WO2014176913A1 - 蓝色光阻组合物、其制备方法、彩色滤光片和显示器件 - Google Patents

蓝色光阻组合物、其制备方法、彩色滤光片和显示器件 Download PDF

Info

Publication number
WO2014176913A1
WO2014176913A1 PCT/CN2013/089857 CN2013089857W WO2014176913A1 WO 2014176913 A1 WO2014176913 A1 WO 2014176913A1 CN 2013089857 W CN2013089857 W CN 2013089857W WO 2014176913 A1 WO2014176913 A1 WO 2014176913A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
emitting
photoresist composition
blue photoresist
blue
Prior art date
Application number
PCT/CN2013/089857
Other languages
English (en)
French (fr)
Inventor
杨久霞
白峰
赵一鸣
孙晓
白冰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/388,156 priority Critical patent/US9541687B2/en
Publication of WO2014176913A1 publication Critical patent/WO2014176913A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters

Definitions

  • Embodiments of the present invention relate to a blue photoresist composition capable of emitting infrared light, and a method of preparing the blue photoresist composition capable of emitting infrared light, comprising blue formed by the blue photoresist composition capable of emitting infrared light a color filter of a sub-pixel, and a display device including the color filter.
  • Background technique
  • Conventional display devices enable color display by means of conventional color filters.
  • Conventional color filters for blue photoresist materials include colorants for coloring, unsaturated monomers, alkali-soluble resins, solvents, photoinitiators, additives, and the like.
  • far infrared rays have strong penetrating power and radiation force, and have significant temperature control effects and resonance effects.
  • water molecules in the body can resonate, activate water molecules, and enhance their intermolecular binding force. , thereby activating biological macromolecules such as proteins, so that the living cells are at the highest vibrational level.
  • biological macromolecules such as proteins
  • Due to the resonance effect of biological cells the far-infrared heat energy can be transmitted to the deeper part of the human skin, and the deep temperature rises below, and the generated warm heat is emitted from the inside to the outside.
  • This action intensity expands the capillaries, promotes blood circulation, strengthens the metabolism between tissues, increases the regenerative capacity of the tissues, enhances the body's immunity, and regulates the abnormal state of excitement, thereby playing a role in medical care.
  • a blue photoresist composition is developed on the basis of a conventional blue photoresist material, which increases the function of emitting infrared rays, so that the display device produced therefrom has both the traditional display effect and the The efficacy of health care.
  • Embodiments of the present invention provide a blue photoresist composition capable of emitting infrared light, which can generate a sufficient amount of infrared rays, and maintain display performance such as conventional transmittance and chromaticity, and at the same time realizes health care and display.
  • a blue photoresist composition capable of emitting infrared light, comprising the following components by weight based on the total weight of the composition: 2% to 20% of a color mixed material, 30% to 90% Solvent, 2% to 25% alkali-soluble resin, 2% to 20% unsaturated monomer, 0.01% to 1% photoinitiator, and 0.005% to 0.02% other additives; wherein the coloring mixed material It includes a colorant and a surface-modified infrared light-emitting material in a weight ratio of 20:1 to 1:1.
  • the colored mixed material comprises a colorant and a surface-modified infrared light-emitting material in a weight ratio of 6:1 to 1 :1.
  • the infrared light emitting material is one or more selected from the group consisting of tourmaline, biochar, far infrared ceramic, jade powder, aluminum oxide, copper oxide, silver oxide, and silicon carbide.
  • the infrared light emitting material is modified by the surface of the polymeric material.
  • the polymeric material is a copolymer of decyl acrylate-styrene-maleimide.
  • the surface-modified infrared light-emitting material has an average particle diameter of from 1 nm to 200 nm.
  • the tourmaline is blue tourmaline, and has a density of 3.06 to 3.26 g/cm 3 and a refractive index of 1.62 to 1.64.
  • a blue photoresist composition capable of emitting infrared light, comprising the steps of:
  • the infrared light emitting material is ground and dispersed in a solvent to obtain a nano-dispersed solution containing infrared light-emitting material nanoparticles having an average particle diameter of 1 nm to 200 nm; surface modification, followed by solvent removal to obtain infrared modified by the polymer material a light-emitting material nanoparticle; mixing the polymer material-modified infrared light-emitting material nanoparticle with a colorant to obtain a colored mixed material;
  • the colored mixed material and solvent, alkali-soluble resin, ethylenically unsaturated monomer, light guide The hair agent is mixed with other additives to obtain a blue photoresist composition capable of emitting infrared light.
  • a color filter comprising a blue sub-pixel formed of the above-described blue photoresist composition capable of emitting infrared light.
  • a display device including the above color filter is provided.
  • the display device produced by the blue light-resisting composition capable of emitting infrared light can generate a sufficient amount of infrared rays and maintain the original display properties such as transmittance and chromaticity, thereby simultaneously achieving health care and display.
  • Embodiments of the present invention provide a blue photoresist composition capable of emitting infrared light, comprising: 2% to 20% of a coloring mixed component, 30% to 90% of a solvent based on the total weight of the composition 2% ⁇ 25% alkali soluble resin, 2% ⁇ 20% unsaturated monomer, 0.01% ⁇ 1% photoinitiator and 0.005% ⁇ 0.02% other additives.
  • the color mixed material content is 2 to 20%, preferably 5% to 20%, more preferably 5% to 15%, based on the total weight of the composition.
  • the colored mixed material comprises a weight ratio of 20:1 to 1:1, preferably 6:1 to 1:1, more preferably 3:1 to 1 : 1 colorant and surface modified infrared light emitting material.
  • the above colorant may be a blue pigment, a blue dye, a purple pigment, or a mixture of two or more thereof.
  • Examples of the above pigments may include: blue pigments such as ⁇ 1, ⁇ 2, ⁇ 15, ⁇ 15:3, PBI 5:4, PBI 5:6, PBI 6 , ⁇ 22, RB.60 or RB.66, etc.; purple pigment, mouth RV.32, RV36, RV.38, RV39, PV 23, RV.9 or RV.1, etc.
  • Examples of the above blue dye may include C ⁇ Direct Blue 288, CI Direct Blue93, CI Direct Blue 116, CI Direct Blue 148, CI Direct Blue 149, CI Direct Blue 150, CI Direct Blue 159, CI Direct Blue 162, C ⁇ Direct 163 and so on.
  • the above-mentioned infrared light-emitting material is a material capable of generating infrared light by heat exchange, and examples thereof may include a material selected from tourmaline ([Na, K, Ca] [Mg, F, Mn, Li, Al] 3 [Al, Cr, Fe ,V] 6 [B0 3 ] 3 [Si 6 0 18 ][OH,F]4> ⁇
  • tourmaline [Na, K, Ca] [Mg, F, Mn, Li, Al] 3 [Al, Cr, Fe ,V] 6 [B0 3 ] 3 [Si 6 0 18 ][OH,F]4> ⁇
  • the infrared light emitting material is preferably tourmaline, biochar, alumina or silicon carbide.
  • the tourmaline is preferably blue tourmaline, and its hardness is 7 ⁇ 7.2, the density is 3.06 ⁇ 3.26g / cm 3 , and the refractive index is 1.62 ⁇ 1.64.
  • the above-mentioned infrared light-emitting material cannot be used in the embodiment of the present invention without surface treatment because it is incompatible with the organic resin and the pigment component in the blue photoresist composition system, and is liable to cause precipitation and separation of the photoresist composition.
  • the phase causes the performance of the photoresist material to deteriorate, affecting the uniformity of the display effect.
  • the surface modification treatment of the above-mentioned infrared light emission treatment is performed before use, in order to change the surface morphology and the grain boundary structure, thereby changing the activity of the material, improving the heat exchange capacity, and enabling it to emit a specific wavelength at a high specific emissivity. Far infrared rays.
  • the surface modification process for the infrared light emitting material may include:
  • the grinding and dispersion method can be carried out by a usual method for preparing a nano material, for example, by using a conventional grinding apparatus (e.g., a ball mill, a sand mill, etc.) and a dispersing agent in an organic solvent.
  • the weight percentage of the infrared light-emitting material in the nano-dispersion solution may be 10 to 15% based on the total weight of the nano-dispersion solution.
  • step 2) further subjecting the nano-treated infrared light-emitting material to surface modification, the purpose of which is to change the surface characteristics of the dispersed nanoparticles in step 1) to make them compatible with the blue photoresist composition system.
  • the nano-treated infrared light-emitting material to surface modification, the purpose of which is to change the surface characteristics of the dispersed nanoparticles in step 1) to make them compatible with the blue photoresist composition system.
  • An azo initiator such as azobisisovaleronitrile, azobisisobutyronitrile, azobisisohexonitrile, azobisisoheptanenitrile or the like is dissolved in an organic solvent for use;
  • the nano-light of the infrared light-emitting material is dissolved in a four-necked bottle, and simultaneously stirred, oscillated (frequency is higher than 50 Hz) or shaken;
  • the filtered solid was washed three times with the above organic solvent, and dried at 70 to 100 ° C for 5 to 20 minutes to obtain a surface-modified infrared light-emitting material.
  • the solvent used in the above steps may be fatty alcohol, glycol ether, ethyl acetate, ethyl ketone, decyl isobutyl ketone, monodecyl ether ethylene glycol ester, ⁇ -butyrolactone, propionic acid-3- One or more of diethyl ether, butyl carbitol, butyl carbitol acetate, propylene glycol monodecyl ether, propylene glycol monodecyl ether acetate, cyclohexane, diphenylbenzene, isopropanol .
  • agents used in the above steps are commonly used dispersants, such as BYK 410, BYK 110, BYK 163, BYK 161, BYK 2000, CN2284, Solsperse 32500, Solsperse 22000 and the like.
  • the percentage by weight of the nano-dispersed solution is 5% to 15%, preferably 7 to 12%.
  • the weight percentage of the solvent may be 30% to 90%, preferably 40% to 90%, more preferably 45% to 90%, based on the total weight of the composition. %.
  • the solvent may be one or more of an acidic solvent, an alkaline solvent, and a neutral solvent.
  • the acidic solvent may include capric acid, acetic acid or chloroform and the like.
  • the basic solvent may include some basic ketones, esters, ethers or some aromatic hydrocarbon solvents and the like.
  • Examples of the neutral solvent may include fatty alcohols, glycol ethers, ethyl acetate, ethyl ketone, decyl isobutyl ketone, monodecyl ether ethylene glycol ester, ⁇ -butyrolactone, propionic acid-3- Ethyl ether, butyl carbitol, butyl carbitol acetate, propylene glycol monodecyl ether, propylene glycol monodecyl ether acetate, cyclohexane, diphenylbenzene, isopropanol and the like.
  • propylene glycol monodecyl ether propylene glycol monodecyl ether acetate, cyclohexane, butyl carbitol, butyl carbitol acetate or ⁇ -butyrolactone, or a mixture thereof.
  • the alkali-soluble resin content is 2 wt% to 25 wt%, preferably 5 wt% to 20 wt%, based on the total weight of the composition, more preferably Choose 5 wt% ⁇ 18 wt%.
  • the alkali-soluble resin may be an aromatic acid (mercapto) acrylate half ester (for example, SB401, SB404 from Sartomer), a styrene and maleic anhydride copolymer, or a combination of two or more.
  • the monomer may be an unsaturated monomer, and the content thereof is 2 wt% to 20 wt%, preferably 5 wt%, based on the total weight of the composition. 20 wt%, more preferably 5 wt% ⁇ 15 wt%.
  • the unsaturated monomer may be an aliphatic urethane acrylate, a polyether acrylate, an acrylate, a hydroxyl group-containing polyester acrylate, a maleimide, a phthalimide or a 2-hydroxy-4-orthobenzene.
  • a bisimide a hydroxyl group-containing acid, a hydroxyl group-containing acid anhydride or an epoxy resin having a plurality of mercaptobenzene epoxy groups in the main chain; or a combination thereof, or a combination of two or more of the above.
  • the photoinitiator content is 0.01 wt% to 1 wt% based on the total weight of the composition, wherein the photoinitiator may be an ⁇ -amino ketone.
  • Photoinitiators such as Irgacure 907, Igracure 379, Irgacurel 300; or acylphosphine oxide photoinitiators, such as Irgacure 819, Irgacure 819 DW, Irgacure 2010, Darocur®, Darocur 4265; may be alpha-hydroxyketone photoinitiators such as Darocur 1173, Irgacure 184, Irgacure 2959, Irgacure500, IrgacurelOOO; or benzoyl phthalic acid photoinitiator, such as Darocur MBF, Irgacure 754; may be an oxime ester photoinitiator, such as Ciba OXE 01, Ciba OXE 02, CGI 242, etc.;kind or a mixture of two or more.
  • the other additive content is 0.005 wt% to 0.02 wt%, preferably 0.005 wt% to 0.015 wt%, more preferably 0.005 wt%, based on the total weight of the composition. % ⁇ 0.01 wt%.
  • the additive may be an adhesion promoter, a leveling agent, an antifoaming agent, a light stabilizer, or the like.
  • the surface-modified colorant and the infrared light-emitting material are mixed in a weight ratio of 20:1 to 1:1 to obtain a colored mixed material.
  • the coloring mixed material, the solvent, the alkali-soluble resin, the ethylenically unsaturated monomer, the photoinitiator, and other additives are uniformly mixed at the above content, for example, by stirring, shaking, or the like, thereby preparing the infrared light-emitting blue of the present invention.
  • G-1 Adhesion Promoter A- 186 (GE Toshiba)
  • G-2 Leveling agent BYK 333 (BYK)
  • H-2 BYK 2000 (BYK)
  • the above reaction was filtered, and the filtered solid was washed three times with 50 mL of hydrazine and dried at 90 ° C for 15 min to obtain yttrium acrylate-styrene-maleimide copolymer-modified alumina particles.
  • the average particle size was 24 nm.
  • the blue pigment RB.15:6 and the above-mentioned modified alumina particles were mixed in a weight ratio of 19:1 to obtain a coloring mixed material -1.
  • the coloring mixed material -2 to the coloring mixed material - ⁇ was prepared in the same manner as in Example 1 except that the mixture of the blue pigment and the modified infrared light-emitting material was as shown in Table 1.
  • a dispersant solution was prepared by mixing 8 g of SYNEGIST 2150, 75 g of BYK 2000 and 40 g of CN 2284 with 423.5 g of solvent PMA by stirring. To the solution, 100 g of the colored mixed material -1 obtained in Example 1 was added, and the pigment was sufficiently wetted by stirring to obtain a mixed solution. The mixed solution was ground and dispersed by a sand mill to obtain a colored mixed material: liquid -1 in which the percentage of the colored mixed material was 15.5%.
  • Alkali-soluble resin Dl (10%), D-2 (2%), unsaturated monomer E-1 (10%), E-2 (3.8%), photoinitiator Fl (0.007%), F-2 (0.008%) and other additives Gl (0.002%) and G-2 (0.016%) were added to solvent C-1, stirred until completely dissolved to obtain light.
  • Curing solution The colored mixed material prepared as described above is added to the photocuring solution, and after grinding and mixing by a sand mill, the solvent C-1 is replenished so that the percentage of the colored mixed material in the blue photoresist composition is 15%, and The percentage of the solvent C-1 was 59.167%, whereby a blue photoresist composition-1 was obtained.
  • the blue resist compositions -2 to - ⁇ were prepared in the same manner as in Example 3 except that the composition ratios as shown in Table 1 were employed.
  • the blue photoresist compositions-1 to 10 obtained in Examples 3 to 12 were coated on a glass substrate by a spin coating method. After baking the substrate coated with the blue photoresist composition at a temperature of 90 ° C for 7 minutes, the blue resist composition was exposed to ultraviolet light having an illuminance of 250 mJ/cm 2 for an exposure time of 25 seconds. After the exposed glass substrate was developed in an alkaline developing solution, it was baked at a temperature of 200 ° C for 30 minutes to form blue sub-pixel patterns 1 to 10 having a thickness of 1.5 ⁇ m.
  • Infrared specific radiance IRE-1 type infrared radiation meter
  • chromaticity measurement Shiadzu UV-2550
  • the infrared specific radiation rate of the photoresist composition is also low, and the infrared specific radiation rate of the photoresist composition increases as the content of the infrared light-emitting material in the colored mixed material increases. Large, but they have no significant effect on the transmittance of photoresist materials.
  • a comparative blue photoresist composition was prepared in accordance with the procedure of Example 3.
  • Example 3 The two blue photoresist compositions prepared in Example 3 and Comparative Example 1 were placed in a dark environment of 0 to 4 ° C to observe the delamination and precipitation of the photoresist composition.
  • Comparative blue photoresist composition After 24 hours, the surface appeared crust and a small amount of precipitate was formed at the bottom of the container; after 48 hours, a large amount of agglomeration occurred during stirring, and solid particles agglomerated severely.
  • Blue photoresist composition -1 No surface crust or bottom sedimentation was observed up to 48 hours, and agglomeration and agglomeration did not occur after stirring.
  • the blue light-resisting composition capable of emitting infrared light can emit far-infrared rays having a health effect by adding nanoparticles that have undergone surface-modified infrared light-emitting materials while maintaining a conventional display. performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明实施例公开了一种能发射红外光的蓝色光阻组合物,制备该能发射红外光的蓝色光阻组合物的方法,包括由该能发射红外光的蓝色光阻组合物形成的蓝色子像素的彩色滤光片,以及包括该彩色滤光片的显示器件。所述能发射红外光的蓝色光阻组合物包括基于所述组合物总重的如下重量百分比的组分:2%~20%的着色混合材料、30%~90%的溶剂、2%~25%的碱可溶性树脂、2%~20%的不饱和单体、0.01%~1%的光引发剂和0.005%~0.02%的其它添加剂;其中所述着色混合材料包括重量比为20:1~1:1的着色剂和表面改性的红外光发射材料。

Description

蓝色光阻组合物、 其制备方法、 彩色滤光片和显示器件 技术领域
本发明实施例涉及一种能发射红外光的蓝色光阻组合物, 制备该能发射 红外光的蓝色光阻组合物的方法, 包括由该能发射红外光的蓝色光阻组合物 形成的蓝色子像素的彩色滤光片, 以及包括该彩色滤光片的显示器件。 背景技术
随着显示技术的快速发展, 人们不仅要求显示器件能实现清晰、 仿真的 显示效果, 同时还对显示器件的功能多元化有了进一步要求, 例如显示器件 的娱乐性和保健性。
传统的显示器件借助于常规的彩色滤光片来实现彩色显示。 常规的彩色 滤光片用蓝色光阻材料包括用于着色的着色剂、 不饱和单体、碱可溶性树脂、 溶剂、 光引发剂、 添加剂等成分。
众所周知的, 远红外线有较强的渗透力和辐射力, 具有显著的温控效应 和共振效应, 被人体吸收后, 可使体内水分子产生共振, 使水分子活化, 增 强其分子间的结合力, 从而活化蛋白质等生物大分子, 使生物体细胞处于最 高振动能级。 由于生物细胞产生共振效应, 可将远红外热能传递到人体皮下 较深的部分, 以下深层温度上升, 产生的温热由内向外散发。 这种作用强度, 使毛细血管扩张, 促进血液循环, 强化各组织之间的新陈代谢, 增加组织的 再生能力, 提高机体的免疫能力, 调节精神的异常兴奋状态, 从而起到医疗 保健的作用。
基于以上需求和技术背景, 在常规的蓝色光阻材料的基础上开发一种蓝 色光阻组合物, 增加了发射红外线的功能, 使得由其制得的显示器件既具有 传统的显示效果, 又具有医疗保健的功效。 发明内容 本发明实施例提供了一种能发射红外光的蓝色光阻组合物, 其既能产生 足够量的红外线, 又能保持常规的透过率、 色度等显示性能, 同时实现了保 健与显示。
根据本发明的一个方面, 提供一种能发射红外光的蓝色光阻组合物, 包 括基于组合物总重的如下重量百分比的组分: 2% ~ 20%的着色混合材料、 30% ~ 90%的溶剂、 2% ~ 25%的碱可溶性树脂、 2% ~ 20%的不饱和单体、 0.01% ~ 1%的光引发剂和 0.005% ~ 0.02%的其它添加剂; 其中, 所述着色混 合材料包括重量比为 20: 1 ~ 1: 1的着色剂和表面改性的红外光发射材料。
根据本发明的一个实施方式, 所述着色混合材料包括重量比为 6:1 ~ 1 : 1 的着色剂和表面改性的红外光发射材料。
根据本发明的一个实施方式, 所述红外光发射材料为选自电气石、 生物 炭、 远红外陶瓷、 玉石粉、 氧化铝、 氧化铜、 氧化银以及碳化硅中的一种或 多种。
根据本发明的另一实施方式, 所述红外光发射材料经聚合物材料表面改 性。
所述聚合物材料为曱基丙烯酸曱酯 -苯乙烯-马来酰亚胺的共聚物。
所述表面改性的红外光发射材料具有 lnm ~ 200nm的平均粒径。
根据本发明的又一实施方式, 所述电气石为蓝色电气石, 且密度为 3.06 ~ 3.26g/cm3, 折光率为 1.62 ~ 1.64。
根据本发明的另一个方面, 提供一种制备能发射红外光的蓝色光阻组合 物的方法, 包括如下步骤:
将红外光发射材料研磨并分散于溶剂中, 得到包含平均粒径为 lnm ~ 200nm的红外光发射材料纳米粒子的纳米分散溶液; 面改性, 随后去除溶剂,得到经聚合物材料改性的红外光发射材料纳米粒子; 将所述经聚合物材料改性的红外光发射材料纳米粒子与着色剂混合, 得 到着色混合材料; 和
将所述着色混合材料与溶剂、 碱可溶性树脂、 乙烯性不饱和单体、 光引 发剂和其他添加剂混合, 得到能发射红外光的蓝色光阻组合物。
根据本发明的又一个方面, 提供一种彩色滤光片, 包括由上述能发射红 外光的蓝色光阻组合物形成的蓝色子像素。
根据本发明的又一个方面, 提供一种显示器件, 包括上述彩色滤光片。 由所述能发射红外光的蓝色光阻组合物制得的显示器件既能产生足够量 的红外线, 又能保持原来的透过率、 色度等显示性能, 从而同时实现保健与 显示。 具体实施方式
本发明的实施例提供了一种能发射红外光的蓝色光阻组合物, 包括基于 组合物总重的如下重量百分比的组分 2% ~ 20%的着色混合材料、 30% ~ 90% 的溶剂、 2% ~ 25%的碱可溶性树脂、 2% ~ 20%的不饱和单体、 0.01% ~ 1%的 光引发剂和 0.005% ~ 0.02%的其它添加剂。
在本发明实施例的能发射红外线的蓝色光阻组合物中, 基于组合物总 重, 着色混合材料含量为 2 ~ 20% , 优选 5% ~ 20% , 更优选 5% ~ 15%。
在本发明实施例的能发射红外光的蓝色光阻组合物中, 上述着色混合材 料包括重量比为 20:1 ~ 1:1 , 优选 6:1 ~ 1:1, 更优选 3:1 ~ 1:1的着色剂和表面 改性的红外光发射材料。
上述着色剂可为蓝色颜料、 蓝色染料、 紫色颜料, 或其两种或更多种的 混合物。
上述颜料的实例可包括: 蓝色颜料, 如 Ρ·Β·1、 Ρ·Β·2、 Ρ·Β·15、 Ρ·Β·15:3、 P.B.I 5:4, P.B.I 5 :6, P.B.I 6, Ρ·Β·22、 RB.60或 RB.66等; 紫色颜料, 口 RV.32、 RV36、 RV.38、 RV39、 P.V. 23, RV.9或 RV.1等。
上述蓝色染料的实例可包括 C丄 Direct Blue 288, C.I. Direct Blue93, C.I. Direct Blue 116, C.I. Direct Blue 148, C.I. Direct Blue 149, C.I. Direct Blue 150, C.I. Direct Blue 159, C.I. Direct Blue 162, C丄 Direct 163等。
上述红外光发射材料为能通过热交换产生红外光的材料, 其实例可包括 选自电气石([Na,K,Ca][Mg,F,Mn,Li,Al]3[Al,Cr,Fe,V]6[B03]3[Si6018][OH,F]4>生 物炭、 远红外陶瓷、 玉石粉、 氧化铝、 氧化铜、 氧化银以及碳化硅中的一种 或多种; 其平均粒径为 lnm ~ 200nm, 优选 5nm - 150nm, 更优选 lOnm - lOOnm, 最优选 25nm ~ 75nm。
所述红外光发射材料优选为电气石、 生物炭、 氧化铝或碳化硅。 其中电 气石优选蓝色电气石, 且其硬度为 7 ~ 7.2, 密度为 3.06 ~ 3.26g/cm3, 折光率 为 1.62 ~ 1.64。
上述红外光发射材料未经表面处理不能用于本发明的实施方式中, 因为 其与蓝色光阻组合物体系中的有机树脂及颜料组分的不相容, 易导致光阻组 合物沉淀及分相, 从而造成光阻材料的性能恶化, 影响显示效果的均匀性。 在使用前对上述红外光发射处理进行表面改性处理, 目的是改变其表面形 态、 晶界结构, 从而改变材料的活性, 提高其热交换能力, 能够使其以高的 比辐射率放射特定波长的远红外线。
对红外光发射材料的表面改性过程可包括:
1)将红外光发射材料研磨并分散于溶剂中, 获得包含平均粒径为 lnm ~ 200nm的红外光发射材料纳米粒子的纳米分散溶液, 该步骤的主要目的是对 红外光发射材料进行纳米化处理, 以获得红外光发射材料的纳米粒子。 该研 磨、 分散方法可用制备纳米材料的常用方法进行, 例如可采用常规的研磨装 置 (例如球磨机、 砂磨机等)和分散剂在有机溶剂中进行。 基于所述纳米分散 溶液的总重, 该纳米分散溶液中的红外光发射材料的重量百分比可为 10 ~ 15%。
2)将经过纳米化处理的红外光发射材料进行进一步的表面改性, 该步骤 的目的是改变步骤 1)中分散后的纳米粒子的表面特性, 使其与蓝色光阻组合 物体系相容, 具体包括:
将诸如偶氮二异戊腈、 偶氮二异丁腈、 偶氮二异己腈、 偶氮二异庚腈等 的偶氮类引发剂溶解在有机溶剂中待用;
将红外光发射材料的纳米^:溶 四口瓶内, 同时对其进行搅拌、 震荡 (频率高于 50Hz)或摇动等处理;
将单体曱基丙烯酸曱酯、 苯乙烯、 马来酰亚胺 (1: 1 ~ 2: 1 ~ 2/mol)在有机 溶剂 (单体:溶剂 =1 :1 ~ 3/vol)中的溶液加入上述四口瓶内, 其中红外光发射材 料占四口瓶内混合溶液总重量的 8 ~ 25% 优选 10 ~ 20% 更优选 12 ~ 17%; 在 35°C ~ 60°C下、 氮气保护气氛中, 使偶氮类引发剂溶液以基于单体总 重量的 1 ~ 5%的引发剂的量逐滴加入上述四口瓶内, 在搅拌、 震荡或摇动等 处理下进行反应 30min ~ 90min;
反应结束后加入 5 ~ 10°C的有机溶剂进行冷却处理, 同时搅拌直至反应 产物冷却至室温;
过滤后, 用上述有机溶剂清洗滤出的固体三次, 在 70 ~ 100°C下干燥 5 ~ 20min, 得到表面改性的红外光发射材料。
以上步骤中所用溶剂可为脂肪醇、 乙二醇醚、 乙酸乙酯、 曱乙酮、 曱基 异丁基酮、 单曱基醚乙二醇酯、 γ-丁内酯、 丙酸 -3-乙醚乙酯、 丁基卡必醇、 丁基卡必醇醋酸酯、 丙二醇单曱基醚、 丙二醇单曱基醚醋酸酯、 环己烷、 二 曱苯、 异丙醇中的一种或多种。
以上步骤中所用^:剂为常用分散剂, 例如 BYK 410、 BYK 110、 BYK 163、 BYK 161、 BYK 2000, CN2284、 Solsperse32500、 Solsperse22000等。
占纳米分散溶液的重量百分比为 5% ~ 15%, 优选为 7 ~ 12%。
在根据本发明实施例的能发射红外光的蓝色光阻组合物中, 基于组合物 总重, 溶剂的重量百分比可为 30% ~ 90%, 优选 40% ~ 90%, 更优选 45% ~ 90%。 该溶剂可以为酸性溶剂、 碱性溶剂、 中性溶剂中的一种或多种。 酸性 溶剂的实例可包括曱酸、 乙酸或氯仿等。 碱性溶剂的实例可包括一些碱性的 酮、 酯、 醚或某些芳香烃溶剂等。 中性溶剂的实例可包括脂肪醇、 乙二醇醚、 乙酸乙酯、 曱乙酮、 曱基异丁基酮、 单曱基醚乙二醇酯、 γ-丁内酯、 丙酸 -3- 乙醚乙酯、 丁基卡必醇、 丁基卡必醇醋酸酯、 丙二醇单曱基醚、 丙二醇单曱 基醚醋酸酯、 环己烷、 二曱苯、 异丙醇等。 优选为丙二醇单曱基醚、 丙二醇 单曱基醚醋酸酯、 环己烷、 丁基卡必醇、 丁基卡必醇醋酸酯或 γ-丁内酯, 或 它们的混合物。
在根据本发明实施例的能发射红外光的蓝色光阻组合物中, 基于组合物 总重, 碱可溶性树脂含量为 2 wt % ~ 25wt %, 优选 5 wt % ~ 20 wt %, 更优 选 5 wt% ~ 18 wt%。 该碱可溶性树脂可为芳香酸(曱基)丙烯酸半酯(例如, 得自沙多玛的 SB401、 SB404 )、 苯乙烯与马来酸酐共聚物, 或两种以上的组 合。
在根据本发明实施例的能发射红外光的蓝色光阻组合物中, 单体可为不 饱和单体, 基于组合物总重, 其含量为 2 wt% - 20 wt%, 优选 5 wt% - 20 wt% , 更优选 5 wt% ~ 15 wt%。 不饱和单体可以是脂肪族聚氨酯丙烯酸酯、 聚醚丙烯酸酯、 丙烯酸酯、 含羟基的聚酯丙烯酸酯、 马来酰亚胺、 邻苯二曱 酰亚胺或 2-羟基 -4-邻苯二曱酰亚胺、 含羟基的酸、 含羟基的酸酐或主链上含 有多个曱基苯环氧基团的环氧树脂; 或上述组合, 或上述两种以上的组合。
在根据本发明实施例的能发射红外光的蓝色光阻组合物中, 基于组合物 总重, 光引发剂含量为 0.01 wt% ~ l wt%, 其中光引发剂可以是 α-胺基酮类 光引发剂, 如 Irgacure 907, Igracure 379, Irgacurel300; 或酰基膦氧化物光 引发剂, 如 Irgacure819 , Irgacure819DW , Irgacure2010 , Darocur ΤΡΟ , Darocur4265; 可以是 α-羟基酮类光引发剂, 如 Darocur 1173 , Irgacure 184, Irgacure2959, Irgacure500, IrgacurelOOO; 或苯酰曱酸类光引发剂, 如 Darocur MBF, Irgacure754; 可以是肟酯类光引发剂, 如 Ciba OXE 01、 Ciba OXE 02、 CGI 242等; 可以使用上述一种或两种以上的混合。
在根据本发明实施例的能发射红外光的蓝色光阻组合物中, 基于组合物 总重, 其它添加剂含量为 0.005 wt% - 0.02 wt%, 优选 0.005 wt% ~ 0.015 wt%, 更优选 0.005 wt% ~ 0.01 wt%。 其中添加剂可以为附着力促进剂、 流平 剂, 消泡剂、 光稳定剂等。
将经表面改性的着色剂与红外光发射材料以 20: 1 ~ 1 : 1 的重量比混合得 到着色混合材料。
将上述着色混合材料、 溶剂、 碱可溶性树脂、 乙烯性不饱和单体、 光引 发剂和其它添加剂以上述含量均匀混合, 例如通过搅拌、 震荡等方式, 从而 制备本发明的能发射红外光的蓝色光阻组合物。 由此, 具有上述组成的蓝色 光阻组合物在保持常规的色度、 透过率等显示性能的基础上, 还能发射 5 ~ 15微米范围的远红外光线, 比辐射率为 0.35 ~ 0.95, 从而具有保健作用。 实施例
各实施例中所用原材料如下:
A、 着色剂: RB.15:6(DIC)
B、 红外光发射材料:
B-1 : 蓝色电气石: 密度 3.06g/cm3, 折光率 1.62, 硬度 7
B-2: 氧化铝: 纯度大于 99.9%
C、 溶剂
C-1 : 丙二醇单曱基醚醋酸酯 (PMA)
C-2: 3-乙氧基丙酸乙酯 (EEP)
C-3: 正丁醇 (n-BuOH)
D、 碱可溶性树脂
D-l: SB 401(Sartomer)
D-2: SB 404(Sartomer)
E、 不饱和单体
E-l : EBE 264(氰特化工)
E-2: 季戊四醇四丙烯酸酯 SR 295(Sartomer)
F、 引发剂
F- 1: Irgacure 379(Ciba精化)
F-2: Ciba OXE-01 (Ciba精化)
G、 其它添加剂
G-1: 附着力促进剂 A- 186(GE Toshiba)
G-2: 流平剂 BYK 333(BYK)
H、 分散剂
H-l: BYK 161 (BYK)
H-2: BYK 2000(BYK)
H-3: CN 2284(Sartomer)
H-4: SYNEGIST 2150(BYK)
着色混合材料的制备 实施例 1
将 5g BYK 161加入至 95g溶剂丙二醇单曱基醚醋酸酯 (PMA)中, 向其加入 11. lg的氧化铝颗粒。 该混合物经搅拌均匀后, 置于砂磨机中研磨 粉碎至氧化铝的平均粒径为 17nm, 得到氧化铝纳米分散溶液。
将单体曱基丙烯酸曱酯、 苯乙烯、 马来酰亚胺 (l:l:l/mol)溶解于溶剂
PMA (单体:溶剂 =l:l/vol)中,并将 27.7g所得溶液加入至装有搅拌器、温度计、 通气管和滴液漏斗的四口瓶中, 使得混合溶液中氧化铝的重量比为 8%。
将偶氮二异戊腈溶解于 PMA中, 制成偶氮二异戊腈的 PMA饱和溶液, 并记录完全溶解时的百分比。 对上述四口瓶通入氮气, 在 35°C下, 边搅拌边 加入如上制得的偶氮二异戊腈的 PMA饱和溶液, 其量使得作为引发剂的偶 氮二异戊腈的净含量为上述单体总净含量的 1%。 反应保持 30min。 反应结 束后加入 1 OOmL 5 °C的 PMA , 搅拌使反应物达到室温。
将上述反应物过滤, 并用 50mL ΡΜΑ清洗滤出的固体三次, 并于 90°C 干燥 15min,得到经曱基丙烯酸曱酯-苯乙烯 -马来酰亚胺共聚物改性的氧化铝 颗粒, 测得其平均粒径为 24nm。
将蓝色颜料 RB.15:6与上述经改性的氧化铝颗粒以 19:1的重量比混合得 到着色混合材料 -1。
实施例 2
以与实施例 1相同的方法制备着色混合材料 -2到着色混合材料 -ια 不同 之处在于蓝色颜料与经改性的红外光发射材料的混合比如表 1中所示。
蓝色光阻组合物的制备
实施例 3
将 8g SYNEGIST 2150、 75g BYK 2000和 40g CN 2284与 423.5g溶剂 PMA以搅拌方式混合均勾, 制得分散剂溶液。 将该溶液中加入 100g的由实 施例 1制得的着色混合材料 -1, 以搅拌方式将颜料充分润湿, 制得混合溶液。 采用砂磨机对该混合溶液进行研磨分散, 得到着色混合材料^:液 -1 , 其中 着色混合材料的百分比为 15.5%。
将碱可溶性树脂 D-l (10%)、 D-2 (2%)、 不饱和单体 E-1 (10%)、 E-2 (3.8%)、 光引发剂 F-l (0.007%)、 F-2 (0.008%)和其它添加剂 G-l (0.002%)和 G-2 (0.016%)加入溶剂 C-1 中, 搅拌至完全溶解得到光固化溶液。 将上述制 得的着色混合材料 ^:液 -1加入光固化溶液中, 经砂磨机研磨混合后, 补充 溶剂 C-1 , 使得蓝色光阻组合物中着色混合材料的百分比为 15% , 且溶剂 C-1的百分比为 59.167%, 由此制得蓝色光阻组合物 -1。
实施例 4 ~ 12
分别采用与实施例 3相同的方法制备蓝色光阻组合物 -2到 -ια 不同之处 在于采用如表 1中所示组成比例。
蓝色光阻组合物的应用
将实施例 3 ~ 12中制得的蓝色光阻组合物 -1到 -10采用旋转涂布法涂布 在玻璃基板上。 将涂布有蓝色光阻组合物的基板在 90°C温度下烘烤 7分钟 后,采用照度为 250mJ/cm2的紫外线以 25秒的曝光时间对上述蓝色光阻组合 物进行曝光。 将曝光后的玻璃基板在碱性显影液中显影后, 在 200°C温度下 烘烤 30分钟, 形成厚度为 1.5μηι的蓝色子像素图形 1 ~ 10。
对所形成的各蓝色子像素图形进行红外线比辐射率 (IRE- 1型红外辐射测 量仪)及色度测定 (岛津 UV-2550), 结果示于以下表 1中。 表 1中 "△"表示综 合性能一般, "0"表示综合性能良好。
表 1
Figure imgf000011_0001
结合以上表格的结果可以看出, 当着色剂与红外光发射材料的比大于 6 时, 红外线比辐射率偏低, 如实施例 3和实施例 4, 同时由于着色剂含量过 高, 因此透过率偏低。 对于实施例 12, 同样由于红外光发射材料含量偏低, 因此红外线比辐射率偏低, 同时由于着色混合材料含量偏低, 特别是着色剂 含量偏低, 因此色度偏低 (y较大:)。
当着色混合材料内红外光发射材料的含量低时, 光阻组合物的红外线比 辐射率也低, 随着着色混合材料内红外光发射材料含量的增加, 光阻组合物 的红外线比辐射率增大, 但均未对光阻材料的透过率造成明显影响。
未经表面处理和经表面处理的红外光发射材料对光阻稳定性的影响 对比例 1
将 5g BYK 161加入至 95g溶剂丙二醇单曱基醚醋酸酯 (PMA)中, 向其加入 11. lg的氧化铝颗粒。 该混合物经搅拌均匀后, 置于砂磨机中研磨 粉碎至氧化铝的平均粒径为 17nm, 得到氧化铝纳米分散溶液。 去除该氧化 铝纳米分散溶液中的溶剂, 得到氧化铝纳米颗粒。 将蓝色颜料 RB.15:6与上述氧化铝纳米颗粒以 19: 1的重量比混合得到着 色混合材料。
按照实施例 3的方法制得对比蓝色光阻组合物。
将实施例 3和对比例 1制得的两种蓝色光阻组合物置于 0 ~ 4°C的避光环 境中, 观察光阻组合物的分层和沉淀现象。
对比蓝色光阻组合物: 24小时后, 表面出现结皮现象, 且容器底部有少 量沉淀; 48小时后, 搅拌时出现大量结块, 固体颗粒团聚严重。
蓝色光阻组合物 -1: 直至 48小时, 均未发现表面结皮或底部沉淀现象, 搅拌未出现结块及团聚现象。
综上所述, 根据本发明的能发射红外光的蓝色光阻组合物通过添加经过 表面改性的红外光发射材料的纳米颗粒,可发射具有保健作用的远红外光线, 同时保持了常规的显示性能。

Claims

权利要求书
1、一种能发射红外光的蓝色光阻组合物,其中所述能发射红外光的蓝色 光阻组合物包括如下重量百分比的组分:
2% ~ 20%的着色混合材料、 30% ~ 90%的溶剂、 2% ~ 25%的碱可溶性树 月旨、 2% ~ 20%的不饱和单体、 0.01% ~ 1%的光引发剂和 0.005% ~ 0.02%的其 它添力口剂;
其中,所述着色混合材料包括重量比为 20:1 ~ 1 : 1的着色剂和表面改性的 红外光发射材料。
2、根据权利要求 1所述的能发射红外光的蓝色光阻组合物,其中所述着 色混合材料包括重量比为 6: 1 ~ 1: 1的着色剂和表面改性的红外光发射材料。
3、根据权利要求 1所述的能发射红外光的蓝色光阻组合物,其中所述红 外光发射材料为选自电气石、 生物炭、 远红外陶瓷、 玉石粉、 氧化铝、 氧化 铜、 氧化银以及碳化硅中的一种或多种。
4、根据权利要求 3所述的能发射红外光的蓝色光阻组合物,其中所述红 外光发射材料经聚合物材料表面改性。
5、根据权利要求 4所述的能发射红外光的蓝色光阻组合物,其中所述聚 合物材料为曱基丙烯酸曱酯 -苯乙烯-马来酰亚胺的共聚物。
6、根据权利要求 1所述的能发射红外光的蓝色光阻组合物,其中所述表 面改性的红外光发射材料具有 lnm ~ 200nm的平均粒径。
7、根据权利要求 3所述的能发射红外光的蓝色光阻组合物,其中所述电 气石为蓝色电气石, 且密度为 3.06 ~ 3.26g/cm3, 折光率为 1.62 ~ 1.64。
8、一种制备能发射红外光的蓝色光阻组合物的方法,其中所述方法包括 如下步骤:
将红外光发射材料研磨并分散于溶剂中, 得到包含平均粒径为 lnm ~
200nm的红外光发射材料纳米粒子的纳米分散溶液;
用聚合物材料对所述纳米分散溶液中的红外光发射材料纳米粒子进行表 面改性,随后去除溶剂,得到经聚合物材料改性的红外光发射材料纳米粒子; 到着色混合材料, 和
将所述着色混合材料与溶剂、 碱可溶性树脂、 乙烯性不饱和单体、 光引 发剂和其他添加剂混合, 得到能发射红外光的蓝色光阻组合物。
9、 根据权利要求 8所述的制备能发射红外光的蓝色光阻组合物的方法, 其中所述红外光发射材料为选自电气石、 生物炭、 远红外陶瓷、 玉石粉、 氧 化铝、 氧化铜、 氧化银以及碳化硅中的一种或多种。
10、根据权利要求 8所述的制备能发射红外光的蓝色光阻组合物的方法, 其中所述聚合物材料为曱基丙烯酸曱酯 -苯乙烯-马来酰亚胺的共聚物。
11、 一种彩色滤光片, 包括由如权利要求 1至 7中任一项所述的能发射 红外光的蓝色光阻组合物形成的蓝色子像素。
12、 一种显示器件, 包括如权利要求 11所述的彩色滤光片。
PCT/CN2013/089857 2013-04-28 2013-12-18 蓝色光阻组合物、其制备方法、彩色滤光片和显示器件 WO2014176913A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/388,156 US9541687B2 (en) 2013-04-28 2013-12-18 Blue photoresist composition, method of preparing the same, color filter, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310156917.6A CN104122748A (zh) 2013-04-28 2013-04-28 蓝色光阻组合物、其制备方法、彩色滤光片和显示器件
CN201310156917.6 2013-04-28

Publications (1)

Publication Number Publication Date
WO2014176913A1 true WO2014176913A1 (zh) 2014-11-06

Family

ID=51768223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089857 WO2014176913A1 (zh) 2013-04-28 2013-12-18 蓝色光阻组合物、其制备方法、彩色滤光片和显示器件

Country Status (3)

Country Link
US (1) US9541687B2 (zh)
CN (1) CN104122748A (zh)
WO (1) WO2014176913A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104327212A (zh) * 2014-11-14 2015-02-04 京东方科技集团股份有限公司 一种红外光阻材料及使用该红外光阻材料的彩色滤光片
CN104375315B (zh) * 2014-11-18 2017-06-16 深圳市华星光电技术有限公司 彩膜基板、彩色滤光片、显示面板及显示装置
CN106338887A (zh) * 2016-09-20 2017-01-18 深圳市容大感光科技股份有限公司 一种光致抗蚀剂组合物及其用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1584637A (zh) * 2003-08-22 2005-02-23 奇美实业股份有限公司 彩色滤光片用感光性树脂组成物
JP2010256767A (ja) * 2009-04-28 2010-11-11 Toppan Printing Co Ltd 青色感光性着色組成物及びそれを用いたカラーフィルタ、並びに液晶表示装置
CN102135730A (zh) * 2010-01-22 2011-07-27 京东方科技集团股份有限公司 蓝色光阻组合物及彩色滤光片

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY110574A (en) * 1991-11-20 1998-08-29 Samsung Electron Devices Co Ltd Far-infrared emitting cathode ray tube
JP3529306B2 (ja) * 1998-12-09 2004-05-24 大日本印刷株式会社 カラーフィルタおよびその製造方法
DE60026205T2 (de) * 1999-07-27 2006-11-16 Fuji Photo Film Co., Ltd., Minami-Ashigara Bildaufzeichnungsmaterial
US6280890B1 (en) * 1999-08-27 2001-08-28 Toyo Ink Mfg. Co., Ltd. Color filter and color liquid crystal display device
JP4927426B2 (ja) * 2006-03-27 2012-05-09 太陽ホールディングス株式会社 硬化性樹脂組成物及びその硬化物
CN101497759A (zh) * 2008-01-31 2009-08-05 Jsr株式会社 用于通过喷墨方式形成滤色器的树脂组合物、滤色器和液晶显示装置
KR101344790B1 (ko) * 2010-06-10 2013-12-24 제일모직주식회사 컬러필터용 청색 수지 조성물 및 이를 이용한 컬러필터
CN102125730A (zh) 2011-04-15 2011-07-20 阙兴生 碳离子治疗仪的夹碳装置及智能跟踪推进系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1584637A (zh) * 2003-08-22 2005-02-23 奇美实业股份有限公司 彩色滤光片用感光性树脂组成物
JP2010256767A (ja) * 2009-04-28 2010-11-11 Toppan Printing Co Ltd 青色感光性着色組成物及びそれを用いたカラーフィルタ、並びに液晶表示装置
CN102135730A (zh) * 2010-01-22 2011-07-27 京东方科技集团股份有限公司 蓝色光阻组合物及彩色滤光片

Also Published As

Publication number Publication date
US9541687B2 (en) 2017-01-10
US20160259101A1 (en) 2016-09-08
CN104122748A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
TWI595055B (zh) 彩色濾光片用綠色著色組合物
CN107835843A (zh) 含有有机着色颜料与红外吸收染料的颜料分散液、着色树脂组合物及光学滤波器
KR102029473B1 (ko) 컬러필터용 적색 착색 조성물
KR102254115B1 (ko) 컬러필터용 적색 안료 분산 레지스트 조성물
JP6025008B2 (ja) 含フッ素熱分解性樹脂、レジスト組成物、カラーフィルター保護膜用組成物、レジスト膜及びカラーフィルター保護膜
WO2014176913A1 (zh) 蓝色光阻组合物、其制备方法、彩色滤光片和显示器件
TW200904907A (en) Method for producing organic nano-pigment particle aggregate and organic nano-pigment particle nonaqueous dispersed substance, colour photosensitive resin composition containing the said dispersed substance, and color filter using it
TWI660240B (zh) 彩色濾光片用紅色顏料分散抗蝕劑組成物
US9529256B2 (en) Black photoresist composition, method of preparing the same, color filter, and display device
CN108129895B (zh) 一种纳米氧化铈/二氧化硅紫外屏蔽剂的制备方法
WO2016015412A1 (zh) 功能材料及其制备方法、导光油墨、导光板
WO2014176916A1 (zh) 绿色光阻组合物、其制备方法、彩色滤光片和显示器件
WO2014176921A1 (zh) 红色光阻组合物、其制备方法、彩色滤光片和显示器件
TWI363784B (en) High optical contrast pigment and colorful photosensitive composition employing the same and fabrication method thereof
TWI659070B (zh) 彩色濾光片用紅色著色劑組成物
CN110964526B (zh) 一种核-壳结构的上转换纳米粒子、其制备方法和应用
JP2014013279A (ja) カラーフィルター用赤色着色組成物
WO2016015413A1 (zh) 功能材料及其制备方法、彩膜材料、彩膜基板
WO2014176847A1 (zh) 液晶盒、液晶显示装置以及红外材料表面改性方法
JP7474071B2 (ja) カラーフィルター用赤色着色組成物の製造方法、カラーフィルター用赤色着色組成物、カラーフィルター用赤色着色レジスト組成物、カラーフィルター、及び、表示装置
TW200936703A (en) Color dispersion coagent, pigment dispersant and pigment dispersion photoresist composition for color filter
KR20210070180A (ko) 컬러 필터용 적색 착색 조성물, 컬러 필터용 적색 착색 레지스트 조성물, 컬러 필터 및 표시 장치
JP2009149779A (ja) 有色微小着色材及び該有色微小着色材を含有するカラーフィルター用透明着色組成物並びにカラーフィルター
TW201934587A (zh) 彩色濾光片用顏料分散組成物及彩色濾光片用抗蝕劑組成物
JP2014089439A (ja) カラーフィルター用赤色顔料分散組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14388156

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883641

Country of ref document: EP

Kind code of ref document: A1