WO2014176847A1 - 液晶盒、液晶显示装置以及红外材料表面改性方法 - Google Patents

液晶盒、液晶显示装置以及红外材料表面改性方法 Download PDF

Info

Publication number
WO2014176847A1
WO2014176847A1 PCT/CN2013/082473 CN2013082473W WO2014176847A1 WO 2014176847 A1 WO2014176847 A1 WO 2014176847A1 CN 2013082473 W CN2013082473 W CN 2013082473W WO 2014176847 A1 WO2014176847 A1 WO 2014176847A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
liquid crystal
crystal cell
substrate
infrared material
Prior art date
Application number
PCT/CN2013/082473
Other languages
English (en)
French (fr)
Inventor
杨久霞
白峰
赵一鸣
孙晓
白冰
Original Assignee
北京京东方光电科技有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司, 京东方科技集团股份有限公司 filed Critical 北京京东方光电科技有限公司
Priority to US14/348,773 priority Critical patent/US9310636B2/en
Publication of WO2014176847A1 publication Critical patent/WO2014176847A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • A61N2005/066Radiation therapy using light characterised by the wavelength of light used infrared far infrared
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/11Function characteristic involving infrared radiation

Definitions

  • Liquid crystal cell Liquid crystal cell, liquid crystal display device and surface modification method of infrared material
  • Embodiments of the present invention relate to the field of liquid crystal technology, and in particular, to a liquid crystal cell, a liquid crystal display device, a method for modifying an infrared material surface, and a liquid crystal cell provided with an assembly including an infrared material obtained by the surface modification method.
  • Background technique
  • Embodiments of the present invention provide a liquid crystal cell, a liquid crystal display device, an infrared material surface modification method, and a liquid crystal cell provided with an assembly including the infrared material obtained by the surface modification method to emit infrared rays under irradiation of light .
  • a liquid crystal cell wherein the liquid crystal cell is provided with an assembly comprising an infrared material.
  • the component comprising the infrared material is an infrared layer made of an infrared material.
  • the liquid crystal cell includes a color film substrate and an array substrate disposed opposite to each other, and the red outer layer is disposed on the color film substrate and/or the array substrate.
  • the infrared layer is formed on all or part of the surface of the color filter substrate.
  • the color filter substrate is divided into a pixel region and a black matrix region surrounding the pixel region, and the infrared layer is formed in a region of either one.
  • the liquid crystal cell further includes an upper polarizer on one side of the color filter substrate and a common electrode on the other side of the color filter substrate, the color filter substrate including a substrate and a color film.
  • the infrared layer is disposed between the upper polarizer and the substrate;
  • the infrared layer is disposed between the substrate and the color film;
  • the infrared layer is disposed between the color film and the common electrode.
  • the liquid crystal cell further includes a lower polarizer
  • the array substrate includes a substrate and an image Element electrode
  • the infrared layer is disposed between the pixel electrode and the substrate;
  • the infrared layer is disposed between the lower polarizer and the substrate.
  • the component comprising the infrared material comprises at least one of the following components: an upper polarizer, an upper substrate, a color film, a common electrode, a pixel electrode, a lower substrate, and a lower polarizer.
  • the liquid crystal cell includes an upper polarizer, an upper substrate, a color film, a common electrode, a pixel electrode, a lower substrate, and a lower polarizer, wherein at least one of these is made of a material containing an infrared material.
  • the infrared material is: one or a mixture of two or more of biochar, tourmaline, far infrared ceramic, jade powder, aluminum oxide, copper oxide, silver oxide, and silicon carbide.
  • the infrared material has a particle size on the order of nanometers to micrometers.
  • the infrared material is subjected to a surface modification treatment such that it emits far infrared rays when illuminated by light.
  • a liquid crystal display device comprising a backlight, further comprising any one of the liquid crystal cells as described above.
  • a method for surface modification of an infrared material comprising: performing nanocrystallization treatment on an infrared material to obtain nanoparticles of an infrared material;
  • the surface characteristics of the nanoparticles subjected to the nanocrystallization treatment are changed so as to be compatible with the corresponding structural layers of the liquid crystal cell and matched with the properties thereof, and emit far infrared rays when irradiated with light.
  • the nano-processing of the infrared material comprises: grinding and dispersing the infrared material to obtain a dispersion solution of the infrared material having an average particle diameter of 1 nm to 200 nm.
  • the changing the surface characteristics of the nanoparticles after the nanocrystallization treatment comprises:
  • the molar ratio of the methyl methacrylate, styrene, maleimide is 1:1 ⁇ 2:1 ⁇ 2; the infrared material accounts for 8 ⁇ 25% of the total weight of the mixture;
  • the azo initiator solution is added dropwise in an amount of 1 to 5% based on the total weight of the monomers.
  • the environmental condition for changing the surface characteristics of the nanoparticles after the nano-treatment is changed is at a temperature of 35 ° C to 60 ° C while under a nitrogen atmosphere;
  • the duration of the reaction is from 30 minutes to 90 minutes;
  • the temperature of the organic solvent for cooling is 5 to 10 ° C;
  • the cooling is to cool to room temperature
  • the number of times the filtering is performed is three times;
  • the drying is carried out at 70 to 100 ° C for 5 minutes to 20 minutes.
  • a liquid crystal cell in which an assembly comprising an infrared material is provided, the infrared material being obtained by any of the surface modification methods described above.
  • FIG. 1 is a structural view of a liquid crystal cell according to an embodiment of the present invention.
  • liquid crystal cell includes, in addition to the "array substrate”, “color film substrate” and “liquid crystal filled between the array substrate and the color filter substrate” as understood by those having ordinary skill in the art.
  • a liquid crystal cell is provided in which an assembly comprising an infrared material is disposed.
  • the component comprising the infrared material may be an infrared layer made of an infrared material. The details will be described below with reference to FIG. 1.
  • the liquid crystal cell includes an upper polarizer 1, an upper substrate 2, a color film 3, a common electrode 4, a liquid crystal 5, a pixel electrode 6, a lower substrate 7, a lower polarizer 8, and an infrared layer 9, in accordance with an example of the present invention.
  • the upper substrate 2 and the color film 3 constitute a color filter substrate
  • the lower substrate 7 and the pixel electrode 6 constitute an array substrate.
  • the upper and lower substrates 2, 7 may be made of a transparent material such as glass to facilitate the transmission of light.
  • the liquid crystal cell includes a color film substrate and an array substrate disposed opposite each other.
  • the infrared layer 9 is disposed on the color filter substrate, that is, between the upper substrate 2 and the upper polarizer 1. It can be understood that the infrared layer 9 can also be disposed on the array substrate or can be disposed on both the color filter substrate and the array substrate.
  • FIG. 1 the relationship between the components in the liquid crystal cell in the actual application is not necessarily as shown in FIG. 1.
  • the present invention is described by taking FIG. 1 as an example.
  • the infrared layer 9 contains a material (indicated as an infrared material) capable of generating infrared light by heat exchange, and the infrared material can generate infrared light by absorbing energy when irradiated with light, and the infrared light generated is usually at a wavelength of 0.77 ⁇ m to 1 ⁇ . Moreover, the intensity of infrared light can be controlled by the particle size, surface morphology and content of the effective components of the infrared material.
  • the above infrared material may be: biochar, tourmaline ([Na, K, Ca] [Mg, F, Mn, Li, Al] 3 [Al, Cr, Fe, V] 6 [B0 3 ] 3 [Si 6 0 18 ][OH,F] 4 ), a mixture of one or more of far-infrared ceramics, jade powder, aluminum oxide, copper oxide, silver oxide, and silicon carbide.
  • the particle size of the infrared material can range from nanometer to micrometer.
  • the infrared layer 9 is disposed between the upper polarizer 1 and the upper substrate 2. This setting can be realized based on the following method:
  • a color film 3 is formed on the front surface of the upper substrate 2.
  • the color film 3 is prepared on the front side of the upper substrate 2, including:
  • R ⁇ G ⁇ B red, green and blue sub-pixels
  • a protective layer may be applied on the infrared layer 9, and the function of the protective layer is to prevent the infrared layer 9 from being damaged during the preparation process of the color film 3. After the color film 3 is obtained, the protective layer on the infrared layer 9 can be peeled off.
  • the infrared layer 9 may be disposed between the upper substrate 2 and the color film 3.
  • the setting method can be implemented based on the following methods:
  • a color film 3 is formed on the infrared layer 9.
  • the color film 3 is formed on the infrared layer 9 including:
  • a spacer is formed.
  • the infrared layer 9 is disposed between the upper polarizer 1 and the upper substrate 2, or the infrared layer 9 is disposed between the upper substrate 2 and the color film 3, it can be considered that the infrared layer 9 is disposed on the color filter substrate. .
  • the infrared layer 9 may be coated on the entire surface of the color filter substrate, or the infrared layer 9 may be coated on a part of the surface, for example, coated in a region where the black matrix of the color filter substrate is located or coated on the color film.
  • the area where the 1 ⁇ 0 ⁇ 6 sub-pixel of the substrate is located to emit infrared light in the corresponding area or to enhance the intensity of the infrared light in the corresponding area.
  • the infrared layer 9 may be disposed at other positions in the liquid crystal cell, such as: the infrared layer 9 is disposed between the color film 3 and the common electrode 4, or the infrared layer 9 is disposed.
  • the infrared layer 9 is disposed between the pixel electrode 6 and the lower substrate 7, or the infrared layer 9 is disposed between the lower substrate 7 and the lower polarizer 8.
  • a liquid crystal cell which can be doped in the infrared layer 9 when the components of the liquid crystal cell are produced, whether or not the liquid crystal cell is provided with the infrared layer 9.
  • at least one component such as: doping the infrared material contained in the infrared layer 9 in at least one of the following components: an upper polarizer 1, an upper substrate 2, a color film 3, a common electrode 4, a pixel electrode 6, and a lower substrate 7.
  • the infrared material in the infrared layer 9 may be surface-modified, so that the infrared material can achieve compatibility with the corresponding structure of the liquid crystal cell and optimal performance matching, thereby avoiding the influence of the introduction of the infrared material.
  • the purpose of the surface modification treatment is to change the surface morphology and grain boundary structure of the infrared material, so that it is compatible with the corresponding structure of the liquid crystal cell, and does not affect the performance of the display device;
  • the surface morphology and the grain boundary structure of the infrared material are changed, thereby changing the activity of the infrared material, improving the heat exchange capacity, and radiating the far-infrared rays of a specific wavelength at a high specific emissivity.
  • a method of surface modification of an infrared material comprising the steps of:
  • the main purpose of this step 1) is to nano-process the infrared material to obtain nanoparticles of the infrared material.
  • the grinding and dispersing method can be carried out by a usual method for preparing a nano material, for example, by using a conventional grinding apparatus (e.g., a ball mill, a sand mill, etc.) and a dispersing agent in an organic solvent.
  • the infrared material in the nano-dispersion solution may have a weight percentage of 10 to 15%.
  • the step 1) comprises: grinding and dispersing the infrared material to obtain a nano-dispersion solution of the infrared material having an average particle diameter of 1 nm to 200 nm.
  • step 2) is to change the surface characteristics of the dispersed nanoparticles in step 1) to make them compatible with the corresponding structure of the liquid crystal cell, without affecting the performance of the display device; and the purpose of this step is also to pass the nano-treatment
  • the infrared material undergoes further surface modification to change the activity of the infrared material, improve the heat exchange capacity, and emit far infrared rays of a specific wavelength at a high specific emissivity.
  • the step 2) includes:
  • the step 2) includes:
  • azo initiator such as azobisisovaleronitrile, azobisisobutyronitrile, azobisisohexonitrile, azobisisoheptanenitrile or the like in an organic solvent for use;
  • the nano-dispersion of the infrared material is dissolved in a four-necked bottle, and simultaneously stirred, oscillated (frequency is higher than 50 Hz) or shaken;
  • the monomer methyl methacrylate, styrene and maleimide (mass ratio 1:1 ⁇ 2:1 ⁇ 2) are dissolved in organic solvent (monomer and organic solvent by volume ratio 1:1 ⁇ 1: 3), and the obtained solution is added to the above four-necked bottle, wherein the infrared material accounts for 8 to 25%, preferably 10-20%, more preferably 12 to 17% of the total weight of the mixed solution in the four-necked bottle;
  • the environmental conditions for the surface characteristics of the nanoparticles after the nano-treatment is changed are at 35 ° C-60 .
  • the azo initiator solution is added dropwise to the above four bottles in an amount of 1 to 5% of the initiator based on the total weight of the above monomers, stirring, shaking or shaking
  • the reaction is carried out for 30 minutes to 90 minutes under the same treatment;
  • the filtered solid was washed with the above organic solvent for dissolving the monomer, and dried at 70 to 100 ° C for 5 minutes to 20 minutes to obtain a surface-modified infrared material.
  • the organic solvent used in the above method may be a fatty alcohol, a glycol ether, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, monomethyl ether glycol ester, ⁇ - butyrolactone, propionic acid-3-ethyl ether.
  • the dispersing agent used in the above method is a usual dispersing agent such as ⁇ 410, ⁇ 110, ⁇ 163, ⁇ 161, ⁇ 2000 and the like.
  • the dispersant accounts for 5% to 15% by weight of the solution, preferably 7 to 12% by weight.
  • liquid crystal cell in which an assembly comprising an infrared material is provided, the infrared material being obtained according to the above surface modification method.
  • a liquid crystal display device comprising a backlight, and further comprising any of the above liquid crystal cells.
  • the liquid crystal display device may be a display of a portable electronic device such as a portable computer, a mobile phone, an electronic book or the like.
  • the liquid crystal cell of the above embodiment of the present invention is provided with an assembly containing an infrared material
  • the liquid crystal cell when the backlight for providing illumination to the liquid crystal cell or external light (such as sunlight) is irradiated to the liquid crystal cell, the liquid crystal cell can emit a strong penetration. Force and radiation of infrared light. After the infrared light is absorbed by the human body, the water molecules in the human body can resonate, activate the water molecules, enhance the binding force between the water molecules, and thus live. Biomacromolecules such as proteins are used to make biological cells at high vibrational levels. Due to the resonance effect of biological cells, the far-infrared heat energy can be transmitted to the deeper part of the human skin.
  • the liquid crystal display device including the liquid crystal cell of the present invention, when the backlight or external light (such as sunlight) illuminates the liquid crystal cell, the liquid crystal cell can emit infrared light to the outside of the liquid crystal display device, so the liquid crystal The display device is good for health and can also minimize the impact of electromagnetic radiation on health.
  • the backlight or external light such as sunlight
  • the surface-modified infrared material can achieve the compatibility with the structure of the liquid crystal cell and the best matching of the performance, and improve the heat exchange capability of the infrared material with the backlight and the external light without affecting the performance of the liquid crystal display device.
  • the surface-modified infrared material emits far-infrared rays of a specific wavelength at a high specific emissivity.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种包含液晶盒的液晶显示装置及一种红外材料表面改性方法。红外材料通过表面改性方法获得,液晶盒中设置有包含红外材料的组件。由于液晶盒可以发出红外线,因此有利于健康。以及,经过表面改性的红外材料能够实现与液晶盒结构的相容以及性能的最佳匹配,在不影响液晶显示器件性能的情况下提高红外材料与背光及外界的热交换能力,经过表面改性的红外材料以高的比辐射率放射特定波长的远红外线。

Description

液晶盒、 液晶显示装置以及红外材料表面改性方法 技术领域
本发明实施例涉及液晶技术领域,具体涉及一种液晶盒、液晶显示装置、 红外材料表面改性方法, 以及设置有包括由该表面改性方法获得的红外材料 的组件的液晶盒。 背景技术
随着显示技术的快速发展, 人们不仅要求显示器件能实现高清晰、 高对 比度和高的亮度等显示效果, 同时还对显示器件的功能多元化有了进一步要 求, 例如显示器件的娱乐性和保健性。 发明内容
本发明的实施例提供一种液晶盒、 液晶显示装置、 红外材料表面改性方 法以及设置有包括由该表面改性方法获得的红外材料的组件的液晶盒, 以在 光的照射下发射出红外线。
根据本发明的第一方面, 提供一种液晶盒, 其中该液晶盒中设置有包含 红外材料的组件。
在一个示例中, 所述包含红外材料的组件是由红外材料制成的红外层。 在一个示例中, 该液晶盒包括相对设置的彩膜基板和阵列基板, 所述红 外层设置于所述彩膜基板和 /或阵列基板上。
在一个示例中, 所述红外层形成在彩膜基板的整个或部分表面上。
在一个示例中, 所述彩膜基板被分成像素区域和围绕像素区域的黑矩阵 区域, 所述红外层形成在二者之一的区域中。
在一个示例中, 该液晶盒还包括位于彩膜基板一侧的上偏光片和位于彩 膜基板另一侧的公共电极, 所述彩膜基板包括基板和彩膜,
其中所述红外层设置于所述上偏光片与所述基板之间; 或
所述红外层设置于所述基板与所述彩膜之间; 或
所述红外层设置于所述彩膜与所述公共电极之间。
在一个示例中, 该液晶盒还包括下偏光片, 所述阵列基板包括基板和像 素电极,
其中所述红外层设置于所述像素电极与所述基板之间; 或
所述红外层设置于所述下偏光片与所述基板之间。
在一个示例中, 所述包含红外材料的组件包括以下组件中至少之一: 上 偏光片、 上基板、 彩膜、 公共电极、 像素电极、 下基板、 下偏光片。
在一个示例中, 液晶盒包括上偏光片、 上基板、 彩膜、 公共电极、 像素 电极、 下基板、 下偏光片, 其中这些中的至少之一者由包含红外材料的材料 制成。
在一个示例中, 所述红外材料为: 生物炭、 电气石、 远红外陶瓷、 玉石 粉、 氧化铝、 氧化铜、 氧化银以及碳化硅中的一种或两种以上的混合物。
在一个示例中, 所述红外材料的粒径在纳米级至微米级。
在一个示例中, 所述红外材料经过表面改性处理以使其在被光照射时发 射出远红外线。
根据本发明的第二方面, 提供一种液晶显示装置, 包括背光源, 还包括 如上所述的任一种液晶盒。
根据本发明的第三方面, 提供一种红外材料表面改性方法, 包括: 对红外材料进行纳米化处理, 获得红外材料的纳米粒子;
改变进行纳米化处理后的纳米粒子的表面特性, 以使其与液晶盒相应结 构层相容、 并与其性能匹配, 并在被光照射时发射出远红外线。
在一个示例中, 所述对红外材料进行纳米化处理, 包括: 将红外材料研 磨、 分散, 获得平均粒径为 lnm~200nm的红外材料的分散溶液。
在一个示例中, 所述改变进行纳米化处理后的纳米粒子的表面特性, 包 括:
将所述红外材料的^:溶液与含有甲基丙烯酸甲酯、 苯乙烯、 马来酰亚 胺的有机溶液混合, 然后将偶氮类引发剂溶液加入上述混合物中; 以及
待反应结束后, 加入冷却用有机溶剂进行冷却并搅拌, 直至反应产物冷 却后过滤、 干燥, 得到表面改性的红外材料。
在一个示例中, 所述甲基丙烯酸甲酯、 苯乙烯、 马来酰亚胺的摩尔比例 为 1:1~2:1~2; 所述红外材料占混合物总重量的 8~25%; 以及加入所述偶氮 类引发剂溶液时, 偶氮类引发剂溶液以基于单体总重量的 1~5%的量逐滴加 入。
在一个示例中, 所述改变进行纳米化处理后纳米粒子表面特性的环境条 件是在 35° C~60° C温度下、 同时在氮气气氛下;
所述反应的时长为 30分钟 ~90分钟;
所述冷却用有机溶剂的温度为 5~10°C ;
所述冷却为冷却至室温;
进行所述过滤的次数为三次; 以及
所述干燥为在 70~ 100°C下干燥 5分钟 ~20分钟。
根据本发明的第四方面, 提供一种液晶盒, 该液晶盒中设置有包含红外 材料的组件, 所述红外材料通过上述任一的表面改性方法的得到。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例的液晶盒结构图;
附图标记说明:
1、 上偏光片; 2、 上基板; 3、 彩膜; 4、 公共电极; 5、 液晶; 6、 像素 电极; 7、 下基板; 8、 下偏光片; 9、 红外层。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
术语 "液晶盒" 除包括所属领域内具有一般技能的人士所理解的 "阵列 基板"、 "彩膜基板" 和 "填充在阵列基板和彩膜基板之间的液晶" 夕卜, 还包 括覆于彩膜基板的与液晶相反侧的 "上偏光片" 和覆于阵列基板的与液晶相 反侧的 "下偏光片"。 根据本发明一实施例, 提供一种液晶盒, 该液晶盒中设置有包含红外材 料的组件。 例如, 该包含红外材料的组件可以是由红外材料制成的红外层。 以下参照图 1进行详细说明。
图 1是根据本发明一示例的液晶盒, 包括上偏光片 1、上基板 2、彩膜 3、 公共电极 4、 液晶 5、 像素电极 6、 下基板 7、 下偏光片 8和红外层 9。 通常, 上基板 2与彩膜 3构成彩膜基板, 下基板 7与像素电极 6构成阵列基板。 所 述上、下基板 2、 7可以采用诸如玻璃的透明材料制成以利于光的透过。由此, 该液晶盒包括相对设置的彩膜基板和阵列基板。 在本示例中, 所述红外层 9 设置于所述彩膜基板上, 即上基板 2和上偏光片 1之间。 可以理解的是, 所 述红外层 9还可设置于阵列基板上, 或还可设置在彩膜基板和阵列基板二者 上。
当然, 实际应用中的液晶盒中各组件关系不一定如图 1所示, 本发明只 是以图 1为例进行描述。
红外层 9包含能够通过热交换产生红外光线的材料(筒称红外材料),该 红外材料可以在被光照射时通过吸收能量产生红外光线, 产生的红外光线的 波长通常为 0.77 μ ιη~1ιηιη。并且, 红外光线的强弱可以通过红外材料有效成 分的粒径、 表面形态和含量来控制。
上 述 的 该 红 外 材 料 可 以 是 : 生 物 炭 、 电 气 石 ( [Na,K,Ca][Mg,F,Mn,Li,Al]3[Al,Cr,Fe,V]6[B03]3[Si6018][OH,F]4 )、 远红外陶 瓷、 玉石粉、 氧化铝、 氧化铜、 氧化银以及碳化硅中的一种或两种以上的混 合物。 红外材料的粒径可在纳米级至微米级。
如图 1所示, 红外层 9设置于上偏光片 1与上基板 2之间, 这种设置方 式可以基于如下方法实现:
清洗上基板 2;
在上基板 2的背面 (即如图所示的上基板 2面向上偏振片的表面 )涂布 红外层 9, 并固化红外层 9; 以及
在上基板 2的正面形成彩膜 3。
在一个例子中, 在上基板 2的正面制取彩膜 3包括:
在上基板 2的正面上形成黑矩阵;
形成红绿蓝(R\G\B )子像素; 以及 形成隔垫物。
在上述方法中, 还可以在涂布完红外层 9之后, 在红外层 9上涂布保护 层, 该保护层的功能是防止红外层 9在彩膜 3的制取过程受到损伤。 在制取 完彩膜 3后, 可以将红外层 9上的保护层剥离。
可选地, 除了图 1所示的将红外层 9设置于上偏光片 1与上基板 2之间 这种方式以外, 还可以将红外层 9设置于上基板 2与彩膜 3之间, 这种设置 方式可以基于如下方法实现:
清洗上基板 2;
在上基板 2的正面 (即上基板 2相对于上偏光片 1的另一面)涂布红外 层 9, 并固化红外层 9;
在红外层 9上制取彩膜 3。
在一个例子中, 在红外层 9上制取彩膜 3包括:
在红外层 9上形成黑矩阵;
形成 R\G\B子像素; 以及
形成隔垫物。
无论是将红外层 9设置于上偏光片 1与上基板 2之间, 还是将红外层 9 设置于上基板 2与彩膜 3之间,均可以认为是将红外层 9设置于彩膜基板上。 这时, 可以将红外层 9涂布在彩膜基板整个表面上, 也可以将红外层 9涂布 在部分表面上, 例如涂布在彩膜基板的黑矩阵所在的区域或涂布在彩膜基板 的1 \0\6子像素所在区域, 以在相应区域内发出红外光线或者是增强相应区 域的红外光线强度。
需要说明的是, 在本发明其他示例中, 也可以将红外层 9设置于液晶盒 中的其它位置, 如: 将红外层 9设置于彩膜 3与公共电极 4之间, 或者将红 外层 9设置于像素电极 6与下基板 7之间, 或者将红外层 9设置于下基板 7 与下偏光片 8之间等。
根据本发明的另一个实施例, 还提供一种液晶盒, 无论该液晶盒是否设 置有红外层 9, 均可在生产液晶盒的各组件时, 将红外层 9所包含的红外材 料掺杂在至少一个组件中, 如: 将红外层 9所包含的红外材料掺杂在以下组 件中至少之一中: 上偏光片 1、 上基板 2、 彩膜 3、 公共电极 4、 像素电极 6、 下基板 7、 下偏光片 8。 再有, 上述的红外层 9中的红外材料可以是经过表面改性处理的, 这样 该红外材料就能够实现与液晶盒相应结构相容以及最佳的性能匹配, 避免因 红外材料的引入而影响液晶显示器件的性能。 所述表面改性处理的目的在于 改变所述红外材料的表面形态、晶界结构,从而使其与液晶盒相应结构相容, 不影响显示器件的性能; 同时表面改性处理的目的还在于通过改变所述红外 材料的表面形态、 晶界结构, 从而改变红外材料的活性, 提高热交换能力, 以高的比辐射率放射特定波长的远红外线。
根据本发明的再一实施例, 提供一种对红外材料的表面改性的方法, 包 括以下步骤:
1 )对红外材料进行纳米化处理, 获得红外材料的纳米粒子; 以及
2 )改变进行纳米化处理后的纳米粒子的表面特性,以使其与液晶盒相应 结构层相容、 并与其性能匹配, 并在被光照射时发射出红外光线。
该步骤 1 ) 的主要目的是对红外材料进行纳米化处理, 以获得红外材料 的纳米粒子。 该研磨、 分散方法可用制备纳米材料的常用方法进行, 例如可 采用常规的研磨装置(例如球磨机、砂磨机等 )和分散剂在有机溶剂中进行。 该纳米分散溶液中的红外材料的重量百分比可为 10~15%。 在一个示例中, 所述步骤 1 )包括: 将红外材料研磨、 分散, 获得平均粒径为 lnm~200nm的 红外材料纳米分散溶液。
步骤 2 )的目的是改变步骤 1 )中分散后的纳米粒子的表面特性,使其与 液晶盒相应结构相容, 不影响显示器件的性能; 同时该步骤的目的还在于通 过将经过纳米化处理的红外材料进行进一步的表面改性, 从而改变红外材料 的活性, 提高热交换能力, 以高的比辐射率放射特定波长的远红外线。 在一 个示例中, 所述步骤 2 ) 包括:
将所述红外材料的^:溶液与含有甲基丙烯酸甲酯、 苯乙烯、 马来酰亚 胺的有机溶液混合, 然后将偶氮类引发剂溶液加入上述混合物中; 以及
待反应结束后, 加入冷却用有机溶剂进行冷却并搅拌, 直至反应产物冷 却后过滤、 干燥, 得到表面改性的红外材料。
在另一个示例中, 所述步骤 2 ) 包括:
将诸如偶氮二异戊腈、 偶氮二异丁腈、 偶氮二异己腈、 偶氮二异庚腈等 的偶氮类引发剂溶解在有机溶剂中待用; 将红外材料的纳米分散溶 四口瓶内,同时对其进行搅拌、震荡(频 率高于 50Hz )或摇动等处理;
将单体甲基丙烯酸甲酯、 苯乙烯和马来酰亚胺(按摩尔比例 1:1~2:1~2 ) 溶于有机溶剂 (单体和有机溶剂按体积比例 1:1~1:3),并将所得到溶液加入上 述四口瓶内, 其中红外材料占四口瓶内混合溶液总重量的 8~25% , 优选 10-20%, 更优选 12~17%;
所述改变进行纳米化处理后纳米粒子表面特性的环境条件是在 35° C-60 。( 温度下、 同时在氮气气氛下,使偶氮类引发剂溶液以基于以上单体的总重 量的 1~5%的引发剂的量逐滴加入上述四口瓶内, 在搅拌、 震荡或摇动等处 理下进行反应 30分钟 ~90分钟;
反应结束后加入 5~10°C的冷却用有机溶剂进行冷却处理, 同时搅拌直至 反应产物冷却至室温;
过滤三次后, 用上述用于溶解单体的有机溶剂清洗滤出的固体, 在 70~100°C下干燥 5分钟 ~20分钟, 得到表面改性的红外材料。
以上方法中所用有机溶剂可为脂肪醇、 乙二醇醚、 乙酸乙酯、 甲乙酮、 甲基异丁基酮、 单甲基醚乙二醇酯、 γ -丁内酯、 丙酸 -3-乙醚乙酯、 丁基卡必 醇、 丁基卡必醇醋酸酯、 丙二醇单甲基醚、 丙二醇单甲基醚醋酸酯、 环己烷、 二甲苯、 异丙醇中的一种或多种。
以上方法中所用分散剂为常用分散剂, 例如 ΒΥΚ 410、 ΒΥΚ 110、 ΒΥΚ 163、 ΒΥΚ 161、 ΒΥΚ 2000等。分散剂占纳米^:溶液的重量百分比为 5% ~ 15%, 优选为 7 ~ 12%。
根据本发明的又一实施例, 还提供一种液晶盒, 该液晶盒中设置有包含 红外材料的组件, 所述红外材料根据以上表面改性方法得到。
根据本发明的再一实施例, 还提供一种液晶显示装置, 包括背光源, 还 包括以上任一种液晶盒。 该液晶显示装置可以为诸如便携式电脑、 手机、 电 子书等便携式电子设备的显示器。
由于本发明上述实施例的液晶盒中设置有包含红外材料的组件, 因此当 为液晶盒提供光照的背光源或者是外界光(如太阳光等)照射液晶盒时, 液 晶盒可以发出较强渗透力和辐射力的红外光线。 红外光线被人体吸收后, 可 使人体内水分子产生共振, 使水分子活化, 增强水分子间的结合力, 从而活 化蛋白质等生物大分子, 使生物细胞处于高振动能级。 由于生物细胞产生共 振效应, 可将远红外热能传递到人体皮下较深的部分, 因此深层温度上升, 产生的热量由内向外散发, 使毛细血管扩张, 促进血液循环, 强化各组织之 间的新陈代谢, 增加组织的再生能力, 提高机体的免疫能力, 有利于健康, 也能尽量减轻电磁辐射对身体健康的影响。 同理, 在包含本发明的所述液晶 盒的液晶显示装置中, 背光源或者外界光(如太阳光等)照射液晶盒时, 液 晶盒可以向液晶显示装置外部发出红外光线, 因此所述液晶显示装置有利于 健康, 也能尽量减轻电磁辐射对身体健康的影响。 再有, 经过表面改性的红 外材料能够实现与液晶盒结构的相容以及性能的最佳匹配, 在不影响液晶显 示器件性能的情况下提高红外材料与背光及外界光的热交换能力, 经过表面 改性的红外材料以高的比辐射率放射特定波长的远红外线。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种液晶盒, 其中该液晶盒中设置有包含红外材料的组件。
2、根据权利要求 1所述的液晶盒,其中所述包含红外材料的组件是由红 外材料制成的红外层。
3、根据权利要求 2所述的液晶盒,包括相对设置的彩膜基板和阵列基板, 所述红外层设置于所述彩膜基板和 /或阵列基板上。
4、根据权利要求 3所述的液晶盒,其中所述红外层形成在彩膜基板的整 个或部分表面上。
5、根据权利要求 4所述的液晶盒,其中所述彩膜基板被分成像素区域和 围绕像素区域的黑矩阵区域, 所述红外层形成在二者之一的区域中。
6、根据权利要求 3所述的液晶盒,还包括位于彩膜基板一侧的上偏光片 和位于彩膜基板另一侧的公共电极, 所述彩膜基板包括基板和彩膜,
其中所述红外层设置于所述上偏光片与所述基板之间; 或
所述红外层设置于所述基板与所述彩膜之间; 或
所述红外层设置于所述彩膜与所述公共电极之间。
7、根据权利要求 3所述的液晶盒,还包括下偏光片, 所述阵列基板包括 基板和像素电极,
其中所述红外层设置于所述像素电极与所述基板之间; 或
所述红外层设置于所述下偏光片与所述基板之间。
8、根据权利要求 1所述的液晶盒,其中所述包含红外材料的组件包括以 下组件中至少之一: 上偏光片、 上基板、 彩膜、 公共电极、 像素电极、 下基 板、 下偏光片。
9、 根据权利要求 1所述的液晶盒, 包括上偏光片、 上基板、 彩膜、 公共 电极、 像素电极、 下基板、 下偏光片, 其中这些中的至少之一者由包含红外 材料的材料制成。
10、 根据权利要求 1所述的液晶盒, 其中所述红外材料为: 生物炭、 电 气石、 远红外陶瓷、 玉石粉、 氧化铝、 氧化铜、 氧化银以及碳化硅中的一种 或两种以上的混合物。
11、 根据权利要求 1所述的液晶盒, 其中所述红外材料的粒径在纳米级 至微米级。
12、 根据权利要求 1所述的液晶盒, 其中所述红外材料经过表面改性处 理以使其在被光照射时发射出红外光线。
13、一种液晶显示装置, 包括背光源,还包括如权利要求 1至 12任一项 所述的液晶盒。
14、 一种红外材料表面改性方法, 包括:
对红外材料进行纳米化处理, 获得红外材料的纳米粒子; 以及
改变进行纳米化处理后的纳米粒子的表面特性, 以使其与液晶盒相应结 构层相容、 并与其性能匹配, 并在被光照射时发射出红外光线。
15、根据权利要求 14所述的方法,其中所述对红外材料进行纳米化处理, 包括: 将红外材料研磨、 分散, 获得平均粒径为 lnm~200nm的红外材料的 溶液。
16、根据权利要求 15所述的方法,其中所述改变进行纳米化处理后的纳 米粒子的表面特性, 包括:
将所述红外材料的^:溶液与含有甲基丙烯酸甲酯、 苯乙烯、 马来酰亚 胺的有机溶液混合, 然后将偶氮类引发剂溶液加入上述混合物中; 以及
待反应结束后, 加入冷却用有机溶剂进行冷却并搅拌, 直至反应产物冷 却后过滤、 干燥, 得到表面改性的红外材料。
17、 根据权利要求 16所述的方法, 其中所述甲基丙烯酸甲酯、 苯乙烯、 马来酰亚胺的摩尔比例为 1:1~2:1~2; 所述红外材料占混合物总重量的 8-25%; 以及加入所述偶氮类引发剂溶液时, 偶氮类引发剂溶液以基于单体 总重量的 1~5%的量逐滴加入。
18、根据权利要求 16所述的方法,其中所述改变进行纳米化处理后纳米 粒子表面特性的环境条件是在 35° C~60° C温度下、 同时在氮气气氛下;
所述反应的时长为 30分钟 ~90分钟;
所述冷却用有机溶剂的温度为 5~10°C ;
所述冷却为冷却至室温;
进行所述过滤的次数为三次; 以及
所述干燥为在 70~ 100°C下干燥 5分钟 ~20分钟。
19、 一种液晶盒, 该液晶盒中设置有包含红外材料的组件, 所述红外材 料是根据权利要求 14-18任一项所述的表面改性方法得到。
PCT/CN2013/082473 2013-04-28 2013-08-28 液晶盒、液晶显示装置以及红外材料表面改性方法 WO2014176847A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/348,773 US9310636B2 (en) 2013-04-28 2013-08-28 Liquid crystal cell, liquid crystal display device and surface modification method for infrared material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310157493.5A CN104122702B (zh) 2013-04-28 2013-04-28 一种液晶盒、液晶显示装置以及红外材料表面改性方法
CN201310157493.5 2013-04-28

Publications (1)

Publication Number Publication Date
WO2014176847A1 true WO2014176847A1 (zh) 2014-11-06

Family

ID=51768177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082473 WO2014176847A1 (zh) 2013-04-28 2013-08-28 液晶盒、液晶显示装置以及红外材料表面改性方法

Country Status (3)

Country Link
US (1) US9310636B2 (zh)
CN (1) CN104122702B (zh)
WO (1) WO2014176847A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115995221B (zh) * 2023-03-23 2023-06-23 惠科股份有限公司 一种显示装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1099892A (zh) * 1993-08-31 1995-03-08 三星电管株式会社 发射远红外线的图像显示装置
US6133979A (en) * 1996-09-23 2000-10-17 Lg Electronics Inc. Liquid crystal display device with internal heating element
CN1642375A (zh) * 2004-01-16 2005-07-20 铼宝科技股份有限公司 具远红外线功能的平面显示装置
KR20070069399A (ko) * 2005-12-28 2007-07-03 삼성에스디아이 주식회사 원적외선 방출 평면표시장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203444203U (zh) * 2013-04-28 2014-02-19 北京京东方光电科技有限公司 一种液晶盒、液晶显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1099892A (zh) * 1993-08-31 1995-03-08 三星电管株式会社 发射远红外线的图像显示装置
US6133979A (en) * 1996-09-23 2000-10-17 Lg Electronics Inc. Liquid crystal display device with internal heating element
CN1642375A (zh) * 2004-01-16 2005-07-20 铼宝科技股份有限公司 具远红外线功能的平面显示装置
KR20070069399A (ko) * 2005-12-28 2007-07-03 삼성에스디아이 주식회사 원적외선 방출 평면표시장치

Also Published As

Publication number Publication date
US9310636B2 (en) 2016-04-12
CN104122702A (zh) 2014-10-29
US20150103293A1 (en) 2015-04-16
CN104122702B (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
CN105026963B (zh) 黑矩阵基板
Dong et al. Self-purification-dependent unique photoluminescence properties of YBO3: Eu3+ nanophosphors under VUV excitation
CN108192590A (zh) 一种基于稀土上转换材料的聚偶氮苯多功能纳米粒子的制备方法
CN103540310A (zh) 用于多形貌稀土上转换发光纳米晶表面直接介孔修饰的制备方法
CN111116990B (zh) 一种紫外-蓝光吸收剂及其制备方法和制成的紫外-蓝光吸收材料
WO2018137262A1 (zh) 显示装置及其制备方法
CN203784737U (zh) 一种背光源、液晶显示装置
WO2014176847A1 (zh) 液晶盒、液晶显示装置以及红外材料表面改性方法
JP6679651B2 (ja) タッチパネル及び液晶ディスプレイ
CN105390529B (zh) Oled显示面板及其蓝光滤除方法
WO2014176913A1 (zh) 蓝色光阻组合物、其制备方法、彩色滤光片和显示器件
CN203444203U (zh) 一种液晶盒、液晶显示装置
US20160266395A1 (en) Functional material and method for preparing the same, three-dimensional display raster and display device
WO2014176848A1 (zh) 背光源、液晶显示装置以及红外材料表面改性方法
WO2016015407A1 (zh) 功能材料及其制备方法、触控结构及触控显示装置
US20160259241A1 (en) Black photoresist composition, method of preparing the same, color filter, and display device
US20160085001A1 (en) Touch panel, liquid crystal display device and surface modification method for infrared material
US9606274B2 (en) Red photoresist composition, method of preparing the same, color filter, and display device
US10119069B2 (en) Functional material, its preparation method, color filter material, and color filter substrate
WO2014176916A1 (zh) 绿色光阻组合物、其制备方法、彩色滤光片和显示器件
WO2016015408A1 (zh) 功能材料及其制备方法、有机发光二极管显示面板
Chu et al. Blue-light-blocking films enabled by optimal absorption in plasmonic nanoparticles
CN108148570A (zh) 一种稀土氟化物/聚偶氮苯/n-异丙基丙烯酰胺复合多功能纳米粒子的制备方法
Cheng et al. NIR-Driven White Light Diode Formed with UCNP@ AIEgen Nanocomposites
JP2008129292A (ja) 色純度向上シート、光学装置、画像表示装置、液晶表示装置および太陽電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14348773

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883500

Country of ref document: EP

Kind code of ref document: A1