WO2016021447A1 - 糖化酵素組成物、糖化反応液及び糖の製造方法 - Google Patents

糖化酵素組成物、糖化反応液及び糖の製造方法 Download PDF

Info

Publication number
WO2016021447A1
WO2016021447A1 PCT/JP2015/071416 JP2015071416W WO2016021447A1 WO 2016021447 A1 WO2016021447 A1 WO 2016021447A1 JP 2015071416 W JP2015071416 W JP 2015071416W WO 2016021447 A1 WO2016021447 A1 WO 2016021447A1
Authority
WO
WIPO (PCT)
Prior art keywords
saccharification
mass
colloidal silica
saccharifying enzyme
enzyme
Prior art date
Application number
PCT/JP2015/071416
Other languages
English (en)
French (fr)
Inventor
和敏 関口
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to EP15829969.3A priority Critical patent/EP3178939B1/en
Priority to BR112017001641-9A priority patent/BR112017001641B1/pt
Priority to CN201580042210.XA priority patent/CN106574285A/zh
Priority to US15/328,229 priority patent/US10696957B2/en
Priority to JP2016540164A priority patent/JP6730681B2/ja
Priority to DK15829969.3T priority patent/DK3178939T3/da
Priority to CA2957312A priority patent/CA2957312C/en
Publication of WO2016021447A1 publication Critical patent/WO2016021447A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0007Recovery of by-products, i.e. compounds other than those necessary for pulping, for multiple uses or not otherwise provided for
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a saccharifying enzyme composition, a saccharification reaction solution, and a method for producing sugar.
  • Such a method includes a hydrothermal treatment step of treating raw materials with pressurized hot water, a mechanical pulverization treatment step of mechanically pulverizing the hydrothermal treatment product, and a saccharification treatment step of saccharifying the mechanically pulverized product with an enzyme. Including.
  • a method has a problem that the reaction rate when saccharifying with an enzyme is slow, and the concentration of the resulting saccharified solution is not sufficient.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a saccharification enzyme composition, a saccharification reaction solution, and a method for producing a saccharide that improve the speed of the saccharification reaction by an enzyme in a simple process.
  • a first aspect of the present invention that achieves the above object is a saccharification reaction solution for saccharifying at least one of cellulose and hemicellulose, comprising at least one of cellulose and hemicellulose, a saccharifying enzyme, and colloidal silica in a dispersed state.
  • the saccharification reaction solution is characterized in that the ratio of saccharification enzyme not immobilized on colloidal silica to the total saccharification enzyme is 25% or more and 100% or less.
  • the average primary particle diameter of the colloidal silica is 1 nm or more and 400 nm or less, and the particle diameter measured by a dynamic light scattering method is 5 nm or more and less than 500 nm.
  • the concentration of the saccharifying enzyme is preferably 0.005% by mass or more and 3.0% by mass or less.
  • the concentration of the colloidal silica is preferably 0.005% by mass or more and 40% by mass or less.
  • the mass ratio of the saccharifying enzyme and the colloidal silica is 0.002 or more and 300 or less.
  • the pH is preferably 3 or more and 11 or less.
  • the saccharifying enzyme preferably contains at least one of those derived from the genus Aspergillus and those derived from the genus Trichoderma.
  • the second aspect of the present invention is a saccharification composition that saccharifies at least one of cellulose and hemicellulose, and is measured by a saccharification enzyme and an average primary particle diameter of 1 nm or more and 400 nm or less and by a dynamic light scattering method. It contains colloidal silica having a particle size of 5 nm or more and less than 500 nm in a dispersed state, and the ratio of saccharifying enzyme not immobilized on colloidal silica to total saccharifying enzyme is 25% or more and 100% or less.
  • a saccharifying enzyme composition contains colloidal silica having a particle size of 5 nm or more and less than 500 nm in a dispersed state, and the ratio of saccharifying enzyme not immobilized on colloidal silica to total saccharifying enzyme is 25% or more and 100% or less.
  • the third aspect of the present invention lies in a method for producing sugar, characterized in that sugar is produced using the saccharification reaction solution.
  • reaction temperature of the saccharification reaction is preferably 5 ° C. or higher and 100 ° C. or lower.
  • immobilized by colloidal silica with respect to all the saccharification enzymes in a saccharification composition is shown.
  • the pH dependence of the saccharification rate 14 days after the enzymatic reaction of the saccharification reaction solution is shown.
  • immobilized on colloidal silica with respect to the total saccharification enzyme in the saccharification composition 7 days after the enzyme reaction of a saccharification reaction liquid is shown.
  • the silica concentration dependence of the saccharification rate 14 days after the enzymatic reaction of the saccharification reaction solution is shown.
  • the dependence of the saccharification rate 14 days after the enzymatic reaction of the saccharification reaction solution in the range of saccharification enzyme / colloidal silica ratio of 0.1 to 300 is shown. It shows the dependence of the saccharification rate 14 days after the enzyme reaction of the saccharification reaction solution in the range of saccharification enzyme / colloidal silica ratio of 0.003 to 0.1.
  • the average primary particle diameter dependence of the saccharification rate 14 days after the enzyme reaction of a saccharification reaction liquid is shown.
  • At least one of cellulose and hemicellulose is used as a raw material.
  • Such cellulose or hemicellulose is contained, for example, in cellulosic biomass such as agricultural, forestry and fishery resources such as broad-leaved trees and conifers, or waste of the agricultural, forestry and fishery resources. More specifically, bagasse, rice straw, corn stover, oil palm empty fruit bunch, wood fiber, wood chip, veneer waste, wood flour, pulp, waste paper, cotton, sea squirt, acetic acid bacteria and the like can be mentioned. These raw materials are not particularly limited as long as they are derived from cellulosic biomass, and one kind may be used alone or two or more kinds may be mixed and used.
  • eucalyptus wood flour broadleaf tree
  • cedar wood flour coniferous tree
  • bagasse rice straw
  • corn stover oil palm empty fruit bunch
  • cellulose or hemicellulose contained in cotton are preferable.
  • the reason is not clear, but it is easy to defibrate and sugar can be obtained in a relatively high yield.
  • cellulose refers to a polymer in which glucose is polymerized by ⁇ -1,4 glucoside bonds.
  • Hemicellulose is a polymer in which glucose, xylose, mannose, galactose and the like are polymerized by a glucoside bond, and refers to a water-insoluble polysaccharide other than cellulose.
  • cellulose may contain cellooligosaccharide and cellobiose which are partially decomposed products thereof, and may be crystalline or non-crystalline. Further, it may be a carboxymethylated, aldehyded or esterified derivative. As described above, cellulose or hemicellulose is not particularly limited as long as it is derived from biomass, and may be derived from plants, fungi, or bacteria.
  • Such cellulase means an enzyme that decomposes cellulose or hemicellulose into a sugar such as glucose.
  • the microorganism that produces such a saccharifying enzyme is not particularly limited. ), Irpex, Phanerochaete, Penicillium, Schizophyllum, Sporotrichum, Trametoris, Trametes, Trametes In addition to these, Clostridium spp., Pseudomonas spp. as), Cellulomonas, Ruminococcus, Bacillus, and others, Sulfolobus, Streptomyces, and Thermoactinomyces Actinomycetes such as (Thermoactinomyces) bacteria, Thermomonospora bacteria and the like. These enzymes may be artificially modified. Moreover, these enzymes may be used individually by 1 type, or may mix and use 2 or more types.
  • those derived from the genus Aspergillus and those derived from the genus Trichoderma are particularly preferable. This is because it is highly active against crystalline cellulose.
  • the cellulase may be a series of enzymes. Examples of such enzymes include endoglucanase (EC 3.2.74), cellobiohydrolase (EC 3.2.1.91), ⁇ -glucosidase (EC 23.2.4.1, EC 3.2). 1.21) Can be mentioned. It is preferable to use a mixture of cellulases derived from different microorganisms. In this case, saccharification of cellulose or hemicellulose can be further promoted by their synergistic effect.
  • the cellulases described above are generally those having optimum enzyme activity in the range of pH 3 to 6, but are called alkaline cellulases having optimum enzyme activity in the range of pH 6-10. May be.
  • many of the cellulases described above have optimum enzyme activity in the reaction temperature range of 25 ° C. or more and 50 ° C. or less, but the heat resistance having optimum enzyme activity in the range of 70 ° C. or more and 100 ° C. or less. What is called sex cellulase may be used.
  • colloidal silica has an average primary particle diameter of 1 nm or more and 400 nm or less, preferably 5 nm or more and 350 nm or less, and is used by being dispersed in a saccharification reaction solution.
  • BET method nitrogen adsorption method
  • Colloidal silica can be displayed as a particle size measured by a dynamic light scattering method as a particle size in a dispersed liquid.
  • the particle diameter measured by the dynamic light scattering method is 5 nm or more and less than 500 nm, preferably 10 nm or more and 450 nm or less.
  • Silica is not porous but solid silica.
  • Colloidal silica is used as a dispersion liquid dispersed in a dispersion medium such as water, methanol, ethanol, acetone, methyl ethyl ketone, or ethylene glycol.
  • the dispersion liquid is called a colloidal liquid or a sol.
  • a dispersion medium may be selected as long as the activity of the enzyme is not inhibited, but water and ethanol are preferable.
  • silica powder called precipitated silica is a porous powder having an average primary particle size of 400 nm or less and a measured particle size of 500 nm or more by a dynamic light scattering method. It does not show properties and does not have high dispersibility like the colloidal silica of the present invention.
  • colloidal silica As a method for producing colloidal silica, there are a water glass method using water glass as a raw material, an alkoxide method using metal alkoxide as a raw material, and a vapor phase method using a silicon chloride compound as a raw material. Although colloidal silica obtained by any manufacturing method may be used, the water glass method is preferable.
  • the saccharification reaction solution of the present invention is obtained by dispersing saccharification enzyme and colloidal silica using at least one of cellulose and hemicellulose as a raw material, and saccharification enzyme not immobilized on colloidal silica with respect to total saccharification enzyme.
  • the ratio is 25% or more and 100% or less. More preferably, the ratio of the saccharifying enzyme not immobilized on colloidal silica to the total saccharifying enzyme is 50% or more and 100% or less. If the ratio of the saccharifying enzyme not immobilized on colloidal silica to the total saccharifying enzyme is lower than 25%, the reaction efficiency deteriorates, which is not preferable.
  • the concentration of the saccharifying enzyme is 0.005% by mass or more and 3.0% by mass or less, preferably 0.01% by mass or more and 1.0% by mass or less. If the saccharifying enzyme concentration is lower than 0.005% by mass, the reaction efficiency decreases, which is not preferable. On the other hand, if it exceeds 3.0% by mass, the saccharifying enzyme is not only difficult to dissolve in the solution, but also economically unsuitable. is there.
  • the concentration of colloidal silica is 0.005 mass% or more and 40 mass% or less, preferably 0.01 mass% or more and 10 mass% or less.
  • concentration of colloidal silica is lower than 0.005% by mass, the reaction efficiency is lowered, which is not preferable.
  • concentration is higher than 40% by mass, not only the dispersibility is deteriorated but also economically unsuitable.
  • the mass ratio of saccharifying enzyme to the colloidal silica is 0.002 or more and 300 or less, preferably 0.1 or more and 10 or less. When the mass ratio of both is out of this range, the improvement in reaction efficiency is not significant.
  • the pH of the saccharification reaction solution is 3 or more and 11 or less, preferably 3 or more and 9 or less, more preferably 4 or more and 7 or less.
  • the pH is lower than 3, colloidal silica is aggregated to lower the reaction efficiency of the saccharifying enzyme.
  • the pH is higher than 11, the colloidal silica is easily dissolved, which is not preferable.
  • pH adjusters for saccharification reaction solutions mineral acids such as sulfuric acid, hydrochloric acid and nitric acid, carboxylic acids such as acetic acid and oxalic acid, hydroxy acids such as citric acid, tartaric acid and malic acid, hydroxide salts such as sodium hydroxide and potassium hydroxide, Ammonia, urea, etc. are mentioned. If it is a range which does not inhibit the effect of this invention, there will be no restriction
  • the reaction temperature is preferably 5 ° C. or higher and 100 ° C. or lower, preferably 20 ° C. or higher and 55 ° C. or lower. If the reaction temperature is lower than 5 ° C., the efficiency of the saccharification reaction is remarkably lowered, and if it is higher than 100 ° C., the saccharifying enzyme may be deactivated, which is not preferable.
  • the raw material for saccharification reaction may be obtained by chemically destroying the structure of lignin, cellulose and hemicellulose by physical pulverization with a cutter mill or the like, and acid or alkali treatment.
  • colloidal silica When preparing the saccharification reaction solution, colloidal silica may be added to the reaction solution in which the saccharifying enzyme is dispersed, or saccharification enzyme may be added to the reaction solution in which the colloidal silica is dispersed. If it is a range which does not inhibit the effect of this invention, other additives, such as a pH adjuster, can be added in arbitrary orders.
  • a saccharification reaction it is also possible to separate saccharification enzymes, colloidal silica, and sugars such as glucose using a reverse osmosis (RO) membrane or ultrafiltration (UF) membrane having an appropriate fractional molecular weight.
  • RO reverse osmosis
  • UF ultrafiltration
  • the molecular weight cut off is 1,000 or more and 100,000 or less. If the molecular weight cut-off is smaller than this range, saccharides can be separated but easily clogged, and the membrane permeation rate is remarkably reduced. If the molecular weight is larger than this range, saccharification enzymes and colloidal silica may flow out with the sugar. Is not preferable.
  • the average primary particle diameter of colloidal silica and the particle diameter measured by the dynamic light scattering method were measured using the following measuring devices, respectively.
  • Nitrogen adsorption method measurement device Measurement of average primary particle size: Monosorb MS-16 (manufactured by Cantachrome Instruments Japan GK)
  • Dynamic light scattering particle size measuring device Zetasizer Nano S (Malvern Instruments)
  • Examples 1 to 7 and the saccharifying enzyme composition of Comparative Example 1 First, a cellulase aqueous solution was prepared as a saccharifying enzyme aqueous solution by the following procedure. As cellulase, cellulase derived from the genus Aspergillus niger (manufactured by MP biomedicals) having optimal enzyme activity in the range of pH 3 to 6 was used.
  • silica concentration 40% by mass is treated with strong acidic hydrogen cation exchange resin Amberlite (registered trademark) IR-120B (manufactured by Organo) to remove alkali metal ions, and acidic silica sol (pH 2.1, silica concentration) 40 g) 200 g was obtained.
  • acidic silica sol pH 2.1, silica concentration 40 g
  • 15 g of the obtained acidic silica sol 4.0 g of the above-mentioned cellulase aqueous solution was added with stirring.
  • acetic acid equivalent to 1M sodium acetate (hereinafter referred to as Na acetate), acetate-Na acetate buffer ( 1.0 g of pH 3.5-5.0), 0.5 M equivalent of NaOH and HC1, was added to obtain a saccharifying enzyme composition having a silica concentration of 30 mass% and a cellulase concentration of 3 mass%.
  • the particle diameter measured by the dynamic light scattering method was confirmed for the obtained saccharifying enzyme composition, it was 55 nm, and the particle diameter in the colloidal silica dispersion was not changed.
  • the ratio of the saccharifying enzyme not immobilized on colloidal silica to the total saccharifying enzyme is determined by the Bradford method (CBB method). ) And quantitatively calculated.
  • the mixture was allowed to stand for 30 minutes, and the absorbance at a wavelength of 595 nm was measured using a spectrophotometer UV-3150 (manufactured by Shimadzu Corporation).
  • a sample with a known saccharifying enzyme concentration was prepared, and the absorbance was measured in the same manner to prepare a calibration curve.
  • the saccharifying enzyme concentration of the supernatant was calculated from the obtained calibration curve.
  • FIG. 1 shows the relationship between the ratio of the saccharifying enzyme not immobilized on colloidal silica to the total saccharifying enzymes of the saccharifying enzyme compositions of Examples 1 to 8 and pH. It can be seen that the ratio of the saccharifying enzyme not immobilized on the colloidal silica to the total saccharifying enzyme depends on the pH of the saccharifying enzyme composition.
  • saccharifying enzyme composition of Comparative Examples 2 to 10 A saccharifying enzyme composition containing no colloidal silica was obtained in the same manner as in Examples 1 to 8, except that the concentration of saccharifying enzyme was adjusted with deionized water instead of adding colloidal silica.
  • the saccharifying enzyme composition is shown in Table 1.
  • saccharification reaction solutions of Examples 1 to 8 2.5% by mass of microcrystalline cellulose powder was added to the saccharifying enzyme compositions of Examples 1 to 8, and dispersed to obtain a saccharification reaction solution.
  • each saccharifying enzyme composition was added and 0.25 g (corresponding to 25 mg / mL) of microcrystalline cellulose powder (MP biomedicals) was added while stirring with a 10 mm stirrer at 4 mm ⁇ , and then sealed. .
  • Table 2 shows the results of measuring the saccharification rate as follows at the reaction temperature, 3 days, and 14 days after the enzymatic reaction of the saccharification reaction solution.
  • FIG. 2 shows the relationship between the saccharification rate 14 days after the enzymatic reaction of the saccharification reaction solutions of Examples 1 to 8 and pH.
  • FIG. 2 shows the relationship between the saccharification rate and pH after 14 days of the enzymatic reaction of the saccharification reaction solutions of Comparative Examples 1 to 8. 1 and 2, in each pH region, the proportion of saccharifying enzyme in which colloidal silica is blended and not immobilized on colloidal silica is 42% or more and 100% compared to saccharifying enzyme alone. It can be seen that the following saccharification reaction liquid has a higher saccharification rate.
  • a 0.5 mL sample of the saccharification reaction solution was collected on a 2 mL microchip and heated at 110 ° C. for 30 minutes to deactivate the enzyme.
  • the sample was transferred to a 50 mL centrifuge tube, and was subjected to high-speed cooling centrifuge SRX-201 (manufactured by Tommy Seiko Co., Ltd.) at 25,000 G for 30 minutes at 4 ° C. Centrifuged. The supernatant was collected immediately after centrifugation.
  • F-kit glucose manufactured by JK International
  • Absorbance at a wavelength of 340 nm was measured using a spectrophotometer UV-3150 (manufactured by Shimadzu Corporation).
  • F-kit solution I 1.0 mL of F-kit solution I was added to a disposable cell having a cell length of 10 mm, and then 0.1 mL of the above supernatant and 1.9 mL of deionized water were added and sealed. Next, the mixed solution was mixed uniformly by repeating upside down. Thereafter, the mixture was allowed to stand for 3 minutes, and the absorbance of the generated supernatant portion at a wavelength of 340 nm was measured using a spectrophotometer to obtain E 1 . Next, 0.02 mL of F-kit solution II was added and mixed upside down repeatedly. Then settled for 15 minutes, the absorbance at a wavelength 340nm of the generated supernatant portion was measured using a spectrophotometer, and the E 2. As the absorbance of the blank, a value measured using deionized water instead of the supernatant was used.
  • the concentration of D-glucose was determined from the following formula.
  • the value obtained by dividing the glucose production concentration of the saccharification reaction solution measured by the above method by the microcrystalline cellulose powder concentration (corresponding to 25 mg / mL) added to the saccharification reaction solution and multiplying by 100 was defined as the saccharification rate.
  • pH adjuster A acetic acid
  • F Sodium acetate G: NaOH H: HCl
  • a cellulase aqueous solution was prepared as a saccharifying enzyme aqueous solution by the following procedure.
  • As cellulase cellulase derived from the genus Aspergillus niger (manufactured by MP biomedicals) having optimal enzyme activity in the range of pH 3 to 6 was used.
  • an alkaline silica sol pH 9.0, in which solid and spherical colloidal silica (average primary particle size: 35 nm, measured particle size by dynamic light scattering method: 55 nm) produced by the water glass method is dispersed in water.
  • silica concentration 40% by mass 200 g was treated with strong acidic hydrogen cation exchange resin Amberlite (registered trademark) IR-120B (manufactured by Organo) to remove alkali metal ions and acidic silica sol (pH 2.1, silica concentration 40). 200% by mass) was obtained.
  • strong acidic hydrogen cation exchange resin Amberlite (registered trademark) IR-120B manufactured by Organo
  • IR-120B manufactured by Organo
  • the saccharifying enzyme composition having a silica concentration of 0.01 to 38% by mass and a cellulase concentration of 0.1 to 3% by mass was obtained.
  • the particle diameter measured by the dynamic light scattering method was confirmed for the obtained saccharifying enzyme composition, it was 55 nm, and the particle diameter in the colloidal silica dispersion was not changed.
  • Table 3 shows the saccharifying enzyme compositions of Examples 9 to 26.
  • saccharification enzyme composition of Comparative Examples 12 to 14 The same procedure as in Examples 9 to 26 was performed except that the concentration of saccharifying enzyme was adjusted with deionized water instead of adding colloidal silica.
  • the saccharifying enzyme composition is shown in Table 3.
  • FIG. 4 shows the relationship between the saccharification rate 14 days after the enzymatic reaction of the saccharification reaction solutions of Examples 3, 9 to 13, and Comparative Example 4 and the silica concentration.
  • a high saccharification rate is exhibited in a saccharification reaction solution in which the ratio of saccharification enzyme not immobilized on colloidal silica is 25% or more and 100% or less with respect to the total saccharification enzyme in the range of silica concentration of 0.01 to 30% by mass. It can be seen that the saccharification rate is higher than when no colloidal silica is contained.
  • Example 22 even if the silica concentration is 38% by mass, a high saccharification rate is exhibited, and it can be seen that the saccharification rate is higher than that when no colloidal silica is contained.
  • the saccharification enzyme concentration is in the range of 0.1 to 3.0% by mass. It shows a high saccharification rate and a higher saccharification rate than when no colloidal silica is contained.
  • FIG. 5 shows the relationship between the saccharification rate 14 days after the enzymatic reaction of the saccharification reaction solutions of Examples 3, 9 to 13 and Comparative Example 4 and the mass ratio of saccharifying enzyme to colloidal silica (saccharifying enzyme / colloidal silica). Show.
  • FIG. 6 shows the relationship between the saccharification rate 14 days after the enzymatic reaction of the saccharification reaction solutions of Examples 22 to 26 and Comparative Example 14 and the mass ratio of saccharifying enzyme to colloidal silica (saccharifying enzyme / colloidal silica).
  • the mass ratio of saccharification enzyme to colloidal silica shows a high saccharification rate in the range of 0.003 to 300, and it can be seen that the saccharification rate is higher than that when no colloidal silica is contained.
  • a cellulase aqueous solution was prepared as a saccharifying enzyme aqueous solution by the following procedure.
  • As cellulase cellulase derived from the genus Aspergillus niger (manufactured by MP biomedicals) having optimal enzyme activity in the range of pH 3 to 6 was used.
  • an acidic silica sol (pH 2.8, in which solid and spherical colloidal silica (average primary particle size: 5 nm, measured particle size by dynamic light scattering method: 15 nm) produced by the water glass method is dispersed in water.
  • silica concentration (10% by mass) 8.0 g of deionized water and 1.0 g of the 10% by mass cellulase aqueous solution described above were added with stirring.
  • 1M equivalent acetic acid-sodium acetate buffer ( 1.0 g of pH 4.0) was added to obtain a saccharifying enzyme composition having a silica concentration of 5% by mass and a cellulase concentration of 0.5% by mass.
  • the particle diameter measured by the dynamic light scattering method was confirmed for the obtained saccharifying enzyme composition, it was 15 nm, and the particle diameter in the colloidal silica dispersion was not changed.
  • acetic acid-sodium acetate buffer (pH 4) 0.0) 1.0 g was added to obtain a saccharifying enzyme composition having a silica concentration of 5 mass% and a cellulase concentration of 0.5 mass%.
  • the obtained saccharifying enzyme composition was confirmed to have a particle diameter measured by a dynamic light scattering method of 20 nm. The particle diameter in the colloidal silica dispersion was not changed.
  • Table 5 shows the saccharifying enzyme compositions of Examples 27 to 31.
  • a cellulase aqueous solution was prepared as a saccharifying enzyme aqueous solution by the following procedure.
  • a cellulase derived from the genus Trichoderma reesei (manufactured by Sigma Aldrich) having an optimal enzyme activity in a pH range of 3 to 6 was used.
  • an alkaline silica sol pH 9.0, in which solid and spherical colloidal silica (average primary particle size: 35 nm, measured particle size by dynamic light scattering method: 55 nm) produced by the water glass method is dispersed in water.
  • silica concentration 40% by mass
  • Amberlite registered trademark
  • IR-120B manufactured by Organo
  • alkali metal ions alkali metal ions
  • acidic silica sol pH 2.1, silica concentration 40. 20% by mass
  • deionized water and the above-mentioned 10% by mass cellulase aqueous solution were added with stirring, and further adjusted to pH by adding 0.05M acetic acid-sodium acetate buffer (pH 4.0) to 0.05M.
  • the saccharifying enzyme composition having a silica concentration of 0.01 to 10% by mass and a cellulase concentration of 0.01 to 1% by mass was obtained.
  • the particle diameter measured by the dynamic light scattering method was confirmed for the obtained saccharifying enzyme composition, it was 55 nm, and the particle diameter in the colloidal silica dispersion was not changed.
  • Table 7 shows the saccharifying enzyme compositions of Examples 32-37.
  • saccharification enzyme composition of Comparative Examples 15 to 20 The same procedure as in Examples 32 to 37 was performed except that the concentration of saccharifying enzyme was adjusted with deionized water instead of adding colloidal silica.
  • the saccharifying enzyme composition is shown in Table 7.
  • the cellulase derived from the genus Trichoderma reesei is as high as the cellulase derived from the genus Aspergillus niger.
  • the saccharification rate is shown, and it can be seen that the saccharification rate is higher than when no colloidal silica is contained.
  • the saccharification rate is high when the silica concentration is in the range of 0.01 to 10% by mass. It can be seen that the saccharification rate is higher than that when no colloidal silica is contained.
  • the saccharification enzyme concentration is in the range of 0.01 to 1.0% by mass. It shows a high saccharification rate and a higher saccharification rate than when no colloidal silica is contained.
  • a cellulase aqueous solution was prepared as a saccharifying enzyme aqueous solution by the following procedure.
  • a cellulase derived from the genus Trichoderma reesei (manufactured by Sigma Aldrich) having an optimal enzyme activity in a pH range of 3 to 6 was used.
  • an alkaline silica sol pH 9.0, in which solid and spherical colloidal silica (average primary particle size: 35 nm, measured particle size by dynamic light scattering method: 55 nm) produced by the water glass method is dispersed in water.
  • a saccharifying enzyme composition having a silica concentration of 5% by mass and a cellulase concentration of 0.01 to 0.5% by mass.
  • the particle diameter measured by the dynamic light scattering method was confirmed for the obtained saccharifying enzyme composition, it was 55 nm, and the particle diameter in the colloidal silica dispersion was not changed.
  • Table 9 shows the saccharifying enzyme compositions of Examples 38 to 43.
  • saccharifying enzyme composition of Comparative Examples 21 to 26 The same procedure as in Examples 38 to 43 was carried out except that the saccharifying enzyme concentration was adjusted with deionized water instead of adding colloidal silica.
  • the saccharifying enzyme composition is shown in Table 9.
  • the mass ratio of saccharification enzyme to colloidal silica (saccharification enzyme / colloidal silica) is 0.
  • a high saccharification rate is shown in the range of 0.002 to 0.1, and it can be seen that the saccharification rate is higher than when no colloidal silica is contained.
  • a cellulase aqueous solution was prepared as a saccharifying enzyme aqueous solution by the following procedure.
  • As cellulase cellulase derived from the genus Aspergillus niger (manufactured by MP biomedicals) having optimal enzyme activity in the range of pH 3 to 6 was used.
  • a saccharifying enzyme composition having a silica concentration of 5 mass% and a cellulase concentration of 0.5 mass%.
  • a saccharifying enzyme composition having a silica concentration of 5 mass% and a cellulase concentration of 0.5 mass%.
  • a saccharifying enzyme composition having a silica concentration of 5 mass% and a cellulase concentration of 0.5 mass%.
  • a saccharifying enzyme composition having a silica concentration of 5 mass% and a cellulase concentration of 0.5 mass%.
  • a saccharifying enzyme composition having a silica concentration of 5 mass% and a cellulase concentration of 0.5 mass%.
  • a saccharifying enzyme composition having a silica concentration of 5 mass% and a cellulase concentration of 0.5 mass%.
  • a saccharifying enzyme composition having a silica concentration of 5 mass% and a cellulase concentration of 0.5 mass%.
  • saccharifying enzyme composition of Comparative Example 29 A saccharifying enzyme composition containing no colloidal silica was obtained in the same manner as in Examples 44 to 49 except that the concentration of saccharifying enzyme was adjusted with deionized water instead of adding colloidal silica.
  • the saccharifying enzyme composition is shown in Table 11.
  • Table 11 shows the saccharifying enzyme compositions of Examples 44 to 49.
  • FIG. 3 shows the dependency of the ratio of saccharification enzyme not immobilized on colloidal silica on the total saccharification enzyme in the saccharification composition 7 days after the enzymatic reaction of the saccharification reaction solutions of Examples 44 to 49.
  • the saccharification rate depends on the ratio of saccharifying enzyme not immobilized on colloidal silica to total saccharifying enzyme. It can be seen that a high saccharification rate is exhibited when the ratio of the saccharifying enzyme not immobilized on colloidal silica to the enzyme is 27% or more and 77% or less.
  • 0.1 g of precipitated silica powder (trade name: Carplex # 80, manufactured by DSL Japan, average primary particle size: 7 nm, measured particle size by dynamic light scattering method: 1750 nm) 9 g, 1.0 g of the above 10% by weight cellulase aqueous solution was added with stirring, and 1.0 g of acetic acid-sodium acetate buffer solution (pH 4.0) corresponding to 1M was added for pH adjustment, and the silica concentration was 5% by mass. A saccharifying enzyme composition having a cellulase concentration of 0.5% by mass was obtained.
  • Table 13 shows the saccharifying enzyme compositions of Comparative Examples 30 and 31.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 セルロース及びヘミセルロースの少なくとも一方を糖化する糖化反応液であって、セルロース及びヘミセルロースの少なくとも一方と、糖化酵素と、コロイダルシリカとを分散状態で含有し、且つ全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下である。

Description

糖化酵素組成物、糖化反応液及び糖の製造方法
 本発明は、糖化酵素組成物、糖化反応液及び糖の製造方法に関する。
 従来より、セルロース又はヘミセルロースを含むセルロース系バイオマスを原料に、エタノールを製造するセルロース系バイオエタノールが知られている。
 セルロース又はヘミセルロースを含むセルロース系バイオマスからグルコースといった糖を生成する方法(糖化技術)としては、セルロース系バイオマスに硫酸を加えて加水分解する方法が知られているが、反応器の腐食や廃液処理の問題がある。また、例えば、カーボンやゼオライト等にスルホ基を担持させた固体酸触媒を用いてセルロース系バイオマスを糖化する方法も提案されているが、固体同士の反応であるが故に、反応速度が極めて遅い上、未反応残渣と固体酸触媒との分離が困難という問題がある。更に、上述のどの方法も加水分解の制御が難しく、反応が進行し過ぎた結果、糖自体が分解し、糖の収率が低下してしまう問題もある。
 一方、酵素を用いて糖化を行う方法も知られている(特許文献1参照)。かかる方法は、原料を加圧熱水で処理する熱水処理工程、その熱水処理物を機械的粉砕処理する機械的粉砕処理工程及びその機械的粉砕物を酵素で糖化処理する糖化処理工程を含む。しかしながら、かかる方法では、酵素で糖化する際の反応速度が遅く、得られる糖化液の濃度が十分とはいえないという問題があった。
 そこで、酵素をシリカ系メソ多孔体に担持させて用いることにより、酵素を溶解した状態よりも高濃度に反応系中に存在させることができ、酵素反応をより効率的に進めるという方法が提案されている(特許文献2参照)。しかしながら、かかる方法では、酵素を担体に吸着固定化する工程が必要であるという問題があり、また、固定化された酵素は、固定化されていないものと比較して、反応効率が40~50%程度に低下する虞があるという問題がある。更に、固体同士の反応であるが故に、未反応残渣と酵素が固定された担体との分離が困難という問題もある。
 また、シリカゾルと酵素を混合し、シリカゲルとした後、粉末化した固定化酵素も知られている(特許文献3、4参照)。このような固定化酵素でも酵素の回収はできるものの、反応効率自体は低いものであった。他にも、0.5μm~100μmのシリカ粉末と酵素を混合してセルロースを含む植物繊維を加水分解する方法も知られているが、シリカ粉末を混合した効果が明確ではなく、未反応残渣と懸濁したシリカ粉末との分離が困難という問題がある(特許文献5参照)。
特開2006-136263号公報 特開2009-125006号公報 特公昭63-2595号公報 特公昭63-21475号公報 特開平10-66594号公報
 本発明は、上記事情に鑑みてなされたものであり、簡便な工程で酵素による糖化反応の速度を向上させる糖化酵素組成物、糖化反応液及び糖の製造方法を提供することを目的とする。
 前記目的を達成する本発明の第1の態様は、セルロース及びヘミセルロースの少なくとも一方を糖化する糖化反応液であって、セルロース及びヘミセルロースの少なくとも一方と、糖化酵素と、コロイダルシリカとを分散状態で含有し、且つ全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下であることを特徴とする糖化反応液にある。
 ここで、前記コロイダルシリカの平均一次粒子径が、1nm以上、400nm以下、且つ動的光散乱法による測定粒子径が5nm以上、500nm未満であることが好ましい。
 また、前記糖化酵素の濃度が、0.005質量%以上、3.0質量%以下であることが好ましい。
 また、前記コロイダルシリカの濃度が、0.005質量%以上、40質量%以下であることが好ましい。
 また、前記糖化酵素と前記コロイダルシリカとの質量比率(糖化酵素/コロイダルシリカ)が、0.002以上、300以下であることが好ましい。
 また、pHが3以上、11以下であることが好ましい。
 また、前記糖化酵素が、Aspergillus属由来のもの及びTrichoderma属由来のものの少なくとも一方を含むことが好ましい。
 また、本発明の第2の態様は、セルロース及びヘミセルロースの少なくとも一方を糖化する糖化組成物であって、糖化酵素と、平均一次粒子径が1nm以上、400nm以下、且つ動的光散乱法による測定粒子径が5nm以上、500nm未満であるコロイダルシリカとを分散状態で含有し、且つ全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下であることを特徴とする糖化酵素組成物にある。
 また、本発明の第3の態様は、前記糖化反応液を用いて糖を製造することを特徴とする糖の製造方法にある。
 また、糖化反応の反応温度を、5℃以上、100℃以下とすることが好ましい。
糖化組成物中の全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合のpH依存性を示す。 糖化反応液の酵素反応14日後の糖化率のpH依存性を示す。 糖化反応液の酵素反応7日後の糖化組成物中の全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合の依存性を示す。 糖化反応液の酵素反応14日後の糖化率のシリカ濃度依存性を示す。 糖化反応液の酵素反応14日後の糖化率の糖化酵素/コロイダルシリカ比0.1~300の範囲での依存性を示す。 糖化反応液の酵素反応14日後の糖化率の糖化酵素/コロイダルシリカ比0.003~0.1の範囲での依存性を示す。 糖化反応液の酵素反応14日後の糖化率の平均一次粒子径依存性を示す。
 本発明においては、原料としてセルロース及びヘミセルロースの少なくとも一方が用いられる。
 かかるセルロース又はヘミセルロースは、例えば、広葉樹、針葉樹等の農林水産物資源、又は当該農林水産物資源の廃棄物といったセルロース系バイオマスに含有されている。より具体的には、バガス、稲ワラ、コーンストーバー、アブラヤシ空果房、木材繊維、木材チップ、単板くず、木粉、パルプ類、古紙類、綿、ホヤ、酢酸菌等が挙げられる。また、これらの原料は、セルロース系バイオマス由来のものであれば特に限定されず、1種類を単独で用いても、2種類以上を混合して用いてもよい。
 これらの中でも、ユーカリ木粉(広葉樹)、スギ木粉(針葉樹)、バガス、稲ワラ、コーンストーバー、アブラヤシ空果房、綿に含有されるセルロース又はヘミセルロースであることが好ましい。これらの場合、理由は定かではないが、解繊しやすく、比較的高収率で糖を得ることができる。
 ここで、セルロースとは、グルコースがβ-1,4グルコシド結合により重合した重合体をいう。ヘミセルロースは、グルコース、キシロース、マンノース、ガラクトース等がグルコシド結合により重合した重合体で、セルロース以外の水不溶性の多糖類をいう。
 また、セルロースは、その部分分解物であるセロオリゴ糖、セロビオースを含んでいてもよく、結晶性であっても非結晶性であってもよい。また、カルボキシメチル化、アルデヒド化又はエステル化した誘導体であってもよい。なお、セルロース又はヘミセルロースは、上述したとおり、バイオマス由来のものであれば特に限定されず、植物由来、真菌由来、細菌由来であってもよい。
 本発明の糖化酵素としては、セルラーゼを主体としたものが用いられる。かかるセルラーゼは、セルロース又はヘミセルロースをグルコース等の糖にまで分解する酵素を意味している。
 かかる糖化酵素を生産する微生物としては、特に限定されないが、例えば、アクレモニウム属(Acremonium)菌、アスペルギルス属(Aspergillus)菌、ケトミウム属(Chaetomium)菌、フザリウム属(Fusarium)菌、フミコーラ属(Humicola)菌、イルペックス属(Irpex)菌、ファネロケーテ属(Phanerochaete)菌、ペニシリウム属(Penicillium)菌、シゾフィラム属(Schizophyllum)菌、スポロトリクム属(Sporotrichum)菌、トレメテス属(Trametes)菌、トリコデルマ属(Trichoderma)菌、等が挙げられ、これらの他にも、クロストリジウム属(Clostridium)菌、シュードモナス属(Pseudomonas)菌、セルロモナス属(Cellulomonas)菌、ルミノコッカス属(Ruminococcus)菌、バチルス属(Bacillus)菌等の細菌、スルフォロバス属(Sulfolobus)菌、ストレプトマイセス属(Streptomyces)菌、サーモアクチノマイセス属(Thermoactinomyces)菌、サーモモノスポラ属(Thermomonospora)菌等の放線菌が挙げられる。なお、これらの酵素は人工的に改変されていてもよい。また、これらの酵素は、1種類を単独で用いても、2種類以上を混合して用いてもよい。
 これらの中でも、特に、Aspergillus属由来のもの及びTrichoderma属由来のものが好ましい。結晶性セルロースに対して活性が高いからである。
 また、セルラーゼは、一連の酵素群であってもよい。かかる酵素群としては、エンドグルカナーゼ(EC 3.2.1.74)、セロビオヒドロラーゼ(EC 3.2.1.91)、β-グルコシダーゼ(EC 23.2.4.1,EC 3.2.1.21) 等が挙げられる。なお、異なった微生物由来のセルラーゼを混合して用いることが好ましい。この場合、それらの相乗効果により、セルロース又はヘミセルロースの糖化をより促進させることができる。
 上述のセルラーゼは、多くはpH3以上、6以下の範囲で至適な酵素活性を有するものが一般的であるが、pH6~10の範囲で至適な酵素活性を有するアルカリセルラーゼと呼ばれるものであってもよい。また、上述のセルラーゼは、多くは反応温度25℃以上、50℃以下の範囲で至適な酵素活性を有するものが多いが、70℃以上100℃以下の範囲で至適な酵素活性を有する耐熱性セルラーゼと呼ばれるものであってもよい。
 本発明でコロイダルシリカは、平均一次粒子径が1nm以上、400nm以下、好ましくは、5nm以上、350nm以下であり、糖化反応液中に分散させて用いられる。平均一次粒子径は、窒素吸着法(BET法)により測定される比表面積S(m2/g)から換算式D(nm)=2720/Sにより算出されたものである。かかるコロイダルシリカは、その一部又は全部が糖化酵素の担体となり、コロイダルシリカに固定化されていない糖化酵素と共に分散状態で用いられるものである。コロイダルシリカは、分散された液中における粒子径として、動的光散乱法による測定粒子径で表示することができる。本発明では、動的光散乱法による測定粒子径は、5nm以上、500nm未満、好ましくは、10nm以上、450nm以下が望ましい。また、シリカは多孔質ではなく、中実のシリカである。なお、コロイダルシリカは、水、メタノール、エタノール、アセトン、メチルエチルケトン、エチレングリコールなどの分散媒に分散させた分散液として用いられ、分散液は、コロイド液又はゾルなどと呼ばれる。酵素の活性を阻害しない範囲で、分散媒を選択してよいが、好ましくは、水、エタノールである。
 一方、沈降法シリカと呼ばれるシリカ粉末は、平均一次粒子径が400nm以下、動的光散乱法による測定粒子径が500nm以上の多孔質の粉末であり、分散媒に懸濁させてもコロイド液の性質を示さず、且つ本発明のコロイダルシリカのような高い分散性を有していない。
 コロイダルシリカの製造方法として、水ガラスを原料とする水ガラス法、金属アルコキシドを原料とするアルコキシド法、塩化珪素化合物を原料とする気相法などがある。どの製造法で得られたコロイダルシリカを用いても良いが、好ましくは水ガラス法が望ましい。
 本発明の糖化反応液は、セルロース及びヘミセルロースの少なくとも一方を原料に、糖化酵素とコロイダルシリカとを分散させたものであり、且つ全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下のものである。より好ましくは、全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が50%以上、100%以下である。全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%より低いと反応効率が悪化するため好ましくない。
 ここで、糖化反応液において、糖化酵素の濃度は、0.005質量%以上、3.0質量%以下、好ましくは、0.01質量%以上、1.0質量%以下である。糖化酵素の濃度が0.005質量%より低いと反応効率が低下して好ましくなく、一方、3.0質量%より高いと糖化酵素が溶液に溶解しにくくなるだけでなく、経済的に不適である。
 また、糖化反応液において、コロイダルシリカの濃度は、0.005質量%以上、40質量%以下、好ましくは、0.01質量%以上、10質量%以下である。コロイダルシリカの濃度が0.005質量%より低いと反応効率が低下して好ましくなく、一方、40質量%より高いと分散性が悪化するだけでなく、経済的に不適である。
 また、糖化反応液において、糖化酵素と前記コロイダルシリカとの質量比率(糖化酵素/コロイダルシリカ)は、0.002以上、300以下、好ましくは、0.1以上、10以下である。両者の質量比率がこの範囲を外れると反応効率の向上が顕著ではなくなる。
 また、糖化反応液のpHは、3以上、11以下、好ましくは、3以上、9以下、より好ましくは、4以上、7以下である。pHが3より低いと、コロイダルシリカの凝集が生じて糖化酵素の反応効率が低下し、一方、11より高いと、コロイダルシリカが溶解しやすくなるため、好ましくない。
 糖化反応液のpH調整剤として、硫酸、塩酸、硝酸といった鉱酸、酢酸、シュウ酸といったカルボン酸、クエン酸、酒石酸、リンゴ酸といったヒドロキシ酸、水酸化ナトリウムや水酸化カリウムといった水酸化物塩、アンモニア、尿素等が挙げられる。本発明の効果を阻害しない範囲であれば使用に特にその種類や濃度に制限はない。また、これらのpH調整剤は、1種類を単独で用いても、2種類以上を混合して用いてもよい。更に緩衝作用を有する緩衝液の状態で使用してもよい。
 また、本発明の糖化反応液は、反応温度を、5℃以上、100℃以下、好ましくは、20℃以上、55℃以下とするのが好ましい。反応温度が5℃より低いと糖化反応の効率が著しく低下し、100℃より高いと糖化酵素が失活する虞があり、好ましくない。
 なお、セルロース又はヘミセルロースを含有するセルロース系バイオマスの前処理は、公知の範囲により行えばよい。一般には、カッターミル等による物理的な粉砕、及び酸又はアルカリ処理によってリグニンとセルロース及びヘミセルロースとの構造を化学的に破壊することにより、糖化反応用原料とすればよい。
 糖化反応液を作製する際に、糖化酵素が分散している反応液にコロイダルシリカを添加してもよく、コロイダルシリカが分散している反応液に糖化酵素を添加してもよい。本発明の効果を阻害しない範囲であれば、pH調整剤等のその他の添加剤は任意の順序で添加できる。
 糖化反応を行う際、適切な分画分子量の逆浸透(RO)膜や限外ろ過(UF)膜を用い、糖化酵素及びコロイダルシリカと、グルコース等の糖を分離することも可能である。好ましくは分画分子量1,000以上、100,000以下である。分画分子量がこの範囲より小さいと、糖の分離は可能だが目詰まりしやすく、膜透過速度が著しく低下し、また、この範囲より大きいと、糖化酵素やコロイダルシリカが糖とともに流出してしまう虞があり、好ましくない。
 以下、実施例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。
 コロイダルシリカの平均一次粒子径と動的光散乱法による測定粒子径は、それぞれ以下の測定装置を用いて測定した。
窒素吸着法測定装置(平均一次粒子径の測定):Monosorb MS-16(カンタクローム・インスツルメンツ・ジャパン合同会社製)
動的光散乱法粒子径測定装置:ゼータサイザーナノS(マルバーンインスツルメンツ製)
 (実施例1~7、比較例1の糖化酵素組成物)
 まず、以下の手順で、糖化酵素水溶液として、セルラーゼ水溶液を作製した。なお、セルラーゼとしては、pH3以上、6以下の範囲で至適な酵素活性を有するAspergillus niger属由来のセルラーゼ(MP biomedicals製)を用いた。
 まず、脱イオン水85g中にセルラーゼ粉末15gを添加し、室温下、マグネティックスターラーで2時間撹拌しながら溶解して15質量%のセルラーゼ水溶液を得た。次に、水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:35nm、動的光散乱法による測定粒子径:55nm)が水に分散されたアルカリ性シリカゾル(pH9.0、シリカ濃度40質量%)200gを、強酸性水素型陽イオン交換樹脂アンバーライト(登録商標)IR-120B(オルガノ製)で処理してアルカリ金属イオンを除去し、酸性シリカゾル(pH2.1、シリカ濃度40質量%)200gを得た。得られた酸性シリカゾル15g中に、上述のセルラーゼ水溶液4.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸、酢酸ナトリウム(以下、酢酸Na)、酢酸-酢酸Na塩緩衝液(pH3.5~5.0)、0.5M相当のNaOH、HC1のうち1種類を1.0g添加し、シリカ濃度30質量%、セルラーゼ濃度3質量%の糖化酵素組成物を得た。得られた糖化酵素組成物について動的光散乱法による測定粒子径を確認したところ55nmであり、コロイダルシリカの分散体における粒子径は変化していなかった。
 (実施例8の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:35nm、動的光散乱法による測定粒子径:55nm)が水に分散されたアルカリ性シリカゾル(pH9.0、シリカ濃度40質量%)15g中に、上述のセルラーゼ水溶液4.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸Na0.5g及び1M相当NaOH0.5gを添加し、シリカ濃度30質量%、セルラーゼ濃度3質量%の糖化酵素組成物を得た。得られた糖化酵素組成物について動的光散乱法による測定粒子径を確認したところ55nmであり、コロイダルシリカの分散体における粒子径は変化していなかった。表1に、実施例1~8の糖化酵素組成物を示す。
(全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合の測定)
 本発明の糖化酵素組成物において、全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合は、遠心分離法により得られた上澄み中の糖化酵素の濃度を、Bradford法(CBB法)により定量して算出した。
 具体的な手順は以下の通りである。
 糖化酵素組成物1.0mLを50mL遠沈管に採取し、高速冷却遠心分離機SRX-201(トミー精工社製)で25,000G、30分、4℃の条件で遠心分離し、上澄み液を得た。次にセル長10mmのディスポーザブルセルに、プロテインアッセイCBB溶液(5倍濃縮)(ナカライテスク製)を脱イオン交換水で5倍に希釈したものを2.5mL添加し、次いで、上記の上澄み液を0.05mL添加し、密栓した。この混合溶液を、上下反転を繰り返し均一に混合した。その後、30分間静定し、分光光度計UV-3150(島津製作所製)を用い、波長595nmの吸光度を測定した。既知の糖化酵素濃度の試料を作製し、同様に吸光度を測定して検量線を作成した。得られた検量線から上澄み液の糖化酵素濃度を算出した。
 上記の方法で得られた上澄み液の糖化酵素濃度を、添加した糖化酵素濃度で除して100倍した値を全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合とした。実施例1~8の糖化酵素組成物の全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合とpHとの関係を図1に示す。全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合は、糖化酵素組成物のpHに依存していることが判る。
 (比較例2~10の糖化酵素組成物)
 コロイダルシリカを添加しない代わりに脱イオン水で糖化酵素の濃度調整をした以外は、実施例1~8と同様に行って、コロイダルシリカを含まない糖化酵素組成物を得た。該糖化酵素組成物を表1に示す。
 (比較例11の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:35nm、動的光散乱法による測定粒子径:55nm)が水に分散されたアルカリ性シリカゾル(pH9.0、シリカ濃度40質量%)20gを、強酸性水素型陽イオン交換樹脂アンバーライト(登録商標)IR-120B(オルガノ製)で処理してアルカリ金属イオンを除去し酸性シリカゾル(pH2.1、シリカ濃度40質量%)20gを得た。得られた酸性シリカゾル15g中に、脱イオン水5g添加し、シリカ濃度30質量%の糖化酵素組成物を得た。糖化酵素組成物を併せて表1に示す。
 (実施例1~8の糖化反応液)
 実施例1~8の糖化酵素組成物に、微結晶セルロース粉末を2.5質量%添加し、分散させて糖化反応液とした。
 具体的な手順は以下の通りである。
 20mLのガラス瓶に各糖化酵素組成物を10mL入れ、4mmφで10mmの攪拌子で攪拌した状態で、微結晶セルロース粉末(MP biomedicals製)を0.25g(25mg/mL相当)添加した後、密栓した。
 (実施例1~8の糖の製造方法)
 実施例1~8の糖化反応液を、24℃の恒温室中で、攪拌下で14日間酵素反応させた。
 糖化反応液の酵素反応の反応温度、3日後、及び14日後において、以下の通り、糖化率を測定した結果を、表2に示す。実施例1~8の糖化反応液の酵素反応14日後の糖化率とpHとの関係を図2に示す。
 (比較例1~11)
 糖化反応液の作製及び糖の製造方法は、実施例1~8と同様に行った。結果を表2に示す。また、比較例1~8の糖化反応液の酵素反応14日後の糖化率とpHとの関係を図2に示す。図1、図2より各pH領域において、糖化酵素単独に比べて、コロイダルシリカが配合され、且つ全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が42%以上、100%以下の糖化反応液の方が糖化率が高いことが判る。
 (糖化率の測定)
 酵素法(G6PDH-HK法)を用いて、糖化反応液の酵素反応時のグルコース生成濃度を定量し、糖化率を算出した。
 2mLマイクロチップに、糖化反応液の試料を0.5mL採取し、110℃,30分間加熱して酵素を失活させた。次に、未反応のセルロースおよびコロイダルシリカを除去するため、50mL遠沈管に試料を移し、高速冷却遠心分離機SRX-201(トミー精工社製)で25,000G、30分間、4℃の条件で遠心分離した。遠心分離後直ちにその上澄み液を回収した。酵素法には、F-キット グルコース(J.K.インターナショナル製)を使用した。分光光度計UV-3150(島津製作所製)を用いて波長340nmの吸光度(セル長10mm)を測定した。
 具体的な手順は以下の通りである。
 セル長10mmのディスポーザブルセルにF-キット溶液Iを1.0mL添加し、次いで、上記の上澄み液を0.1mLと脱イオン水1.9mLを添加し、密栓した。次にこの混合溶液を上下反転を繰り返し均一に混合した。その後、3分間静定し、生成した上澄み部分の波長340nmの吸光度を分光光度計を用いて測定し、E1とした。次に、F-キット溶液IIを0.02mL添加し、上下反転を繰り返し均一に混合した。その後、15分間静定し、生成した上澄み部分の波長340nmの吸光度を分光光度計を用いて測定し、E2とした。ブランクの吸光度は、上澄み液の代わりに脱イオン水を用いて測定した値を使用した。
 D-グルコースの濃度は以下の式から求めた。
Figure JPOXMLDOC01-appb-M000001
 上記の方法で測定された糖化反応液の酵素反応時のグルコース生成濃度を添加した微結晶セルロース粉末濃度(25mg/mL相当)で除して100倍した値を糖化率とした。
Figure JPOXMLDOC01-appb-T000002
pH調整剤
A:酢酸
B:酢酸ナトリウム塩緩衝液(pH=3.5)
C:酢酸ナトリウム塩緩衝液(pH=4.0)
D:酢酸ナトリウム塩緩衝液(pH=4.5)
E:酢酸ナトリウム塩緩衝液(pH=5.0)
F:酢酸ナトリウム
G:NaOH
H:HCl
Figure JPOXMLDOC01-appb-T000003
 (実施例9~26の糖化酵素組成物)
 まず、以下の手順で糖化酵素水溶液として、セルラーゼ水溶液を作製した。なお、セルラーゼとしては、pH3以上、6以下の範囲で至適な酵素活性を有するAspergillus niger属由来のセルラーゼ(MP biomedicals製)を用いた。
 まず、脱イオン水90g中にセルラーゼ粉末10gを添加し、室温下、マグネティックスターラーで2時間撹拌しながら溶解して10質量%のセルラーゼ水溶液を得た。次に、水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:35nm、動的光散乱法による測定粒子径:55nm)が水に分散されたアルカリ性シリカゾル(pH9.0、シリカ濃度40質量%)200gを、強酸性水素型陽イオン交換樹脂アンバーライト(登録商標)IR-120B(オルガノ製)で処理してアルカリ金属イオンを除去し酸性シリカゾル(pH2.1、シリカ濃度40質量%)200gを得た。得られた酸性シリカゾル中に、脱イオン水、上述の10質量%セルラーゼ水溶液を撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)を0.05M相当添加し、シリカ濃度0.01~38質量%、セルラーゼ濃度0.1~3質量%の糖化酵素組成物を得た。得られた糖化酵素組成物について動的光散乱法による測定粒子径を確認したところ55nmであり、コロイダルシリカの分散体における粒子径は変化していなかった。
 表3に、実施例9~26の糖化酵素組成物を示す。
 (比較例12~14の糖化酵素組成物)
 コロイダルシリカを添加しない代わりに脱イオン水で糖化酵素の濃度調整をした以外は、実施例9~26と同様に行った。糖化酵素組成物を表3に示す。
 糖化反応液の作製、糖の製造方法、糖化反応効率の測定は実施例1~8と同様に行った。糖化率を測定した結果を、表4に示す。また、実施例3、9~13、比較例4の糖化反応液の酵素反応14日後の糖化率とシリカ濃度との関係を図4に示す。全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下の糖化反応液において、シリカ濃度が0.01~30質量%の範囲で高い糖化率を示し、コロイダルシリカを含有しない場合よりも糖化率が高いことが判る。実施例22では、シリカ濃度が38質量%でも高い糖化率を示し、コロイダルシリカを含有しない場合よりも糖化率が高いことが判る。
 更に、全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下の糖化反応液において、糖化酵素濃度が0.1~3.0質量%の範囲で高い糖化率を示し、コロイダルシリカを含有しない場合よりも糖化率が高いことが判る。
 また、実施例3、9~13、比較例4の糖化反応液の酵素反応14日後の糖化率と、糖化酵素とコロイダルシリカとの質量比率(糖化酵素/コロイダルシリカ)との関係を図5に示す。
 実施例22~26、比較例14の糖化反応液の酵素反応14日後の糖化率と、糖化酵素とコロイダルシリカとの質量比率(糖化酵素/コロイダルシリカ)との関係を図6に示す。
 図5、6より全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下の糖化反応液において、糖化酵素とコロイダルシリカとの質量比率(糖化酵素/コロイダルシリカ)が0.003~300の範囲で高い糖化率を示し、コロイダルシリカを含有しない場合よりも糖化率が高いことが判る。
 さらに、実施例20、27~31、比較例13の糖化反応液の酵素反応14日後の糖化率と一次粒子径との関係を図7に示す。全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下の糖化反応液において、コロイダルシリカの平均一次粒子径が5nm~310nmにおいて高い糖化率を示し、コロイダルシリカを含有しない場合よりも糖化率が高いことが判る。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 (実施例27の糖化酵素組成物)
 まず、以下の手順で糖化酵素水溶液として、セルラーゼ水溶液を作製した。なお、セルラーゼとしては、pH3以上、6以下の範囲で至適な酵素活性を有するAspergillus niger属由来のセルラーゼ(MP biomedicals製)を用いた。
 次に、水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:5nm、動的光散乱法による測定粒子径:15nm)が水に分散された酸性シリカゾル(pH2.8、シリカ濃度10質量%)10g中に、脱イオン水8.0g、上述の10質量%セルラーゼ水溶液1.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。得られた糖化酵素組成物について動的光散乱法による測定粒子径を確認したところ15nmであり、コロイダルシリカの分散体における粒子径は変化していなかった。
 (実施例28の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:12nm、動的光散乱法による測定粒子径:20nm)が水に分散された酸性シリカゾル(pH2.6、シリカ濃度20質量%)5.0g中に、脱イオン水13.0g、上述の10質量%セルラーゼ水溶液1.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。得られた糖化酵素組成物について動的光散乱法による測定粒子径を確認したところ20nmであり、コロイダルシリカの分散体における粒子径は変化していなかった。
 (実施例29の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:80nm、動的光散乱法による測定粒子径:120nm)が水に分散されたアルカリ性シリカゾル(pH9.5、シリカ濃度40質量%)20gを、強酸性水素型陽イオン交換樹脂アンバーライト(登録商標)IR-120B(オルガノ製)で処理してアルカリ金属イオンを除去し酸性シリカゾル(pH2.0、シリカ濃度40質量%)20gを得た。得られた酸性シリカゾル2.5g中に、脱イオン水15.5g、上述の10質量%セルラーゼ水溶液1.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。得られた糖化酵素組成物について動的光散乱法による測定粒子径を確認したところ120nmであり、コロイダルシリカの分散体における粒子径は変化していなかった。
 (実施例30の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:160nm、動的光散乱法による測定粒子径:200nm)が水に分散されたアルカリ性シリカゾル(pH9.3、シリカ濃度40質量%)20gを、強酸性水素型陽イオン交換樹脂アンバーライト(登録商標)IR-120B(オルガノ製)で処理してアルカリ金属イオンを除去し酸性シリカゾル(pH2.3、シリカ(SiO2)濃度40質量%)20gを得た。得られた酸性シリカゾル2.5g中に、脱イオン水15.5g、上述の10質量%セルラーゼ水溶液1.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。得られた糖化酵素組成物について動的光散乱法による測定粒子径を確認したところ200nmであり、コロイダルシリカの分散体における粒子径は変化していなかった。
 (実施例31の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:310nm、動的光散乱法による測定粒子径:450nm)が水に分散されたアルカリ性シリカゾル(pH8.5、シリカ濃度40質量%)20gを、強酸性水素型陽イオン交換樹脂アンバーライト(登録商標)IR-120B(オルガノ製)で処理してアルカリ金属イオンを除去し酸性シリカゾル(pH3.3、シリカ濃度40質量%)20gを得た。得られた酸性シリカゾル2.5g中に、脱イオン水15.5g、上述の10質量%セルラーゼ水溶液1.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。得られた糖化酵素組成物について動的光散乱法による測定粒子径を確認したところ450nmであり、コロイダルシリカの分散体における粒子径は変化していなかった。
 表5に、実施例27~31の糖化酵素組成物を示す。
 糖化反応液の作製、糖の製造方法、糖化反応効率の測定は実施例1~8と同様に行った。糖化率を測定した結果を、表6に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 (実施例32~37の糖化酵素組成物)
 まず、以下の手順で糖化酵素水溶液として、セルラーゼ水溶液を作製した。なお、セルラーゼとしては、pH3以上、6以下の範囲で至適な酵素活性を有するTrichoderma reesei属由来のセルラーゼ(Sigma Aldrich製)を用いた。
 まず、脱イオン水9g中にセルラーゼ粉末1gを添加し、2時間、室温でマグネティックスターラーで撹拌しながら溶解して10質量%のセルラーゼ水溶液を得た。次に、水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:35nm、動的光散乱法による測定粒子径:55nm)が水に分散されたアルカリ性シリカゾル(pH9.0、シリカ濃度40質量%)20gを、強酸性水素型陽イオン交換樹脂アンバーライト(登録商標)IR-120B(オルガノ製)で処理してアルカリ金属イオンを除去し酸性シリカゾル(pH2.1、シリカ濃度40質量%)20gを得た。得られた酸性シリカゾル中に、脱イオン水、上述の10質量%セルラーゼ水溶液を撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)を0.05M相当添加し、シリカ濃度0.01~10質量%、セルラーゼ濃度0.01~1質量%の糖化酵素組成物を得た。得られた糖化酵素組成物について動的光散乱法による測定粒子径を確認したところ55nmであり、コロイダルシリカの分散体における粒子径は変化していなかった。
 表7に、実施例32~37の糖化酵素組成物を示す。
 (比較例15~20の糖化酵素組成物)
 コロイダルシリカを添加しない代わりに脱イオン水で糖化酵素の濃度調整をした以外は、実施例32~37と同様に行った。糖化酵素組成物を表7に示す。
 糖化反応液の作製、糖の製造方法、糖化反応効率の測定は実施例1~8と同様に行った。糖化率を測定した結果を、表8に示す。
 全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下の糖化反応液において、Trichoderma reesei属由来のセルラーゼでも、Aspergillus niger属由来のセルラーゼと同様に高い糖化率を示し、コロイダルシリカを含有しない場合よりも糖化率が高いことが判る。
 また、全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下の糖化反応液において、シリカ濃度が0.01~10質量%の範囲で高い糖化率を示し、コロイダルシリカを含有しない場合よりも糖化率が高いことが判る。
 更に、全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下の糖化反応液において、糖化酵素濃度が0.01~1.0質量%の範囲で高い糖化率を示し、コロイダルシリカを含有しない場合よりも糖化率が高いことが判る。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
(実施例38~43の糖化酵素組成物)
 まず、以下の手順で糖化酵素水溶液として、セルラーゼ水溶液を作製した。なお、セルラーゼとしては、pH3以上、6以下の範囲で至適な酵素活性を有するTrichoderma reesei属由来のセルラーゼ(Sigma Aldrich製)を用いた。
 まず、脱イオン水9.5g中にセルラーゼ粉末0.5gを添加し、2時間、室温でマグネティックスターラーで撹拌しながら溶解して5質量%のセルラーゼ水溶液を得た。次に、水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:35nm、動的光散乱法による測定粒子径:55nm)が水に分散されたアルカリ性シリカゾル(pH9.0、シリカ濃度40質量%)20gを、強酸性水素型陽イオン交換樹脂アンバーライト(登録商標)IR-120B(オルガノ製)で処理してアルカリ金属イオンを除去し酸性シリカゾル(pH2.1、シリカ濃度40質量%)20gを得た。得られた酸性シリカゾル中に、脱イオン水、上述の5質量%セルラーゼ水溶液を撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸Na塩緩衝液(pH4.0~6.0)のうち1種類を0.05M相当添加し、シリカ濃度5質量%、セルラーゼ濃度0.01~0.5質量%の糖化酵素組成物を得た。得られた糖化酵素組成物について動的光散乱法による測定粒子径を確認したところ55nmであり、コロイダルシリカの分散体における粒子径は変化していなかった。
 表9に、実施例38~43の糖化酵素組成物を示す。
 (比較例21~26の糖化酵素組成物)
 コロイダルシリカを添加しない代わりに脱イオン水で糖化酵素の濃度調整をした以外は、実施例38~43と同様に行った。糖化酵素組成物を表9に示す。
 糖化反応液の作製については、微結晶セルロース粉末を5.0質量%添加に変更した以外は、実施例1~8と同様に行った。糖の製造方法については、酵素反応期間を7日間、反応温度を40℃又は50℃に変更した以外は実施例1~8と同様に行った。糖化反応効率の測定は実施例1~8と同様に行った。糖化率を測定した結果を、表10に示す。
 全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下の糖化反応液において、糖化酵素とコロイダルシリカとの質量比率(糖化酵素/コロイダルシリカ)が0.002~0.1の範囲で高い糖化率を示し、コロイダルシリカを含有しない場合よりも糖化率が高いことが判る。
Figure JPOXMLDOC01-appb-T000010
I:酢酸ナトリウム塩緩衝液(pH=6.0)
Figure JPOXMLDOC01-appb-T000011
 (実施例44の糖化酵素組成物)
 まず、以下の手順で糖化酵素水溶液として、セルラーゼ水溶液を作製した。なお、セルラーゼとしては、pH3以上、6以下の範囲で至適な酵素活性を有するAspergillus niger属由来のセルラーゼ(MP biomedicals製)を用いた。
 まず、脱イオン水38g中にセルラーゼ粉末2.0gを添加し、2時間、室温でマグネティックスターラーで撹拌しながら溶解して5質量%のセルラーゼ水溶液を得た。次に、水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:45nm、動的光散乱法による測定粒子径:75nm)が水に分散された酸性シリカゾル(pH2.9、シリカ濃度20質量%)5.0g中に、脱イオン水12.0g、上述の5質量%セルラーゼ水溶液2.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。
 (実施例45の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:45nm、動的光散乱法による測定粒子径:75nm)が水に分散された酸性シリカゾル(pH2.9、シリカ濃度20質量%)5.0g中に、脱イオン水12.0g、アルファイン83(ポリ塩化アルミニウム、大明化学工業製)7ppm、上述の5質量%セルラーゼ水溶液2.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。
 (実施例46の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:45nm、動的光散乱法による測定粒子径:75nm)が水に分散された酸性シリカゾル(pH2.9、シリカ濃度20質量%)5.0g中に、脱イオン水12.0g、アルファイン83(ポリ塩化アルミニウム、大明化学工業製)10ppm、上述の5質量%セルラーゼ水溶液2.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。
 (実施例47の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:45nm、動的光散乱法による測定粒子径:75nm)が水に分散された酸性シリカゾル(pH2.9、シリカ濃度20質量%)5.0g中に、脱イオン水12.0g、アルファイン83(ポリ塩化アルミニウム、大明化学工業製)14ppm、上述の5質量%セルラーゼ水溶液2.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。
 (実施例48の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:45nm、動的光散乱法による測定粒子径:75nm)が水に分散された酸性シリカゾル(pH2.9、シリカ濃度20質量%)5.0g中に、脱イオン水12.0g、アルファイン83(ポリ塩化アルミニウム、大明化学工業製)15ppm、上述の5質量%セルラーゼ水溶液2.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。
 (実施例49の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:45nm、動的光散乱法による測定粒子径:75nm)が水に分散された酸性シリカゾル(pH2.9、シリカ濃度20質量%)5.0g中に、脱イオン水12.0g、アルファイン83(ポリ塩化アルミニウム、大明化学工業製)16ppm、上述の5質量%セルラーゼ水溶液2.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。
 (比較例27の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:45nm、動的光散乱法による測定粒子径:75nm)が水に分散された酸性シリカゾル(pH2.9、シリカ濃度20質量%)5.0g中に、脱イオン水12.0g、アルファイン83(ポリ塩化アルミニウム、大明化学工業製)20ppm、上述の5質量%セルラーゼ水溶液2.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。
 (比較例28の糖化酵素組成物)
 水ガラス法で製造された中実で球状のコロイダルシリカ(平均一次粒子径:45nm、動的光散乱法による測定粒子径:75nm)が水に分散された酸性シリカゾル(pH2.9、シリカ濃度20質量%)5.0g中に、脱イオン水12.0g、アルファイン83(ポリ塩化アルミニウム、大明化学工業製)27ppm、上述の5質量%セルラーゼ水溶液2.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。
 (比較例29の糖化酵素組成物)
 コロイダルシリカを添加しない代わりに脱イオン水で糖化酵素の濃度調整をした以外は、実施例44~49と同様に行って、コロイダルシリカを含まない糖化酵素組成物を得た。該糖化酵素組成物を表11に示す。
 表11に、実施例44~49の糖化酵素組成物を示す。
 糖化反応液の作製、糖化反応効率の測定は実施例1~8と同様に行った。糖の製造方法については、酵素反応期間を7日間に変更した以外は実施例1~8と同様に行った。糖化率を測定した結果を、表12に示す。また、実施例44~49の糖化反応液の酵素反応7日後の糖化組成物中の全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合の依存性を図3に示す。糖化酵素とコロイダルシリカとの質量比率(糖化酵素/コロイダルシリカ)及びpHが一定の場合に糖化率は全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合に依存し、全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が27%以上、77%以下において高い糖化率を示すことが判る。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 (比較例30の糖化酵素組成物)
 まず、脱イオン水9g中にセルラーゼ粉末1gを添加し、2時間、室温でマグネティックスターラーで撹拌しながら溶解して10質量%のセルラーゼ水溶液を得た。次に、沈降法シリカ粉末(商品名:カープレックス #80、DSL.ジャパン製、平均一次粒子径:7nm、動的光散乱法による測定粒子径:1750nm)0.1gに、脱イオン水17.9g、上述の10質量%セルラーゼ水溶液1.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。
 (比較例31の糖化酵素組成物)
 沈降法シリカ粉末(商品名:トクシール GU-N、トクヤマ製、平均一次粒子径:11nm、動的光散乱法による測定粒子径:4740nm)0.1gに、脱イオン水17.9g、上述の10質量%セルラーゼ水溶液1.0gを撹拌しながら添加し、更にpH調整として、1M相当の酢酸-酢酸ナトリウム塩緩衝液(pH4.0)1.0g添加し、シリカ濃度5質量%、セルラーゼ濃度0.5質量%の糖化酵素組成物を得た。
 表13に、比較例30、31の糖化酵素組成物を示す。
 糖化反応液の作製、糖の製造方法、糖化反応効率の測定は実施例1~8と同様に行った。糖化率を測定した結果を、表14に示す。コロイダルシリカと異なり、沈降法で得られたシリカ粉末では、糖化率が向上しないことが判る。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015

Claims (9)

  1.  セルロース及びヘミセルロースの少なくとも一方を糖化する糖化反応液であって、セルロース及びヘミセルロースの少なくとも一方と、糖化酵素と、コロイダルシリカとを分散状態で含有し、且つ全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下であることを特徴とする糖化反応液。
  2.  請求項1記載の糖化反応液において、前記コロイダルシリカの平均一次粒子径が、1nm以上、400nm以下、且つ動的光散乱法による測定粒子径が5nm以上、500nm未満であることを特徴とする糖化反応液。
  3.  請求項1又は2記載の糖化反応液において、前記糖化酵素の濃度が、0.005質量%以上、3.0質量%以下であることを特徴とする糖化反応液。
  4.  請求項1~3の何れか一項記載の糖化反応液において、前記コロイダルシリカの濃度が、0.005質量%以上、40質量%以下であることを特徴とする糖化反応液。
  5.  請求項1~4の何れか一項記載の糖化反応液において、前記糖化酵素と前記コロイダルシリカとの質量比率(糖化酵素/コロイダルシリカ)が、0.002以上、300以下であることを特徴とする糖化反応液。
  6.  請求項1~5の何れか一項記載の糖化反応液において、pHが3以上、11以下であることを特徴とする糖化反応液。
  7.  請求項1~6の何れか一項記載の糖化反応液において、前記糖化酵素が、Aspergillus属由来のもの及びTrichoderma属由来のものの少なくとも一方を含むことを特徴とする糖化反応液。
  8. セルロース及びヘミセルロースの少なくとも一方を糖化する糖化組成物であって、糖化酵素と、平均一次粒子径が1nm以上、400nm以下、且つ動的光散乱法による測定粒子径が5nm以上、500nm未満であるコロイダルシリカとを分散状態で含有し、且つ全糖化酵素に対してコロイダルシリカに固定化されていない糖化酵素の割合が25%以上、100%以下であることを特徴とする糖化酵素組成物。
  9.  請求項1~7の何れか一項記載の糖化反応液を用いて糖を製造することを特徴とする糖の製造方法。
PCT/JP2015/071416 2014-08-07 2015-07-28 糖化酵素組成物、糖化反応液及び糖の製造方法 WO2016021447A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP15829969.3A EP3178939B1 (en) 2014-08-07 2015-07-28 Saccharifying enzyme composition, saccharifying reaction solution, and sugar production method
BR112017001641-9A BR112017001641B1 (pt) 2014-08-07 2015-07-28 Mistura de reação de sacarificação, composição de enzima de sacarificação e método de produção de sacarídeo
CN201580042210.XA CN106574285A (zh) 2014-08-07 2015-07-28 糖化酶组合物、糖化反应液和糖的制造方法
US15/328,229 US10696957B2 (en) 2014-08-07 2015-07-28 Saccharification enzyme composition, saccharification reaction solution, and sugar production method
JP2016540164A JP6730681B2 (ja) 2014-08-07 2015-07-28 糖化用組成物、糖化反応液及び糖の製造方法
DK15829969.3T DK3178939T3 (da) 2014-08-07 2015-07-28 Forsukringsenzymsammensætning, forsukringsreaktionsopløsning, og fremgangsmåde til fremstilling af sukker
CA2957312A CA2957312C (en) 2014-08-07 2015-07-28 Saccharification enzyme composition, saccharification reaction solution, and sugar production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014161788 2014-08-07
JP2014-161788 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016021447A1 true WO2016021447A1 (ja) 2016-02-11

Family

ID=55263718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071416 WO2016021447A1 (ja) 2014-08-07 2015-07-28 糖化酵素組成物、糖化反応液及び糖の製造方法

Country Status (8)

Country Link
US (1) US10696957B2 (ja)
EP (1) EP3178939B1 (ja)
JP (1) JP6730681B2 (ja)
CN (1) CN106574285A (ja)
BR (1) BR112017001641B1 (ja)
CA (1) CA2957312C (ja)
DK (1) DK3178939T3 (ja)
WO (1) WO2016021447A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108463562A (zh) * 2016-10-14 2018-08-28 日产化学工业株式会社 糖化反应液、糖化酶组合物、糖的制造方法和乙醇的制造方法
CN109312318A (zh) * 2016-06-17 2019-02-05 日产化学株式会社 糖化反应液、糖化酶组合物、糖的制造方法及乙醇的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6989894B2 (ja) * 2017-11-22 2022-01-12 国立大学法人 東京大学 キチン分解酵素組成物、キチン分解反応液及び糖の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449392A (en) * 1977-09-01 1979-04-18 Cpc International Inc Glucoamylase fixed on cationic colloidal silica
JP2009125006A (ja) * 2007-11-24 2009-06-11 National Institute Of Advanced Industrial & Technology シリカ系メソ多孔体−セルロース、ヘミセルロースの加水分解酵素複合体
US20140147885A1 (en) * 2012-11-28 2014-05-29 Mark R. Mis Particles containing organic catalytic materials and uses
WO2014195898A1 (en) * 2013-06-06 2014-12-11 Richcore Lifesciences Pvt. Ltd. A composition, process and a kit for sugar processing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098985A (ja) 1983-11-02 1985-06-01 Kikkoman Corp 固定化された微生物菌体もしくは酵素の製造法
JPS632595A (ja) 1986-06-20 1988-01-07 Mitsubishi Heavy Ind Ltd 超高圧型静水圧加圧装置
JPH1066594A (ja) 1996-08-27 1998-03-10 Bio Star:Kk 植物繊維を用いたグルコースの製造方法
JP5126728B2 (ja) 2004-11-12 2013-01-23 独立行政法人産業技術総合研究所 リグノセルロース系バイオマス処理方法
JP5469881B2 (ja) * 2009-02-27 2014-04-16 国立大学法人 東京大学 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びにこれらに用いられる酵素糖化用原料の製造方法
KR101448120B1 (ko) * 2012-12-12 2014-10-08 김남도 실리카 나노입자에 고정화된 정제되지 않은 셀룰라아제를 이용한 바이오매스의 당화율을 증진시키는 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449392A (en) * 1977-09-01 1979-04-18 Cpc International Inc Glucoamylase fixed on cationic colloidal silica
JP2009125006A (ja) * 2007-11-24 2009-06-11 National Institute Of Advanced Industrial & Technology シリカ系メソ多孔体−セルロース、ヘミセルロースの加水分解酵素複合体
US20140147885A1 (en) * 2012-11-28 2014-05-29 Mark R. Mis Particles containing organic catalytic materials and uses
WO2014195898A1 (en) * 2013-06-06 2014-12-11 Richcore Lifesciences Pvt. Ltd. A composition, process and a kit for sugar processing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAKER, C.S. ET AL.: "Adsorption of Thermomonospora fusca E5 and Trichoderma reesei Cellobiohydrolase I Cellulases on Synthetic Surfaces", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 94, 2001, pages 29 - 40, XP008185454 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727057B (zh) * 2016-06-17 2021-05-11 日商日產化學工業股份有限公司 糖化反應液、糖化酵素組成物、糖之製造方法及乙醇之製造方法
CN109312318B (zh) * 2016-06-17 2022-06-03 日产化学株式会社 糖化反应液、糖化酶组合物、糖的制造方法及乙醇的制造方法
CN109312318A (zh) * 2016-06-17 2019-02-05 日产化学株式会社 糖化反应液、糖化酶组合物、糖的制造方法及乙醇的制造方法
JP7001053B2 (ja) 2016-06-17 2022-01-19 日産化学株式会社 糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法
JPWO2017217380A1 (ja) * 2016-06-17 2019-04-04 日産化学株式会社 糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法
EP3473710A4 (en) * 2016-06-17 2020-04-01 Nissan Chemical Corporation SUGARING REACTION SOLUTION, SUGARING ENZYME COMPOSITION, METHOD FOR PRODUCING SUGAR AND METHOD FOR PRODUCING ETHANOL
US11001867B2 (en) 2016-06-17 2021-05-11 Nissan Chemical Industries, Ltd. Saccharification reaction mixture, saccharification enzyme composition, sugar production method, and ethanol production method
JP2020072682A (ja) * 2016-10-14 2020-05-14 日産化学株式会社 糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法
CN108463562A (zh) * 2016-10-14 2018-08-28 日产化学工业株式会社 糖化反应液、糖化酶组合物、糖的制造方法和乙醇的制造方法
TWI733921B (zh) * 2016-10-14 2021-07-21 日商日產化學工業股份有限公司 糖化反應液、糖化酵素組成物、糖的製造方法及乙醇的製造方法
EP3372697A4 (en) * 2016-10-14 2019-03-06 Nissan Chemical Corporation SUCTION REACTION LIQUID, SULFUR CYCLE COMPOSITION, SUGAR MANUFACTURING METHOD, AND ETHANOL PRODUCTION PROCESS
CN108463562B (zh) * 2016-10-14 2022-05-03 日产化学工业株式会社 糖化反应液、糖化酶组合物、糖的制造方法和乙醇的制造方法
JPWO2018070478A1 (ja) * 2016-10-14 2018-10-11 日産化学株式会社 糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法
US11359220B2 (en) 2016-10-14 2022-06-14 Nissan Chemical Industries, Ltd. Saccharification reaction mixture, saccharification enzyme composition, sugar production method, and ethanol production method
US11959115B2 (en) 2016-10-14 2024-04-16 Nissan Chemical Corporation Saccharification reaction mixture, saccharification enzyme composition, sugar production method, and ethanol production method

Also Published As

Publication number Publication date
DK3178939T3 (da) 2020-03-23
CA2957312C (en) 2023-10-03
JPWO2016021447A1 (ja) 2017-05-18
BR112017001641B1 (pt) 2022-12-20
EP3178939B1 (en) 2020-02-26
US20170218350A1 (en) 2017-08-03
JP6730681B2 (ja) 2020-07-29
EP3178939A4 (en) 2017-12-27
BR112017001641A2 (pt) 2017-11-21
CN106574285A (zh) 2017-04-19
CA2957312A1 (en) 2016-02-11
EP3178939A1 (en) 2017-06-14
US10696957B2 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
JP5339250B2 (ja) 酵素液の製造方法及び糖の製造方法
JP6730681B2 (ja) 糖化用組成物、糖化反応液及び糖の製造方法
JP2013215187A (ja) 糖の製造方法
JP5019421B2 (ja) 糖の製造方法
JP5385561B2 (ja) 糖の製造方法
JP7001053B2 (ja) 糖化反応液、糖化酵素組成物、糖の製造方法及びエタノールの製造方法
EP3372697B1 (en) Saccharification reaction liquid, saccharification enzyme composition, production method for sugar, and production method for ethanol
JP6474150B2 (ja) バイオマス原料の糖化方法
WO2013038940A1 (ja) 糖の製造方法
JP2011010654A (ja) バイオマスの糖化方法
JP2013255430A (ja) 糖の製造方法
WO2021182607A1 (ja) 下痢抑制剤
JP6325214B2 (ja) セルラーゼの製造方法及び液体培地
BR112018075819B1 (pt) Mistura de reação de sacarificação, composição de enzimas de sacarificação, método para produção de açúcar e método para produção de etanol
JP2013192472A (ja) 糖の製造方法
JP2014176300A (ja) 糖の製造方法
WO2014109345A1 (ja) 糖化用バイオマス組成物、糖化用バイオマス組成物の選定方法、及び糖の製造方法
JP2014117208A (ja) 糖の製造方法
WO2014091890A1 (ja) セルロース含有バイオマスの前処理方法、糖化用バイオマス組成物の製造方法、及び糖の製造方法
JP2013128468A (ja) 糖の製造方法
WO2012077684A1 (ja) 糖の製造方法
WO2011162249A1 (ja) 単糖類、二糖類、及び/又はオリゴ糖の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540164

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15328229

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015829969

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829969

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2957312

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017001641

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017001641

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170126