WO2016015406A1 - 功能材料及其制备方法、三维显示光栅及显示装置 - Google Patents

功能材料及其制备方法、三维显示光栅及显示装置 Download PDF

Info

Publication number
WO2016015406A1
WO2016015406A1 PCT/CN2014/091831 CN2014091831W WO2016015406A1 WO 2016015406 A1 WO2016015406 A1 WO 2016015406A1 CN 2014091831 W CN2014091831 W CN 2014091831W WO 2016015406 A1 WO2016015406 A1 WO 2016015406A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional material
oxide
grating
dimensional display
modified layer
Prior art date
Application number
PCT/CN2014/091831
Other languages
English (en)
French (fr)
Inventor
杨久霞
白峰
冯鸿博
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410367829.5A external-priority patent/CN104231680B/zh
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP14882143.2A priority Critical patent/EP3176224B1/en
Priority to US14/769,281 priority patent/US9541764B2/en
Publication of WO2016015406A1 publication Critical patent/WO2016015406A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/643Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/646Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/676Aluminates; Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/678Borates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a functional material, a method for fabricating the same, a three-dimensional display grating, and a display device.
  • the naked eye three-dimensional display is a kind of three-dimensional display (3D display) technology, which refers to a technique in which a user can obtain a stereoscopic display effect without wearing polarized glasses.
  • the core of a naked eye three-dimensional display technology is a three-dimensional display grating 2
  • the three-dimensional display grating 2 has alternating light shielding strips and light-transmissive strips.
  • the display panel 1 such as a liquid crystal display
  • the display panel 1 such as a liquid crystal display
  • the stereoscopic display effect can be realized by displaying the screen for the left eye and the right eye in the two areas of the display panel 1, respectively.
  • the display panel of the three-dimensional display device inevitably generates some electromagnetic radiation pollution during use, which has an impact on human health.
  • the invention aims to solve the problem that the existing three-dimensional display device is polluted, and provides a functional material which can play a health care role and is environmentally friendly, a preparation method thereof, a three-dimensional display grating and a display device.
  • the technical solution adopted to solve the technical problem of the present invention is a functional material comprising an inorganic mixed powder having a modified layer on its surface, the inorganic mixed powder comprising a main material and an auxiliary material;
  • the main material is composed of boron oxide, sodium oxide, lithium oxide or zirconium oxide;
  • the auxiliary materials include oxidation of alumina, zinc oxide, titanium dioxide, silicon dioxide, calcium oxide, silver complex, silver phosphate, silver nitrate, tourmaline, silver thiosulfate, carbon nanotubes, aluminum sulfate, manganese, manganese.
  • the modified layer is formed by the reaction of a dibasic anhydride and a diamine.
  • the ratio of the amount of the dibasic anhydride to the diamine used to form the modified layer is (0.85 to 1.05):1.
  • the ratio of the amount of the dibasic anhydride to the diamine used to form the modified layer is (0.92 to 1.05):1.
  • the dibasic anhydride used to form the modified layer contains at least one phenyl group; the diamine used to form the modified layer contains at least one phenyl or non-phenyl six-membered amine Carbon ring.
  • the dianhydride used to form the modified layer is selected from the group consisting of pyromellitic dianhydride, trimellitic anhydride, benzophenone dianhydride, biphenyl dianhydride, diphenyl ether dianhydride, and hexafluoro dianhydride.
  • any one of the diamines used to form the modified layer is selected from the group consisting of 3-aminobenzylamine, 2,2'-difluoro-4,4'-(9-fluorenylene)diphenylamine, 2, 2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, hexahydro-m-xylylenediamine, 1,4-bis(aminomethyl)cyclohexane, 2,2-bis[4 -(4-Aminophenoxy)benzene]hexafluoropropane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,7-diaminopurine, m-xylylenediamine, 4,4'-methylenebis(2-eth
  • the inorganic mixed powder has a particle diameter of from 1 to 5,000 nm.
  • the technical solution adopted to solve the technical problem of the present invention is a method for preparing the above functional material, which comprises:
  • the dibasic anhydride is reacted with a diamine by heating to form the modified layer on the surface of the inorganic mixed powder.
  • the ratio of the mass of the inorganic mixed powder to the mass of the substance formed by the reaction of the dibasic anhydride and the diamine is (20 to 1):1.
  • the initiator is azobisisobutyronitrile, 2,2'-bisazo-(2,4-dimethylvaleronitrile), dimethyl azobisisobutyrate, azo Any of diisovaleronitrile.
  • the heating is carried out in two steps, specifically: heating at a temperature of 35 to 70 ° C for 20 to 40 minutes; heating at a temperature of 70 to 100 ° C for 20 to 40 minutes.
  • the technical solution adopted to solve the technical problem of the present invention is a three-dimensional display grating including a grating body, and the grating body includes alternating light shielding strips and light-transmitting strips;
  • the surface and/or interior of the grating body contains the above functional materials.
  • the functional material in the grating body has a mass percentage of 0.1 to 30%; and/or the grating body surface has a surface film layer having a thickness of 50 to 1000 nm, and the surface film layer contains the A functional material, wherein the functional material in the surface film layer has a mass percentage of 0.1 to 10%.
  • the functional material in the grating body has a mass percentage of 3 to 20%; and/or the functional material in the surface film layer has a mass percentage of 0.5 to 5%.
  • a technical solution adopted to solve the technical problem of the present invention is a three-dimensional display device including a display panel and a three-dimensional display grating, and
  • the three-dimensional display grating is the above-described three-dimensional display grating.
  • the functional material of the invention can emit far infrared rays and negative ions; the far infrared rays can be absorbed by the human body to resonate water molecules in the body, activate water molecules, enhance the intermolecular binding force, thereby activating biological macromolecules such as proteins, so that the living cells are at the highest vibration.
  • the inorganic mixed powder surface of the functional material of the present invention has a modified layer which can combine the inorganic mixed powder with the grating body well, and can also improve the ability of the inorganic mixed powder to emit far infrared rays and negative ions, thereby functioning
  • the material is well integrated into the 3D display grating, and its environmental friendliness is increased without affecting the performance of the 3D display grating itself.
  • FIG. 1 is a schematic diagram of the principle of a conventional three-dimensional display device
  • FIG. 2 is a flow chart of a method for preparing a functional material according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional structural diagram of a three-dimensional display device according to an embodiment of the present invention.
  • Display panel 2. Three-dimensional display grating; 21, grating body; 3. Functional material; 22. Surface film layer.
  • This embodiment provides a functional material and a preparation method thereof.
  • the functional material includes an inorganic mixed powder having a modified layer on the surface, and the inorganic mixed powder includes a main material and an auxiliary material;
  • the main material is composed of boron oxide, sodium oxide, lithium oxide and zirconium oxide;
  • Excipients include alumina, zinc oxide, titanium dioxide, silicon dioxide, calcium oxide, silver complex, silver phosphate, silver nitrate, tourmaline, silver thiosulfate, carbon nanotubes, aluminum sulfate, manganese, manganese oxides, Iron, iron oxide, cobalt, cobalt oxide, nickel, nickel oxide, chromium, chromium oxide, copper, copper oxide, magnesium oxide, boron carbide, silicon carbide, titanium carbide, zirconium carbide, Tantalum carbide, molybdenum carbide, boron nitride, chromium nitride, titanium nitride, zirconium nitride, aluminum nitride, chromium boride, trichromium tetraboride, titanium boride, zirconium boride, tungsten disilicide, disilicide Any one or more of titanium;
  • the modified layer is formed by the reaction of a dibasic anhydride and a diamine.
  • the particle size of the inorganic mixed powder is in the order of nanometers to micrometers, specifically, for example, 1 to 5000 nm, preferably 10 to 500 nm.
  • the particle size can be measured, for example, using a Malvern laser particle size analyzer.
  • the dibasic anhydride refers to a substance having at least two acid anhydride groups in a molecular structure
  • the diamine is a substance having at least two amine groups (or amino groups) in a molecular structure.
  • the dibasic anhydride contains, for example, at least one phenyl group, and is preferably any one of pyromellitic dianhydride, trimellitic anhydride, benzophenone dianhydride, biphenyl dianhydride, diphenyl ether dianhydride, and hexafluoro dianhydride.
  • pyromellitic dianhydride trimellitic anhydride
  • benzophenone dianhydride biphenyl dianhydride
  • diphenyl ether dianhydride diphenyl ether dianhydride
  • hexafluoro dianhydride hexafluoro dianhydride.
  • the diamine contains, for example, at least one phenyl or non-phenyl six-membered carbocyclic ring (for example, cyclohexane), which is preferably 3-aminobenzylamine, 2,2'-difluoro-4,4'- (9-fluorenylene) diphenylamine, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, hexahydro-m-xylylenediamine, 1,4-bis(aminomethyl) Cyclohexane, 2,2-bis[4-(4-aminophenoxy)benzene]hexafluoropropane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2- Bis(3-aminophenyl)hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,7-diamin
  • the ratio of the amount of the dibasic anhydride to the diamine is, for example, (0.85 to 1.05):1; preferably at (0.92 to 1.05):1.
  • the modified layer formed by the reaction of the above dibasic anhydride and diamine can preferably improve the properties of the inorganic mixed powder.
  • the functional material of this embodiment can emit far infrared rays and negative ions; after far infrared rays are absorbed by the human body, It can resonate water molecules in the body, activate water molecules, enhance the intermolecular binding force, thereby activating biological macromolecules such as proteins, so that the living cells are at the highest vibrational level; and the far infrared heat can be transmitted to the deeper part of the skin, making the subcutaneous
  • the preparation method of the above functional material comprises: uniformly mixing the inorganic mixed powder, the dibasic anhydride, the diamine, the initiator, and the solvent; and heating to react the dibasic anhydride with the diamine to form a surface on the inorganic mixed powder. Said modified layer.
  • the foregoing preparation method may include:
  • each raw material is pulverized into a powder, and then uniformly mixed in proportion, or each raw material is uniformly mixed in proportion and then pulverized to obtain an inorganic mixed powder.
  • the dispersing agent can be selected from the conventional dispersing agent such as BYK 161 produced by BYK of Germany, Solsperse 32500 and Solsperse 22000 produced by Lubrizol; the pulverization can be carried out by conventional methods such as ball milling and grinding; The method is not described in detail here.
  • an initiator of 1/4 to 1/3 of the total amount and a diamine of 1/4 to 1/3 of the total amount are dissolved in a solvent for use.
  • the ratio of the mass of the inorganic mixed powder to the mass of the substance formed by the reaction of the dibasic anhydride and the diamine is (20 to 1):1.
  • the amount of the dibasic anhydride and the diamine is determined as follows: It is assumed that the dibasic anhydride and the diamine can be completely reacted to obtain a product (actually a modified layer), if the mass of the product is 1
  • the mass of the inorganic mixed powder is between 1 and 20; such an amount ensures that a modified layer of a suitable thickness is obtained on the inorganic mixed powder.
  • an initiator is used to initiate the reaction, which is, for example, a nitrogen-based initiator, preferably azobisisobutyronitrile, 2,2'-bisazo-(2,4-dimethylvaleronitrile), azodi Any of dimethyl isobutyrate and azobisisovaleronitrile.
  • a nitrogen-based initiator preferably azobisisobutyronitrile, 2,2'-bisazo-(2,4-dimethylvaleronitrile), azodi Any of dimethyl isobutyrate and azobisisovaleronitrile.
  • the solvent may be selected from the group consisting of fatty alcohols, glycol ethers, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, monomethyl ether glycol ester, ⁇ -butyrolactone, and 3-ethyl ether ethyl propionate. , butyl carbitol, butyl carbitol acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexane, xylene, A conventional organic solvent such as isopropyl alcohol. Since the choice of solvent did not significantly affect the performance of the final product, each example uniformly used propylene glycol monomethyl ether acetate as a solvent.
  • heating is started to carry out the reaction, which is carried out, for example, in two steps.
  • the method may further comprise: heating at a temperature of 35 to 70 ° C for 20 to 40 minutes; and then continuing to heat at a temperature of 70 to 100 ° C for 20 to 40 minutes.
  • a reaction between the dibasic anhydride and the diamine can be made to form a modified layer on the surface of the inorganic mixed powder; wherein the stepwise heating is mainly to prevent the reaction from being too intense.
  • the reaction in this step is carried out, for example, under a nitrogen atmosphere, and stirring is maintained, for example, during the reaction.
  • the amount of the solvent in each step is determined by uniformly dispersing and dissolving the substance therein, and the amount of the initiator is based on the reaction, which can be adjusted by a person skilled in the art according to actual conditions, and will not be described in detail herein. .
  • the mass ratio (referred to as the total amount) of the inorganic mixed powder, the initiator, and the solvent is 1: (0.25 to 0.4): (1 to 1.5).
  • the functional materials are specifically prepared in the respective examples. In the process, the mass ratio of the inorganic powder, the initiator, and the solvent was uniformly made to be 1:0.3:1.4.
  • reaction product is cooled to room temperature (about 10 to 30 ° C) with a refrigerated solvent.
  • dibasic anhydride, diamine, initiator, etc. can be dissolved in the solvent at one time; for example, heating can be only one step or the like.
  • heating can be only one step or the like.
  • dibasic anhydride is reacted with the diamine and a modified layer is formed on the surface of the inorganic mixed powder.
  • the infrared specific radiance of the obtained functional material was tested in accordance with the GB/T 7287-2008 standard, and the amount of negative ions generated was measured by an air negative ion analyzer (for example, KEC-900 type from KEC Corporation of Japan).
  • an air negative ion analyzer for example, KEC-900 type from KEC Corporation of Japan.
  • the functional materials of the embodiments have higher infrared specific radiance and negative ion concentration, indicating that they can actually generate far infrared rays and negative ions, thereby achieving the effect of improving the environment.
  • the embodiment further provides a three-dimensional display grating 2 and a three-dimensional display device.
  • the three-dimensional display grating 2 comprises a grating body 21, and the grating body 21 is in the shape of a plate, including intersection For the arranged light-transmitting strips and light-shielding strips, it can function as a light-shielding to realize three-dimensional display.
  • the above-described functional material 3 is also provided on the inside of the grating main body 21 and/or on the surface of the grating main body 21.
  • the above-described functional material 3 is applied to the inside or the surface of the grating main body 21 to improve the environmental friendliness of the three-dimensional display grating 2.
  • the functional material 3 in the grating body 21 has a mass percentage of 3 to 20%; and/or the surface of the grating body 21 has a surface film layer 22 having a thickness of 50 to 1000 nm, and the surface film layer 22 contains a functional material 3 Wherein the functional material 3 in the surface film layer 22 has a mass percentage of 0.1 to 10%.
  • the functional material 3 can be directly mixed in the grating body 21.
  • the functional material 3 may be added to a material (for example, polyethylene terephthalate particles, polyvinyl alcohol particles) for preparing the grating main body 21, whereby the materials are heated and melted to form a grating main body.
  • a material for example, polyethylene terephthalate particles, polyvinyl alcohol particles
  • the functional material 3 is naturally also formed directly inside the grating main body 21, and its mass percentage (100% of the total mass of the grating main body 21 and the functional material 3) is, for example, 0.1 to 30%, preferably at 3 to 20%.
  • a surface film layer 22 may be added to the surface of the grating body 21, and the functional material 3 is distributed in the surface film layer 22.
  • the functional material 3 may be dispersed in a solvent to form a suspension, and then coated, sprayed, etc.
  • the suspension is applied to the surface of the grating main body 21, and after being cured, the surface film layer 22 can be formed on the surface of the grating main body 21, and the thickness of the surface film layer 22 is 50 to 1000 nm, wherein the mass percentage of the functional material 3 is (100% by total mass of the surface film layer 22 and the functional material 3) is, for example, 0.1 to 10%, preferably 0.5 to 5%.
  • the functional material 3 is beneficial to the environment, if it is used too much, it may affect the performance of the three-dimensional display grating 2 itself. It has been found that the functional material 3 in the above content range is beneficial to the environment, and It is preferable to have a significant influence on the performance of the three-dimensional display grating 2 itself.
  • the three-dimensional display grating 2 of the present embodiment was observed, and it was found that the functional material 3 therein did not agglomerate or fall off, indicating that the functional material 3 can be well combined with the three-dimensional display grating 2.
  • the surface of the inorganic mixed powder of the functional material 3 of the present embodiment has a modified layer which allows the inorganic mixed powder to be well bonded to the grating main body 21, and also improves the ability of the inorganic mixed powder to emit far infrared rays and negative ions.
  • the functional material 3 is well integrated into the three-dimensional display grating 2, and the environmental friendliness is increased without affecting the performance of the three-dimensional display grating 2 itself.
  • the three-dimensional display device of the embodiment includes a display panel 1 and is disposed outside the light-emitting surface of the display panel 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种功能材料及其制备方法、三维显示光栅及显示装置,属显示技术领域,可解决现有三维显示装置存在污染的问题。本发明的功能材料包括带有改性层的无机混合粉末,无机混合粉末包括氧化硼、氧化钠、氧化锂、氧化锆、氧化铝、氧化锌、二氧化钛、二氧化硅、氧化钙、银络合物、磷酸银、硝酸银、电气石、硫代硫酸银、碳纳米管、硫酸铝、锰、锰的氧化物、铁、铁的氧化物、钴、钴的氧化物、镍、镍的氧化物、铬、铬的氧化物、铜、铜的氧化物、氧化镁、碳化硼、碳化硅、碳化钛、碳化锆、碳化钽、碳化钼、氮化硼、氮化铬、氮化钛、氮化锆、氮化铝、硼化铬、四硼化三铬、硼化钛、硼化锆、二硅化钨、二硅化钛等;改性层由二元酐和二元胺反应生成。

Description

功能材料及其制备方法、三维显示光栅及显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种功能材料及其制备方法、三维显示光栅及显示装置。
背景技术
裸眼三维显示是三维显示(3D显示)技术的一种,其指用户不必佩戴偏光眼镜即可获得立体显示效果的技术。
如图1所示,一种裸眼三维显示技术的核心是三维显示光栅2,三维显示光栅2具有交替设置的遮光条和透光条,当将三维显示光栅2设于显示面板1(如液晶显示面板、有机发光二极管显示面板等)出光面外的特定位置时,由于遮光条的挡光作用,使用户左眼只能看到显示面板1的一部分区域,而右眼只能看到显示面板1的另一部分区域,这样,只要在显示面板1的两个区域分别显示供左眼、右眼观看的画面,即可实现立体显示效果。
但是,三维显示装置的显示面板在使用中会不可避免的产生一些电磁辐射污染,对人体健康产生影响。
发明内容
本发明针对现有三维显示装置会产生污染的问题,提供一种可起到医疗保健作用且对环境友好的功能材料及其制备方法、三维显示光栅及显示装置。
解决本发明技术问题所采用的技术方案是一种功能材料,其包括表面带有改性层的无机混合粉末,所述无机混合粉末包括主料和辅料;
所述主料由氧化硼、氧化钠、氧化锂、氧化锆组成;
所述辅料包括氧化铝、氧化锌、二氧化钛、二氧化硅、氧化钙、银络合物、磷酸银、硝酸银、电气石、硫代硫酸银、碳纳米管、硫酸铝、锰、锰的氧化物、铁、铁的氧化物、钴、钴的氧化物、镍、镍的氧化物、铬、铬的氧化物、铜、铜的氧化物、氧化镁、碳化硼、碳化硅、碳化钛、碳化锆、碳化钽、碳化钼、氮化硼、氮化铬、氮化钛、氮化锆、氮化铝、硼化铬、四硼化 三铬、硼化钛、硼化锆、二硅化钨、二硅化钛中的任意一种或多种;
所述改性层由二元酐和二元胺反应生成。
例如,用于生成所述改性层的二元酐与二元胺的物质的量的比在(0.85~1.05)∶1。
进一步优选的是,用于生成所述改性层的二元酐与二元胺的物质的量的比在(0.92~1.05)∶1。
例如,所述用于生成所述改性层的二元酐中含有至少一个苯基;所述用于生成所述改性层的二元胺中含有至少一个苯基或非苯基的六元碳环。
进一步优选的是,用于生成所述改性层的二元酐选自均苯四甲酸二酐、偏苯三酸酐、二苯酮二酐、联苯二酐、二苯醚二酐、六氟二酐中的任意一种;用于生成所述改性层的二元胺选自3-氨基苄胺、2,2'-二氟-4,4'-(9-亚芴基)二苯胺、2,2-双(3-氨基-4-羟苯基)六氟丙烷、六氢-间苯二甲基二胺、1,4-二(氨甲基)环己烷、2,2-双[4-(4-氨基苯氧基)苯]六氟丙烷、2,2-双(3-氨基-4-甲苯基)六氟丙烷、2,2-双(3-氨基苯基)六氟丙烷、2,2-双(4-氨基苯基)六氟丙烷、2,7-二氨基芴、间苯二甲胺、4,4'-亚甲基双(2-乙基-6-甲基苯胺)中的任意一种。
例如,所述无机混合粉末的粒径在1~5000nm。
解决本发明技术问题所采用的技术方案是一种上述功能材料的制备方法,其包括:
将所述无机混合粉末、二元酐、二元胺与引发剂、溶剂混合均匀;
加热使所述二元酐与二元胺反应,在无机混合粉末表面形成所述改性层。
例如,所述无机混合粉末的质量与二元酐、二元胺反应后生成的物质的质量的比为(20~1)∶1。
进一步优选的是,所述引发剂为偶氮二异丁腈、2,2'-双偶氮-(2,4-二甲基戊腈)、偶氮二异丁酸二甲酯、偶氮二异戊腈中的任意一种。
例如,所述加热分为两步进行,其具体为:在35~70℃的温度下加热20~40min;在70~100℃的温度下加热20~40min。
解决本发明技术问题所采用的技术方案是一种包括光栅本体的三维显示光栅,所述光栅本体包括交替设置的遮光条和透光条;且,
所述光栅本体的表面和/或内部含有上述功能材料。
例如,所述光栅本体内的功能材料的质量百分含量在0.1~30%;和/或,所述光栅本体表面具有厚度在50~1000nm的表面膜层,所述表面膜层中含有所述功能材料,其中所述表面膜层中的功能材料的质量百分含量在0.1~10%。
进一步优选的是,所述光栅本体内的功能材料的质量百分含量在3~20%;和/或,所述表面膜层中的功能材料的质量百分含量在0.5~5%。
解决本发明技术问题所采用的技术方案是一种三维显示装置,其包括显示面板和三维显示光栅,且
所述三维显示光栅为上述的三维显示光栅。
本发明的功能材料可发出远红外线和负离子;远红外线被人体吸收后可使体内水分子共振,活化水分子,增强分子间结合力,从而活化蛋白质等生物大分子,使生物体细胞处于最高振动能级;且远红外热量可传递到皮下较深的部分,使皮下深层温度上升,扩张毛细血管,促进血液循环,强化各组织之间的新陈代谢,增强组织再生能力,提高机体免疫力,调节精神异常兴奋状态;而负离子对细菌和有机物有分解和氧化作用,可起到杀菌消毒和净化环境空气质量的效果;因此,该功能材料可起到医疗保健作用,对环境友好。
本发明的功能材料的无机混合粉末表面具有改性层,该改性层可使无机混合粉末与光栅主体良好的结合,并且还可提高该无机混合粉末发射远红外线和负离子的能力,从而使功能材料很好的融入三维显示光栅中,在不影响三维显示光栅本身性能的情况下,增加其环境友好度。
附图说明
图1为现有的一种三维显示装置的原理示意图;
图2为本发明实施例的功能材料的制备方法的流程图;
图3为本发明实施例的三维显示装置的剖面结构示意图。
其中,附图标记为:
1、显示面板;2、三维显示光栅;21、光栅本体;3、功能材料;22、表面膜层。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
本实施例提供一种功能材料及其制备方法。
该功能材料包括表面带有改性层的无机混合粉末,无机混合粉末包括主料和辅料;
主料由氧化硼、氧化钠、氧化锂、氧化锆组成;
辅料包括氧化铝、氧化锌、二氧化钛、二氧化硅、氧化钙、银络合物、磷酸银、硝酸银、电气石、硫代硫酸银、碳纳米管、硫酸铝、锰、锰的氧化物、铁、铁的氧化物、钴、钴的氧化物、镍、镍的氧化物、铬、铬的氧化物、铜、铜的氧化物、氧化镁、碳化硼、碳化硅、碳化钛、碳化锆、碳化钽、碳化钼、氮化硼、氮化铬、氮化钛、氮化锆、氮化铝、硼化铬、四硼化三铬、硼化钛、硼化锆、二硅化钨、二硅化钛中的任意一种或多种;
改性层由二元酐和二元胺反应生成。
其中,无机混合粉末的粒径在纳米量级至微米量级,具体例如在1~5000nm,优选在10~500nm。粒径例如可采用马尔文激光粒度仪进行测量。
其中,二元酐是指分子结构中含有至少两个酸酐基团的物质;而二元胺是指分子结构中含有至少两个胺基(或氨基)的物质。
其中,二元酐中例如含有至少一个苯基,其优选为均苯四甲酸二酐、偏苯三酸酐、二苯酮二酐、联苯二酐、二苯醚二酐、六氟二酐中的任意一种。
其中,二元胺中例如含有至少一个苯基或非苯基的六元碳环(例如环己烷),其优选为3-氨基苄胺、2,2'-二氟-4,4'-(9-亚芴基)二苯胺、2,2-双(3-氨基-4-羟苯基)六氟丙烷、六氢-间苯二甲基二胺、1,4-二(氨甲基)环己烷、2,2-双[4-(4-氨基苯氧基)苯]六氟丙烷、2,2-双(3-氨基-4-甲苯基)六氟丙烷、2,2-双(3-氨基苯基)六氟丙烷、2,2-双(4-氨基苯基)六氟丙烷、2,7-二氨基芴、间苯二甲胺、4,4'-亚甲基双(2-乙基-6-甲基苯胺)中的任意一种。
其中,二元酐与二元胺的物质的量的比例如为(0.85~1.05)∶1;优选在(0.92~1.05)∶1。
经研究发现,上述的二元酐和二元胺反应后生成的改性层可最好的改善无机混合粉末的性质。
本实施例的功能材料可发出远红外线和负离子;远红外线被人体吸收后 可使体内水分子共振,活化水分子,增强分子间结合力,从而活化蛋白质等生物大分子,使生物体细胞处于最高振动能级;且远红外热量能传递到皮下较深的部分,使皮下深层温度上升,扩张毛细血管,促进血液循环,强化各组织之间的新陈代谢,增强组织再生能力,提高机体免疫力,调节精神异常兴奋状态;而负离子对细菌和有机物有分解和氧化作用,可起到杀菌消毒和净化环境空气质量的效果;因此,本实施例的功能材料可起到医疗保健作用,对环境友好。
上述功能材料的制备方法包括:将所述无机混合粉末、二元酐、二元胺与引发剂、溶剂混合均匀;加热使所述二元酐与二元胺反应,在无机混合粉末表面形成所述改性层。
具体的,如图2所示,上述制备方法可包括:
S01、在使用分散剂的情况下,将各原料分别粉碎为粉末后按比例混合均匀,或将各原料按比例混合均匀后再粉碎,得到无机混合粉末。
其中,分散剂可选用德国毕克公司生产的BYK 161、路博润公司生产的Solsperse 32500、Solsperse 22000等常规分散剂;粉碎可采用球磨、研磨等常规方式;由于得到无机混合粉末可采用已知的方法,故在此不再详细描述。
S02、将占总量1/4~1/3的引发剂及占总量1/4~1/3的二元胺溶解在溶剂中备用。
其中,无机混合粉末的质量与二元酐、二元胺反应后生成的物质的质量的比为(20~1)∶1。
也就是说,二元酐、二元胺的用量按照如下的方式确定:假设二元酐与二元胺可完全反应并得到生成物(实际为改性层),若该生成物的质量为1,则无机混合粉末的质量就在1~20之间;这样的用量可保证在无机混合粉末上得到厚度合适的改性层。
其中,引发剂用于引发反应,其例如为氮类引发剂,优选为偶氮二异丁腈、2,2'-双偶氮-(2,4-二甲基戊腈)、偶氮二异丁酸二甲酯、偶氮二异戊腈中的任意一种。
其中,溶剂可选自脂肪醇、乙二醇醚、乙酸乙酯、甲乙酮、甲基异丁基酮、单甲基醚乙二醇酯、γ-丁内酯、丙酸-3-乙醚乙酯、丁基卡必醇、丁基卡必醇醋酸酯、丙二醇单甲基醚、丙二醇单甲基醚醋酸酯、环己烷、二甲苯、 异丙醇等常规的有机溶剂。由于溶剂的选择对最终产品的性能无显著影响,故各实施例统一用丙二醇单甲基醚醋酸酯作溶剂。
S03、将无机混合粉末加入反应容器(如四口瓶)中,并开始搅拌、震荡、摇动等;之后加入二元酐、溶剂,以及剩余的引发剂、二元胺,溶解均匀。
S04、开始加热以进行反应,其例如分为两步进行,具体可包括:先在35~70℃的温度下加热20~40min;之后继续在70~100℃的温度下加热20~40min。
以上的加热过程中,可使二元酐与二元胺之间发生反应,从而在无机混合粉末表面生成改性层;其中,之所以分步加热,主要是为了防止反应过于剧烈。
在反应过程中,逐渐将上述溶解有引发剂和二元胺的溶液逐渐滴加到四口瓶中;之所以这样加入,是为了防止反应过于剧烈。
其中,本步反应例如在氮气保护下进行,且在反应过程中例如一直保持搅拌。
其中,各步骤中溶剂的用量以能将其中的物质均匀的分散、溶解为准,而引发剂用量以能引发反应为准,这些可由本领域技术人员根据实际情况调整,在此不再详细描述。但通常而言,无机混合粉末、引发剂、溶剂的质量比(均指总量)为1∶(0.25~0.4)∶(1~1.5),为了统一,故在各实施例具体制备功能材料的过程中,统一使无机粉末、引发剂、溶剂的质量比为1∶0.3∶1.4。
S05、反应结束后用经冷藏的溶剂使反应物冷却至室温(约10~30℃)。
S06、蒸干剩余溶剂或将粉末从中分离出来,得到带有改性层的无机混合粉末,即得到功能材料。
当然,应当理解,以上所述的制备方法还可进行许多变化,例如,二元酐、二元胺、引发剂等可一次都溶解在溶剂中;再如,加热也可只为一段等。总之,只要能使二元酐与二元胺反应并在无机混合粉末表面形成改性层即可。
按照GB/T 7287-2008标准测试所得功能材料的红外线比辐射率,并用空气负离子测定仪(例如日本KEC公司的KEC-900型)测量其产生的负离子数量。
按照上述方法制备不同的功能材料,各实施例中采用的物质、用量、参数及产品性能如以下各表所示。
表1、各实施例的功能材料的无机混合粉末中主料的情况(含量单位为质量份数)
实施例 氧化硼含量 氧化钠含量 氧化锂含量 氧化锆含量
1 3.83 1.83 6.73 20
2 5.18 2.27 8.16 25
3 6.5 3.6 10.5 30
4 7.17 3.6 10.5 30
表2、各实施例的功能材料的无机混合粉末中辅料的情况(含量单位为质量份数)
实施例 辅料1种类 辅料1含量 辅料2种类 辅料2含量 辅料3种类 辅料3含量
1 二氧化硅 40 氧化锰 1.2 氧化钙 0.98
2 二氧化硅 40 氮化铝 15 磷酸银 3
3 二氧化硅 40 氧化镍 1.4 氧化铬 1.4
4 氧化铝 10 氧化镁 10
表3、各实施例的功能材料中制备改性层原料的情况
Figure PCTCN2014091831-appb-000001
表4、各实施例的功能材料的制备参数及性能测试结果
Figure PCTCN2014091831-appb-000002
可见,各实施例的功能材料均具有较高的红外线比辐射率和负离子浓度,表明其确实可产生远红外线和负离子,从而达到改善环境的作用。
如图3所示,本实施例还提供一种三维显示光栅2及三维显示装置。
其中,三维显示光栅2包括光栅主体21,光栅主体21为板状,包括交 替设置的透光条和遮光条,可起到遮光的作用以实现三维显示。
在光栅主体21的内部和/或光栅主体21的表面上,还设有上述的功能材料3。
也就是说,上述功能材料3被施加到光栅主体21的内部或表面上,以改善三维显示光栅2的环境友好度。
例如,光栅本体21内的功能材料3的质量百分含量在3~20%;和/或,光栅本体21表面具有厚度在50~1000nm的表面膜层22,表面膜层22中含有功能材料3,其中在表面膜层22中功能材料3的质量百分含量在0.1~10%。
也就是说,功能材料3可直接混在光栅本体21中。具体的,可将功能材料3添加在用于制备光栅主体21的材料(如聚对苯二甲酸乙二醇酯颗粒、聚乙烯醇颗粒)中,由此,在将这些材料加热熔融形成光栅主体21的过程中,功能材料3自然也被直接形成在光栅主体21内部,且其质量百分含量(以光栅主体21和功能材料3的总质量为100%)例如在0.1~30%,优选在3~20%。
或者,也可在光栅本体21表面增设表面膜层22,而功能材料3分布与表面膜层22中,具体的,可将功能材料3分散在溶剂中形成悬浮液,之后通过涂布、喷涂等方式将悬浮液施加在光栅主体21表面,待固化后,即可在光栅主体21表面形成表面膜层22,而该表面膜层22的厚度在50~1000nm,其中功能材料3的质量百分含量(以表面膜层22和功能材料3的总质量为100%)例如在0.1~10%,优选在0.5~5%。
显然,虽然功能材料3对环境有益,但若其使用量过大,则可能对三维显示光栅2本身的性能产生影响,经研究发现,以上含量范围内的功能材料3即对环境有益,又不会对三维显示光栅2本身的性能产生明显影响,故是优选的。
对本实施例的三维显示光栅2进行观察,发现其中的功能材料3并无团聚、脱落等现象,表明功能材料3可与三维显示光栅2很好的结合。
本实施例的功能材料3的无机混合粉末表面具有改性层,该改性层可使无机混合粉末与光栅主体21良好的结合,并且还可提高该无机混合粉末发射远红外线和负离子的能力,从而使功能材料3很好的融入三维显示光栅2中,在不影响三维显示光栅2本身性能的情况下,增加其环境友好度。
本实施例的三维显示装置则包括显示面板1和设于显示面板1出光面外 的上述三维显示光栅2。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
本申请要求于2014年7月29日递交的中国专利申请第201410367829.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (14)

  1. 一种功能材料,其包括表面带有改性层的无机混合粉末,所述无机混合粉末包括主料和辅料;
    所述主料由氧化硼、氧化钠、氧化锂、氧化锆组成;
    所述辅料包括氧化铝、氧化锌、二氧化钛、二氧化硅、氧化钙、银络合物、磷酸银、硝酸银、电气石、硫代硫酸银、碳纳米管、硫酸铝、锰、锰的氧化物、铁、铁的氧化物、钴、钴的氧化物、镍、镍的氧化物、铬、铬的氧化物、铜、铜的氧化物、氧化镁、碳化硼、碳化硅、碳化钛、碳化锆、碳化钽、碳化钼、氮化硼、氮化铬、氮化钛、氮化锆、氮化铝、硼化铬、四硼化三铬、硼化钛、硼化锆、二硅化钨、二硅化钛中的任意一种或多种;
    所述改性层由二元酐和二元胺反应生成。
  2. 根据权利要求1所述的功能材料,其中,
    用于生成所述改性层的二元酐与二元胺的物质的量的比在(0.85~1.05)∶1。
  3. 根据权利要求2所述的功能材料,其中,
    用于生成所述改性层的二元酐与二元胺的物质的量的比在(0.92~1.05)∶1。
  4. 根据权利要求1所述的功能材料,其中,
    所述用于生成所述改性层的二元酐中含有至少一个苯基;
    所述用于生成所述改性层的二元胺中含有至少一个苯基或非苯基的六元碳环。
  5. 根据权利要求4所述的功能材料,其中,
    用于生成所述改性层的二元酐选自均苯四甲酸二酐、偏苯三酸酐、二苯酮二酐、联苯二酐、二苯醚二酐、六氟二酐中的任意一种;
    用于生成所述改性层的二元胺选自3-氨基苄胺、2,2'-二氟-4,4'-(9-亚芴基)二苯胺、2,2-双(3-氨基-4-羟苯基)六氟丙烷、六氢-间苯二甲基二胺、1,4-二(氨甲基)环己烷、2,2-双[4-(4-氨基苯氧基)苯]六氟丙烷、2,2-双(3-氨基-4-甲苯基) 六氟丙烷、2,2-双(3-氨基苯基)六氟丙烷、2,2-双(4-氨基苯基)六氟丙烷、2,7-二氨基芴、间苯二甲胺、4,4'-亚甲基双(2-乙基-6-甲基苯胺)中的任意一种。
  6. 根据权利要求1至5中任意一项所述的功能材料,其中,
    所述无机混合粉末的粒径在1~5000nm。
  7. 制备权利要求1至6中任意一项所述的功能材料的方法,所述制备方法包括:
    将所述无机混合粉末、二元酐、二元胺与引发剂、溶剂混合均匀;
    加热使所述二元酐与二元胺反应,在无机混合粉末表面形成所述改性层。
  8. 根据权利要求7所述的功能材料的制备方法,其中,
    所述无机混合粉末的质量与二元酐、二元胺反应后生成的物质的质量的比为(20~1)∶1。
  9. 根据权利要求7所述的功能材料的制备方法,其中,
    所述引发剂为偶氮二异丁腈、2,2'-双偶氮-(2,4-二甲基戊腈)、偶氮二异丁酸二甲酯、偶氮二异戊腈中的任意一种。
  10. 根据权利要求7所述的功能材料的制备方法,其中,所述加热分为两步进行:
    在35~70℃的温度下加热20~40min;
    在70~100℃的温度下加热20~40min。
  11. 一种包括光栅本体的三维显示光栅,所述光栅本体包括交替设置的遮光条和透光条,其中,
    所述光栅本体的表面和/或内部含有权利要求1至6中任意一项所述的功能材料。
  12. 根据权利要求11所述的三维显示光栅,其中,
    所述光栅本体内的功能材料的质量百分含量在0.1~30%;
    和/或
    所述光栅本体表面具有厚度在50~1000nm的表面膜层,所述表面膜层中含有所述功能材料,其中所述表面膜层中的功能材料的质量百分含量在0.1~10%。
  13. 根据权利要求12所述的三维显示光栅,其中,
    所述光栅本体内的功能材料的质量百分含量在3~20%;
    和/或
    所述表面膜层中的功能材料的质量百分含量在0.5~5%。
  14. 一种三维显示装置,包括显示面板和三维显示光栅,其中,
    所述三维显示光栅为权利要求11至13中任意一项所述的三维显示光栅。
PCT/CN2014/091831 2014-07-29 2014-11-21 功能材料及其制备方法、三维显示光栅及显示装置 WO2016015406A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14882143.2A EP3176224B1 (en) 2014-07-29 2014-11-21 Three-dimensional display grating, and display device
US14/769,281 US9541764B2 (en) 2014-07-29 2014-11-21 Functional material and method for preparing the same, three-dimensional display raster and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410367829.5 2014-07-29
CN201410367829.5A CN104231680B (zh) 2013-11-08 2014-07-29 功能材料及其制备方法、三维显示光栅及显示装置

Publications (1)

Publication Number Publication Date
WO2016015406A1 true WO2016015406A1 (zh) 2016-02-04

Family

ID=55221136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091831 WO2016015406A1 (zh) 2014-07-29 2014-11-21 功能材料及其制备方法、三维显示光栅及显示装置

Country Status (3)

Country Link
US (1) US9541764B2 (zh)
EP (1) EP3176224B1 (zh)
WO (1) WO2016015406A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016015408A1 (zh) * 2014-07-29 2016-02-04 京东方科技集团股份有限公司 功能材料及其制备方法、有机发光二极管显示面板
US9718724B2 (en) * 2014-07-29 2017-08-01 Boe Technology Group Co., Ltd. Functional material, its preparation method, sealing material, and display panel
CN109174195B (zh) * 2018-09-10 2021-07-09 湖南科技大学 一种有机-无机共混膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656148A (zh) * 2002-03-19 2005-08-17 通用电气公司 制备聚酰亚胺聚合物的方法
CN101805517A (zh) * 2010-03-02 2010-08-18 天津恒通时代电工材料科技有限公司 一种无机颗粒填充的聚酰亚胺薄膜的制造方法
CN102039100A (zh) * 2010-11-25 2011-05-04 武汉工程大学 一种二亲性接枝聚合物型颜料分散剂及其合成工艺
CN103555003A (zh) * 2013-11-08 2014-02-05 北京京东方光电科技有限公司 改性功能材料、蓝色光阻材料、彩色滤光片及它们的制备方法、显示器件
CN103739205A (zh) * 2013-11-08 2014-04-23 北京京东方光电科技有限公司 功能材料及其制备方法、显示结构形成材料、彩膜基板、显示装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281150A (ja) 1985-06-05 1986-12-11 Nitto Electric Ind Co Ltd ポリイミド粉末およびその製法
JPH0551541A (ja) * 1991-08-26 1993-03-02 Mitsubishi Electric Corp ポリイミド樹脂で被覆された無機充填剤、それを配合した樹脂組成物およびその樹脂組成物で封止された半導体装置
AU666441B2 (en) 1993-05-25 1996-02-08 Lubrizol Corporation, The Composition utilizing dispersants
JP2005029584A (ja) 2003-05-15 2005-02-03 Yokohama Rubber Co Ltd:The 低分子量有機重合体変性層状粘土鉱物及びそれを含むゴム組成物
JP2004341381A (ja) 2003-05-19 2004-12-02 Konica Minolta Photo Imaging Inc 立体画像表示方法及び要素
JP2004341380A (ja) 2003-05-19 2004-12-02 Konica Minolta Photo Imaging Inc 立体画像表示方法及び要素
CN100336847C (zh) 2005-07-14 2007-09-12 上海交通大学 原位合成聚酰亚胺接枝的碳纳米管及其制备方法
CN100999589A (zh) 2006-12-22 2007-07-18 东南大学 合成高介电常数的聚酰亚胺/纳米钛酸钡复合薄膜的方法
CN101260235A (zh) 2007-03-07 2008-09-10 比亚迪股份有限公司 一种聚酰亚胺膜及其制备方法
CN101343425B (zh) 2007-07-10 2011-11-16 同济大学 用作环氧树脂固化剂的功能化碳纳米管及制备方法
CN101426338A (zh) 2007-10-30 2009-05-06 达胜科技股份有限公司 积层板及其制作方法
CN101225208B (zh) 2007-12-18 2010-06-02 福建师范大学 一种核-壳结构的“无机粉体-弹性体”的制备方法
TW201002761A (en) 2008-07-02 2010-01-16 Taimide Tech Inc Multi-layered polyimide film and method of manufacturing the same
US9647242B2 (en) * 2009-09-30 2017-05-09 Dai Nippon Printing Co., Ltd. Heat-conductive sealing member and electroluminescent element
JP2011222333A (ja) * 2010-04-09 2011-11-04 Dainippon Printing Co Ltd 熱伝導性封止部材およびそれにより封止された電子デバイス
KR20140038538A (ko) * 2011-06-28 2014-03-28 이 아이 듀폰 디 네모아 앤드 캄파니 폴리이미드-코팅된 충전제
WO2013031509A1 (en) * 2011-08-26 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, lighting device, and method for manufacturing the light-emitting device
TWI570906B (zh) * 2011-11-29 2017-02-11 半導體能源研究所股份有限公司 密封結構,發光裝置,電子裝置,及照明裝置
TWI577006B (zh) * 2011-11-29 2017-04-01 半導體能源研究所股份有限公司 密封體、發光裝置、電子裝置及照明設備
TW201414773A (zh) * 2012-10-02 2014-04-16 Wintek Corp 有機發光二極體封裝結構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656148A (zh) * 2002-03-19 2005-08-17 通用电气公司 制备聚酰亚胺聚合物的方法
CN101805517A (zh) * 2010-03-02 2010-08-18 天津恒通时代电工材料科技有限公司 一种无机颗粒填充的聚酰亚胺薄膜的制造方法
CN102039100A (zh) * 2010-11-25 2011-05-04 武汉工程大学 一种二亲性接枝聚合物型颜料分散剂及其合成工艺
CN103555003A (zh) * 2013-11-08 2014-02-05 北京京东方光电科技有限公司 改性功能材料、蓝色光阻材料、彩色滤光片及它们的制备方法、显示器件
CN103739205A (zh) * 2013-11-08 2014-04-23 北京京东方光电科技有限公司 功能材料及其制备方法、显示结构形成材料、彩膜基板、显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176224A4 *

Also Published As

Publication number Publication date
EP3176224A4 (en) 2018-02-28
US20160266395A1 (en) 2016-09-15
EP3176224B1 (en) 2019-07-10
EP3176224A1 (en) 2017-06-07
US9541764B2 (en) 2017-01-10

Similar Documents

Publication Publication Date Title
CN104292889B (zh) 功能材料及其制备方法、树脂组合物、膜材、显示器件
WO2016015406A1 (zh) 功能材料及其制备方法、三维显示光栅及显示装置
CN105038810B (zh) 一种液晶物理凝胶复合材料的制备方法及其产品
Wu et al. Shear flow induced long-range ordering of rod-like viral nanoparticles within hydrogel
Zhang et al. Photochromic behavior and luminescent properties of novel hybrid organic–inorganic film doped with Preyssler's heteropoly acid H12 [EuP5W30O110] and polyvinylpyrrolidone
WO2016015412A1 (zh) 功能材料及其制备方法、导光油墨、导光板
WO2016015407A1 (zh) 功能材料及其制备方法、触控结构及触控显示装置
WO2016015408A1 (zh) 功能材料及其制备方法、有机发光二极管显示面板
WO2016015409A1 (zh) 功能材料及其制备方法、配向材料、液晶显示基板
WO2016015411A1 (zh) 功能材料及其制备方法、树脂组合物、膜材、显示器件
Yao et al. Preparation, properties, applications and outlook of graphene-based materials in biomedical field: a comprehensive review
WO2016015413A1 (zh) 功能材料及其制备方法、彩膜材料、彩膜基板
WO2016015410A1 (zh) 功能材料及其制备方法、封接材料、显示面板
Wang et al. Preparation of reversible photoresponsive N-hydroxyethyl spiropyran/polyacrylonitrile fiber materials with mechanical stability by electrospinning for regulating wettability and humidity automatically
Peng et al. A NIR-activated and mild-temperature-sensitive nanoplatform with an HSP90 inhibitor for combinatory chemotherapy and mild photothermal therapy in cancel cells
WO2014176847A1 (zh) 液晶盒、液晶显示装置以及红外材料表面改性方法
WO2014176848A1 (zh) 背光源、液晶显示装置以及红外材料表面改性方法
TWI397465B (zh) 結合負離子及遠紅外線之塑料製品的製作方法
WO2014176849A1 (zh) 触摸屏、液晶显示装置以及红外材料表面改性方法
Cheng et al. NIR-Driven White Light Diode Formed with UCNP@ AIEgen Nanocomposites
US20160085001A1 (en) Touch panel, liquid crystal display device and surface modification method for infrared material
Wang et al. Fabrication and characterization of temperature-sensitive smart luminescent nanoparticles of poly (N-isopropylacrylamide)/lanthanide-polyoxometalates with core-shell structure
TW200808916A (en) Method for dispersing pigment particles

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014882143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014882143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14769281

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE