer 11 is preferably 500 nm or less, and more preferably 300 nm or less.
  • the scintillator panel 2 has sufficient light shielding properties and improves sharpness.
  • the thickness of the metal reflective layer 11 is 500 nm or less, the unevenness on the surface of the metal reflective layer 11 is unlikely to increase, and the reflectance is unlikely to decrease.
  • the cell type scintillator having a metal reflection layer has a problem that the brightness is lowered due to corrosion of the metal reflection layer.
  • the decrease in brightness means that the actual brightness is lower than the brightness of the scintillator panel that is assumed from the reflectance of the original metal reflective layer. This is because the components in the phosphor layer react with the metal reflective layer when the metal reflective layer is formed, or when the phosphor layer is formed after the metal reflective layer is formed, and the metal reflective layer corrodes and the reflectance decreases. It is estimated that this is due to This decrease in brightness can be suppressed by providing an organic protective layer on the metal reflective layer. However, the reflectance of the metal reflective layer is influenced by the organic protective layer.
  • the organic protective layer 12 containing an amorphous fluorine-containing resin as a main component is formed on the metal reflective layer 11.
  • the organic protective layer 12 in the scintillator panel 2, when the phosphor layer 6 is formed, a decrease in reflectance of the metal reflective layer 11 due to a reaction between the metal reflective layer 11 and the phosphor layer 6 is suppressed. , The brightness is improved.
  • the organic protective layer contains an amorphous fluorine-containing resin as a main component.
  • an organic protective layer containing an amorphous fluorine-containing resin as a main component, the brightness of the scintillator panel 2 is improved.
  • the reflectance of the metal reflective layer is affected by the organic protective layer, and the lower the refractive index of the organic protective layer, the easier it is to improve.
  • the scintillator panel is likely to have improved brightness.
  • the fluorine-containing resin has a low refractive index. Therefore, by containing the amorphous fluorine-containing resin as a main component, in the scintillator panel 2, the reflectance of the metal reflection layer is improved and the brightness is easily improved.
  • the phrase "mainly composed of an amorphous fluorine-containing resin” means that 50 to 100% by mass of the material constituting the organic protective layer 12 is an amorphous fluorine-containing resin.
  • the organic protective layer 12 is amorphous.
  • the amorphous fluorine-containing resin has excellent solvent solubility. Therefore, the organic protective layer 12 can be easily formed by a known method such as solution coating or spray coating.
  • the fluorine-containing resin is amorphous means that when the fluorine-containing resin is measured by a powder X-ray diffraction method, a peak due to a crystal structure is not substantially observed, and only a broad halo is observed. Is observed.
  • the organic protective layer 12 contains an amorphous fluorine-containing resin as a main component, and other components are not particularly limited.
  • the organic protective layer 12 containing an amorphous fluorine-containing resin as a main component suppresses corrosion of the metal reflective layer, and the reflectance of silver is unlikely to decrease.
  • the amorphous fluorine-containing resin is preferably a resin in which a fluorine atom is directly bonded to an atom of the main chain.
  • a fluorine-containing resin in which a fluorine atom is directly bonded to an atom in the main chain has excellent solvent resistance. Therefore, swelling or dissolution of the organic protective layer is less likely to occur during formation of the phosphor layer. As a result, in the scintillator panel 2, a decrease in reflectance due to a reaction between the component contained in the phosphor layer and the metal reflective layer is suppressed, and the brightness is easily improved.
  • the refractive index of the organic protective layer is preferably 1.41 or less, more preferably 1.39 or less.
  • the refractive index of the organic protective layer can be determined by measuring the coating film by ellipsometry.
  • the amorphous fluorine-containing resin which is the main component of the organic protective layer preferably has a structure represented by the following general formula (1) as a repeating unit.
  • the fluorine-containing resin may be a copolymer having a structure represented by the following general formula (1) and another structure, and the main component may be the structure represented by the following general formula (1). preferable.
  • the fluorine-containing resin is a copolymer having two different structures represented by the following general formula (1), it may be any of an alternating copolymer, a block copolymer and a random copolymer.
  • R 1 to R 4 are hydrogen, halogen, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a hydroxyl group, a substituted or unsubstituted Alkoxy group, substituted or unsubstituted aryl group, cyano group, aldehyde group, substituted or unsubstituted ester group, acyl group, carboxyl group, substituted or unsubstituted amino group, nitro group, or substituted or unsubstituted epoxy Represents a group.
  • one ring structure may be formed by two of R 1 to R 4 .
  • at least one of R 1 to R 4 is fluorine or a group having fluorine.
  • R 1 to R 4 one or more is preferably fluorine, and two or more are more preferably fluorine.
  • substituents include halogen, an alkyl group, an aryl group, an alkoxy group and the like.
  • R 1 to R 4 may be the same or different.
  • the alkyl group may be linear or cyclic, and its carbon number is preferably 1 to 12.
  • the alkenyl group preferably has 1 to 15 carbon atoms.
  • the alkynyl group preferably has 1 to 10 carbon atoms.
  • the alkoxy group preferably has 1 to 10 carbon atoms.
  • the aryl group preferably has 6 to 40 carbon atoms.
  • the structure represented by the general formula (1) preferably has a saturated ring structure.
  • the amorphous fluorine-containing resin having a saturated ring structure preferably has a structure represented by the general formula (1) described below and a structure represented by the following general formula (2).
  • X represents oxygen
  • s and u each independently represent 0 or 1
  • t represents an integer of 1 or more.
  • R 5 to R 8 are hydrogen, halogen, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a hydroxyl group, a substituted or unsubstituted alkoxy.
  • At least one of R 5 to R 6 is preferably fluorine.
  • at least one of R 7 to R 8 is preferably fluorine.
  • s and u represent the number of oxygen. However, when s or u is 0, X s or X u is a single bond. It is preferable that at least one of s and u is 1, because the glass transition temperature becomes appropriate.
  • t represents the number of repetitions, preferably 1 to 4, and more preferably 1 to 3.
  • R 7 and R 8 may be the same or different from each other.
  • the alkyl group preferably has 1 to 8 carbon atoms.
  • the alkenyl group preferably has 1 to 12 carbon atoms.
  • the alkoxy group preferably has 1 to 10 carbon atoms.
  • the aryl group preferably has 5 to 15 carbon atoms.
  • the terminal of the main chain of the amorphous fluorine-containing resin for example, a substituted or unsubstituted alkyl group, a substituted or unsubstituted amino group, a substituted or unsubstituted carboxyl group, an alcohol group, an acyl group, Substituted or functional group such as substituted or unsubstituted silyl group, substituted or unsubstituted phosphonyl group, substituted or unsubstituted sulfonyl group, halogen, cyano group, nitro group, vinyl group, substituted or unsubstituted epoxy group, etc. May be.
  • examples of the substituent include halogen, an alkyl group, an aryl group, an alkoxy group, an acyl group, a silyl group and the like.
  • the alkyl group preferably has 1 to 8 carbon atoms.
  • the alkenyl group preferably has 1 to 10 carbon atoms.
  • the alkoxy group preferably has 1 to 10 carbon atoms.
  • the aryl group preferably has 5 to 15 carbon atoms.
  • a carboxyl group, an acyl group, a silyl group, and a phosphonyl group are preferable from the viewpoint of adhesion to the substrate.
  • the number average molecular weight of the amorphous fluorine-containing resin is preferably 3,000 or more, more preferably 5,000 or more from the viewpoint of weather resistance and solvent resistance. Further, the number average molecular weight of the amorphous fluorine-containing resin is preferably 300,000 or less from the viewpoint of solubility in a solvent at the time of forming the protective layer, and is preferably 250,000 or less and 60,000 or less. More preferably, it is 50,000 or less. When the number average molecular weight is 3,000 or more, the amorphous fluorine-containing resin has good weather resistance and solvent resistance, and swelling or dissolution of the protective layer is less likely to occur during formation of the phosphor layer.
  • the obtained scintillator panel can further improve the brightness.
  • the number average molecular weight is 300,000 or less
  • the amorphous fluorine-containing resin has good solubility in a solvent when forming the protective layer, and the protective layer can be easily formed by a known method. ..
  • the thickness of the organic protective layer is preferably 0.05 ⁇ m or more, more preferably 0.2 ⁇ m or more.
  • the thickness of the organic protective layer is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the scintillator panel 2 can further increase the effect of suppressing the decrease in brightness.
  • the scintillator panel 2 can increase the volume in the cell and can sufficiently improve the brightness by filling the phosphor 13 in a sufficient amount.
  • the thickness of the organic protective layer can be measured by observation with a scanning electron microscope.
  • the organic protective layer formed in the organic protective layer forming step described later tends to be thin on the side surface near the top of the partition wall and thick on the side surface near the bottom. Therefore, when there is such a difference in thickness, the thickness of the organic protective layer refers to the thickness on the side surface of the central portion of the partition wall 5 in the height direction.
  • the partition wall 5 is made of an inorganic material in order to enhance strength and heat resistance.
  • Inorganic substances refer to compounds composed of some simple carbon compounds (allotropes of carbon such as graphite or diamond) and elements other than carbon. It should be noted that the phrase “consisting of an inorganic substance” does not exclude the existence of components other than the inorganic substance in a strict sense, and does not exclude impurities such as impurities contained in the inorganic substance itself as a raw material and impurities mixed in the process of manufacturing the partition wall 5. The presence of components other than minerals is acceptable.
  • the partition wall 5 is preferably made of glass as a main component.
  • Glass refers to an inorganic amorphous solid containing a silicate.
  • the partition wall 5 has higher strength and heat resistance, and is less likely to be deformed or damaged in the step of forming the metal reflective layer 11 and the step of filling the phosphor 13.
  • “having glass as a main component” means that 50 to 100% by mass of the material constituting the partition wall 5 is glass.
  • the partition wall 5 preferably contains 95 vol% or more of a low softening point glass having a softening point of 650° C. or lower, and more preferably 98 vol% or more.
  • a low softening point glass having a softening point of 650° C. or lower, and more preferably 98 vol% or more.
  • Components other than the low softening point glass contained in the partition wall 5 are high softening point glass powder, ceramic powder, and the like. These powders facilitate the adjustment of the shape of the partition wall 5 in the partition wall forming step.
  • the content of the components other than the low softening point glass is preferably less than 5% by volume.
  • FIG. 2 is a schematic cross-sectional view of the scintillator panel 2 of the present embodiment (the phosphor layer 6 is not shown.
  • the phosphor layer 6 is shown in FIG. 1).
  • the height L1 of the partition wall 5 is preferably 50 ⁇ m or more, and more preferably 70 ⁇ m or more. Further, the height of the partition wall 5 is preferably 3000 ⁇ m or less, and more preferably 1000 ⁇ m or less.
  • L1 is 3000 ⁇ m or less
  • the emitted light is less likely to be absorbed by the phosphor 13 itself, and the brightness of the scintillator panel 2 is less likely to decrease.
  • L1 is 50 ⁇ m or more
  • the scintillator panel 2 has an appropriate amount of the phosphor 13 that can be filled, and the brightness is less likely to decrease.
  • the distance L2 between the adjacent partition walls 5 is preferably 30 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the distance L2 between the partition walls 5 is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less.
  • L2 is 30 ⁇ m or more, the scintillator panel 2 easily fills the phosphor 13 in the cell.
  • L2 is 1000 ⁇ m or less, the scintillator panel 2 is excellent in sharpness.
  • the bottom width L3 of the partition wall 5 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more. Further, the bottom width L3 is preferably 150 ⁇ m or less, and more preferably 50 ⁇ m or less. Since L3 is 5 ⁇ m or more, the scintillator panel 2 is less likely to have a pattern defect. On the other hand, when L3 is 150 ⁇ m or less, the scintillator panel 2 has an appropriate amount of the phosphor 13 that can be filled, and the brightness is less likely to decrease.
  • the top width L4 of the partition wall 5 is preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more. Further, the top width L4 is preferably 80 ⁇ m or less, and more preferably 50 ⁇ m or less. When L4 is 3 ⁇ m or more, the strength of the partition wall 5 of the scintillator panel 2 becomes appropriate, and pattern defects are less likely to occur. On the other hand, when L4 is 80 ⁇ m or less, the scintillator panel 2 has an appropriate region from which the emitted light of the phosphor 13 can be taken out, and the brightness is unlikely to decrease.
  • the aspect ratio (L1 / L3) of the height L1 of the partition wall 5 with respect to the bottom width L3 of the partition wall 5 is preferably 1.0 or more, and more preferably 2.0 or more.
  • the aspect ratio (L1 / L3) is preferably 100.0 or less, and more preferably 50.0 or less.
  • the scintillator panel 2 tends to have an appropriate filling amount of the phosphor 13.
  • the aspect ratio (L1 / L3) is 100.0 or less, the scintillator panel 2 tends to have appropriate partition wall strength.
  • the aspect ratio (L1 / L2) of the height L1 of the partition wall 5 with respect to the distance L2 of the partition wall 5 is preferably 0.5 or more, and more preferably 1.0 or more.
  • the aspect ratio (L1 / L2) is preferably 20.0 or less, and more preferably 10.0 or less. Since the aspect ratio (L1 / L2) is 0.5 or more, the scintillator panel 2 is unlikely to have low X-ray absorption efficiency. Further, since the aspect ratio (L1 / L2) is 20.0 or less, the scintillator panel 2 is less likely to reduce the efficiency of extracting light emission in the cell and is less likely to reduce the brightness.
  • the height L1 of the partition walls 5 and the interval L2 between the adjacent partition walls 5 should be cut in a cross section perpendicular to the substrate or exposed by a polishing device such as a cross section polisher, and the cross section should be observed with a scanning electron microscope. Can be measured by Here, the width of the partition wall 5 at the contact portion between the partition wall 5 and the substrate is L3. The width of the top of the partition wall 5 is L4.
  • each cell is partitioned by a partition wall 5. Therefore, in the scintillator panel 2, by matching the size and pitch of the pixels of the photoelectric conversion elements arranged in a grid pattern with the size and pitch of the cells of the scintillator panel 2, the pixels of the photoelectric conversion element are The cells of the scintillator panel 2 can be associated with each other. Thereby, the scintillator panel 2 can easily obtain high sharpness.
  • the phosphor layer 6 is formed in a cell partitioned by a partition wall 5, as shown in FIG.
  • the phosphor layer 6 absorbs the energy of incident radiation such as X-rays, and emits electromagnetic waves in the wavelength range of 300 nm to 800 nm, that is, light in the range from ultraviolet light to infrared light centering on visible light. ..
  • the light emitted from the phosphor layer 6 undergoes photoelectric conversion in the photoelectric conversion layer 8 and is output as an electric signal through the output layer 9.
  • the phosphor layer 6 preferably has a phosphor 13 and a binder resin 14.
  • the phosphor 13 is not particularly limited.
  • the phosphor 13 is a sulfide-based phosphor, a germanate-based phosphor, a halide-based phosphor, a barium sulfate-based phosphor, a hafnium phosphate-based phosphor, a tantalate-based phosphor, a tungstate-based phosphor.
  • rare earth silicate phosphors include cerium-activated rare earth silicate-based phosphors, and rare earth acid phosphide-based phosphors include praseodymium-activated rare earth oxysulfide-based phosphors and terbium-activated rare earth oxysulfide-based phosphors.
  • Phosphors, europium-activated rare earth oxysulfide-based phosphors, rare earth phosphate-based phosphors include terbium-activated rare earth phosphate-based phosphors, rare earth oxyhalogen phosphors, terbium-activated rare earths Oxyhalide-based phosphors, thulium-activated rare earth oxyhalide-based phosphors, and alkaline earth metal phosphate-based phosphors include europium-activated alkaline earth metal phosphate-based phosphors, and alkali Examples of the earth metal fluoride halide-based phosphor include a europium-activated alkaline earth metal fluoride halide-based phosphor.
  • the phosphor 13 may be used in combination.
  • the phosphor 13 is preferably a phosphor selected from a halide phosphor, a terbium-activated rare earth oxysulfide phosphor and a europium-activated rare earth oxysulfide phosphor, from the viewpoint of high luminous efficiency.
  • Terbium-activated rare earth acid sulfide-based phosphors are more preferred.
  • the binder resin 14 is not particularly limited.
  • the binder resin 14 is a thermoplastic resin, a thermosetting resin, a photocurable resin, or the like. More specifically, the binder resin 14 is an acrylic resin, acetal resin, cellulose derivative, polysiloxane resin, epoxy resin, melamine resin, phenol resin, urethane resin, urea resin, vinyl chloride resin, polyethylene terephthalate, polyethylene naphthalate, or the like. Polyester resin, polyethylene, polypropylene, polystyrene, polyvinyltoluene, polyphenylbenzene and the like. The binder resin 14 may be used in combination.
  • the binder resin 14 preferably contains at least one kind of acrylic resin, acetal resin, epoxy resin and cellulose derivative, and more preferably contains 1 to 3 kinds of these as a main component.
  • the scintillator panel 2 can suppress the attenuation of light within the cell and can easily take out light emission sufficiently.
  • the main component is at least one of acrylic resin, acetal resin, epoxy resin, and cellulose derivative means that the total amount of the acrylic resin, acetal resin, and cellulose derivative is 50 to 100 mass of the material constituting the resin. It means that it is %.
  • the binder resin 14 is preferably in contact with the organic protective layer 12. In this case, the binder resin 14 may be in contact with at least a part of the organic protective layer 12. As a result, in the scintillator panel 2, the phosphor 13 is less likely to fall out of the cell. As shown in FIG. 1, the binder resin 14 may be filled in the cells with almost no voids or may be filled with voids.
  • the brightness and sharpness are high.
  • the radiation detector of one embodiment of the present invention can be manufactured by arranging the radiation detector member 1 in a case.
  • the radiation detector can be manufactured by removing the scintillator of the commercially available radiation detector and arranging the scintillator panel 2 of the embodiment of the present invention instead.
  • a method for manufacturing a scintillator panel according to an embodiment of the present invention a partition wall is formed on a base material to partition cells, a partition wall formation step, a metal reflective layer is formed on the surface of the partition wall, and a reflection layer formation step,
  • the method includes an organic protective layer forming step of forming an organic protective layer on the surface of the reflective layer, and a filling step of filling the phosphor in the cells partitioned by the partition walls.
  • the partition wall forming step is a step of forming a partition wall on the base material.
  • the method of forming the partition wall on the base material is not particularly limited.
  • As a method for forming the partition wall various known methods can be used, and the photosensitive paste method is preferable because the shape can be easily controlled.
  • the partition wall containing glass as a main component is obtained by, for example, applying a photosensitive paste containing glass powder onto the surface of a base material to obtain a coating film, a coating step, exposing and developing the coating film, and baking the partition wall. It can be formed by a pattern forming step of obtaining a pre-pattern and a firing step of firing the pattern to obtain a partition pattern.
  • the applying step is a step of applying the glass powder-containing paste to the entire surface or a part of the surface of the base material to obtain an applied film.
  • a highly heat-resistant support such as a glass plate or a ceramic plate can be used.
  • the method of applying the glass powder-containing paste include a screen printing method, a bar coater, a roll coater, a die coater, and a blade coater.
  • the thickness of the obtained coating film can be adjusted by the number of coatings, the mesh size of the screen, the viscosity of the paste, and the like.
  • the glass powder contained in the glass powder-containing paste is preferably glass that softens at the firing temperature, and more preferably low softening point glass having a softening temperature of 650 ° C. or lower.
  • the softening temperature was measured by a tangential method from the endothermic end temperature at the endothermic peak from the DTA curve obtained by measuring the sample using a differential thermal analyzer (for example, differential type differential thermal balance TG8120; manufactured by Rigaku Corporation). It can be extrapolated. More specifically, first, using a differential thermal analyzer, using alumina powder as a standard sample, the temperature is raised from room temperature at 20° C./min to measure the inorganic powder to be a measurement sample, and a DTA curve is obtained. Then, the softening point Ts obtained by extrapolating the third inflection point in the obtained DTA curve by the tangent method can be used as the softening temperature.
  • a differential thermal analyzer for example, differential type differential thermal balance TG8120; manufactured by Rig
  • a metal oxide selected from the group consisting of lead oxide, bismuth oxide, zinc oxide and oxides of alkali metals, which is a compound effective for lowering the softening point of glass is used. be able to. It is preferable to adjust the softening temperature of the glass by using an oxide of an alkali metal.
  • the alkali metal refers to a metal selected from the group consisting of lithium, sodium and potassium.
  • the ratio of the alkali metal oxide to the low softening point glass is preferably 2% by mass or more, and more preferably 5% by mass or more. Further, the proportion of the alkali metal oxide in the low softening point glass is preferably 20% by mass or less, and more preferably 15% by mass or less. When the proportion of the alkali metal oxide is 2% by mass or more, the softening temperature becomes appropriate, the firing step does not need to be performed at a high temperature, and the partition walls are less likely to have defects.
  • the proportion of the alkali metal oxide is 20% by mass or less, the viscosity of the glass is less likely to be excessively lowered in the firing step, and the shape of the obtained lattice-shaped post-firing pattern is less likely to be distorted.
  • the low softening point glass preferably contains 3 to 10% by mass of zinc oxide in order to appropriately adjust the viscosity at high temperature.
  • the proportion of zinc oxide in the low softening point glass is 3% by mass or more, the low softening point glass tends to have an appropriate viscosity at high temperature.
  • the content of zinc oxide is 10% by mass or less, the manufacturing cost of the low softening point glass tends to be appropriate.
  • the low softening point glass is at least one selected from the group consisting of oxides of silicon oxide, boron oxide, aluminum oxide and alkaline earth metals for adjusting stability, crystallinity, transparency, refractive index or thermal expansion characteristics. It preferably contains a seed metal oxide.
  • the alkaline earth metal means a metal selected from the group consisting of magnesium, calcium, barium and strontium.
  • An example of the composition range of the preferred low softening point glass is shown below.
  • Alkali metal oxide 2 to 20% by mass Zinc oxide: 3-10% by mass Silicon oxide: 20-40% by mass Boron oxide: 25-40% by mass
  • the particle size of the inorganic powder including the glass powder can be measured using a particle size distribution measuring device, for example, MT3300 (manufactured by Nikkiso Co., Ltd.). More specifically, the particle size can be measured after the inorganic powder is put into the sample chamber of the particle size distribution measuring device filled with water and ultrasonically treated for 300 seconds.
  • a particle size distribution measuring device for example, MT3300 (manufactured by Nikkiso Co., Ltd.). More specifically, the particle size can be measured after the inorganic powder is put into the sample chamber of the particle size distribution measuring device filled with water and ultrasonically treated for 300 seconds.
  • the 50% volume average particle diameter (hereinafter, “D50”) of the low softening point glass powder is preferably 1.0 ⁇ m or more, and more preferably 2.0 ⁇ m or more. Further, D50 is preferably 4.0 ⁇ m or less, and more preferably 3.0 ⁇ m or less. When D50 is 1.0 ⁇ m or more, the glass powder does not easily agglomerate, uniform dispersibility is obtained, and the flow stability of the obtained paste is appropriate. On the other hand, when D50 is 4.0 ⁇ m or less, the surface unevenness of the post-firing pattern obtained in the firing step is less likely to increase, and it is less likely to cause the partition wall to be destroyed after the fact.
  • the glass powder-containing paste has a high softening point glass having a softening temperature of more than 700° C., in addition to the low softening point glass, in order to control the shrinkage rate of the lattice pattern in the firing step and to maintain the shape of the finally obtained partition walls.
  • Ceramic particles such as silicon oxide, aluminum oxide, titanium oxide or zirconium oxide may be contained as a filler.
  • the proportion of the filler in the whole inorganic component is preferably 2% by volume or less in order to improve the flatness of the partition walls.
  • the D50 of the filler is preferably the same as that of the low softening point glass powder.
  • the refractive index n1 of the glass powder and the refractive index n2 of the organic component are -0.1 ⁇ n1. It is preferable that the relationship -n2 ⁇ 0.1 is satisfied, and it is more preferable that the relationship -0.01 ⁇ n1-n2 ⁇ 0.01 is satisfied, and the relationship -0.005 ⁇ n1-n2 ⁇ 0.005 is satisfied. It is more preferable to satisfy.
  • the refractive index of the glass powder can be appropriately adjusted depending on the composition of the metal oxide contained in the glass powder.
  • the refractive index of glass powder can be measured by the Becke line detection method.
  • the refractive index of the organic component can be determined by measuring the coating film composed of the organic component by ellipsometry. More specifically, the refractive index (ng) of the glass powder or the organic component at a wavelength of 436 nm (g line) at 25 ° C. can be set to n1 or n2, respectively.
  • the photosensitive organic component contained in the photosensitive glass powder-containing paste is not particularly limited.
  • the photosensitive organic component include a photosensitive monomer, a photosensitive oligomer and a photosensitive polymer.
  • the photosensitive monomer, photosensitive oligomer, or photosensitive polymer refers to a monomer, oligomer, or polymer whose chemical structure is changed by causing a reaction such as photocrosslinking or photopolymerization upon irradiation with actinic rays.
  • the photosensitive monomer is preferably a compound having an active carbon-carbon unsaturated double bond.
  • examples of such compounds include compounds having a vinyl group, an acryloyl group, a methacryloyl group or an acrylamide group.
  • the photosensitive monomer is preferably a polyfunctional acrylate compound or a polyfunctional methacrylate compound because it increases the density of photocrosslinking and forms a highly accurate pattern.
  • the photosensitive oligomer or photosensitive polymer is preferably an oligomer or polymer having an active carbon-carbon unsaturated double bond and a carboxyl group.
  • Such oligomers or polymers include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid or their acid anhydrides, methacrylic acid esters, acrylic acid esters, styrene. , Acrylonitrile, vinyl acetate or 2-hydroxyacrylate, an oligomer or polymer obtained by copolymerizing.
  • the method of introducing an active carbon-carbon unsaturated double bond into an oligomer or polymer is, for example, acrylic acid chloride, methacrylic acid chloride or allyl for the mercapto group, amino group, hydroxyl group or carboxyl group of the oligomer or polymer.
  • examples thereof include a method of reacting a carboxylic acid such as an ethylenically unsaturated compound having a chloride, a glycidyl group or an isocyanate group, or maleic acid.
  • a glass powder-containing paste that can relieve stress at the initial stage of the firing process and is less likely to cause pattern loss in the firing process can be obtained.
  • the photosensitive glass powder-containing paste may contain a photopolymerization initiator, if necessary.
  • the photopolymerization initiator is a compound that generates radicals when irradiated with active light.
  • the photopolymerization initiator is not particularly limited.
  • the photopolymerization initiator is benzophenone, methyl o-benzoylbenzoate, 4,4-bis(dimethylamino)benzophenone, 4,4-bis(diethylamino)benzophenone, 4,4-dichlorobenzophenone, 4-benzoyl-4.
  • photoreducing dyes such as naphthalenesulfonyl chloride, quinolinesulfonyl chloride, N-phenylthioacrydone, benzthiazole disulfide, triphenylphosphine, benzophenone peroxide or eosin or methylene blue with ascorbic acid or triethanolamine.
  • photoreducing dyes such as naphthalenesulfonyl chloride, quinolinesulfonyl chloride, N-phenylthioacrydone, benzthiazole disulfide, triphenylphosphine, benzophenone peroxide or eosin or methylene blue with ascorbic acid or triethanolamine.
  • examples include combinations of agents.
  • the photosensitive glass powder-containing paste contains a polymer having a carboxyl group as a photosensitive polymer, so that the photosensitive glass powder-containing paste has improved solubility in an alkaline aqueous solution during development.
  • the acid value of the polymer having a carboxyl group is preferably 50 to 150 mgKOH / g. When the acid value is 150 mgKOH / g or less, the development margin becomes wide. On the other hand, when the acid value is 50 mgKOH / g or more, the photosensitive glass powder-containing paste does not deteriorate in solubility in an alkaline aqueous solution, and a high-definition pattern can be obtained.
  • the photosensitive glass powder-containing paste can be obtained by blending various components so as to have a predetermined composition and then uniformly mixing and dispersing them with a three-roller or a kneader.
  • the viscosity of the photosensitive glass powder-containing paste can be appropriately adjusted by the addition ratio of an inorganic powder, a thickener, an organic solvent, a polymerization inhibitor, a plasticizer, a sedimentation inhibitor, or the like.
  • the viscosity of the photosensitive glass powder-containing paste is preferably 2000 mPa ⁇ s or more, and more preferably 5000 mPa ⁇ s or more. Further, the viscosity is preferably 200,000 mPa ⁇ s or less, and more preferably 100,000 mPa ⁇ s or less.
  • the viscosity is preferably 2 to 5 Pa ⁇ s, and when it is applied to the base material by the blade coater method or the die coater method. It is preferably 10 to 50 Pa ⁇ s.
  • the viscosity is preferably 50 to 200 Pa ⁇ s.
  • the pattern formation step is, for example, an exposure step of exposing the coating film obtained in the coating step through a photomask having a predetermined opening, and a coating solution after exposure that is soluble in a developing solution. And a developing step of dissolving and removing a large portion.
  • the exposure step is a step of photo-curing a necessary portion of the coating film by exposure or photodecomposing an unnecessary portion of the coating film to make any portion of the coating film soluble in a developing solution.
  • the developing step is a step of dissolving and removing a portion of the coating film after exposure that is soluble in a developing solution with a developing solution to obtain a grid-like pre-baking pattern in which only the necessary portion remains.
  • an arbitrary pattern may be directly drawn with a laser beam or the like without using a photomask.
  • An example of the exposure apparatus is a proximity exposure machine.
  • Examples of the actinic ray irradiated in the exposure step include near infrared rays, visible rays, and ultraviolet rays, and ultraviolet rays are preferable.
  • the light source includes, for example, a low pressure mercury lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, a halogen lamp or a germicidal lamp, and an ultrahigh pressure mercury lamp is preferable.
  • the exposure conditions differ depending on the thickness of the coating film. Usually, the exposure is performed for 0.01 to 30 minutes using an ultrahigh pressure mercury lamp with an output of 1 to 100 mW/cm 2 .
  • Examples of the developing method in the developing step include a dipping method, a spray method or a brush method.
  • a solvent capable of dissolving an unnecessary portion of the coating film after exposure may be appropriately selected.
  • the developer is preferably an aqueous solution containing water as a main component.
  • an alkaline aqueous solution can be selected when the glass powder-containing paste contains a polymer having a carboxyl group.
  • the alkaline aqueous solution examples include an inorganic alkaline aqueous solution such as sodium hydroxide, sodium carbonate or calcium hydroxide, or an organic alkaline aqueous solution such as tetramethylammonium hydroxide, trimethylbenzylammonium hydroxide, monoethanolamine or diethanolamine.
  • the alkaline aqueous solution is preferably an organic alkaline aqueous solution because it is easily removed in the firing step.
  • the concentration of the alkaline aqueous solution is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more.
  • the concentration of the alkaline aqueous solution is preferably 5% by mass or less, and more preferably 1% by mass or less.
  • the developing temperature is preferably 20 to 50 ° C. in order to facilitate process control.
  • the glass powder-containing paste applied in the coating process needs to be photosensitive. That is, the glass powder-containing paste needs to contain a photosensitive organic component.
  • the proportion of the organic component in the photosensitive glass powder-containing paste is preferably 30% by mass or more, and more preferably 40% by mass or more.
  • the proportion of the organic component in the photosensitive glass powder-containing paste is preferably 80% by mass or less, more preferably 70% by mass or less.
  • the proportion of the organic component is 30% by mass or more, the dispersibility of the inorganic component in the paste is lowered, and defects are less likely to occur in the baking step.
  • the paste has an appropriate viscosity and is excellent in coatability and stability.
  • the proportion of the organic component is 80% by mass or less, the shrinkage rate of the lattice pattern in the firing step is unlikely to increase, and defects are unlikely to occur.
  • the glass powder contained in the photosensitive glass powder-containing paste preferably has a softening temperature of 480° C. or higher in order to almost completely remove the organic components in the firing step and secure the strength of the finally obtained partition wall. ..
  • the grid-shaped pre-firing pattern obtained in the pattern forming step is fired to decompose and remove the organic components contained in the glass powder-containing paste, and the glass powder is softened and sintered to form a grid.
  • This is a step of obtaining a pattern after firing, that is, a partition wall.
  • the firing conditions differ depending on the composition of the paste containing glass powder and the type of base material.
  • firing can be performed in a firing furnace with an air, nitrogen or hydrogen atmosphere.
  • the firing furnace include a batch type firing furnace and a belt type continuous firing furnace.
  • the firing temperature is preferably 500° C. or higher, more preferably 550° C. or higher.
  • the firing temperature is preferably 1000 ° C. or lower, more preferably 700 ° C. or lower, and even more preferably 650 ° C. or lower.
  • the firing temperature is 500 ° C. or higher, the organic component can be sufficiently decomposed and removed.
  • the base material used is not limited to a highly heat-resistant ceramic plate or the like.
  • the firing time is preferably 10 to 60 minutes.
  • the base material at the time of forming the partition wall may be used as the substrate of the scintillator panel, and after the partition wall is peeled from the base material, the peeled partition wall is placed on the substrate and used. May be.
  • a method of peeling the partition wall from the base material a known method such as a method of providing a peeling auxiliary layer between the base material and the partition wall can be used.
  • the manufacturing method of the scintillator panel of the present embodiment has a reflective layer forming step of forming a metal reflective layer on the surface of the partition wall.
  • the metal reflective layer may be formed on at least a part of the partition wall surface.
  • the method for forming the metal reflective layer is not particularly limited.
  • the metal reflection layer may be formed by a vacuum deposition method, a vacuum film forming method such as a sputtering method or a CVD method, a plating method, a paste coating method, or a spraying method using a spray.
  • the metal reflective layer formed by the sputtering method is preferable because it has higher reflectance uniformity and corrosion resistance than the metal reflective layer formed by other methods.
  • the method for manufacturing a scintillator panel of the present embodiment includes an organic protective layer forming step of forming an organic protective layer.
  • the method for forming the organic protective layer is not particularly limited.
  • the organic protective layer can be formed by applying a solution containing an amorphous fluorine-containing resin on a partition substrate under vacuum and then drying to remove the solvent. Further, in order to improve heat resistance and chemical resistance of the dried substrate, it may be cured by heating or by light after drying.
  • the organic protective layer is mainly composed of an amorphous fluorine-containing resin, and the fluorine-containing resin preferably has a structure represented by the above general formula (1) in the embodiment of the scintillator panel.
  • R 1 to R 4 are hydrogen, halogen, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a hydroxyl group, a substituted or unsubstituted Alkoxy group, substituted or unsubstituted aryl group, cyano group, aldehyde group, substituted or unsubstituted ester group, acyl group, carboxyl group, substituted or unsubstituted amino group, nitro group, or substituted or unsubstituted epoxy Represents a group.
  • one ring structure may be formed by two of R 1 to R 4 .
  • at least one of R 1 to R 4 is fluorine or a group having fluorine.
  • at least one is preferably fluorine, and more preferably at least two is fluorine.
  • substituents include halogen, an alkyl group, an aryl group, an alkoxy group and the like.
  • R 1 to R 4 may be the same or different from each other.
  • the alkyl group may be linear or cyclic, and its carbon number is preferably 1 to 12.
  • the alkenyl group preferably has 1 to 15 carbon atoms.
  • the alkynyl group preferably has 1 to 10 carbon atoms.
  • the alkoxy group preferably has 1 to 10 carbon atoms.
  • the aryl group preferably has 6 to 40 carbon atoms.
  • the structure represented by the general formula (1) preferably has a saturated ring structure.
  • the amorphous fluorine-containing resin having a saturated ring structure preferably has a structure represented by the general formula (1), which is represented by the above general formula (2).
  • the manufacturing method of the scintillator panel of the present embodiment has a filling step of filling the phosphor in the cells partitioned by the partition walls.
  • the method of filling the phosphor is not particularly limited.
  • the filling method is a phosphor paste prepared by mixing a phosphor powder and a binder resin in a solvent on a partition substrate under vacuum. A method of removing the solvent by drying after coating is preferable.
  • the scintillator panel manufacturing method of the present embodiment the scintillator obtained has high brightness and high sharpness.
  • the scintillator panel tends to have high brightness and high sharpness.
  • the scintillator panel tends to suppress the corrosion of the metal reflective layer, and tends to have higher brightness and sharpness.
  • R 5 to R 8 are hydrogen, halogen, substituted or absent.
  • the scintillator panel tends to have higher brightness.
  • the scintillator panel tends to have higher brightness.
  • the brightness of the scintillator panel is likely to be improved.
  • the scintillator panel is more excellent in discoloration resistance in the atmosphere.
  • the scintillator panel tends to have higher brightness.
  • a radiation detector comprising the scintillator panel according to any one of (1) to (7).
  • the scintillator panel obtained has high brightness and high sharpness.
  • Fluorine-based solvent CT-SOLV180 (manufactured by AGC Inc.)
  • Non-fluorine solvent A 1-methyl-2-pyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Non-fluorine solvent B Decane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Non-fluorine solvent C ⁇ -butyrolactone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Amorphous fluorine-containing resin D Hyflon AD60 (Amorphous fluorine-containing resin having a saturated ring structure, a fluorine atom directly bonded to an atom of the main chain, and a fluorine-substituted alkyl group at the terminal.
  • Amorphous fluorine-containing resin E Poly (2,2,3,3,4,4,4-heptafluorobutyl methacrylate, manufactured by Sigma-Aldrich)
  • Amorphous fluorine-containing resin F Poly (1,1,1,3,3,3-hexafluoroisopropylmethacrylate, manufactured by Sigma-Aldrich) Crystalline Fluorine-Containing Resin: 807-NX (manufactured by Mitsui, The Chemours, Fluoro Products Co., Ltd.)
  • Non-fluorine resin B Styrene polymer (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Non-fluorine resin C Methyl methacryl
  • Fluorine-Containing Resin Solution 95 parts by mass of a fluorine-based solvent as a solvent was mixed with 5 parts by mass of the crystalline fluorine-containing resin to prepare a mixed solution.
  • Non-Fluorine Resin Solution 95 parts by mass of a non-fluorine solvent B as a solvent was mixed with 5 parts by mass of the non-fluorine resin A to prepare a resin solution.
  • Non-Fluorine-Based Resin Solution 95 parts by mass of the non-fluorine-based resin C was mixed with 5 parts by mass of the non-fluorine-based resin B to prepare a resin solution.
  • Non-Fluorine Resin Solution 95 parts by mass of the non-fluorine resin C as a solvent was mixed with 5 parts by mass of the non-fluorine resin C to prepare a resin solution.
  • Non-Fluorine Resin Solution 95 parts by mass of a non-fluorine solvent C as a solvent was mixed with 5 parts by mass of the non-fluorine resin D to prepare a resin solution.
  • the organic protective layer shown in Table 1 was formed as follows.
  • the resin solutions shown in Table 1 were used for Examples 1 to 6 and Comparative Examples 1 to 5. This resin solution was vacuum-printed on a partition substrate, dried at 90° C. for 1 h, and further cured at 190° C. for 1 h to form an organic protective layer.
  • the partition wall of each partition substrate which was measured by exposing a section of the partition wall using a triple ion milling device EMTIC3X (manufactured by LEICA), and imaged with a field emission scanning electron microscope (FE-SEM) Merlin (manufactured by Zeiss).
  • the thickness of the organic protective layer on the side surface of the central portion in the height direction was 1 ⁇ m.
  • Comparative Example 6 a scintillator panel was produced in the same manner as in other Comparative Examples except that an organic protective layer was not formed.
  • Photosensitive monomer M-1 trimethylolpropane triacrylate
  • photosensitive monomer M-2 tetrapropylene glycol dimethacrylate
  • Photopolymerization initiator 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone-1 (manufactured by BASF)
  • Polymerization inhibitor 1,6-hexanediol-bis [(3,5-di-t-butyl-4-hydroxyphenyl) propionate])
  • UV absorber solution Sudan IV (manufactured by Tokyo Ohka Kogyl)
  • Paste containing glass powder P-1 4 parts by weight of photosensitive monomer M-1, 6 parts by weight of photosensitive monomer M-2, 24 parts by weight of photosensitive polymer, 6 parts by weight of photopolymerization initiator, 0.2 parts by weight of polymerization inhibitor and 12 8.8 parts by mass of the UV absorber solution was dissolved in 38 parts by mass of the solvent by heating at a temperature of 80 ° C. After cooling the obtained solution, 9 parts by mass of a viscosity modifier was added to obtain an organic solution 1. The refractive index (ng) of the organic coating film obtained by applying the obtained organic solution 1 to a glass plate and drying it was 1.555. After adding 50 parts by mass of the low softening point glass powder to 50 parts by mass of the organic solution 1, the mixture was kneaded with a three-roller kneader to obtain a glass powder-containing paste P-1.
  • ng refractive index
  • Partition board A 125 mm ⁇ 125 mm ⁇ 0.7 mm soda glass plate was used as the substrate.
  • the glass powder-containing paste P-1 was applied on the surface of the substrate with a die coater so that the thickness after drying was 220 ⁇ m, and dried to obtain a coating film of the glass powder-containing paste.
  • a glass powder-containing paste coating film was applied through a photomask having openings corresponding to a desired pattern (a chrome mask having a grid-shaped opening having a pitch of 127 ⁇ m and a line width of 15 ⁇ m) to an ultrahigh pressure mercury lamp. It was exposed at an exposure amount of 300 mJ / cm 2 .
  • the coated film after exposure was developed in a 0.5 mass% ethanolamine aqueous solution to remove the unexposed portion to obtain a grid-shaped pattern before firing.
  • the obtained grid-shaped pattern before baking was baked in air at 580° C. for 15 minutes to form a grid-shaped partition wall containing glass as a main component.
  • the partition wall cross-section is exposed by cleaving, and the partition wall height L1 is 150 ⁇ m, the partition wall interval L2 is 127 ⁇ m, and the partition wall bottom width L3 is 30 ⁇ m, which is measured by imaging with a scanning electron microscope S2400 (manufactured by Hitachi, Ltd.).
  • the top width L4 of the partition wall was 10 ⁇ m.
  • a commercially available sputtering device and a sputtering target were used. At the time of sputtering, a glass flat plate was placed in the vicinity of the partition wall substrate, and sputtering was carried out under the condition that the metal thickness on the glass flat plate was 300 nm.
  • APC manufactured by Furuya Metal Co., Ltd.
  • the thickness of the metal reflective layer on the side surface of the central portion in the height direction of the partition wall in each partition wall substrate measured in the same manner as the thickness of the organic protective layer was 70 nm.
  • Tb Tb-doped gadolinium sulfide phosphor powder was used as it was.
  • Binder resin for phosphor layer The raw materials used to prepare the binder resin for the phosphor layer are as follows. Binder resin: Etocell (registered trademark) 7 cp (manufactured by Dow Chemical Co., Ltd.) Solvent: Benzyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Formation of phosphor layer 10 parts by mass of the phosphor powder was mixed with 5 parts by mass of a binder resin solution having a concentration of 10% by mass to prepare a phosphor paste.
  • This phosphor paste is vacuum-printed on a partition substrate having a reflective layer, an organic protective layer, etc., filled so that the volume fraction of the phosphor is 65%, and dried at 150° C. for 15 minutes to obtain a phosphor layer.
  • a binder resin solution having a concentration of 10% by mass
  • CM-2600D manufactured by Konica Minolta Co., Ltd.
  • the reflectance at 400 to 700 nm was measured by the SCI method.
  • the value at 550 nm was taken as the value of the reflectance of the metal reflective layer.
  • a relative value with respect to the reflectance of Example 1 was calculated and used as the reflectance of the metal reflective layer.
  • Each scintillator panel after filling the phosphor layer is arranged in the center of the sensor surface of the X-ray detector PaxScan 2520V (manufactured by Varex Co., Ltd.) so that the cells of the scintillator panel are aligned in one-to-one correspondence with the pixels of the sensor,
  • a radiation detector was manufactured by fixing the edge of the substrate with an adhesive tape. This detector is irradiated with X-rays from an X-ray emitting device L9181-02 (manufactured by Hamamatsu Photonics KK) under conditions of a tube voltage of 50 kV and a distance between the X-ray tube and the detector of 30 cm to form an image. I got it.
  • the average value of the digital values of 256 ⁇ 256 pixels at the center of the light emission position of the scintillator panel was used as the luminance value, and the relative value with respect to the luminance value of Example 1 was calculated for each sample and used as the luminance.
  • Example 1 Comparative Examples 1 to 6
  • the material shown in Table 1 was used to form a metal reflective layer by the method described above, and the organic protective layer shown in Table 1 was formed by the method described above.
  • the phosphor layer was formed by the above-mentioned method using the binder resin shown in Table 1.
  • Table 1 shows the configurations of each example and comparative example, and various evaluation results.
  • the scintillator panels of Examples 1 to 6 in which the organic protective layer containing the amorphous fluorine-containing resin as the main component is formed on the metal reflection layer both the reflectance and the brightness are high. It was Among them, the scintillator panels of Examples 1 to 4 provided with the organic protective layer containing the amorphous fluorine-containing resin represented by the general formula (1) or (2) had particularly high brightness. Further, although it was an amorphous fluorine-containing resin, in Examples 5 to 6 in which the fluorine atom was not directly bonded to the atom of the main chain, the reflectance of the scintillator panel before filling with the phosphor was good. Further, in the scintillator panels of Examples 5 to 6, the protective layer swelled and dissolved by the solvent contained in the phosphor paste in the phosphor filling step, so that the brightness was somewhat lowered, but within the allowable range.
  • the scintillator panel of Comparative Example 1 the crystalline fluorine-containing resin was not dissolved in the solvent, and formation of the organic protective layer was impossible.
  • the scintillator panels of Comparative Examples 2 to 5 having no amorphous fluorine-containing resin as a protective layer were unsuitable for both reflectance and brightness.
  • the suppression of corrosion of the metal reflective layer was insufficient, and the brightness was unsuitable.
  • the scintillator panels of Comparative Examples 3 to 5 had insufficient refractive index and solvent resistance of the protective layer, and both reflectance and brightness were unsuitable. Since the scintillator panel of Comparative Example 6 does not have the protective layer, the metal reflection layer is corroded by the components contained in the phosphor paste at the time of filling the phosphor, and the brightness was unsuitable.
  • the scintillator panel of the present invention can provide a scintillator panel with high brightness and high sharpness.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

基板、基板の上に形成された格子状の隔壁、および、隔壁によって区画されたセル内に蛍光体層を有し、隔壁は、隔壁の表面に金属反射層と、非晶性フッ素含有樹脂を主成分とする有機保護層とをこの順に有する、シンチレータパネル。

Description

シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法
 本発明は、シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法に関する。
 従来、医療現場において、フィルムを用いた放射線画像が広く用いられている。しかし、フィルムを用いた放射線画像は、アナログ画像情報である。そのため、近年、平板放射線検出器(flat panel detector:以下、「FPD」)等のデジタル方式の放射線検出器が開発されている。FPDは、放射線を可視光に変換するために、シンチレータパネルが使用される。シンチレータパネルは、放射線蛍光体を含む。照射された放射線に応じて、放射線蛍光体は、可視光を発光する。発光した光は、TFT(thin film transistor)やCCD(charge-coupled device)によって電気信号に変換され、放射線の情報がデジタル画像情報に変換される。しかし、シンチレータパネルには、放射線蛍光体から発光した光が、蛍光体を含有する層(蛍光体層)内で散乱し、鮮鋭度が低下するという課題がある。
 そこで、発光した光の散乱の影響を小さくするために、表面に反射層を有する隔壁により区画された空間内、すなわちセル内に、蛍光体を充填する方法が提案されている。反射層の材料として、酸化チタン粉末などの高屈折率の金属酸化物の粉末を用いる方法(特許文献1)や、銀などの高反射率の金属を用いる方法(特許文献2、特許文献3)が知られている。
国際公開第2016/021540号 特開2011-257339号公報 特表2001-516888号公報
 しかしながら、特許文献1に記載の金属酸化物粉末を用いる反射層は、反射率が充分ではない。また、高い反射率を得るためには、反射層の厚みを厚くすることが必要である。しかしながら、反射層を厚くすることによりセル内の体積が減少し、蛍光体の充填量が低下する。その結果、シンチレータパネルの輝度が低下する。また、特許文献2に記載の銀などの金属反射層を用いる方法は、金属反射層の腐食により、反射率が低下しやすい。そのため、得られるシンチレータパネルは、輝度が低下しやすい。また、特許文献2には、金属反射層の表面にアクリル樹脂の保護層を形成する方法が記載されている。しかしながら、この場合であっても、輝度低下に対する抑制効果は不充分である。さらに、特許文献2に記載の方法は、金属反射層に屈折率が高い樹脂層を形成している。そのため、金属表面で反射率の大幅な低下が生じる。その結果、シンチレータパネルは、輝度が低下する。特許文献3には、金属反射層にコロイドシリカ含有の低屈折率樹脂層を形成する方法が記載されている。この方法は、金属反射層に屈折率が低い樹脂層を形成する。しかしながら、得られるシンチレータパネルは、保護性能が不充分であり、輝度が低下する。
 そこで本発明は、このような従来の課題に鑑みてなされたものであり、高輝度、高鮮鋭度なシンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法を提供することを目的とする。
 上記課題を解決する本発明のシンチレータパネルは、基板、前記基板の上に形成された格子状の隔壁、および、前記隔壁によって区画されたセル内に蛍光体層を有し、前記隔壁は、前記隔壁の表面に金属反射層と、非晶性フッ素含有樹脂を主成分とする有機保護層とをこの順に有する、シンチレータパネルである。
 また、上記課題を解決する本発明の放射線検出器は、上記シンチレータパネルを備える、放射線検出器である。
 さらに、上記課題を解決する本発明のシンチレータパネルの製造方法は、基材上に隔壁を形成し、セルを区画する、隔壁形成工程と、前記隔壁の表面に金属反射層を形成する、反射層形成工程と、前記反射層の表面に有機保護層を形成する、有機保護層形成工程と、前記隔壁で区画されたセル内に蛍光体を充填する、充填工程とを含み、前記有機保護層は非晶性フッ素含有樹脂を主成分として含む、シンチレータパネルの製造方法である。
図1は、本発明の一実施形態のシンチレータパネルを含む放射線検出器用部材を模式的に表した断面図である。 図2は、本発明の一実施形態のシンチレータパネルを模式的に表した断面図である。
<シンチレータパネル>
 以下、図面を用いて本発明の一実施形態のシンチレータパネルの具体的な構成について説明する。図1は、本実施形態のシンチレータパネル2を含む放射線検出器用部材1を模式的に表した断面図である。放射線検出器用部材1は、シンチレータパネル2、出力基板3を有する。シンチレータパネル2は、基板4と、隔壁5と、隔壁5によって区画されたセル内の蛍光体層6を有する。出力基板3は、基板10と、基板10上に形成された出力層9と、出力層9上に形成されたフォトダイオードを有する光電変換層8とを有する。光電変換層8上には、隔膜層7が設けられてもよい。シンチレータパネル2の出光面と出力基板3の光電変換層8とは、隔膜層7を介して接着または密着されていることが好ましい。蛍光体層6で発光した光は、光電変換層8に到達して光電変換され、出力される。以下、それぞれについて説明する。
(基板4)
 基板4は、本実施形態のシンチレータパネル2に設けられる部材である。基板4を構成する材料は、放射線透過性を有する材料であることが好ましい。たとえば、基板4を構成する材料は、各種のガラス、高分子材料、金属等である。ガラスは、石英、ホウ珪酸ガラス、化学的強化ガラス等である。高分子化合物は、セルロースアセテート、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、ポリイミド、トリアセテート、ポリカーボネート、炭素繊維強化樹脂等である。金属は、アルミニウム、鉄、銅等が挙げられる。これらは併用されてもよい。これらの中でも、基板4を構成する材料は、放射線の透過性が高い高分子材料であることが好ましい。また、基板4を構成する材料は、平坦性および耐熱性の優れる材料であることが好ましい。
 基板4の厚みは、シンチレータパネル2の軽量化の観点から、ガラス基板の場合は2.0mm以下であることが好ましく、1.0mm以下であることがより好ましい。また、基板4の厚みは、高分子材料からなる基板の場合は、3.0mm以下であることが好ましい。
(隔壁5)
 隔壁5は、少なくとも区画された空間(セル)を形成するために設けられる。隔壁5は、金属反射層11と、非晶性フッ素含有樹脂を主成分として含む有機保護層12とをこの順に有する。金属反射層11および有機保護層12は、隔壁5の少なくとも一部に設けられればよい。
・金属反射層11
 金属反射層11は、薄膜でも高い反射率を有する。そのため、金属反射層11を薄膜で設けることにより、蛍光体13の充填量が低下しにくく、シンチレータパネル2は、輝度が向上しやすい。金属反射層11を構成する金属は、特に限定されない。たとえば、金属反射層11は、銀やアルミニウムなど、反射率の高い金属を主成分として含有することが好ましく、銀を主成分として含有することがより好ましい。金属反射層11は、合金であっても良い。金属反射層11は、パラジウムおよび銅のうち少なくともいずれか1種を含む銀合金を含むことが好ましく、パラジウムと銅を含有する銀合金であることがより好ましい。このような銀合金からなる金属反射層11は、大気中における変色耐性が優れる。なお、本実施形態において、「主成分として含有する」とは、所定の成分を50~100質量%となるよう含むことをいう。
 金属反射層11の厚みは特に限定されない。たとえば、金属反射層11の厚みは、10nm以上であることが好ましく、50nm以上であることがより好ましい。また、金属反射層11の厚みは、500nm以下であることが好ましく、300nm以下であることがより好ましい。金属反射層11の厚みが10nm以上であることにより、シンチレータパネル2は、充分な光の遮蔽性が得られ、鮮鋭度が向上する。金属反射層11の厚みが500nm以下であることにより、金属反射層11の表面の凹凸が大きくなりにくく、反射率が低下しにくい。
 ここで、金属反射層を有するセル方式シンチレータは、金属反射層の腐食により輝度が低下するという課題がある。輝度の低下とは、本来の金属反射層の反射率から想定されるシンチレータパネルの輝度に比べ、実際の輝度が低下することをいう。これは、金属反射層形成時や、金属反射層形成後の蛍光体層形成時などに、蛍光体層中の成分が金属反射層と反応して、金属反射層が腐食し、反射率が低下することに起因すると推定される。この輝度の低下は、金属反射層上に有機保護層を設けることにより抑制できる。しかしながら、金属反射層の反射率は、有機保護層の影響を受ける。そのため、有機保護層の屈折率が高いほど、金属反射層の反射率が低下する。その結果、シンチレータパネルは、輝度が低下しやすい。本実施形態のシンチレータパネル2は、後述する有機保護層12が形成されていることにより、これらの課題が解決されている。
・有機保護層12
 本実施形態のシンチレータパネル2は、金属反射層11上に、非晶性フッ素含有樹脂を主成分とする有機保護層12が形成される。有機保護層12が形成されることにより、シンチレータパネル2は、蛍光体層6を形成する際に、金属反射層11と蛍光体層6との反応による金属反射層11の反射率低下が抑制され、輝度が向上する。
 有機保護層は、非晶性フッ素含有樹脂を主成分として含有する。非晶性フッ素含有樹脂を主成分として含有する有機保護層を形成することにより、シンチレータパネル2は、輝度が向上する。ここで、金属反射層の反射率は、有機保護層の影響を受け、有機保護層の屈折率が低いほど、向上しやすい。その結果、シンチレータパネルは、輝度が向上しやすい。フッ素含有樹脂は、屈折率が低い。そのため、非晶性フッ素含有樹脂が主成分として含有されることにより、シンチレータパネル2は、金属反射層の反射率が向上し、輝度が向上しやすい。なお、「非晶性フッ素含有樹脂を主成分とする」とは、有機保護層12を構成する材料の50~100質量%が、非晶性フッ素含有樹脂であることをいう。
 有機保護層12は、非晶性である。非晶性のフッ素含有樹脂は、溶剤溶解性が優れる。そのため、有機保護層12は、溶液塗布やスプレーコーティングなど、公知の手法により容易に形成され得る。ここで、「フッ素含有樹脂が非晶性である」とは、フッ素含有樹脂を粉末X線回折法により測定した際に、結晶構造に起因するピークが実質的に見られず、ブロードなハローのみが観察される場合をいう。
 有機保護層12は、非晶性フッ素含有樹脂を主成分としており、その他の成分は特に限定されない。非晶性フッ素含有樹脂を主成分として含む有機保護層12は、金属反射層の腐食を抑制し、銀の反射率が低下しにくい。非晶性フッ素含有樹脂は、主鎖の原子に直接フッ素原子が結合している樹脂であることが好ましい。主鎖の原子に直接フッ素原子が結合しているフッ素含有樹脂は、耐溶剤性が優れる。そのため、蛍光体層の形成時に、有機保護層の膨潤や溶解が生じにくい。これにより、シンチレータパネル2は、蛍光体層中に含まれる成分と金属反射層との反応による反射率の低下が抑制され、輝度が向上しやすい。
 有機保護層の屈折率は、1.41以下であることが好ましく、1.39以下であることがより好ましい。屈折率が1.41以下の有機保護層が形成されることにより、金属反射層と有機保護層との界面における屈折率差の低減が抑制されやすく、金属反射層は、反射率がより向上しやすい。その結果、シンチレータパネル2は、より輝度が向上しやすい。有機保護層の屈折率は、塗膜をエリプソメトリーにより測定することで求めることができる。
 本実施形態において、有機保護層の主成分である非晶性フッ素含有樹脂は、下記一般式(1)で表される構造を繰り返し単位として有することが好ましい。フッ素含有樹脂は、下記一般式(1)で表される構造と他の構造とを有する共重合体であってもよく、下記一般式(1)で表される構造を主成分とすることが好ましい。フッ素含有樹脂が、下記一般式(1)で表される互いに異なる2種の構造を有する共重合体の場合、交互共重合体、ブロック共重合体、ランダム共重合体のいずれでもよい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(1)中、R1~R4は、水素、ハロゲン、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、水酸基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、シアノ基、アルデヒド基、置換もしくは無置換のエステル基、アシル基、カルボキシル基、置換もしくは無置換のアミノ基、ニトロ基、または、置換もしくは無置換のエポキシ基を表す。また、R1~R4のうちの2つにより1つの環構造を形成してもよい。ただし、R1~R4のうち、少なくとも1つはフッ素、またはフッ素を有する基である。R1~R4のうち、1つ以上がフッ素であることが好ましく、2つ以上がフッ素であることがより好ましい。これらの基が置換されている場合の置換基としては、たとえば、ハロゲン、アルキル基、アリール基、アルコキシ基などが挙げられる。なお、R1~R4は、それぞれ同じでも異なっていてもよい。
 上記一般式(1)において、アルキル基は鎖状でも環状でもよく、その炭素数は1~12が好ましい。アルケニル基の炭素数は1~15が好ましい。アルキニル基の炭素数は1~10が好ましい。アルコキシ基の炭素数は1~10が好ましい。アリール基の炭素数は6~40が好ましい。
 上記一般式(1)で表される構造は、飽和環構造を有することが好ましい。飽和環構造を有する非晶性フッ素含有樹脂は、前記一般式(1)で表される構造が、下記一般式(2)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(2)において、Xは酸素を表し、sおよびuはそれぞれ独立に0または1を表し、tは1以上の整数を表す。
 上記一般式(2)において、R5~R8は水素、ハロゲン、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、水酸基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、シアノ基、アルデヒド基、置換もしくは無置換のエステル基、アシル基、カルボキシル基、置換もしくは無置換のアミノ基、ニトロ基、または、置換もしくは無置換のエポキシ基を表す。R5~R6の少なくとも1つは、フッ素であることが好ましい。また、R7~R8の少なくとも1つは、フッ素であることが好ましい。
 上記一般式(2)において、sおよびuは酸素の数を表す。ただし、sまたはuが0の場合、XsまたはXuは単結合である。sとuの少なくともいずれかが1であると、ガラス転移温度が適切となるため好ましい。
 上記一般式(2)において、tは繰り返し数を表し、1~4であることが好ましく、1~3であることがより好ましい。また、tが2以上の場合、複数のR7およびR8は互いに同じであってもよく、異なっていてもよい。
 上記一般式(2)において、アルキル基の炭素数は1~8が好ましい。アルケニル基の炭素数は1~12が好ましい。アルコキシ基の炭素数は1~10が好ましい。アリール基の炭素数は5~15が好ましい。
 本実施形態において、非晶性フッ素含有樹脂の主鎖の末端は、たとえば、置換もしくは無置換のアルキル基、置換もしくは無置換のアミノ基、置換もしくは無置換のカルボキシル基、アルコール基、アシル基、置換もしくは無置換のシリル基、置換もしくは無置換のホスホニル基、置換もしくは無置換のスルホニル基、ハロゲン、シアノ基、ニトロ基、ビニル基、置換もしくは無置換のエポキシ基などの官能基に置換されていてもよい。これらの基が置換されている場合の置換基としては、たとえば、ハロゲン、アルキル基、アリール基、アルコキシ基、アシル基、シリル基などが挙げられる。この場合、アルキル基の炭素数は1~8が好ましい。アルケニル基の炭素数は1~10が好ましい。アルコキシ基の炭素数は1~10が好ましい。アリール基の炭素数は5~15が好ましい。これらの官能基のうち、基材との密着性の観点から、カルボキシル基、アシル基、シリル基、ホスホニル基が好ましい。
 本実施形態において、非晶性フッ素含有樹脂の数平均分子量は、耐候性や耐溶剤性の観点から3,000以上であることが好ましく、5,000以上であることがより好ましい。また、非晶性フッ素含有樹脂の数平均分子量は、保護層形成時の溶剤への溶解性の観点から300,000以下であることが好ましく、250,000以下、60,000以下であることがより好ましく、50,000以下であることがさらに好ましい。数平均分子量が3,000以上であることにより、非晶性フッ素含有樹脂は耐候性や耐溶剤性が良好になり、蛍光体層形成時に保護層の膨潤や溶解が生じにくい。その結果、得られるシンチレータパネルは、輝度をより向上し得る。数平均分子量が300,000以下であることにより、非晶性フッ素含有樹脂は、保護層形成時の溶剤への溶解性が良好になり、保護層を公知の方法で容易に形成することができる。
 有機保護層の厚みは、0.05μm以上であることが好ましく、0.2μm以上であることがより好ましい。また、有機保護層の厚みは、10μm以下であることが好ましく、5μm以下であることがより好ましい。有機保護層の厚みが0.05μm以上であることにより、シンチレータパネル2は、輝度低下の抑制効果をより大きくすることができる。また、有機保護層の厚みが10μm以下であることにより、シンチレータパネル2は、セル内の体積を大きくし、蛍光体13を充分量充填することにより、輝度をより向上させることができる。本実施形態において、有機保護層の厚みは、走査型電子顕微鏡観察により測定できる。なお、後述する有機保護層形成工程で形成される有機保護層は、隔壁頂部付近の側面では厚みが薄く、底部付近の側面では厚く形成される傾向がある。そのため、このように厚みに隔たりがある場合、上記有機保護層の厚みは、隔壁5の高さ方向の中央部側面における厚みを指す。
 隔壁5全体の説明に戻り、隔壁5は、強度や耐熱性を高めるため、無機物からなることが好ましい。無機物とは、単純な一部の炭素化合物(グラファイト若しくはダイヤモンド等炭素の同素体等)および炭素以外の元素で構成される化合物をいう。なお、「無機物からなり」とは、厳密な意味で無機物以外の成分の存在を排除するものではなく、原料となる無機物自体が含有する不純物や、隔壁5の製造の過程において混入する不純物程度の無機物以外の成分の存在は、許容される。
 隔壁5は、ガラスを主成分とすることが好ましい。ガラスとは、ケイ酸塩を含有する、無機非晶質固体をいう。隔壁5の主成分がガラスであると、隔壁5は、強度や耐熱性が高まり、金属反射層11の形成工程や蛍光体13の充填工程における変形や損壊が発生しにくくなる。なお、「ガラスを主成分とする」とは、隔壁5を構成する材料の50~100質量%が、ガラスであることをいう。
 隔壁5は、軟化点650℃以下の低軟化点ガラスを95体積%以上含有することが好ましく、98体積%以上含有することがより好ましい。低軟化点ガラスの含有率が95体積%以上であることにより、隔壁5は、焼成工程において隔壁5の表面が平坦化しやすくなる。これにより、シンチレータパネル2は、隔壁5の表面に均一な金属反射層11を形成しやすくなる。その結果、反射率が高くなり、輝度がより高くなりやすい。
 隔壁5が含有する低軟化点ガラス以外の成分は、高軟化点ガラス粉末やセラミック粉末等である。これらの粉末は、隔壁形成工程において隔壁5の形状を調整しやすくする。低軟化点ガラスの含有率を高めるために、低軟化点ガラス以外の成分の含有量は、5体積%未満であることが好ましい。
 図2は、本実施形態のシンチレータパネル2の模式的な断面図である(蛍光体層6は図示せず。蛍光体層6は図1を参照)。隔壁5の高さL1は、50μm以上であることが好ましく、70μm以上であることがより好ましい。また、隔壁5の高さは、3000μm以下であることが好ましく、1000μm以下であることがより好ましい。L1が3000μm以下であることにより、蛍光体13自体による発光した光の吸収が生じにくく、シンチレータパネル2は、輝度が低下しにくい。一方、L1が50μm以上であることにより、シンチレータパネル2は、充填可能な蛍光体13の量が適切となり、輝度が低下しにくい。
 隣接する隔壁5の間隔L2は、30μm以上であることが好ましく、50μm以上であることがより好ましい。また、隔壁5の間隔L2は、1000μm以下であることが好ましく、500μm以下であることがより好ましい。L2が30μm以上であることにより、シンチレータパネル2は、セル内へ蛍光体13を充填しやすい。一方、L2が1000μm以下であることにより、シンチレータパネル2は、鮮鋭度が優れる。
 隔壁5の底部幅L3は、5μm以上であることが好ましく、10μm以上であることがより好ましい。また、底部幅L3は、150μm以下であることが好ましく、50μm以下であることがより好ましい。L3が5μm以上であることにより、シンチレータパネル2は、パターンの欠陥が生じにくい。一方、L3が150μm以下であることにより、シンチレータパネル2は、充填可能な蛍光体13の量が適切となり、輝度が低下しにくい。
 隔壁5の頂部幅L4は、3μm以上であることが好ましく、5μm以上であることがより好ましい。また、頂部幅L4は、80μm以下であることが好ましく、50μm以下であることがより好ましい。L4が3μm以上であることにより、シンチレータパネル2は、隔壁5の強度が適切となり、パターンの欠陥が生じにくくなる。一方、L4が80μm以下であることにより、シンチレータパネル2は、蛍光体13の発光した光を取り出せる領域が適切となり、輝度が低下しにくい。
 隔壁5の底部幅L3に対する隔壁5の高さL1のアスペクト比(L1/L3)は、1.0以上であることが好ましく、2.0以上であることがより好ましい。また、アスペクト比(L1/L3)は、100.0以下であることが好ましく、50.0以下であることがより好ましい。アスペクト比(L1/L3)が1.0以上であることにより、シンチレータパネル2は、蛍光体13の充填量が適切となりやすい。また、アスペクト比(L1/L3)が100.0以下であることにより、シンチレータパネル2は、隔壁強度が適切となりやすい。
 隔壁5の間隔L2に対する隔壁5の高さL1のアスペクト比(L1/L2)は、0.5以上であることが好ましく、1.0以上であることがより好ましい。また、アスペクト比(L1/L2)は、20.0以下であることが好ましく、10.0以下であることがより好ましい。アスペクト比(L1/L2)が0.5以上であることにより、シンチレータパネル2は、X線の吸収効率が低くしにくい。また、アスペクト比(L1/L2)が20.0以下であることにより、シンチレータパネル2は、セル内での発光の取り出し効率が低下しにくく、輝度が低下しにくい。
 隔壁5の高さL1および隣接する隔壁5の間隔L2は、基板に対して垂直な断面を割断するか、またはクロスセクションポリッシャー等の研磨装置により露出させ、走査型電子顕微鏡で断面を観察することにより測定することができる。ここで、隔壁5と基板との接触部における隔壁5の幅をL3とする。また、隔壁5の最頂部の幅をL4とする。
 本実施形態のシンチレータパネル2は、各セルが隔壁5によって区画されている。そのため、シンチレータパネル2は、格子状に配置された光電変換素子の画素の大きさおよびピッチと、シンチレータパネル2のセルの大きさおよびピッチとを一致させることにより、光電変換素子の各画素と、シンチレータパネル2の各セルとを対応づけることができる。これにより、シンチレータパネル2は、高鮮鋭度が得られやすい。
(蛍光体層6)
 蛍光体層6は、図1に示されるように、隔壁5で区画されたセル内に形成される。蛍光体層6は、入射されたX線等の放射線のエネルギーを吸収して、波長300nm~800nmの範囲の電磁波、すなわち、可視光を中心に紫外光から赤外光にわたる範囲の光を発光する。蛍光体層6で発光した光は、光電変換層8で光電変換が行われ、出力層9を通じて電気信号として出力される。蛍光体層6は、蛍光体13およびバインダー樹脂14を有することが好ましい。
・蛍光体13
 蛍光体13は特に限定されない。たとえば、蛍光体13は、硫化物系蛍光体、ゲルマン酸塩系蛍光体、ハロゲン化物系蛍光体、硫酸バリウム系蛍光体、リン酸ハフニウム系蛍光体、タンタル酸塩系蛍光体、タングステン酸塩系蛍光体、希土類ケイ酸塩系蛍光体、希土類酸硫化物系蛍光体、希土類リン酸塩系蛍光体、希土類オキシハロゲン化物系蛍光体、アルカリ土類金属リン酸塩系蛍光体、アルカリ土類金属フッ化ハロゲン化物系蛍光体が挙げられる。希土類ケイ酸塩系蛍光体としては、セリウム賦活希土類ケイ酸塩系蛍光体が挙げられ、希土類酸流化物系蛍光体としては、プラセオジム賦活希土類酸硫化物系蛍光体、テルビウム賦活希土類酸硫化物系蛍光体、ユウロピウム賦活希土類酸硫化物系蛍光体が挙げられ、希土類リン酸塩系蛍光体としては、テルビウム賦活希土類リン酸塩系蛍光体が挙げられ、希土類オキシハロゲン蛍光体としては、テルビウム賦活希土類オキシハロゲン化物系蛍光体、ツリウム賦活希土類オキシハロゲン化物系蛍光体が挙げられ、アルカリ土類金属リン酸塩系蛍光体としては、ユウロピウム賦活アルカリ土類金属リン酸塩系蛍光体が挙げられ、アルカリ土類金属フッ化ハロゲン化物系蛍光体としては、ユウロピウム賦活アルカリ土類金属フッ化ハロゲン化物系蛍光体が挙げられる。蛍光体13は、併用されてもよい。これらの中でも、発光効率が高い点から、蛍光体13は、ハロゲン化物系蛍光体、テルビウム賦活希土類酸硫化物系蛍光体およびユウロピウム賦活希土類酸硫化物系蛍光体から選ばれた蛍光体が好ましく、テルビウム賦活希土類酸硫化物系蛍光体がより好ましい。
・バインダー樹脂14
 バインダー樹脂14は特に限定されない。たとえば、バインダー樹脂14は、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等である。より具体的には、バインダー樹脂14は、アクリル樹脂、アセタール樹脂、セルロース誘導体、ポリシロキサン樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ウレタン樹脂、ユリア樹脂、塩化ビニル樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルトルエン、ポリフェニルベンゼン等である。バインダー樹脂14は、併用されてもよい。これらの中でも、バインダー樹脂14は、アクリル樹脂、アセタール樹脂、エポキシ樹脂およびセルロース誘導体のうち少なくともいずれか1種を含有することが好ましく、これら1~3種を主成分として含有することがより好ましい。これにより、シンチレータパネル2は、セル内での光の減衰を抑制でき、発光を充分に取り出しやすい。なお、アクリル樹脂、アセタール樹脂、エポキシ樹脂およびセルロース誘導体のうち少なくともいずれか1種を主成分とするとは、アクリル樹脂、アセタール樹脂、セルロース誘導体の合計量が、樹脂を構成する材料の50~100質量%であることをいう。
 バインダー樹脂14は、有機保護層12と接触していることが好ましい。この場合、バインダー樹脂14は、有機保護層12の少なくとも一部に接触していればよい。これにより、シンチレータパネル2は、蛍光体13がセル内から脱落しにくい。なお、バインダー樹脂14は、図1に示されるように、セル内にほぼ空隙なく充填されていてもよく、空隙を有するよう充填されていてもよい。
 以上、本実施形態のシンチレータパネル2によれば、高輝度、高鮮鋭度である。
<放射線検出器>
 本発明の一実施形態の放射線検出器は、放射線検出器用部材1をケース中に配置することにより作製できる。または、放射線検出器は、市販の放射線検出器のシンチレータを取り外し、代わりに本発明の一実施形態のシンチレータパネル2を配置することにより作製できる。
<シンチレータパネルの製造方法>
 本発明の一実施形態のシンチレータパネルの製造方法は、基材上に隔壁を形成し、セルを区画する、隔壁形成工程と、隔壁の表面に金属反射層を形成する、反射層形成工程と、反射層の表面に有機保護層を形成する、有機保護層形成工程と、隔壁で区画されたセル内に蛍光体を充填する、充填工程とを含む。以下、それぞれの工程について説明する。なお、以下の説明において、上記したシンチレータパネルの実施形態において説明した事項と共通する事項は、説明を適宜省略する。
(隔壁形成工程)
 隔壁形成工程は、基材上に隔壁を形成する工程である。基材上に隔壁を形成する方法は特に限定されない。隔壁を形成する方法は、各種公知の方法が利用でき、形状の制御が容易である点から、感光性ペースト法であることが好ましい。
 ガラスを主成分とする隔壁は、たとえば、基材の表面に、ガラス粉末を含有する感光性ペーストを塗布して塗布膜を得る、塗布工程と、塗布膜を露光および現像して、隔壁の焼成前パターンを得る、パターン形成工程と、パターンを焼成して、隔壁パターンを得る、焼成工程と、により形成できる。
・塗布工程
 塗布工程は、基材の表面に、ガラス粉末含有ペーストを全面または部分的に塗布して塗布膜を得る工程である。基材は、ガラス板またはセラミックス板等の高耐熱性の支持体を用いることができる。ガラス粉末含有ペーストを塗布する方法は、たとえば、スクリーン印刷法、バーコーター、ロールコーター、ダイコーターまたはブレードコーターが挙げられる。得られる塗布膜の厚さは、塗布回数、スクリーンのメッシュサイズまたはペーストの粘度等により調整することができる。
 ガラスを主成分とする隔壁を製造するためには、塗布工程で用いるガラス粉末含有ペーストが含有する無機成分の50~100質量%がガラス粉末である必要がある。
 ガラス粉末含有ペーストが含有するガラス粉末は、焼成温度で軟化するガラスが好ましく、軟化温度が650℃以下である低軟化点ガラスであることがより好ましい。軟化温度は、示差熱分析装置(たとえば、差動型示差熱天秤TG8120;(株)リガク製)を用いて、サンプルを測定して得られるDTA曲線から、吸熱ピークにおける吸熱終了温度を接線法により外挿して求めることができる。より具体的には、まず、示差熱分析装置を用いて、アルミナ粉末を標準試料として、室温から20℃/分で昇温して、測定サンプルとなる無機粉末を測定し、DTA曲線を得る。そして得られたDTA曲線における第3変曲点を接線法により外挿して求めた軟化点Tsを、軟化温度とすることができる。
 低軟化点ガラスを得るためには、ガラスを低軟化点化するために有効な化合物である、酸化鉛、酸化ビスマス、酸化亜鉛およびアルカリ金属の酸化物からなる群から選ばれる金属酸化物を用いることができる。アルカリ金属の酸化物を用いて、ガラスの軟化温度を調整することが好ましい。アルカリ金属とは、リチウム、ナトリウムおよびカリウムからなる群から選ばれる金属をいう。
 低軟化点ガラスに占めるアルカリ金属酸化物の割合は、2質量%以上であることが好ましく、5質量%以上であることがより好ましい。また、低軟化点ガラスに占めるアルカリ金属酸化物の割合は、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。アルカリ金属酸化物の割合が2質量%以上であることにより、軟化温度が適切となり、焼成工程を高温で行う必要が生じにくく、隔壁に欠陥が生じにくい。一方、アルカリ金属酸化物の割合が20質量%以下であることにより、焼成工程においてガラスの粘度が過度に低下しにくく、得られる格子状の焼成後パターンの形状に歪みが生じにくい。
 低軟化点ガラスは、高温での粘度を適切に調整するために、酸化亜鉛を3~10質量%含有することが好ましい。低軟化点ガラスに占める酸化亜鉛の割合が3質量%以上であることにより、低軟化点ガラスは、高温での粘度が適切となりやすい。一方、酸化亜鉛の含有量が10質量%以下であることにより、低軟化点ガラスは、製造コストが適切となりやすい。
 低軟化点ガラスは、安定性、結晶性、透明性、屈折率または熱膨張特性の調整のため、酸化ケイ素、酸化ホウ素、酸化アルミニウムおよびアルカリ土類金属の酸化物からなる群から選ばれる少なくとも1種の金属酸化物を含有することが好ましい。ここでアルカリ土類金属とは、マグネシウム、カルシウム、バリウムおよびストロンチウムからなる群から選ばれる金属をいう。好ましい低軟化点ガラスの組成範囲の一例を、以下に示す。
 アルカリ金属酸化物 : 2~20質量%
 酸化亜鉛 : 3~10質量%
 酸化ケイ素 : 20~40質量%
 酸化ホウ素 : 25~40質量%
 酸化アルミニウム : 10~30質量%
 アルカリ土類金属酸化物 : 5~15質量%。
 ガラス粉末を含む無機粉末の粒子径は、粒度分布測定装置、たとえば、MT3300(日機装(株)製)を用いて測定をすることができる。より具体的には、粒子径は、水を満たした粒度分布測定装置の試料室に無機粉末を投入し、300秒間超音波処理を行ってから測定することができる。
 低軟化点ガラス粉末の50%体積平均粒子径(以下、「D50」)は、1.0μm以上であることが好ましく、2.0μm以上であることがより好ましい。また、D50は、4.0μm以下であることが好ましく、3.0μm以下であることがより好ましい。D50が1.0μm以上であることにより、ガラス粉末は、凝集しにくく、均一な分散性が得られ、得られるペーストの流動安定性が適切となる。一方、D50が4.0μm以下であることにより、焼成工程で得られる焼成後パターンの表面凹凸が大きくなりにくく、事後的に隔壁が破壊される原因となりにくい。
 ガラス粉末含有ペーストは、焼成工程における格子状パターンの収縮率の制御や、最終的に得られる隔壁の形状保持のため、低軟化点ガラス以外に、軟化温度が700℃を超える高軟化点ガラスまたは酸化ケイ素、酸化アルミニウム、酸化チタン若しくは酸化ジルコニウム等のセラミックス粒子を、フィラーとして含有しても構わない。無機成分全体に占めるフィラーの割合は、隔壁の平坦性向上のため、2体積%以下であることが好ましい。フィラーのD50は、低軟化点ガラス粉末と同様であることが好ましい。
 感光性のガラス粉末含有ペーストは、露光時の光散乱を抑制し、高精度のパターンを形成するため、ガラス粉末の屈折率n1と、有機成分の屈折率n2とが、-0.1 < n1-n2 < 0.1の関係を満たすことが好ましく、-0.01 ≦ n1-n2 ≦ 0.01の関係を満たすことがより好ましく、-0.005 ≦ n1-n2 ≦ 0.005の関係を満たすことがさらに好ましい。なお、ガラス粉末の屈折率は、ガラス粉末が含有する金属酸化物の組成によって、適宜調整することができる。
 ガラス粉末の屈折率は、ベッケ線検出法により測定することができる。また、有機成分の屈折率は、有機成分からなる塗膜をエリプソメトリーにより測定することで求めることができる。より具体的には、ガラス粉末または有機成分の、25℃での波長436nm(g線)における屈折率(ng)を、それぞれn1またはn2とすることができる。
 感光性のガラス粉末含有ペーストが含有する感光性有機成分は特に限定されない。たとえば、感光性有機成分は、感光性モノマー、感光性オリゴマー、感光性ポリマーが挙げられる。感光性モノマー、感光性オリゴマー、感光性ポリマーは、活性光線の照射により、光架橋または光重合等の反応を起こして化学構造が変化するモノマー、オリゴマー、ポリマーのことをいう。
 感光性モノマーは、活性の炭素-炭素不飽和二重結合を有する化合物であることが好ましい。そのような化合物としては、ビニル基、アクリロイル基、メタクリロイル基またはアクリルアミド基を有する化合物が挙げられる。感光性モノマーは、光架橋の密度を高め、高精度のパターンを形成するため、多官能アクリレート化合物または多官能メタクリレート化合物であることが好ましい。
 感光性オリゴマーまたは感光性ポリマーは、活性の炭素-炭素不飽和二重結合を有し、かつカルボキシル基を有するオリゴマーまたはポリマーであることが好ましい。そのようなオリゴマーまたはポリマーは、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸若しくはこれらの酸無水物等のカルボキシル基含有モノマー、メタクリル酸エステル、アクリル酸エステル、スチレン、アクリロニトリル、酢酸ビニルまたは2-ヒドロキシアクリレートを共重合することにより得られるオリゴマーまたはポリマーである。活性の炭素-炭素不飽和二重結合をオリゴマーまたはポリマーに導入する方法は、たとえば、オリゴマーまたはポリマーが有するメルカプト基、アミノ基、水酸基またはカルボキシル基に対して、アクリル酸クロライド、メタクリル酸クロライド若しくはアリルクロライド、グリシジル基若しくはイソシアネート基を有するエチレン性不飽和化合物またはマレイン酸等のカルボン酸を反応させる方法が挙げられる。
 ウレタン結合を有する感光性モノマーまたは感光性オリゴマーを用いることにより、焼成工程の初期における応力を緩和することが可能な、焼成工程においてパターン欠損をしにくいガラス粉末含有ペーストが得られる。感光性のガラス粉末含有ペーストは、必要に応じて、光重合開始剤を含有しても構わない。光重合開始剤とは、活性光線の照射により、ラジカルを発生する化合物をいう。
 光重合開始剤は特に限定されない。たとえば、光重合開始剤は、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4,4-ジクロロベンゾフェノン、4-ベンゾイル-4-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジルメトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-t-ブチルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、1-フェニル-1,2-ブタジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(O-ベンゾイル)オキシム、ミヒラーケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、ベンズチアゾールジスルフィド、トリフェニルホスフィン、過酸化ベンゾイン若しくはエオシンまたはメチレンブルー等の光還元性の色素とアスコルビン酸若しくはトリエタノールアミン等との還元剤の組合せ等が挙げられる。
 感光性のガラス粉末含有ペーストが、感光性ポリマーとしてカルボキシル基を有するポリマーを含有することにより、感光性のガラス粉末含有ペーストは、現像時のアルカリ水溶液への溶解性が向上する。カルボキシル基を有するポリマーの酸価は、50~150mgKOH/gであることが好ましい。酸価が150mgKOH/g以下であることにより、現像マージンが広くなる。一方、酸価が50mgKOH/g以上であることにより、感光性のガラス粉末含有ペーストは、アルカリ水溶液への溶解性が低下せず、高精細のパターンを得ることができる。
 感光性のガラス粉末含有ペーストは、各種成分を所定の組成となるように調合した後、3本ローラーまたは混練機で均質に混合分散して得ることができる。
 感光性のガラス粉末含有ペーストの粘度は、無機粉末、増粘剤、有機溶媒、重合禁止剤、可塑剤または沈降防止剤等の添加割合によって適宜調整することができる。感光性のガラス粉末含有ペーストの粘度は、2000mPa・s以上であることが好ましく、5000mPa・s以上であることがより好ましい。また、粘度は、200000mPa・s以下であることが好ましく、100000mPa・s以下であることがより好ましい。たとえば、感光性のガラス粉末含有ペーストをスピンコート法で基材に塗布する場合には、粘度は2~5Pa・sであることが好ましく、ブレードコーター法またはダイコーター法で基材に塗布する場合には、10~50Pa・sであることが好ましい。感光性のガラス粉末含有ペーストを1回のスクリーン印刷法で塗布して膜厚10~20μmの塗布膜を得る場合には、粘度は、50~200Pa・sであることが好ましい。
・パターン形成工程
 パターン形成工程は、たとえば、塗布工程で得られた塗布膜を、所定の開口部を有するフォトマスクを介して露光する露光工程と、露光後の塗布膜における、現像液に可溶な部分を溶解除去する現像工程と、からなる。
 露光工程は、露光により塗布膜の必要な部分を光硬化させて、または、塗布膜の不要な部分を光分解させて、塗布膜の任意の部分を、現像液に可溶とする工程である。現像工程は、露光後の塗布膜における、現像液に可溶な部分を現像液で溶解除去して、必要な部分のみが残存した格子状の焼成前パターンを得る工程である。
 露光工程においては、フォトマスクを用いずに、レーザー光等で任意のパターンを直接描画しても構わない。露光装置は、たとえば、プロキシミティ露光機が挙げられる。露光工程で照射する活性光線としては、たとえば、近赤外線、可視光線または紫外線が挙げられ、紫外線が好ましい。またその光源は、たとえば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプまたは殺菌灯が挙げられ、超高圧水銀灯が好ましい。
 露光条件は塗布膜の厚さにより異なる。通常、露光は、1~100mW/cm2の出力の超高圧水銀灯を用いて、0.01~30分間露光をする。
 現像工程における現像の方法は、たとえば、浸漬法、スプレー法またはブラシ法が挙げられる。現像液は、露光後の塗布膜における不要な部分を溶解することが可能な溶媒を適宜選択すればよい。現像液は、水を主成分とする水溶液が好ましい。たとえば、現像液は、ガラス粉末含有ペーストがカルボキシル基を有するポリマーを含有する場合には、アルカリ水溶液を選択することができる。アルカリ水溶液は、たとえば、水酸化ナトリウム、炭酸ナトリウムまたは水酸化カルシウム等の無機アルカリ水溶液またはテトラメチルアンモニウムヒドロキサイド、トリメチルベンジルアンモニウムヒドロキサイド、モノエタノールアミン若しくはジエタノールアミン等の有機アルカリ水溶液が挙げられる。これらの中でも、アルカリ水溶液は、焼成工程における除去が容易であることから、有機アルカリ水溶液であることが好ましい。アルカリ水溶液の濃度は、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。また、アルカリ水溶液の濃度は、5質量%以下であることが好ましく、1質量%以下であることがより好ましい。アルカリ水溶液の濃度が0.05質量%以上であることにより、露光後の塗布膜における不要な部分が充分に除去されやすい。一方、アルカリ濃度が5質量%以下であることにより、格子状の焼成前パターンが剥離または腐食しにくい。現像温度は、工程管理を容易にするため、20~50℃であることが好ましい。
 露光および現像によるパターン形成を行うには、塗布工程で塗布するガラス粉末含有ペーストが、感光性であることが必要である。すなわち、ガラス粉末含有ペーストが、感光性有機成分を含有する必要がある。感光性のガラス粉末含有ペーストに占める有機成分の割合は、30質量%以上であることが好ましく、40質量%以上であることがより好ましい。また、感光性のガラス粉末含有ペーストに占める有機成分の割合は、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。有機成分の割合が30質量%以上であることにより、ペースト中の無機成分の分散性が低下し、焼成工程で欠陥が生じにくくなる。また、ペーストは、粘度が適切となり、塗布性および安定性が優れる。一方、有機成分の割合が80質量%以下であることにより、焼成工程における格子状パターンの収縮率が大きくなりにくく、欠陥が生じにくい。
 感光性のガラス粉末含有ペーストが含有するガラス粉末は、焼成工程において有機成分をほぼ完全に除去し、最終的に得られる隔壁の強度を確保するため、軟化温度が480℃以上であることが好ましい。
・焼成工程
 焼成工程は、パターン形成工程で得られた格子状の焼成前パターンを焼成して、ガラス粉末含有ペーストが含有する有機成分を分解除去し、ガラス粉末を軟化および焼結させて、格子状の焼成後パターン、すなわち隔壁を得る工程である。
 焼成条件は、ガラス粉末含有ペーストの組成や基材の種類により異なる。たとえば、焼成は、空気、窒素または水素雰囲気の焼成炉で実施することができる。焼成炉は、たとえば、バッチ式の焼成炉またはベルト式の連続型焼成炉が挙げられる。焼成の温度は、500℃以上であることが好ましく、550℃以上であることがより好ましい。また、焼成の温度は、1000℃以下であることが好ましく、700℃以下であることがより好ましく、650℃以下であることがさらに好ましい。焼成の温度が500℃以上であることにより、有機成分は、充分に分解除去され得る。一方、焼成温度が1000℃以下であることにより、使用される基材が高耐熱性セラミック板等に限定されない。焼成の時間は、10~60分間が好ましい。
 本実施形態のシンチレータパネルの製造方法では、隔壁形成時の基材がシンチレータパネルの基板として用いられてもよく、基材から隔壁を剥離した後、剥離した隔壁を基板上に載置して用いても良い。基材から隔壁を剥離する方法は、基材と隔壁の間に剥離補助層を設ける手法など、公知の手法を用いることができる。
(反射層形成工程)
 本実施形態のシンチレータパネルの製造方法は、隔壁の表面に金属反射層を形成する、反射層形成工程を有する。金属反射層は、隔壁表面の少なくとも一部に形成されればよい。
 金属反射層の形成方法は特に限定されない。たとえば、金属反射層は、真空蒸着法、スパッタ法若しくはCVD法等の真空製膜法、メッキ法、ペースト塗布法またはスプレーによる噴射法によって形成され得る。これらの中でも、スパッタ法により形成された金属反射層は、他の手法で形成された金属反射層に比べて反射率の均一性や耐食性が高いことから好ましい。
(有機保護層形成工程)
 本実施形態のシンチレータパネルの製造方法は、有機保護層を形成する、有機保護層形成工程を有する。有機保護層の形成方法は特に限定されない。後述するとおり、有機保護層は、非晶性フッ素含有樹脂を含有する溶液を隔壁基板上に真空下で塗布した後、乾燥して溶媒を除去することによって形成され得る。また、乾燥後の基板は、耐熱性や耐薬品性を向上させるため、乾燥後に、加熱による硬化または光による硬化がなされても良い。
 有機保護層は、非晶性フッ素含有樹脂を主成分とし、フッ素含有樹脂はシンチレータパネルの実施形態において上記した一般式(1)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(1)中、R1~R4は、水素、ハロゲン、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、水酸基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、シアノ基、アルデヒド基、置換もしくは無置換のエステル基、アシル基、カルボキシル基、置換もしくは無置換のアミノ基、ニトロ基、または、置換もしくは無置換のエポキシ基を表す。また、R1~R4のうちの2つにより1つの環構造を形成してもよい。ただし、R1~R4のうち、少なくとも1つはフッ素、またはフッ素を有する基である。R1~R4のうち、1つ以上がフッ素であることが好ましく、2つ以上がフッ素であることがより好ましい。これらの基が置換されている場合の置換基としては、たとえば、ハロゲン、アルキル基、アリール基、アルコキシ基などが挙げられる。なお、R1~R4は、それぞれ同じでも異なっていてもよい。
 上記一般式(1)において、アルキル基は鎖状でも環状でもよく、その炭素数は1~12が好ましい。アルケニル基の炭素数は1~15が好ましい。アルキニル基の炭素数は1~10が好ましい。アルコキシ基の炭素数は1~10が好ましい。アリール基の炭素数は6~40が好ましい。
 上記一般式(1)で表される構造は、飽和環構造を有することが好ましい。飽和環構造を有する非晶性フッ素含有樹脂は、一般式(1)で表される構造が、上記した一般式(2)で表される構造であることが好ましい。
(充填工程)
 本実施形態のシンチレータパネルの製造方法は、隔壁で区画されたセル内に蛍光体を充填する、充填工程を有する。蛍光体の充填方法は特に限定されない。たとえば、プロセスが簡便であり、大面積への均質な蛍光体充填が可能であることから、充填方法は、蛍光体粉末およびバインダー樹脂を溶媒に混合した蛍光体ペーストを隔壁基板上に真空下で塗布した後、乾燥して溶媒を除去する方法が好ましい。
 以上、本実施形態のシンチレータパネルの製造方法によれば、得られるシンチレータは、高輝度、高鮮鋭度である。
 以上、本発明の一実施形態について説明した。本発明は、上記実施形態に格別限定されない。なお、上記した実施形態は、以下の構成を有する発明を主に説明するものである。
 (1)基板、前記基板の上に形成された格子状の隔壁、および、前記隔壁によって区画されたセル内に蛍光体層を有し、前記隔壁は、前記隔壁の表面に金属反射層と、非晶性フッ素含有樹脂を主成分とする有機保護層とをこの順に有する、シンチレータパネル。
 このような構成によれば、シンチレータパネルは、高輝度、高鮮鋭度となりやすい。
 (2)前記非晶性フッ素含有樹脂は、主鎖の原子に直接フッ素原子が結合している、(1)に記載のシンチレータパネル。
 このような構成によれば、シンチレータパネルは、金属反射層の腐食を抑制しやすく、より高輝度、高鮮鋭度となりやすい。
 (3)前記非晶性フッ素含有樹脂が、下記一般式(2)で表される繰り返し単位を主成分とする化合物である、(1)または(2)記載のシンチレータパネル。
Figure JPOXMLDOC01-appb-C000005
 (上記一般式(2)中、Xは酸素を表し、sおよびuはそれぞれ独立に0または1を表し、tは1以上の整数を表す。R5~R8は水素、ハロゲン、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、水酸基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、シアノ基、アルデヒド基、置換もしくは無置換のエステル基、アシル基、カルボキシル基、置換もしくは無置換のアミノ基、ニトロ基、または、置換もしくは無置換のエポキシ基を表す。)
 このような構成によれば、シンチレータパネルは、より高輝度になりやすい。
 (4)前記非晶性フッ素含有樹脂は、屈折率が1.41以下である、(1)~(3)のいずれかに記載のシンチレータパネル。
 このような構成によれば、シンチレータパネルは、より高輝度になりやすい。
 (5)前記金属反射層は、銀を主成分として含む、(1)~(4)のいずれかに記載のシンチレータパネル。
 このような構成によれば、シンチレータパネルは、輝度がより向上しやすい。
 (6)前記金属反射層は、パラジウムおよび銅のうち少なくともいずれか1種を含む銀合金を含む、(5)記載のシンチレータパネル。
 このような構成によれば、シンチレータパネルは、大気中における変色耐性がより優れる。
 (7)前記隔壁は、軟化点650℃以下の低軟化点ガラスを98体積%以上含む、(1)~(6)のいずれかに記載のシンチレータパネル。
 このような構成によれば、シンチレータパネルは、輝度がより高くなりやすい。
 (8)(1)~(7)のいずれかに記載のシンチレータパネルを備える、放射線検出器。
 このような構成によれば、高鮮鋭度な放射線検出器が得られる。
 (9)基材上に隔壁を形成し、セルを区画する、隔壁形成工程と、前記隔壁の表面に金属反射層を形成する、反射層形成工程と、前記反射層の表面に有機保護層を形成する、有機保護層形成工程と、前記隔壁で区画されたセル内に蛍光体を充填する、充填工程とを含み、前記有機保護層は、非晶性フッ素含有樹脂を主成分として含む、シンチレータパネルの製造方法。
 このような構成によれば、得られるシンチレータパネルは、高輝度、高鮮鋭度である。
 以下、実施例および比較例を挙げて、本発明をさらに詳しく説明する。本発明はこれらに限定されるものではない。
(有機保護層の原料)
 有機保護層用樹脂溶液の作製に用いた原料は次の通りである。
フッ素系溶剤:CT-SOLV180(AGC(株)製)
非フッ素系溶剤A:1-メチル-2-ピロリドン(富士フイルム和光純薬(株)製)
非フッ素系溶剤B:デカン(富士フイルム和光純薬(株)製)
非フッ素系溶剤C:γ―ブチロラクトン(富士フイルム和光純薬(株)製)
非晶性フッ素含有樹脂A:CYTOP(登録商標) CTL-809M(サイトップMタイプ(飽和環構造を有し、主鎖の原子に直接結合するフッ素原子を有し、末端にシリル基を有する非晶性フッ素含有樹脂。一般式(2)において、s:1、u:0、t:2、R5~R8:F。)をCT-SOLV180で9質量%に希釈した溶液、AGC(株)製)
非晶性フッ素含有樹脂B:CYTOP(登録商標) CTL-809A(サイトップAタイプ(飽和環構造を有し、主鎖の原子に直接結合するフッ素原子を有し、末端にカルボキシル基を有する非晶性フッ素含有樹脂。一般式(2)において、s:1、u:0、t:2、R5~R8:F。)をCT-SOLV180で9質量%に希釈した溶液、AGC(株)製)
非晶性フッ素含有樹脂C:CYTOP(登録商標) CTX-809SP2(サイトップSタイプ(飽和環構造を有し、主鎖の原子に直接結合するフッ素原子を有し、末端に置換基を有しない非晶性フッ素含有樹脂。一般式(2)において、s:1、u:0、t:2、R5~R8:F。)をCT-SOLV180で9質量%に希釈した溶液、AGC(株)製)
非晶性フッ素含有樹脂D:Hyflon AD60(飽和環構造を有し、主鎖の原子に直接結合するフッ素原子を有し、末端にフッ素置換アルキル基を有する非晶性フッ素含有樹脂。一般式(2)において、s:1、u:1、t:1、R5:OCF3、R6~R8:F。Sigma Aldrich社製。)
非晶性フッ素含有樹脂E:ポリ(2,2,3,3,4,4,4-ヘプタフルオロブチルメタクリレート、Sigma Aldrich社製)
非晶性フッ素含有樹脂F:ポリ(1,1,1,3,3,3-ヘキサフルオロイソプロピルメタクリレート、Sigma Aldrich社製)
結晶性フッ素含有樹脂:807-NX(三井・ケマーズ・フロロプロダクツ(株)製)
非フッ素系樹脂A:SYLGARD184(東レ・ダウコーニング(株)製)
非フッ素系樹脂B:スチレンポリマー(富士フイルム和光純薬(株)製)
非フッ素系樹脂C:メタクリル酸メチルポリマー(富士フイルム和光純薬(株)製)
非フッ素系樹脂D:エトセル(登録商標)7cp(ダウケミカル(株)製)
(有機保護層の形成)
(調製例1)フッ素含有樹脂溶液
 非晶性フッ素含有樹脂Aの1質量部に対し、溶媒としてフッ素系溶剤を1質量部混合して樹脂溶液を作製した。
(調製例2)フッ素含有樹脂溶液
 非晶性フッ素含有樹脂Bの1質量部に対し、溶媒としてフッ素系溶剤を1質量部混合して樹脂溶液を作製した。
(調製例3)フッ素含有樹脂溶液
 非晶性フッ素含有樹脂Cの1質量部に対し、溶媒としてフッ素系溶剤を1質量部混合して樹脂溶液を作製した。
(調製例4)フッ素含有樹脂溶液
 非晶性フッ素含有樹脂Dの9質量部に対し、溶媒としてフッ素系溶剤を200質量部攪拌容器に入れ、室温で12時間攪拌して樹脂溶液を作製した。
(調製例5)フッ素含有樹脂溶液
 非晶性フッ素含有樹脂Eの5質量部に対し、溶媒として非フッ素系溶剤Aを95質量部混合して樹脂溶液を作製した。
(調製例6)フッ素含有樹脂溶液
 非晶性フッ素含有樹脂Fの5質量部に対し、溶媒として非フッ素系溶剤Aを95質量部混合して樹脂溶液を作製した。
(調製例7)フッ素含有樹脂溶液
 結晶性フッ素含有樹脂の5質量部に対し、溶媒としてフッ素系溶剤を95質量部混合して混合液を作製した。
(調製例8)非フッ素系樹脂溶液
 非フッ素系樹脂Aの5質量部に対し、溶媒として非フッ素系溶剤Bを95質量部混合して樹脂溶液を作製した。
(調製例9)非フッ素系樹脂溶液
 非フッ素系樹脂Bの5質量部に対し、溶媒として非フッ素系溶剤Cを95質量部混合して樹脂溶液を作製した。
(調製例10)非フッ素系樹脂溶液
 非フッ素系樹脂Cの5質量部に対し、溶媒として非フッ素系溶剤Cを95質量部混合して樹脂溶液を作製した。
(調製例11)非フッ素系樹脂溶液
 非フッ素系樹脂Dの5質量部に対し、溶媒として非フッ素系溶剤Cを95質量部混合して樹脂溶液を作製した。
 表1に記載の有機保護層は次のように形成した。実施例1~6、比較例1~5について、表1に記載の樹脂溶液を用いた。この樹脂溶液を隔壁基板に真空印刷した後、90℃で1h乾燥し、さらに190℃で1hキュアして有機保護層を形成した。トリプルイオンミリング装置 EM TIC 3X(LEICA社製)を用いて隔壁断面を露出させ、電界放射型走査電子顕微鏡(FE-SEM)Merlin(Zeiss社製)で撮像して測定した、各隔壁基板における隔壁の高さ方向中央部側面の有機保護層厚みは、1μmであった。比較例6は、有機保護層を形成しないこと以外は、他の比較例と同様の方法でシンチレータパネルを作製した。
(ガラス粉末含有ペーストの原料)
 感光性のガラス粉末含有ペーストの作製に用いた原料は次のとおりである。
感光性モノマーM-1 : トリメチロールプロパントリアクリレート
感光性モノマーM-2 : テトラプロピレングリコールジメタクリレート
感光性ポリマー : メタクリル酸/メタクリル酸メチル/スチレン=40/40/30の質量比からなる共重合体のカルボキシル基に対して0.4当量のグリシジルメタクリレートを付加反応させたもの(重量平均分子量43000;酸価100)
光重合開始剤 : 2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1(BASF社製)
重合禁止剤 : 1,6-ヘキサンジオール-ビス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート])
紫外線吸収剤溶液 : スダンIV(東京応化工業(株)製)のγ-ブチロラクトン0.3質量%溶液
粘度調整剤 : フローノンEC121(共栄社化学(株)製)
溶媒 : γ-ブチロラクトン
低軟化点ガラス粉末:
SiO2 27質量%、B23 31質量%、ZnO 6質量%、Li2O 7質量%、MgO 2質量%、CaO 2質量%、BaO 2質量%、Al23 23質量%、屈折率(ng)1.56、ガラス軟化温度588℃、熱膨張係数70×10-7(K-1)、平均粒子径2.3μm
(ガラス粉末含有ペーストの作製)
ガラス粉末含有ペーストP-1:
 4質量部の感光性モノマーM-1、6質量部の感光性モノマーM-2、24質量部の感光性ポリマー、6質量部の光重合開始剤、0.2質量部の重合禁止剤および12.8質量部の紫外線吸収剤溶液を、38質量部の溶媒に、温度80℃で加熱溶解した。得られた溶液を冷却した後、9質量部の粘度調整剤を添加して、有機溶液1を得た。得られた有機溶液1をガラス板に塗布して乾燥することにより得られた有機塗膜の屈折率(ng)は、1.555であった。50質量部の有機溶液1に、50質量部の低軟化点ガラス粉末を添加した後、3本ローラー混練機にて混練し、ガラス粉末含有ペーストP-1を得た。
(隔壁基板の作製)
隔壁基板:
 基板として、125mm×125mm×0.7mmのソーダガラス板を用いた。基板の表面に、ガラス粉末含有ペーストP-1を、乾燥後の厚さが220μmになるようにダイコーターで塗布して乾燥し、ガラス粉末含有ペーストの塗布膜を得た。次に、所望のパターンに対応する開口部を有するフォトマスク(ピッチ127μm、線幅15μmの、格子状開口部を有するクロムマスク)を介して、ガラス粉末含有ペーストの塗布膜を、超高圧水銀灯を用いて300mJ/cm2の露光量で露光した。露光後の塗布膜は、0.5質量%のエタノールアミン水溶液中で現像し、未露光部分を除去して、格子状の焼成前パターンを得た。得られた格子状の焼成前パターンを、空気中580℃で15分間焼成して、ガラスを主成分とする、格子状の隔壁を形成した。割断により隔壁断面を露出させ、走査型電子顕微鏡S2400((株)日立製作所製)で撮像して測定した、隔壁の高さL1は150μm、隔壁の間隔L2は127μm、隔壁の底部幅L3は30μm、隔壁の頂部幅L4は10μmであった。
(金属反射層の形成)
 市販のスパッタ装置、およびスパッタターゲットを用いた。スパッタ時は、隔壁基板の近傍にガラス平板を配置し、ガラス平板上における金属厚みが300nmとなる条件でスパッタを実施した。スパッタターゲットには、パラジウムおよび銅を含有する銀合金であるAPC((株)フルヤ金属製)を用いた。有機保護層の厚みと同様にして測定した、各隔壁基板における隔壁の高さ方向中央部側面の金属反射層厚みは、70nmであった。
(蛍光体)
 市販のGOS:Tb(Tbをドープした酸硫化ガドリニウム)蛍光体粉末をそのまま用いた。粒度分布測定装置MT3300(日機装(株)製)で測定した平均粒子径D50は11μmであった。
(蛍光体層のバインダー樹脂)
 蛍光体層のバインダー樹脂の作製に用いた原料は次の通りである。
バインダー樹脂:エトセル(登録商標)7cp(ダウケミカル(株)製)
溶媒:ベンジルアルコール(富士フイルム和光純薬(株)製)
(蛍光体層の形成)
 蛍光体粉末10質量部を、濃度10質量%のバインダー樹脂溶液5質量部と混合して、蛍光体ペーストを作製した。この蛍光体ペーストを、反射層、有機保護層等を形成した隔壁基板に真空印刷し、蛍光体の体積分率が65%になるように充填して150℃で15分乾燥し、蛍光体層を形成した。
(有機保護層の屈折率測定)
 調製例1~11に記載の各樹脂溶液を、ガラス基板上に塗布し、樹脂塗膜を作製した。作製した樹脂塗膜について、大塚電子(株)製分光エリプソメータFE5000を用いて、22℃での550nmにおける屈折率を測定した。
(反射率の評価)
 蛍光体層充填前の各シンチレータパネル表面に、分光測色計CM-2600D(コニカミノルタ(株)製)を設置し、400~700nmにおける反射率をSCI方式により測定した。得られた反射率について、550nmにおける値を金属反射層の反射率の値とした。また、実施例1の反射率に対する相対値を算出し、金属反射層の反射率とした。
(輝度の評価)
 蛍光体層充填後の各シンチレータパネルを、X線検出器PaxScan 2520V(Varex社製)のセンサ表面中央に、シンチレータパネルのセルがセンサのピクセルと1対1対応するようにアライメントして配置し、基板端部を粘着テープで固定して、放射線検出器を作製した。この検出器に、X線放射装置L9181-02(浜松ホトニクス(株)製)からのX線を、管電圧50kV、X線管と検出器の距離30cmの条件でX線を照射して画像を取得した。得られた画像中の、シンチレータパネルの発光位置中央における256×256ピクセルのデジタル値の平均値を輝度値とし、各サンプルについて実施例1の輝度値に対する相対値を算出し、輝度とした。
(実施例1~6、比較例1~6)
 表1に示す隔壁基板に、表1に示す材料を用いて、前述の方法により金属反射層を形成し、前述の方法により、表1に示す有機保護層を形成した。その後、表1に示すバインダー樹脂を用いて前述の方法により蛍光体層を形成した。各実施例、比較例の構成、および各種評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000006
 表1に示されるように、非晶性フッ素含有樹脂を主成分として含有する有機保護層が金属反射層上に形成されている実施例1~6のシンチレータパネルは、反射率、輝度がともに高かった。中でも、一般式(1)または(2)で表される非晶性フッ素含有樹脂を含む有機保護層が設けられた実施例1~4のシンチレータパネルは、輝度が特に高かった。また、非晶性フッ素含有樹脂だが、主鎖の原子に直接フッ素原子が結合していない実施例5~6は、蛍光体充填前のシンチレータパネルの反射率が良好であった。また、実施例5~6のシンチレータパネルは、蛍光体充填工程において、蛍光体ペースト中に含まれる溶媒により、保護層が膨潤、溶解したため、輝度がいくらか低下したが、許容範囲内であった。
 一方、比較例1のシンチレータパネルは、結晶性フッ素含有樹脂が溶媒に溶解せず、有機保護層の形成が不可能であった。非晶性フッ素含有樹脂を保護層として有さない比較例2~5のシンチレータパネルは、反射率、輝度ともに不適であった。比較例2のシンチレータパネルは、金属反射層の腐食の抑制が不充分であり、輝度が不適であった。また、比較例3~5のシンチレータパネルは、保護層の屈折率、耐溶剤性が不充分であり、反射率、輝度がどちらも不適であった。比較例6のシンチレータパネルは、保護層を有していないため、蛍光体充填時に蛍光体ペースト中に含まれる成分により、金属反射層の腐食が生じ、輝度が不適であった。
 以上の結果より、本発明のシンチレータパネルは、高輝度、高鮮鋭度なシンチレータパネルを提供できることが明らかである。
 1 放射線検出器用部材
 2 シンチレータパネル
 3 出力基板
 4 基板
 5 隔壁
 6 蛍光体層
 7 隔膜層
 8 光電変換層
 9 出力層
 10 基板
 11 金属反射層
 12 有機保護層
 13 蛍光体
 14 バインダー樹脂
 L1 隔壁の高さ
 L2 隣接する隔壁の間隔
 L3 隔壁の底部幅
 L4 隔壁の頂部幅

Claims (9)

  1.  基板、前記基板の上に形成された格子状の隔壁、および、前記隔壁によって区画されたセル内に蛍光体層を有し、
     前記隔壁は、前記隔壁の表面に金属反射層と、非晶性フッ素含有樹脂を主成分とする有機保護層とをこの順に有する、シンチレータパネル。
  2.  前記非晶性フッ素含有樹脂は、主鎖の原子に直接フッ素原子が結合している、請求項1記載のシンチレータパネル。
  3.  前記非晶性フッ素含有樹脂が、下記一般式(2)で表される繰り返し単位を主成分とする化合物である請求項1または2記載のシンチレータパネル。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(2)中、Xは酸素を表し、sおよびuはそれぞれ独立に0または1を表し、tは1以上の整数を表す。R5~R8は水素、ハロゲン、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアルキニル基、水酸基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、シアノ基、アルデヒド基、置換もしくは無置換のエステル基、アシル基、カルボキシル基、置換もしくは無置換のアミノ基、ニトロ基、または、置換もしくは無置換のエポキシ基を表す。)
  4.  前記非晶性フッ素含有樹脂は、屈折率が1.41以下である、請求項1~3のいずれか1項に記載のシンチレータパネル。
  5.  前記金属反射層は、銀を主成分として含む、請求項1~4のいずれか1項に記載のシンチレータパネル。
  6.  前記金属反射層は、パラジウムおよび銅のうち少なくともいずれか1種を含む銀合金を含む、請求項5記載のシンチレータパネル。
  7.  前記隔壁は、軟化点650℃以下の低軟化点ガラスを98体積%以上含む、請求項1~6のいずれか1項に記載のシンチレータパネル。
  8.  請求項1~7のいずれか1項に記載のシンチレータパネルを備える、放射線検出器。
  9.  基材上に隔壁を形成し、セルを区画する、隔壁形成工程と、
     前記隔壁の表面に金属反射層を形成する、反射層形成工程と、
     前記反射層の表面に有機保護層を形成する、有機保護層形成工程と、
     前記隔壁で区画されたセル内に蛍光体を充填する、充填工程とを含み、
     前記有機保護層は、非晶性フッ素含有樹脂を主成分として含む、シンチレータパネルの製造方法。
PCT/JP2020/004166 2019-03-01 2020-02-04 シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法 WO2020179322A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080018201.8A CN113498481A (zh) 2019-03-01 2020-02-04 闪烁体面板、放射线检测器和闪烁体面板的制造方法
JP2020506377A JP7136188B2 (ja) 2019-03-01 2020-02-04 シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019038016 2019-03-01
JP2019-038016 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020179322A1 true WO2020179322A1 (ja) 2020-09-10

Family

ID=72337558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004166 WO2020179322A1 (ja) 2019-03-01 2020-02-04 シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法

Country Status (4)

Country Link
JP (1) JP7136188B2 (ja)
CN (1) CN113498481A (ja)
TW (1) TWI821527B (ja)
WO (1) WO2020179322A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498481A (zh) * 2019-03-01 2021-10-12 东丽株式会社 闪烁体面板、放射线检测器和闪烁体面板的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332792A (ja) * 1992-05-27 1993-12-14 Ricoh Co Ltd レーザエンコーダ及びその製造方法
JPH08201598A (ja) * 1995-01-24 1996-08-09 Konica Corp 放射線像変換パネルとその製造方法
WO2016021540A1 (ja) * 2014-08-08 2016-02-11 東レ株式会社 シンチレータパネル及び放射線検出器
JP2017161407A (ja) * 2016-03-10 2017-09-14 コニカミノルタ株式会社 シンチレータおよび放射線検出器
WO2019181444A1 (ja) * 2018-03-23 2019-09-26 東レ株式会社 シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155204A (ja) * 1998-09-16 2000-06-06 Canon Inc 反射型光学素子
JP2001318053A (ja) * 2000-05-10 2001-11-16 Shizuoka Prefecture 植物体の品質評価装置及び育種選抜方法並びに品質評価方法
JP2002162512A (ja) * 2000-09-12 2002-06-07 Canon Inc 高反射性の銀鏡及び反射型光学素子
US7834321B2 (en) * 2006-07-14 2010-11-16 Carestream Health, Inc. Apparatus for asymmetric dual-screen digital radiography
JP2011257339A (ja) * 2010-06-11 2011-12-22 Konica Minolta Medical & Graphic Inc 放射線画像検出装置
JP2016017818A (ja) * 2014-07-08 2016-02-01 東レ株式会社 シンチレータパネル、放射線検出器及び非破壊検査方法
US9188486B1 (en) * 2014-08-11 2015-11-17 Datacolor Holding Ag System and method for compensating for second order diffraction in spectrometer measurements
JP6786067B2 (ja) * 2016-11-04 2020-11-18 ジオテクノス株式会社 分光装置および反射スペクトルの接合処理方法
CN108680251B (zh) * 2018-03-15 2020-06-05 中国科学院合肥物质科学研究院 一种基于超连续激光和单色仪的细分光谱扫描定标装置
CN208520750U (zh) * 2018-07-27 2019-02-19 京东方科技集团股份有限公司 一种光谱检测装置
JP7136188B2 (ja) * 2019-03-01 2022-09-13 東レ株式会社 シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332792A (ja) * 1992-05-27 1993-12-14 Ricoh Co Ltd レーザエンコーダ及びその製造方法
JPH08201598A (ja) * 1995-01-24 1996-08-09 Konica Corp 放射線像変換パネルとその製造方法
WO2016021540A1 (ja) * 2014-08-08 2016-02-11 東レ株式会社 シンチレータパネル及び放射線検出器
JP2017161407A (ja) * 2016-03-10 2017-09-14 コニカミノルタ株式会社 シンチレータおよび放射線検出器
WO2019181444A1 (ja) * 2018-03-23 2019-09-26 東レ株式会社 シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498481A (zh) * 2019-03-01 2021-10-12 东丽株式会社 闪烁体面板、放射线检测器和闪烁体面板的制造方法

Also Published As

Publication number Publication date
CN113498481A (zh) 2021-10-12
TWI821527B (zh) 2023-11-11
JPWO2020179322A1 (ja) 2020-09-10
TW202104930A (zh) 2021-02-01
JP7136188B2 (ja) 2022-09-13

Similar Documents

Publication Publication Date Title
JP6256006B2 (ja) シンチレータパネルおよびその製造方法
KR102098124B1 (ko) 신틸레이터 패널
JP7151702B2 (ja) シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法
WO2012161304A1 (ja) シンチレータパネルおよびシンチレータパネルの製造方法
EP3067332B1 (en) Method for manufacturing three-dimensional structure, method for manufacturing scintillator panel, three-dimensional structure, and scintillator panel
WO2014077178A1 (ja) シンチレータパネル
WO2014021415A1 (ja) シンチレータパネルおよびシンチレータパネルの製造方法
WO2014080816A1 (ja) シンチレータパネルおよびシンチレータパネルの製造方法
JP6075028B2 (ja) シンチレータパネル
WO2020179322A1 (ja) シンチレータパネル、放射線検出器、およびシンチレータパネルの製造方法
JP6984515B2 (ja) シンチレータパネルおよびシンチレータパネルの製造方法
JP7347292B2 (ja) 放射線検出器
JP6217076B2 (ja) シンチレータパネルおよびシンチレータパネルの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020506377

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766348

Country of ref document: EP

Kind code of ref document: A1