WO2016017068A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2016017068A1
WO2016017068A1 PCT/JP2015/003304 JP2015003304W WO2016017068A1 WO 2016017068 A1 WO2016017068 A1 WO 2016017068A1 JP 2015003304 W JP2015003304 W JP 2015003304W WO 2016017068 A1 WO2016017068 A1 WO 2016017068A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
source
common
semiconductor device
drain
Prior art date
Application number
PCT/JP2015/003304
Other languages
English (en)
French (fr)
Inventor
雄介 木下
田村 聡之
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/329,464 priority Critical patent/US10510656B2/en
Priority to JP2016537724A priority patent/JP6614148B2/ja
Publication of WO2016017068A1 publication Critical patent/WO2016017068A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/535Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including internal interconnections, e.g. cross-under constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06548Conductive via connections through the substrate, container, or encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device used as a switching element such as a power supply circuit, and relates to a technique effective in reducing wiring inductance.
  • a DC / DC (Direct Current / Direct Current) converter composed of a high-side switch and a low-side switch is well known as one of power supply circuits.
  • the half-bridge configuration in which two transistors on the high side and low side are connected, is used not only for DC / DC converters but also for audio class D (Class-D) amplifiers.
  • Patent Document 1 discloses a configuration in which two nitride semiconductors connected in a half-bridge configuration are formed on a common substrate. According to this structure, since the said half bridge structure can be formed in a single package, there exists an advantage that a circuit can be reduced in size.
  • Patent Document 2 discloses a so-called pad-on-element structure in which an electrode pad is formed above an active region as a technology for miniaturizing a power semiconductor element. Since the pads are not formed on the side of the device as in Patent Document 1, the chip area can be reduced.
  • Flip chip mounting can reduce the mounting area compared to wire bonding. Further, since the wiring can be shortened rather than using the wire, there is an advantage that the wiring resistance and the wiring inductance can be reduced.
  • an object of the present invention is to provide a nitride semiconductor device having a small wiring inductance.
  • a disclosed semiconductor device includes a substrate, a semiconductor layer disposed on the substrate, a first gate electrode disposed on the semiconductor layer, and a plurality of first drain electrodes.
  • a first transistor having a plurality of first source electrodes; a second transistor having a second gate electrode disposed above the semiconductor layer; a plurality of second drain electrodes; and a plurality of second source electrodes;
  • a plurality of first drain pads electrically connected to the first drain electrode and extending in a first direction, and a plurality of second source electrodes.
  • a plurality of first source pads electrically connected to the plurality of second source electrodes and extending in the first direction; and the plurality of first source electrodes and the plurality of second drains.
  • the semiconductor device two transistors are formed on a common substrate, and the first common wiring forms a half bridge with a pad-on-element structure. Therefore, the wiring of the first transistor and the second transistor is shortened. In addition to reducing the chip area, the wiring resistance and wiring inductance can be reduced. In addition, even if flip-chip mounting is achieved by physically and electrically connecting the first common wiring with the second common wiring, current is supplied from the source of the second transistor and the switch node of the half bridge with low resistance and low inductance. It can be taken out. As a result, a nitride semiconductor device having a small wiring inductance can be realized.
  • FIG. 1 is a plan view showing a layer in which a transistor of a nitride semiconductor device according to a first embodiment is formed. It is the top view which showed the upper layer of the layer shown by FIG. 1A. It is the top view which showed the upper layer of the layer shown by FIG. 1B. It is the top view which showed the upper layer of the layer shown by FIG. 2A. It is the top view which showed the upper layer of the layer shown by FIG. 2B. It is the top view which showed the upper layer of the layer shown by FIG. It is the top view which showed the connection part with the mounting circuit board at the time of carrying out flip chip mounting of the semiconductor device, and the metal plane layer by the side of the said mounting circuit board.
  • FIG. 1 is a plan view showing a layer in which a transistor of a nitride semiconductor device according to a first embodiment is formed. It is the top view which showed the upper layer of the layer shown by FIG. 1A. It is the top view which showed the upper layer of the layer shown by FIG. 1B
  • FIG. 2B is a cross-sectional view of the nitride semiconductor device according to the first embodiment taken along a plane perpendicular to the plan view of FIG. 1A and including a VA-VA line.
  • FIG. 2B is a cross-sectional view of the nitride semiconductor device according to the first embodiment, taken along a plane perpendicular to the plan view of FIG. 1A and including the VB-VB line.
  • 1B is a cross-sectional view of the nitride semiconductor device according to the first embodiment, taken along a plane that is perpendicular to the plan view of FIG. 1A and includes a VC-VC line.
  • FIG. 2B is a cross-sectional view of the nitride semiconductor device according to the first embodiment taken along a plane that is perpendicular to the plan view of FIG. 1A and includes a VD-VD line.
  • 1B is a cross-sectional view of the nitride semiconductor device according to the first embodiment, taken along a plane perpendicular to the plan view of FIG. 1A and including a VE-VE line.
  • FIG. 2B is a cross-sectional view of the nitride semiconductor device according to the first embodiment taken along a plane that is perpendicular to the plan view of FIG. 1A and includes a VF-VF line.
  • FIG. 10 is a plan view showing a layer corresponding to FIG.
  • FIG. 2B of the nitride semiconductor device according to the first modification example of the first embodiment It is the top view which showed the upper layer of the layer shown by FIG. 6A.
  • FIG. 10 is a plan view showing a layer corresponding to FIG. 2B of the nitride semiconductor device according to the second modification example of the first embodiment. It is the top view which showed the upper layer of the layer shown by FIG. 7A.
  • FIG. 7B is a plan view showing a layer corresponding to FIG. 7A of the nitride semiconductor device according to the third modification example of the first embodiment. It is the top view which showed the upper layer of the layer shown by FIG. 8A.
  • FIG. 6 is a plan view showing a layer corresponding to FIG.
  • FIG. 10 is an exploded perspective view showing a structure of a nitride semiconductor device according to a first modification of the third embodiment.
  • FIG. 10 is an exploded perspective view showing a structure of a nitride semiconductor device according to a second modification of the third embodiment.
  • the pad-on-element structure it is possible to form a plurality of source pads and drain pads connected to the wiring formed on the source electrode and the drain electrode, so that an effective wiring length from the electrode to the pad is achieved. This is effective for reducing the wiring resistance and the wiring inductance by shortening.
  • the switch node pads and source pads are alternately arranged.
  • a semiconductor device includes a substrate, a semiconductor layer disposed on the substrate, a first gate electrode disposed on the semiconductor layer, and a plurality of gate electrodes.
  • a first transistor having a first drain electrode and a plurality of first source electrodes; a second gate electrode disposed above the semiconductor layer; a plurality of second drain electrodes; and a second transistor having a plurality of second source electrodes.
  • a transistor disposed above the first drain electrode, electrically connected to the first drain electrode and extending in a first direction; disposed above the second source electrode; A plurality of first source pads electrically connected to the second source electrode and disposed along the first direction, each of which is above the first source electrode and the second drain electrode; A plurality of first common wirings disposed above and electrically connected to the first source electrode and the second drain electrode and extending in the first direction; and connected to the plurality of first common wirings; A plurality of second common wires extending in a second direction intersecting the first direction.
  • the wiring of the first transistor and the second transistor can be shortened. Not only can the area be reduced, but also the wiring resistance and wiring inductance can be reduced.
  • current is supplied from the source of the second transistor and the switch node of the half bridge with low resistance and low inductance. It can be taken out.
  • the plurality of first source pads may be disposed between the plurality of adjacent second common wires. In this case, the average distance of the path from the second source electrode to the first source pad is shortened, so that the wiring resistance and wiring inductance of the source of the second transistor can be reduced.
  • an insulating film having an opening exposing a part of the wiring electrically connected to the first drain pad, the first source pad, and the second common wiring may be formed. This makes it easier to take out current from the first source pad that is separated by the plurality of first common wires and the second common wires and is isolated during flip chip mounting. On the other hand, when the insulating film is not formed, the first common wiring and the second common wiring are all open, so that it interferes with the current extraction direction of the isolated first source pad and flip chip mounting. Becomes difficult.
  • the plurality of first common wires include a first vertical wire, a second vertical wire, and a third vertical wire
  • the plurality of second common wires include a first horizontal wire and a second horizontal wire.
  • the first vertical wiring and the second vertical wiring are connected by the first horizontal wiring and the second horizontal wiring, and the second vertical wiring and the third vertical wiring are provided.
  • the wiring is connected by the third horizontal wiring, and the third horizontal wiring is arranged at a position between the first horizontal wiring and the second horizontal wiring in the first direction in a plan view. Also good.
  • the area of the second common wiring can be increased, and the wiring resistance and wiring inductance reaching the current extraction port as the switch node can be reduced. be able to.
  • the first vertical wiring, the second vertical wiring, and the third vertical wiring are disposed adjacent to each other, and the first horizontal wiring, the second horizontal wiring, and the third horizontal wiring are adjacent to each other. May be arranged.
  • a first source pad is formed between the first common wiring and the second common wiring arranged in a mesh pattern, and the wiring is electrically connected to the first drain pad, the first source pad, and the second common wiring.
  • An insulating film having an opening exposing a part of the insulating film may be formed.
  • a plurality of second source lines and a plurality of second drain lines extending in the second direction may be disposed above the second transistor and below the plurality of first common lines.
  • the wiring length to each pad electrically connected to the second source electrode and the second drain electrode can be reduced and the apparent number of wirings can be increased, so that the resistance and inductance of the wiring can be reduced. Can do.
  • the plurality of second common lines may cover a part of the plurality of second source lines and a part of the plurality of second drain lines.
  • the area of the second common wiring can be increased, and the resistance and inductance of the wiring to the current extraction port as the switch node can be reduced.
  • the first source wiring covered with the second common wiring may have a longer path length to reach the first source pad than when the first common wiring is not covered with the second common wiring.
  • the current always passes through the first source wiring that is about the length of the first horizontal wiring, the second horizontal wiring, or the third horizontal wiring. Since the pad can be reached, an excessive increase in wiring resistance and wiring inductance can be suppressed.
  • the second common wiring may be only one.
  • the area of the first source pad can be increased, and the wiring resistance and wiring inductance of the second transistor can be reduced.
  • the single second common wiring may be disposed above the plurality of first common wirings.
  • the wiring process is increased and the cost is increased.
  • the first source pad can be extended in the second direction without spatially interfering with the second common wiring, the first source pad can be extended in the second direction.
  • the area of one source pad can be increased, and the wiring resistance and wiring inductance of the second transistor can be reduced.
  • the semiconductor device further includes a mounting circuit board, and the mounting circuit board is for flip chip mounting that is electrically connected to at least one first via opening and the plurality of first common wirings. You may have several 1st metal plane layers and the 3rd common wiring electrically connected with the said 1st metal plane layer through the via provided in the said 1st via opening part.
  • the second common wiring is not provided on the nitride semiconductor layer, and the first common wiring and the electric circuit are formed on a layer different from the mounting surface of the circuit board on which the nitride semiconductor layer is flip-chip mounted.
  • the third common wiring connected in a connected manner can be provided.
  • the first source pad layer is not spatially interfered with the second common wiring, the area of the first source pad can be increased, and the wiring resistance and wiring inductance of the second transistor can be reduced.
  • the metal plane layers of the switch nodes aggregated via the third common wiring may be provided on either the mounting surface or the back surface of the circuit board.
  • a via that electrically connects the second drain pad and the fourth connection wiring and a via that electrically connects the fourth connection wiring and the switch node pad are provided. They may be placed as close as possible. In this way, since the directions of the currents flowing through the two types of vias are opposite, the magnetic fluxes generated by each other can be canceled out and the via inductance can be reduced.
  • the semiconductor device further includes a mounting circuit board, and the mounting circuit board is for flip chip mounting electrically connected to at least one second via opening and the plurality of first source pads.
  • a plurality of second metal plane layers and a fourth common wiring electrically connected to the second metal plane layer via vias provided in the second via opening may be included.
  • the second common wiring is not provided on the nitride semiconductor layer, and the first source pad and the electric circuit are formed on a layer different from the mounting surface of the circuit board on which the nitride semiconductor layer is flip-chip mounted.
  • the nitride semiconductor element itself is the same as the first transistor.
  • the wiring of the second transistor can be shortened, and not only the chip area can be reduced, but also the wiring resistance and wiring inductance can be reduced.
  • the semiconductor device further includes a circuit board for mounting, and the circuit board for mounting is for flip chip mounting electrically connected to at least one third via opening and the plurality of second drain source pads.
  • the second common wiring is not provided on the nitride semiconductor layer, and the first drain pad and the electric circuit are formed on a layer different from the mounting surface of the circuit board on which the nitride semiconductor layer is flip-chip mounted.
  • the fifth common wirings connected to each other can be provided, the switch node and the first source pad can be drawn out on the mounting surface, and the first drain pads can be drawn out collectively by the fifth common wiring in another layer.
  • the via exists in the loop of the current that returns to the power supply through the half bridge, the possibility that noise is generated during the switching operation due to the inductance of the via increases, but the nitride semiconductor element itself has the first transistor and the second transistor.
  • the wiring of the transistor can be shortened, and not only the chip area can be reduced, but also the wiring resistance and wiring inductance can be reduced.
  • the present disclosure also includes various modifications in which the present embodiment has been modified within the scope conceived by those skilled in the art. In addition, it is possible to combine at least some of the plurality of embodiments without departing from the gist of the present disclosure.
  • FIG. 1A is a plan view showing a layer in which a first transistor and a second transistor of a nitride semiconductor device according to a first embodiment of the present disclosure are formed.
  • FIG. 1B is a plan view showing an upper layer of the layer shown in FIG. 1A.
  • FIG. 2A is a plan view showing an upper layer of the layer shown in FIG. 1B.
  • FIG. 2B is a plan view showing an upper layer of the layer shown in FIG. 2A.
  • FIG. 3 is a plan view showing the upper layer of the layer shown in FIG. 2B.
  • 4A is a plan view showing an upper layer of the layer shown in FIG.
  • FIG. 4B is a plan view showing a connection portion with a mounting circuit board and a metal plane layer on the mounting circuit board side when the nitride semiconductor device according to the present embodiment is flip-chip mounted.
  • FIG. 5A to 5F are cross-sectional views of the nitride semiconductor device according to this embodiment.
  • FIG. 5A is a cross-sectional view taken along a plane perpendicular to the plan view of FIG. 1A and including the line VA-VA.
  • FIG. 5B is a cross-sectional view taken along a plane perpendicular to the plan view of FIG. 1A and including the VB-VB line.
  • FIG. 5C is a cross-sectional view taken along a plane that is perpendicular to the plan view of FIG. 1A and includes the VC-VC line.
  • 5D is a cross-sectional view taken along a plane perpendicular to the plan view of FIG. 1A and including the VD-VD line.
  • FIG. 5A is a cross-sectional view taken along a plane perpendicular to the plan view of FIG. 1A and including the line VA-VA.
  • FIG. 5B is a cross-sectional view taken along a plane perpendicular
  • FIG. 5E is a cross-sectional view taken along a plane perpendicular to the plan view of FIG. 1A and including the VE-VE line.
  • FIG. 5F is a cross-sectional view taken along a plane perpendicular to the plan view of FIG. 1A and including the line VF-VF.
  • the high-side transistor 101 that is the first transistor and the low-side transistor 102 that is the second transistor are transistors having a multi-finger structure.
  • the size of the nitride semiconductor device according to the present embodiment is, for example, 2000 ⁇ m long and 3000 ⁇ m wide.
  • the size of the high side transistor 101 is 500 ⁇ m in length and 3000 ⁇ m in width.
  • the size of the low-side transistor 102 is 1500 ⁇ m in length and 3000 ⁇ m in width.
  • the size of the low-side transistor 102 is larger than the size of the high-side transistor 101. This is intended for use in a step-down DC / DC converter with a large step-down ratio, and lowers the resistance value of the low-side transistor that increases the energization time. This is because conduction loss is being reduced.
  • the size of the high side transistor and the low side transistor may be determined as appropriate.
  • the high-side transistor 101 will be described as an example.
  • a semiconductor multilayer structure including a nitride semiconductor layer 103 is formed on a Si substrate (not shown), and a first source electrode 1a, a first drain electrode 1b, and a first gate electrode are formed on the semiconductor multilayer structure. 1c is formed.
  • the semiconductor multilayer structure is a nitride semiconductor multilayer structure
  • the layer farthest from the Si substrate is a nitride semiconductor layer 103 made of AlGaN with an Al composition of 20%.
  • a first source electrode 1a and a first drain electrode 1b made of a metal such as titanium (Ti) and aluminum (Al) are formed on the nitride semiconductor layer 103 made of AlGaN having an Al composition of 20%.
  • a first gate electrode 1c made of palladium (Pd) or the like is formed on the nitride semiconductor layer 103.
  • the gate length of the first gate electrode 1c (length L in FIG. 5A) is 1 ⁇ m.
  • the distance between the center of the first gate electrode 1c and the center of the first source electrode 1a is 2 ⁇ m, and the distance between the center of the first gate electrode 1c and the center of the first drain electrode 1b is 2.5 ⁇ m. is there.
  • the plurality of first source electrodes 1a, the plurality of first drain electrodes 1b, and the plurality of first gate electrodes 1c are provided in an elongated shape parallel to each other.
  • the length of the first gate electrode 1c in the longitudinal direction is 420 ⁇ m.
  • the length of the first source electrode 1a in the longitudinal direction is 400 ⁇ m, and the length of the first drain electrode 1b in the longitudinal direction is 400 ⁇ m.
  • the first source electrode 1a and the first drain electrode 1b of each unit are electrically connected to each other by a structure described later.
  • the first gate electrode 1 c of each unit is electrically connected to each other by the first gate electrode wiring 3.
  • the width of the first gate electrode wiring 3 is 40 ⁇ m.
  • the first gate electrode wiring 3 is provided in the periphery of the high side transistor 101 and surrounds the plurality of first source electrodes 1a, the plurality of first drain electrodes 1b, and the plurality of first gate electrodes 1c. .
  • the gate width of the nitride semiconductor device can be increased, and a large current can flow.
  • the “gate width” means a value obtained by multiplying the length in the longitudinal direction of the gate electrode 1c included in one unit by the number of fingers.
  • the region where the group of first source electrode 1a and first drain electrode 1b in the nitride semiconductor layer 103 is formed, and the channel region that is not insulated and separated are defined as active regions. To do.
  • the high side transistor 101 has been described above as an example. However, the first source electrode 1a, the first drain electrode 1b, and the first gate electrode 1c are replaced with the second source electrode 2a, the second drain electrode 2b, and the second gate electrode, respectively. The same explanation is valid for the low-side transistor 102 by replacing it with 2c.
  • the length of the second gate electrode 2c in the longitudinal direction is 1420 ⁇ m.
  • the length of the second source electrode 2a in the longitudinal direction is 1400 ⁇ m, and the length of the second drain electrode 1b in the longitudinal direction is 1400 ⁇ m.
  • the width of the second gate electrode wiring 4 is 40 ⁇ m.
  • the second gate electrode wiring 4 is provided in the peripheral portion of the low-side transistor 102 and surrounds the plurality of second source electrodes 2a, the plurality of second drain electrodes 2b, and the plurality of second gate electrodes 2c.
  • a metal film such as nickel (Ni) or gold (Au) having an electrode width equivalent to each electrode is formed on each source electrode, drain electrode and gate electrode. You may keep it.
  • each layer shown in FIG. 1A such as the nitride semiconductor layer 103 is made of silicon nitride (SiN) having a thickness of about 500 nm and polybenzoxazole (PBO) having a thickness of about 1 ⁇ m.
  • a first insulating film 5 is formed.
  • SiN is a moisture-resistant film that protects the nitride semiconductor layer 103 and functions as an adhesion layer with PBO.
  • the first insulating film 5 includes a first source electrode 1 a, a first drain electrode 1 b, a first gate electrode wiring 3, a second source electrode 2 a, a second drain electrode 2 b, and a second gate electrode wiring 4. A plurality of openings 5a exposing the portion are formed.
  • the opening 5a of the first insulating film 5 exposing the first source electrode 1a is formed at an equivalent position in the longitudinal direction of each first source electrode 1a.
  • the opening 5a of the first insulating film 5 exposing the first drain electrode 1b is an equivalent position in the longitudinal direction of each first drain electrode 1b, and the opening 5a exposing the first source electrode 1a. It is formed in a different position. That is, in this embodiment, the opening 5a exposing the first source electrode 1a and the opening 5a exposing the first drain electrode 1b are formed so as to be shifted from each other in the longitudinal direction of the electrodes.
  • the portion related to the high side transistor 101 has been described as an example.
  • the first source electrode 1a, the first drain electrode 1b, the first gate electrode 1c, and the first gate electrode wiring 3 are respectively connected to the second source electrode 2a,
  • the same explanation can be applied to the low-side transistor 102.
  • a first source line 11a electrically connected to the first source electrode 1a through the opening 5a is formed on the first insulating film 5. Further, a first drain wiring 11b electrically connected to the first drain electrode 1b through the opening 5a is formed on the first insulating film 5. On the first insulating film 5, a first gate wiring 11c electrically connected to the first gate electrode wiring 3 through the opening 5a is formed.
  • the first source wiring 11a and the first drain wiring 11b are formed in an elongated shape extending in a direction intersecting with the first source electrode 1a and the first drain electrode 1b.
  • the first source lines 11a and the first drain lines 11b are spaced apart from each other and are alternately arranged.
  • the first source wiring 11a, the first drain wiring 11b, and the first gate wiring 11c are a lower adhesion layer made of Ti having a thickness of about 100 nm, a conductive layer made of copper (Cu) having a thickness of about 5 ⁇ m, and a thickness of 100 nm.
  • An upper adhesion layer made of about Ni is sequentially laminated.
  • the first source wiring 11a has a length of 2900 ⁇ m and a width of 40 ⁇ m.
  • the first drain wiring 11b has a length of 2900 ⁇ m and a width of 40 ⁇ m.
  • the distance between the wiring ends of the adjacent first source wiring 11a and first drain wiring 11b is 15 ⁇ m.
  • the first gate wiring 11 c is provided around the high side transistor 101.
  • the width of the first gate line 11c is 35 ⁇ m.
  • the portion related to the high-side transistor 101 has been described as an example.
  • the first source wiring 11a, the first drain wiring 11b, and the first gate wiring 11c are respectively connected to the second source wiring 12a, the second drain wiring 12b, and the second gate wiring 11c.
  • the same explanation is valid for the low-side transistor 102 by replacing it with the gate wiring 12c.
  • the length of the second source line 12a is 2800 ⁇ m and the width is 40 ⁇ m.
  • the length of the second drain wiring 12b is 2800 ⁇ m and the width is 40 ⁇ m.
  • the distance between the wiring ends of the adjacent second source wiring 12a and second drain wiring 12b is 15 ⁇ m.
  • the second gate wiring 12 c is provided around the low-side transistor 102.
  • the width of the second gate line 12c is 40 ⁇ m.
  • the opening 5a exposing the first source electrode 1a, the first drain electrode 1b, the second source electrode 2a and the second drain electrode 2b has a rectangular opening having a long side of 35 ⁇ m and a short side of 1.2 ⁇ m. ing.
  • the opening 5a exposing the first gate electrode wiring 3 and the second gate electrode wiring 4 has a rectangular opening having a long side of 300 ⁇ m and a short side of 35 ⁇ m.
  • a second insulating film 13 made of PBO having a thickness of about 10 ⁇ m is formed on each component shown in FIG. 2A such as the first source wiring 11a.
  • the second insulating film 13 a plurality of first source lines 11a, first drain lines 11b, first gate lines 11c, second source lines 12a, second drain lines 12b and a plurality of second gate lines 12c are exposed.
  • the opening 13a is formed.
  • the second insulating film 13 is formed with a plurality of openings 13b that are exposed larger than the openings 13a and expose a part of the second drain wiring 12b.
  • the opening 13a exposing the first source line 11a, the first drain line 11b, and the second source electrode 12a has a rectangular opening with a long side of 200 ⁇ m and a short side of 35 ⁇ m.
  • the opening 13a exposing the first gate wiring 11c and the second gate wiring 12c has a rectangular opening having a long side of 300 ⁇ m and a short side of 35 ⁇ m.
  • the opening 13b exposing the second drain wiring 12b has a rectangular opening having a long side of 1050 ⁇ m and a short side of 35 ⁇ m.
  • the plurality of openings 13b do not necessarily have to be greatly opened in the longitudinal direction of the second drain wiring 12b. However, the larger the opening area, the wiring from the second drain wiring 12b to the second common wiring 17 described later. The length is shortened, and wiring resistance and wiring inductance can be reduced.
  • a plurality of first drain pads 14 connected to at least a part of the first drain wiring 11b through the opening 13a are formed on the second insulating film 13. That is, the first drain electrode 1b and the first drain pad 14 are electrically connected.
  • the plurality of first drain pads 14 extend in the first direction.
  • a plurality of first source pads 15 connected to at least a part of the second source wiring 12a through the opening 13a are formed. That is, the second source electrode 2a and the first source pad 15 are electrically connected.
  • the plurality of first source pads 15 are arranged in the first direction. A part of the first source pad 15 is disposed between the adjacent second common lines 17.
  • a plurality of first common wirings 16 connected to at least a part of the first source wirings 11a and the second drain wirings 12b through the openings 13a are formed.
  • the plurality of first common wires 16 are arranged in the first direction.
  • a plurality of second common wirings 17 connected to at least a part of the second drain wirings 12b through the openings 13b are formed on the second insulating film 13.
  • the plurality of second common wires 17 are arranged in a second direction intersecting the first direction.
  • the first common wiring 16 and the second common wiring 17 are connected. That is, the first source electrode 1 a and the second drain electrode 2 b are electrically connected through the first common wiring 16 and the second common wiring 17.
  • a first gate pad 18 connected to at least a part of the first gate wiring 11c through the opening 13a is formed on the second insulating film 13, and the second gate wiring 12c is formed through the opening 13a.
  • a second gate pad 19 connected to at least a part is formed.
  • the first drain pad 14, the first source pad 15, the first common wiring 16, the second common wiring 17, the first gate pad 18 and the second gate pad 19 are composed of a lower layer adhesion layer made of Ti having a thickness of about 100 nm, A conductive layer made of Cu having a thickness of about 5 ⁇ m and an upper adhesion layer made of Ni having a thickness of about 100 nm are sequentially stacked.
  • the first drain pad 14 has a rectangular shape with a length of 380 ⁇ m and a width of 220 ⁇ m.
  • the first source pad 15 has three types of rectangular shapes of 1300 ⁇ m in length, 220 ⁇ m in width, 760 ⁇ m in length, 220 ⁇ m in width, 40 ⁇ m in length, and 220 ⁇ m in width.
  • the length L16 of the first common wiring 16 is 1850 ⁇ m, and the width is 220 ⁇ m.
  • the second common wiring 17 has a length L17 of 1090 ⁇ m and a width of 40 ⁇ m.
  • the first gate pad 18 has a rectangular shape with a length of 380 ⁇ m and a width of 250 ⁇ m.
  • the second gate pad 19 has a rectangular shape with a length of 380 ⁇ m and a width of 250 ⁇ m.
  • 3 has a rectangular shape with a vertical length of 850 ⁇ m and a horizontal length of 530 ⁇ m.
  • a third insulating film 20 made of PBO having a thickness of about 10 ⁇ m is formed on each component shown in FIG. 3 such as the first drain pad 14.
  • an opening 21 exposing a part of the first drain pad 14, the first source pad 15, the first gate pad 18, the second gate pad 19, and the wiring pad 27 is formed.
  • the opening 21 is formed slightly smaller than the size of each pad.
  • the half bridges of the high-side transistor 101 and the low-side transistor 102 can be configured with a pad-on-element structure. Therefore, the circuit area can be reduced and the wiring resistance and wiring inductance can be reduced as compared with the case where both transistors are formed individually and connected by wiring on the circuit board. Moreover, the chip area can be reduced by adopting the pad-on-element structure.
  • the plurality of first source pads 15 and the plurality of first common wirings 16 are arranged in parallel, so that the directions of extracting current coincide with each other during flip chip mounting. It is difficult to consolidate each into one pad.
  • the first source electrode 1a and the second source electrode 2a Since the average wiring length to the extraction port becomes long, wiring resistance and wiring inductance increase.
  • FIG. 4B is a plan view showing a connection portion with a mounting circuit board and a metal plane layer on the mounting circuit board side when the nitride semiconductor device according to the present embodiment is flip-chip mounted.
  • the first source pad 15 formed between the second common wirings 17 is isolated from the first common wiring 16 and the second common wiring 17. Without being interfered with, it is possible to connect to the source metal plane layer 31 on the mounting circuit board side via the circuit board connection parts 23 of the plurality of first source pads. Therefore, since the effective area of the first source pad 15 can be increased, the wiring resistance and the wiring inductance can be reduced.
  • the first drain pad 14 and the drain metal plane layer 32 on the mounting circuit board side are electrically connected via the circuit board connection portion 24 of the first drain pad.
  • the first gate pad 18 is connected to the high-side gate metal plane layer 33 on the mounting circuit board side via the circuit board connecting portion 25 of the first gate pad.
  • the second gate pad 19 and the low-side gate metal plane layer 34 on the mounting circuit board side are connected via the circuit board connection portion 26 of the second gate pad.
  • nitride semiconductor device According to the nitride semiconductor device according to the first embodiment, a nitride semiconductor device having a small wiring inductance can be obtained.
  • a silicon oxide (SiO 2 ) film or the like may be used.
  • a protruding flip chip mounting terminal such as a solder ball may be formed on the first drain pad 14 and the first source pad 15.
  • the size of the nitride semiconductor device, the size of the high-side transistor 101, and the size of the low-side transistor 102 described in the above embodiment are merely examples, and the use of the nitride semiconductor device and required characteristics are included. It can be changed as appropriate.
  • the gate length of the first gate electrode 1c, the distance between the center of the first gate electrode 1c and the center of the first source electrode 1a, and the distance between the center of the first gate electrode 1c and the center of the first drain electrode 1b are also shown. Moreover, it is only an example, and can be changed as appropriate depending on the size and use of the nitride semiconductor device.
  • the length in the longitudinal direction of the first gate electrode 1c, the length in the longitudinal direction of the first source electrode 1a, and the length in the longitudinal direction of the first drain electrode 1b are also merely examples, and the size and use of the nitride semiconductor device It can be changed as appropriate.
  • the width of the first gate electrode wiring 3 is also merely an example, and can be appropriately changed depending on the size and use of the nitride semiconductor device.
  • the length of the second gate electrode 2c in the longitudinal direction, the length of the second source electrode 2a in the longitudinal direction, the length of the second drain electrode 2b in the longitudinal direction, and the width of the second gate electrode wiring 4 are also set. Moreover, it is only an example, and can be changed as appropriate depending on the size and use of the nitride semiconductor device.
  • the length and width of the first source wiring 11a, the length and width of the first drain wiring 11b, and the interval between the wiring ends of the adjacent first source wiring 11a and the first drain wiring 11b are merely examples, and the nitride semiconductor device The size can be changed as appropriate depending on the size and application.
  • the width of the first gate wiring 11c is also merely an example, and can be appropriately changed depending on the size and application of the nitride semiconductor device.
  • the length and width of the second source wiring 12a, the length and width of the second drain wiring 12b, and the spacing between the adjacent second source wiring 12a and the second drain wiring 12b are merely examples, and the nitride semiconductor device
  • the size can be changed as appropriate depending on the size and application.
  • the width of the second gate wiring 12c is also merely an example, and can be changed as appropriate depending on the size and application of the nitride semiconductor device.
  • the shape and size of the opening 5a exposing the first source electrode 1a, the first drain electrode 1b, the second source electrode 2a, and the second drain electrode 2b are not limited to the above.
  • the shape and size of the opening 5a exposing the first gate electrode wiring 3 and the second gate electrode wiring 4 are not limited to the above.
  • the shape and size of the opening 13a and the shape and size of the opening 13b are not limited to the above.
  • the shapes and sizes of the first drain pad 14 and the first source pad 15 are not limited to the above.
  • the length L16 and width of the first common wiring 16 and the length L17 and width of the second common wiring 17 are not limited to the above.
  • the shape and size of the first gate pad 18 are not limited to the above.
  • the shape and size of the wiring pad 27 are not limited to the above.
  • the nitride semiconductor device has only one second common wiring 17.
  • the layers shown in FIG. 6A correspond to the layers shown in FIG. 2B in the first embodiment.
  • the difference between the two is that not only a plurality of openings 13b of the second insulating film 13 that are largely opened in the longitudinal direction of the second drain wiring 12b are formed, but only one.
  • the layer shown in FIG. 6B corresponds to the layer shown in FIG. 3 in the first embodiment.
  • the difference between the two is that there is only one second common wiring 17.
  • the second common wiring 17 is connected to the second drain wiring 12b through the opening 13b in FIG. 6A, and intersects and is connected to the plurality of first common wirings 16.
  • the area of the first source pad 15 can be increased by the amount that the number of the second common wirings 17 is reduced. As a result, the average wiring length from the second source electrode 2a to the first source pad 15 can be reduced, so that the wiring resistance and wiring inductance of the source of the low-side transistor 102 can be reduced.
  • the contact area with the mounting circuit board can be increased during flip chip mounting, the contact resistance can also be reduced.
  • the half bridge of the high-side transistor 101 and the low-side transistor 102 can be configured with a pad-on-element structure, so that both transistors are formed separately.
  • the circuit area can be reduced, and the wiring resistance and wiring inductance can be reduced as compared with the case where the wiring is connected on the circuit board.
  • the first source pad 15 and the second common wiring 17 are mounted during flip-chip mounting.
  • the current can be taken out without crossing.
  • the third insulating film 20 and the opening 21 are used in the upper layer of the layer shown in FIG. 6B as in the first embodiment. For example, since the area of the first source pad 15 can be increased, a current can be easily taken out without interference with the second common wiring 17.
  • nitride semiconductor device According to the nitride semiconductor device according to the first modification of the first embodiment, a nitride semiconductor device having a small wiring inductance can be obtained.
  • the plurality of first common wirings 16 includes a first vertical wiring 41, a second vertical wiring 42, and a third vertical wiring 43 that are arranged adjacent to each other.
  • the second common wiring 17 includes a first horizontal wiring 44, second horizontal wirings 45 a and 45 b, and a third horizontal wiring 46.
  • the first vertical wiring 41 and the second vertical wiring 42 are connected by a first horizontal wiring 44 and second horizontal wirings 45a and 45b, and the second vertical wiring 42 and the third vertical wiring 43 are connected by a third horizontal wiring 46.
  • the third horizontal wiring 46 is disposed at a position between the first horizontal wiring 44 and the second horizontal wiring 45b in the first direction.
  • FIG. 7A corresponds to the layer shown in FIG. 2B in the first embodiment.
  • the difference between the two is that there is no opening 13b of the second insulating film 13 that is largely opened in the longitudinal direction of the second drain wiring 12b.
  • the layer shown in FIG. 7B corresponds to the layer shown in FIG. 3 in the first embodiment.
  • the first common wiring 16 and the second common wiring 17 are arranged in a mesh pattern by using the horizontal wiring and the vertical wiring.
  • the following effects can be obtained.
  • the average length in the longitudinal direction of the wiring from the first common wiring 16 to the second common wiring 17 can be shortened. As a result, it is possible to reduce the wiring resistance and wiring inductance leading to the current extraction port.
  • the first horizontal wiring 44, the second horizontal wiring 45b, and the third horizontal wiring 46 are arranged adjacent to each other, but the second horizontal wiring 45b may be omitted.
  • a horizontal wiring and a vertical wiring that can realize a desired wiring resistance and wiring inductance may be appropriately disposed.
  • the area of the first source pad 15 can be increased by forming the first source pad 15 between the first common wiring 16 and the second common wiring 17 arranged in a mesh shape. As a result, the average wiring length from the second source electrode 2a to the first source pad 15 can be reduced, so that the wiring resistance and wiring inductance of the source of the low-side transistor 102 can be reduced.
  • the area of the first source pad 15 can be increased by using the third insulating film 20 and the opening 21 thereof, and the second common wiring 17 can be interfered. The current can be easily taken out without being.
  • the opening 13a of the second insulating film 13 may have a long opening in the longitudinal direction of the horizontal wiring. According to this configuration, the wiring resistance and the wiring inductance in the region between the first vertical wiring 41 and the second vertical wiring 42 and the region between the second vertical wiring 42 and the third vertical wiring 43 are reduced. be able to.
  • the half bridge of the high-side transistor 101 and the low-side transistor 102 can be configured with a pad-on-element structure, so that both transistors are formed separately. As a result, the circuit area can be reduced and the wiring resistance and wiring inductance can be reduced as compared with the case where the wiring is connected on the circuit board.
  • a nitride semiconductor device having a small wiring inductance can be obtained.
  • the plurality of first common wirings 16 includes a first vertical wiring 41, a second vertical wiring 42, and a third vertical wiring 43 that are arranged adjacent to each other.
  • the second common wiring 17 includes a first horizontal wiring 44, a second horizontal wiring 45, and a third horizontal wiring 46.
  • the first vertical wiring 41 and the second vertical wiring 42 are connected by the first horizontal wiring 44 and the second horizontal wiring 45
  • the second vertical wiring 42 and the third vertical wiring 43 are connected by the third horizontal wiring 46.
  • the third horizontal wiring 46 is disposed at a position between the first horizontal wiring 44 and the second horizontal wiring 45 in the first direction
  • the second common wiring 17 includes a plurality of first source pads. 15 and a part of the plurality of first drain pads 14 are covered.
  • the layer shown in FIG. 8A corresponds to the layer shown in FIG. 7A of the second modification of the first embodiment.
  • the arrangement of the opening 13a formed in the second insulating film 13 on the second source wiring 12a is different from that in the second modification. Specifically, as compared with the second modification, there is a region where the opening 13a is not partially arranged on the low side according to the modification.
  • the layers shown in FIG. 8B correspond to the layers shown in FIG. 6B of the second modification of the first embodiment.
  • the second common wiring 17 is disposed so as to cover a region where the opening 13a is not disposed.
  • the second common wiring 17 can be formed thicker, the area of the second common wiring 17 can be increased. Therefore, it is possible to reduce the resistance and inductance of the wiring up to the current extraction port as the switch node.
  • the average wiring length from the point of the second source wiring 12 a covered with the second common wiring 17 to the first source pad 15 is the first from the point of the second source wiring 12 a not covered with the second common wiring 17. It becomes longer than the average wiring length to reach one source pad 15. However, when the first source pad 15 is arranged between the mesh-shaped first common wiring 16 and the second common wiring 17, the current corresponds to the length of the second common wiring 17 in the second direction. Since the first source pad 15 can be reached through the two source wirings 12a, an increase in wiring resistance and wiring inductance can be suppressed.
  • the half bridge of the high-side transistor 101 and the low-side transistor 102 can be configured with a pad-on-element structure, and both transistors are formed separately.
  • the circuit area can be reduced as compared with the case where the wiring is connected on the circuit board, and the wiring resistance and wiring inductance can be reduced.
  • a nitride semiconductor device having a small wiring inductance can be obtained.
  • the layers shown in FIGS. 1A, 1B, 2A, and 7A in the first embodiment are formed in this order.
  • the layer shown in FIG. 9A is provided on the layer shown in FIG. 7A and corresponds to the layer shown in FIG. 3 in the first embodiment.
  • the second common wiring 17 is not arranged, and the plurality of first common wirings 16 are not connected to each other.
  • a third insulating film 20 made of PBO having a thickness of about 10 ⁇ m is formed on the layer shown in FIG. 9A having the first drain pad 14 and the like.
  • the third insulating film 20 has a plurality of openings 21 exposing portions of the first drain pad 14, the first source pad 15, the first common wiring 16, the first gate pad 18, and the second gate pad 19. Is formed.
  • the second common wiring 17 connected to a part of the first common wiring 16 through the opening 21 is formed on the third insulating film 20. That is, the first source electrode 1 a and the second drain electrode 2 b are electrically connected to the first common wiring 16 and the second common wiring 17.
  • the number of steps for forming the wiring is increased as compared with the first embodiment.
  • the first source pad is provided by the amount that the second common wiring 17 is not disposed.
  • the area of 15 can be increased. Therefore, since the average wiring length from the second source electrode 2a to the first source pad 15 can be shortened, the wiring resistance and wiring inductance of the source of the low-side transistor 102 can be reduced.
  • the half bridge of the high-side transistor 101 and the low-side transistor 102 can be configured with a pad-on element structure, and both transistors are formed individually.
  • the circuit area can be reduced and the wiring resistance and wiring inductance can be reduced as compared with the case where the wiring is connected on the circuit board.
  • a second drain pad 51 connected to at least a part of the first drain pad 14 through the opening 21 is formed. That is, the first drain electrode 1b and the second drain pad 51 are electrically connected.
  • a second source pad 52 connected to at least a part of the first source pad 15 through the opening 21 is formed. That is, the second source electrode 2a and the second source pad 52 are electrically connected.
  • Pads 54 are connected to each other.
  • the pads other than the second common wiring 17 are not necessarily formed, but if formed, all the pads including the second common wiring 17 are located substantially on the same plane. Therefore, there is an advantage that it is easy to mount.
  • the second drain pad 51, the second source pad 52, the second common wiring 17, the third gate pad 53, and the fourth gate pad 54 have a lower layer adhesive layer made of Ti having a thickness of about 100 nm and a thickness of about 5 ⁇ m.
  • a conductive layer made of Cu and an upper adhesion layer made of Ni with a thickness of about 100 nm are sequentially laminated.
  • nitride semiconductor device According to the nitride semiconductor device according to the second embodiment, a nitride semiconductor device having a small wiring inductance can be obtained.
  • the nitride semiconductor device includes a nitride semiconductor element 200 and a mounting circuit board 201.
  • the layers shown in FIGS. 1A, 1B, 3A, 7A, and 9A in the first and second embodiments are formed in this order. It should be noted that the second common wiring 17 does not exist in FIG. 9A.
  • the surface of the mounting circuit board 201 shown in FIG. 11 has at least one first via opening 60, and is electrically connected to the switch node of the nitride semiconductor element 200, that is, the plurality of first common wirings 16 during flip chip mounting.
  • a first metal plane layer 61 to be connected is formed.
  • the mounting circuit board 201 includes a third common wiring 63 that is electrically connected to the first metal plane layer 61 through a first via 62 provided in the first via opening 60. .
  • the third common wiring 63 is arranged in a layer different from the first metal plane layer 61.
  • the mounting circuit board 201 includes a drain metal plane layer 64 electrically connected to the first drain pad 14 of the nitride semiconductor element 200 and a source metal electrically connected to the first source pad 15.
  • a switch node metal plane layer 68 electrically connected to the common wiring 63 is provided.
  • the area of the first source pad 15 can be increased by the amount that the second common wiring 17 is not disposed on the nitride semiconductor element 200. Therefore, since the average wiring length from the second source electrode 2a to the first source pad 15 can be reduced, the wiring resistance and wiring inductance of the source of the low-side transistor 102 can be reduced.
  • the plurality of first common wirings 16 can be connected in one layer of the mounting circuit board 201 by the third common wiring 63, when the nitride semiconductor element 200 is flip-chip mounted, all the first common wirings 16 are connected. A current can be taken out from the common wiring 16. Therefore, the resistance and inductance of the wiring connecting the source of the high-side transistor 101 and the drain of the low-side transistor 102 can be made smaller than when both transistors are formed separately and wired. Wiring resistance and wiring inductance can be reduced.
  • the half bridge of the high-side transistor 101 and the low-side transistor 102 can be configured with a pad-on-element structure.
  • the circuit area can be reduced as compared with the case of connecting with wiring on the substrate, and wiring resistance and wiring inductance can be reduced.
  • the switch node metal plane layer 68 having the same potential as that of the third common wiring 63 on the surface of the mounting circuit board 201, the third common wiring 63 and the switch node metal plane layer through vias or the like. 68 may be connected.
  • nitride semiconductor device According to the nitride semiconductor device according to the third embodiment, a nitride semiconductor device having a small wiring inductance can be obtained.
  • the nitride semiconductor device includes a nitride semiconductor element 200 and a mounting circuit board 201.
  • the layers shown in FIGS. 1A, 1B, 4A, 7A, and 9A in the first and second embodiments are formed in this order. It should be noted that the second common wiring 17 does not exist in FIG. 9A.
  • At least one second via opening 70 is provided on the surface of the mounting circuit board 201, and a switch node of the nitride semiconductor element 200, that is, a plurality of first source pads, is mounted during flip chip mounting.
  • a second metal plane layer 71 electrically connected to 15 is formed.
  • the mounting circuit board 201 includes a fourth common wiring 73 electrically connected to the second metal plane layer 71 via a second via 72 provided in the second via opening 70.
  • the fourth common wiring 73 is arranged in a layer different from the second metal plane layer 71.
  • the mounting circuit board 201 is for the drain metal plane layer 64 electrically connected to the first drain pad 14 of the nitride semiconductor element 200 and the switch node electrically connected to the first common wiring 16.
  • the area of the first source pad 15 can be increased by the amount that the second common wiring 17 is not disposed on the nitride semiconductor element 200. Therefore, the wiring resistance and wiring inductance from the second source wiring 12a of the low-side transistor 102 to the second metal plane layer 71 can be reduced. Further, since the contact area with the mounting circuit board can be increased during flip chip mounting, the contact resistance can also be reduced. The average wiring length from the second source electrode 2a to the first source pad 15 can be reduced. Therefore, the wiring resistance and wiring inductance of the source of the low-side transistor 102 can be reduced.
  • the plurality of first common wirings 16 can be connected on the mounting circuit board 201 by the switch node metal plane layer 68, all of the first common wirings 16 are common when the nitride semiconductor element 200 is flip-chip mounted. A current can be taken out from the wiring 16. Therefore, wiring resistance and wiring inductance can be reduced.
  • the half bridge of the high-side transistor 101 and the low-side transistor 102 can be configured with a pad-on-element structure, so that both transistors are formed separately.
  • the circuit area can be reduced and the wiring resistance and wiring inductance can be reduced as compared with the case where the wiring is connected on the circuit board.
  • the first source pad 15 and the source metal plane layer 65 are used. Can be connected.
  • a nitride semiconductor device having a small wiring inductance can be obtained.
  • the nitride semiconductor device includes a nitride semiconductor element 200 and a mounting circuit board 201.
  • the nitride semiconductor element 200 is formed in substantially the same manner in the order of FIGS. 1A, 1B, 4A, 7A, and 9A in the first and second embodiments. It should be noted that the second common wiring 17 does not exist in FIG. 9A.
  • At least one third via opening 80 is provided on the surface of the mounting circuit board 201, and a switch node of the nitride semiconductor device 200, that is, a plurality of first drain pads, is mounted during flip chip mounting.
  • a third metal plane layer 81 that is electrically connected to 14 is formed.
  • the mounting circuit board 201 includes a fifth common wiring 83 electrically connected to the third metal plane layer 82 through a third via 82 provided in the third via opening 80.
  • the fifth common wiring 83 is arranged in a layer different from the third metal plane layer 81.
  • the mounting circuit board 201 is for a switch node electrically connected to the source metal plane layer 65 electrically connected to the first source pad 15 of the nitride semiconductor element 200 and the first common wiring 16.
  • the area of the first source pad 15 can be increased by the amount that the second common wiring 17 is not disposed on the nitride semiconductor element 200. Therefore, since the average wiring length from the second source electrode 2a to the first source pad 15 can be reduced, the wiring resistance and wiring inductance of the source of the low-side transistor 102 can be reduced.
  • the plurality of first common wirings 16 can be connected on the mounting circuit board 201 by the switch node metal plane layer 68, all of the first common wirings 16 are common when the nitride semiconductor element 200 is flip-chip mounted. A current can be taken out from the wiring 16. Therefore, the resistance and inductance of the wiring connecting the source of the high-side transistor 101 and the drain of the low-side transistor 102 can be made smaller than when both transistors are individually formed and wired. Wiring resistance and wiring inductance can be reduced.
  • the half bridge of the high-side transistor 101 and the low-side transistor 102 can be configured with a pad-on-element structure, so that both transistors are formed separately.
  • the circuit area can be reduced and the wiring resistance and wiring inductance can be reduced as compared with the case where the wiring is connected on the circuit board.
  • the first drain pad 14 and the drain metal plane layer 64 are formed through vias or the like. Can be connected.
  • a nitride semiconductor device having a small wiring inductance can be obtained.
  • the semiconductor device according to the present disclosure is a nitride semiconductor device
  • the present disclosure is not limited to a nitride semiconductor device, and can be applied to any lateral device using a material such as silicon (Si) or silicon carbide (SiC).
  • the present invention can be widely used as a half-bridge semiconductor device, for example, for a DC / DC converter, a class D amplifier for audio, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 第1ゲート電極、第1ドレイン電極および第1ソース電極を有するハイサイドトランジスタと、第2ゲート電極、第2ドレイン電極および第2ソース電極を有するローサイドトランジスタと、第1ドレイン電極の上方に配置され、第1ドレイン電極と電気的に接続された複数の第1ドレインパッド(14)と、第2ソース電極の上方に配置され、第2ソース電極と電気的に接続された複数の第1ソースパッド(15)と、前記第1ソース電極の上方および前記第2ドレイン電極の上方に配置され、第1ソース電極および第2ドレイン電極と電気的に接続された複数の第1共通配線(16)と、第1共通配線(16)と接続され、第1共通配線(16)と交差する方向に延びる複数の第2共通配線(17)とを備える。

Description

半導体装置
 本発明は、電源回路等のスイッチ素子として用いられる半導体装置に関し、配線インダクタンスの低減に有効な技術に関するものである。
 電源回路の1つとしてハイサイドスイッチとローサイドスイッチとで構成されるDC/DC(Direct Current/Direct Current)コンバータがよく知られている。ハイサイドとローサイドの2つのトランジスタを接続してなるハーフブリッジ構成は、DC/DCコンバータ以外にもオーディオ用D級(Class-D)アンプなどでも用いられており、電力変換効率の向上や回路の小型化に関する研究開発が盛んである。
 特許文献1には、ハーフブリッジ構成で接続された2つの窒化物半導体を、共通の基板上に形成した構成が開示されている。この構成によれば、単一パッケージ内に当該ハーフブリッジ構成を形成することができるため、回路を小型化できるという利点がある。
 特許文献2には、パワー半導体素子の小型化技術として活性領域の上方に電極パッドを形成する、いわゆるパッドオンエレメント構造が開示されている。特許文献1のようにデバイスの側方にパッドを形成しない分、チップ面積を小さくすることができる。
 さらに、回路の小型化に貢献する他の技術にフリップチップ実装がある。フリップチップ実装はワイヤボンディングに比べて実装面積を小さくできる。また、ワイヤを使用するより配線を短くできるため、配線抵抗や配線インダクタンスを小さくできるという利点がある。
特表2007-522677号公報 国際公開第2012/176399号
 しかしながら、本発明者は、パッドオンエレメント構造によれば、パッドから電流を取り出すための配線インダクタンスの低減が困難になる場合があることに気付いた。
 本発明は、上記の問題点を鑑みて、配線インダクタンスが小さな窒化物半導体装置を提供することを目的とする。
 上記課題を解決するために、開示される半導体装置は、基板と、前記基板の上に配置された半導体層と、前記半導体層の上方に配置された第1ゲート電極、複数の第1ドレイン電極および複数の第1ソース電極を有する第1トランジスタと、前記半導体層の上方に配置された第2ゲート電極、複数の第2ドレイン電極および複数の第2ソース電極を有する第2トランジスタと、前記複数の第1ドレイン電極の上方に配置され、前記第1ドレイン電極と電気的に接続され、かつ第1方向に延びる複数の第1ドレインパッドと、前記複数の第2ソース電極の上方に配置され、前記複数の第2ソース電極と電気的に接続され、かつ前記第1方向に延びる複数の第1ソースパッドと、前記複数の第1ソース電極の上方および前記複数の第2ドレイン電極の上方に配置され、前記複数の第1ソース電極および前記複数の第2ドレイン電極と電気的に接続され、かつ前記第1方向に延びる複数の第1共通配線と、前記複数の第1共通配線と接続され、前記第1方向と交差する第2方向に延びる複数の第2共通配線とを備える。
 本開示に係る半導体装置によれば、2つのトランジスタが共通基板上に形成され、第1共通配線によりパッドオンエレメント構造でハーフブリッジを形成するため、第1トランジスタと第2トランジスタの配線を短くすることができ、チップ面積の小型化だけでなく、配線抵抗と配線インダクタンスを小さくすることができる。加えて、第2共通配線で第1共通配線を物理的・電気的に接続することでフリップチップ実装しても第2トランジスタのソースとハーフブリッジのスイッチノードそれぞれから低抵抗かつ低インダクタンスで電流を取り出すことができる。その結果、配線インダクタンスが小さな窒化物半導体装置を実現することができる。
第1実施形態に係る窒化物半導体装置のトランジスタが形成された層を示した平面図である。 図1Aに示される層の上層を示した平面図である。 図1Bに示される層の上層を示した平面図である。 図2Aに示される層の上層を示した平面図である。 図2Bに示される層の上層を示した平面図である。 図3に示される層の上層を示した平面図である。 半導体装置をフリップチップ実装した場合の実装回路基板との接続部及び当該実装回路基板側のメタルプレーン層を示した平面図である。 第1実施形態に係る窒化物半導体装置の、図1Aの平面図に対し垂直な面で、VA-VA線を含む面で切った断面図である。 第1実施形態に係る窒化物半導体装置の、図1Aの平面図に対し垂直な面で、VB-VB線を含む面で切った断面図である。 第1実施形態に係る窒化物半導体装置の、図1Aの平面図に対し垂直な面で、VC-VC線を含む面で切った断面図である。 第1実施形態に係る窒化物半導体装置の、図1Aの平面図に対し垂直な面で、VD-VD線を含む面で切った断面図である。 第1実施形態に係る窒化物半導体装置の、図1Aの平面図に対し垂直な面で、VE-VE線を含む面で切った断面図である。 第1実施形態に係る窒化物半導体装置の、図1Aの平面図に対し垂直な面で、VF-VF線を含む面で切った断面図である。 第1実施形態の第1変形例に係る窒化物半導体装置の図2Bに対応する層を示した平面図である。 図6Aに示される層の上層を示した平面図である。 第1実施形態の第2変形例に係る窒化物半導体装置の図2Bに対応する層を示した平面図である。 図7Aに示される層の上層を示した平面図である。 第1実施形態の第3変形例に係る窒化物半導体装置の図7Aに対応する層を示した平面図である。 図8Aに示される層の上層を示した平面図である。 第2実施形態に係る窒化物半導体装置の図3に対応する層を示した平面図である。 図9Aに示される層の上層を示した平面図である。 図9Bに示される層の上層を示した平面図である。 第3実施形態に係る窒化物半導体装置の構造を示した分解斜視図である。 第3実施形態の第1変形例に係る窒化物半導体装置の構造を示した分解斜視図である。 第3実施形態の第2変形例に係る窒化物半導体装置の構造を示した分解斜視図である。
 (本発明の基礎となった知見)
 1つの基板上にハーフブリッジ構成の2つの窒化物半導体素子である第1トランジスタと第2トランジスタとを形成し且つパッドオンエレメント構造を作製する場合を考える。前記第1トランジスタであるハイサイドトランジスタのソース電極と前記第2トランジスタであるローサイドトランジスタのドレイン電極とは、前記半導体素子上に形成した配線で接続することでハーフブリッジ構成とする。前記ハーフブリッジ用の出力パッドとして働くスイッチノードパッドは、前記配線に接続して設ける。
 このような構成とすることで、チップ面積の小型化、回路面積の小型化、そしてハイサイドトランジスタとローサイドトランジスタとの間の配線抵抗及び配線インダクタンスの低減が可能となる。
 また、パッドオンエレメント構造では、ソース電極及びドレイン電極の上に形成された配線に接続するソースパッド及びドレインパッドを複数個形成することが、前記電極から前記パッドに至るまでの実効的な配線長を短縮して配線抵抗及び配線インダクタンスを低減するために有効である。ハーフブリッジ構成のパッドオンエレメント構造でスイッチノードとローサイドトランジスタのソースパッドとを複数個形成した場合、スイッチノードパッドとソースパッドが交互に配置される構成になる。
 しかし、この構成をフリップチップ実装すると、スイッチノードパッドから電流を取り出す経路とソース電極パッドから電流を取り出す経路とが、実装面上で交差することにより、電流を取り出すための配線を接続できないパッドが発生する。この場合、電流を取り出すことが可能な一部のパッドに接続された配線に電流が集中し、配線抵抗や配線インダクタンスの増加、さらに場合によっては配線の溶断が問題となる。
 上記課題を解決するために、開示される1つの態様に係る半導体装置は、基板と、前記基板の上に配置された半導体層と、前記半導体層の上方に配置された第1ゲート電極、複数の第1ドレイン電極および複数の第1ソース電極を有する第1トランジスタと、前記半導体層の上方に配置された第2ゲート電極、複数の第2ドレイン電極および複数の第2ソース電極を有する第2トランジスタと、前記第1ドレイン電極の上方に配置され、前記第1ドレイン電極と電気的に接続され、かつ第1方向に延びる第1ドレインパッドと、前記第2ソース電極の上方に配置され、前記第2ソース電極と電気的に接続され、かつ前記第1方向に沿って配置された複数の第1ソースパッドと、各々が前記第1ソース電極の上方および前記第2ドレイン電極の上方に配置され、前記第1ソース電極および前記第2ドレイン電極と電気的に接続され、かつ前記第1方向に延びる複数の第1共通配線と、前記複数の第1共通配線と接続され、前記第1方向と交差する第2方向に延びる複数の第2共通配線とを備える。
 前記半導体装置は、2つのトランジスタが共通基板上に形成され、第1共通配線によりパッドオンエレメント構造でハーフブリッジを形成するため、第1トランジスタと第2トランジスタの配線を短くすることができ、チップ面積の小型化だけでなく、配線抵抗と配線インダクタンスを小さくすることができる。加えて、第2共通配線で第1共通配線を物理的・電気的に接続することでフリップチップ実装しても第2トランジスタのソースとハーフブリッジのスイッチノードそれぞれから低抵抗かつ低インダクタンスで電流を取り出すことができる。
 前記半導体装置において、前記複数の第1ソースパッドは、隣接する前記複数の第2共通配線の間に配置されていてもよい。このようにすると、第2ソース電極から第1ソースパッドに至る経路の平均距離が短くなるため、第2トランジスタのソースの配線抵抗及び配線インダクタンスを低減することが可能となる。
 さらにこの場合、第1ドレインパッド及び第1ソースパッド及び第2共通配線と電気的に接続された配線の一部を露出する開口部を有する絶縁膜を形成してもよい。このようにすると、フリップチップ実装時に、複数の第1共通配線と第2共通配線によって分断され孤立している第1ソースパッドから電流を取り出しやすくなる。逆に、絶縁膜を形成しない場合は、第1共通配線及び第2共通配線はすべて開口されているに等しいため、孤立している第1ソースパッドの電流の取り出す方向に干渉してフリップチップ実装が難しくなる。
 前記半導体装置において、前記複数の第1共通配線は、第1縦配線、第2縦配線、および第3縦配線を有し、前記複数の第2共通配線は、第1横配線、第2横配線、および第3横配線を有し、前記第1縦配線と前記第2縦配線とは、前記第1横配線および前記第2横配線によって接続され、前記第2縦配線と前記第3縦配線とは、前記第3横配線によって接続され、平面視において、前記第3横配線は、前記第1方向での前記第1横配線と前記第2横配線との間の位置に配置されてもよい。
 このように網目状に第1共通配線と第2共通配線を配置すると、第2共通配線の面積を大きくすることができ、スイッチノードとしての電流の取り出し口に至る配線抵抗及び配線インダクタンスを小さくすることができる。
 前記第1縦配線、前記第2縦配線、および前記第3縦配線は、互いに隣接して配置され、前記第1横配線、前記第2横配線、および前記第3横配線は、互いに隣接して配置されてもよい。
 このようにすると、前述と同様にスイッチノードとしての電流の取り出し口に至る配線抵抗及び配線インダクタンスを小さくすることができる。
 また、網目状に配置された第1共通配線と第2共通配線の間に第1ソースパッドを形成し、第1ドレインパッド及び第1ソースパッド及び第2共通配線と電気的に接続された配線の一部を露出する開口部を有する絶縁膜を形成してもよい。
 このようにすると複数の第2共通配線によって分断され孤立している第1ソースパッドからフリップチップ実装により電流を取り出しやすくなる。加えて、第2ソース電極から第1ソースパッドに至る経路の平均距離が短くなるため、第2トランジスタのソースの配線抵抗及び配線インダクタンスを低減することが可能となる。
 前記第2トランジスタの上方、且つ、前記複数の第1共通配線の下方には、前記第2方向に延びる複数の第2ソース配線および複数の第2ドレイン配線が配置されていてもよい。
 このようにすると、第2ソース電極及び第2ドレイン電極と電気的に接続される各パッドまでの配線長を小さくし、見かけ上の配線数を増加できるため、配線の抵抗及びインダクタンスを小さくすることができる。
 前記複数の第2共通配線は、前記複数の第2ソース配線の一部および前記複数の第2ドレイン配線の一部を覆っていてもよい。
 このようにすると、第2共通配線の面積を大きくすることができ、スイッチノードとしての電流の取り出し口に至るまでの配線の抵抗及びインダクタンスを小さくすることができる。このとき、第2共通配線で覆われた第1ソース配線は、第1ソースパッドに至るまでの経路長が第2共通配線で覆われていない場合よりも長くなり得るが、網目状の第1共通配線及び第2共通配線の間に第1ソースパッドがある場合は必ず第1横配線あるいは第2横配線あるいは第3横配線の長さ程度の第1ソース配線を通って電流は第1ソースパッドに至ることができるため、配線抵抗及び配線インダクタンスの過度な増加を抑制することができる。
 前記半導体装置において、第2共通配線は1本のみでもよい。
 このようにすると、第1ソースパッドの面積を大きくでき、第2トランジスタの配線抵抗及び配線インダクタンスを小さくすることができる。
 前記単一の第2共通配線は、前記複数の第1共通配線の上方に配置されてもよい。
 このようにすると、配線工程が増加してコストは大きくなるが、第1ソースパッドが第2共通配線に空間的に干渉されず第1ソースパッドを前記第2方向に延ばすことができるため、第1ソースパッドの面積を大きくすることができ、第2トランジスタの配線抵抗及び配線インダクタンスを小さくすることができる。
 前記半導体装置は、さらに、実装用回路基板を備え、前記実装用回路基板は、少なくとも1つの第1ビア開口部と、前記複数の第1共通配線と電気的に接続されるフリップチップ実装用の複数の第1メタルプレーン層と、前記第1ビア開口部内に設けられたビアを介して、前記第1メタルプレーン層と電気的に接続された第3共通配線とを有してもよい。
 このようにすると、前記半導体装置において、第2共通配線を窒化物半導体層上に設けず、窒化物半導体層をフリップチップ実装する回路基板の実装面とは別のレイヤに第1共通配線と電気的に接続された前記第3共通配線を設けることができる。この場合、第1ソースパッド層が第2共通配線に空間的に干渉されないため、第1ソースパッドの面積を大きくすることができ、第2トランジスタの配線抵抗及び配線インダクタンスを小さくすることができる。第3共通配線を介して集約されたスイッチノードのメタルプレーン層は、実装面あるいは回路基板の裏面のどちらに設けてもよい。
 このスイッチノードを実装面に配置する場合は、第2ドレインパッドと第4の接続配線とを電気的に接続するビアと、第4の接続配線とスイッチノードパッドを電気的に接続するビアとを、できるだけ近接して配置してもよい。このようにすると、上記2種のビアに流れる電流の向きは逆方向のため、互いが発生する磁束を打ち消すことができ、ビアのインダクタンスを低減することができる。
 前記半導体装置は、さらに、実装用回路基板を備え、前記実装用回路基板は、少なくとも1つの第2ビア開口部と、前記複数の第1ソースパッドと電気的に接続されるフリップチップ実装用の複数の第2メタルプレーン層と、前記第2ビア開口部内に設けられたビアを介して、前記第2メタルプレーン層と電気的に接続された第4共通配線とを有してもよい。
 このようにすると、前記半導体装置において、第2共通配線を窒化物半導体層上に設けず、窒化物半導体層をフリップチップ実装する回路基板の実装面とは別のレイヤに第1ソースパッドと電気的に接続された第4共通配線を設け、回路基板の実装面に第1ドレインパッドとスイッチノードを引き出し、第1ソースパッドを実装面と別レイヤの第4共通配線により集約して引き出すことができる。この場合、ハーフブリッジを介して電源に流戻る電流のループにビアが存在するため、ビアのインダクタンスによりスイッチング動作時にノイズが発生する可能性は高くなるが、窒化物半導体素子自体は第1トランジスタと第2トランジスタの配線を短くすることができ、チップ面積の小型化だけでなく、配線抵抗と配線インダクタンスを小さくすることができる。
 前記半導体装置は、さらに、実装用回路基板を備え、前記実装用回路基板は、少なくとも1つの第3ビア開口部と、前記複数の第2ドレインソースパッドと電気的に接続されるフリップチップ実装用の複数の第3メタルプレーン層と、前記第3ビア開口部内に設けたビアを介して前記第3メタルプレーン層と電気的に接続された第5共通配線とを有してもよい。
 このようにすると、前記半導体装置において、第2共通配線を窒化物半導体層上に設けず、窒化物半導体層をフリップチップ実装する回路基板の実装面とは別のレイヤに第1ドレインパッドと電気的に接続された第5共通配線を設け、実装面にスイッチノードと第1ソースパッドとを引き出し、第1ドレインパッドは別レイヤの第5共通配線により集約して引き出すことができる。この場合、ハーフブリッジを介して電源に戻る電流のループにビアが存在するため、ビアのインダクタンスによりスイッチング動作時にノイズが発生する可能性は高まるが、窒化物半導体素子自体は第1トランジスタと第2トランジスタの配線を短くすることができ、チップ面積の小型化だけでなく、配線抵抗と配線インダクタンスを小さくすることができる。
 以下、各実施形態について図面を参照して説明する。本開示は、以下の実施形態に限定されない。図面は、模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。実質的に同じ部分を表す場合であっても、図面により寸法や比率が異なって表される場合もある。実質的に同じ構成要素には、同一の記号を付して詳細な説明は適宜省略することがある。以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 本開示の主旨を逸脱しない限り、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本開示に含まれる。また、本開示の主旨を逸脱しない範囲において、複数の実施形態の少なくとも一部を組み合わせることも可能である。
 (第1実施形態)
 本開示の第1実施形態にかかる窒化物半導体装置について、図1A~図5Fを用いて説明する。
 図1Aは、本開示の第1実施形態にかかる窒化物半導体装置の第1トランジスタ及び第2トランジスタが形成された層を示した平面図である。図1Bは、図1Aに示される層の上層を示した平面図である。図2Aは、図1Bに示される層の上層を示した平面図である。図2Bは、図2Aに示される層の上層を示した平面図である。図3は、図2Bに示される層の上層を示した平面図である。図4Aは、図3に示される層の上層を示した平面図である。
 図4Bは、本実施形態に係る窒化物半導体装置をフリップチップ実装した場合の実装回路基板との接続部及び当該実装回路基板側のメタルプレーン層を示した平面図である。
 図5A~図5Fは、本実施形態に係る窒化物半導体装置の断面図である。図5Aは、図1Aの平面図に対し垂直な面で、VA-VA線を含む面で切った断面図である。図5Bは、図1Aの平面図に対し垂直な面で、VB-VB線を含む面で切った断面図である。図5Cは、図1Aの平面図に対し垂直な面で、VC-VC線を含む面で切った断面図である。図5Dは、図1Aの平面図に対し垂直な面で、VD-VD線を含む面で切った断面図である。図5Eは、図1Aの平面図に対し垂直な面で、VE-VE線を含む面で切った断面図である。図5Fは、図1Aの平面図に対し垂直な面で、VF-VF線を含む面で切った断面図である。
 なお、以下に「縦」「横」と称することがあるが、「縦」とは図1A~図4Bにおいて紙面上下方向のことをいい、「横」とは図1A~図4Bにおいて紙面左右方向のことをいう。
 図1Aに示すように、第1トランジスタであるハイサイドトランジスタ101及び第2トランジスタであるローサイドトランジスタ102は、マルチフィンガ構造を有するトランジスタである。
 本実施の形態に係る窒化物半導体装置の大きさは、一例として縦2000μm、横3000μmである。ハイサイドトランジスタ101の大きさは、縦500μm、横3000μmである。ローサイドトランジスタ102の大きさは、縦1500μm、横3000μmである。ローサイドトランジスタ102の大きさは、ハイサイドトランジスタ101の大きさと比べて大きいが、これは降圧比の大きな降圧型DC/DCコンバータ用途を想定し、通電時間が長くなるローサイドトランジスタの抵抗値を下げて導通損失を低減しようとしているためである。ハイサイドトランジスタとローサイドトランジスタの大きさは適宜決定すればよい。
 以下、ハイサイドトランジスタ101を例にとって説明する。ハイサイドトランジスタ101は、図示しないSi基板上に、窒化物半導体層103を含む半導体多層構造が形成され、この半導体多層構造の上に第1ソース電極1a、第1ドレイン電極1bおよび第1ゲート電極1cが形成されてなる。具体的には、半導体多層構造は窒化物半導体の多層構造よりなり、Si基板より最も離れた層は、Al組成20%のAlGaNからなる窒化物半導体層103である。そして、Al組成20%のAlGaNからなる窒化物半導体層103の上に、チタン(Ti)及びアルミニウム(Al)等の金属からなる第1ソース電極1a及び第1ドレイン電極1bが形成されている。また、窒化物半導体層103の上にはパラジウム(Pd)などからなる第1ゲート電極1cが形成されている。
 なお、第1ゲート電極1cのゲート長(図5Aにおける長さL)は1μmである。また、第1ゲート電極1cの中央と第1ソース電極1aの中央との間隔は、2μmであり、第1ゲート電極1cの中央と第1ドレイン電極1bの中央との間隔は、2.5μmである。
 図1Aにおいて右から、第1ソース電極1a、第1ゲート電極1c、及び第1ドレイン電極1bがこの順に並ぶユニットと、第1ドレイン電極1b、第1ゲート電極1c、及び第1ソース電極1aがこの順に並ぶユニットとが、第1ソース電極1aおよび第1ドレイン電極1bの一方を共用しながら、交互に繰り返して設けられている。複数の第1ソース電極1a、複数の第1ドレイン電極1b、複数の第1ゲート電極1cは、互いに平行な長尺形状に設けられる。
 なお、第1ゲート電極1cの長手方向の長さは420μmである。また、第1ソース電極1aの長手方向の長さは400μmであり、第1ドレイン電極1bの長手方向の長さは400μmである。
 各ユニットの第1ソース電極1a、第1ドレイン電極1bは、後に説明する構造によって相互に電気的に接続されている。また、各ユニットの第1ゲート電極1cは、第1ゲート電極配線3で相互に電気的に接続されている。なお、第1ゲート電極配線3の幅は、40μmである。また、第1ゲート電極配線3は、ハイサイドトランジスタ101の周辺部に設けられており、複数の第1ソース電極1a、複数の第1ドレイン電極1b、複数の第1ゲート電極1cを囲っている。
 これにより、複数のユニットがマルチフィンガ構造の単一のトランジスタとして機能するので、窒化物半導体装置のゲート幅を大きくすることができ、大電流を流すことができる。なお、ここで「ゲート幅」とは1ユニットに含まれるゲート電極1cの長手方向の長さにフィンガーの本数を乗じた値のことをいう。
 なお、本実施形態においては、窒化物半導体層103における一群の第1ソース電極1a及び第1ドレイン電極1bが形成された領域、及びチャネル領域であって絶縁分離されていない領域を、活性領域とする。
 以上、ハイサイドトランジスタ101を例にとって説明したが、第1ソース電極1a、第1ドレイン電極1b、第1ゲート電極1cを、それぞれ、第2ソース電極2a、第2ドレイン電極2b、第2ゲート電極2cと読み替えることにより、ローサイドトランジスタ102についても同様の説明が成り立つ。
 なお、ローサイドトランジスタ102において、第2ゲート電極2cの長手方向の長さは1420μmである。また、第2ソース電極2aの長手方向の長さは1400μmであり、第2ドレイン電極1bの長手方向の長さは1400μmである。また、第2ゲート電極配線4の幅は、40μmである。また、第2ゲート電極配線4は、ローサイドトランジスタ102の周辺部に設けられており、複数の第2ソース電極2a、複数の第2ドレイン電極2b、複数の第2ゲート電極2cを囲っている。
 なお、低抵抗化などを目的として、各ソース電極及びドレイン電極及びゲート電極の上に、各電極と同等の電極幅をもつニッケル(Ni)や金(Au)などの金属膜を重ねて形成しておいてもよい。
 図1Bに示すように、窒化物半導体層103など図1Aに記載した各層の上には、膜厚が500nm程度の窒化シリコン(SiN)及び膜厚が1μm程度のポリベンズオキサゾール(PBO)からなる第1絶縁膜5が形成されている。SiNは、窒化物半導体層103を保護する耐湿膜であると共に、PBOとの密着層として機能する。
 第1絶縁膜5には、第1ソース電極1a、第1ドレイン電極1b、第1ゲート電極配線3、第2ソース電極2a、第2ドレイン電極2b、及び第2ゲート電極配線4のそれぞれの一部を露出する複数の開口部5aが形成されている。
 第1ソース電極1aを露出する第1絶縁膜5の開口部5aは、それぞれの第1ソース電極1aの長手方向における同等の位置に形成される。また、第1ドレイン電極1bを露出する第1絶縁膜5の開口部5aは、それぞれの第1ドレイン電極1bの長手方向における同等の位置で、かつ、第1ソース電極1aを露出する開口部5aとは異なる位置に形成されている。すなわち、本実施形態では、第1ソース電極1aを露出する開口部5aと第1ドレイン電極1bを露出する開口部5aとは、それぞれ電極の長手方向において互いにずれて形成されている。
 以上、ハイサイドトランジスタ101に関する部分を例にとって説明したが、第1ソース電極1a、第1ドレイン電極1b、第1ゲート電極1c、第1ゲート電極配線3を、それぞれ、第2ソース電極2a、第2ドレイン電極2b、第2ゲート電極2c、第2ゲート電極配線4と読み替えることにより、ローサイドトランジスタ102についても同様の説明が成り立つ。
 図2Aに示すように、第1絶縁膜5の上には、開口部5aを介して第1ソース電極1aと電気的に接続された第1ソース配線11aが形成されている。また、第1絶縁膜5の上には、開口部5aを介して第1ドレイン電極1bと電気的に接続された第1ドレイン配線11bが形成されている。また、第1絶縁膜5の上には、開口部5aを介して第1ゲート電極配線3と電気的に接続された第1ゲート配線11cが形成されている。
 第1ソース配線11a及び第1ドレイン配線11bは、第1ソース電極1a及び第1ドレイン電極1bと交差する方向に延びる長尺形状に形成されている。第1ソース配線11aと第1ドレイン配線11bとは、互いに離間し、交互に配置されている。
 第1ソース配線11a、第1ドレイン配線11b及び第1ゲート配線11cは、膜厚100nm程度のTiからなる下層密着層と、膜厚5μm程度の銅(Cu)からなる導電層と、膜厚100nm程度のNiからなる上層密着層とが順次積層されて構成されている。
 なお、第1ソース配線11aの長さは2900μmであり、幅は40μmである。第1ドレイン配線11bの長さは2900μmであり、幅は40μmである。隣り合う第1ソース配線11aと第1ドレイン配線11bとの配線端の間隔は、15μmである。
 また、第1ゲート配線11cは、ハイサイドトランジスタ101の周囲に設けられている。第1ゲート配線11cの幅は、35μmである。
 以上、ハイサイドトランジスタ101に関する部分を例にとって説明したが、第1ソース配線11a、第1ドレイン配線11b、第1ゲート配線11cを、それぞれ、第2ソース配線12a、第2ドレイン配線12b、第2ゲート配線12cと読み替えることにより、ローサイドトランジスタ102についても同様の説明が成り立つ。
 なお、第2ソース配線12aの長さは2800μmであり、幅は40μmである。第2ドレイン配線12bの長さは2800μmであり、幅は40μmである。隣り合う第2ソース配線12aと第2ドレイン配線12bとの配線端の間隔は、15μmである。
 また、第2ゲート配線12cは、ローサイドトランジスタ102の周囲に設けられている。第2ゲート配線12cの幅は、40μmである。
 第1ソース電極1a、第1ドレイン電極1b、第2ソース電極2aおよび第2ドレイン電極2bを露出する開口部5aは、長辺が35μm、短辺が1.2μmの長方形状の開口を有している。また、第1ゲート電極配線3および第2ゲート電極配線4を露出する開口部5aは、長辺が300μm、短辺が35μmの長方形状の開口を有している。
 図2Bに示すように、第1ソース配線11aなど図2Aに記載した各構成要素の上には、膜厚が10μm程度のPBOからなる第2絶縁膜13が形成されている。第2絶縁膜13には、第1ソース配線11a、第1ドレイン配線11b、第1ゲート配線11c、第2ソース配線12a、第2ドレイン配線12b及び第2ゲート配線12cの一部を露出する複数の開口部13aが形成されている。
 また、第2絶縁膜13には、第2ドレイン配線12bの一部を露出する、開口部13aよりも大きく開口された複数の開口部13bが形成されている。
 第1ソース配線11a、第1ドレイン配線11b、第2ソース電極12aを露出する開口部13aは、それぞれ長辺が200μm、短辺が35μmの長方形状の開口を有している。また、第1ゲート配線11cおよび第2ゲート配線12cを露出する開口部13aは、長辺が300μm、短辺が35μmの長方形状の開口を有している。また、第2ドレイン配線12bを露出する開口部13bは、それぞれ長辺が1050μm、短辺が35μmの長方形状の開口を有している。
 なお、複数の開口部13bは必ずしも第2ドレイン配線12bの長手方向に大きく開口する必要はないが、開口面積が大きいほど、第2ドレイン配線12bから後述する第2共通配線17に至るまでの配線長が短くなり、配線抵抗及び配線インダクタンスを低減することができる。
 図3に示すように、第2絶縁膜13の上には、開口部13aを介して第1ドレイン配線11bの少なくとも一部と接続された複数の第1ドレインパッド14が形成されている。すなわち、第1ドレイン電極1bと第1ドレインパッド14とが電気的に接続されている。複数の第1ドレインパッド14は、第1方向に延びている。
 第2絶縁膜13の上には、開口部13aを介して第2ソース配線12aの少なくとも一部と接続された複数の第1ソースパッド15が形成されている。すなわち、第2ソース電極2aと第1ソースパッド15とが電気的に接続されている。複数の第1ソースパッド15は、前記第1方向に配置されている。第1ソースパッド15の一部は、隣接する第2共通配線17の間に配置されている。
 第2絶縁膜13の上には、開口部13aを介して第1ソース配線11a及び第2ドレイン配線12bの少なくとも一部と接続された複数の第1共通配線16が形成されている。複数の第1共通配線16は、前記第1方向に配置されている。
 第2絶縁膜13の上には、開口部13bを介して第2ドレイン配線12bの少なくとも一部と接続された複数の第2共通配線17が形成されている。複数の第2共通配線17は、前記第1方向と交差する第2方向に配置されている。第1共通配線16と第2共通配線17とは接続されている。すなわち、第1ソース電極1aと第2ドレイン電極2bとは、第1共通配線16及び第2共通配線17を介して、電気的に接続されている。
 第2絶縁膜13の上には、開口部13aを介して第1ゲート配線11cの少なくとも一部と接続された第1ゲートパッド18が形成され、開口部13aを介して第2ゲート配線12cの少なくとも一部と接続された第2ゲートパッド19が形成されている。
 第1ドレインパッド14、第1ソースパッド15、第1共通配線16、第2共通配線17、第1ゲートパッド18及び第2ゲートパッド19は、膜厚100nm程度のTiからなる下層密着層と、膜厚5μm程度のCuからなる導電層と、膜厚100nm程度のNiからなる上層密着層とが順次積層されて構成されている。
 なお、第1ドレインパッド14は、縦380μm、横220μmである長方形状を有している。第1ソースパッド15は、縦1300μm、横220μm、縦760μm、横220μmおよび縦40μm、横220μmである3種類の長方形状を有している。
 第1共通配線16の長さL16は1850μm、幅は220μmである。第2共通配線17の長さL17は1090μm、幅は40μmである。第1ゲートパッド18は、縦380μm、横250μmの長方形状を有している。第2ゲートパッド19は、縦380μm、横250μmの長方形状を有している。
 図3の一点鎖線で示されている配線パッド27は、縦850μm、横530μmの長方形状を有している。
 図4Aに示すように、第1ドレインパッド14など、図3に記載した各構成要素の上には、膜厚が10μm程度のPBOからなる第3絶縁膜20が形成されている。第3絶縁膜20には、第1ドレインパッド14、第1ソースパッド15、第1ゲートパッド18、第2ゲートパッド19、及び配線パッド27の一部を露出する開口部21が形成されている。なお、開口部21は、それぞれのパッドのサイズより少し小さく形成されている。
 本実施形態に係る窒化物半導体装置において、第1共通配線16を形成することで、ハイサイドトランジスタ101及びローサイドトランジスタ102のハーフブリッジをパッドオンエレメント構造で構成することができる。そのため、両トランジスタを個別に形成して回路基板上の配線等で接続する場合に比べて回路面積を小型にでき、かつ配線抵抗及び配線インダクタンスを低減することができる。また、パッドオンエレメント構造とすることによって、チップ面積も縮小することができる。
 なお、第2共通配線17がない場合は、複数の第1ソースパッド15と複数の第1共通配線16とが平行に配置されているため、フリップチップ実装時に電流を取り出す方向が一致してしまい各々を1つのパッドに集約することが困難である。これに対し、複数の第1ソースパッド15または複数の第1共通配線16を部分的に設け、当該部分から電流を取り出す構成を採った場合、第1ソース電極1a及び第2ソース電極2aから、当該取り出し口に至るまでの平均配線長が長くなることになるため、配線抵抗及び配線インダクタンスが大きくなってしまう。
 そこで、図3に示すように、第2共通配線17を形成することによって、複数の第1共通配線16をチップ上で接続することができるため、各第1共通配線16間の配線抵抗及び配線インダクタンスを低減することができる。これにより、フリップチップ実装において配線抵抗及び配線インダクタンスを増加させることなく、すべての第1ソースパッド15とすべての第1共通配線16から電流を取り出すことができる。
 なお、フリップチップ実装ではなく、ワイヤやリボンなどによる実装を採用すれば、第2共通配線17の有無にかかわらず、すべてのパッドから電流を取り出すことができるが、ワイヤやリボン自体の配線抵抗及び配線インダクタンスが大きいため、配線抵抗と配線インダクタンスの増加が避けられない。
 図4Bは、本実施形態に係る窒化物半導体装置をフリップチップ実装した場合の実装回路基板との接続部及び当該実装回路基板側のメタルプレーン層を示した平面図である。第2共通配線17を形成することによって、すべての第1共通配線16に流れる電流を第2共通配線17すなわちハーフブリッジのスイッチノードの回路基板接続部22に集約して実装回路基板側のスイッチノード用メタルプレーン層30へ取り出すことができる。
 また、第3絶縁膜20に開口部21を形成することにより、第2共通配線17の間に形成されて孤立していた第1ソースパッド15を、第1共通配線16及び第2共通配線17に干渉されることなく、複数の第1ソースパッドの回路基板接続部23を介して、実装回路基板側のソース用メタルプレーン層31に接続することができる。よって、第1ソースパッド15の実効的な面積を大きくすることができるため、配線抵抗及び配線インダクタンスを小さくすることができる。
 第1ドレインパッドの回路基板接続部24を介して、第1ドレインパッド14と実装回路基板側のドレイン用メタルプレーン層32とが電気的に接続されている。第1ゲートパッドの回路基板接続部25を介して、第1ゲートパッド18と実装回路基板側のハイサイドゲート用メタルプレーン層33とが接続されている。また、第2ゲートパッドの回路基板接続部26を介して、第2ゲートパッド19と実装回路基板側のローサイドゲート用メタルプレーン層34とが接続されている。
 第1実施形態に係る窒化物半導体装置によると、配線インダクタンスが小さな窒化物半導体装置を得ることができる。
 本実施形態では、第1絶縁膜5の一部及び第2絶縁膜13及び第3絶縁膜20にPBOを用いた例を示したが、酸化シリコン(SiO)膜などを用いてもよい。また、第1ドレインパッド14及び第1ソースパッド15などの上にさらに、半田ボールなどの突起状のフリップチップ実装用端子を形成してもよい。
 なお、上記実施の形態にて記載した窒化物半導体装置の大きさ、ハイサイドトランジスタ101の大きさ、およびローサイドトランジスタ102の大きさは一例にすぎず、窒化物半導体装置の用途や要求される特性等により適宜変更することが可能である。
 また、第1ゲート電極1cのゲート長、第1ゲート電極1cの中央と第1ソース電極1aの中央との間隔、および第1ゲート電極1cの中央と第1ドレイン電極1bの中央との間隔もまた一例にすぎず、窒化物半導体装置のサイズや用途等により適宜変更することが可能である。
 第1ゲート電極1cの長手方向の長さ、第1ソース電極1aの長手方向の長さ、および第1ドレイン電極1bの長手方向の長さもまた一例にすぎず、窒化物半導体装置のサイズや用途等により適宜変更することが可能である。
 第1ゲート電極配線3の幅もまた一例にすぎず、窒化物半導体装置のサイズや用途等により適宜変更することが可能である。
 ローサイドトランジスタ102において、第2ゲート電極2cの長手方向の長さ、第2ソース電極2aの長手方向の長さ、第2ドレイン電極2bの長手方向の長さ、第2ゲート電極配線4の幅もまた一例にすぎず、窒化物半導体装置のサイズや用途等により適宜変更することが可能である。
 第1ソース配線11aの長さや幅、第1ドレイン配線11bの長さや幅、隣り合う第1ソース配線11aと第1ドレイン配線11bとの配線端の間隔もまた一例にすぎず、窒化物半導体装置のサイズや用途等により適宜変更することが可能である。
 第1ゲート配線11cの幅もまた一例にすぎず、窒化物半導体装置のサイズや用途等により適宜変更することが可能である。
 第2ソース配線12aの長さや幅、第2ドレイン配線12bの長さや幅、隣り合う第2ソース配線12aと第2ドレイン配線12bとの配線端の間隔もまた一例にすぎず、窒化物半導体装置のサイズや用途等により適宜変更することが可能である。
 第2ゲート配線12cの幅もまた一例にすぎず、窒化物半導体装置のサイズや用途等により適宜変更することが可能である。
 第1ソース電極1a、第1ドレイン電極1b、第2ソース電極2aおよび第2ドレイン電極2bを露出する開口部5aの形状や大きさは上記に限られない。
 また、第1ゲート電極配線3および第2ゲート電極配線4を露出する開口部5aの形状や大きさもまた上記に限られない。
 開口部13aの形状や大きさ、開口部13bの形状や大きさもまた上記に限られない。
 第1ドレインパッド14、第1ソースパッド15の形状や大きさもまた上記に限られない。
 第1共通配線16の長さL16や幅、第2共通配線17の長さL17や幅もまた上記に限られない。
 第1ゲートパッド18の形状や大きさもまた上記に限られない。
 配線パッド27の形状や大きさもまた上記に限られない。
 (第1実施形態の第1変形例)
 以下、本開示の第1実施形態の第1変形例に係る窒化物半導体装置について、図6A及び図6Bを参照しながら説明する。本変形例において、第1実施形態と実質的に同一の構成については説明を省略する場合がある。
 本変形例に係る窒化物半導体装置では、第2共通配線17を1本のみ有する。具体的には、図6Aに示される層は、第1実施形態における図2Bに示される層と対応している。両者の相違点は、第2ドレイン配線12bの長手方向に大きく開口された第2絶縁膜13の開口部13bが複数ではなく、1つのみ形成されている点である。
 図6Bに示される層は、第1実施形態における図3に示される層と対応している。両者の相違点は、第2共通配線17が1本のみとなっている点である。第2共通配線17は、図6Aの開口部13bを介して、第2ドレイン配線12bと接続されているとともに、複数の第1共通配線16と交差し、且つ、接続されている。
 本変形例によると、第1実施形態と同様の効果に加えて、次のような効果が得られる。第2共通配線17の本数が減った分だけ第1ソースパッド15の面積を大きくすることができる。その結果、第2ソース電極2aから第1ソースパッド15に至るまでの平均配線長を小さくすることができるため、ローサイドトランジスタ102のソースの配線抵抗及び配線インダクタンスを低減することができる。
 また、フリップチップ実装時に実装回路基板とのコンタクト面積を大きくできるため、コンタクト抵抗も低減することができる。そして、第1実施形態と同様、第1共通配線16を形成することによって、ハイサイドトランジスタ101とローサイドトランジスタ102のハーフブリッジをパッドオンエレメント構造で構成することができるため、両トランジスタを個別に形成して回路基板上の配線等で接続する場合と比べて、回路面積を小型にでき、かつ配線抵抗及び配線インダクタンスを低減することができる。
 なお、図6Bに示すように、1本の第2共通配線17は、ハイサイドトランジスタに最も近い位置に配置しておくと、フリップチップ実装の際に第1ソースパッド15と第2共通配線17とが交差せず電流を取り出すことができる。1本の第2共通配線17をハイサイドトランジスタの近くに配置しない場合は、図6Bで示す層の上層において、第1実施形態と同様に、第3絶縁膜20と開口部21とを利用すれば第1ソースパッド15の面積を大きくすることができるため、第2共通配線17に干渉されずに簡単に電流を取り出すことができる。
 第1実施形態の第1変形例に係る窒化物半導体装置によると、配線インダクタンスが小さな窒化物半導体装置を得ることができる。
 (第1実施形態の第2変形例)
 以下、第1実施形態の第2変形例に係る窒化物半導体装置について、図7A及び図7Bを参照しながら説明する。本変形例において、第1実施形態と実質的に同一の構成については、説明を省略することがある。
 本変形例に係る窒化物半導体装置では、複数の第1共通配線16は、互いに隣接して配置された第1縦配線41、第2縦配線42、および第3縦配線43を有し、複数の第2共通配線17は、第1横配線44、第2横配線45a、45b、および第3横配線46を有している。第1縦配線41と第2縦配線42とは、第1横配線44および第2横配線45a、45bによって接続され、第2縦配線42と第3縦配線43とは、第3横配線46によって接続されている。平面視において、第3横配線46は、第1横配線44と第2横配線45bとの前記第1方向での間の位置に配置されている。
 図7Aに示す層は、第1実施形態における図2Bに示す層と対応している。両者の相違点は、第2ドレイン配線12bの長手方向に大きく開口された第2絶縁膜13の開口部13bが存在しない点である。
 図7Bが示す層は、第1実施形態における図3に示す層と対応している。本変形例においては、横配線及び縦配線を利用することによって、網目状に第1共通配線16と第2共通配線17とを配置している。
 本変形例によると、第1実施形態と同様の効果に加えて、次のような効果が得られる。網目状に第1共通配線16と第2共通配線17とを配置することによって、第1共通配線16から第2共通配線17へ至る配線の長手方向の長さの平均を短くできるため、スイッチノードとしての電流の取り出し口に至る配線抵抗及び配線インダクタンスを小さくすることができる。
 図7Bにおいて、第1横配線44、第2横配線45b、及び第3横配線46が互いに隣接して配置されているが、第2横配線45bを省略してもよい。適宜、所望の配線抵抗及び配線インダクタンスを実現できるような横配線と縦配線を配置すればよい。
 また、網目状に配置された第1共通配線16及び第2共通配線17の間に、第1ソースパッド15を形成することによって、第1ソースパッド15の面積を大きくすることができる。その結果、第2ソース電極2aから第1ソースパッド15に至るまでの平均配線長を小さくすることができるため、ローサイドトランジスタ102のソースの配線抵抗及び配線インダクタンスを低減することができる。このとき、第1実施形態と同様に、第3絶縁膜20とその開口部21を利用することによって、第1ソースパッド15の面積を大きくすることができ、且つ、第2共通配線17に干渉されずに容易に電流を取り出すことができる。
 なお、第1横配線44、第2横配線45a、45b及び第3横配線46の下の領域において、第2絶縁膜13の開口部13aは、横配線の長手方向に開口を長くとってもよい。この構成によれば、第1縦配線41と第2縦配線42との間の領域、及び、第2縦配線42と第3縦配線43との間の領域における配線抵抗及び配線インダクタンスを小さくすることができる。そして、第1実施形態と同様、第1共通配線16を形成することによって、ハイサイドトランジスタ101とローサイドトランジスタ102のハーフブリッジをパッドオンエレメント構造で構成することができるため、両トランジスタを個別に形成して回路基板上の配線等で接続する場合に比べて回路面積を小型にでき、かつ配線抵抗及び配線インダクタンスを低減することができる。
 第1実施形態の第2変形例に係る窒化物半導体装置によると、配線インダクタンスが小さな窒化物半導体装置を得ることができる。
 (第1実施形態の第3変形例)
 以下、第1実施形態の第3変形例に係る窒化物半導体装置について、図8A及び図8Bを参照しながら説明する。本変形例において、第1実施形態と実質的に同一の構成については説明を省略する場合がる。
 本変形例に係る窒化物半導体装置では、複数の第1共通配線16は、互いに隣接して配置された第1縦配線41、第2縦配線42、および第3縦配線43を有し、複数の第2共通配線17は、第1横配線44、第2横配線45、および第3横配線46を有する。第1縦配線41と第2縦配線42とは、第1横配線44および第2横配線45によって接続され、第2縦配線42と第3縦配線43とは、第3横配線46によって接続されている。平面視において、第3横配線46は、第1横配線44と第2横配線45との前記第1方向での間の位置に配置され、第2共通配線17は、複数の第1ソースパッド15の一部および複数の第1ドレインパッド14の一部を覆っている。
 図8Aに示す層は、第1実施形態の第2変形例の図7Aに示す層に対応している。図8Aに示すように、本変形例においては、第2ソース配線12aの上の第2絶縁膜13に形成された開口部13aの配置が第2変形例とは異なる。具体的には、第2変形例と比較して、本変形例に係るローサイドにおいて、開口部13aが一部配置されていない領域が存在する。
 図8Bに示す層は、第1実施形態の第2変形例の図6Bに示す層に対応する。図8Bに示すように、開口部13aが配置されていない領域を、第2共通配線17が覆うように配置されている。
 本変形例によると、第1実施形態と同様の効果に加えて、次のような効果が得られる。第2共通配線17をより太く形成できるため、第2共通配線17の面積を大きくすることができる。そのため、スイッチノードとしての電流の取り出し口に至るまでの配線の抵抗及びインダクタンスを小さくすることができる。
 第2共通配線17で覆われた第2ソース配線12aの地点から第1ソースパッド15に至るまでの平均配線長は、第2共通配線17で覆われていない第2ソース配線12aの地点から第1ソースパッド15に至るまでの平均配線長より長くなる。しかし、網目状の第1共通配線16及び第2共通配線17の間に第1ソースパッド15が配置されている場合、電流は、第2方向における第2共通配線17の長さに相当する第2ソース配線12aを通って、第1ソースパッド15に至ることができるため、配線抵抗及び配線インダクタンスの増加を抑制することができる。
 第1実施形態と同様に、第1共通配線16を形成することで、ハイサイドトランジスタ101とローサイドトランジスタ102のハーフブリッジをパッドオンエレメント構造で構成することができ、両トランジスタを個別に形成して回路基板上の配線等で接続する場合に比べて回路面積を小型にでき、かつ配線抵抗及び配線インダクタンスを低減することができる。
 第1実施形態の第3変形例に係る窒化物半導体装置によると、配線インダクタンスが小さな窒化物半導体装置を得ることができる。
 (第2実施形態)
 以下、第2実施形態に係る窒化物半導体装置について、図面を参照しながら説明する。本実施形態において、上記実施形態及び変形例と実質的に同一の構成については説明を省略する場合がある。
 第2実施形態に係る窒化物半導体装置において、第1実施形態における図1A、図1B、図2A、図7Aのそれぞれに示される層がこの順に形成される。
 図9Aに示す層は、図7Aに示される層の上に設けられ、第1実施形態における図3に示す層と対応する。図9Aに示す層においては、第2共通配線17が配置されておらず、複数の第1共通配線16は互いに接続されていない。
 図9Bに示すように、第1ドレインパッド14などを有する、図9Aに示す層の上には、膜厚が10μm程度のPBOからなる第3絶縁膜20が形成されている。第3絶縁膜20には、第1ドレインパッド14、第1ソースパッド15、第1共通配線16、第1ゲートパッド18及び第2ゲートパッド19のそれぞれの一部を露出する複数の開口部21が形成されている。
 図10に示すように、第3絶縁膜20の上には、開口部21を介して、第1共通配線16の一部と接続された第2共通配線17が形成されている。すなわち、第1ソース電極1a及び第2ドレイン電極2bは、第1共通配線16及び第2共通配線17と電気的に接続されている。
 この構成によれば、第1実施形態と比較して、配線を形成する工程が増加してしまうが、図9Aに示す層において、第2共通配線17が配置されてない分だけ第1ソースパッド15の面積を大きくすることができる。従って、第2ソース電極2aから第1ソースパッド15に至るまでの平均配線長を短くすることができるため、ローサイドトランジスタ102のソースの配線抵抗及び配線インダクタンスを低減することができる。
 また、図10に示す層において、第2共通配線17によってチップ上で複数の第1共通配線16を接続することができるため、フリップチップ実装時にすべての第1共通配線16から電流を取り出すことができ、配線抵抗及び配線インダクタンスを低減することができる。
 そして、第1実施形態と同様に、第1共通配線16を形成することで、ハイサイドトランジスタ101とローサイドトランジスタ102のハーフブリッジをパッドオンエレメント構造で構成することができ、両トランジスタを個別に形成して回路基板上の配線等で接続する場合に比べて回路面積を小型にでき、かつ配線抵抗及び配線インダクタンスを低減することができる。
 また、開口部21を介して第1ドレインパッド14の少なくとも一部と接続された第2ドレインパッド51が形成されている。すなわち、第1ドレイン電極1bと第2ドレインパッド51とが電気的に接続されている。また、開口部21を介して第1ソースパッド15の少なくとも一部と接続された第2ソースパッド52が形成されている。すなわち、第2ソース電極2aと第2ソースパッド52とが電気的に接続されている。また、第3絶縁膜20の上には、開口部21を介して、第1ゲートパッド18の少なくとも一部と第3ゲートパッド53とが、第2ゲートパッド19の少なくとも一部と第4ゲートパッド54とがそれぞれ接続されている。
 図10に示す層において、第2共通配線17以外の上記パッドは、必ずしも形成する必要はないが、形成しておくと第2共通配線17を含む全てのパッドが実質的に同一平面に位置するため、実装しやすいというメリットがある。
 なお、第2ドレインパッド51、第2ソースパッド52、第2共通配線17、第3ゲートパッド53及び第4ゲートパッド54は、膜厚100nm程度のTiからなる下層密着層と、膜厚5μm程度のCuからなる導電層と、膜厚100nm程度のNiからなる上層密着層とが順次積層されて構成されている。
 第2実施形態に係る窒化物半導体装置によると、配線インダクタンスが小さな窒化物半導体装置を得ることができる。
 (第3実施形態)
 以下、第3実施形態に係る窒化物半導体装置について、図面を参照しながら説明する。本実施形態において、上記実施形態及び変形例と実質的に同一の構成については説明を省略し、異なる構成についてのみ説明する。
 第3実施形態に係る窒化物半導体装置は、窒化物半導体素子200と実装用回路基板201とから構成される。窒化物半導体素子200は、第1実施形態及び第2実施形態における図1A、図1B、図3A、図7A、図9Aのそれぞれに示される層がこの順に形成されている。図9Aにおいて第2共通配線17が存在しないことに注意されたい。
 図11に示す実装用回路基板201の表面には、少なくとも1つの第1ビア開口部60を有し、フリップチップ実装時に窒化物半導体素子200のスイッチノード、すなわち複数の第1共通配線16と電気的に接続される第1メタルプレーン層61が形成されている。
 また、実装用回路基板201は、第1ビア開口部60内に設けられた第1ビア62を介して、第1メタルプレーン層61と電気的に接続された第3共通配線63を備えている。実装用回路基板201において、第3共通配線63は、第1メタルプレーン層61とは異なる層に配置されている。
 さらに、実装用回路基板201は、窒化物半導体素子200の第1ドレインパッド14と電気的に接続されるドレイン用メタルプレーン層64と、第1ソースパッド15と電気的に接続されるソース用メタルプレーン層65と、第1ゲートパッド18と電気的に接続されるハイサイドゲート用メタルプレーン層66と、第2ゲートパッド19と電気的に接続されるローサイドゲート用メタルプレーン層67と、第3共通配線63と電気的に接続されるスイッチノード用メタルプレーン層68とを備えている。
 この構成によれば、窒化物半導体素子200上に第2共通配線17が配置されていない分だけ第1ソースパッド15の面積を大きくすることができる。従って、第2ソース電極2aから第1ソースパッド15に至るまでの平均配線長を小さくすることができるため、ローサイドトランジスタ102のソースの配線抵抗及び配線インダクタンスを低減することができる。
 第3共通配線63によって、実装用回路基板201の1つの層において、複数の第1共通配線16を接続することができるため、窒化物半導体素子200をフリップチップ実装した際に、すべての第1共通配線16から電流を取り出すことができる。従って、ハイサイドトランジスタ101のソースとローサイドトランジスタ102のドレインを接続する配線の抵抗及びインダクタンスは両トランジスタを個別に形成して配線する場合より小さくすることができる。配線抵抗及び配線インダクタンスを低減することができる。
 第1実施形態と同様、第1共通配線16を形成することによって、ハイサイドトランジスタ101とローサイドトランジスタ102のハーフブリッジをパッドオンエレメント構造で構成することができ、両トランジスタを個別に形成して回路基板上の配線等で接続する場合に比べて回路面積を小型にでき、かつ配線抵抗及び配線インダクタンスを低減することができる。
 なお、実際の使用にあたって実装用回路基板201の表面に第3共通配線63と同電位のスイッチノード用メタルプレーン層68を得るには、ビア等を通じて第3共通配線63とスイッチノード用メタルプレーン層68とを接続すればよい。
 第3実施形態に係る窒化物半導体装置によると、配線インダクタンスが小さな窒化物半導体装置を得ることができる。
 (第3実施形態の第1変形例)
 以下、第3実施形態の第1変形例に係る窒化物半導体装置について適宜、図面を参照しながら説明する。本変形例において、上記実施形態及び変形例と実質的に同一の構成については説明を省略する場合がある。
 第3実施形態の第1変形例に係る窒化物半導体装置は、窒化物半導体素子200と実装用回路基板201とから構成される。窒化物半導体素子200は、第1実施形態及び第2実施形態における図1A、図1B、図4A、図7A、図9Aのそれぞれに示される層がこの順に形成されている。図9Aにおいて第2共通配線17が存在しないことに注意されたい。
 図12に示すように、実装用回路基板201の表面には、少なくとも1つの第2ビア開口部70を有し、フリップチップ実装時に窒化物半導体素子200のスイッチノード、すなわち複数の第1ソースパッド15と電気的に接続される第2メタルプレーン層71が形成されている。
 実装用回路基板201は、第2ビア開口部70内に設けられた第2ビア72を介して、第2メタルプレーン層71と電気的に接続された第4共通配線73を備えている。実装用回路基板201において、第4共通配線73は、第2メタルプレーン層71とは異なる層に配置されている。
 さらに、実装用回路基板201は、窒化物半導体素子200の第1ドレインパッド14と電気的に接続されるドレイン用メタルプレーン層64と、第1共通配線16と電気的に接続されるスイッチノード用メタルプレーン層68と、第1ゲートパッド18と電気的に接続されるハイサイドゲート用メタルプレーン層66と、第2ゲートパッド19と電気的に接続されるローサイドゲート用メタルプレーン層67と、第4共通配線73と電気的に接続されるソース用メタルプレーン層65とを備えている。
 この構成によれば、窒化物半導体素子200上に第2共通配線17が配置されていない分だけ第1ソースパッド15の面積を大きくすることができる。従って、ローサイドトランジスタ102の第2ソース配線12aから第2メタルプレーン層71までの配線抵抗及び配線インダクタンスを低減することができる。また、フリップチップ実装時に実装回路基板とのコンタクト面積を大きくできるため、コンタクト抵抗も低減することができる。第2ソース電極2aから第1ソースパッド15に至るまでの平均配線長を小さくすることができる。従って、ローサイドトランジスタ102のソースの配線抵抗及び配線インダクタンスを低減することができる。
 また、スイッチノード用メタルプレーン層68によって、実装用回路基板201上で複数の第1共通配線16を接続することができるため、窒化物半導体素子200をフリップチップ実装した際にすべての第1共通配線16から電流を取り出すことができる。従って、配線抵抗及び配線インダクタンスを低減することができる。
 そして、第1実施形態と同様、第1共通配線16を形成することによって、ハイサイドトランジスタ101とローサイドトランジスタ102のハーフブリッジをパッドオンエレメント構造で構成することができるため、両トランジスタを個別に形成して回路基板上の配線等で接続する場合に比べて回路面積を小型にでき、かつ配線抵抗及び配線インダクタンスを低減することができる。
 なお、実際の使用にあたって実装用回路基板201の表面に第1ソースパッド15と同電位のソース用メタルプレーン層65を得るには、ビア等を通じて第1ソースパッド15とソース用メタルプレーン層65とを接続すればよい。
 第3実施形態の第1変形例に係る窒化物半導体装置によると、配線インダクタンスが小さな窒化物半導体装置を得ることができる。
 (第3実施形態の第2変形例)
 以下、第3実施形態の第2変形例に係る窒化物半導体装置について適宜、図面を参照しながら説明する。本変形例において、上記実施形態及び変形例と実質的に同一の構成については説明を省略する場合がある。
 第3実施形態の第1変形例に係る窒化物半導体装置は、窒化物半導体素子200と実装用回路基板201とから構成される。窒化物半導体素子200は、第1実施形態及び第2実施形態における図1A、図1B、図4A、図7A、図9Aの順に、実質的に同様に形成されている。図9Aにおいて第2共通配線17が存在しないことに注意されたい。
 図13に示すように、実装用回路基板201の表面には、少なくとも1つの第3ビア開口部80を有し、フリップチップ実装時に窒化物半導体素子200のスイッチノード、すなわち複数の第1ドレインパッド14と電気的に接続される第3メタルプレーン層81が形成されている。
 また、実装用回路基板201は、第3ビア開口部80内に設けた第3ビア82を介して、第3メタルプレーン層82と電気的に接続された第5共通配線83を備えている。実装用回路基板201において、第5共通配線83は、第3メタルプレーン層81とは異なる層に配置されている。
 さらに、実装用回路基板201は、窒化物半導体素子200の第1ソースパッド15と電気的に接続されるソース用メタルプレーン層65と、第1共通配線16と電気的に接続されるスイッチノード用メタルプレーン層68と、第1ゲートパッド18と電気的に接続されるハイサイドゲート用メタルプレーン層66と、第2ゲートパッド19と電気的に接続されるローサイドゲート用メタルプレーン層67と、第5共通配線83と電気的に接続されるドレイン用メタルプレーン層64とを備えている。
 この構成によると、窒化物半導体素子200上に第2共通配線17が配置されていない分だけ第1ソースパッド15の面積を大きくすることができる。従って、第2ソース電極2aから第1ソースパッド15に至るまでの平均配線長を小さくすることができるため、ローサイドトランジスタ102のソースの配線抵抗及び配線インダクタンスを低減することができる。
 また、スイッチノード用メタルプレーン層68によって、実装用回路基板201上で複数の第1共通配線16を接続することができるため、窒化物半導体素子200をフリップチップ実装した際にすべての第1共通配線16から電流を取り出すことができる。従って、ハイサイドトランジスタ101のソースとローサイドトランジスタ102ドレインを接続する配線の抵抗及びインダクタンスは両トランジスタを個別に形成して配線する場合より小さくすることができる。配線抵抗及び配線インダクタンスを低減することができる。
 そして、第1実施形態と同様、第1共通配線16を形成することによって、ハイサイドトランジスタ101とローサイドトランジスタ102のハーフブリッジをパッドオンエレメント構造で構成することができるため、両トランジスタを個別に形成して回路基板上の配線等で接続する場合に比べて回路面積を小型にでき、かつ配線抵抗及び配線インダクタンスを低減することができる。
 なお、実際の使用にあたって実装用回路基板201の表面に第1ドレインパッド14と同電位のドレイン用メタルプレーン層64を得るには、ビア等を通じて第1ドレインパッド14とドレイン用メタルプレーン層64とを接続すればよい。
 第3実施形態の第2変形例に係る窒化物半導体装置によると、配線インダクタンスが小さな窒化物半導体装置を得ることができる。
 以上、例示として、本開示に係る半導体装置が、窒化物半導体装置である場合を説明した。本開示は、窒化物半導体装置に限らず、シリコン(Si)やシリコンカーバイド(SiC)等の材料を用いた、横型デバイスであれば適用可能である。
 本発明は、ハーフブリッジ構成の半導体装置として、例えば、DC/DCコンバータや、オーディオ用D級アンプなどに広く利用できる。
 1a 第1ソース電極
 1b 第1ドレイン電極
 1c 第1ゲート電極
 2a 第2ソース電極
 2b 第2ドレイン電極
 2c 第2ゲート電極
 3 第1ゲート電極配線
 4 第2ゲート電極配線
 5 第1絶縁膜
 5a 開口部
 11a 第1ソース配線
 11b 第1ドレイン配線
 11c 第1ゲート配線
 12a 第2ソース配線
 12b 第2ドレイン配線
 12c 第2ゲート配線
 13 第2絶縁膜
 13a 開口部
 13b 開口部
 14 第1ドレインパッド
 15 第1ソースパッド
 16 第1共通配線
 17 第2共通配線
 18 第1ゲートパッド
 19 第2ゲートパッド
 20 第3絶縁膜
 21 開口部
 22 スイッチノードの回路基板接続部
 23 第1ソースパッドの基板接続部
 24 第1ドレインパッドの回路基板接続部
 25 第1ゲートパッドの回路基板接続部
 26 第2ゲートパッドの回路基板接続部
 27 配線パッド
 30 回路基板側のスイッチノード用メタルプレーン層
 31 回路基板側のソース用メタルプレーン層
 32 回路基板側のドレイン用メタルプレーン層
 33 回路基板側のハイサイドゲート用メタルプレーン層
 34 回路基板側のローサイドゲート用メタルプレーン層
 41 第1縦配線
 42 第2縦配線
 43 第3縦配線
 44 第1横配線
 45a 第2横配線
 45b 第2横配線
 46 第3横配線
 51 第2ドレインパッド
 52 第2ソースパッド
 53 第3ゲートパッド
 54 第4ゲートパッド
 60 第1ビア開口部
 61 第1メタルプレーン層
 62 第1ビア
 63 第3共通配線
 64 ドレイン用メタルプレーン層
 65 ソース用メタルプレーン層
 66 ハイサイドゲート用メタルプレーン層
 67 ローサイドゲート用メタルプレーン層
 68 スイッチノード用メタルプレーン層
 70 第2ビア開口部
 71 第2メタルプレーン層
 72 第2ビア
 73 第4共通配線
 80 第3ビア開口部
 81 第3メタルプレーン層
 82 第3ビア
 83 第5共通配線
 101 ハイサイドトランジスタ
 102 ローサイドトランジスタ
 103 窒化物半導体層
 200 窒化物半導体素子
 201 実装用回路基板

Claims (14)

  1.  基板と、
     前記基板の上に配置された半導体層と、
     前記半導体層の上方に配置された第1ゲート電極、複数の第1ドレイン電極および複数の第1ソース電極を有する第1トランジスタと、
     前記半導体層の上方に配置された第2ゲート電極、複数の第2ドレイン電極および複数の第2ソース電極を有する第2トランジスタと、
     前記第1ドレイン電極の上方に配置され、前記第1ドレイン電極と電気的に接続され、かつ第1方向に延びる第1ドレインパッドと、
     前記第2ソース電極の上方に配置され、前記第2ソース電極と電気的に接続され、かつ前記第1方向に沿って配置された複数の第1ソースパッドと、
     各々が前記第1ソース電極の上方および前記第2ドレイン電極の上方に配置され、前記第1ソース電極および前記第2ドレイン電極と電気的に接続され、かつ前記第1方向に延びる複数の第1共通配線と、
     各々が前記第1共通配線と接続され、前記第1方向と交差する第2方向に延びる複数の第2共通配線とを備える
     半導体装置。
  2.  前記第1ソースパッドは、隣接する前記複数の第2共通配線の間に配置されている
     請求項1に記載の半導体装置。
  3.  前記複数の第1共通配線は、第1縦配線、第2縦配線、および第3縦配線を有し、
     前記複数の第2共通配線は、第1横配線、第2横配線、および第3横配線を有し、
     前記第1縦配線と前記第2縦配線とは、前記第1横配線および前記第2横配線によって接続され、
     前記第2縦配線と前記第3縦配線とは、前記第3横配線によって接続され、
     平面視において、前記第3横配線は、前記第1方向での前記第1横配線と前記第2横配線との間の位置に配置されている
     請求項1または2に記載の半導体装置。
  4.  前記第1縦配線、前記第2縦配線、および前記第3縦配線は、互いに隣接して配置され、
     前記第1横配線、前記第2横配線、および前記第3横配線は、互いに隣接して配置されている
     請求項3に記載の半導体装置。
  5.  前記第2トランジスタの上方、且つ、前記複数の第1共通配線の下方には、前記第2方向に延びる複数の第2ソース配線および複数の第2ドレイン配線が配置されている
     請求項1から4のいずれか一項に記載の半導体装置。
  6.  前記複数の第2共通配線は、前記複数の第2ソース配線の一部および前記複数の第2ドレイン配線の一部を覆う
     請求項5に記載の半導体装置。
  7.  前記半導体装置は、さらに、
     前記複数の第1ソースパッドの上方および前記複数の第2共通配線の上方に配置された絶縁膜を備え、
     前記絶縁膜には、前記複数の第1ソースパッドおよび前記複数の第2共通配線の一部を露出する複数の開口部が形成されている
     請求項1から6のいずれか一項に記載の半導体装置。
  8.  基板と、
     前記基板の上に配置された半導体層と、
     前記半導体層の上に配置された第1ゲート電極、複数の第1ドレイン電極および複数の第1ソース電極を有する第1トランジスタと、
     前記半導体層の上に配置された第2ゲート電極、複数の第2ドレイン電極および複数の第2ソース電極を有する第2トランジスタと、
     前記第1ドレイン電極の上方に配置され、前記第1ドレイン電極と電気的に接続され、かつ第1方向に延びる第1ドレインパッドと、
     前記第2ソース電極の上方に配置され、前記第2ソース電極と電気的に接続され、かつ前記第1方向に延びる第1ソースパッドと、
     前記複数の第1ソース電極の上方および前記複数の第2ドレイン電極の上方に配置され、前記第1ソース電極および前記第2ドレイン電極と電気的に接続され、かつ前記第1方向に延びる複数の第1共通配線と、
     前記複数の第1共通配線と接続され、前記第1方向と交差する第2方向に延びる、単一の第2共通配線とを備える
     半導体装置。
  9.  前記半導体装置は、さらに、
     前記第1ソースパッドの上方および前記単一の第2共通配線の上方に配置された絶縁膜を備え、
     前記絶縁膜には、前記第1ソースパッドおよび前記単一の第2共通配線の一部を露出する複数の開口部が形成されている
     請求項8に記載の半導体装置。
  10.  前記単一の第2共通配線は、前記複数の第1共通配線の上方に配置されている
     請求項8に記載の半導体装置。
  11.  前記半導体装置は、さらに、
     実装用回路基板を備え、
     前記実装用回路基板は、少なくとも1つの第1ビア開口部と、
     前記複数の第1共通配線と電気的に接続されるフリップチップ実装用の複数の第1メタルプレーン層と、
     前記第1ビア開口部内に設けられたビアを介して、前記第1メタルプレーン層と電気的に接続された第3共通配線とを有する
     請求項1から10のいずれか一項に記載の半導体装置。
  12.  前記半導体装置は、さらに、
     実装用回路基板を備え、
     前記実装用回路基板は、少なくとも1つの第2ビア開口部と、
     前記複数の第1ソースパッドと電気的に接続されるフリップチップ実装用の複数の第2メタルプレーン層と、
     前記第2ビア開口部内に設けられたビアを介して、前記第2メタルプレーン層と電気的に接続された第4共通配線とを有する
     請求項1から10のいずれか一項に記載の半導体装置。
  13.  前記半導体装置は、さらに、
     実装用回路基板を備え、
     前記実装用回路基板は、少なくとも1つの第3ビア開口部と、
     前記複数の第2ドレインソースパッドと電気的に接続されるフリップチップ実装用の複数の第3メタルプレーン層と、
     前記第3ビア開口部内に設けたビアを介して前記第3メタルプレーン層と電気的に接続された第5共通配線とを有する
     請求項1から10のいずれか一項に記載の半導体装置。
  14.  前記半導体層は、窒化物半導体からなる
     請求項1から13のいずれか一項に記載の半導体装置。
PCT/JP2015/003304 2014-07-30 2015-07-01 半導体装置 WO2016017068A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/329,464 US10510656B2 (en) 2014-07-30 2015-07-01 Semiconductor device
JP2016537724A JP6614148B2 (ja) 2014-07-30 2015-07-01 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-155377 2014-07-30
JP2014155377 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016017068A1 true WO2016017068A1 (ja) 2016-02-04

Family

ID=55216998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003304 WO2016017068A1 (ja) 2014-07-30 2015-07-01 半導体装置

Country Status (3)

Country Link
US (1) US10510656B2 (ja)
JP (1) JP6614148B2 (ja)
WO (1) WO2016017068A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145542A1 (ja) * 2016-02-24 2017-08-31 日立オートモティブシステムズ株式会社 半導体装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018063278A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Transistors with vertically opposed source and drain metal interconnect layers
WO2019066977A1 (en) * 2017-09-29 2019-04-04 Intel Corporation FIRST-LEVEL THIN-LEVEL INTERCONNECTIONS DEFINED BY AUTOCATALYTIC METAL FOR LITHOGRAPHIC INTERCONNECTION HOLES
CN112234030B (zh) 2019-07-15 2023-07-21 珠海格力电器股份有限公司 一种三相逆变功率芯片及其制备方法
DE102019215471B4 (de) * 2019-10-09 2022-05-25 Vitesco Technologies GmbH Elektronisches Bauteil mit einer Kontaktieranordnung und Verfahren zur Herstellung eines elektronischen Bauteils

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049169A (ja) * 1998-07-28 2000-02-18 Mitsubishi Electric Corp 電界効果トランジスタ
JP2012084743A (ja) * 2010-10-13 2012-04-26 Fujitsu Semiconductor Ltd 半導体装置及び電源装置
WO2012176399A1 (ja) * 2011-06-24 2012-12-27 パナソニック株式会社 窒化物半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2919488B2 (ja) * 1989-07-05 1999-07-12 株式会社日立製作所 半導体集積回路装置
US7465997B2 (en) 2004-02-12 2008-12-16 International Rectifier Corporation III-nitride bidirectional switch
US7550781B2 (en) 2004-02-12 2009-06-23 International Rectifier Corporation Integrated III-nitride power devices
JP2011146490A (ja) 2010-01-14 2011-07-28 Renesas Electronics Corp 回路基板及びその製造方法、半導体装置、並びに電子回路装置
US20120009198A1 (en) * 2010-07-07 2012-01-12 Asia Hepato Gene Co. Compositions and Methods for Modulating Immune Response
JP5457292B2 (ja) * 2010-07-12 2014-04-02 パナソニック株式会社 窒化物半導体装置
US20130155629A1 (en) * 2011-12-19 2013-06-20 Tong Hsing Electronic Industries, Ltd. Hermetic Semiconductor Package Structure and Method for Manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049169A (ja) * 1998-07-28 2000-02-18 Mitsubishi Electric Corp 電界効果トランジスタ
JP2012084743A (ja) * 2010-10-13 2012-04-26 Fujitsu Semiconductor Ltd 半導体装置及び電源装置
WO2012176399A1 (ja) * 2011-06-24 2012-12-27 パナソニック株式会社 窒化物半導体装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145542A1 (ja) * 2016-02-24 2017-08-31 日立オートモティブシステムズ株式会社 半導体装置
JP2017152508A (ja) * 2016-02-24 2017-08-31 日立オートモティブシステムズ株式会社 半導体装置
CN108352359A (zh) * 2016-02-24 2018-07-31 日立汽车系统株式会社 半导体装置
US10403620B2 (en) 2016-02-24 2019-09-03 Hitachi Automotive Systems, Ltd. Semiconductor device
DE112017000174B4 (de) 2016-02-24 2022-08-04 Hitachi Astemo, Ltd. Halbleitervorrichtung

Also Published As

Publication number Publication date
JP6614148B2 (ja) 2019-12-04
US20170221814A1 (en) 2017-08-03
JPWO2016017068A1 (ja) 2017-04-27
US10510656B2 (en) 2019-12-17

Similar Documents

Publication Publication Date Title
JP6614148B2 (ja) 半導体装置
CN105981274B (zh) 电力用半导体模块
JP6277429B2 (ja) 半導体装置
JP5373832B2 (ja) はんだ濡れ性の前面金属部を備えるiii族窒化物パワーデバイス
JP2012084743A (ja) 半導体装置及び電源装置
US8942009B2 (en) Lead assembly for a flip-chip power switch
JP5776701B2 (ja) 半導体装置、および、半導体装置の製造方法
JP6154104B2 (ja) 少なくとも一つの電子部品を、第1および第2端子の間のループインダクタンスを低減する手段を含む電力供給装置に電気的に相互接続するための装置
JP2011129875A (ja) 半導体装置及びそのリードフレーム
JP2017123358A (ja) パワーモジュール
JP2023010801A (ja) 半導体装置
JP5601072B2 (ja) 半導体装置
JP2007027404A (ja) 半導体装置
JP6517442B1 (ja) 電子モジュール
JP2015005623A (ja) 半導体装置
JP2010251551A (ja) 電子回路基板およびパワー半導体モジュール
JP2021535625A (ja) オン抵抗が低減されたラテラルパワーデバイス
JP2023021365A (ja) 半導体装置および電力変換装置
JP6522243B1 (ja) 電子モジュール
JP4694594B2 (ja) 半導体装置
US20120013316A1 (en) Dc-dc converter
US9362221B2 (en) Surface mountable power components
JP2007027403A (ja) 半導体装置
JP7290960B2 (ja) 半導体装置
TWI540703B (zh) 半導體元件及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016537724

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15329464

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826479

Country of ref document: EP

Kind code of ref document: A1