WO2016017072A1 - 有機el素子及び有機el素子の製造方法 - Google Patents

有機el素子及び有機el素子の製造方法 Download PDF

Info

Publication number
WO2016017072A1
WO2016017072A1 PCT/JP2015/003387 JP2015003387W WO2016017072A1 WO 2016017072 A1 WO2016017072 A1 WO 2016017072A1 JP 2015003387 W JP2015003387 W JP 2015003387W WO 2016017072 A1 WO2016017072 A1 WO 2016017072A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic
auxiliary electrode
panel
substrate
Prior art date
Application number
PCT/JP2015/003387
Other languages
English (en)
French (fr)
Inventor
知典 山田
成正 岩本
勉 櫟原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016537725A priority Critical patent/JP6213940B2/ja
Priority to US15/318,763 priority patent/US9837630B2/en
Publication of WO2016017072A1 publication Critical patent/WO2016017072A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic EL (Electro Luminescence) element and a method for manufacturing the organic EL element.
  • organic EL Electro Luminescence
  • Organic EL elements such as organic EL panels are being studied for application to various devices as highly efficient surface light sources.
  • the organic EL element is expected to be applied to lighting, a display, or a window.
  • This type of organic EL element includes, for example, a translucent substrate, a transparent electrode made of ITO (Indium Tin Oxide) or the like formed on the translucent substrate, an organic light emitting layer formed on the transparent electrode, And a reflective electrode formed on the organic light emitting layer.
  • ITO Indium Tin Oxide
  • Transparent conductive materials such as ITO used as a material for transparent electrodes generally have high resistivity. For this reason, in the organic EL element, when power is supplied to the transparent electrode (ITO) from the electrode terminal portion (extraction electrode) provided on the outer peripheral portion, the central region of the light emitting surface far from the electrode terminal portion due to the voltage drop of the transparent electrode In this case, the light emission luminance decreases. As a result, luminance unevenness occurs on the light emitting surface of the organic EL element.
  • Patent Document 1 a technique for forming a thin line auxiliary electrode made of a low resistance material such as a metal in a lattice pattern on the transparent electrode is known.
  • a technique for forming a thin line auxiliary electrode made of a low resistance material such as a metal in a lattice pattern on the transparent electrode is known.
  • Patent Document 1 a technique for forming a thin line auxiliary electrode made of a low resistance material such as a metal in a lattice pattern on the transparent electrode.
  • the conventional auxiliary electrode pattern cannot sufficiently suppress the luminance unevenness of the light emitting surface.
  • An object of the present invention is to provide an organic EL element capable of sufficiently suppressing luminance unevenness on a light emitting surface.
  • an organic EL device includes a substrate, a first electrode disposed on the substrate, and a light emitting layer, and is disposed on the first electrode.
  • the line width of the curved portion is wider than the line width of the straight portion.
  • one aspect of a method for producing an organic EL device includes a step of forming a first electrode on a substrate, and a linear linear portion so as to be laminated on the first electrode.
  • the auxiliary electrode is formed by applying a liquid conductive material so that the line width of the curved portion is wider than the line width of the linear portion.
  • the luminance unevenness on the light emitting surface can be sufficiently suppressed.
  • FIG. 1A is a plan view of an organic EL panel according to an embodiment.
  • FIG. 1B is a cross-sectional view of the organic EL panel according to the embodiment.
  • FIG. 2 is a diagram illustrating a first pattern of the auxiliary electrode of the organic EL panel according to the embodiment.
  • FIG. 3 is an enlarged view of a region X in FIG.
  • FIG. 4A is a plan view showing a first electrode formation step in the method of manufacturing an organic EL panel according to the embodiment.
  • FIG. 4B is a plan view showing an auxiliary electrode forming step in the method of manufacturing the organic EL panel according to the embodiment.
  • FIG. 4C is a plan view showing an organic layer forming step in the method of manufacturing an organic EL panel according to the embodiment.
  • FIG. 4D is a plan view showing a second electrode forming step in the method for manufacturing the organic EL panel according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of an application order of conductive materials in the auxiliary electrode forming step.
  • FIG. 6 is a diagram illustrating a second pattern of the auxiliary electrode of the organic EL panel according to the embodiment.
  • FIG. 7 is a diagram showing a third pattern of the auxiliary electrode of the organic EL panel according to the embodiment.
  • FIG. 8 is a diagram showing a pattern of auxiliary electrodes of an organic EL panel of a comparative example.
  • FIG. 9 is a diagram showing another pattern of auxiliary electrodes of the organic EL panel of the comparative example.
  • FIG. 1A is a plan view of the organic EL panel according to the embodiment
  • FIG. 1B is a cross-sectional view taken along the line AA ′ of the organic EL panel.
  • the organic EL panel 1 is an example of an organic EL element, and is a surface-emitting light emitting device that emits light of a predetermined color.
  • the organic EL panel 1 emits white light, for example.
  • the organic EL panel 1 includes a first substrate 11, a first electrode 12, an auxiliary electrode (auxiliary wiring) 13, an organic layer 14 including a light emitting layer, and a second electrode 15. And a second substrate 16 and a sealing resin 17.
  • the first substrate 11 and the first electrode 12 are translucent, and the second electrode 15 is reflective. That is, as shown in FIG. 1B, the organic EL panel 1 according to the present embodiment has only one surface (the surface on the first substrate 11 side) as a light emitting surface, and emits light from only the one surface. It is a light emitting organic EL element.
  • the second electrode 15 and the second substrate 16 may also be translucent so that a double-sided light emitting organic EL element that emits light from both surfaces of the first substrate 11 and the second substrate 16 may be used.
  • translucency is a property of a substance that transmits light and is a concept including transparency.
  • the first substrate 11 is a translucent substrate having translucency, for example, a glass substrate made of a glass material, or a resin substrate made of a translucent resin material such as polycarbonate resin, acrylic resin, or polyester resin. is there.
  • the transparent resin substrate excellent in moisture permeability such as a glass-made transparent glass substrate or a polyester resin, etc. It is preferable to use a transparent substrate.
  • the first substrate 11 is a transparent substrate having a high transmittance so that the other side can be seen through, for example, a transparent glass substrate. Further, since glass has low moisture permeability, it is possible to suppress moisture from entering the organic EL panel 1 by using a glass substrate as the first substrate 11.
  • the first substrate 11 may be formed of a composite material of glass and a material other than glass.
  • the first substrate 11 can have a laminated structure of a glass plate and a light extraction resin layer (light extraction layer).
  • the resin layer is provided on the surface of the glass plate on the first electrode 12 side, for example.
  • the light-extractable resin layer is a layer having a structure that scatters light, for example, and is attached to a glass plate.
  • the resin layer is formed using, for example, a plastic material. Examples of the plastic material include PET (polyethylene terephthalate) resin, PEN (polyethylene naphthalate) resin, acrylic resin, and epoxy resin.
  • the resin layer may have a multilayer structure including a high refractive index layer and a low refractive index layer having a lower refractive index than the high refractive index layer. Further, a fine uneven structure may be formed at the interface between the high refractive index layer and the low refractive index layer.
  • the first substrate 11 is not limited to a rigid substrate, and may be a flexible flexible substrate such as a flexible resin substrate or a flexible glass substrate.
  • the shape of the first substrate 11 is, for example, a square or a rectangular rectangle, but is not limited thereto, and may be a polygon other than a circle or a rectangle.
  • the first substrate 11 is colorless and transparent, but may be slightly colored or translucent. As the translucent first substrate 11, a ground glass substrate can be used.
  • the first electrode 12 is disposed on the first substrate 11.
  • the first electrode 12 is formed in a predetermined shape on the upper surface of the first substrate 11.
  • the first electrode 12 is formed such that a main portion corresponding to the organic layer 14 in a plan view has a substantially rectangular shape.
  • a plurality (three in FIG. 1A) are formed so as to protrude toward each of the upper and lower sides of the substrate 11.
  • the protruding portion of the first electrode 12 is a first electrode terminal portion 12 a in the first electrode 12.
  • the first substrate 11 is formed with a rectangular second electrode terminal portion 12 b using the same material as the first electrode 12.
  • the first electrode terminal portion 12 a is a power feeding portion to which a predetermined voltage for supplying to the first electrode 12 is applied, and the second electrode terminal portion 12 b has a predetermined voltage for supplying to the second electrode 15. It is the electric power feeding part applied.
  • the second electrode terminal portion 12b is not connected to the first electrode 12 and is formed separately from the first electrode terminal portion 12a.
  • the first electrode 12 is an electrode having translucency, and is formed using a material having both conductivity and translucency.
  • Examples of the material of the first electrode 12 include conductive transparent metal oxides such as ITO, IZO (Indium Zinc Oxide), or AZO (Al-added ZnO).
  • the first electrode 12 in the present embodiment is a transparent electrode made of a transparent conductive film (ITO film) using ITO, and is formed by sputtering, for example.
  • the first electrode 12 since the first electrode 12 has translucency, the light directed to the first substrate 11 among the light generated in the light emitting layer of the organic layer 14 is transmitted through the first electrode 12.
  • the first electrode 12 is an anode (anode).
  • the thickness of the first electrode 12 is, for example, 10 nm to 1000 nm. When the thickness of the first electrode 12 is particularly in the range of 50 nm to 1000 nm, good translucency and conductivity of the first electrode 12 are ensured. From the viewpoint of light transmittance, the thickness of the first electrode 12 is more preferably 30 nm to 300 nm.
  • the auxiliary electrode 13 is laminated on the first electrode 12. As shown in FIG. 1B, in the present embodiment, the auxiliary electrode 13 is formed on the first electrode 12. By laminating the auxiliary electrode 13 on the first electrode 12, it is possible to suppress luminance unevenness on the light emitting surface due to a voltage drop of the first electrode 12. That is, since the transparent conductive material such as ITO used for the first electrode 12 generally has a high resistivity, power is supplied to the first electrode 12 from the first electrode terminal portion 12 a formed on the outer peripheral portion of the first substrate 11. As a result, the luminance of the central region of the light emitting surface (organic layer 14) decreases due to the voltage drop of the first electrode 12. Therefore, the auxiliary electrode 13 is stacked on the first electrode 12. Thereby, the electrical conductivity of the first electrode 12 can be complemented and the current can be distributed uniformly in the plane of the first electrode 12, so that it is possible to suppress a decrease in luminance in the central region of the light emitting surface.
  • the transparent conductive material such as ITO used for the
  • the auxiliary electrode 13 is formed using a material having a lower resistivity than the first electrode 12.
  • the material of the auxiliary electrode 13 is a conductive material such as gold, silver, copper, aluminum, graphene, or carbon nanotube, or a mixture thereof.
  • the auxiliary electrode 13 can be formed by a vacuum process (dry process) such as vapor deposition or sputtering, or a wet process such as ink jet or screen printing.
  • the auxiliary electrode 13 is formed by a wet process.
  • the auxiliary electrode 13 is formed by liquid discharge using a liquid conductive material.
  • a liquid such as a metal such as silver or copper or an alloy thereof has high conductivity and can discharge liquid. It is formed by applying a liquid conductive material (conductive paste).
  • the auxiliary electrode 13 is formed in a predetermined pattern. Specifically, a liquid conductive material is applied in a predetermined pattern. Details of the pattern shape of the auxiliary electrode 13 will be described later.
  • the organic layer 14 is disposed on the first electrode 12 as shown in FIG. 1B. Specifically, the organic layer 14 is disposed on the first electrode 12 so as to cover the auxiliary electrode 13. The organic layer 14 is provided so as to be positioned between the first electrode 12 and the second electrode 15.
  • the organic layer 14 is an organic EL layer (organic light emitting layer) having at least a light emitting layer containing an organic compound that is a light emitting substance.
  • the organic layer 14 may include one or more functional layers selected from a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and an intermediate layer.
  • a hole injection layer a hole transport layer, an electron transport layer, an electron injection layer, and an intermediate layer.
  • the first electrode 12 is an anode and the second electrode 15 is a cathode
  • holes are sequentially formed as the organic layer 14 from the first electrode 12 side toward the second electrode 15.
  • a stacked layer of an injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer can be used.
  • the organic layer 14 is formed on the first electrode 12 by using a predetermined organic material, for example, by vapor deposition or liquid coating.
  • the thickness of the organic layer 14 is, for example, 60 nm to 300 nm.
  • the functional layer which comprises the organic layer 14 is mainly formed using an organic material, one part functional layer may be formed using the inorganic material.
  • the organic layer 14 may have a so-called multi-unit structure.
  • the second electrode 15 is disposed on the organic layer 14.
  • the second electrode 15 is formed in a predetermined shape on the surface of the organic layer 14.
  • the second electrode 15 is formed so as to protrude at a plurality of locations (two locations in FIG. 1A) toward each of the upper and lower sides of the first substrate 11.
  • the protruding portion of the second electrode 15 is connected to a second electrode terminal portion 12 b formed on the first substrate 11.
  • the second electrode 15 is an electrode having reflectivity, and is formed using a material having both conductivity and reflectivity. That is, in the present embodiment, the second electrode 15 is a reflective electrode having reflectivity. Examples of the material of the second electrode 15 include metal materials such as silver, aluminum, and copper.
  • the second electrode 15 is formed by, for example, vapor deposition or sputtering. The thickness of the second electrode 15 is, for example, 10 nm to 1000 nm.
  • the second electrode 15 in the present embodiment is a cathode (cathode).
  • the second substrate 16 is a cap substrate that covers the first electrode 12, the organic layer 14, and the second electrode 15, and may be either a translucent substrate or a non-translucent substrate.
  • substrate 11 can be used, for example, a rectangular glass substrate (cap glass) can be used.
  • the sealing resin 17 is a sealing material that seals the first substrate 11 and the second substrate 16, and surrounds the stacked body of the first electrode 12, the organic layer 14, and the second electrode 15. And it is formed in a frame shape along the outer peripheral edge of the second substrate 16. Note that a solid desiccant may be disposed in the gap between the second electrode 15 and the second substrate 16, or a filler so as to fill the gap between the second electrode 15 and the second substrate 16. May be formed.
  • the organic EL panel 1 configured as described above emits light by being electrically connected to a power supply circuit (not shown). Specifically, the first electrode terminal portion 12 a and the second electrode terminal portion 12 b are electrically connected to the power supply circuit, and power is supplied from the power supply circuit to connect the first electrode 12 and the second electrode 15. When a predetermined voltage is applied to the light, a current flows through the organic layer 14 and the light emitting layer emits light.
  • FIG. 2 is a plan view showing a pattern of auxiliary electrodes in the organic EL panel according to the embodiment
  • FIG. 3 is an enlarged view of a region X surrounded by a broken line in FIG.
  • the auxiliary electrode 13 is formed in a pattern having a straight linear portion 13a and a curved curved portion 13b in plan view.
  • the auxiliary electrode 13 is a linear electrode formed in a predetermined pattern within a predetermined rectangular region. Since the auxiliary electrode 13 inhibits light emission if the line width becomes too wide, the auxiliary electrode 13 has a line width of 1 ⁇ m to 100 ⁇ m and a thickness (height) in order to achieve both conductivity and difficulty in being visually recognized. Is preferably formed with a thickness of 0.1 ⁇ m to 10 ⁇ m. More preferably, the auxiliary electrode 13 has a line width of 5 ⁇ m to 50 ⁇ m, and the auxiliary electrode 13 has a thickness of 0.5 ⁇ m to 2 ⁇ m.
  • the auxiliary electrode 13 in the present embodiment is formed in a substantially lattice pattern as a whole in the rectangular region, and is arranged in the vertical direction (vertical direction) and the horizontal direction (horizontal direction). Each is formed at a predetermined interval (wiring pitch).
  • the vertical spacing and the horizontal spacing are the same.
  • the straight portion 13a of the auxiliary electrode 13 is formed in an internal region (region other than the outer peripheral region) which is the main region of the rectangular region.
  • a plurality of linear portions 13a are formed along the vertical direction and the horizontal direction. As shown in FIG. 1A, the straight portion 13 a is formed so as to cover the whole except for the outer peripheral edge of the first electrode 12. In the present embodiment, the line width of the straight portion 13a is constant.
  • the curved portion 13b of the auxiliary electrode 13 is formed in the outer peripheral area of the rectangular area.
  • the curved portion 13 b is formed in a region between the upper and lower outermost electrodes (frame-shaped portion) of the auxiliary electrode 13 and an electrode on the inner side of the outermost electrode. Thereby, the curve part 13b is formed in the outer periphery vicinity of the 1st electrode 12, as shown to FIG. 1A.
  • the curved portion 13b is formed at each of both ends of one straight portion 13a formed along the vertical direction (or the horizontal direction). Moreover, the curved part 13b is formed so that the edge parts of two adjacent linear parts 13a may be connected.
  • each curved portion 13b is formed in a curved pattern.
  • the pattern of the curved portion 13b has a substantially semicircular arc shape, a substantially semielliptical arc shape, or a parabolic shape, but is not limited thereto.
  • the line width of the curved portion 13b is wider than the line width of the straight portion 13a. Specifically, the line width of the curved portion 13b gradually increases from one end of two adjacent linear portions 13a to the central portion of the curved portion 13b, and the center of the curved portion 13b. From the first portion to the other end portion of the adjacent linear portion 13a, the width gradually decreases. That is, in the present embodiment, the line width of the curved portion 13b is the maximum at the central portion (U-turn portion) that is a bent region.
  • the line width of the auxiliary electrode 13 from the straight line portion 13a to the curved line portion 13b is continuously increased. That is, the auxiliary electrode 13 is a continuous line in which the straight line part 13a and the curved line part 13b are continuously formed, and the line width of the straight line part 13a and the curved line part 13b are connected at the connection part between the straight line part 13a and the curved line part 13b.
  • the line width is the same.
  • the line width of the curved portion 13b is wider than the line width of the straight portion 13a in all the portions of the curved portion 13b.
  • the present invention is not limited to this. There may be a portion where the line width is narrower than the straight line portion 13a.
  • the auxiliary electrode 13 has a line width of 1 ⁇ m to 100 ⁇ m in order to achieve both conductivity and difficulty of being visually recognized.
  • the thickness (height) is preferably 0.1 ⁇ m to 10 ⁇ m. More preferably, the auxiliary electrode 13 has a line width of 5 ⁇ m to 50 ⁇ m, and the auxiliary electrode 13 has a thickness of 0.5 ⁇ m to 2 ⁇ m.
  • FIGS. 4A to 4D are plan views of each step in the method of manufacturing the organic EL panel according to the embodiment.
  • the 1st electrode 12 is formed on the 1st board
  • a glass substrate is prepared as the first substrate 11 and an ITO film having a predetermined shape is formed as the first electrode 12 on the glass substrate.
  • the first electrode terminal portion 12a and the second electrode terminal portion 12b are formed simultaneously with the first electrode 12.
  • the first electrode terminal portion 12 a is formed integrally with the first electrode 12, and the second electrode terminal portion 12 b is formed separately from the first electrode terminal portion 12 a and the first electrode 12.
  • the auxiliary electrode 13 is formed so as to be laminated on the first electrode 12 (auxiliary electrode forming step).
  • the auxiliary electrode 13 is formed on the first electrode 12 in a predetermined pattern.
  • a liquid conductive material is applied on the first electrode 12 in a predetermined pattern by liquid discharge by an ink jet apparatus.
  • the auxiliary electrode 13 has a straight linear portion 13a and a curved curved portion 13b, and the line width of the curved portion 13b is wider than the line width of the linear portion 13a.
  • a liquid conductive material is applied.
  • the liquid conductive material a metal paste made by dispersing silver or copper metal particles in a solvent and a binder is used.
  • a nano silver paste is used, it is possible to obtain the auxiliary electrode 13 having a small specific resistance and a very good conductive performance.
  • an ink jet apparatus can be used as the liquid discharge of the liquid conductive material. The liquid conductive material is discharged from a dispenser nozzle of the ink jet apparatus.
  • the liquid conductive material is placed on the first electrode 12 in a linear predetermined pattern by relatively moving the dispenser nozzle or the first substrate 11 in a predetermined direction.
  • Direct drawing for example, the pattern of the auxiliary electrode 13 shown in FIG. 4B is obtained by applying a liquid conductive material 130 as shown in FIG.
  • FIG. 5 is a diagram illustrating an example of an application order of the liquid conductive material.
  • the liquid conductive material 130 is moved into a rectangular frame within a region that becomes a rectangular light emitting surface (organic layer 14). Apply to the shape.
  • the first substrate 11 or the dispenser nozzle is moved in the direction from the upper end to the lower end (or from the lower end to the upper end) while reciprocating a plurality of times in the left-right direction.
  • the material 130 is applied with a single stroke.
  • the liquid portion is repeated so that the straight portion 130a (the portion corresponding to the straight portion 13a) extending in the left-right direction and the curved portion 130b (the portion corresponding to the curved portion 13b) formed at the left and right ends are repeated.
  • a conductive material 130 is applied.
  • the straight part 130a can be drawn by moving the dispenser nozzle in a straight line in the left-right direction.
  • the curved portion 130b can be drawn by moving the dispenser nozzle in a curved shape.
  • the first substrate 11 or the dispenser nozzle is moved in the direction from the left end to the right end (or from the right end to the left end) while reciprocating a plurality of times in the up and down direction.
  • the material 130 is applied with a single stroke.
  • the linear portion 130a (the portion corresponding to the straight portion 13a) extending in the vertical direction and the curved portion 130b (the portion corresponding to the curved portion 13b) formed at the upper and lower ends are repeated.
  • a conductive material 130 is applied.
  • the straight portion 130a can be drawn by moving the dispenser nozzle in a straight line in the vertical direction.
  • the curved portion 130b can be drawn by moving the dispenser nozzle in a curved shape.
  • the straight portion 130a extending in the left-right direction and the straight portion 130a extending in the up-down direction are orthogonal and extend in the left-right direction.
  • the straight line portion 130a extending in the vertical direction overlaps the straight line portion 130a.
  • the conductive material 130 is applied so that the linear portion 130a extending in the left-right direction overlaps the linear portion 130a extending in the vertical direction by reversing the application order in the vertical direction and the horizontal direction. May be.
  • the electroconductive material 130 is apply
  • the drawing speed (moving speed) of the liquid conductive material 130 when drawing the curved portion 130b is greater than the drawing speed (moving speed) of the liquid conductive material 130 when drawing the straight portion 130a.
  • the line width of the curved portion 130b can be made wider than that of the straight portion 130a. Note that the discharge amount per unit time of the conductive material 130 at this time may be the same or different when drawing the straight portion 130a and drawing the curved portion 130b.
  • the line width in the curved portion 130b can be gradually changed by gradually changing the drawing speed of the liquid conductive material 130.
  • a curved portion 13b whose line width gradually changes can be formed.
  • the line width of the curved portion 130b can be increased by making the discharge amount of the conductive material 130 when drawing the curved portion 130b larger than the discharge amount of the conductive material 130 when drawing the straight portion 130a. It can be made wider than the line width of the portion 130a.
  • the drawing speed of the liquid conductive material 130 at this time may be the same when drawing the straight line portion 130a and when drawing the curved line portion 130b.
  • the line width in the curved portion 130b can be gradually changed by gradually changing the discharge amount of the liquid conductive material 130. Even with such a method, the curved portion 13b whose line width gradually changes can be formed.
  • the conductive material 130 After applying the conductive material 130 in a predetermined pattern, the conductive material 130 is heated (heating step). For example, the conductive material 130, which is a metal paste applied in a predetermined pattern, is baked at a predetermined temperature, whereby a solvent, a binder component, or the like contained in the metal paste can be volatilized. Thereby, the liquid conductive material 130 is solidified, and the auxiliary electrode 13 having a predetermined pattern is formed as shown in FIG. 4B.
  • a rectangular organic layer 14 is formed on the first electrode 12 so as to cover the auxiliary electrode 13. Specifically, a plurality of functional layers and a light emitting layer are sequentially formed by a coating method or a vapor deposition method.
  • the second electrode 15 is formed on the organic layer 14.
  • the second electrode 15 is formed so that a part of the second electrode 15 protrudes so that a part of the second electrode 15 is connected to the second electrode terminal portion 12b.
  • a sealing resin 17 is applied in a frame shape along the outer peripheral edge of the first substrate 11 so as to surround the laminated body of the first electrode 12, the organic layer 14, and the second electrode 15. Then, the second substrate 16 is bonded to the first substrate 11. Thereafter, the sealing resin 17 is cured. Thereby, the organic EL panel 1 is completed.
  • Patent Document 1 describes that auxiliary electrodes having a width of 50 ⁇ m or less are formed on a transparent electrode in a pattern intersecting in a lattice pattern.
  • the auxiliary electrode having such a pattern may not be able to sufficiently suppress luminance unevenness on the light emitting surface.
  • Patent Document 1 also describes that luminance unevenness on the light emitting surface can be further reduced by providing coarse and dense wiring pitches of the auxiliary electrodes. That is, it is described that luminance unevenness can be further reduced by forming the auxiliary electrode so as to have a region with a large wiring pitch (rough region) and a region with a small wiring pitch (dense region).
  • the wiring pitch of the auxiliary electrode is coarse / dense, the density of the auxiliary wiring is visually recognized on the light emitting surface. For this reason, there exists a subject that light emission is inhibited or it is unpreferable on an external appearance.
  • the auxiliary electrode is formed by applying (drawing) a liquid conductive material, there is a problem that the tact increases when the wiring pitch of the auxiliary electrode is made dense.
  • the present invention has been made on the basis of such knowledge, and the present inventors have improved the pattern of the auxiliary electrode in the organic EL panel, so that the wiring pitch of the auxiliary electrode does not need to be increased or decreased. It has been found that the luminance unevenness of the light emitting surface of the organic EL panel can be reduced.
  • the auxiliary electrode 13 is formed so as to have not only the linear straight portion 13a but also the curved curved portion 13b.
  • the area of the auxiliary electrode 13 can be increased as compared with the case where the curved portion 13b is linear (in the case of only the linear portion), and therefore the contact area between the auxiliary electrode 13 and the first electrode 12 is increased. can do.
  • the auxiliary electrode 13 is formed so that the line width of the curved portion 13b is wider than the line width of the straight portion 13a.
  • the area of the auxiliary electrode 13 can be further increased, so that the contact between the auxiliary electrode 13 and the first electrode 12 is increased. The area can be further increased.
  • the auxiliary electrode 13 has the straight line portion 13a and the curved line portion 13b, and the line width of the curved line portion 13b is wider than the line width of the straight line portion 13a. It has become. Thereby, compared with the case where the curved part 13b is linear, the contact area of the auxiliary electrode 13 and the 1st electrode 12 can be enlarged greatly. Therefore, even if the wiring pitch of the auxiliary electrode 13 is not coarse / dense, the luminance unevenness of the entire light emitting surface of the organic EL panel 1 can be effectively reduced, and the luminance of the light emitting surface can be made uniform.
  • the line width of the auxiliary electrode 13 from the straight line part 13a to the curved line part 13b is continuously increased. Therefore, since the line width of the auxiliary electrode 13 changes continuously, it can suppress that an external appearance becomes unnatural.
  • the outer peripheral portion of the light emitting surface is lower in luminance than the central portion. This is due to the following reason. After the organic EL panel emits light (after lighting), a temperature difference occurs between the outer peripheral portion and the central portion on the light emitting surface of the organic EL panel. Specifically, since the outer peripheral portion of the organic EL panel is more easily radiated than the central portion, the temperature of the outer peripheral portion is lower than the temperature of the central portion on the light emitting surface.
  • the organic layer has a lower charge transport property and a lower luminance as the temperature is lower.
  • the luminance of the outer peripheral portion of the light emitting surface may be lower than that of the central portion of the light emitting surface. This phenomenon is likely to occur when the voltage drop of the first electrode 12 is reduced by the auxiliary electrode 13 or the like, and becomes more prominent as the light emitting area of the organic EL panel increases. Therefore, when the organic EL panel is enlarged. Especially problematic.
  • the curved portion 13 b of the auxiliary electrode 13 is formed in the vicinity of the outer peripheral edge of the first electrode 12.
  • the pattern of the auxiliary electrode 13 is not limited to the pattern shown in FIG. 2, and may be, for example, the auxiliary electrode 13A having the pattern shown in FIG.
  • the curved portion 13b is formed in the vicinity of the outer peripheral edge of the first electrode 12 as in the auxiliary electrode 13 shown in FIG. 2, but in the auxiliary electrode 13A shown in FIG.
  • the curved portion 13b is formed only on the left and right ends, and the curved portion 13b is not formed on the upper and lower ends.
  • the auxiliary electrode 13A shown in FIG. 6 has a larger interval (wiring pitch) between adjacent auxiliary electrodes 13 (straight line portions 13a) than the auxiliary electrode 13 shown in FIG.
  • the pattern of the auxiliary electrode 13A shown in FIG. 6 includes a rectangular portion formed in a rectangular frame shape and a straight portion extending one in the vertical direction.
  • the luminance of the central portion of the light emitting surface may be lower than that of the outer peripheral edge portion. This is a case where the influence of the voltage drop of the first electrode 12 (transparent electrode) is large and the light emission luminance is lowered in the central region of the light emitting surface far from the first electrode terminal portion 12a. This phenomenon also appears more prominently as the light emitting area of the organic EL panel increases.
  • the auxiliary electrode 13B may be formed in a pattern as shown in FIG. That is, the curved portion 13b may be formed at the center portion of the first electrode 12.
  • auxiliary electrodes 13, 13A and 13B in the present embodiment have a straight straight line portion 13a and a curved curved line portion 13b, and the line width of the curved line portion 13b is the line width of the straight line portion 13a. It is formed by applying a liquid conductive material 130 so as to be wider.
  • the increase in tact can be suppressed as compared with the case where the auxiliary electrode 13 is formed only by the straight portion 13a. Can do.
  • the pattern of the conductive material 130 can be easily drawn so that the line width of the curved portion 130b is wider than the line width of the straight portion 130a.
  • the drawing speed of the dispenser nozzle when drawing the curved portion 130b is slower than the drawing speed of the dispenser nozzle when drawing the linear portion 130a, or the discharge amount of the conductive material 130 when drawing the curved portion 130b.
  • the line width of the curved portion 130b can be easily made wider than the line width of the straight portion 130a by increasing the discharge amount of the conductive material 130 when drawing the straight portion 130a.
  • the organic EL panel of Example 1 was produced as follows.
  • first substrate 11 made of a glass substrate having a thickness of 0.7 mm, a thickness of 150 nm and a sheet resistance of about 10 ⁇ / sq.
  • the first electrode 12 made of the ITO film was formed by magnetron sputtering. Thereafter, the first electrode 12 was washed with isopropyl alcohol and pure water.
  • a liquid conductive material 130 for example, nano silver paste (NPS-J) manufactured by Harima Chemical Group Co., Ltd.
  • NPS-J nano silver paste
  • the pattern shown in FIG. 5C was formed by discharging on the (ITO film).
  • the liquid conductive material 130 was applied so that the wiring pitch was 2 mm, the line width at the straight portion 130a was 20 ⁇ m, and the maximum line width at the curved portion 130b was 70 ⁇ m.
  • an organic layer 14 was formed on the first electrode 12 and the auxiliary electrode 13. Specifically, first, holes made of 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD) are formed on the first electrode 12 so as to cover the auxiliary electrode 13. A transport layer is formed with a thickness of 50 nm. Subsequently, a light emitting layer made of tris (8-hydroxyquinoline) aluminum (Alq3) was formed on the hole transport layer with a thickness of 30 nm. Subsequently, an electron transport layer made of BCP was formed with a thickness of 60 nm on the light emitting layer.
  • the second electrode 15 was formed on the organic layer 14. Specifically, the second electrode 15 made of an aluminum vapor deposition film was formed with a thickness of 100 nm on the electron transport layer.
  • region (light emission surface) of the organic electroluminescent panel in Example 1 is a square of 80 mm x 80 mm.
  • the organic EL panel of Example 2 differs from the organic EL panel of Example 1 only in the auxiliary electrode pattern. Specifically, in the organic EL panel of Example 2, the auxiliary electrode 13A having the pattern shown in FIG. 6 is formed. In addition, the wiring pitch of the auxiliary electrode 13A (conductive material 130) in Example 2 is 8 mm.
  • the organic EL panel of Example 1 is the same as the organic EL panel except for the auxiliary electrode pattern.
  • the organic EL panel of Example 3 also differs from the organic EL panel of Example 1 only in the auxiliary electrode pattern. Specifically, in the organic EL panel of Example 3, the auxiliary electrode 13B having the pattern shown in FIG. 7 is formed. In addition, the wiring pitch of the auxiliary electrode 13B (conductive material 130) in Example 3 is 8 mm.
  • the organic EL panel of Example 1 is the same as the organic EL panel except for the auxiliary electrode pattern.
  • the organic EL panel of Comparative Example 1 is different from the organic EL panel of Example 1 only in the auxiliary electrode pattern. Specifically, in the organic EL panel of Comparative Example 1, the auxiliary electrode 13X having the pattern shown in FIG. 8 is formed. Specifically, the pattern of the auxiliary electrode 13X has a shape in which only a rectangular frame portion of the pattern of the auxiliary electrode 13 shown in FIG. 2 is formed. The organic EL panel of Example 1 is the same as the organic EL panel except for the auxiliary electrode pattern.
  • the organic EL panel of Comparative Example 2 is different from the organic EL panel of Example 1 only in the auxiliary electrode pattern. Specifically, in the organic EL panel of Comparative Example 2, the auxiliary electrode 13Y having the pattern shown in FIG. 9 is formed. Specifically, the pattern of the auxiliary electrode 13Y has a shape formed by only a plurality of linear straight portions that intersect in a lattice pattern. Further, the wiring pitch of the auxiliary electrode 13Y in the comparative example 2 is 2 mm as in the first embodiment.
  • the organic EL panel of Example 1 is the same as the organic EL panel except for the auxiliary electrode pattern.
  • Table 1 shows the evaluation results of the luminance unevenness of the light emitting surface of each organic EL panel produced in this way.
  • the luminance of each organic EL panel was measured using a two-dimensional luminance meter.
  • the numerical value of the level of luminance unevenness is a relative value, and is “5” when the luminance unevenness is the largest and “1” when the luminance unevenness is the smallest.
  • the “low luminance part” is a part having a relatively low luminance on the light emitting surface.
  • the organic EL panel of Comparative Example 1 has the largest luminance unevenness. Therefore, it can be seen that the organic EL panels of Examples 1 to 3 can suppress luminance unevenness more than the organic EL panel of Comparative Example 1. In particular, it can be seen that the organic EL panel of Example 1 can suppress luminance unevenness more than any other organic EL panel.
  • the luminance of the central portion of the light emitting surface was low. This is because in the organic EL panel of Comparative Example 1, the auxiliary electrode is formed only in the vicinity of the outer peripheral edge of the light emitting surface, and the current density at the central portion of the light emitting surface that is far from the electrode terminal portion is low. is there. Further, in the organic EL panels of Examples 2 and 3, since the auxiliary electrode wiring pitch was 8 mm and sparse, the current density at the central portion of the light emitting surface which is far from the electrode terminal portion should be sufficiently increased. It is thought that it was because of the failure.
  • the organic EL panels of Comparative Example 1 Comparing the organic EL panels in which the luminance of the central portion of the light emitting surface is reduced (the organic EL panels of Comparative Example 1, Example 2 and Example 3), the organic EL panels of Examples 2 and 3 are organic of Comparative Example 1. It can be seen that the luminance unevenness can be suppressed as compared with the EL panel.
  • the luminance unevenness of the organic EL panel of Example 3 can be suppressed more than that of the organic EL panel of Example 2. That is, it can be seen that when the luminance of the central portion of the light emitting surface is lowered, the auxiliary electrode 13 may be formed so that the curved portion 13b is positioned at the central portion of the first electrode 12.
  • the luminance at the outer peripheral edge portion of the light emitting surface was low. This is considered to be due to the following reason.
  • the wiring pitch of the auxiliary electrodes was 2 mm and dense, the current density at the central portion of the light emitting surface can be increased, and the central portion of the light emitting surface is relatively It is thought that light was emitted with high brightness.
  • the outer peripheral edge portion of the light emitting surface is close to the outside air, the temperature tends to decrease, but the temperature of the central portion of the light emitting surface is difficult to decrease.
  • the lower the temperature of the organic layer the lower the charge transport property and the lower the luminance. From this, it is considered that the luminance at the outer peripheral edge portion of the light emitting surface is lowered.
  • the organic EL panel of Example 1 is the organic EL panel of Comparative Example 2. It can be seen that the luminance unevenness can be suppressed more than the panel. That is, it is understood that the auxiliary electrode 13 may be formed so that the curved portion 13b is positioned in the vicinity of the outer peripheral edge of the first electrode 12 when the luminance at the outer peripheral edge portion of the light emitting surface decreases.
  • Table 2 shows tacts required for producing auxiliary electrodes in the organic EL panels of Examples 1 to 3 and the organic EL panels of Comparative Examples 1 and 2.
  • the tact of the organic EL panels of Examples 1 to 3 can be shortened as compared with the organic EL panel of Comparative Example 2. This is because, when the auxiliary electrode is formed, the liquid conductive material is folded in a curved shape and directly drawn, so that a decrease in drawing speed can be suppressed as compared with the case of folding at a right angle and directly drawing. it is conceivable that. As described above, according to the organic EL panels of Examples 1 to 3, the effect of reducing the tact can be obtained.
  • the auxiliary electrode 13 is formed on the first electrode 12 by forming the auxiliary electrode 13 on the first electrode 12, but the present invention is not limited thereto. Specifically, the auxiliary electrode 13 may be stacked on the first electrode 12 by forming the auxiliary electrode 13 on the first substrate 11 and forming the first electrode 12 thereon.
  • the organic EL panel according to the above embodiment can be realized as a lighting device.
  • the lighting device includes the organic EL panel in the above embodiment and a power supply circuit that supplies current to the organic EL panel.
  • a plurality of organic EL panels may be arranged.
  • the organic EL panel according to the above embodiment may be applied to other devices such as a display device in addition to the lighting device.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
  • Organic EL panel 11 First substrate (substrate) 12 1st electrode 12a 1st electrode terminal part 12b 2nd electrode terminal part 13, 13A, 13B, 13X, 13Y Auxiliary electrode 13a, 130a Linear part 13b, 130b Curved part 14 Organic layer 15 Second electrode 16 Second board 17 Seal Resin 130 Conductive material

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 有機ELパネル(1)は、第一基板(11)と、第一基板(11)の上に配置された第一電極(12)と、発光層を有し、第一電極(12)の上に配置された有機層(14)と、有機層(14)の上に配置された第二電極(15)と、第一電極(12)に積層された補助電極(13)とを備え、補助電極(13)は、直線状の直線部(13a)と曲線状の曲線部(13b)とを有し、曲線部(13b)の線幅は、直線部(13a)の線幅より広い。

Description

有機EL素子及び有機EL素子の製造方法
 本発明は、有機EL(Electro Luminescence)素子及び有機EL素子の製造方法に関する。
 有機ELパネル等の有機EL素子は、高効率な面光源として各種装置への適用が検討されている。例えば、有機EL素子は、照明、ディスプレイ又は窓等への応用が期待されている。
 この種の有機EL素子は、例えば、透光性基板と、透光性基板上に形成されたITO(Indium Tin Oxide)等からなる透明電極と、透明電極上に形成された有機発光層と、有機発光層上に形成された反射電極とを備えている。
 透明電極の材料として用いられるITO等の透明導電性材料は一般的に抵抗率が高い。このため、上記有機EL素子では、外周部に設けられた電極端子部(引出し電極)から透明電極(ITO)に給電を行うと、透明電極の電圧降下によって電極端子部から遠い発光面の中央領域において発光輝度が低下する。この結果、有機EL素子の発光面に輝度ムラが生じる。
 そこで、透明電極の電圧降下による発光面の輝度ムラを抑制するために、透明電極上に、金属等の低抵抗材料からなる細線状の補助電極を格子状のパターンで形成する技術が知られている(例えば特許文献1)。
特許第4981371号公報
 しかしながら、従来の補助電極のパターンでは、発光面の輝度ムラを十分に抑制することができない。
 本発明は、発光面の輝度ムラを十分に抑制できる有機EL素子を提供することを目的とする。
 上記目的を達成するために、本発明に係る有機EL素子の一態様は、基板と、前記基板の上に配置された第一電極と、発光層を有し、前記第一電極の上に配置された有機層と、前記有機層の上に配置された第二電極と、前記第一電極に積層された補助電極とを備え、前記補助電極は、直線状の直線部と曲線状の曲線部とを有し、前記曲線部の線幅は、前記直線部の線幅より広いことを特徴とする。
 上記目的を達成するために、本発明に係る有機EL素子の製造方法の一態様は、基板上に第一電極を形成する工程と、前記第一電極に積層するように、直線状の直線部と曲線状の曲線部とを有する補助電極を形成する工程と、前記第一電極の上に、発光層を有する有機層を形成する工程と、前記有機層の上に第二電極を形成する工程とを含み、前記補助電極を形成する工程では、前記曲線部の線幅が前記直線部の線幅よりも広くなるように液状の導電性材料を塗布することによって前記補助電極を形成することを特徴とする。
 発光面の輝度ムラを十分に抑制することができる。
図1Aは、実施の形態に係る有機ELパネルの平面図である。 図1Bは、実施の形態に係る有機ELパネルの断面図である。 図2は、実施の形態に係る有機ELパネルの補助電極の第1のパターンを示す図である。 図3は、図2における領域Xの拡大図である。 図4Aは、実施の形態に係る有機ELパネルの製造方法における第一電極形成工程を示す平面図である。 図4Bは、実施の形態に係る有機ELパネルの製造方法における補助電極形成工程を示す平面図である。 図4Cは、実施の形態に係る有機ELパネルの製造方法における有機層形成工程を示す平面図である。 図4Dは、実施の形態に係る有機ELパネルの製造方法における第二電極形成工程を示す平面図である。 図5は、補助電極形成工程における導電性材料の塗布順序の一例を示す図である。 図6は、実施の形態に係る有機ELパネルの補助電極の第2のパターンを示す図である。 図7は、実施の形態に係る有機ELパネルの補助電極の第3のパターンを示す図である。 図8は、比較例の有機ELパネルの補助電極のパターンを示す図である。 図9は、比較例の有機ELパネルの補助電極の他のパターンを示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程(ステップ)、工程の順序等は、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 また、本明細書では、便宜的に各図面の上下方向を縦方向とし、左右方向を横方向として説明している。
 (有機ELパネル)
 まず、実施の形態に係る有機ELパネル1の構成について、図1A及び図1Bを用いて説明する。図1Aは、実施の形態に係る有機ELパネルの平面図であり、図1Bは、同有機ELパネルのA-A’線における断面図である。
 有機ELパネル1は、有機EL素子の一例であって、所定の色の光を発する面発光型の発光デバイスである。有機ELパネル1は、例えば白色光を発する。
 図1A及び図1Bに示すように、有機ELパネル1は、第一基板11と、第一電極12と、補助電極(補助配線)13と、発光層を含む有機層14と、第二電極15と、第二基板16と、シール樹脂17とを備える。
 本実施の形態では、第一基板11及び第一電極12が透光性を有し、第二電極15が反射性を有している。つまり、図1Bに示すように、本実施の形態における有機ELパネル1は、一方の面(第一基板11側の面)のみが発光面であって、当該一方の面のみから光を発する片面発光型の有機EL素子である。
 なお、第二電極15及び第二基板16も透光性を有するように構成することによって第一基板11及び第二基板16の両方の面から光を発する両面発光型の有機EL素子としてもよい。また、本明細書において、透光性(光透過性)とは、光を透過させる物質の性質であり、透明性を包含する概念である。
 以下、本実施の形態における有機ELパネル1の各構成部材について詳細に説明する。
 第一基板11は、透光性を有する透光性基板であり、例えば、ガラス材料からなるガラス基板、又は、ポリカーボネート樹脂やアクリル樹脂、ポリエステル樹脂等の透光性樹脂材料からなる樹脂基板等である。
 第一基板11は、ベース基板であって光出射側に配置されるので、第一基板11としては、ガラス製の透明ガラス基板、又は、ポリエステル樹脂等の耐透湿性に優れた透明樹脂基板等の透明基板を用いるとよい。
 本実施の形態において、第一基板11は、向こう側が透けて見える程度に透過率の高い透明基板であり、例えば、透明なガラス基板である。また、ガラスは水分の透過性が低いことから、第一基板11としてガラス基板を用いることによって、有機ELパネル1の内部に水分が進入することを抑制できる。
 また、第一基板11は、ガラスとガラス以外の材料との複合材で形成されていてもよい。例えば、第一基板11は、ガラス板と光取出性の樹脂層(光取出層)との積層構造とすることができる。これにより、有機ELパネル1の光取り出し効率を向上させることができる。この場合、樹脂層は、例えばガラス板における第一電極12側の面上に設けられる。光取出性の樹脂層は、例えば光を散乱させる構造を有する層であり、ガラス板に貼り付けられる。樹脂層は、例えばプラスチック材を用いて形成される。プラスチック材としては、例えば、PET(ポリエチレンテレフタレート)樹脂、PEN(ポリエチレンナフタレート)樹脂、アクリル系樹脂、又は、エポキシ系樹脂等が挙げられる。さらに、樹脂層は、高屈折率層とこの高屈折率層よりも低い屈折率を有する低屈折率層とからなる複層構造であってもよい。また、高屈折率層と低屈折率層との界面には、微細な凹凸構造が形成されていてもよい。
 なお、第一基板11は、リジッド基板に限るものではなく、フレキシブル樹脂基板やフレキシブルガラス基板等の可撓性を有するフレキシブル基板であってもよい。また、第一基板11の形状は、例えば、正方形や長方形の矩形状であるが、これに限るものではなく、円形又は四角形以外の多角形であってもよい。また、第一基板11は、無色透明としたが、多少着色されていてもよいし、半透明であってもよい。半透明の第一基板11としては、すりガラス状の基板を用いることができる。
 図1Bに示すように、第一電極12は、第一基板11上に配置される。例えば、第一電極12は、第一基板11の上面に所定形状で形成される。本実施の形態において、第一電極12は、図1Aに示すように、平面視において有機層14に対応する主要部分が略矩形状となるように形成されており、さらに、矩形状の第一基板11における上下の二辺の各々に向かって複数(図1Aでは3つ)突出するように形成されている。
 この第一電極12の突出部分は、第一電極12における第一電極端子部12aである。なお、第一基板11には、第一電極12と同じ材料を用いて矩形状の第二電極端子部12bが形成されている。第一電極端子部12aは、第一電極12に供給するための所定の電圧が印加される給電部であり、第二電極端子部12bは、第二電極15に供給するための所定の電圧が印加される給電部である。なお、第二電極端子部12bは、第一電極12と接続されておらず、第一電極端子部12aと分離して形成されている。
 第一電極12は、透光性を有する電極であり、導電性及び透光性を併せ持つ材料を用いて形成される。第一電極12の材料としては、ITO、IZO(Indium Zinc Oxide)、又は、AZO(Al添加のZnO)等、導電性の透明金属酸化物が挙げられる。本実施の形態における第一電極12は、ITOを用いた透明導電膜(ITO膜)からなる透明電極であり、例えばスパッタ法で成膜される。
 このように、第一電極12は透光性を有するので、有機層14の発光層で発生した光のうち第一基板11側に向かう光は第一電極12を透過する。本実施の形態において、第一電極12は、陽極(アノード)である。
 また、第一電極12の厚みは、例えば10nm~1000nmである。第一電極12の厚みが特に50nm~1000nmの範囲内であると、第一電極12の良好な透光性と導電性とが確保される。光透過率の観点からは、第一電極12の厚みは、30nm~300nmであると、さらによい。
 補助電極13は、第一電極12に積層されている。図1Bに示すように、本実施の形態において、補助電極13は、第一電極12の上に形成されている。補助電極13を第一電極12に積層することによって、第一電極12の電圧降下による発光面の輝度ムラを抑制することができる。つまり、第一電極12に用いられるITO等の透明導電性材料は一般的に抵抗率が高いので、第一基板11の外周部に形成された第一電極端子部12aから第一電極12に給電を行うと、第一電極12の電圧降下によって発光面(有機層14)の中央領域の輝度が低下する。そこで、補助電極13を第一電極12に積層している。これにより、第一電極12の導電率を補完して第一電極12の面内に均一に電流を分布させることができるので、発光面の中央領域の輝度低下を抑制することが可能となる。
 補助電極13は、第一電極12よりも抵抗率が低い材料を用いて形成される。例えば、補助電極13の材料は、金、銀、銅、アルミニウム、グラフェン又はカーボンナノチューブ等の導電性材料又はこれらの混合物である。
 補助電極13は、蒸着やスパッタ等の真空プロセス(ドライプロセス)、又は、インクジェットやスクリーン印刷等のウェットプロセスで形成することができる。本実施の形態では、ウェットプロセスによって補助電極13を形成している。具体的には、補助電極13は、液状の導電性材料を用いた液体吐出によって形成されており、例えば、銀や銅等の金属又はこれらの合金等の導電率が高くて液体吐出が可能な液状の導電性材料(導電性ペースト)を塗布することによって形成している。
 また、図1Aに示すように、補助電極13は、所定のパターンで形成されている。具体的には、液状の導電性材料を所定のパターンで塗布している。補助電極13のパターンの形状の詳細については後述する。
 有機層14は、図1Bに示すように、第一電極12上に配置される。具体的には、有機層14は、補助電極13を覆うようにして第一電極12上に配置される。また、有機層14は、第一電極12と第二電極15との間に位置するように設けられる。
 有機層14は、発光物質である有機化合物を含有する発光層を少なくとも有する有機EL層(有機発光層)である。有機層14は、発光層の他に、ホール注入層、ホール輸送層、電子輸送層、電子注入層及び中間層の中から選択される一つ以上の機能層を含んでいてもよい。例えば、本実施の形態のように、第一電極12が陽極であり、第二電極15が陰極である場合、有機層14として、第一電極12側から第二電極15に向かって順に、ホール注入層、ホール輸送層、発光層、電子輸送層及び電子注入層を積層したものを用いることができる。
 有機層14は、例えば、所定の有機材料を用いて、蒸着法又は液状塗布法等によって第一電極12上に形成される。有機層14の厚みは、例えば60nm~300nmである。なお、有機層14を構成する機能層は、主に有機材料を用いて形成されるが、一部の機能層は無機材料を用いて形成されていてもよい。また、有機層14は、いわゆるマルチユニット構造であってもよい。
 第二電極15は、有機層14上に配置される。例えば、第二電極15は、有機層14の表面に所定形状で形成される。本実施の形態において、第二電極15は、第一基板11の上下の二辺の各々に向かって複数箇所(図1Aでは2箇所)突出するように形成されている。この第二電極15の突出部分は、第一基板11に形成された第二電極端子部12bに接続されている。
 第二電極15は、反射性を有する電極であり、導電性及び反射性を併せ持つ材料を用いて形成される。つまり、本実施の形態において、第二電極15は、反射性を有する反射電極である。このような第二電極15の材料としては、例えば、銀、アルミニウム又は銅等の金属材料が挙げられる。第二電極15は、例えば蒸着法又はスパッタ法等によって成膜される。第二電極15の厚みは、例えば10nm~1000nmである。
 このように、第二電極15は反射性を有するので、有機層14の発光層で発生した光のうち第二基板16側に向かう光は、第二電極15で反射して第一基板11側に進行する。なお、上述のとおり、本実施の形態における第二電極15は、陰極(カソード)である。
 第二基板16は、第一電極12、有機層14及び第二電極15を覆うキャップ基板であり、透光性基板及び非透光性基板のいずれであってもよい。第二基板16としては、第一基板11と同じ材料及び同じ形状の基板を用いることができ、例えば、矩形状のガラス基板(キャップガラス)を用いることができる。
 シール樹脂17は、第一基板11と第二基板16とを封止する封止材であり、第一電極12、有機層14及び第二電極15の積層体を囲むように、第一基板11及び第二基板16の外周端部に沿って額縁状に形成される。なお、第二電極15と第二基板16との間の空隙には固体乾燥剤が配置されていてもよいし、第二電極15と第二基板16との間の空隙を埋めるように充填剤が形成されていてもよい。
 このように構成される有機ELパネル1は、電源回路(不図示)と電気的に接続されて発光する。具体的には、第一電極端子部12a及び第二電極端子部12bと電源回路とが電気的に接続されて、電源回路から電力が供給されて第一電極12と第二電極15との間に所定の電圧が印加されると、有機層14に電流が流れて発光層が発光する。
 次に、図2及び図3を用いて補助電極13の詳細な構成について説明する。図2は、実施の形態に係る有機ELパネルにおける補助電極のパターンを示す平面図であり、図3は、図2の破線で囲まれる領域Xの拡大図である。
 図2及び図3に示すように、補助電極13は、平面視において、直線状の直線部13aと曲線状の曲線部13bとを有するパターンで形成されている。具体的には、補助電極13は、所定の矩形状領域内において所定のパターンで形成された線状の電極である。補助電極13は、線幅が広くなりすぎると発光を阻害してしまうので、補助電極13は、導電性と視認され難さとを両立させるために、線幅を1μm~100μm、厚み(高さ)を0.1μm~10μmで形成するとよい。より好ましくは、補助電極13の線幅は5μm~50μmであり、補助電極13の厚みは0.5μm~2μmである。
 図2に示すように、本実施の形態における補助電極13は、上記矩形状領域内において全体として略格子状のパターンで形成されており、上下方向(縦方向)及び左右方向(横方向)の各々において所定の間隔(配線ピッチ)で形成されている。なお、本実施の形態において、上下方向の間隔と左右方向の間隔とは同じである。
 補助電極13の直線部13aは、上記矩形状領域の主領域である内部領域(外周縁領域以外の領域)に形成されている。直線部13aは、上下方向及び左右方向に沿って複数本形成されている。直線部13aは、図1Aに示すように、第一電極12の外周縁を除く全体を覆うように形成される。また、本実施の形態において、直線部13aの線幅は一定である。
 また、補助電極13の曲線部13bは、上記矩形状領域の外周縁領域に形成されている。曲線部13bは、補助電極13のうちの上下左右の最外周電極(枠状部分)とその最外周電極よりも一つ内側の電極との間の領域に形成されている。これにより、曲線部13bは、図1Aに示すように、第一電極12の外周縁近傍に形成される。
 曲線部13bは、上下方向(又は左右方向)に沿って形成された1本の直線部13aの両端部の各々に形成されている。また、曲線部13bは、隣り合う2本の直線部13aの端部同士を繋ぐように形成されている。
 図3に示すように、各曲線部13bは、湾曲状のパターンで形成される。具体的に、曲線部13bのパターンは、略半円弧状、略半楕円弧状又は放物線状であるが、これに限るものではない。
 そして、補助電極13において、曲線部13bの線幅は、直線部13aの線幅よりも広くなっている。具体的には、曲線部13bの線幅は、隣り合う2本の直線部13aの一方の端部から当該曲線部13bの中央部にかけては漸次広くなっており、かつ、当該曲線部13bの中央部から隣り合う直線部13aの他方の端部にかけては漸次狭くなっている。つまり、本実施の形態では、曲線部13bの線幅は、折れ曲がり領域である中央部(Uターン部)で最大幅となっている。
 また、本実施の形態において、直線部13aから曲線部13bにかけての補助電極13の線幅は、連続的に広くなっている。つまり、補助電極13は、直線部13aと曲線部13bとが連続的に形成された連続線であり、直線部13aと曲線部13bとの接続部分では、直線部13aの線幅と曲線部13bとの線幅とが同じになっている。
 なお、本実施の形態では、曲線部13bの全ての部分において、曲線部13bの線幅が直線部13aの線幅よりも広くなっているが、これに限るものではなく、曲線部13bの一部に直線部13aよりも線幅が狭くなっている箇所が存在していても構わない。
 また、補助電極13の線幅が広くなりすぎると有機ELパネル1の発光を阻害してしまうので、導電性と視認され難さとを両立するために、補助電極13は、線幅が1μm~100μm、厚み(高さ)が0.1μm~10μmであるとよい。より好ましくは、補助電極13の線幅は5μm~50μmであり、補助電極13の厚みは0.5μm~2μmである。
 (有機ELパネルの製造方法)
 次に、本実施の形態に係る有機ELパネル1の製造方法について、図4A~図4Dを用いて説明する。図4A~図4Dは、実施の形態に係る有機ELパネルの製造方法における各工程の平面図である。
 まず、図4Aに示すように、第一基板11上に第一電極12を形成する(第一電極形成工程)。例えば、第一基板11としてガラス基板を準備し、ガラス基板の上に第一電極12として所定形状のITO膜を形成する。なお、この工程では、ITO膜をパターニングする際に、第一電極12と同時に、第一電極端子部12a及び第二電極端子部12bも同時に形成する。この場合、第一電極端子部12aは第一電極12と一体形成され、また、第二電極端子部12bは第一電極端子部12a及び第一電極12と分離形成される。
 次に、第一電極12に積層するように補助電極13を形成する(補助電極形成工程)。本実施の形態では、図4Bに示すように、第一電極12の上に所定のパターンで補助電極13を形成する。
 この補助電極形成工程では、例えば、インクジェット装置による液体吐出によって液状の導電性材料を第一電極12上に所定のパターンで塗布する。具体的には、補助電極13が直線状の直線部13aと曲線状の曲線部13bとを有するように、かつ、曲線部13bの線幅が直線部13aの線幅よりも広くなるように、液状の導電性材料を塗布している。
 液状の導電性材料としては、銀や銅の金属粒子を溶剤及びバインダーに分散させることで作られた金属ペーストが用いられる。特に、ナノ銀ペーストを用いた場合は、比抵抗の小さな極めて導電性能の良好な補助電極13を得ることができる。また、液状の導電性材料の液体吐出としては、例えばインクジェット装置を用いることができる。液状の導電性材料は、インクジェット装置のディスペンサーノズルから吐出される。
 液状の導電性材料を塗布する工程では、ディスペンサーノズル又は第一基板11を所定の方向に相対的に移動させることによって、液状の導電性材料を線状の所定のパターンで第一電極12上に直描している。例えば、図4Bに示される補助電極13のパターンは、液状の導電性材料130を図5に示すように塗布することによって得られる。図5は、液状の導電性材料の塗布順序の一例を示す図である。
 まず、図5(a)に示すように、第一基板11又はディスペンサーノズルを移動させることによって、液状の導電性材料130を、矩形状の発光面(有機層14)となる領域内において矩形枠状に塗布する。
 次に、図5(b)に示すように、第一基板11又はディスペンサーノズルを左右方向に複数回往復させながら上端から下端(又は下端から上端)に向かう方向に移動させることによって、液状の導電性材料130を一筆書きで塗布する。これにより、左右方向に延設された直線部130a(直線部13aに対応する部分)と左右両端部に形成された曲線部130b(曲線部13bに対応する部分)とが繰り返すように、液状の導電性材料130が塗布される。この場合、直線部130aは、ディスペンサーノズルを左右方向に直線状に移動させることによって描画することができる。また、曲線部130bは、ディスペンサーノズルを湾曲状に移動させることによって描画することができる。
 次に、図5(c)に示すように、第一基板11又はディスペンサーノズルを上下方向に複数回往復させながら左端から右端(又は右端から左端)に向かう方向に移動させることによって、液状の導電性材料130を一筆書きで塗布する。これにより、上下方向に延設された直線部130a(直線部13aに対応する部分)と上下両端部に形成された曲線部130b(曲線部13bに対応する部分)とが繰り返すように、液状の導電性材料130が塗布される。この場合、直線部130aは、ディスペンサーノズルを上下方向に直線状に移動させることによって描画することができる。また、曲線部130bは、ディスペンサーノズルを湾曲状に移動させることによって描画することができる。
 このような順序で導電性材料130を塗布することによって、左右方向に延設された直線部130aと上下方向に延設された直線部130aとが直交し、かつ、左右方向に延設された直線部130aの上に上下方向に延設された直線部130aが重なる。なお、上下方向と左右方向との塗布順序を逆にして、上下方向に延設された直線部130aの上に左右方向に延設された直線部130aが重なるように導電性材料130を塗布してもよい。
 そして、本実施の形態では、曲線部130bの線幅が直線部130aの線幅よりも広くなるように導電性材料130を塗布している。
 この場合、例えば、曲線部130bを描画するときの液状の導電性材料130の描画速度(移動速度)を、直線部130aを描画するときの液状の導電性材料130の描画速度(移動速度)よりも遅くすることによって、曲線部130bの線幅を直線部130aの線幅よりも広くすることができる。なお、このときの導電性材料130の単位時間当たりの吐出量は、直線部130aを描画するときと曲線部130bを描画するときとで同じであってもよいし異なっていてもよい。
 さらに、曲線部130bを描画する際に、液状の導電性材料130の描画速度を漸次変化させることによって、曲線部130bにおける線幅を漸次変えることもできる。これにより、例えば、図3に示すように、線幅が漸次変化する曲線部13bを形成することができる。
 あるいは、曲線部130bを描画するときの導電性材料130の吐出量を、直線部130aを描画するときの導電性材料130の吐出量よりも多くすることによっても、曲線部130bの線幅を直線部130aの線幅よりも広くすることができる。なお、このときの液状の導電性材料130の描画速度は、直線部130aを描画するときと曲線部130bを描画するときとで同じであってもよい。
 さらに、曲線部130bを描画する際に、液状の導電性材料130の吐出量を漸次変化させることによって、曲線部130bにおける線幅を漸次変えることもできる。このような方法でも、線幅が漸次変化する曲線部13bを形成することができる。
 導電性材料130を所定のパターンで塗布した後は、導電性材料130を加熱する(加熱工程)。例えば、所定のパターンで塗布した金属ペーストである導電性材料130を所定の温度で焼成することで金属ペーストに含まれる溶媒やバインダー成分等を揮発させることができる。これにより、液状の導電性材料130が固化して、図4Bに示すように、所定のパターンの補助電極13が形成される。
 次に、図4Cに示すように、補助電極13を覆うように、第一電極12上に矩形状の有機層14を形成する。具体的には、複数の機能層及び発光層を塗布法又は蒸着法等によって順次形成する。
 次に、図4Dに示すように、有機層14上に第二電極15を形成する。本実施の形態では、第二電極15の一部が第二電極端子部12bに接続するように、一部が突出するように第二電極15を形成する。
 その後、図示しないが、第一電極12、有機層14及び第二電極15の積層体を囲むように第一基板11の外周端部に沿って額縁状にシール樹脂17を塗布し、シール樹脂17を介して第二基板16を第一基板11に貼り合わせる。その後、シール樹脂17を硬化させる。これにより、有機ELパネル1が完成する。
 (効果)
 次に、本実施の形態における有機ELパネル1の効果について、本発明に至った経緯も含めて説明する。
 上述のように、有機ELパネルでは、発光面の輝度ムラを抑制するために、透明電極上に補助電極を形成する技術が知られている。例えば、上述の特許文献1には、透明電極上に幅50μm以下の補助電極を格子状に交差するパターンで形成することが記載されている。
 しかしながら、このようなパターンの補助電極では、発光面の輝度ムラを十分に抑制することができない場合がある。
 また、特許文献1には、補助電極の配線ピッチに粗密を設けることにより、より発光面の輝度ムラを低減できることも記載されている。つまり、配線ピッチが大きい領域(粗い領域)と配線ピッチが小さい領域(密な領域)とを有するように補助電極を形成することで、より輝度ムラを低減できることが記載されている。
 しかしながら、補助電極の配線ピッチに粗密を設けると、発光面に補助配線の粗密が視認されてしまう。このため、発光を阻害したり、外観上好ましくなかったりといった課題がある。また、液状の導電性材料を塗布(描画)することによって補助電極を形成する場合、補助電極の配線ピッチを密にすると、タクトが増大するという課題もある。
 本発明は、このような知見に基づいてなされたものであり、本願発明者らは、有機ELパネルにおける補助電極のパターンを改良することによって、補助電極の配線ピッチに粗密を設けなくても、有機ELパネルの発光面の輝度ムラを低減できることを見出した。
 具体的には、本実施の形態における有機ELパネル1では、まず、補助電極13が、直線状の直線部13aだけではなく、曲線状の曲線部13bを有するように形成されている。これにより、曲線部13bが直線状である場合(直線部のみの場合)と比べて、補助電極13の面積を大きくすることができるので、補助電極13と第一電極12との接触面積を大きくすることができる。
 さらに、本実施の形態における有機ELパネル1では、曲線部13bの線幅が直線部13aの線幅より広くなるように補助電極13が形成されている。これにより、曲線部13bの線幅が直線部13aの線幅と同じである場合と比べて、補助電極13の面積をさらに大きくすることができるので、補助電極13と第一電極12との接触面積を一層大きくすることができる。
 このように、本実施の形態における有機ELパネル1では、補助電極13が直線部13aと曲線部13bとを有しており、かつ、曲線部13bの線幅が直線部13aの線幅より広くなっている。これにより、曲線部13bが直線状である場合と比べて、補助電極13と第一電極12との接触面積を飛躍的に大きくすることができる。したがって、補助電極13の配線ピッチに粗密を設けなくても、有機ELパネル1の発光面全体の輝度ムラを効果的に低減することができ、発光面の輝度を均一化することができる。
 なお、本実施の形態では、直線部13aから曲線部13bにかけての補助電極13の線幅が連続的に広くなっている。これにより、補助電極13の線幅が連続的に変化するので、外観が不自然になることを抑制できる。
 また、有機ELパネル1の発光面の輝度ムラが発生する場合として、発光面の外周部分が中央部分と比べて輝度が低下する場合がある。これは、次の理由による。有機ELパネルの発光後(点灯後)は、有機ELパネルの発光面における外周部分と中央部分とでは温度差が発生する。具体的には、有機ELパネルの外周部分は中央部分に比べて放熱されやすいことから、発光面では外周部分の温度が中央部分の温度よりも低くなる。ここで、有機層は、有機ELパネルが通常用いられる温度範囲、すなわち、材料が固体状態で存在する温度範囲においては、温度が低いほど電荷輸送特性が低下して輝度が低下する。この結果、発光面の外周部分が発光面の中央部分と比べて輝度が低下する場合がある。この現象は、補助電極13等によって第一電極12の電圧降下が低減された場合に発生しやすく、有機ELパネルの発光面積が増大するほど顕著に現われるため、有機ELパネルを大型化する場合に特に問題となる。
 そこで、本実施の形態においては、補助電極13の曲線部13bを、第一電極12の外周縁近傍に形成している。これにより、発光面の外周部分の輝度が発光面の中央部分の輝度よりも低い場合に、発光面の外周部分において補助電極13と第一電極12との接触面積を飛躍的に大きくすることができるので、発光面の外周部分における輝度の低下を抑制することができる。したがって、発光面全体の輝度ムラを低減して発光面の輝度均一化を図ることができる。
 なお、補助電極13のパターンは、図2に示すパターンに限るものではなく、例えば、図6に示されるパターンの補助電極13Aであってもよい。図6に示される補助電極13Aでも、図2に示される補助電極13と同様に、曲線部13bが第一電極12の外周縁近傍に形成されているが、図6に示される補助電極13Aでは、曲線部13bが左右両端部のみに形成されており、上下両端部には曲線部13bが形成されていない。さらに、図6に示される補助電極13Aは、図2に示される補助電極13と比べて、隣り合う補助電極13(直線部13a)の間隔(配線ピッチ)が大きくなっている。なお、図6に示される補助電極13Aのパターンには、矩形枠状に形成された矩形部分と上下方向に1本延設された直線部分とが含まれている。
 また、有機ELパネル1の発光面の輝度ムラが発生する他の場合として、発光面の中央部分が外周縁部分と比べて輝度が低下する場合もある。これは、第一電極12(透明電極)の電圧降下による影響が大きく、第一電極端子部12aから遠い発光面の中央領域において発光輝度が低下する場合である。この現象も、有機ELパネルの発光面積が増大するほど顕著に現われるため、有機ELパネルを大型化する場合に特に問題となる。
 この場合、例えば、図7に示すようなパターンで補助電極13Bを形成すればよい。つまり、曲線部13bを第一電極12の中央部に形成すればよい。これにより、発光面の中央部分の輝度が発光面の外周縁部分の輝度よりも低い場合に、発光面の中央部分において補助電極13Bと第一電極12との接触面積を飛躍的に大きくすることができるので、発光面の中央部分における輝度の低下を抑制することができる。したがって、発光面全体の輝度ムラを低減して発光面の輝度均一化を図ることができる。
 また、本実施の形態における補助電極13、13A及び13Bは、直線状の直線部13aと曲線状の曲線部13bとを有するように、かつ、曲線部13bの線幅が直線部13aの線幅よりも広くなるように、液状の導電性材料130を塗布することによって形成されている。
 このように液状の導電性材料130を塗布して補助電極13、13A及び13Bを形成することによって、直線部13aのみで補助電極13を形成する場合と比較して、タクトの増大を抑制することができる。
 また、液状の導電性材料130を用いることによって、曲線部130bの線幅が直線部130aの線幅よりも広くなるように容易に導電性材料130のパターンを描画することができる。例えば、曲線部130bを描画するときのディスペンサーノズルの描画速度を直線部130aを描画するときのディスペンサーノズルの描画速度よりも遅くしたり、曲線部130bを描画するときの導電性材料130の吐出量を直線部130aを描画するときの導電性材料130の吐出量よりも多くしたりすることによって、曲線部130bの線幅を直線部130aの線幅よりも容易に広くすることができる。
 (実施例)
 次に、上記有機ELパネル1を実際に作製した実施例1~3における有機ELパネルの輝度ムラ抑制効果及びタクト低減効果と、比較例1、2における有機ELパネルの輝度ムラ抑制効果及びタクト低減効果とについて説明する。
 実施例1の有機ELパネルは、以下のように作製した。
 まず、板厚が0.7mmのガラス基板からなる第一基板11に、厚みが150nmでシート抵抗が約10Ω/sq.のITO膜からなる第一電極12をマグネトロンスパッタによって形成した。その後、第一電極12をイソプロピルアルコール及び純水で洗浄した。
 次に、第一基板11を平均100mm/sの速度で動かしながら、インクジェット装置によって液状の導電性材料130(例えばハリマ化成グループ株式会社製のナノ銀ペースト(NPS-J))を第一電極12(ITO膜)上に吐出し、図5(c)に示されるパターンを形成した。なお、液状の導電性材料130は、配線ピッチが2mmとなるように、また、直線部130aでの線幅が20μmで曲線部130bでの最大線幅が70μmとなるように塗布した。その後、300℃で60分間焼成した。このような方法で、図2に示されるパターンの補助電極13を形成した。
 次に、第一電極12及び補助電極13の上に有機層14を形成した。具体的には、まず、補助電極13を覆うように、第一電極12上に4、4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)からなる正孔輸送層を厚み50nmで形成する。続いて、この正孔輸送層の上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq3)からなる発光層を厚み30nmで形成した。続いて、この発光層の上に、BCPからなる電子輸送層を厚み60nmで形成した。
 次に、有機層14の上に第二電極15を形成した。具体的には、電子輸送層の上に、アルミニウム蒸着膜からなる第二電極15を厚み100nmで形成した。
 なお、実施例1における有機ELパネルの発光領域(発光面)は、80mm×80mmの正方形である。
 実施例2の有機ELパネルは、実施例1の有機ELパネルに対して、補助電極のパターンのみが異なる。具体的には、実施例2の有機ELパネルでは、図6に示されるパターンの補助電極13Aが形成されている。また、実施例2における補助電極13A(導電性材料130)の配線ピッチは8mmである。なお、補助電極のパターン以外は、実施例1の有機ELパネルと同じである。
 実施例3の有機ELパネルも、実施例1の有機ELパネルに対して、補助電極のパターンのみが異なる。具体的には、実施例3の有機ELパネルでは、図7に示されるパターンの補助電極13Bが形成されている。また、実施例3における補助電極13B(導電性材料130)の配線ピッチは8mmである。なお、補助電極のパターン以外は、実施例1の有機ELパネルと同じである。
 比較例1の有機ELパネルも、実施例1の有機ELパネルに対して、補助電極のパターンのみが異なる。具体的には、比較例1の有機ELパネルでは、図8に示されるパターンの補助電極13Xが形成されている。具体的には、補助電極13Xのパターンは、図2に示される補助電極13のパターンのうちの矩形枠状部分のみを形成した形状である。なお、補助電極のパターン以外は、実施例1の有機ELパネルと同じである。
 比較例2の有機ELパネルも、実施例1の有機ELパネルに対して、補助電極のパターンのみが異なる。具体的には、比較例2の有機ELパネルでは、図9に示されるパターンの補助電極13Yが形成されている。具体的には、補助電極13Yのパターンは、格子状に交差する複数本の直線状の直線部のみで形成された形状である。また、比較例2における補助電極13Yの配線ピッチは、実施例1と同様に2mmである。なお、補助電極のパターン以外は、実施例1の有機ELパネルと同じである。
 このように作製した各有機ELパネルの発光面の輝度ムラの評価結果を表1に示す。なお、各有機ELパネルの輝度は、二次元輝度計を用いて測定した。また、輝度ムラのレベルの数値は、相対的なものであり、最も輝度ムラが大きい場合を「5」とし、最も輝度ムラが小さい場合を「1」としている。また、「低輝度部位」とは、発光面において相対的に輝度が低い部分のことである。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1の有機ELパネルでは、輝度ムラが最も大きくなっていることが分かる。したがって、実施例1~3の有機ELパネルは、比較例1の有機ELパネルよりも輝度ムラが抑制できていることが分かる。特に、実施例1の有機ELパネルは、他のどの有機ELパネルよりも輝度ムラを抑制できていることが分かる。
 また、比較例1、実施例2及び実施例3の有機ELパネルでは、いずれも発光面の中央部分の輝度が低くなった。これは、比較例1の有機ELパネルでは補助電極が発光面の外周縁近傍にしか形成されておらず、電極端子部からの距離が遠い発光面の中央部分での電流密度が低くいからである。また、実施例2、3の有機ELパネルでは、補助電極の配線ピッチが8mmで疎であったために、電極端子部からの距離が遠い発光面の中央部分での電流密度を十分に大きくすることができなかったからであると考えられる。
 発光面の中央部分の輝度が低下する有機ELパネル(比較例1、実施例2及び実施例3の有機ELパネル)を比べると、実施例2、3の有機ELパネルは、比較例1の有機ELパネルよりも輝度ムラが抑制できていることが分かる。
 さらに、実施例3の有機ELパネルは、実施例2の有機ELパネルよりも輝度ムラが抑制できていることが分かる。つまり、発光面の中央部分の輝度が低下する場合には、曲線部13bが第一電極12の中央部に位置するように補助電極13を形成すればよいことが分かる。
 また、比較例2及び実施例1の有機ELパネルでは、いずれも発光面の外周縁部分の輝度が低くなった。これは、以下の理由によると考えられる。比較例2及び実施例1の有機ELパネルでは、補助電極の配線ピッチが2mmで密であったために、発光面の中央部分の電流密度を大きくすることができ、発光面の中央部分が比較的高輝度に発光したと考えられる。しかし、発光面の外周縁部分は外気と近いために温度が低下しやすいが、発光面の中央部分は温度が低下しにくい。また、上述のように、有機層は温度が低いほど電荷輸送特性が低下して輝度が低下する。このことから、発光面の外周縁部分の輝度が低くなったと考えられる。
 このように、発光面の外周縁部分の輝度が低下する有機ELパネル(比較例2、実施例1の有機ELパネル)を比べると、実施例1の有機ELパネルは、比較例2の有機ELパネルよりも輝度ムラが抑制できていることが分かる。つまり、発光面の外周縁部分の輝度が低下する場合には、曲線部13bが第一電極12の外周縁近傍に位置するように補助電極13を形成すればよいことが分かる。
 次に、実施例1~3の有機ELパネルと比較例1、2の有機ELパネルとにおける補助電極を作製するときに要したタクトを表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比較例2の有機ELパネルと比較して、実施例1~3の有機ELパネルのタクトが短縮できていることが分かる。これは、補助電極を形成する際に、液状の導電性材料を曲線状に折り返して直描することによって、直角に折り返して直描する場合と比べて、描画速度の低下を抑制できたからであると考えられる。このように、実施例1~3の有機ELパネルによれば、タクトを低減できるという効果も得られる。
 (その他変形例等)
 以上、本発明に係る有機EL素子及びその製造方法について、有機ELパネルを例にとって説明したが、本発明は、上記実施の形態に限定されるものではない。
 例えば、上記実施の形態において、補助電極13を第一電極12の上に形成することによって第一電極12に補助電極13を積層したが、これに限らない。具体的には、補助電極13を第一基板11の上に形成してその上に第一電極12を形成することによって第一電極12に補助電極13を積層してもよい。
 また、上記実施の形態に係る有機ELパネルは、照明装置として実現することができる。例えば、照明装置は、上記実施の形態における有機ELパネルと、有機ELパネルに電流を供給する電源回路とを備える。この場合、有機ELパネルは、複数枚並べてもよい。
 また、上記実施の形態に係る有機ELパネルは、照明装置以外に、表示装置等の他の装置に適用してもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 1 有機ELパネル
 11 第一基板(基板)
 12 第一電極
 12a 第一電極端子部
 12b 第二電極端子部
 13、13A、13B、13X、13Y 補助電極
 13a、130a 直線部
 13b、130b 曲線部
 14 有機層
 15 第二電極
 16 第二基板
 17 シール樹脂
 130 導電性材料

Claims (7)

  1.  基板と、
     前記基板の上に配置された第一電極と、
     発光層を有し、前記第一電極の上に配置された有機層と、
     前記有機層の上に配置された第二電極と、
     前記第一電極に積層された補助電極とを備え、
     前記補助電極は、直線状の直線部と曲線状の曲線部とを有し、
     前記曲線部の線幅は、前記直線部の線幅より広い
     有機EL素子。
  2.  前記曲線部は、前記第一電極の外周縁近傍に形成されている
     請求項1に記載の有機EL素子。
  3.  前記曲線部は、前記第一電極の中央部に形成されている
     請求項1に記載の有機EL素子。
  4.  前記直線部から前記曲線部にかけての前記補助電極の線幅は、連続的に広くなっている
     請求項1~3のいずれか1項に記載の有機EL素子。
  5.  基板上に第一電極を形成する工程と、
     前記第一電極に積層するように、直線状の直線部と曲線状の曲線部とを有する補助電極を形成する工程と、
     前記第一電極の上に、発光層を有する有機層を形成する工程と、
     前記有機層の上に第二電極を形成する工程とを含み、
     前記補助電極を形成する工程では、前記曲線部の線幅が前記直線部の線幅よりも広くなるように液状の導電性材料を塗布することによって前記補助電極を形成する
     有機EL素子の製造方法。
  6.  前記曲線部及び前記直線部は、前記液状の導電性材料をノズルから吐出することによって描画され、
     前記曲線部を描画するときの前記液状の導電性材料の描画速度は、前記直線部を描画するときの前記液状の導電性材料の描画速度よりも遅い
     請求項5に記載の有機EL素子の製造方法。
  7.  前記曲線部及び前記直線部は、前記液状の導電性材料をノズルから吐出することによって描画され、
     前記曲線部を描画するときの前記液状の導電性材料の吐出量は、前記直線部を描画するときの前記導電性材料の吐出量よりも多い
     請求項5に記載の有機EL素子の製造方法。
PCT/JP2015/003387 2014-07-30 2015-07-06 有機el素子及び有機el素子の製造方法 WO2016017072A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016537725A JP6213940B2 (ja) 2014-07-30 2015-07-06 有機el素子及び有機el素子の製造方法
US15/318,763 US9837630B2 (en) 2014-07-30 2015-07-06 Organic EL element and organic EL element manufacturing method having an auxiliary electrode includes a linear portion and a curved portion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-155276 2014-07-30
JP2014155276 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016017072A1 true WO2016017072A1 (ja) 2016-02-04

Family

ID=55217001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003387 WO2016017072A1 (ja) 2014-07-30 2015-07-06 有機el素子及び有機el素子の製造方法

Country Status (3)

Country Link
US (1) US9837630B2 (ja)
JP (1) JP6213940B2 (ja)
WO (1) WO2016017072A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051617A1 (ja) * 2016-09-13 2018-03-22 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318556A (ja) * 2001-04-20 2002-10-31 Toshiba Corp アクティブマトリクス型平面表示装置およびその製造方法
JP2006502544A (ja) * 2002-10-09 2006-01-19 サン−ゴバン グラス フランス 電気的な制御が可能なエレクトルミネセンス・タイプのデバイスとその接続手段
JP2008034362A (ja) * 2006-06-28 2008-02-14 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP2008123882A (ja) * 2006-11-14 2008-05-29 Harison Toshiba Lighting Corp 有機el素子
JP2010108851A (ja) * 2008-10-31 2010-05-13 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403761B (zh) 2005-02-15 2013-08-01 Fujifilm Corp 透光性導電性膜之製法
JP4981371B2 (ja) 2006-06-28 2012-07-18 ハリソン東芝ライティング株式会社 有機el素子
JP5077753B2 (ja) 2007-11-29 2012-11-21 日本精機株式会社 有機elパネル
JP2010205432A (ja) 2009-02-27 2010-09-16 Fujifilm Corp 透明導電体及び透明発熱体
JP5240719B2 (ja) 2009-03-23 2013-07-17 パナソニック株式会社 面状発光素子及びそれを備えた照明器具
JP2012041196A (ja) 2010-08-12 2012-03-01 Asahi Glass Co Ltd 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
JP2014032757A (ja) 2012-08-01 2014-02-20 Mitsubishi Chemicals Corp 面発光パネル、面発光パネル群および面発光パネルの製造方法
JP6338655B2 (ja) * 2014-04-04 2018-06-06 株式会社Joled 表示パネルおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318556A (ja) * 2001-04-20 2002-10-31 Toshiba Corp アクティブマトリクス型平面表示装置およびその製造方法
JP2006502544A (ja) * 2002-10-09 2006-01-19 サン−ゴバン グラス フランス 電気的な制御が可能なエレクトルミネセンス・タイプのデバイスとその接続手段
JP2008034362A (ja) * 2006-06-28 2008-02-14 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP2008123882A (ja) * 2006-11-14 2008-05-29 Harison Toshiba Lighting Corp 有機el素子
JP2010108851A (ja) * 2008-10-31 2010-05-13 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051617A1 (ja) * 2016-09-13 2018-03-22 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
US20170125724A1 (en) 2017-05-04
JPWO2016017072A1 (ja) 2017-04-27
JP6213940B2 (ja) 2017-10-18
US9837630B2 (en) 2017-12-05

Similar Documents

Publication Publication Date Title
JP6431107B2 (ja) 発光装置
CN104982092B (zh) 有机电致发光元件以及照明装置
US9680123B2 (en) Light emitting device, electrode structure and manufacturing method thereof
JP2015158981A (ja) 有機エレクトロルミネッセンス素子及び照明装置
JP2010066766A5 (ja)
JP6463354B2 (ja) 発光装置
JP6213940B2 (ja) 有機el素子及び有機el素子の製造方法
JP2012009254A (ja) 照明装置およびその製造方法
JP6617024B2 (ja) 発光装置
WO2015151391A1 (ja) 有機エレクトロルミネッセンス素子、その製造方法及び照明装置
JPWO2012102268A1 (ja) 有機エレクトロルミネッセンス素子、及び照明装置
JP6266599B2 (ja) 光学装置
WO2017119068A1 (ja) 発光装置
JP6266598B2 (ja) 光学装置
JP2014017204A (ja) 有機エレクトロルミネッセンス素子及び面状発光装置
US20140218921A1 (en) Lighting Device
WO2013186918A1 (ja) 有機エレクトロルミネッセンスデバイス
WO2015121906A1 (ja) 有機el素子、照明装置及び有機el素子の製造方法
JP5704290B1 (ja) 発光装置
JP6496138B2 (ja) 発光装置
JP2019050433A (ja) 発光装置
JP6371532B2 (ja) 発光装置
JP2014203526A (ja) 接合構造および発光装置
WO2013190623A1 (ja) エレクトロルミネッセンス素子
JPWO2018151027A1 (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016537725

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15318763

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827532

Country of ref document: EP

Kind code of ref document: A1