WO2016021077A1 - 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両 - Google Patents

半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両 Download PDF

Info

Publication number
WO2016021077A1
WO2016021077A1 PCT/JP2014/071119 JP2014071119W WO2016021077A1 WO 2016021077 A1 WO2016021077 A1 WO 2016021077A1 JP 2014071119 W JP2014071119 W JP 2014071119W WO 2016021077 A1 WO2016021077 A1 WO 2016021077A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor device
semiconductor
substrate
gate electrode
Prior art date
Application number
PCT/JP2014/071119
Other languages
English (en)
French (fr)
Inventor
直樹 手賀
久本 大
慶亮 小林
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to DE112014006726.1T priority Critical patent/DE112014006726T5/de
Priority to PCT/JP2014/071119 priority patent/WO2016021077A1/ja
Priority to JP2016539801A priority patent/JP6273020B2/ja
Publication of WO2016021077A1 publication Critical patent/WO2016021077A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a semiconductor device, a power module, a power converter, an automobile and a railway vehicle, and more particularly to a structure of a power device using silicon carbide.
  • SiC silicon carbide
  • the element resistance can be reduced by thinning the drift layer holding the breakdown voltage to about 1/10 and increasing the impurity concentration by about 100 times. Theoretically, it can be reduced by 3 digits or more. Further, since the band gap is about three times larger than that of Si, high-temperature operation is possible, and the SiC semiconductor element is expected to have performance exceeding that of the Si semiconductor element.
  • MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • junction FET junction FET
  • IGBT Insulated-Gate-Bipolar-Transistor
  • a guard ring As a structure formed in the termination region of the semiconductor chip in order to increase the breakdown voltage of the semiconductor chip using SiC, a guard ring, FLR (Field Limiting Ring) or JTE (Junction Termination Extension) is known.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-23310111
  • a dummy gate electrode is interposed on the drift layer between the transistor region and a peripheral termination region via an insulating film. Is described. Here, it is described that carriers in the drift layer are extracted by applying to the dummy gate electrode.
  • a depletion layer spreads at a termination portion when a reverse bias is applied.
  • the MOSFET is turned off, that is, in a blocking state, charges are accumulated in the terminal portion of the semiconductor chip. Therefore, when used for a long time, there is a problem that the breakdown voltage is lower than the initial breakdown voltage.
  • a dummy gate electrode is provided and an inversion layer is formed in the drift layer under the dummy gate electrode as described in Patent Document 1.
  • excess carriers holes
  • the inversion layer cannot catch up and carriers cannot be removed, so that a decrease in breakdown voltage cannot be prevented.
  • a semiconductor device has a MOS structure with a diffusion region and a channel electrically connected to a source in the vicinity of the boundary between an active region and a termination region of a semiconductor chip.
  • the breakdown voltage of the SiC element can be prevented and the SiC element can be miniaturized, so that the performance of the semiconductor device can be improved.
  • the performance of a power module, a power converter, a car, and a railway vehicle can be improved.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG. 2. It is sectional drawing explaining the effect of the semiconductor device which is Embodiment 1 of this invention.
  • 3 is a flow showing a manufacturing process of the semiconductor device according to the first embodiment of the present invention. It is sectional drawing which shows the manufacturing method of the semiconductor device which is Embodiment 1 of this invention.
  • FIG. 8 is a cross-sectional view showing a method for manufacturing the semiconductor device following FIG. 7; FIG.
  • FIG. 9 is a cross-sectional view showing a method for manufacturing the semiconductor device following FIG. 8.
  • FIG. 10 is a cross-sectional view showing a method for manufacturing the semiconductor device following FIG. 9;
  • FIG. 11 is a cross-sectional view showing a method for manufacturing the semiconductor device following FIG. 10;
  • FIG. 12 is a cross-sectional view showing a method for manufacturing the semiconductor device following FIG. 11;
  • FIG. 13 is a cross-sectional view showing a method for manufacturing the semiconductor device following FIG. 12;
  • FIG. 14 is a cross-sectional view showing a method for manufacturing the semiconductor device following FIG. 13; It is a top view which expands and shows a part of semiconductor device which is Embodiment 2 of this invention.
  • FIG. 10 is a cross-sectional view showing a method for manufacturing the semiconductor device following FIG. 9;
  • FIG. 11 is a cross-sectional view showing a method for manufacturing the semiconductor device following FIG. 10;
  • FIG. 12 is a cross-sectional view
  • FIG. 16 is a cross-sectional view taken along the line CC of FIG. It is a circuit diagram of the power converter device which is Embodiment 3 of this invention. It is a circuit diagram of the power converter device which is Embodiment 4 of this invention. It is the schematic which shows the structure of the electric vehicle which is Embodiment 5 of this invention. It is a circuit diagram of the boost converter which comprises the electric vehicle which is Embodiment 5 of this invention. It is a circuit diagram which shows the converter and inverter in the rail vehicle which are Embodiment 6 of this invention.
  • the symbols “ ⁇ ” and “ + ” represent the relative concentrations of impurities of n-type or p-type conductivity.
  • n-type impurities “n ⁇ ”, “n”, “ The impurity concentration increases in the order of “n + ”.
  • the semiconductor substrate containing SiC silicon carbide
  • the SiC substrate and the epitaxial layer formed thereon may be collectively referred to as a substrate.
  • FIG. 1 is a plan view of a semiconductor chip which is a semiconductor device of the present embodiment.
  • FIG. 2 is an enlarged plan view showing a region surrounded by a broken line in FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is a cross-sectional view taken along line BB in FIG.
  • FIG. 5 is a cross-sectional view for explaining the effect of the semiconductor device of the present embodiment.
  • a semiconductor chip CP which is a semiconductor device of the present embodiment, has a plurality of MOSFETs having a cell structure mounted on a SiC substrate, and has a rectangular shape in plan view. .
  • a gate pad GP to which a gate voltage is applied from an external control circuit (not shown) and a source pad SP to which a source voltage is applied are formed on the active region at the center of the semiconductor chip CP.
  • a plurality of units constituting the MOSFET are arranged in the active region below the source pad SP.
  • the gate pad GP and the source pad SP are hatched for easy understanding of the drawing.
  • the semiconductor chip CP has a termination region surrounding the active region in plan view.
  • the termination region is an annular region along the four sides of the semiconductor chip CP.
  • an extraction region 18 including a MOS (Metal-Oxide-Semiconductor) structure with a diffusion region, and an electric field relaxation region that surrounds the outside of the extraction region 18 in a plan view and has an FLR (Field Limiting Ring) described later. 19. That is, the extraction region 18 exists between the active region and the electric field relaxation region 19 in the termination region.
  • a part of the extraction region 18 overlaps the source pad SP in plan view. That is, the end portion of the source pad SP overlaps the termination region 1B in plan view.
  • FIG. 2 is an enlarged plan view of a region surrounded by a broken line in FIG. 1, that is, a region extending from one side of the end of the semiconductor chip CP to the active region.
  • the semiconductor chip CP (see FIG. 1) has an epitaxial layer 2 including a drift layer on a semiconductor substrate (not shown).
  • the upper surface of the epitaxial layer 2 is mainly shown, and illustration of a gate insulating film, a silicide layer, an interlayer insulating film, a contact plug, a pad, a passivation film, and the like on the epitaxial layer 2 is omitted.
  • FIG. 2 is an epitaxial layer 2 and various semiconductor regions formed on the upper surface of the epitaxial layer 2 except for the gate electrodes 13 and 14.
  • the outlines of the gate electrodes 13 and 14 are indicated by broken lines, and the regions where the gate electrodes 13 and 14 are formed are hatched.
  • FIG. 2 an end portion and a termination region 1B of the semiconductor chip CP (see FIG. 1) are shown on the left side of the drawing, and an active region 1A in the center of the semiconductor chip CP is shown on the right side of the drawing.
  • a plurality of unit cells 20 constituting a MOSFET are arranged side by side.
  • the unit cell 20 has various semiconductor regions formed in the epitaxial layer 2 and exposed on the upper surface of the epitaxial layer 2, that is, a body region 4, a source region 7, and a potential fixing region 9.
  • the source region 7 is formed so as to surround the periphery of the potential fixing region 9 in plan view
  • the body region 4 is formed so as to surround the periphery of the potential fixing region 9 and the source region 7. .
  • the gate electrode 12 is not formed inside the region surrounded by the broken line shown in the unit cell 20, and a contact plug (not shown) for supplying power to the potential fixing region 9 and the source region 7 is formed. Yes. Between the unit cells 20, the epitaxial layer 2 in which the body region 4 or the like is not formed is interposed. The gate electrode 12 is formed so as to cover a wide area on the epitaxial layer 2 in the active region 1A, and is electrically connected to the gate pad GP (see FIG. 1). The contact plug is electrically connected to the source pad SP (see FIG. 1).
  • the body region 5 is formed so as to surround a group of the plurality of unit cells 20 in the active region 1A.
  • Body region 5 is formed to overlap with each of active region 1A and termination region 1B. That is, the body region 5 is formed so as to overlap the end portion of the gate electrode 12 in plan view.
  • a plurality of source regions 8 as diffusion regions and a potential fixing region 10 as diffusion regions are formed on the upper surface of the epitaxial layer 2 in the body region 5 of the termination region 1B.
  • a gate electrode 13 is formed via a gate insulating film (not shown) immediately above the region adjacent to the source region 8 and closer to the end of the semiconductor chip than the source region 8.
  • MOS structure a structure in which a gate electrode is formed on a substrate with an insulating film interposed therebetween.
  • the body region 5 and the potential fixing region 10 are annular semiconductor regions formed in the extraction region of the semiconductor chip CP shown in FIG.
  • the gate electrode 13 is an annular semiconductor film formed in the extraction region of the semiconductor chip CP shown in FIG.
  • the potential fixing region 10 having an annular planar layout surrounds most of the periphery of each of the plurality of source regions 8 arranged on the end side of the semiconductor chip with respect to the potential fixing region 10. It is formed as follows. That is, each source region 8 has a rectangular shape in plan view, and a potential fixing region 10 is formed in the vicinity of the source region 8 along the side of the source region 8.
  • the plurality of source regions 8 are arranged along the extending direction of the termination region 1B, and a part of the potential fixing region 10 is formed between the adjacent source regions 8 in the direction. .
  • a body region 5 is formed around each source region 8 and between each source region 8 and the potential fixing region 10.
  • the potential fixing region 10 is not formed between the specific source region 8 and the end portion of the semiconductor chip near the source region 8. Further, the potential fixing region 10 between the adjacent source regions 8 in the extending direction of the termination region 1B extends to a region closer to the end of the semiconductor chip than the source region 8. The potential fixing region 10 is closer to the end of the semiconductor chip than the source region 8.
  • the upper surface of the body region 5 adjacent to the source region 8 and closer to the end of the semiconductor chip than the source region 8 is a region where a channel is formed, and the active region 1A of the gate electrode 13 immediately above the region. A part of the side overlaps the source region 8 and the potential fixing region 10 in plan view.
  • the termination portion of the semiconductor device is within the substrate.
  • a plurality of FLRs 6 are formed to alleviate the electric field.
  • Each of the plurality of FLRs 6 is a semiconductor region formed on the upper surface of the epitaxial layer 2 like the body regions 4 and 5.
  • Each of the plurality of FLRs 6 is formed in an annular shape so as to surround the active region 1A.
  • the boundary between the active region 1A and the termination region 1B is defined by the end portion of the gate electrode 14, but the boundary may be considered to be at another position.
  • the active region 1A includes the extraction region 18 (see FIG. 1) in which the body region 5, the source region 8, the potential fixing region 10, and the gate electrode 13 are formed. Further, the boundary may be considered to be between the adjacent body region 4 and body region 5.
  • the extraction region 18 is formed near the boundary between the active region 1A and the termination region 1B.
  • the extraction region 18 may be considered to be located between the active region 1A and the termination region 1B.
  • the width of the termination region 1B along one side of the rectangular semiconductor chip is, for example, about 200 to 300 ⁇ m.
  • FIG. 3 shows a cross section of the semiconductor chip in a region overlapping with the AA line in FIG. 2, that is, a region including the active region 1A and the termination region 1B but not including the source region 8 (see FIG. 2).
  • the left side of FIG. 3 shows the structure of the termination region 1B at the end of the semiconductor chip CP (see FIG. 1) including a SiC (silicon carbide) MOSFET.
  • the right side of FIG. 3 shows the structure of the active region 1A at the center of the semiconductor chip CP including the SiCMOSFET. That is, the right side of FIG. 2 shows a cross section of a plurality of SiC MOSFETs (hereinafter simply referred to as MOSFETs) in the active region of the semiconductor chip CP.
  • MOSFETs SiC MOSFETs
  • the semiconductor chip that is the semiconductor device of the present embodiment has a SiC substrate 1 that is a semiconductor substrate made of SiC (silicon carbide).
  • the SiC substrate 1 is an n-type semiconductor substrate.
  • An epitaxial layer 2 containing SiC and including a drift layer is formed on the upper surface of SiC substrate 1.
  • Epitaxial layer 2 is an n ⁇ type semiconductor layer having a lower impurity concentration than SiC substrate 1.
  • the n-type impurity introduced into the SiC substrate 1, the epitaxial layer 2, and the drain region 3 is, for example, N (nitrogen).
  • a drain electrode 17 is formed in contact with the lower surface of the SiC substrate 1.
  • the drain electrode 17 is electrically connected to the drain region 3.
  • a silicide layer is formed between the drain region 3 and the drain electrode 17.
  • Drain electrode 17 is formed of a laminated film formed by laminating a titanium (Ti) film, a nickel (Ni) film, and a gold (Au) film in this order from the lower surface side of SiC substrate 1.
  • the thickness of the laminated film is, for example, 0.5 to 1 ⁇ m.
  • body regions 4 and 5 which are p ⁇ type semiconductor regions are formed so as to be spaced apart from each other.
  • the body region 4 is formed in the active region 1A
  • the body region 5 is formed in the termination region 1B.
  • a plurality of p ⁇ -type semiconductor regions FLR6 are arranged side by side in a region closer to the end of the semiconductor chip than the body region 5, that is, the electric field relaxation region 19 (see FIG. 1). Yes.
  • a plurality of FLRs 6 are formed in the termination region 1B.
  • the termination structure formed in the termination region 1B of the semiconductor chip for electric field relaxation is not limited to the FLR 6, and may be a JTE (Junction Termination Extension), a guard ring, or the like.
  • n + -type source region 7 is formed is a semiconductor region, a top surface of the body region 4, in the center of the source region 7, p + -type
  • a potential fixing region 9 which is a semiconductor region is formed.
  • the body regions 4 and 5 and the FLR 6 are formed to a depth halfway of the epitaxial layer 2 and are formed at the same depth.
  • the potential fixing region 9 is formed shallower than the body region 4, and the source region 7 is formed shallower than the potential fixing region 9.
  • a potential fixing region 10 that is a p + type semiconductor region is formed on the upper surface of the body region 5.
  • the formation depth of the potential fixing region 10 is approximately the same as that of the potential fixing region 9 and is shallower than that of the body region 5.
  • the potential fixing region 10 is surrounded by the body region 5 except for its upper surface.
  • the potential fixing region 9 is a region provided for fixing the potential of the body region 4, and the potential fixing region 10 is a region provided for fixing the potential of the body region 5. That is, the source potential is supplied to the body region 4 from the metal film 15 including the source pad on the epitaxial layer 2 through the potential fixing region 9. Further, the source potential is supplied to the body region 5 from the metal film 15 including the source pad on the epitaxial layer 2 through the potential fixing region 10.
  • the p-type impurity introduced into the body regions 4 and 5, the FLR 6 and the potential fixing regions 9 and 10 is, for example, aluminum (Al). Impurity concentrations of potential fixing regions 9 and 10 are higher than those of body regions 4 and 5 and FLR 6. Specifically, the p-type impurity concentration of the body regions 4 and 5 and the FLR 6 is, for example, 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 , and the p-type impurity concentration of the potential fixing regions 9 and 10 is, for example, 1 ⁇ 10 20 cm -3 .
  • the n-type impurity introduced into the source regions 7 and 8 is, for example, nitrogen (N). The impurity concentration of the source regions 7 and 8 is higher than that of the epitaxial layer 2.
  • a gate insulating film 11 made of, for example, silicon oxide (SiO 2 ) is formed on the epitaxial layer 2, and gate electrodes 12 and 13 made of, for example, a polysilicon film have the same height on the gate insulating film 11. It is formed side by side.
  • the gate electrode 12 is formed in the active region 1 ⁇ / b> A, and directly above the body region 4 formed on the upper surface of the epitaxial layer 2 adjacent to the source region 7 and the epitaxial layer 2 between the adjacent plurality of body regions 4. It is formed over the top.
  • the thickness of the gate insulating film 11 is, for example, about 0.05 to 0.15 ⁇ m.
  • the thickness of the gate electrodes 12 and 13 is, for example, about 0.2 to 0.5 ⁇ m.
  • the gate electrode 13 is formed in the termination region 1B, and is formed immediately above the body region 4.
  • the sidewalls and upper surfaces of the gate electrodes 12 and 13 and the upper surface of the gate insulating film 11 are covered with an interlayer insulating film 14.
  • the interlayer insulating film 14 is made of, for example, silicon oxide.
  • a plurality of contact holes penetrating from the upper surface to the lower surface of the laminated film are opened.
  • the upper surfaces of the source region 7 and the potential fixing region 9 are exposed at the bottom of the contact hole in the active region 1A. Further, the upper surfaces of the source region 8 (see FIGS. 2 and 4) and the potential fixing region 10 are exposed at the bottom of the contact hole in the termination region 1B.
  • a metal film 15 is formed on the interlayer insulating film 14 and in the plurality of contact holes.
  • the metal film 15 embedded in each contact hole of the active region 1A is electrically connected to the source region 7 and the potential fixing region 9, and is a contact that supplies a predetermined potential to the source region 7 and the potential fixing region 9. Functions as a plug.
  • the metal film 15 embedded in the contact hole of the termination region 1B is electrically connected to the source region 8 (see FIGS. 2 and 4) and the potential fixing region 10, and the source region 8 and the potential fixing region are connected. 10 functions as a contact plug for supplying a predetermined potential to the capacitor 10.
  • the metal film 15 has, for example, a stacked structure in which a metal (for example, titanium (Ti)) film, a titanium nitride (TiN) film, and an aluminum (Al) film are sequentially stacked on the interlayer insulating film 14.
  • a silicide layer is formed between the contact plug made of the metal film 15 and the upper surface of the epitaxial layer 2.
  • the upper surface of the metal film 15 formed on the interlayer insulating film 14 constitutes a source pad SP (see FIG. 1). That is, the source region 7 and the potential fixing region 9 of each of the plurality of MOSFETs are electrically connected in parallel and connected to the source pad SP. That is, one source pad SP is electrically connected to the plurality of source regions 7.
  • the gate electrode 12 is insulated from the metal film 15.
  • the gate electrode 13 is insulated from the metal film 15. The metal film 15 terminates immediately above the gate electrode 13, and the metal film 15 is not formed immediately above the FLR 6.
  • the gate electrode 13 is electrically connected to the gate electrode 12. Therefore, the gate electrode 13 is turned on or off in conjunction with the gate electrode 12 during the operation of the MOSFET in the active region 1A.
  • the gate electrodes 12 and 13 may be connected to each other in a region (not shown) and integrated. A configuration in which different potentials are supplied to the gate electrodes 12 and 13 may be employed.
  • the passivation film 16 that is an insulating film made of, for example, a SiO 2 film or a polyimide film. That is, the passivation film 16 covers the termination region 1B and is open in the active region 1A, and the gate pad GP (see FIG. 1) and the source pad SP (see FIG. 1) of the active region 1A are exposed from the passivation film 16. Yes.
  • the n-channel MOSFET formed in the semiconductor chip of this embodiment has at least a gate electrode 12, a source region 7, and a drain region 3.
  • a predetermined voltage is applied to the gate electrode 12 to turn on the MOSFET, whereby a current flows from a drain having a high potential to a source having a low potential.
  • the channel region of the MOSFET is formed in the upper part of the body region 4 which is a p ⁇ type semiconductor region.
  • the current when the MOSFET is driven flows from the drain electrode 17 to the drain region 3, the SiC substrate 1, the epitaxial layer 2, the body region 4, and the source region 7 in this order, and then to the metal film 15 that is the source electrode.
  • the metal film 15 that is the source electrode.
  • current flows toward the upper surface of the epitaxial layer 2 in the film thickness direction of the epitaxial layer 2, and then flows to the source region 7 side through the vicinity of the upper surface of the body region 4 that is a channel region.
  • FIG. 4 shows a cross section of the semiconductor chip in a region overlapping the line BB in FIG. 2, that is, a region including the active region 1A and the termination region 1B and including the source region 8 (see FIG. 2).
  • the termination region 1B is shown on the left side of the drawing
  • the active region 1A is shown on the right side of the drawing.
  • the structure shown in FIG. 4 is substantially the same as the structure described with reference to FIG. 3, but the shape of the potential fixing region 10 under the gate electrode 13 in the extraction region 18 (see FIG. 1) is the same as that shown in FIG. Different.
  • the structure shown in FIG. 4 is different from the structure shown in FIG. 3 in that the source region 8 is provided under the electrode 13 in the extraction region 18 (see FIG. 1).
  • the body region 4, the source region 7 and the potential fixing region 9 constituting the MOSFET unit cell 20 are separated from the termination region 1B as compared with the structure shown in FIG. It is located at a distance.
  • the contact plug connected to the source region 7 and the potential fixing region 9 is also arranged at a position farther from the termination region 1B than the structure shown in FIG.
  • a source region 8 is formed on the upper surface of the body region 5 with a depth equivalent to that of the source region 7. That is, the formation depth of the source region 8 is shallower than both the body region 5 and the potential fixing region 10.
  • a potential fixing region 10 is formed on the upper surface of the body region 5 in a region closer to the active region 1A side than the source region 8. The source region 8 and the potential fixing region 10 are covered with the body region 5 except for their upper surfaces. Therefore, the source region 8 and the potential fixing region 10 are separated via the body region 5.
  • the potential fixing region 10 is not formed immediately below the gate electrode 13, but the source region 8 is formed immediately below the end of the gate electrode 13 on the active region 1A side.
  • the upper surface of the body region 5 adjacent to the source region 8 overlaps with the gate electrode 13 in plan view.
  • the channel region is electrically connected to the source region 8.
  • the contact plug made of the metal film 15 formed in the termination region 1B penetrates the interlayer insulating film 14 and the gate insulating film 11, and is electrically connected to the source region 8 and the potential fixing region 10.
  • the source region 8 is a diffusion region to which a source potential is supplied via the metal film 15. Therefore, by turning on the gate electrode 13 and applying a predetermined voltage to the source region 8, the body region 5 that is adjacent to the source region 8 and is exposed directly below the gate electrode 13 on the upper surface of the epitaxial layer 2 is A channel is formed. That is, the body region 5 adjacent to the source region 8 and exposed on the upper surface of the epitaxial layer 2 immediately below the gate electrode 13 is a channel in which a channel is formed when the gate electrode 13 is turned on. It is an area.
  • a semiconductor element formed in the active region 1A may be an IGBT, a pn junction diode, or a Schottky barrier diode, or a combination of these semiconductor elements. May be.
  • the MOS structure of the extraction region 18 (see FIG. 1), which is a feature of the semiconductor device of the present embodiment, has the same structure as the gate electrode 12 of the MOSFET. For this reason, it is convenient in terms of the manufacturing process to form the MOS structure in the extraction region 18 on the semiconductor chip and to provide a MOSFET in the active region 1A.
  • FIG. 5 shows the sectional view shown in FIG. 3 with the source region 8 (see FIGS. 2 and 4) added. That is, in order to explain the effects of the semiconductor device of this embodiment in an easy-to-understand manner, the source region 8 is shown on the upper surface of the potential fixing region 10 in FIG. 5, but actually the potential fixing region as shown in FIG. 10 and the source region 8 are separated from each other.
  • n-channel MOSFET When an n-channel MOSFET is formed in the active region of the main surface of the SiC substrate and the substrate having an epitaxial layer, when the MOSFET is turned off, that is, in a blocking state, a carrier is present at the terminal end of the semiconductor chip. (Hall) accumulates.
  • the time during which the MOSFET that repeatedly turns on and off is in the off state is, for example, about 100 ⁇ sec.
  • the time in which the MOSFET is in the off state can be obtained if the holes accumulated in the terminal portion cannot be removed.
  • holes are also accumulated at the terminal portion, so that dielectric breakdown occurs while the semiconductor device is continuously used. If dielectric breakdown occurs, the semiconductor device cannot maintain a withstand voltage, and thus the semiconductor device reaches the end of its life.
  • the total off-state time is 1000 to 10,000 from the viewpoint of maintaining the breakdown voltage for a long time. It is required that dielectric breakdown does not occur until the time is reached.
  • a termination structure such as FLR at the end of the semiconductor chip
  • electric field concentration can be prevented, and further, the width of the termination region in which the termination structure is formed can be increased. It is conceivable to increase the allowable amount of holes accumulated in the terminal portion. For example, if the number of FLRs formed by performing multi-stage implantation is increased, the time until dielectric breakdown can be extended. In order to maintain the withstand voltage for about 1000 to 10,000 hours in the blocking test, the width of the termination region along one side of the rectangular semiconductor chip needs to be about 600 ⁇ m, for example.
  • MOS structure in order to remove holes generated in the high electric field portion at the terminal end of the semiconductor chip, it is conceivable to form a MOS structure immediately above the region where the electric field concentrates in the substrate. That is, it can be considered that a gate electrode is formed on a substrate in an intermediate region between a termination region and an active region (element region) through a gate insulating film. However, in this case, no diffusion region is formed on the upper surface of the substrate next to the MOS structure, and no channel is formed immediately below the gate electrode constituting the MOS structure. When such a MOS structure is provided and a voltage is applied to the gate electrode, an inversion layer is formed on the upper surface of the substrate under the gate electrode, so that holes accumulated under the gate electrode can be removed.
  • the semiconductor device of the present embodiment it is possible to prevent dielectric breakdown by supplying electrons to the channel through the diffusion region formed on the upper surface of the epitaxial layer and removing the holes.
  • a state in which 0V is applied to the gate electrodes 12 and 13, 0V is applied to the metal film 15 as the source electrode, and 1500V is applied to the drain electrode 17 is MOSFET Does not operate and is turned off.
  • a reverse bias voltage is applied to the semiconductor device, a depletion layer spreads in the epitaxial layer 2 in the termination region 1B.
  • the depletion layer is generated in a region closer to the end of the semiconductor chip than the potential fixing region 10.
  • the electric field concentrates on the upper surface of the body region 5 adjacent to the potential fixing region 10 on the terminal end side of the semiconductor chip, and holes are accumulated.
  • charges are accumulated on the upper surface of the body region 5 at the boundary between the body region 5 which is the p ⁇ type region and the potential fixing region 10 which is the p + type region and in the vicinity of the boundary on the terminal end side of the semiconductor chip. Is done. If such charge accumulation is repeated, then dielectric breakdown occurs.
  • a predetermined potential is supplied to the gate electrode 13 and the source electrode, and electrons are supplied to the source region 8 to extract holes. be able to. That is, a current flows from the channel immediately below the gate electrode 13 to the source electrode side through the source region 8, thereby resetting the charge accumulated in the channel.
  • the breakdown voltage is increased for about 1000 to 10,000 hours, for example, by increasing the width of the termination region. Need to keep.
  • the gate electrode 13 is repeatedly turned on and off in conjunction with the MOSFET in the active region 1A that performs a switching operation at high speed. Therefore, when the MOSFET is in the off state, holes are formed in the termination region. Even if accumulated, the holes are removed every time the gate electrode 13 is turned on. Therefore, the time for maintaining the withstand voltage required for the semiconductor chip may be about 100 ⁇ sec when the MOSFET is turned off. In practice, it is necessary to ensure a margin for dielectric breakdown. Therefore, if breakdown voltage can be maintained for about 1 second in the blocking state, it is possible to prevent dielectric breakdown from occurring due to an increase in holes.
  • the holes accumulated in the termination region 1B can be reset every time the gate electrode 13 is turned on, so that the reverse bias is applied to accumulate the time when the MOSFET is turned off. Accordingly, an increase in the number of holes can be prevented. For this reason, it is possible to eliminate the possibility of causing dielectric breakdown due to an increase in the number of holes in the terminal portion. Thus, the reliability of the semiconductor device can be improved.
  • the width of the termination region 1B is not increased, by providing a MOS structure with a diffusion region in the extraction region 18 (see FIG. 1), dielectric breakdown due to accumulation of charges in the termination region 1B. Can be prevented.
  • the width of the termination region along one side of the rectangular semiconductor chip can be reduced to, for example, about 1/2 or 1/3. Thereby, since the size of the semiconductor chip can be reduced, the performance of the semiconductor device can be improved.
  • the diffusion region and the MOS structure of the extraction region 18 are the same structure as the diffusion region and the MOS structure constituting the MOSFET of the active region 1A. Therefore, the structure of the extraction region 18 for removing the charge in the termination region can be realized at low cost and simply.
  • a depletion layer that spreads in the termination region 1B when a reverse bias is applied occurs in a region closer to the end of the semiconductor chip than the potential fixing region 10.
  • the source region 8 which is an n + type semiconductor region
  • a current flows through the depletion layer and the source region 8 due to a short circuit, so that holes cannot be removed.
  • the source is placed inside the depression portion of the potential fixing region 10 in a plan view.
  • the potential fixing region 10 is formed so as to surround the source region 8 except for one side on the end side of the semiconductor chip, and the adjacent source regions 8 are adjacent to each other. By extending the potential fixing region 10 to the end portion side of the semiconductor chip, it is possible to prevent the depletion layer and the source region 8 from contacting each other.
  • the source region 8 is not completely surrounded by the potential fixing region 10, and the source region 8 is not in contact with the potential fixing region 10. This is because when the source region 8 is completely surrounded by the potential fixing region 10, it is difficult to form an inversion layer in a region below the gate electrode 13 and adjacent to the source region 8. It is because it becomes impossible to remove. Therefore, the potential fixing region 10 is not formed in a region adjacent to the source region 8 and on the terminal end side of the semiconductor chip, that is, a region where holes are easily accumulated. The terminal end side of the semiconductor chip is not covered with the potential fixing region 10. As a result, it is possible to prevent the inversion layer from being easily formed, so that holes can be efficiently removed.
  • FIG. 6 is a flow of the manufacturing process of the semiconductor device of this embodiment.
  • 7 to 14 are cross-sectional views illustrating the manufacturing process of the semiconductor device of the present embodiment. 7 to 14, the left side of the figure shows a termination region 1B serving as a termination part of the semiconductor chip, and the right side of the figure shows an active region 1A where a MOSFET is formed.
  • an epitaxial layer 2 that is an n ⁇ -type semiconductor layer of SiC by an epitaxial growth method is formed on the main surface of the SiC substrate 1 and includes a drift layer. Is formed (step S1 in FIG. 6). Further, an n-type impurity (for example, nitrogen (N)) is implanted at a high concentration on the back surface of the SiC substrate, thereby forming a drain region 3 that is an n + -type semiconductor region.
  • N nitrogen
  • SiC substrate 1 is doped with n-type impurities at a relatively high concentration.
  • the n-type impurity is, for example, nitrogen (N), and the impurity concentration of the n-type impurity is, for example, 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 .
  • N-type impurity (for example, nitrogen (N)) lower than the impurity concentration of SiC substrate 1 is introduced into epitaxial layer 2.
  • the impurity concentration of the epitaxial layer 2 is determined depending on the rated breakdown voltage of the element, and the impurity concentration is, for example, 1 ⁇ 10 14 to 1 ⁇ 10 17 cm ⁇ 3 .
  • the thickness of the epitaxial layer 2 is 3 to 80 ⁇ m, for example.
  • step S2 in FIG. 6 various impurity implantations are performed to form various semiconductor regions on the upper surface of the epitaxial layer 2 (step S2 in FIG. 6). That is, first, as shown in FIG. 8, as one step in step S ⁇ b> 2 of FIG. 6, after forming mask MP ⁇ b> 1 on the upper surface of epitaxial layer 2, p-type impurities ( For example, aluminum (Al) is ion-implanted.
  • p-type impurities For example, aluminum (Al) is ion-implanted.
  • a plurality of FL ⁇ 6s that are p ⁇ -type semiconductor regions are formed on the upper surface of the epitaxial layer 2 in the termination region 1B, and the body region 5 that is a p ⁇ -type semiconductor region is formed on the upper surface of the epitaxial layer 2 in the termination region 1B.
  • a plurality of body regions 4 which are p ⁇ type semiconductor regions are formed on the upper surface of the epitaxial layer 2 in the active region 1A. That is, a plurality of body regions 4, body regions 5, and a plurality of FLRs 6 are formed in this order in the direction from the active region 1A side toward the termination region 1B.
  • the mask 22 is a film exposing a plurality of locations on the upper surface of the epitaxial layer 2 in the active region 1A and a plurality of locations on the upper surface of the epitaxial layer 2 in the termination region 1B.
  • a material of the mask for example, SiO 2 (silicon oxide) or a photoresist is used.
  • the p-type impurity concentration of body regions 4 and 5 and FLR 6 is, for example, 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the body region 5 is an annular semiconductor region surrounding the active region 1A.
  • a mask 23 is formed on the upper surface of the epitaxial layer 2, and then on the upper surface of the epitaxial layer 2.
  • a p-type impurity for example, aluminum (Al)
  • the upper surface of the epitaxial layer 2 in the active region 1A, the potential fixing region 9 is a semiconductor region of p + -type plurality formation, on the upper surface of the epitaxial layer 2 in the end region 1B, is p + -type semiconductor region
  • a potential fixing region 10 is formed.
  • the mask 23 is a film that exposes a plurality of locations on the upper surface of the epitaxial layer 2 in the active region 1A.
  • SiO 2 or a photoresist is used as the material of the mask 23.
  • the potential fixing regions 9 and 10 are formed shallower than the body regions 4 and 5.
  • the p-type impurity concentration of the potential fixing regions 9 and 10 is, for example, 1 ⁇ 10 20 cm ⁇ 3 .
  • the potential fixing region 9 is formed at the center of the body region 4 in plan view.
  • the potential fixing region 10 is formed on the upper surface of the body region 5 of the termination region 1B and at a position away from the end of the body region 5 in plan view.
  • step S ⁇ b> 2 of FIG. 6 after removing the mask 23, forming a mask 24 on the upper surface of the epitaxial layer 2, An n-type impurity (for example, nitrogen (N)) is ion-implanted.
  • the upper surface of the body region 5 the source region 8 is a semiconductor region of n + -type forms a plurality, on the upper surface of the potential fixing region 9, to form a source region 7 is a semiconductor region of n + -type.
  • the shape of the source region 8 formed at the back of the potential fixing region 10 at a position different from the cross section of the drawing is indicated by a broken line. The same applies to FIGS. 11 to 14 used in the following description.
  • SiO 2 or a photoresist is used as the material of the mask 24.
  • the mask 24 is a pattern that exposes the upper surface of the body region 5 at a plurality of locations in the termination region 1B and exposes the upper surface of the body region 4 around each potential fixing region 9 in the active region 1A.
  • the source region 7 is formed so as to surround the potential fixing region 9 in plan view.
  • the plurality of source regions 8 are formed so as to be arranged along the depth direction of the drawing, that is, the extending direction of the termination region 1B.
  • the source regions 7 and 8 are formed shallower than the potential fixing regions 9 and 10.
  • a carbon (C) film is formed using, for example, a plasma CVD (Chemical Vapor Deposition) method so as to cover the upper surface of the epitaxial layer 2 and the back surface of the SiC substrate 1.
  • a plasma CVD Chemical Vapor Deposition
  • heat treatment is performed at a temperature of 1500 ° C. or more for about 2 to 3 minutes (step S3 in FIG. 6).
  • the carbon (C) film is removed by, for example, plasma processing.
  • an insulating film 11a and an n-type polysilicon film are sequentially formed on the upper surface of the epitaxial layer 2, and then the polysilicon film is processed using a photolithography technique and a dry etching method.
  • gate electrodes 12 and 13 made of a polysilicon film are formed (step S4 in FIG. 6).
  • the polysilicon film is formed by, for example, a CVD method.
  • the thickness of the insulating film 11a is, for example, about 0.05 to 0.15 ⁇ m.
  • the thickness of the gate electrodes 12 and 13 is, for example, about 0.2 to 0.5 ⁇ m.
  • the gate electrodes 12 and 13 may be connected to each other in a region not shown, and may be integrated.
  • the gate electrode 13 is formed so as to overlap each of the end portions of the source region 8 and the body region 5 on the FLR 6 side in plan view.
  • the gate electrode 13 is formed immediately above the body region 5 adjacent to the source region 8 on the FLR 6 side with respect to the source region 8.
  • the gate electrode 12 is formed over the body region 4 adjacent to the source region 7 and directly over the upper surface of the epitaxial layer 2 adjacent to the body region 5.
  • an interlayer insulating film 14 is formed on the upper surface of the epitaxial layer 2 so as to cover the gate electrodes 12, 13 and the insulating film 11a by, for example, a plasma CVD method.
  • the upper surface of the epitaxial layer 2 is exposed by processing the interlayer insulating film 14 and the insulating film 11a using a dry etching method.
  • the gate insulating film 11 made of the insulating film 11a is formed under each of the gate electrodes 12 and 13.
  • a contact hole penetrating the interlayer insulating film 14 and the gate insulating film 11 is opened in the active region 1A. At the bottom of the contact hole, a part of the source region 7 and the upper surfaces of the potential fixing regions 9 are respectively formed. Is exposed.
  • a contact hole penetrating the interlayer insulating film 14 and the gate insulating film 11 is opened, and a part of the upper surface of each of the source region 8 and the potential fixing region 10 is exposed at the bottom of the contact hole. To do.
  • a contact hole is formed through the interlayer insulating film 14 and exposing the upper surface of the gate electrode 12 by the above process. When the gate electrode 13 and the gate electrode 12 are separated, a contact hole exposing the upper surface of the gate electrode 13 is also opened by the above process.
  • a silicide layer is formed on each of the bottom of the contact hole in the active region 1A and the bottom of the contact hole in the termination region 1B by using a well-known salicide technique. That is, after depositing a metal (for example, nickel (Ni)) film on the epitaxial layer 2 by sputtering, for example, heat treatment is performed at 600 to 1000 ° C. to cause the metal film and the epitaxial layer 2 to react with each other. A silicide layer made of silicide (NiSi) is formed. Thereafter, the excess metal film that has not reacted is removed.
  • a metal for example, nickel (Ni)
  • the metal film 15 is formed on the interlayer insulating film 14 using, for example, a sputtering method so as to bury the inside of each contact hole. Then, the metal film 15 is processed using a photolithography technique and an etching method to form a source electrode made of the metal film 15.
  • the metal film 15 shown in FIG. 13 is electrically connected to the source regions 7 and 8 and the potential fixing regions 9 and 10. Further, in this step, a metal film 15 insulated from the source electrode is formed in a region not shown in the figure by being electrically connected to the gate electrodes 12 and 13.
  • the metal film 15 can be formed, for example, by sequentially stacking a titanium (Ti) film, a titanium nitride (TiN) film, and an aluminum (Al) film. In the etching, the metal film 15 which is a part of the metal film in the termination region 1B and is formed on the FLR 6 side with respect to the gate electrode 13 is removed.
  • an insulating film made of, for example, a SiO 2 film or a polyimide film is formed on the epitaxial layer 2 by using a CVD method or the like, and then the active region is formed by using a photolithography technique and an etching method.
  • a passivation film 16 made of the insulating film is formed.
  • the termination region 1 ⁇ / b> B the upper surface, the side wall, and the upper surface of the interlayer insulating film 14 of the metal film 15 are covered with the passivation film 16.
  • the passivation film 16 covers the termination region 1B and opens in the active region 1A.
  • the upper surface of the metal film 15 exposed from the passivation film 16 and connected to the source regions 7 and 8 constitutes a source pad.
  • the upper surface of the metal film 15 exposed from the passivation film 16 and connected to the gate electrode 12 constitutes a gate pad.
  • Each of the source pad and the gate pad is a metal film to which an external wiring is electrically connected.
  • a silicide layer (not shown) and a drain electrode 17 as a back electrode are sequentially formed on the back surface of the SiC substrate 1. That is, a metal film is formed on the back surface of the SiC substrate 1 by, for example, a sputtering method, and laser silicidation heat treatment is performed to react the metal film with the SiC substrate 1 to form a silicide layer (not shown). To do. The silicide layer is in contact with the lower surface of the drain region 3.
  • the drain electrode 17 is composed of a laminated film of 0.5 to 1 ⁇ m formed by laminating a titanium (Ti) film, a nickel (Ni) film, and a gold (Au) film in order from the lower surface side of the silicide layer.
  • the semiconductor chip including the SiC substrate is cut into individual pieces by a dicing process, whereby the conductor chip of the present embodiment shown in FIGS. 1 to 4 is completed.
  • the semiconductor chip has a plurality of MOSFETs having at least a gate electrode 12, a source region 7, and a drain region 3 in the active region 1A.
  • the semiconductor chip has a MOS structure including a gate insulating film 11 and a gate electrode 13 formed on the epitaxial layer 2 in the vicinity of the boundary between the active region 1A and the termination region 1B.
  • the upper surface of the layer 2 has a channel region, and has a source region 8 that is a diffusion region adjacent to the channel region.
  • the SiC power element By forming the SiC power element by the above manufacturing method of the present embodiment, the same effect as that of the semiconductor device described with reference to FIGS. 1 to 5 can be obtained. Further, the structure used for removing holes accumulated in the main supporting portion of the semiconductor chip, that is, the gate insulating film 11, the gate electrode 13, the source region 8, the potential fixing region 10 and the body region 5 constitute a MOSFET of the active region 1A.
  • the gate insulating film 11, the gate electrode 12, the source region 7, the potential fixing region 9 and the body region 4 can be formed by the same process. Therefore, the structure of the extraction region for removing the charge in the termination region can be formed without increasing the number of manufacturing steps. Therefore, a semiconductor device with high reliability and long life can be easily realized at low cost.
  • FIG. 15 is an enlarged plan view of a part of the semiconductor device according to the present embodiment, similar to FIG. 16 is a cross-sectional view taken along the line CC of FIG.
  • the semiconductor device of the present embodiment is different from the first embodiment in the layout of the potential fixing region 10 and the source region 8, but the other structures are the same as those in the first embodiment. It is the same.
  • both the potential fixing region 10 and the source region 8 extend along the side of the end portion of the semiconductor chip, and are formed in an annular shape so as to surround the active region 1A in the central portion of the semiconductor chip. Yes. In the direction between the active region 1A and the end of the semiconductor chip, that is, in the gate length direction of the gate electrode 13, the source region 8 is sandwiched between the potential fixing regions 10. That is, unlike the first embodiment, the source region 8 is in contact with the potential fixing region 10 on both the active region 1A side and the end side of the semiconductor chip. That is, in the first embodiment, the potential fixing region 10 is not formed between the end portion of the semiconductor chip and the source region 8, but here the potential fixing portion is fixed between the end portion of the semiconductor chip and the source region 8. Region 10 is formed.
  • the boundary line between the potential fixing region 10 and the body region 5 extends linearly along the extending direction of the termination region 1B.
  • the end of the gate electrode 13 on the active region 1A side overlaps the end of the source region 8 in plan view. Further, the gate electrode 13 overlaps with the potential fixing region 10 in contact with the end of the source region 8 in plan view, and further overlaps with the body region 5 in contact with the potential fixing region 10 in plan view. In other words, the gate electrode 13 extends over the part of the body region 5, the potential fixing region 10, and the part of the source region 8 formed on the upper surface of the epitaxial layer 2 in order from the end side of the semiconductor chip. Is formed.
  • the potential fixing region 10 is formed at a position separated from the end of the body region 5. Further, on the upper surface of the potential fixing region 10, the source region 8 is formed at a position separated from the end of the potential fixing region 10. As shown in FIG. 16, a contact plug made of a metal film 15 formed on the active region 1A side with respect to the gate electrode 13 is connected to the source region 8 and the potential fixing region 10.
  • the MOS structure including the gate electrode 13 and the source region 8 which is a diffusion region are formed in the extraction region 18 (see FIG. 1).
  • a channel region in which the amount of electricity flows when the gate electrode 13 is turned on is formed in the potential fixing region 10 and the body region 5 that are adjacent to the source region 8 and overlap with the gate electrode 13 in plan view.
  • the semiconductor device of this embodiment can be formed in the same procedure as the manufacturing process described in Embodiment 1 with reference to FIGS.
  • the present embodiment when a reverse bias is applied, holes that accumulate on the upper surface of the body region 5 near the boundary between the body region 5 and the potential fixing region 10 in the termination region 1B are formed in the gate electrode 13. Is turned on, a channel is formed on the upper surface of the epitaxial layer 2 immediately below the gate electrode 13, and electrons are removed by supplying electrons to the source region 8. That is, since an inversion layer and a channel can be formed in a region where holes are likely to accumulate, electrons supplied to the source region 8 recombine with the holes, and the holes are extracted to the source electrode side.
  • the holes accumulated in the termination region 1B can be reset every time the gate electrode 13 is turned on, the reverse bias is applied to accumulate the time during which the MOSFET is turned off. Accordingly, an increase in the number of holes can be prevented. For this reason, it is possible to eliminate the possibility of causing dielectric breakdown due to an increase in the number of holes in the terminal portion. Thus, the reliability of the semiconductor device can be improved.
  • the present embodiment it is possible to prevent dielectric breakdown without increasing the width of the termination region 1B. Thereby, since the size of the semiconductor chip can be reduced, the performance of the semiconductor device can be improved. Further, the diffusion region and the MOS structure of the extraction region 18 (see FIG. 1), which is a feature of the present embodiment, are the same structure as the diffusion region and the MOS structure constituting the MOSFET of the active region 1A. Therefore, the structure of the extraction region 18 for removing the charge in the termination region can be realized at low cost and simply.
  • a depletion layer extending to the termination region 1B when a reverse bias is applied occurs in a region closer to the end of the semiconductor chip than the potential fixing region 10. That is, the depletion layer is difficult to be formed in the potential fixing region 10.
  • the depletion layer generated in the termination region 1 ⁇ / b> B is formed by covering the source region 8 with the potential fixing region 10 in the plan view. The contact with the source region 8 is prevented. This prevents holes from being removed due to a short circuit between the depletion layer and the source region 8.
  • the width of the potential fixing region 10 in the gate length direction of the gate electrode 13 is reduced. be able to.
  • the width of the source region 8 in the gate length direction of the gate electrode 13 can be reduced. This is different from the first embodiment because the source region 8 can be formed in a shape that extends continuously, not intermittently, so that a sufficient area can be secured even with a narrow pattern. This is because it can. Therefore, since the size of the semiconductor chip can be reduced, the performance of the semiconductor device can be improved.
  • FIG. 17 is a circuit diagram of the power conversion device (inverter) of the present embodiment.
  • the inverter includes a plurality of SiC power MISFETs 304 and diodes 305, which are switching elements, in a power module 302.
  • the SiC power MISFET 304 and the diode 305 are connected in antiparallel to each other between the power supply voltage Vcc and the input potential of the load (for example, motor) 301 via terminals 306 to 310.
  • the element constitutes the upper arm.
  • the SiC power MISFET element 304 and the diode 305 are connected in antiparallel to each other between the input potential of the load 301 and the ground potential GND, and these elements constitute a lower arm.
  • the load 301 is provided with two SiC power MISFETs 304 and two diodes 305 in each single phase, and is provided with six switching elements 304 and six diodes 5 in three phases.
  • the power supply voltage Vcc is connected to the drain electrode of each single-layer SiC power MISFET element 304 via a terminal 306, and the ground potential GND is connected to each single-layer SiC power MISFET element 304 via a terminal 310.
  • the load 301 is connected to the source electrode of each single-layer SiC power MISFET element 304 of the upper arm of each single layer via each of the terminals 307 to 309, and is connected to each of the terminals 307 to 309 via each of the terminals 307 to 309. It is connected to the drain electrode of each single-layer SiC power MISFET element 304 of the single-layer lower arm.
  • a control circuit 303 is connected to the gate electrode of each SiC power MISFET 304 via terminals 311 and 312, and the SiC power MISFET 304 is controlled by the control circuit 303. Therefore, the inverter of the present embodiment can drive the load 301 by controlling the current flowing through the SiC power MISFET 304 constituting the power module 302 by the control circuit 303.
  • the SiC power MISFET 304 is a MOSFET formed on the semiconductor chip described in the first embodiment or the second embodiment. As shown in FIG. 17, a built-in pn diode included in the MOSFET is formed in the SiC power MISFET 304.
  • the built-in pn diode is configured by a pn junction between a p-type region including the potential fixing region 9 and the body region 4 shown in FIG. 3 and an n-type region including the drain region 3, the SiC substrate 1 and the epitaxial layer 2, for example. .
  • the anode of the built-in pn diode is connected to the source electrode of the MOSFET, and the cathode is connected to the drain electrode of the MOSFET. Therefore, in each single layer shown in FIG. 17, the built-in pn diode is connected in antiparallel to the MOSFET. Therefore, the built-in pn diode and the diode 305 are connected in parallel.
  • the diode 305 is, for example, a Schottky barrier diode mounted on a semiconductor chip together with the MOSFET.
  • the function of the SiC power MISFET 304 in the power module 302 will be described below.
  • the control circuit 303 controls the SiC power MISFET 304 to perform a pulse width modulation operation that dynamically changes the pulse width of the rectangular wave.
  • the output rectangular wave is smoothed by passing through the inductor, and becomes a pseudo desired sine wave.
  • the SiC power MISFET 304 creates a rectangular wave for performing this pulse width modulation operation.
  • the width of the termination region can be reduced to increase the active region and increase the current.
  • the module 302 can be reduced in size and weight. Therefore, the power conversion device having the power module 302 can be reduced in size and weight.
  • the MOS structure and the diffusion region are provided in the termination region of the semiconductor chip and the channel is formed, thereby preventing the breakdown voltage of the semiconductor chip from being lowered.
  • the life of the semiconductor chip can be extended. Therefore, by using the SiC power MISFET 304 formed on the semiconductor chip, the reliability of the power module 302 and the power conversion device of the present embodiment can be improved, and the power module 302 and the power of the present embodiment can be improved. The life of the conversion device can be extended.
  • the power conversion device of the present embodiment can be a three-phase motor system.
  • the load 301 shown in FIG. 17 is a three-phase motor, and the power converter using the semiconductor device described in the first embodiment or the second embodiment is used as a switching element, thereby reducing the size of the three-phase motor system. Can be realized.
  • FIG. 18 is a circuit diagram showing the power conversion device (inverter) of the present embodiment.
  • the inverter includes a SiC power MISFET 404 as a switching element in a power module 402.
  • a SiC power MISFET 404 is connected between a power supply voltage Vcc and an input potential of a load (for example, a motor) 401 via terminals 405 to 409, and these elements constitute an upper arm.
  • An SiC power MISFET element 404 is also connected between the input potential of the load 401 and the ground potential GND, and these elements constitute a lower arm. That is, in the load 401, two SiC power MISFETs 404 are provided for each single phase, and six switching elements 404 are provided for three phases.
  • a control circuit 403 is connected to the gate electrode of each SiC power MISFET 304 via terminals 410 and 411, and the SiC power MISFET 404 is controlled by the control circuit 403. Therefore, in the inverter according to the present embodiment, the load 401 can be driven by controlling the current flowing through the SiC power MISFET 404 in the power module 402 by the control circuit 403.
  • the built-in pn diode is connected to the SiC power MISFET 404 in antiparallel.
  • the inverter including the inside of the power module 402 of the present embodiment is different from that of the third embodiment in that the diode 305 (see FIG. 17) is not connected to each single-layer SiC power MISFET 404.
  • the SiC power MISFET 404 in the power module 402 will be described below. As one of the functions of the SiC power MISFET, this embodiment also has a function of generating a rectangular wave for performing a pulse width modulation operation, as in the third embodiment. In the present embodiment, the SiC power MISFET 404 also serves as the diode 305 (see FIG. 17) of the third embodiment.
  • the SiC power MISFET 404 plays this role.
  • the SiC power MISFET 404 plays a role of flowing a circulating current.
  • the gate of the SiC power MISFET 404 is turned on at the time of reflux, and the SiC power MISFET 404 is reversely conducted.
  • the return conduction loss is determined not by the characteristics of the diode 305 but by the characteristics of the SiC power MISFET 404. Further, when performing synchronous rectification drive, in order to prevent the upper and lower arms from being short-circuited, a non-operation time is required in which both the upper and lower SiC power MISFETs are turned off. During this non-operation time, the built-in pn diode formed by the drift layer and the p-type body layer of the SiC power MISFET 404 is driven. However, the carrier distance of SiC is shorter than that of Si and the loss during the non-operation time is small, which is equivalent to, for example, the case where the diode 305 of the third embodiment is an SiC Schottky barrier diode.
  • the power module 302 can be reduced in size and weight by using the semiconductor device of the first embodiment or the second embodiment for the SiC power MISFET 404. Therefore, the power conversion device having the power module 302 can be reduced in size and weight. Since the diode is not provided separately from the SiC power MISFET 404, the power module 402 can be further reduced in size.
  • the MOS structure and the diffusion region are provided in the termination region of the semiconductor chip and the channel is formed, thereby preventing the breakdown voltage of the semiconductor chip from being lowered.
  • the life of the semiconductor chip can be extended. Therefore, by using the SiC power MISFET 404 formed on the semiconductor chip, the reliability of the power module 402 and the power conversion device of the present embodiment can be improved, and the power module 402 and the power of the present embodiment can be improved. The life of the conversion device can be extended.
  • the power conversion device of the present embodiment can be a three-phase motor system.
  • a load 401 shown in FIG. 18 is a three-phase motor, and the power converter using the semiconductor device described in the first embodiment or the second embodiment is used as a switching element, thereby reducing the size of the three-phase motor system. Can be realized.
  • FIG. 19 is a schematic diagram showing the configuration of the electric vehicle of the present embodiment.
  • FIG. 20 is a circuit diagram of the boost converter according to the present embodiment.
  • the electric vehicle drives a three-phase motor 503 that allows power to be input / output to / from a drive shaft 502 to which drive wheels 501a and 501b are connected, and three-phase motor 503.
  • Inverter 504 and battery 505 are provided.
  • the electric vehicle of the present embodiment includes a boost converter 508, a relay 509, and an electronic control unit 510.
  • the boost converter 508 is connected to a power line 506 to which an inverter 504 is connected and a battery 505. It is connected to the power line 507.
  • the three-phase motor 503 is a synchronous generator motor including a rotor embedded with permanent magnets and a stator wound with a three-phase coil.
  • the inverter 504 the inverter described in the third embodiment or the fourth embodiment is used.
  • the boost converter 508 has a configuration in which a reactor 511 and a smoothing capacitor 512 are connected to an inverter 513.
  • the inverter 513 is the same as the inverter described in the fourth embodiment, and the element configuration in the inverter is the same.
  • the switching element is the SiC power MISFET 514 and is driven by synchronous rectification as in the fourth embodiment.
  • the wheels are driven by the three-phase motor 503 by supplying the output to the three-phase motor 503 using the inverter 504 and the boost converter 508 which are power converters.
  • the electronic control unit 510 in FIG. 19 includes a microprocessor, a storage device, and an input / output port, and a signal from a sensor that detects the rotor position of the three-phase motor 503, a charge / discharge value of the battery 505, or the like.
  • Electronic control unit 510 outputs a signal for controlling inverter 504, boost converter 508, and relay 509.
  • the power converters of the third and fourth embodiments can be used for the inverter 504 and the boost converter 508 which are power converters.
  • the three-phase motor system of the third embodiment or the fourth embodiment can be used for a three-phase motor system including the three-phase motor 503 and the inverter 504.
  • the electric vehicle has been described.
  • the above-described three-phase motor system can be similarly applied to a hybrid vehicle that also uses an engine and a fuel cell vehicle in which the battery 505 is a fuel cell stack. .
  • FIG. 21 is a circuit diagram including a converter and an inverter of the railway vehicle according to the present embodiment.
  • electric power of, for example, 25 kV is supplied to the railway vehicle from the overhead line OW via the pantograph PG.
  • the voltage is stepped down to 1.5 kV via the transformer 609 and converted from alternating current to direct current by the converter 607.
  • the inverter 602 converts the direct current into the alternating current through the capacitor 608, and the three-phase motor as the load 601 is driven.
  • the element configuration in converter 607 may be a SiC power MISFET and a diode used together as in the third embodiment, or a SiC power MISFET alone as in the fourth embodiment.
  • the switching element is synchronously rectified and driven as the SiC power MISFET 604 as in the fourth embodiment.
  • the control circuit described in the fourth embodiment is not shown.
  • the overhead line OW is electrically connected to the line RT via the pantograph PG, the transformer 609, and the wheels WH.
  • the converter 607 can use the power conversion device of the third embodiment or the fourth embodiment. Further, the three-phase motor system of the third embodiment or the fourth embodiment can be used for the three-phase motor system including the load 601, the inverter 602, and the control circuit. As a result, it is possible to realize energy saving of the railway vehicle and reduction in floor and weight by downsizing the underfloor parts including the three-phase motor system.
  • the active region of the semiconductor chip described in the first embodiment and the second embodiment includes a junction field effect transistor, a metal-oxide semiconductor junction field effect transistor, an insulated gate bipolar transistor, a pn diode, a Schottky A barrier diode, a junction barrier Schottky diode, or the like may be formed.
  • the semiconductor substrate is not limited to the SiC substrate, and may be a substrate made of a wide band gap semiconductor such as a diamond substrate or a GaN substrate, or may be a bulk silicon (Si) substrate.
  • the present invention is effective when applied to a semiconductor device using silicon carbide, a method for manufacturing the semiconductor device, and a power module, an inverter, an automobile, and a railway vehicle using the semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Inverter Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 SiC素子の終端領域に電荷が溜まることに起因する耐圧低下を防ぎ、また、SiC素子の終端構造の縮小化を実現する。その手段として、半導体チップの活性領域と終端領域との境界近傍において、MOS構造と、当該MOS構造の下のチャネル領域と、当該チャネル領域に隣接し、ソース電極に電気的に接続された拡散領域とを設ける。当該半導体チップでは、MOS構造を構成するゲート電極をオン状態とし、当該拡散領域および当該チャネル領域に電子が供給することで、終端領域の基板内に溜まったホールを除去する。

Description

半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両
 本発明は半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両に関し、特に、炭化ケイ素を用いたパワーデバイスの構造に関する。
 半導体パワー素子には高耐圧のほか、低オン抵抗、低スイッチング損失が要求されるが、現在の主流であるケイ素(Si)パワー素子は理論的な性能限界に近づいている。炭化ケイ素(SiC)はSiと比較して絶縁破壊電界強度が約1桁大きいため、耐圧を保持するドリフト層を約1/10に薄く、不純物濃度を約100倍高くすることで、素子抵抗を理論上3桁以上低減できる。また、Siに対してバンドギャップが約3倍大きいことから高温動作も可能であり、SiC半導体素子は、Si半導体素子を超える性能が期待されている。
 SiCの上記の利点に着目し、SiC基板を用いたスイッチング素子として、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)、接合FET、またはIGBT(Insulated Gate Bipolar Transistor)などの研究開発が進められている。
 また、SiCを用いた半導体チップの耐圧を高めるために半導体チップの終端領域に形成する構造として、ガードリング、FLR(Field Limiting Ring)またはJTE(Junction Termination Extension)などが知られている。
 特許文献1(特開2012-231011号公報)には、ドリフト層上のトランジスタ領域にIGBTを設け、トランジスタ領域とその周囲の終端領域との間のドリフト層上に絶縁膜を介してダミーゲート電極を形成することが記載されている。ここでは、ダミーゲート電極に印加することで、ドリフト層内のキャリアを抜き取ることが記載されている。
特開2012-231011号公報
 SiC基板上にトランジスタなどを形成したパワーデバイスでは、逆バイアス印加時に終端部において空乏層が広がる。この場合、MOSFETをオフ状態としたとき、つまりブロッキング状態としたときに、半導体チップの終端部に電荷が溜まるため、長期利用した場合、耐圧が初期耐圧と比較して低下する問題がある。
 IGBTのように動作が遅い素子を搭載したような半導体チップでは、特許文献1に記載されているように、ダミーゲート電極を設け、ダミーゲート電極の下のドリフト層内に反転層を形成することで、余剰なキャリア(ホール)を抜き取ることができる。しかし、MOSFETなどの高速スイッチング動作を行う素子を有する半導体チップに上記ダミーゲート電極を形成しても、反転層の形成が追いつかず、キャリアを除去しきれないため、耐圧低下を防ぐことができない。
 耐圧低下を防ぐために、FLRなどを有する終端領域の幅を拡げることが考えられるが、この場合、半導体チップが大きくなる問題がある。また、終端領域の面積を拡大してもキャリアは除去できず徐々に溜まるため、絶縁破壊を防ぐことはできない。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 代表的な実施の形態による半導体装置は、半導体チップの活性領域と終端領域との境界近傍において、ソースに電気的に接続された拡散領域とチャネルを伴うMOS構造を有するものである。
 代表的な実施の形態によれば、SiC素子の耐圧低下を防ぐことができ、また、SiC素子を微細化することができるため、半導体装置の性能を向上させることができる。ひいては、パワーモジュール、電力変換装置、自動車、および鉄道車両の性能を向上させることができる。
本発明の実施の形態1である半導体装置の平面図である。 図1の一部を拡大して示す平面図である。 図2のA-A線における断面図である。 図2のB-B線における断面図である。 本発明の実施の形態1である半導体装置の効果を説明する断面図である。 本発明の実施の形態1である半導体装置の製造工程を示すフローである。 本発明の実施の形態1である半導体装置の製造方法を示す断面図である。 図7に続く半導体装置の製造方法を示す断面図である。 図8に続く半導体装置の製造方法を示す断面図である。 図9に続く半導体装置の製造方法を示す断面図である。 図10に続く半導体装置の製造方法を示す断面図である。 図11に続く半導体装置の製造方法を示す断面図である。 図12に続く半導体装置の製造方法を示す断面図である。 図13に続く半導体装置の製造方法を示す断面図である。 本発明の実施の形態2である半導体装置の一部を拡大して示す平面図である。 図15のC-C線における断面図である。 本発明の実施の形態3である電力変換装置の回路図である。 本発明の実施の形態4である電力変換装置の回路図である。 本発明の実施の形態5である電気自動車の構成を示す概略図である。 本発明の実施の形態5である電気自動車を構成する昇圧コンバータの回路図である。 本発明の実施の形態6である鉄道車両におけるコンバータおよびインバータを示す回路図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、実施の形態では、特に必要なときを除き、同一または同様な部分の説明を原則として繰り返さない。また、実施の形態を説明する図面においては、構成を分かりやすくするために、平面図であってもハッチングを付す場合がある。
 また、符号「」および「」は、導電型がn型またはp型の不純物の相対的な濃度を表しており、例えばn型不純物の場合は、「n」、「n」、「n」の順に不純物濃度が高くなる。また、本願では、SiC(炭化ケイ素)を含む半導体基板をSiC基板と呼ぶ場合がある。また、本願では、SiC基板とその上に形成されたエピタキシャル層とをまとめて基板と呼ぶ場合がある。
 (実施の形態1)
 以下、本実施の形態の半導体装置である半導体チップの構造について、図1~図5を用いて説明する。図1は、本実施の形態の半導体装置である半導体チップの平面図である。図2は、図1において破線で囲んだ領域を拡大して示す平面図である。図3は、図2のA-A線における断面図である。図4は、図2のB-B線における断面図である。図5は、本実施の形態の半導体装置の効果を説明するために示す断面図である。
 図1に示すように、本実施の形態の半導体装置である半導体チップCPは、セル構造からなる複数のMOSFETをSiC基板上に搭載したものであり、平面視において矩形の形状を有している。平面視において、半導体チップCPの中央部の活性領域上には、外部の制御回路(図示しない)からゲート電圧が印加されるゲートパッドGPと、ソース電圧が印加されるソースパッドSPとが形成されている。ソースパッドSPの下の活性領域には、図示はしていないが、MOSFETを構成するユニットが複数配置されている。図1では、図を分かりやすくするため、ゲートパッドGPおよびソースパッドSPにハッチングを付している。
 半導体チップCPは、平面視において、活性領域を囲む終端領域を有している。終端領域は、半導体チップCPの4辺に沿う環状の領域である。終端領域内には、拡散領域を伴うMOS(Metal-Oxide-Semiconductor)構造を含む抜き取り領域18と、平面視において抜き取り領域18の外側を囲み、後述するFLR(Field Limiting Ring)を有する電界緩和領域19とを有している。つまり、活性領域と、終端領域内の電界緩和領域19との間に抜き取り領域18が存在している。抜き取り領域18の一部は、平面視においてソースパッドSPと重なっている。つまり、ソースパッドSPの端部は終端領域1Bと平面視において重なっている。
 図2に、図1の破線で囲んだ領域、つまり、半導体チップCPの端部の1辺から活性領域に亘る領域の平面図を拡大して示す。図2に示すように、半導体チップCP(図1参照)は、ドリフト層を含むエピタキシャル層2を半導体基板(図示しない)上に有している。図2では、主にエピタキシャル層2の上面を示しており、エピタキシャル層2上のゲート絶縁膜、シリサイド層、層間絶縁膜、コンタクトプラグ、パッドおよびパッシベーション膜などの図示を省略している。図2に示す構造は、ゲート電極13、14を除き、全てエピタキシャル層2およびエピタキシャル層2の上面に形成された各種の半導体領域である。図2では、ゲート電極13、14のそれぞれの輪郭を破線で示し、ゲート電極13、14が形成されている領域にハッチングを付している。
 図2では、図の左側に半導体チップCP(図1参照)の端部および終端領域1Bを示し、図の右側に、半導体チップCPの中央の活性領域1Aを示している。活性領域1A内には、MOSFETを構成するユニットセル20が複数並んで配置されている。ユニットセル20は、エピタキシャル層2内に形成され、エピタキシャル層2の上面に露出する各種の半導体領域、すなわち、ボディ領域4、ソース領域7および電位固定領域9を有している。各ユニットセル20内では、平面視において、電位固定領域9の周囲を囲むようにソース領域7が形成され、電位固定領域9およびソース領域7の周囲を囲むようにボディ領域4が形成されている。
 ユニットセル20内に示す破線で囲まれた領域の内側には、ゲート電極12が形成されておらず、電位固定領域9およびソース領域7に給電するためのコンタクトプラグ(図示しない)が形成されている。各ユニットセル20同士の間には、ボディ領域4などが形成されていないエピタキシャル層2が介在している。ゲート電極12は活性領域1A内のエピタキシャル層2上の広い範囲を覆うように形成されており、ゲートパッドGP(図1参照)に電気的に接続されている。また、上記コンタクトプラグは、ソースパッドSP(図1参照)に電気的に接続されている。
 活性領域1A内の複数のユニットセル20の一群を囲むように、ボディ領域5が形成されている。ボディ領域5は、活性領域1Aと終端領域1Bとのそれぞれに重なるように形成されている。つまり、ボディ領域5は、ゲート電極12の端部に対し、平面視において重なるように形成されている。終端領域1Bのボディ領域5内のエピタキシャル層2の上面には、拡散領域である複数のソース領域8と、拡散領域である電位固定領域10とが形成されている。また、終端領域1Bにおいて、ソース領域8に隣接する領域であって、ソース領域8より半導体チップの端部に近い領域の直上には、ゲート絶縁膜(図示しない)を介してゲート電極13が形成されている。本願では、このように、基板上に絶縁膜を介してゲート電極が形成されている構造をMOS構造と呼ぶ。
 ボディ領域5および電位固定領域10は、図1に示す半導体チップCPの抜き取り領域に形成された環状の半導体領域である。また、ゲート電極13は、図1に示す半導体チップCPの抜き取り領域に形成された環状の半導体膜である。環状の平面レイアウトを有する電位固定領域10は、図2に示すように、電位固定領域10に対して半導体チップの端部側に配置された複数のソース領域8のそれぞれの周囲の大部分を囲むように形成されている。すなわち、平面視において各ソース領域8は矩形の形状を有しており、ソース領域8の辺に沿って、当該ソース領域8の近傍に電位固定領域10が形成されている。
 つまり、複数のソース領域8は終端領域1Bの延在方向に沿って並んで配置されており、当該方向において隣り合うソース領域8の相互間に、電位固定領域10の一部が形成されている。各ソース領域8の周囲であって、各ソース領域8と電位固定領域10との間にはボディ領域5が形成されている。特定のソース領域8と、当該ソース領域8の近傍の半導体チップの端部との間には、電位固定領域10は形成されていない。また、終端領域1Bの延在方向において隣り合うソース領域8の相互間の電位固定領域10は、ソース領域8よりも半導体チップの端部に近い領域まで延在している。ソース領域8よりも電位固定領域10の方が、半導体チップの端部に近い。
 ソース領域8に隣接する領域であって、ソース領域8より半導体チップの端部に近いボディ領域5の上面は、チャネルが形成される領域であり、当該領域の直上のゲート電極13の活性領域1A側の一部は、平面視においてソース領域8および電位固定領域10に重なる。
 ボディ領域5、ソース領域8、電位固定領域10およびゲート電極13よりも半導体チップの端部に近い領域である電界緩和領域19(図1参照)内には、半導体装置の終端部の基板内における電界を緩和するため、FLR6が複数形成されている。複数のFLR6のそれぞれは、ボディ領域4、5と同様に、エピタキシャル層2の上面に形成された半導体領域である。複数のFLR6のそれぞれは、活性領域1Aを囲むように環状に形成されている。
 なお、ここでは、活性領域1Aと終端領域1Bとの境界をゲート電極14の端部により規定しているが、当該境界は他の位置にあるものと考えてもよい。例えば、ボディ領域5、ソース領域8、電位固定領域10およびゲート電極13が形成された抜き取り領域18(図1参照)が活性領域1Aに含まれると考えてもよい。また、当該境界は、隣り合うボディ領域4とボディ領域5との間にあるものと考えてもよい。いずれの場合でも、抜き取り領域18は活性領域1Aと終端領域1Bとの境界近傍に形成される。また、抜き取り領域18は、活性領域1Aと終端領域1Bとの間に位置していると考えてもよい。矩形の半導体チップの1辺に沿う終端領域1Bの幅は、例えば200~300μm程度である。
 図3は、図2におけるA-A線と重なる領域、つまり、活性領域1Aおよび終端領域1Bを含み、ソース領域8(図2参照)を含まない領域における半導体チップの断面を示すものである。図3の左側には、SiC(炭化ケイ素)MOSFETを含む半導体チップCP(図1参照)の端部の終端領域1Bの構造を示している。また、図3の右側には、SiCMOSFETを含む半導体チップCPの中心部の活性領域1Aの構造を示している。つまり、図2の右側には、半導体チップCPにおける活性領域の複数のSiCMOSFET(以下、単にMOSFETという)の断面を示している。活性領域1Aおよび終端領域1Bは、エピタキシャル層2の上面に沿って隣り合っている。
 図3に示すように、本実施の形態の半導体装置である半導体チップは、SiC(炭化ケイ素)からなる半導体基板であるSiC基板1を有している。SiC基板1は、n型の半導体基板である。SiC基板1の上面上には、SiCを含み、ドリフト層を含むエピタキシャル層2が形成されている。エピタキシャル層2は、SiC基板1よりも不純物濃度が低いn型の半導体層である。SiC基板1の下面には、不純物濃度がSiC基板1よりも高いn型の半導体領域であるドレイン領域3が形成されている。SiC基板1、エピタキシャル層2およびドレイン領域3に導入されたn型の不純物は、例えばN(窒素)である。
 SiC基板1の下面に接して、ドレイン電極17が形成されている。ドレイン電極17はドレイン領域3に電気的に接続されている。図示はしていないが、ドレイン領域3とドレイン電極17との間には、シリサイド層が形成されている。ドレイン電極17は、SiC基板1の下面側から順にチタン(Ti)膜、ニッケル(Ni)膜および金(Au)膜を積層して形成した積層膜により構成されている。当該積層膜の厚さは、例えば0.5~1μmである。
 エピタキシャル層2の上面には、p型の半導体領域であるボディ領域4および5が、互いに離間して並んで形成されている。ボディ領域4は活性領域1Aに形成されており、ボディ領域5は終端領域1Bに形成されている。また、終端領域1Bには、ボディ領域5よりも半導体チップの端部に近い領域、つまり電界緩和領域19(図1参照)において、p型の半導体領域であるFLR6が複数並んで配置されている。ここでは、複数のFLR6を終端領域1Bに形成している。FLR6を設けることにより、MOSFETに対する逆方向電圧印加時における終端領域での電界集中を緩和することができるため、半導体チップの耐圧を高く維持することができる。なお、電界緩和のために半導体チップの終端領域1Bに形成する終端構造は、FLR6に限らず、JTE(Junction Termination Extension)、またはガードリングなどであってもよい。
 ボディ領域4の上面の中心部には、n型の半導体領域であるソース領域7が形成されており、ボディ領域4の上面であって、ソース領域7の中心部には、p型の半導体領域である電位固定領域9が形成されている。ボディ領域4、5およびFLR6は、エピタキシャル層2の途中深さまで形成されており、互いに同等の深さで形成されている。電位固定領域9はボディ領域4よりも浅く形成され、ソース領域7は電位固定領域9よりも浅く形成されている。
 終端領域1Bにおいて、ボディ領域5の上面には、p型の半導体領域である電位固定領域10が形成されている。電位固定領域10の形成深さは、電位固定領域9と同程度であり、ボディ領域5よりも浅く形成されている。電位固定領域10はその上面を除いて、ボディ領域5により囲まれている。電位固定領域9はボディ領域4の電位を固定するために設けられた領域であり、電位固定領域10はボディ領域5の電位を固定するために設けられた領域である。つまり、ボディ領域4には、エピタキシャル層2上のソースパッドを含む金属膜15から、電位固定領域9を介してソース電位が供給される。また、ボディ領域5には、エピタキシャル層2上のソースパッドを含む金属膜15から、電位固定領域10を介してソース電位が供給される。
 ボディ領域4、5、FLR6、電位固定領域9および10に導入されたp型の不純物は、例えばアルミニウム(Al)である。電位固定領域9、10の不純物濃度は、ボディ領域4、5およびFLR6よりも高い。具体的には、ボディ領域4、5およびFLR6のp型の不純物濃度は例えば1×1017~1×1018cm-3であり、電位固定領域9、10のp型の不純物濃度は例えば1×1020cm-3である。また、ソース領域7、8に導入されたn型の不純物は、例えば窒素(N)である。ソース領域7、8の不純物濃度は、エピタキシャル層2よりも高い。
 エピタキシャル層2上には、例えば酸化シリコン(SiO)からなるゲート絶縁膜11が形成されており、ゲート絶縁膜11上には、例えばポリシリコン膜からなるゲート電極12および13が同じ高さにおいて並んで形成されている。ゲート電極12は活性領域1Aに形成されており、ソース領域7に隣接するエピタキシャル層2の上面に形成されたボディ領域4の直上と、隣り合う複数のボディ領域4同士の間のエピタキシャル層2の直上とに亘って形成されている。ゲート絶縁膜11の厚さは、例えば0.05~0.15μm程度である。ゲート電極12、13の厚さは、例えば、0.2~0.5μm程度である。
 ゲート電極13は、終端領域1Bに形成されており、ボディ領域4の直上に形成されている。ゲート電極12、13のそれぞれの側壁および上面、並びにゲート絶縁膜11の上面は、層間絶縁膜14により覆われている。層間絶縁間膜14は、例えば酸化シリコンからなる。ゲート絶縁膜11および層間絶縁膜14からなる積層膜には、当該積層膜の上面から下面まで貫通する複数のコンタクトホールが開口されている。活性領域1Aのコンタクトホールの底部には、ソース領域7および電位固定領域9のそれぞれの上面が露出している。また、終端領域1Bのコンタクトホールの底部には、ソース領域8(図2および図4参照)および電位固定領域10のそれぞれの上面が露出している。
 層間絶縁膜14上および複数のコンタクトホール内には金属膜15が形成されている。活性領域1Aの各コンタクトホール内に埋め込まれた金属膜15は、ソース領域7および電位固定領域9に電気的に接続されており、ソース領域7および電位固定領域9に所定の電位を供給するコンタクトプラグとして機能する。また、終端領域1Bのコンタクトホール内に埋め込まれた金属膜15は、ソース領域8(図2および図4参照)および電位固定領域10に電気的に接続されており、ソース領域8および電位固定領域10に所定の電位を供給するコンタクトプラグとして機能する。
 金属膜15は、例えば、層間絶縁膜14上に、金属(例えばチタン(Ti))膜、窒化チタン(TiN)膜およびアルミニウム(Al)膜が順に積層された積層構造を有している。また、図示はしていないが、金属膜15からなるコンタクトプラグとエピタキシャル層2の上面との間には、シリサイド層が形成されている。
 層間絶縁膜14上に形成された金属膜15の上面はソースパッドSP(図1参照)を構成する。つまり、複数のMOSFETのそれぞれのソース領域7および電位固定領域9は、電気的に並列に接続されており、ソースパッドSPに接続されている。つまり、1個のソースパッドSPが、複数のソース領域7に電気的に接続されている。
 また、図示はしていないが、金属膜15と同じ高さに形成された他の金属膜の一部が、層間絶縁膜14を貫通してゲート電極12に電気的に接続されており、当該他の金属膜の上面はゲートパッドGP(図1参照)を構成している。上記コンタクトプラグとゲート電極12との間には層間絶縁膜14が介在しているため、ゲート電極12は金属膜15に対して絶縁されている。同様に、上記コンタクトプラグとゲート電極13との間には層間絶縁膜14が介在しているため、ゲート電極13は金属膜15に対して絶縁されている。金属膜15は、ゲート電極13の直上で終端しており、FLR6の直上に金属膜15は形成されていない。
 ここでは、ゲート電極13はゲート電極12と電気的に接続されている。したがって、活性領域1AのMOSFETの動作時において、ゲート電極13はゲート電極12に連動してオン状態またはオフ状態となる。例えば、ゲート電極12、13は、図示していない領域で互いに接続され、一体となっていてもよい。なお、ゲート電極12および13のそれぞれに別々の電位を供給する構成を採用してもよい。
 終端領域1Bにおいて、金属膜15の上面、側壁、および層間絶縁膜14の上面は、例えばSiO膜またはポリイミド膜などからなる絶縁膜であるパッシベーション膜16により覆われている。つまり、パッシベーション膜16は終端領域1Bを覆い、活性領域1Aにおいて開口しており、活性領域1AのゲートパッドGP(図1参照)およびソースパッドSP(図1参照)はパッシベーション膜16から露出している。
 本実施の形態の半導体チップに形成されたnチャネル型のMOSFETは、少なくともゲート電極12と、ソース領域7と、ドレイン領域3とを有している。MOSFETを動作させる際には、ゲート電極12に所定の電圧を印加してMOSFETをオンさせることで、電位が高いドレインから電位の低いソースに電流を流す。当該MOSFETのチャネル領域は、p型の半導体領域であるボディ領域4内の上部に形成される。
 つまり、MOSFETを駆動させた際の電流は、ドレイン電極17から、ドレイン領域3、SiC基板1、エピタキシャル層2、ボディ領域4、ソース領域7を順に流れた後、ソース電極である金属膜15に流れる。エピタキシャル層2内では、電流はエピタキシャル層2の膜厚方向において、エピタキシャル層2の上面に向かって流れ、その後チャネル領域であるボディ領域4の上面近傍を通ってソース領域7側に流れる。
 図4は、図2におけるB-B線と重なる領域、つまり、活性領域1Aおよび終端領域1Bを含み、ソース領域8(図2参照)を含む領域における半導体チップの断面を示すものである。図4では、図3と同様に、図の左側に終端領域1Bを示し、図の右側に活性領域1Aを示している。図4に示す構造は図3を用いて説明した構造と概ね同様であるが、抜き取り領域18(図1参照)におけるゲート電極13の下の電位固定領域10の形状が、図3に示す構造と異なる。また、図4に示す構造は、抜き取り領域18(図1参照)において、電極13の下にソース領域8が設けられている点で、図3に示した構造と異なる。
 すなわち、図4に示すように、MOSFETのユニットセル20(図2参照)を構成するボディ領域4、ソース領域7および電位固定領域9は、図3に示した構造に比べて、終端領域1Bから離れた位置に配置されている。これに対応して、ソース領域7および電位固定領域9に接続されたコンタクトプラグも、図3に示した構造に比べて、終端領域1Bから離れた位置に配置されている。
 また、終端領域1Bにおいて、ボディ領域5の上面には、ソース領域7と同等の深さでソース領域8が形成されている。つまり、ソース領域8の形成深さは、ボディ領域5および電位固定領域10のいずれよりも浅い。また、ボディ領域5の上面であって、ソース領域8よりも活性領域1A側に近い領域に、電位固定領域10が形成されている。ソース領域8および電位固定領域10は、それぞれの上面を除いて、ボディ領域5に覆われている。したがって、ソース領域8と電位固定領域10とは、ボディ領域5を介して離間している。
 図に示す断面において、ゲート電極13の直下に電位固定領域10は形成されておらず、ゲート電極13の活性領域1A側の端部の直下に、ソース領域8が形成されている。つまり、ソース領域8に隣接するボディ領域5の上面のうち、半導体チップの端部側のボディ領域5の上面、つまりチャネル領域は、平面視においてゲート電極13と重なる。当該チャネル領域は、ソース領域8と電気的に接続されている。
 図4に示すように、終端領域1Bに形成された金属膜15からなるコンタクトプラグは、層間絶縁膜14およびゲート絶縁膜11を貫通して、ソース領域8および電位固定領域10に電気的に接続されている。つまり、ソース領域8は、金属膜15を介してソース電位が供給される拡散領域である。よって、ゲート電極13をオン状態とし、ソース領域8に所定の電圧を印加することで、ソース領域8に隣接し、ゲート電極13の直下においてエピタキシャル層2の上面に露出するボディ領域5には、チャネルが形成される。すなわち、ソース領域8に隣接するボディ領域5であって、ゲート電極13の直下においてエピタキシャル層2の上面に露出するボディ領域5は、ゲート電極13をオン状態にした際にチャネルが形成されるチャネル領域である。
 ここでは、活性領域1AにMOSFETを形成した例について説明したが、活性領域1Aに形成する半導体素子は、IGBT、pn接合ダイオード、またはショットキーバリアダイオードでもよく、またはそれらの半導体素子を混載していてもよい。本実施の形態の半導体装置の特徴である抜き取り領域18(図1参照)のMOS構造は、MOSFETのゲート電極12と同様の構造を有している。このため、半導体チップ上には、抜き取り領域18に当該MOS構造を形成すると共に、活性領域1AにMOSFETを設けることが製造工程上都合がよい。
 図1~図4を用いて説明したように、終端領域1B内の抜き取り領域18(図1参照)には、拡散領域であるソース領域8およびMOS構造が形成されている。ゲート電極13を含む当該MOS構造および当該拡散領域は、終端領域1Bにおいて基板内に溜まったホールを取り除くために設けられたものである。以下では、図5を用いて、本実施の形態の半導体装置の効果について説明する。図5は、図3に示した断面図に、ソース領域8(図2および図4参照)を加えて示すものである。つまり、本実施の形態の半導体装置の効果を分かりやすく説明するため、図5では電位固定領域10の上面にソース領域8を示しているが、実際には、図2に示すように電位固定領域10とソース領域8とは互いに離間している。
 SiCのようなワイドバンドギャップ半導体を用いた高耐圧の半導体装置では、基板にpn接合を形成すると、逆バイアス印加時に半導体チップの終端部において空乏層が広がる。その結果、電荷の電気力線は当該終端部に集まり、電界集中が起こる。このため、理論耐圧より低い電圧でアバランシェ降伏、つまり絶縁破壊が起こりやすい問題がある。
 SiC基板およびエピタキシャル層を有する基板の主面の活性領域にnチャネル型のMOSFETを形成した場合には、MOSFETをオフ状態としたとき、つまりブロッキング状態としたときに、半導体チップの終端部にキャリア(ホール)が溜まる。オン・オフを繰り返すMOSFETがオフ状態となる時間は、例えば1回につき100μ秒程度であるが、このような半導体装置では、終端部に溜まるホールを除去できなければ、MOSFETがオフ状態となる時間の累積に応じてホールも当該終端部に累積的に溜まっていくため、半導体装置を使用し続けるうちに絶縁破壊が起こる。絶縁破壊が起これば半導体装置は耐圧を保つことができなくなるため、半導体装置は寿命を迎える。
 ブロッキング状態を長時間維持することで、絶縁破壊が起こるまでの時間、つまり半導体装置の寿命を調べるブロッキング試験を行った場合、長期間耐圧を保つ観点から、例えばオフ状態の総時間が1000~10000時間に達するまで絶縁破壊が起きないことが求められる。このような長期間の信頼性を保つために、半導体チップの端部にFLRなどの終端構造を形成することで電界集中を防ぎ、さらに、当該終端構造を形成した終端領域の幅を拡げることで、終端部に溜まるホールの許容量を増大させることが考えられる。例えば、多段注入を行ってFLRを形成する数を増やせば、絶縁破壊が起きるまでの時間を延ばすことができる。ブロッキング試験において1000~10000時間程度耐圧を保つためには、矩形の半導体チップの1辺に沿う終端領域の幅が、例えば600μm程度必要となる。
 しかし、この場合、終端領域の幅が増大することで半導体チップが大きくなるため、半導体装置の性能が低下する問題がある。また、終端領域の幅が増大させても、逆バイアス印加時間の累積によりホールは溜まり続けるため、最終的に絶縁破壊が起こることを防ぐことはできない。
 また、半導体チップの終端部の高電界部分に発生するホールを除去するために、基板内の電界が集中する領域の直上にMOS構造を形成することが考えられる。つまり、終端領域と活性領域(素子領域)との中間の領域の基板上に、ゲート絶縁膜を介してゲート電極を形成することが考えられる。ただし、この場合MOS構造の横の基板上面に拡散領域は形成せず、MOS構造を構成するゲート電極の直下にチャネルは形成されない。このようなMOS構造を設け、当該ゲート電極に電圧を印加すれば、ゲート電極の下の基板上面に反転層が形成されるため、ゲート電極の下に溜まったホールを除去することができる。
 しかし、SiC基板上に形成されるMOSFETのように、IGBTなどに比べて高速で動作する素子を含む半導体チップにおいては、上記のように拡散領域を伴わないMOS構造を設けても、高速動作に対して反転が追いつかず、ホールの除去が間に合わない。よって、ホールが溜まることを防ぐことができない問題がある。
 これに対し、本実施の形態の半導体装置では、エピタキシャル層の上面に形成した拡散領域を介してチャネルに電子を供給し、ホールを除去することで絶縁破壊を防ぐことを可能としている。図5に示す本実施の形態の半導体装置において、例えばゲート電極12、13に0Vを印加し、ソース電極である金属膜15に0Vを印加し、ドレイン電極17に1500Vを印加した状態は、MOSFETは動作せずオフ状態となる。このように半導体装置に逆バイアスの電圧を印加した場合、終端領域1Bのエピタキシャル層2内に空乏層が広がる。空乏層は例えば電位固定領域10よりも半導体チップの端部側の領域に生じる。
 このとき、電位固定領域10に対して半導体チップの終端部側に隣接するボディ領域5の上面に電界が集中し、ホールが溜まる。つまり、p型領域であるボディ領域5とp型領域である電位固定領域10との境界であって、半導体チップの終端部側の当該境界の近傍のボディ領域5の上面に電荷が蓄積される。このような電荷の蓄積を繰り返せば、その後絶縁破壊が起こるが、本実施の形態では、ゲート電極13およびソース電極に所定の電位を供給し、ソース領域8に電子を供給することでホールを抜き出すことができる。つまり、ゲート電極13の直下のチャネルから、ホールがソース領域8を介してソース電極側に移動することで電流が流れ、これによりチャネルに溜まっていた電荷がリセットされる。
 すなわち、ゲート電極13をオン状態にすると、ゲート電極13の直下のボディ領域5の上面にチャネルが形成され、ソース電極からソース領域8に電子が供給されるため、チャネルの形成位置に溜まっていたホールは当該電子と再結合し、ソース電極側に抜き出される。このようにしてチャネルに電子を供給することで、ゲート電極13をオン状態にする度に終端領域1Bのエピタキシャル層2内のホールが除去される。
 よって、SiCMOSFETのように高速動作を行う素子を有する半導体装置であっても、基板内のキャリアを除去することができるため、キャリアが溜まることによる絶縁破壊が起こることを防ぐことができる。よって、半導体チップの寿命を延ばすことができるため、半導体装置の性能を向上させることができる。
 また、電荷が集中する領域の上にMOS構造を有さず、終端部のホールを除去することができない半導体装置では、終端領域の幅を拡げるなどして、例えば1000~10000時間程度、耐圧を保つ必要がある。これに対し、本実施の形態では、高速でスイッチング動作を行う活性領域1AのMOSFETに連動して、ゲート電極13がオン・オフを繰り返すため、MOSFETのオフ状態であるときに終端領域にホールが溜まっても、ゲート電極13がオン状態となる度にホールは除去される。よって、半導体チップに求められる耐圧維持の時間は、MOSFETがオフ状態となる100μ秒程度でよい。実際には絶縁破壊に対する余裕を確保する必要があるため、ブロッキング状態において1秒程度耐圧を維持することができれば、ホールの増加により絶縁破壊が起きることを防ぐことができる。
 つまり、本実施の形態では、終端領域1Bに溜まったホールを、ゲート電極13をオン状態にする度にリセットすることができるため、逆バイアスを印加してMOSFETがオフ状態となる時間の累積に応じてホールが増加することを防ぐことができる。このため、終端部のホールの増加に起因して絶縁破壊が生じる虞を排除することができる。よって、半導体装置の信頼性を高めることができる。
 また、本実施の形態では、終端領域1Bの幅を拡げなくても、抜き取り領域18(図1参照)に拡散領域を伴うMOS構造を設けることで、終端領域1Bに電荷が溜まることによる絶縁破壊を防ぐことができる。具体的には、矩形の半導体チップの1辺に沿う終端領域の幅を、例えば1/2または1/3程度に縮小することができる。これにより、半導体チップの大きさを縮小することができるため、半導体装置の性能を向上させることができる。また、本実施の形態の特徴である抜き取り領域18(図1参照)の拡散領域およびMOS構造は、活性領域1AのMOSFETを構成する拡散領域およびMOS構造と同じ構造である。したがって、終端領域の電荷を除去する抜き取り領域18の構造を、低コストかつ簡便に実現することが可能である。
 ここで、逆バイアス印加時に終端領域1Bに広がる空乏層は、電位固定領域10よりも半導体チップの端部側の領域において生じる。空乏層がn型の半導体領域であるソース領域8に接触すると、短絡により空乏層とソース領域8とを介して電流が流れるため、ホールを除去することができない。ここで、電位固定領域10の細い窪みの内側には、空乏層は発生しにくいため、本実施の形態では、図2に示すように、平面視において電位固定領域10の窪み部分の内側にソース領域8を配置することで、空乏層とソース領域8とが接触することを防いでいる。つまり、平面視におけるソース領域8の4辺のうち、半導体チップの端部側の1辺側を除いてソース領域8を囲むように電位固定領域10を形成し、隣り合うソース領域8の相互間の電位固定領域10を半導体チップの端部側に延ばすことで、空乏層とソース領域8とが接触することを防ぐことができる。
 ここで、ソース領域8は電位固定領域10に完全に囲まれてはおらず、また、ソース領域8は電位固定領域10に接していない。これは、ソース領域8は電位固定領域10に完全に囲まれると、ゲート電極13の下であって、ソース領域8に隣接する領域に反転層が形成されにくくなり、これによって、効率的にホールを除去することができなくなるためである。したがって、ソース領域8に隣接する領域であって、半導体チップの終端部側の領域、つまり、ホールが溜まりやすい領域には電位固定領域10を形成しておらず、平面視において、ソース領域8の半導体チップの終端部側は電位固定領域10に覆われていない。これにより、反転層が形成されにくくなることを防ぐことができるため、効率的にホールを除去することができる。
 以下に、本実施の形態における半導体装置の製造方法について、図6~図14を用いて説明する。図6は本実施の形態の半導体装置の製造工程のフローである。図7~図14は、本実施の形態の半導体装置の製造工程を説明する断面図である。図7~図14では、図の左側に半導体チップの終端部となる終端領域1Bを示し、図の右側にMOSFETが形成される活性領域1Aを示す。
 まず、図7に示すように、n型のSiC基板1を準備した後、SiC基板1の主面上に、エピタキシャル成長法によりSiCのn型の半導体層であり、ドリフト層を含むエピタキシャル層2を形成する(図6のステップS1)。また、SiC基板の裏面には、n型不純物(例えば窒素(N))を高い濃度で打ち込むことで、n型の半導体領域であるドレイン領域3を形成する。
 SiC基板1にはn型の不純物が比較的高い濃度で導入されている。このn型不純物は例えば窒素(N)であり、このn型不純物の不純物濃度は例えば、1×1018~1×1021cm-3である。エピタキシャル層2には、SiC基板1の不純物濃度よりも低いn型不純物(例えば窒素(N))が導入されている。エピタキシャル層2の不純物濃度は素子の定格耐圧に依存して決められ、当該不純物濃度は例えば1×1014~1×1017cm-3である。また、エピタキシャル層2の厚さは例えば3~80μmである。
 次に、各種の不純物注入を行い、エピタキシャル層2の上面に各種の半導体領域を形成する(図6のステップS2)。すなわち、まず、図8に示すように、図6のステップS2のうちの一工程として、エピタキシャル層2の上面上に、マスクMP1を形成した後、エピタキシャル層2の上面に対し、p型不純物(例えばアルミニウム(Al))をイオン注入する。
 これにより、終端領域1Bのエピタキシャル層2の上面に、p型の半導体領域であるFLR6を複数形成し、終端領域1Bのエピタキシャル層2の上面に、p型の半導体領域であるボディ領域5を形成し、活性領域1Aのエピタキシャル層2の上面に、p型の半導体領域であるボディ領域4を複数形成する。すなわち、活性領域1A側から終端領域1Bに向かう方向において、順に、複数のボディ領域4、ボディ領域5および複数のFLR6を形成する。
 マスク22は、活性領域1Aのエピタキシャル層2の上面の複数の箇所、および、終端領域1Bのエピタキシャル層2の上面の複数の箇所を露出する膜である。マスク10の材料には、例えばSiO(酸化シリコン)またはフォトレジストなどを用いる。ボディ領域4、5およびFLR6のp型の不純物濃度は例えば1×1017~1×1018cm-3である。ボディ領域5は、活性領域1Aを囲む環状の半導体領域である。
 次に、図9に示すように、図6のステップS2のうちの一工程として、マスク22を除去した後、エピタキシャル層2の上面上にマスク23を形成した後、エピタキシャル層2の上面に対し、p型不純物(例えばアルミニウム(Al))をイオン注入する。これにより、活性領域1Aのエピタキシャル層2の上面に、p型の半導体領域である電位固定領域9を複数形成し、終端領域1Bのエピタキシャル層2の上面に、p型の半導体領域である電位固定領域10を形成する。マスク23は活性領域1Aのエピタキシャル層2の上面の複数の箇所を露出する膜である。マスク23の材料には、例えばSiOまたはフォトレジストなどを用いる。
 電位固定領域9、10は、ボディ領域4、5よりも浅く形成する。電位固定領域9、10のp型の不純物濃度は例えば1×1020cm-3である。電位固定領域9は、平面視におけるボディ領域4の中央部に形成する。また、電位固定領域10は、終端領域1Bのボディ領域5の上面であって、平面視におけるボディ領域5の端部から離れた位置に形成する。
 次に、図10に示すように、図6のステップS2のうちの一工程として、マスク23を除去した後、エピタキシャル層2の上面上に、マスク24を形成した後、エピタキシャル層2に対し、n型不純物(例えば窒素(N))をイオン注入する。これにより、ボディ領域5の上面に、n型の半導体領域であるソース領域8を複数形成し、各電位固定領域9の上面に、n型の半導体領域であるソース領域7を形成する。図10では、図の断面と異なる位置であって、電位固定領域10の奥に形成されたソース領域8の形状を破線で示している。これは、以下の説明で用いる図11~図14でも同様である。
 マスク24の材料には、例えばSiOまたはフォトレジストなどを用いる。マスク24は、終端領域1Bの複数の箇所におけるボディ領域5の上面を露出し、活性領域1Aの各電位固定領域9の周囲のボディ領域4の上面を露出するパターンである。ソース領域7は、平面視における電位固定領域9を囲むように形成する。複数のソース領域8は、図の奥行き方向、つまり終端領域1Bの延在方向に沿って並ぶように形成する。ソース領域7、8は、電位固定領域9、10よりも浅く形成する。
 次に、図示は省略するが、全てのマスクを除去した後、エピタキシャル層2の上面およびSiC基板1裏面を覆うように、例えばプラズマCVD(Chemical Vapor Deposition)法を用いて炭素(C)膜を堆積した後、1500度以上の温度で、2~3分程度の熱処理を施す(図6のステップS3)。このようにしてアニールを行うことにより、SiCエピタキシャル層2の上面と、SiC基板1の裏面にイオン注入した各不純物の活性化を行う。その後、上記炭素(C)膜を、例えばプラズマ処理により除去する。
 次に、図11に示すように、エピタキシャル層2の上面上に、絶縁膜11aおよびn型のポリシリコン膜を順に形成した後、フォトリソグラフィ技術およびドライエッチング法を用いてポリシリコン膜を加工することで、ポリシリコン膜からなるゲート電極12、13を形成する(図6のステップS4)。ポリシリコン膜は、例えばCVD法により形成する。絶縁膜11aの厚さは、例えば0.05~0.15μm程度である。ゲート電極12、13の厚さは、例えば、0.2~0.5μm程度である。ゲート電極12、13は、図示していない領域において互いに接続され、一体となっていてもよい。
 ここでは、ソース領域8およびボディ領域5のそれぞれの端部であって、FLR6側の端部と平面視において重なるようにゲート電極13を形成する。ゲート電極13は、ソース領域8に対してFLR6側においてソース領域8と隣接するボディ領域5の直上に形成される。また、活性領域1Aでは、ソース領域7に隣接するボディ領域4の直上、およびボディ領域5に隣接するエピタキシャル層2の上面の直上に亘ってゲート電極12を形成する。
 次に、図12に示すように、エピタキシャル層2の上面上に、ゲート電極12、13および絶縁膜11aを覆うように、例えばプラズマCVD法により層間絶縁膜14を形成した後、フォトリソグラフィ技術およびドライエッチング法を用いて層間絶縁膜14および絶縁膜11aを加工することで、エピタキシャル層2の上面を露出させる。これにより、絶縁膜11aからなるゲート絶縁膜11をゲート電極12、13のそれぞれの下に形成する。
 上記エッチング工程により、活性領域1Aでは、層間絶縁膜14およびゲート絶縁膜11を貫通するコンタクトホールが開口され、当該コンタクトホールの底部では、ソース領域7の一部および電位固定領域9のそれぞれの上面が露出する。同様に、終端領域1Bでは、層間絶縁膜14およびゲート絶縁膜11を貫通するコンタクトホールが開口され、当該コンタクトホールの底部では、ソース領域8および電位固定領域10のそれぞれの上面の一部が露出する。また、上記工程により、図示していない領域では、層間絶縁膜14を貫通して、ゲート電極12の上面を露出するコンタクトホールを開口する。ゲート電極13とゲート電極12とが分離している場合には、上記工程により、ゲート電極13の上面を露出するコンタクトホールも開口する。
 次に、図示は省略するが、活性領域1Aのコンタクトホールの底部と、終端領域1Bのコンタクトホールの底面とのそれぞれに、周知のサリサイド技術を用いてシリサイド層を形成する。すなわち、例えばスパッタリング法によりエピタキシャル層2上に金属(例えばニッケル(Ni))膜を堆積した後、600~1000℃の熱処理を施すことにより、金属膜とエピタキシャル層2とを反応させて、例えばニッケルシリサイド(NiSi)からなるシリサイド層を形成する。その後、反応しなかった余分な上記金属膜を除去する。
 次に、図13に示すように、図6のステップS5のうちの一工程として、上記の各コンタクトホールの内部を埋め込むように、層間絶縁膜14上に、例えばスパッタリング法を用いて金属膜15を形成した後、金属膜15をフォトリソグラフィ技術およびエッチング法を用いて加工することで、金属膜15からなるソース電極を形成する。図13に示す金属膜15は、ソース領域7、8、電位固定領域9および10に電気的に接続されている。また、この工程により、図示していない領域において、ソース電極と絶縁された金属膜15をゲート電極12、13に電気的に接続させて形成する。
 金属膜15は、例えばチタン(Ti)膜、窒化チタン(TiN)膜およびアルミニウム(Al)膜を順に積層することで形成することができる。上記エッチングでは、終端領域1Bの金属膜の一部であって、ゲート電極13よりもFLR6側に形成された金属膜15を除去する。
 次に、図14に示すように、CVD法などを用いて、例えばSiO膜またはポリイミド膜などからなる絶縁膜をエピタキシャル層2上に形成した後、フォトリソグラフィ技術およびエッチング法を用いて活性領域1Aの当該絶縁膜を除去することにより、当該絶縁膜からなるパッシベーション膜16を形成する。終端領域1Bにおいて、金属膜15の上面、側壁、および層間絶縁膜14の上面は、パッシベーション膜16により覆われる。
 つまり、パッシベーション膜16は終端領域1Bを覆い、活性領域1Aにおいて開口している。パッシベーション膜16から露出し、ソース領域7、8に接続された金属膜15の上面は、ソースパッドを構成している。パッシベーション膜16から露出し、ゲート電極12に接続された金属膜15の上面は、ゲートパッドを構成している。ソースパッドおよびゲートパッドのそれぞれは、外部配線が電気的に接続される金属膜である。
 続いて、図6のステップS5のうちの一工程として、SiC基板1の裏面にシリサイド層(図示しない)および裏面電極であるドレイン電極17を順に形成する。すなわち、SiC基板1の裏面に、例えばスパッタリング法により金属膜を成膜し、レーザーシリサイド化熱処理を施すことにより、当該金属膜とSiC基板1とを反応させて、シリサイド層(図示しない)を形成する。シリサイド層はドレイン領域3の下面と接している。ドレイン電極17は、上記シリサイド層の下面側から順にチタン(Ti)膜、ニッケル(Ni)膜および金(Au)膜を積層して形成した0.5~1μmの積層膜により構成される。
 次に、SiC基板を含む半導体ウエハをダイシング工程により切削して個片化することで、図1~図4に示す本実施の形態の導体チップが完成する。当該半導体チップは、図14に示すように、活性領域1Aに、少なくともゲート電極12と、ソース領域7と、ドレイン領域3とを有するMOSFETを複数有している。また、当該半導体チップは、活性領域1Aと終端領域1Bとの境界近傍において、エピタキシャル層2上に形成されたゲート絶縁膜11およびゲート電極13からなるMOS構造を有し、MOS構造の直下のエピタキシャル層2の上面にチャネル領域を有し、当該チャネル領域に隣接する拡散領域であるソース領域8を有している。
 本実施の形態の上記の製造方法によりSiCパワー素子を形成することで、図1~図5を用いて説明した半導体装置と同様の効果を得ることができる。また、半導体チップの主担部に溜まるホールの除去に用いられる構造、つまりゲート絶縁膜11、ゲート電極13、ソース領域8、電位固定領域10およびボディ領域5は、活性領域1AのMOSFETを構成するゲート絶縁膜11、ゲート電極12、ソース領域7、電位固定領域9およびボディ領域4と同じ工程により形成することができる。したがって、終端領域の電荷を除去する抜き取り領域の構造を、製造工程を増やすことなく形成することができる。よって、信頼性が高く寿命が長い半導体装置を、低コストかつ簡便に実現することが可能である。
 (実施の形態2)
 本実施の形態では、前記実施の形態1に比べて、抜き取り領域のレイアウトが異なる半導体装置について説明する。
 以下に、図15および図16を用いて、本実施の形態の半導体装置について説明する。図15は、図2と同じく本実施の形態の半導体装置の一部を拡大した平面図である。図16は、図15のC-C線における断面図である。図15および図16に示すように、本実施の形態の半導体装置は、電位固定領域10およびソース領域8のレイアウトが前記実施の形態1とは違なるが、その他の構造は前記実施の形態1と同様である。
 図15に示すように、電位固定領域10、ソース領域8はいずれも半導体チップの端部の辺に沿って延在し、半導体チップの中央部の活性領域1Aを囲むように環状に形成されている。活性領域1Aと半導体チップの端部との間の方向、つまりゲート電極13のゲート長方向において、ソース領域8は電位固定領域10により挟まれている。つまり、前記実施の形態1と異なり、ソース領域8は活性領域1A側および半導体チップの端部側の両方において電位固定領域10に接している。すなわち、前記実施の形態1では半導体チップの端部とソース領域8との間に電位固定領域10は形成されていなかったが、ここでは半導体チップの端部とソース領域8との間に電位固定領域10が形成されている。
 平面視において、電位固定領域10とボディ領域5との境界線は、終端領域1Bの延在方向に沿って直線状に延びている。また、ゲート電極13の活性領域1A側の端部はソース領域8の端部と平面視において重なっている。また、ゲート電極13は、当該ソース領域8の端部に接する電位固定領域10と平面視において重なり、さらに、当該電位固定領域10と接するボディ領域5と平面視において重なっている。言い換えれば、ゲート電極13は、半導体チップの端部側から順にエピタキシャル層2の上面に形成されたボディ領域5の一部、電位固定領域10およびソース領域8の一部のそれぞれの直上に亘って形成されている。
 図15および図16に示すように、ボディ領域5の上面において、電位固定領域10はボディ領域5の端部から離間した位置に形成されている。また、電位固定領域10の上面において、ソース領域8は電位固定領域10の端部から離間した位置に形成されている。図16に示すように、ソース領域8および電位固定領域10には、ゲート電極13に対して活性領域1A側に形成された金属膜15からなるコンタクトプラグが接続されている。
 本実施の形態の半導体装置では、抜き取り領域18(図1参照)において、ゲート電極13を含むMOS構造と、拡散領域であるソース領域8とが形成されている。また、ゲート電極13をオン状態とした際に電量が流れるチャネル領域は、ソース領域8に隣接し、かつゲート電極13と平面視において重なる領域に位置する電位固定領域10およびボディ領域5に形成される。本実施の形態の半導体装置は、前記実施の形態1において図6~図14を用いて説明した製造工程と同様の手順で形成することができる。
 前記実施の形態1と同様に、本実施の形態では、逆バイアス印加時に、終端領域1Bにおいてボディ領域5と電位固定領域10との境界近傍のボディ領域5の上面に溜まるホールを、ゲート電極13をオン状態としてゲート電極13の直下のエピタキシャル層2の上面にチャネルを形成し、ソース領域8に電子を供給することで除去する。つまり、ホールが溜まりやすい領域に反転層およびチャネルを形成することができるため、ソース領域8に供給された電子が当該ホールと再結合し、ホールはソース電極側に抜き出される。
 これにより、SiCMOSFETのように高速動作を行う素子を有する半導体装置であっても、基板内のキャリアを除去することができるため、キャリアが溜まることによる絶縁破壊が起こることを防ぐことができる。よって、半導体チップの寿命を延ばすことができるため、半導体装置の性能を向上させることができる。
 また、本実施の形態では、終端領域1Bに溜まったホールを、ゲート電極13をオン状態にする度にリセットすることができるため、逆バイアスを印加してMOSFETがオフ状態となる時間の累積に応じてホールが増加することを防ぐことができる。このため、終端部のホールの増加に起因して絶縁破壊が生じる虞を排除することができる。よって、半導体装置の信頼性を高めることができる。
 また、本実施の形態では、終端領域1Bの幅を拡げなくても絶縁破壊を防ぐことができる。これにより、半導体チップの大きさを縮小することができるため、半導体装置の性能を向上させることができる。また、本実施の形態の特徴である抜き取り領域18(図1参照)の拡散領域およびMOS構造は、活性領域1AのMOSFETを構成する拡散領域およびMOS構造と同じ構造である。したがって、終端領域の電荷を除去する抜き取り領域18の構造を、低コストかつ簡便に実現することが可能である。
 逆バイアス印加時に終端領域1Bに広がる空乏層は、電位固定領域10よりも半導体チップの端部側の領域において生じる。つまり、空乏層は、電位固定領域10内には形成されにくい。ここで、空乏層がn型の半導体領域であるソース領域8に接触すると、短絡により電流が流れ、ホールを除去することができない問題がある。そこで本実施の形態では、図15に示すように、平面視において、ソース領域8に対して半導体チップの端部側の領域を電位固定領域10により覆うことで、終端領域1Bにおいて生じる空乏層とソース領域8とが接触することを防いでいる。これにより、空乏層とソース領域8との短絡に起因してホール除去ができなくなることを防いでいる。
 本実施の形態では、ソース領域8よりも電位固定領域10を半導体チップの端部側に大きく延ばして形成する必要がないため、ゲート電極13のゲート長方向における電位固定領域10の幅を縮小することができる。また、本実施の形態では、ゲート電極13のゲート長方向におけるソース領域8の幅を縮小させることができる。これは、前記実施の形態1と異なり、ソース領域8を断続的ではなく連続的に延在する形状で形成することができるため、幅の小さいパターンであっても十分な面積を確保することができるためである。したがって、半導体チップの大きさを縮小することができるため、半導体装置の性能を向上させることができる。
 (実施の形態3)
 本実施の形態では、前記実施の形態1または前記実施の形態2のSiCパワー素子を備えた電力変換装置について説明する。図17は、本実施の形態の電力変換装置(インバータ)の回路図である。
 図17に示すように、本実施の形態のインバータは、パワーモジュール302内に、スイッチング素子であるSiCパワーMISFET304と、ダイオード305とをそれぞれ複数有する。各単相において、端子306~310を介して、電源電圧Vccと負荷(例えばモータ)301の入力電位との間に、SiCパワーMISFET304とダイオード305とが互いに逆並列に接続されており、これらの素子が上アームを構成する。また、負荷301の入力電位と接地電位GNDとの間にも、SiCパワーMISFET素子304とダイオード305とが互いに逆並列に接続されており、これらの素子が下アームを構成する。
 つまり、負荷301では各単相に2つのSiCパワーMISFET304と2つのダイオード305とが設けられており、3相で6つのスイッチング素子304と6つのダイオード5とが設けられている。
 電源電圧Vccは、端子306を介して、各単層のSiCパワーMISFET素子304のドレイン電極に接続されており、接地電位GNDは、端子310を介して、各単層のSiCパワーMISFET素子304のソース電極に接続されている。また、負荷301は、端子307~309のそれぞれを介して、各単層の上アームの各単層のSiCパワーMISFET素子304のソース電極に接続され、端子307~309のそれぞれを介して、各単層の下アームの各単層のSiCパワーMISFET素子304のドレイン電極に接続されている。
 また、個々のSiCパワーMISFET304のゲート電極には、端子311、312を介して、制御回路303が接続されており、この制御回路303によってSiCパワーMISFET304が制御されている。したがって、本実施の形態のインバータは、制御回路303でパワーモジュール302を構成するSiCパワーMISFET304を流れる電流を制御することにより、負荷301を駆動することができる。
 SiCパワーMISFET304は、前記実施の形態1または前記実施の形態2において説明した半導体チップに形成されたMOSFETである。図17に示すように、SiCパワーMISFET304内には、上記MOSFETに含まれる内蔵pnダイオードが形成されている。内蔵pnダイオードは、例えば図3に示す電位固定領域9およびボディ領域4を含むp型領域と、ドレイン領域3、SiC基板1およびエピタキシャル層2を含むn型領域とのpn接合により構成されている。
 すなわち、内蔵pnダイオードのアノードはMOSFETのソース電極に接続されており、カソードはMOSFETのドレイン電極に接続されている。よって、図17に示す各単層において、内蔵pnダイオードは、当該MOSFETに対し、逆並列に接続されている。したがって、内蔵pnダイオードとダイオード305とは並列に接続されている。ダイオード305は、例えば、上記MOSFETと共に半導体チップに混載されたショットキーバリアダイオードである。
 パワーモジュール302内での、SiCパワーMISFET304の機能について以下に説明する。負荷301として、例えばモータを制御駆動させるためには所望の電圧の正弦波を負荷301に入力する必要がある。制御回路303はSiCパワーMISFET304を制御し、矩形波のパルス幅を動的に変化させるパルス幅変調動作を行っている。出力された矩形波はインダクタを経ることで、平滑化され、擬似的な所望の正弦波となる。SiCパワーMISFET304は、このパルス幅変調動作を行うための矩形波を作り出す。
 前記実施の形態1または前記実施の形態2の半導体装置である半導体チップでは、終端領域の幅を縮小して活性領域を広くし、大電流化することができるため、本実施の形態では、パワーモジュール302の小型化および軽量化を実現することができる。よって、パワーモジュール302を有する電力変換装置を小型化および軽量化を実現することができる。
 また、前記実施の形態1および前記実施の形態2において説明したように、半導体チップの終端領域にMOS構造および拡散領域を設け、チャネルを形成することで、半導体チップの耐圧の低下を防ぐことができ、また、半導体チップを長寿命化することができる。よって、当該半導体チップに形成されたSiCパワーMISFET304を用いることで、本実施の形態のパワーモジュール302および電力変換装置の信頼性を高めることができ、また、本実施の形態のパワーモジュール302および電力変換装置を長寿命化することができる。
 また、本実施の形態の電力変換装置は、3相モータシステムとすることができる。図17に示した負荷301は3相モータであり、スイッチング素子に前記実施の形態1または前記実施の形態2において説明した半導体装置を用いた電力変換装置を用いることにより、3相モータシステムの小型化を実現することができる。
 (実施の形態4)
 本実施の形態では、前記実施の形態1または前記実施の形態2の半導体装置に形成されたSiCパワーMISFETを備える電力変換装置を説明する。図18は、本実施の形態の電力変換装置(インバータ)を示す回路図である。
 図18に示すように、本実施の形態のインバータは、パワーモジュール402内にスイッチング素子としてSiCパワーMISFET404を備えている。各単相において、端子405~409を介して、電源電圧Vccと負荷(例えばモータ)401の入力電位との間にSiCパワーMISFET404が接続されており、これらの素子が上アームを構成する。また、負荷401の入力電位と接地電位GNDとの間にもSiCパワーMISFET素子404が接続されており、これらの素子が下アームを構成する。つまり、負荷401では各単相に2つのSiCパワーMISFET404が設けられており、3相で6つのスイッチング素子404が設けられている。
 また、個々のSiCパワーMISFET304のゲート電極には、端子410、411を介して、制御回路403が接続されており、この制御回路403によってSiCパワーMISFET404が制御されている。したがって、本実施の形態のインバータでは、制御回路403でパワーモジュール402内のSiCパワーMISFET404を流れる電流を制御することにより、負荷401を駆動することができる。
 SiCパワーMISFET404には、前記実施の形態3において説明したように、内蔵pnダイオードが逆並列に接続されている。本実施の形態のパワーモジュール402内を含むインバータは、各単層のSiCパワーMISFET404にダイオード305(図17参照)が接続されていない点で、前記実施の形態3と異なる。
 パワーモジュール402内のSiCパワーMISFET404の機能について以下に説明する。SiCパワーMISFETの機能の1つとして、本実施の形態でも実施の形態3と同様に、パルス幅変調動作を行うための矩形波を作り出す機能を有している。本実施の形態ではさらに、SiCパワーMISFET404は、前記実施の形態3のダイオード305(図17参照)の役割も担う。
 例えば、モータのように負荷401にインダクタンスを含む場合、SiCパワーMISFET404をOFFしたとき、インダクタンスに蓄えられたエネルギーを必ず放出しなければならない。前記実施の形態3では、ダイオード305がこの役割を担う。一方、本実施の形態では、同期整流駆動を用いるので、環流電流を流す役割をSiCパワーMISFET404が担う。本実施の形態の同期整流駆動では、還流時にSiCパワーMISFET404のゲートをONにし、SiCパワーMISFET404を逆導通させる。
 したがって、還流時導通損失はダイオード305の特性ではなく、SiCパワーMISFET404の特性で決まる。また、同期整流駆動を行う場合、上下アームが短絡することを防ぐため、上下のSiCパワーMISFETが共にOFFとなる不動作時間が必要となる。この不動作時間の間はSiCパワーMISFET404のドリフト層とp型ボディ層によって形成される内蔵pnダイオードが駆動する。ただし、SiCはキャリアの走行距離がSiより短く、不動作時間の間の損失は小さく、例えば、前記実施の形態3のダイオード305をSiCショットキーバリアダイオードとした場合と、同等である。
 本実施の形態では、SiCパワーMISFET404に、前記実施の形態1または前記実施の形態2の半導体装置を用いることにより、パワーモジュール302の小型化および軽量化を実現することができる。よって、パワーモジュール302を有する電力変換装置を小型化および軽量化を実現することができる。また、ダイオードをSiCパワーMISFET404とは別に設けないため、パワーモジュール402をさらに小型化することができる。
 また、前記実施の形態1および前記実施の形態2において説明したように、半導体チップの終端領域にMOS構造および拡散領域を設け、チャネルを形成することで、半導体チップの耐圧の低下を防ぐことができ、また、半導体チップを長寿命化することができる。よって、当該半導体チップに形成されたSiCパワーMISFET404を用いることで、本実施の形態のパワーモジュール402および電力変換装置の信頼性を高めることができ、また、本実施の形態のパワーモジュール402および電力変換装置を長寿命化することができる。
 また、本実施の形態の電力変換装置は、3相モータシステムとすることができる。図18に示した負荷401は3相モータであり、スイッチング素子に前記実施の形態1または前記実施の形態2において説明した半導体装置を用いた電力変換装置を用いることにより、3相モータシステムの小型化を実現することができる。
 (実施の形態5)
 前記実施の形態3または前記実施の形態4で説明した3相モータシステムは、ハイブリット自動車、電気自動車、燃料電池自動車などの自動車に用いることができる。本実施の形態では、3相モータシステムを搭載した自動車を、図19および図20を用いて説明する。図19は、本実施の形態の電気自動車の構成を示す概略図である。図20は、本実施の形態の昇圧コンバータの回路図である。
 図19に示すように、本実施の形態の電気自動車は、駆動輪501aおよび駆動輪501bが接続された駆動軸502に動力を入出力可能とする3相モータ503と、3相モータ503を駆動するためのインバータ504と、バッテリ505とを備える。さらに、本実施の形態の電気自動車は、昇圧コンバータ508と、リレー509と、電子制御ユニット510とを備え、昇圧コンバータ508は、インバータ504が接続された電力ライン506と、バッテリ505が接続された電力ライン507とに接続されている。
 3相モータ503は、永久磁石が埋め込まれたロータと、3相コイルが巻回されたステータとを備えた同期発電電動機である。インバータ504には、前記実施の形態3または前記実施の形態4において説明したインバータを用いる。
 昇圧コンバータ508は図20に示すように、インバータ513に、リアクトル511および平滑用コンデンサ512が接続された構成からなる。インバータ513は、例えば、前記実施の形態4で説明したインバータと同様であり、インバータ内の素子構成も同じである。本実施の形態でも、前記実施の形態4と同様にスイッチング素子をSiCパワーMISFET514とし、同期整流駆動させる。本実施の形態の電気自動車では、電力変換装置である、インバータ504および昇圧コンバータ508を用いて出力を3相モータ503に供給することで、3相モータ503により車輪を駆動する。
 図19の電子制御ユニット510は、マイクロプロセッサと、記憶装置と、入出力ポートとを備えており、3相モータ503のロータ位置を検出するセンサからの信号、またはバッテリ505の充放電値などを受信する。電子制御ユニット510は、インバータ504、昇圧コンバータ508、およびリレー509を制御するための信号を出力する。
 本実施の形態によれば、電力変換装置であるインバータ504および昇圧コンバータ508に、前記実施の形態3および前記実施の形態4の電力変換装置を用いることができる。また、3相モータ503、およびインバータ504などからなる3相モータシステムに、前記実施の形態3または前記実施の形態4の3相モータシステムを用いることができる。これにより、電気自動車の省エネルギー化、設計自由度の向上および軽量化を実現することができる。また、前記実施の形態3および前記実施の形態4の電力変換装置を用いることで、電気自動車の信頼性を向上させることができる。
 なお、本実施の形態では、電気自動車について説明したが、エンジンも併用するハイブリット自動車、バッテリ505が燃料電池スタックとなった燃料電池自動車にも同様に上述の3相モータシステムを適用することができる。
 (実施の形態6)
 前記実施の形態3および前記実施の形態4の3相モータシステムは、鉄道車両に用いることができる。本実施の形態では、3相モータシステムを用いた鉄道車両を図21を用いて説明する。図21は、本実施の形態の鉄道車両のコンバータおよびインバータを含む回路図である。
 図21に示すように、鉄道車両には架線OWからパンタグラフPGを介して、例えば25kVの電力が供給される。トランス609を介して電圧が1.5kVまで降圧され、コンバータ607で交流から直流に変換される。さらに、キャパシタ608を介してインバータ602で直流から交流に変換されて、負荷601である3相モータが駆動される。コンバータ607内の素子構成は前記実施の形態3のようにSiCパワーMISFETおよびダイオードを併用してもよく、また前記実施の形態4のようにSiCパワーMISFET単独でもよい。
 本実施の形態では、前記実施の形態4のようにスイッチング素子をSiCパワーMISFET604として同期整流駆動させる。なお、図21では、前記実施の形態4で説明した制御回路の図示を省略している。また、架線OWは、パンタグラフPG、トランス609、車輪WHを介して、線路RTに電気的に接続されている。
 本実施の形態によれば、コンバータ607に、前記実施の形態3または前記実施の形態4の電力変換装置を用いることができる。また、負荷601、インバータ602、および制御回路からなる3相モータシステムに、前記実施の形態3または前記実施の形態4の3相モータシステムを用いることができる。これにより、鉄道車両の省エネルギー化、3相モータシステムを含む床下部品の小型化による低床化および軽量化を実現することができる。
 以上、本発明者らによってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、前記実施の形態1および前記実施の形態2で説明した半導体チップの活性領域には、接合型電界効果トランジスタ、金属-酸化膜半導体接合電界効果トランジスタ、絶縁ゲートバイポーラトランジスタ、pnダイオード、ショットキーバリアダイオード、またはジャンクションバリアショットキーダイオードなどが形成されていても構わない。
 また、半導体基板はSiC基板に限らず、ダイヤモンド基板、GaN基板などのワイドバンドギャップ半導体からなる基板であってもよく、また、バルクシリコン(Si)基板であってもよい。
 本発明は、炭化ケイ素を用いた半導体装置およびその半導体装置の製造方法、ならびにその半導体装置を用いたパワーモジュール、インバータ、自動車および鉄道車両に適用して有効である。
1A  活性領域
1B  終端領域
1  SiC基板
2  エピタキシャル層
3  ドレイン領域
4、5  ボディ領域
6  FLR
7、8  ソース領域
9、10  電位固定領域
11  ゲート絶縁膜
12、13  ゲート電極
14  層間絶縁膜
15  金属膜
16  パッシベーション膜
17  ドレイン電極
18  抜き取り領域
19  電界緩和領域
21  ユニットセル
22~24  マスク
301、401  負荷
302、402  パワーモジュール
303、403  制御回路
304、404、514  SiCパワーMISFET
305  ダイオード
306~312、405~411  端子
501a、501b  駆動輪
502  駆動軸
503  3相モータ
504、513  インバータ
505  バッテリ
506、507  電力ライン
508  昇圧コンバータ
509  リレー
510  電子制御ユニット
511  リアクトル
512  平滑用コンデンサ
601  負荷
602  インバータ
604  SiCパワーMISFET
607  コンバータ
608  キャパシタ
609  トランス
CP  半導体チップ
GP  ゲートパッド
OW  架線
PG  パンタグラフ
RT  線路
SP  ソースパッド
WH  車輪

Claims (15)

  1.  基板と、
     前記基板の終端領域において、前記基板上に絶縁膜を介して形成されたゲート電極と、
     前記ゲート電極の横の前記基板に形成され、ソース電極に電気的に接続された拡散領域と、
     前記ゲート電極の下のチャネル領域と、
    を有する、半導体装置。
  2.  請求項1に記載の半導体装置において、
     前記基板の活性領域には、前記ソース電極と接続されているMOSFETを有し、
     前記基板の裏面はドレイン電極に接続されている、半導体装置。
  3.  請求項2に記載の半導体装置と、
     前記ソース電極に接続されている第1端子と、
     前記ドレイン電極に接続されている第2端子と、
    を有する、パワーモジュール。
  4.  請求項3に記載のパワーモジュールを有し、
     前記第1端子と前記第2端子間に印加される電力を変換する、電力変換装置。
  5.  請求項4に記載の電力変換装置の出力をモータに供給し、前記モータで車輪を駆動する、自動車。
  6.  請求項4に記載の電力変換装置の出力をモータに供給し、前記モータで車輪を駆動する、鉄道車両。
  7.  第1不純物濃度を有する第1導電型の半導体基板と、
     前記半導体基板の主面の反対の裏面側に形成された裏面電極と、
     前記半導体基板の前記主面上に形成された、前記第1不純物濃度よりも低い第2不純物濃度を有する前記第1導電型の半導体層と、
     前記半導体層の終端領域の上面に形成された、前記第1導電型とは異なる第2導電型の第1領域と、
     前記第1領域と隣接して前記半導体層の上面に形成され、ソース電極と電気的に接続された前記第1導電型の第2領域と、
     前記第1領域の直上にゲート絶縁膜を介して形成されたゲート電極と、
     前記半導体層上の活性領域に形成された半導体素子と、
    を有する、半導体装置。
  8.  請求項7に記載の半導体装置において、
     平面視において、前記第2領域に対して前記基板の端部側の領域を除き、前記第2領域を囲むように前記半導体層の上面に形成された前記第2導電型の第3領域をさらに有し、
     前記第3領域は、前記第1領域よりも不純物濃度が高く、前記ソース電極に電気的に接続されている、半導体装置。
  9.  請求項7に記載の半導体装置において、
     前記ゲート電極は、前記第2領域に対して前記基板の端部側に設けられており、
     前記ゲート電極の直下の前記半導体層の上面に、前記第2領域に隣接して形成された前記第2導電型の第3領域をさらに有し、
     前記第3領域は、前記第1領域よりも不純物濃度が高く、前記ソース電極に電気的に接続されている、半導体装置。
  10.  請求項7に記載の半導体装置において、
     前記基板および前記半導体層は、炭化ケイ素を含む、半導体装置。
  11.  請求項7に記載の半導体装置において、
     前記半導体素子は、前記ソース電極と接続されているMOSFETであり、
     前記裏面電極はドレイン電極である、半導体装置。
  12.  請求項11に記載の半導体装置と、
     前記ソース電極に接続されている第1端子と、
     前記ドレイン電極に接続されている第2端子と、
    を有する、パワーモジュール。
  13.  請求項12に記載のパワーモジュールを有し、
     前記第1端子と前記第2端子間に印加される電力を変換する、電力変換装置。
  14.  請求項13に記載の電力変換装置の出力をモータに供給し、前記モータで車輪を駆動する、自動車。
  15.  請求項13に記載の電力変換装置の出力をモータに供給し、前記モータで車輪を駆動する、鉄道車両。
PCT/JP2014/071119 2014-08-08 2014-08-08 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両 WO2016021077A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014006726.1T DE112014006726T5 (de) 2014-08-08 2014-08-08 Halbleitervorrichtung, Leistungsmodul, Stromrichtvorrichtung, Fahrzeug und Schienenfahrzeug
PCT/JP2014/071119 WO2016021077A1 (ja) 2014-08-08 2014-08-08 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両
JP2016539801A JP6273020B2 (ja) 2014-08-08 2014-08-08 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/071119 WO2016021077A1 (ja) 2014-08-08 2014-08-08 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両

Publications (1)

Publication Number Publication Date
WO2016021077A1 true WO2016021077A1 (ja) 2016-02-11

Family

ID=55263378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071119 WO2016021077A1 (ja) 2014-08-08 2014-08-08 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両

Country Status (3)

Country Link
JP (1) JP6273020B2 (ja)
DE (1) DE112014006726T5 (ja)
WO (1) WO2016021077A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785417A (zh) * 2016-08-25 2018-03-09 比亚迪股份有限公司 碳化硅功率器件及其制造方法
WO2018084020A1 (ja) * 2016-11-01 2018-05-11 三菱電機株式会社 炭化珪素半導体装置および電力変換装置
JP2019047010A (ja) * 2017-09-05 2019-03-22 三菱電機株式会社 半導体装置、電力変換装置ならびに半導体装置の駆動方法
US11923716B2 (en) 2019-09-13 2024-03-05 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238067A (ja) * 1988-03-18 1989-09-22 Fujitsu Ltd 絶縁ゲート型バイポーラトランジスタ
JPH0417372A (ja) * 1990-05-11 1992-01-22 Hitachi Ltd 半導体装置
JP2003338625A (ja) * 2002-05-22 2003-11-28 Sanken Electric Co Ltd 半導体装置の製造方法
JP2012231011A (ja) * 2011-04-26 2012-11-22 Mitsubishi Electric Corp 半導体装置
JP2014099670A (ja) * 2011-02-02 2014-05-29 Rohm Co Ltd 半導体装置およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473723B (zh) * 2009-07-15 2014-12-03 三菱电机株式会社 功率用半导体装置及其制造方法
JP5498431B2 (ja) * 2011-02-02 2014-05-21 ローム株式会社 半導体装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238067A (ja) * 1988-03-18 1989-09-22 Fujitsu Ltd 絶縁ゲート型バイポーラトランジスタ
JPH0417372A (ja) * 1990-05-11 1992-01-22 Hitachi Ltd 半導体装置
JP2003338625A (ja) * 2002-05-22 2003-11-28 Sanken Electric Co Ltd 半導体装置の製造方法
JP2014099670A (ja) * 2011-02-02 2014-05-29 Rohm Co Ltd 半導体装置およびその製造方法
JP2012231011A (ja) * 2011-04-26 2012-11-22 Mitsubishi Electric Corp 半導体装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785417A (zh) * 2016-08-25 2018-03-09 比亚迪股份有限公司 碳化硅功率器件及其制造方法
WO2018084020A1 (ja) * 2016-11-01 2018-05-11 三菱電機株式会社 炭化珪素半導体装置および電力変換装置
JPWO2018084020A1 (ja) * 2016-11-01 2019-06-24 三菱電機株式会社 炭化珪素半導体装置および電力変換装置
JP2019047010A (ja) * 2017-09-05 2019-03-22 三菱電機株式会社 半導体装置、電力変換装置ならびに半導体装置の駆動方法
US11923716B2 (en) 2019-09-13 2024-03-05 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors

Also Published As

Publication number Publication date
JPWO2016021077A1 (ja) 2017-04-27
DE112014006726T5 (de) 2017-03-23
JP6273020B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6514338B2 (ja) 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両
US10290704B2 (en) Semiconductor device and method for manufacturing same, power conversion device, three-phase motor system, automobile, and railway carriage
US9960259B2 (en) Semiconductor device, method for manufacturing same, power conversion device, three-phase motor system, automobile, and railway carriage
JP6923457B2 (ja) 炭化ケイ素半導体装置およびその製造方法、電力変換装置、自動車並びに鉄道車両
JP6336055B2 (ja) 半導体装置、半導体装置の製造方法、電力変換装置、3相モータシステム、自動車、および鉄道車両
JP6641523B2 (ja) 半導体装置および電力変換装置
EP3352225B1 (en) Semiconductor device and method of manufacturing same, electric power converting device, three-phase motor system, automobile and railway vehicle
JP6255111B2 (ja) 半導体装置、インバータモジュール、インバータ、鉄道車両、および半導体装置の製造方法
JP6273020B2 (ja) 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両
WO2016002057A1 (ja) 半導体装置、パワーモジュール、電力変換装置、3相モータシステム、自動車、並びに鉄道車両
JP6843561B2 (ja) 半導体装置および電力変換装置
JP6994991B2 (ja) 半導体装置、パワーモジュールおよび電力変換装置
JP6584940B2 (ja) 半導体装置の製造方法
JP7002998B2 (ja) 半導体装置及びその製造方法、電力変換装置、3相モータシステム、自動車、並びに鉄道車両
JP6556892B2 (ja) 半導体装置、半導体装置の製造方法、電力変換装置、3相モータシステム、自動車、および鉄道車両
JP6473073B2 (ja) 半導体装置、パワーモジュール、電力変換装置、自動車および鉄道車両
JP6626807B2 (ja) 半導体装置、パワーモジュールおよび電力変換装置
JP6662695B2 (ja) 炭化ケイ素半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016539801

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014006726

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899464

Country of ref document: EP

Kind code of ref document: A1