WO2016010348A1 - 중희토류 원소를 포함하지 않는 r-fe-b계 소결자석 및 이의 제조방법 - Google Patents

중희토류 원소를 포함하지 않는 r-fe-b계 소결자석 및 이의 제조방법 Download PDF

Info

Publication number
WO2016010348A1
WO2016010348A1 PCT/KR2015/007314 KR2015007314W WO2016010348A1 WO 2016010348 A1 WO2016010348 A1 WO 2016010348A1 KR 2015007314 W KR2015007314 W KR 2015007314W WO 2016010348 A1 WO2016010348 A1 WO 2016010348A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered magnet
powder
based sintered
point metal
phase
Prior art date
Application number
PCT/KR2015/007314
Other languages
English (en)
French (fr)
Other versions
WO2016010348A9 (ko
Inventor
김영도
김진우
이원석
변종민
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN201580043655.XA priority Critical patent/CN107077940A/zh
Publication of WO2016010348A1 publication Critical patent/WO2016010348A1/ko
Publication of WO2016010348A9 publication Critical patent/WO2016010348A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15325Amorphous metallic alloys, e.g. glassy metals containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to an R-Fe-B-based sintered magnet that does not contain a heavy rare earth element, and more particularly, a liquid phase using a high melting point metal precursor to improve magnetic properties without adding a heavy rare earth (HREE) element.
  • the coating technology was developed to control the microstructure of Nd-Fe-B powders.
  • the finely controlled powders effectively control grain growth during the sintering process to improve coercive force, add trace amounts of high melting point metals, and selectively form grain boundaries.
  • the present invention relates to an R-Fe-B-based sintered magnet and a method of manufacturing the same, which minimize the reduction of residual magnetic flux density by a control technique.
  • Nd-Fe-B sintered magnets are Alnico (1 ⁇ 7.5 MGOe), Ferrite (1.1 ⁇ 4.5 MGOe), SmCo 5 It is known as the strongest permanent magnet among existing permanent magnets because it has 29 ⁇ 53 MGOe value higher than ⁇ 33 MGOe). Due to this high magnetic property, it has been widely used in the use of machine tools, industrial robot motors, electronic information devices, and small motors for automobiles. Recently, as it is applied to driving motors of hybrid vehicles and electric vehicles, it has received high attention worldwide. I am getting it.
  • Nd-Fe-B sintered magnet the Curie temperature, which is a temperature at which the magnetic properties are lost, is only 350 ° C., so that deterioration of the magnetic properties occurs with increasing temperature.
  • driving motors of hybrid vehicles and electric vehicles are exposed to an environment of up to 200 ° C., it is essential to manufacture Nd-Fe-B sintered magnets in consideration of deterioration of magnetic performance.
  • deterioration of magnetic properties is very closely related to coercive force.
  • Nd-Fe-B sintered magnets have a coercivity of 25 kOe at room temperature, while the coefficient of coercivity with temperature changes is -0.5%. It is known that the coercivity decreases by 50% and 75%, respectively, when exposed to 100 ° C and 150 ° C.
  • Nd-Fe-B magnet When the Nd-Fe-B magnet is applied to a motor of a hybrid vehicle, it is necessary to have a high coercive force characteristic at room temperature to maintain more than a minimum coercive force as an automobile motor within an operating temperature range.
  • the most common method for producing a high coercive Nd-Fe-B sintered magnet is to add an element having a large intrinsic coercivity of the material itself, and typically, when adding heavy rare earth elements Dy, Tb, etc. Can improve.
  • intermetallic compounds such as Dy 2 Fe 14 B or Tb 2 Fe 14 B are formed.
  • Their magnetic anisotropy constants are 150 kOe and 220 kOe, respectively, to 67 kOe of Nd 2 Fe 14 B. At least two times larger than that, greatly contributes to the improvement of coercivity.
  • the heavy rare earth element is less produced than the light rare earth element, and particularly, the reserve amount in the crust is low and the price is also 10 times higher, efforts to minimize the addition of the heavy rare earth element continue.
  • Non-Patent Document 1 Non-Patent Document 1. A. Yan, X. Song, M. Song, X. Wanget, J. Alloy. Compd, 257, 273 (1997).
  • Non-Patent Document 2 Non-Patent Document 2. S. Hirosawa, H. Tomizawa, S. Mino, A. Hamamura, IEEE. Trans. Magn, 26, 1960 (1990).
  • the present invention has been made in view of the above problems, by controlling the amount of the secondary phase to selectively form a secondary phase at the grain boundary, but to control the fine and even distribution of the size of the secondary phase grain boundary pinning effect (grain boundary pinning effect)
  • Another object of the present invention is to provide a method for producing a sintered magnet having the above characteristics and containing no heavy rare earth elements, which can simplify the process.
  • the present invention does not include a heavy rare earth element after dissolving molybdenum pentaethoxide (Mo (OC 2 H 5 ) 5 ), which is a precursor containing molybdenum as a high melting point metal, in an anhydrous alcohol solution.
  • Mo (OC 2 H 5 ) 5 molybdenum pentaethoxide
  • Nd-Fe-B powder was immersed to coat a high melting point metal precursor on the surface of the powder, and then pyrolysis removes impurities other than molybdenum contained in the precursor, and thus Nd-Fe containing no heavy rare earth elements. It was intended to induce the production of molybdenum on the surface of the -B powder.
  • Nd-Fe-B powder containing no heavy rare earth becomes a core
  • molybdenum forms a shell
  • the fine secondary phase during the sintering process can be evenly distributed in the grain boundaries of the entire specimen.
  • the addition of molybdenum was controlled to suppress intragranular diffusion into the main phase Nd 2 Fe 14 B.
  • R 2 Fe 14 B crystal grains containing light rare earth elements form a main phase, Comprising a fine structure surrounded by the R-rich phase containing a light rare earth element around the crystal grains, and comprises a secondary phase comprising a high melting point metal element selectively at the triple point or grain boundary formed by the R 2 Fe 14 B crystal grains ,
  • R-Fe-B-based sintered magnet having a contiguity between two adjacent R 2 Fe 14 B grains of 50% or less.
  • the secondary phase is Mo 2 FeB 2 and MoFe 2 is characterized in that any one or more selected from the group consisting of.
  • the R 2 Fe 14 B crystal grains are characterized in that the average particle diameter of 5 ⁇ 6.5 nm.
  • the sintered magnet has a coercive force of 10 to 20 kOe, and a residual magnetic flux density of 1 to 1.7 T.
  • the core-shell-type raw powder is characterized in that it comprises 0.03 ⁇ 0.20 wt% of Mo on the surface of the R powder based on 100 wt% of the total.
  • the high melting point metal precursor is molybdenum pentaethoxide (Molybdenum pentaethoxide, Mo (OC 2 H 5 ) 5 ) It is characterized in that.
  • the pyrolysis in the step II) is characterized in that it is carried out at 750 ⁇ 1000 °C at atmospheric pressure.
  • the pyrolysis in the step II) is characterized in that it is carried out at 250 ⁇ 400 °C under a reduced pressure of 10 -3 torr or less.
  • the III) step sintering is characterized in that performed at 900 ⁇ 1100 °C.
  • the temperature increase rate is characterized in that 5 ⁇ 15 °C / min.
  • molybdenum pentaethoxide is provided as a high melting point metal precursor used in the method for producing the R-Fe-B-based sintered magnet.
  • the microstructure of the sintered magnet is formed by forming a high melting point metal on the surface of the R-Fe-B-based raw material powder and evenly distributing a fine secondary phase at triple points and grain boundaries of the entire specimen. Since it can effectively limit the, can not only overcome the limitations of the physical and magnetic properties of the existing R-Fe-B-based sintered magnet, but also free from heavy rare earth supply and demand has a low cost accordingly.
  • FIG. 1 is a schematic diagram showing a manufacturing process of the sintered magnet prepared according to the present invention.
  • point A is the core The shell portion of the raw powder in the shell form
  • point B is the core portion of the core powder in the core-shell form.
  • FIG. 6 is a graph showing the results of XRD analysis of sintered magnets including Mo and sintered magnets without Mo for accurate phase analysis of secondary phases identified in SEM and EPMA images.
  • FIG. 7 shows a powder free of heavy rare earth (Dy) (a), a sintered magnet (b) without Mo, a sintered magnet (c) containing 0.03% by weight Mo, 0.05% by weight Mo
  • a scanning electron microscope (BSE), an optical microscope (OM), and an average grain and grain size distribution graph of the sintered magnet (d) and the sintered magnet (e) including 0.2 wt% Mo are included.
  • FIG. 8 is a graph showing changes in coercive force of a sintered magnet not including Mo, a sintered magnet including 0.03 wt% Mo, a sintered magnet including 0.05 wt% Mo, and a sintered magnet including 0.2 wt% Mo.
  • triple point means a region where three crystal grains in contact with a sintered magnet are formed into an R-rich phase.
  • the R-Fe-B-based sintered magnet has a structure in which the R 2 Fe 14 B crystal grains constituting the main phase are surrounded by the R-rich phase, and sintered according to parameters such as grain size, isolation, and thickness of the R-rich phase. Magnetic and other properties of the magnet are determined. In particular, the magnetic properties were mainly improved by using heavy rare earth (Dy or Tb), which is an element having a high intrinsic magnetic anisotrophy field. However, heavy rare earth elements have a small amount of resources and local resources are concentrated, and there are many unstable factors in supply and demand, so it is required to reduce the use amount.
  • Dy or Tb heavy rare earth
  • the present inventors have made efforts to develop a high-characteristic magnetic material that surpasses the magnetic properties of existing R-Fe-B-based sintered magnets without adding heavy rare earth.
  • the size can be limited, it is noted that precipitates are generated during the manufacturing process, so that the coercive force and residual magnetic flux density are reduced.
  • the high melting point metal precursor was dissolved in anhydrous alcohol and then coated with Mo, a high melting point metal, by immersing the Nd-Fe-B powder containing no heavy rare earth elements. Secondary phases including melting point metals have led to completion of sintered magnets selectively present at grain boundaries or triple points.
  • the present invention has a high coercive force and residual magnetic flux density by effectively limiting the size and microstructure of R 2 Fe 14 B crystal grains forming a columnar phase without adding heavy rare earth. It is characterized by providing an sintered magnet with improved magnetic properties.
  • One aspect of the present invention is a R 2 Fe 14 B crystal grains containing a light rare earth element constitutes the main phase, the R-Fe phase containing a light rare earth element surrounding the grains consists of a fine structure, the R 2 Fe 14 It is to provide a sintered magnet comprising a secondary phase containing a high melting point metal element at the triple point or R 2 Fe 14 B grain boundary formed by B grains.
  • the sintered magnet is to be made of the light rare earth elements constituting the main phase and the R-rich phase each independently, that is, the light rare earth elements of the main phase and the rich phase may be the same or different.
  • R is La, Ce, Nd, Pr, Pm, Sm, Eu or Nb, Nd was used in the embodiment of the present invention.
  • the proximity between two adjacent R 2 Fe 14 B grains is preferably 50% or less, preferably has a level of 23 to 40%.
  • Proximity is a parameter that numerically shows that the grains themselves are almost completely isolated by the R-rich phase, with lower values indicating that the grains are not in contact with each other.
  • Contiguity is defined as the fraction of the area of grain boundaries that are in contact with two phases of the same phase in the area of the entire grain boundary of the microstructure. That is, it is defined as the grain boundary / total grain boundary, or means the grain boundary area adjacent to the adjacent crystals in the area of the grain boundary [METALLURGICAL TRANSACTIONS A, R.M. GERMAN, Vol 16A, JUL 1985, 1247; METALLOGRAPHY, V. Srikanth, G.S. Upadhyaya, Vol 19, 4, Nov 1986, 437-445; International Journal of Refractory Metals & Hard Materials, V.T. Golovchan, N.V. Litoshenko, 21,2003, 241-244]. In this case, the higher the proximity, the more the grains are in contact with each other, and the lower the proximity, the grain is isolated (isolation).
  • Nd and Nd 1.x Fe 4 B 4 react with Mo formed using a high melting point metal precursor during the sintering process to form a new intermetallic compound. This is because Nd 2 Fe 14 B is more stable than Nd 1.x Fe 4 B 4 , considering the thermodynamic standard Gibbs free energy formations. Therefore, Mo formed on the surface of Nd 2 Fe 14 B powder is Nd 2 Rather than reacting with Fe 14 B, it is more likely to react with Nd 1.x Fe 4 B 4 to form an intermetallic compound.
  • the secondary phase may be formed of the R-Fe-B powder having the core shell form through the coating of the high melting point metal by the following chemical reaction during the sintering process.
  • Mo 2 FeB 2 phase may be formed by reacting Nd 1.x Fe 4 B 4 and Mo atoms present on the surface of the Nd-Fe-B powder as in Formula (1) during the sintering process.
  • MoFe X phase confirmed by XRD phase analysis of the specimen after completion of sintering, Fe contained in Nd-rich is believed to be formed by reaction with Fe or remaining Fe after Mo 2 FeB 2 phase formation. .
  • the secondary phase is formed in the sintering process to effectively limit grain growth, thereby limiting the variation in grain size to 1.5 ⁇ m or less.
  • the formation of the secondary phase improves the wettability between the R-rich phase and the crystal grains, and the R-rich phase penetrates better between the grain boundaries.
  • the R 2 Fe 14 B crystal grains have an average particle size of 5 to 6.5 nm and have a size suitable for use as a sintered magnet.
  • the particle diameter of the R 2 Fe 14 B grains exceeds 6.5 nm, the isolation of grains is reduced. Since it is not easy to cause the self-exchange coupling action between grains, the coercivity is lowered.
  • the sintered magnet having the above structure has a coercive force of 10 to 20 kOe and a residual magnetic flux density of 1 to 1.7 than the conventional sintered magnet.
  • Another aspect of the present invention relates to a method for manufacturing to have a sintered magnet microstructure as described above, the process according to it is shown in FIG.
  • the core-shell structure of the raw powder is used for dry coating such as physical vapor deposition, chemical vapor deposition or thermal spraying, but in the present invention, the core-shell structure has a uniform shell thickness. In order to prepare a liquid coating method is used.
  • the liquid coating method is to prepare a core-shell-type raw material powder coated with a high melting point metal on an R-Fe-B-based powder prepared by strip casting, first, R in anhydrous alcohol in which the high melting point metal precursor is dissolved. The Fe-B-based powder is immersed to prepare an R-Fe-B-based powder coated with the high melting point metal precursor.
  • Raw material powder in the form of core-shell is prepared through a drying and pyrolysis process in which the organic material is decomposed from the R-Fe-B-based powder coated with the high melting point metal precursor.
  • the pyrolysis step is preferably carried out at 750 ⁇ 1000 °C at atmospheric pressure, which is preferably used within the above range because it is the optimum conditions confirmed from the TGA and DSC analysis result graph of FIG.
  • the pyrolysis step may be carried out at 250 ⁇ 400 °C under reduced pressure of 10 -3 torr or less.
  • the high melting point metal precursor is most preferably molybdenum pentaethoxide (Mo (OC 2 H 5 ) 5 ).
  • the core-shell-type raw powder already surrounds the powder before sintering, it effectively acts to isolate the grains.
  • the core-shell raw material powder prepared as described above is preferably included in the Mo-shell 0.03 ⁇ 0.2% by weight on the surface of the R-Fe-B-based powder based on 100% by weight.
  • the most excellent coercive force improvement effect can be ensured when the content is 0.03% by weight or more, preferably 0.03 to 0.2% by weight, more preferably 0.2% by weight.
  • the content of the Mo shell is less than the above range, it is difficult to effectively limit the size of the crystal grains during sintering, and when the content exceeds the above range, the high melting point metal (Mo) is excessively diffused into the grains, thereby reducing the coercive force of the sintered magnet. May occur so that it is appropriate to use within the above range.
  • the method of preparing the core-shell-type raw powder is simpler than the other methods such as the conventional dry method, the production speed is high, and the coating efficiency is excellent. In particular, it is more cost effective since no additional equipment such as sputtering apparatus is required.
  • the core-shell-type raw powder is sintered at 900 to 1100 ° C. to prepare an R-Fe-B-based sintered magnet.
  • the R-rich phase starts to exist in the liquid phase while reaching near 635 ° C during the sintering process.
  • the raw powder having a core-shell-type microstructure has a shell containing a high melting point metal surrounding the core, which diffuses into the liquid R-rich phase along the grain boundaries and forms a secondary phase around the grains.
  • the grains are more reliably isolated.
  • the shell includes a high melting point metal, which reacts with Nd 1.x Fe 4 B 4 present on the surface of the Nd 2 Fe 14 B core powder.
  • the secondary phase is formed at the grain boundary to change the capillary force between the grains to improve the wettability, thereby allowing the R-rich phase to better penetrate between the grain boundaries and easily isolate the grains.
  • the size of the sintered particles can be limited, and a sintered magnet having a uniform microstructure can be manufactured.
  • the sintered magnet has a relative density of 99% or more and a coercive force of 10 to 20 kOe, compared to the conventional sintered magnet.
  • the residual magnetic flux density was improved to 1 ⁇ 1.7 T and it was possible to manufacture these high sintered magnets without using heavy rare earth elements.
  • the high characteristic sintered magnet manufactured as described above may be used in place of heavy rare earth sintered magnet in magnetic materials such as electric motors, generators, green energy, and application parts thereof.
  • another aspect of the present invention relates to the use of molybdenum pentaethoxide for high melting point metal precursors used in the method for producing the R-Fe-B-based sintered magnet, in particular, in the aqueous phase
  • molybdenum pentaethoxide Mo (OC 2 H 5 ) 5
  • Mo molybdenum pentaethoxide
  • a high melting point metal on the surface of particles such as R-Fe-B powder It is about.
  • each raw material was dissolved at 1600 ° C., followed by strip casting ( strip casting) to produce an alloy strip.
  • the prepared alloy strip was subjected to hydrogen / dehydrogenation to form microcracks at grain boundaries, which were then pulverized through jet milling and classified into powder having an average particle size (D 50 ) of 5.0 ⁇ m particle size. At this time, the particle size distribution is 2 ⁇ 10 ⁇ m and standard deviation is 0.94.
  • Mo pentaethoxide Mo (OC 2 H 5 ) 5
  • a high melting point metal precursor dissolved in alcohol anhydride to prepare a mixed solution, and the powder was immersed therein. And drying under argon atmosphere. Thereafter, the organic material was removed by pyrolysis at 750 ° C. for 30 minutes to prepare a raw powder in the form of a core-shell. At this time, R 2 Fe 14 B derived from the powder was formed into a core, Mo derived from the high melting point metal precursor was formed into a shell.
  • the core-shell raw powder prepared above was molded under a static magnetic field of 20 kOe using a magnetic field molding machine, and manufactured into a 20 ⁇ 12 ⁇ 15 mm size molded article.
  • the molding pressure was 1.2 tons and the relative density of the molded body was 48%.
  • the molded body was sintered in a vacuum furnace where a vacuum of 2.4 ⁇ 10 ⁇ 6 torr or less was maintained, but the liquid Nd-rich phase was sintered at 1070 ° C. for 4 hours to sufficiently induce a uniform distribution with grain boundaries between Nd 2 Fe 14 B.
  • Nb-Fe-B-based sintered magnet was prepared.
  • FIG. 2 is a graph showing the results of TGA and DSC analysis of the high melting point metal precursor (Mo (OC 2 H 5 ) 5 ), whereby the weight change of the high melting point metal precursor occurred at two points, 290 ° C. and 750 ° C. It can be seen that. In addition, it can be seen that the exothermic reaction through the DSC analysis graph.
  • FIG. 3 shows the results of XRD analysis of the molded article without Mo and the molded article without Mo, and both specimens showed peaks of Nd 2 Fe 14 B phase and Nd-rich phase, in addition, peaks of Nd 1.x Fe 4 B 4 phase Was confirmed.
  • the Nd 1.x Fe 4 B 4 phase is a phase that may appear when the amount of Fe is relatively small compared to the amount of B in the production of Nd-Fe-B powder and is known to exist on the surface of the Nd-Fe-B powder. However, in the molded article to which Mo was added, the peak of Mo phase having low strength was confirmed.
  • FIG. 5 is a result of analyzing the microstructure change after completion of sintering of Mo-coated Nd-Fe-B powder through SEM (BSE) and EPMA.
  • SEM (BSE) analysis showed that the Nd-rich phase exists in addition to the dark phase, which is the hard magnet phase (Nd 2 Fe 14 B), and the bright area, which is the non-magnet phase. It was observed that there was a second phase with contrast differences in the grain boundaries.
  • EPMA mapping was performed to analyze the observed secondary phase elements.
  • the secondary phase identified in the BSE image analysis was analyzed as a phase containing a large amount of Mo atoms.
  • the secondary phase formed had a size of sub micron at triple junctions and grain boundaries and was uniformly distributed throughout the sintered specimen.
  • the uniform distribution of secondary phases throughout the specimen is considered to be a result of evenly distributing Mo elements on the Nd-Fe-B surface by the liquid phase coating method during powder preparation. Secondary phases uniformly formed at grain boundaries during the sintering process are likely to limit grain boundary migration as they exist at grain boundaries and triple junctions. In addition, it was analyzed that the secondary phase containing such Mo element does not exist in the Nd 2 Fe 14 B phase. It is believed that this effectively inhibited the dissolution of Mo in the Nd 2 Fe 14 B phase by inducing the formation of the secondary phase by addition of a trace amount of Mo. In addition, microstructural changes that isolate the Nd 2 Fe 14 B phase with Nd-rich exhibiting a very continuous morphology were observed.
  • the sintered magnet having such a Nd-rich phase microstructure can be expected to be a microstructure that can effectively control the reduction of the coercivity due to the interaction between ferromagnetics in the nucleation coercive mechanism.
  • FIG. 6 is a graph showing the results of XRD analysis of sintered magnets including Mo and sintered magnets without Mo for accurate phase analysis of secondary phases identified in SEM and EPMA images.
  • XRD analysis of the sintered specimens result, in the case of adding Mo specimen Nd 2 Fe 14 B and Nd--rich phase in addition to a large amount of Mo 2 FeB 2 phase and a very small amount of it was confirmed MoFe 2 different.
  • Excess Nd and Nd 1.x Fe 4 B 4 phases are attached to the surface of the initial Nd 2 Fe 14 B powder to react with Mo present on the surface of the powder to form an intermetallic compound phase. Judging.
  • the Nd 2 Fe 14 B phase is very stable compared to the Nd 1.x Fe 4 B 4 phase.
  • the powder that can react with Mo, Mo-Nd can not form a compound, Mo-Fe can form a compound when considering Binary Alloy Phase Diagrams.
  • a powder having a core (Nd 2 Fe 14 B powder) -shell (Mo element) shape may have an intermetallic compound phase (secondary phase) formed by the following chemical reaction during the sintering process.
  • Mo 2 FeB 2 phase may be formed by reacting Nd 1.x Fe 4 B 4 and Mo present on the surface of the Nd-Fe-B powder as in Formula (1) during the sintering process.
  • MoFe X phase confirmed by XRD phase analysis of the specimen after completion of sintering, the possibility of formation is considered in various ways.
  • Fe may be reacted with Mo by a small amount of Fe existing in the existing Nd-rich phase, or may be formed by reaction with Fe remaining after the formation of the Mo 2 FeB 2 phase.
  • the phase observed in the present invention was observed as MoFe 2 phase which is one of these Mo-Fe family of compounds.
  • FIG. 7 shows a powder free of heavy rare earth (Dy) (a), a sintered magnet (b) without Mo, a sintered magnet (c) containing 0.03% by weight Mo, 0.05% by weight Mo
  • Image analysis showed that the average grain size of 0.03, 0.05 wt% and 0.20 wt% Mo sintered specimens was 6.07 ⁇ 0.13 ⁇ m, 5.88 ⁇ 0.11 ⁇ m, and 5.60 ⁇ 0.11 ⁇ m, respectively. Compared to (7.4 ⁇ 0.22 ⁇ m), it is approximately 1.33 to 1.8 ⁇ m fine.
  • the standard deviations of the measured grains were analyzed to analyze the distribution of grain sizes.
  • the standard deviations of the Mo-added specimens were determined to be 1.53, 1.42 ⁇ m, and 1.3 ⁇ m according to 0.03, 0.05 wt%, and 0.20 wt% Mo addition amount In the case of the specimen without Mo, it was analyzed to 2.5 ⁇ m.
  • FIG. 8 is a graph showing changes in coercive force of a sintered magnet not including Mo, a sintered magnet including 0.03 wt% Mo, a sintered magnet including 0.05 wt% Mo, and a sintered magnet including 0.2 wt% Mo.
  • the magnetic properties of the sintered specimens showed that the coercive force was 11.88 kOe (residual magnetic flux density; 1.37 T) for Mo specimens, but 0.03, 0.05, and 0.20 wt% Mo specimens, respectively.
  • the 2.07 kOe increased compared to the specimen without Mo.
  • the residual magnetic flux density was the same or slightly decreased as 1.35 ⁇ 1.37 T.
  • the addition of the high melting point metal (Mo) effectively suppresses the formation and growth of grains as described in FIG. 7, thereby making the grain size uniform.
  • the secondary phase of a fine size is uniformly distributed in the sintered magnet, thereby making a finer and more uniform Grain growth was induced.
  • the addition of only a very small amount of grain growth control effect is very large.
  • the improvement of the coercive force is thought to be because the increase of grain size during the sintering process was effectively limited by inducing secondary phase formation in the grain boundary through the addition of trace amount.
  • such a microstructure was able to effectively limit the dissolution of Mo in Nd 2 Fe 14 B to minimize the reduction of residual magnetic flux density.
  • the microstructure of the sintered magnet is formed by forming a high melting point metal on the surface of the R-Fe-B-based raw material powder and evenly distributing a fine secondary phase at triple points and grain boundaries of the entire specimen. Since it can effectively limit the, can not only overcome the limitations of the physical and magnetic properties of the existing R-Fe-B-based sintered magnet, but also free from heavy rare earth supply and demand has a low cost accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 R-Fe-B계 소결자석에 관한 것으로서, 상기 소결자석은 경희토류 원소를 포함하는 R2Fe14B 결정립(R=La, Ce, Nd, Pr, Pm, Sm, Eu 또는 Nb)이 주상을 이루고, 상기 결정립 주위를 경희토류 원소를 포함하는 R-리치상(R=La, Ce, Nd, Pr, Pm, Sm, Eu 또는 Nb)이 둘러싼 미세 구조로 이루어지며, 상기 R2Fe14B 결정립에 의해 형성되는 결정립계(grain boundary) 선택적으로 고융점 금속 원소를 포함하는 2 차상을 포함하며, 인접한 두 R2Fe14B 결정립 간 근접도(Contiguity)가 50% 이하를 갖는 것을 특징으로 한다.

Description

중희토류 원소를 포함하지 않는 R-FE-B계 소결자석 및 이의 제조방법
본 발명은 중희토류 원소를 포함하지 않는 R-Fe-B계 소결자석에 관한 것으로서, 더욱 상세하게는 중희토류(HREE) 원소를 첨가하지 않고도 자기적 특성을 향상하기 위해 고융점 금속 전구체를 이용한 액상 코팅 기술을 개발하여 Nd-Fe-B 분말의 미세구조를 제어하였으며, 최종적으로 미세구조가 제어된 분말은 소결 공정 중 결정립 성장을 효과적으로 제어하여 보자력을 향상시키고 고융점 금속의 극미량 첨가 및 결정립계 선택적 형성 제어 기술에 의하여 잔류 자속밀도 감소를 최소화시킨 R-Fe-B계 소결자석 및 이의 제조방법에 관한 것이다.
Nd-Fe-B 소결 자석은 영구자석의 자성특성을 나타내는 최대자기에너지적(BH-max)값이 타 영구자석인 Alnico(1 ~ 7.5 MGOe), Ferrite(1.1 ~ 4.5 MGOe), SmCo5(18 ~ 33 MGOe)보다 높은 29 ~ 53 MGOe 값을 가지므로 현존하는 영구자석 중 가장 강한 영구자석으로 알려져 있다. 이러한 높은 자성특성으로 인하여 공작기기와 산업 로봇용 모터, 전자 정보기기, 자동차용 소형 모터의 사용에 널리 이용되어 왔으며, 최근에는 하이브리드 자동차 및 전기 자동차의 구동모터에 적용됨에 따라 전 세계적으로 높은 관심을 받고 있다. 그러나 Nd-Fe-B 소결 자석의 경우 자성 특성을 상실하는 온도인 큐리 온도(Curie Temperature)가 350 ℃에 불과하므로 온도 증가에 따른 자성 특성의 열화가 발생하는 단점을 지닌다. 특히, 하이브리드 자동차 및 전기 자동차의 구동모터는 최대 200 ℃의 환경에 노출되기 때문에 자기적 성능의 열화를 고려한 Nd-Fe-B 소결 자석 제조가 필수적이다. 일반적으로 자성 특성의 열화는 보자력과 매우 밀접하게 연관되어 있다. 이미 상용화된 Nd-Fe-B 소결자석의 자성 특성에 관해 보고된 바에 따르면, Nd-Fe-B 소결 자석은 상온에서 25 kOe 의 보자력을 가지는 반면에 온도 변화에 따른 보자력의 온도계수는 - 0.5 %/℃이므로 100 ℃, 150 ℃에 노출될 경우 보자력은 각각 약 50 %, 75 %가 감소하는 것으로 알려져 있다. 이러한 Nd-Fe-B 자석을 하이브리드 자동차의 모터에 적용할 때에는, 상온에서 높은 보자력특성을 가져야만 작동온도 범위 내에서 자동차 모터로서 최소한의 보자력 이상을 유지할 수 있다.
따라서 높은 보자력을 가지는 Nd-Fe-B 소결 자석을 제조하기 위한 가장 일반적인 방법은 재료 자체의 고유 보자력이 큰 원소를 첨가하는 방법이며, 대표적으로 중희토류 원소인 Dy, Tb 등을 첨가할 경우에는 보자력은 향상할 수 있다. 이러한 중희토류 원소를 첨가할 경우 Dy2Fe14B 또는 Tb2Fe14B 등의 금속간화합물이 형성되는데, 이들의 자기 이방성 상수는 각각 150 kOe, 220 kOe로 Nd2Fe14B의 67 kOe에 비해 최소 2 배 이상 크기 때문에 보자력 향상에 크게 기여한다.
하지만, 상기 중희토류 원소는 경희토류 원소에 비해 생산량이 적으며 특히 지각 내 매장량이 적고 가격 또한 10 배 이상 높기 때문에 중희토류 원소의 첨가를 최소화하기 위한 노력이 계속되고 있다.
일반적으로 중희토류 원소의 첨가 없이 Nd-Fe-B 소결 자석의 보자력을 향상시키기 위해서는 결정립 성장을 억제하여 결정립 크기를 줄이는 것이 가장 효과적인 것으로 알려져 있다. 따라서 결정립 크기를 줄이기 위해 다양한 연구가 시도되었다. 이러한 연구 중 Mo, Nb, W 등과 같은 고융점 금속을 첨가하여 결정립계 혹은 삼중점에 2차상을 형성시키는 방법으로 결정립계 피닝효과(grain boundary pinning effect)를 유도하여 결정립을 미세화한 연구가 있다. 첨가된 고융점 금속은 주상인 Nd2Fe14B 내에서 낮은 용해도(solubility)를 가지므로 (Mo,Fe)3B2, Nb-Fe-B , W-Fe-B 등의 석출물을 형성하며, 이러한 석출물이 결정립계 등에 2차상으로 존재하므로 소결 공정 중 결정립계 피닝효과(grain boundary pinning effect) 효과를 나타내게 되어 결정립 성장을 제어한다고 보고되었다. 그러나 이러한 경우 생성된 석출물이 Nd2Fe14B 결정립 내에 존재하게 됨에 따라 역자구(reverse domain)의 생성을 유발하며, 첨가물의 양이 증가할수록 Nd2Fe14B 결정립 내의 석출물 크기가 조대화되어 보자력이 감소하고 주상 내에 석출물 존재로 인하여 주 상(Nd2Fe14B)의 상대적인 분율이 감소하여 잔류자속밀도의 감소가 발생하는 단점을 가진다. [비특허 문헌 1, 2].
(비특허문헌 1)비특허 문헌 1. A. Yan, X. Song, M. Song, X. Wanget, J. Alloy. Compd, 257, 273(1997).
(비특허문헌 2)비특허 문헌 2. S. Hirosawa, H. Tomizawa, S. Mino, A. Hamamura, IEEE. Trans. Magn, 26, 1960(1990).
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로 2차상의 양을 제어함으로써 입계에 선택적으로 2차상을 형성시키되 2차상의 크기를 미세하고 고르게 분포하도록 제어하여 결정립계 피닝효과(grain boundary pinning effect) 효과를 극대화하고 이를 통해 결정립 성장 억제에 의한 보자력 향상 및 잔류자속밀도의 감소를 최소화하는 기술을 제안하고자 한다.
본 발명의 다른 목적은 상기 특성을 가지며 공정을 단순화시킬 수 있는 중희토류 원소를 포함하지 않는 소결자석의 제조방법을 제공하는 것이다.
본 발명은 상기 목적을 이루기 위하여 고융점 금속인 몰리브덴이 포함된 전구체인 몰리브덴 펜타에톡사이드(Molybdenum pentaethoxide, Mo(OC2H5)5)를 무수 알코올 용액 내에 용해시킨 후 중희토류 원소가 포함되지 않은 Nd-Fe-B 분말을 침지시켜 분말의 표면에 고융점 금속 전구체를 코팅시켰으며, 이후 열분해를 통해 전구체 내에 포함된 몰리브덴 이외의 불순물을 제거하는 방법으로 중희토류 원소가 포함되지 않은 Nd-Fe-B 분말의 표면에 몰리브덴의 생성을 유도하고자 하였다. 이렇게 제조된 코어 쉘 형태의 분말은 중희토류가 포함되지 않은 Nd-Fe-B 분말이 코어가 되고, 몰리브덴이 쉘을 형성하며, 소결 공정 중 미세한 2차상을 시편 전체의 결정립계에 고르게 분포시킬 수 있다. 또한, 잔류자속밀도의 변화를 최소화하기 위해 몰리브덴의 첨가량을 제어하여 주상인 Nd2Fe14B 내로 입내 확산을 억제하고자 하였다.
상기 발명은 R-Fe-B계(R=La, Ce, Nd, Pr, Pm, Sm, Eu 또는 Nb) 소결자석에 있어서, 경희토류 원소를 포함하는 R2Fe14B 결정립이 주상을 이루고, 상기 결정립 주위를 경희토류 원소를 포함하는 R-리치상이 둘러싼 미세 구조로 이루어지며, 상기 R2Fe14B 결정립에 의해 형성되는 삼중점 또는 결정립계에 선택적으로 고융점 금속 원소를 포함하는 2차상을 포함하며, 인접한 두 R2Fe14B 결정립 간 근접도(Contiguity)가 50% 이하를 갖는 것인 R-Fe-B계 소결자석을 제공한다.
상기 2차상은 Mo2FeB2 MoFe2로 이루어진 군으로부터 선택되는 어느 하나 이상의 것을 특징으로 한다.
상기 R2Fe14B 결정립은 평균 입경이 5 ~ 6.5 ㎚인 것을 특징으로 한다.
상기 소결자석은 보자력이 10 ~ 20 kOe이고, 잔류자속밀도는 1 ~ 1.7 T인 것을 특징으로 한다.
또한, 본 발명은 상기 다른 목적을 이루기 위하여,
Ⅰ) 고융점 금속 전구체가 용해된 무수 알코올에 R-Fe-B계 분말을 혼합함과 함께 상기 R-Fe-B계 분말의 표면에 상기 고융점 금속 전구체가 코팅되는 단계;
Ⅱ) 상기 고융점 금속 전구체가 코팅된 R-Fe-B계 분말을 건조하고, 열분해하여 코어-쉘 형태의 원료분말을 제조하는 단계; 및
Ⅲ) 상기 원료분말을 소결하여 R-Fe-B계 소결자석을 제조하는 단계; 를 포함하는 R-Fe-B계 소결자석의 제조방법을 제공한다.
상기 코어-쉘 형태의 원료분말은 전체 100 중량%를 기준으로 R 분말 표면에 Mo 0.03 ~ 0.20 중량%를 포함하는 것을 특징으로 한다.
상기 고융점 금속 전구체는 몰리브덴 펜타에톡사이드(Molybdenum pentaethoxide, Mo(OC2H5)5)인 것을 특징으로 한다.
상기 Ⅱ) 단계에서 열분해는 상압에서 750 ~ 1000 ℃로 수행하는 것을 특징으로 한다.
상기 Ⅱ) 단계에서 열분해는 10-3 torr 이하의 감압하에서 250 ~ 400 ℃로 수행하는 것을 특징으로 한다.
상기 Ⅲ) 단계 소결은 900 ~ 1100 ℃에서 수행하는 것을 특징으로 한다.
상기 Ⅲ) 소결 단계에서 승온 속도는 5 ~ 15 ℃/분인 것을 특징으로 한다.
또한, 상기 R-Fe-B계 소결자석의 제조방법에 사용되는 고융점 금속 전구체로서는 몰리브덴 펜타에톡사이드(Molybdenum pentaethoxide)를 제공한다.
본 발명에 따른 R-Fe-B계 소결자석은 고융점 금속을 R-Fe-B계 원료분말의 표면에 형성하여 미세한 2차상을 시편 전체의 삼중점 및 결정립계에 고르게 분포함으로써, 소결자석의 미세구조를 효과적으로 제한할 수 있으므로, 기존 R-Fe-B계 소결자석이 가지는 물리적 자기적 특성의 한계를 극복할 수 있을 뿐만 아니라, 중희토류 수급문제로부터 자유롭고 그에 따라 가격적으로 저렴한 장점을 가진다.
도 1은 본 발명에 따라 제조된 소결자석의 제조과정을 나타낸 모식도이다.
도 2는 고융점 금속 전구체(Mo(OC2H5)5)의 TGA와 DSC 분석 결과를 나타내는 그래프이다.
도 3은 Mo를 첨가한 성형체와 Mo를 첨가하지 않은 성형체의 XRD 분석 결과 그래프이다.
도 4는 열분해 공정이 분말에서 금속간 화합물 형성 유무에 미치는 영향을 확인하기 위하여, Mo가 코팅된 Nd-Fe-B 분말의 표면 및 단면을 주사전자현미경으로 관찰한 결과로, point A는 상기 코어-쉘 형태의 원료분말의 쉘 부분이고, point B는 상기 코어-쉘 형태의 원료분말의 코어 부분이다.
도 5는 Mo가 코팅된 Nd-Fe-B 분말의 소결 완료 후의 미세구조 변화를 SEM(BSE) 및 EPMA를 통하여 분석한 결과이다.
도 6은 SEM 및 EPMA 이미지에서 확인된 2차상의 정확한 상분석을 위하여 Mo를 포함하는 소결자석과 Mo를 포함하지 않는 소결자석의 XRD 분석을 실시한 결과를 나타낸 그래프이다.
도 7은 중희토류(Dy)를 포함하지 않은 분말(HREE free)(a), Mo를 포함하지 않은 소결자석(b), 0.03 중량% Mo를 포함하는 소결자석(c), 0.05 중량% Mo를 포함하는 소결자석(d) 및 0.2 중량% Mo를 포함하는 소결자석(e)의 주사전자현미경(BSE), 편광 이미지(optical microscope; OM) 및 이를 이용한 평균 결정립 및 결정립 크기 분포 그래프이다.
도 8은 Mo를 포함하지 않은 소결자석, 0.03 중량% Mo를 포함하는 소결자석, 0.05 중량% Mo를 포함하는 소결자석 및 0.2 중량% Mo를 포함하는 소결자석의 보자력 변화를 보여주는 그래프이다.
이하에서, 본 발명을 더욱 상세히 설명한다.
본 명세서에서 "삼중점"이란 소결자석 내 3개의 결정립이 접촉하여 R-리치상으로 형성되는 영역을 의미한다.
R-Fe-B계 소결자석은 주상을 이루는 R2Fe14B 결정립이 R-리치상에 의해 둘러싸인 구조를 가지는데, 이때, 결정립의 크기, 고립화, R-리치상의 두께 등의 파라미터에 의해서 소결자석의 자성 특성 및 기타 특성이 결정된다. 특히, 고유의 자기이방성장(Magnetic anisotrophy field)이 높은 원소인 중희토류(Dy 또는 Tb)를 주로 사용하여 자성특성을 향상시키려고 하였다. 하지만, 중희토류 원소는 적은 부존량과 지역적으로 자원이 편중되어있어, 수급과 가격에서 불안요소가 다수 존재하므로 사용량을 줄이는 것이 요구되고 있다.
따라서, 본 발명자들은 중희토류를 첨가하지 않아도 기존 R-Fe-B계 소결자석의 자기적 특성을 뛰어넘는 고특성 자성소재를 개발하기 위하여 연구 노력한 결과, 고융점 금속을 단순 혼합하는 경우에는 결정립의 크기를 제한할 수는 있으나, 제조과정에서 석출물들이 발생하여 오히려 보자력 및 잔류자속밀도가 감소한다는 점에 주목하여 이를 해결하기 위한 방편을 강구하였다. 구체적으로는, 고융점 금속 전구체를 무수 알코올에 용해시킨 후 중희토류 원소가 포함되지 않은 Nd-Fe-B 분말을 침지시키는 방법으로 고융점 금속인 Mo를 코팅하였으며, 이렇게 제조된 분말을 소결하여 고융점 금속을 포함하는 2차상이 결정립계 또는 삼중점에 선택적으로 존재하는 소결자석을 완성하기에 이르렀다.
본 발명은 기존의 R-Fe-B계 소결자석과는 달리, 중희토류를 첨가하지 않아도, 주상을 이루는 R2Fe14B 결정립의 크기 및 미세구조를 효과적으로 제한하여 높은 보자력 및 잔류자속밀도를 갖는 자기적 특성이 향상된 소결자석을 제공한다는 점에 특징이 있다.
본 발명의 하나의 관점은 경희토류 원소를 포함하는 R2Fe14B 결정립이 주상을 이루고, 상기 결정립 주위를 경희토류 원소를 포함하는 R-리치상이 둘러싼 미세 구조로 이루어지며, 상기 R2Fe14B 결정립에 의해 형성되는 삼중점 또는 R2Fe14B 결정립계(grain boundary)에 고융점 금속 원소를 포함하는 2차상을 포함하는 소결자석을 제공하는 것이다.
더욱 자세하게, 상기 소결자석은 주상과 R-리치상을 구성하는 경희토류 원소는 서로 각각 독립적으로 이루도록 하는데, 다시 말해, 주상과 리치상의 경희토류 원소가 동일할 수도 서로 다를 수도 있다.
상기 R은 La, Ce, Nd, Pr, Pm, Sm, Eu 또는 Nb이고, 본 발명의 실시 예에서는 Nd를 사용하였다.
이때, 인접한 두 R2Fe14B 결정립 간 근접도(Contiguity)가 50% 이하인 것이 좋으며, 바람직하게는 23 ~ 40% 수준을 갖는다. 근접도는 결정립 자체가 R-리치상에 의해 거의 완전히 고립되어 있음을 수치적으로 보여주는 파라미터로서, 이때 그 수치가 낮을수록 결정립이 서로 접해있지 않음을 의미한다.
근접도(Contiguity)란 미세구조 전체 결정입계의 면적에서 같은 상인 두 상간의 상호 접해있는 결정입계의 면적의 분율로 정의한다. 즉, 접해있는 결정입계 / 전체 결정입계로 정의하거나 전체 결정입계의 면적에서 인접해있는 결정과 상호 접해있는 결정입계의 면적을 의미한다[METALLURGICAL TRANSACTIONS A, R.M. GERMAN, Vol 16A, JUL 1985, 1247; METALLOGRAPHY, V. Srikanth, G.S. Upadhyaya, Vol 19, 4, Nov 1986, 437~445;International Journal of Refractory Metals & Hard Materials, V.T. Golovchan, N.V. Litoshenko, 21,2003, 241~244]. 이때 근접도가 높을수록 결정립끼리 많이 접해있는 것을 의미하며, 근접도가 낮을수록 결정립이 고립(isolation)되었음을 의미한다.
상기 2차상은 Mo2FeB2, MoFe2로, 서브마이크론 이하의 평균 입자크기를 가지면서 상기 R2Fe14B 결정립에 의해 형성되는 삼중점 또는 결정립계(grain boundary)에 균일하게 분포되어 있다. 이는 결정립 내로 Mo가 용해되는 것을 차단하면서 결정립의 크기를 효과적으로 제한하여 소결자석의 보자력 및 잔류자속밀도를 향상시킨다.
초기 분말의 미세구조 및 XRD 분석을 통하여 초기 Nd2Fe14B 분말 표면에 과량의 Nd와 미량의 Nd1.xFe4B4이 존재하는 것을 관찰할 수 있었다. 이러한 Nd와 Nd1.xFe4B4은 소결 공정 중 고융점 금속 전구체를 이용하여 형성된 Mo와 반응하여 새로운 금속간화합물을 형성한다. 이는 열역학적 표준 생성 깁스 에너지(standard Gibbs free energy formations)을 고려했을 때 Nd2Fe14B은, Nd1.xFe4B4보다 매우 안정적이므로 Nd2Fe14B 분말의 표면에 형성된 Mo는 Nd2Fe14B와 반응하기보다는 Nd1.xFe4B4와 반응하여 금속간화합물을 형성할 확률이 높다. 또한, 이원계 상태도(Binary Alloy Phase Diagrams)를 근거로 판단했을 때, Mo-Nd는 해당 온도에서 반응하여 금속간화합물을 형성할 수 없으며, Mo-Fe는 금속간화합물의 형성이 가능하다. 그 결과 고융점 금속의 코팅을 통해 코어쉘 형태를 가지는 R-Fe-B 분말은 소결 공정 중 다음과 같은 화학 반응식으로 2차상이 형성될 수 있다.
(1) 4Mo + Nd1.xFe4B4→ 2 Mo2FeB2+2Fe+1.xNd
(2) XFe + Mo→MoFeX
소결 공정 중 식(1) 과 같이 Nd-Fe-B 분말 표면에 존재하는 Nd1.xFe4B4와 Mo 원자가 반응을 하여 Mo2FeB2상이 형성될 수 있다. 하지만 소결 완료 후 시편의 XRD 상 분석에서 확인되는 MoFeX상의 경우는 Nd-rich 내에 포함된 Fe가 Mo와 반응하여 생성되거나 Mo2FeB2상 생성 이후의 잔존하는 Fe와의 반응으로 형성되는 것으로 판단된다.
이에 본 발명은 Mo 코팅된 코어-쉘 원료분말을 이용함으로써, 상기 소결 과정에서 2차상을 형성하여 결정립 성장을 효과적으로 제한하여 결정립 크기의 편차를 1.5 ㎛ 이하로 제한한다.
또한, 상기 2차상의 형성으로 인하여 R-리치상과 결정립 간의 젖음성이 향상되고 R-리치상이 결정립계면 사이에 더욱 잘 침투된다.
상기 R2Fe14B 결정립은 평균 입경이 5 ~ 6.5 ㎚로 소결자석으로 이용하기에 적절한 수준의 크기를 가지는데, 상기 R2Fe14B 결정립의 입경이 6.5 ㎚를 초과하게 되면 결정립의 고립이 용이하지 않아 결정립간 자기교환 결합작용이 일어나 보자력이 낮아지는 문제가 발생한다.
상기와 같은 구조를 갖는 소결자석은 기존 소결자석보다 보자력이 10 ~ 20 kOe이고, 잔류자속밀도는 1 ~ 1.7인 높은 수준을 갖는다.
또한, 본 발명의 다른 관점은 전술한 바의 소결자석 미세구조를 갖도록 제조하는 방법에 관한 것으로, 이에 따른 공정을 도 2에 나타내었다.
일반적으로 코어-쉘 구조의 원료분말의 제조는 물리적 기상증착, 화학적 기상증착 또는 용사법 등의 건식 코팅법이 사용되나, 본 발명에서는 보다 빠르고 간편하면서 균일한 쉘 두께를 갖는 코어-쉘 구조의 원료분말을 제조하기 위하여 액상 코팅법을 사용한다.
상기 액상 코팅법은 스트립 캐스팅을 통해 제조된 R-Fe-B계 분말에 고융점 금속이 코팅된 코어-쉘 형태의 원료분말을 제조하기 위하여, 우선, 고융점 금속 전구체가 용해된 무수 알코올에 R-Fe-B계 분말을 침지시켜 상기 고융점 금속 전구체가 코팅된 R-Fe-B계 분말을 제조한다.
상기 고융점 금속 전구체가 코팅된 R-Fe-B계 분말로부터 유기물을 분해하는 건조 및 열분해 과정을 통해 코어-쉘 형태의 원료분말을 제조한다.
이때, 상기 열분해 단계는 상압에서 750 ~ 1000 ℃로 수행하는 것이 바람직한데, 이는 도 2의 TGA와 DSC 분석 결과 그래프로부터 확인된 최적 조건이므로 상기 범위 내에서 적절히 사용하는 것이 바람직하다.
또한, 상기 열분해 단계는 10-3 torr 이하의 감압 조건 하에서 250 ~ 400 ℃로 수행할 수 있다.
상기 고융점 금속 전구체는 몰리브덴 펜타에톡사이드(Molybdenum pentaethoxide; Mo(OC2H5)5)인 것이 가장 바람직하다.
다음으로, 상기 코어-쉘 형태의 원료분말은 소결하기 전에 이미 분말을 둘러싸고 있으므로 결정립의 고립화에 효과적으로 작용하게 된다.
상기 전술한 바와 같이 제조된 코어-쉘 형태의 원료분말은 전체 100 중량%를 기준으로 R-Fe-B계 분말 표면에 Mo 쉘이 0.03 ~ 0.2 중량% 포함되는 것이 바람직하다. 본 발명에서는 0.03 중량% 이상, 바람직하게는 0.03 ~ 0.2 중량%, 더욱 바람직하게는 0.2 중량%일 때 가장 우수한 보자력 향상 효과를 확보할 수 있다.
상기 Mo 쉘의 함량이 상기 범위 미만이면 소결시 결정립의 크기를 효과적으로 제한하는데 어려움이 있고, 상기 범위를 초과하면 고융점 금속(Mo)이 결정립 내부로 과도하게 확산되어 소결자석의 보자력이 저하되는 문제가 발생할 수 있으므로 상기 범위 내에서 적절히 사용하는 것이 좋다.
전술한 바, 상기 코어-쉘 형태의 원료분말을 제조하는 방법은 종래 건식 방법과 같은 타방법에 비해 단계가 단순하고, 생성속도가 빠르며, 코팅효율이 우수하다. 특히, 스퍼터링 장치와 같은 추가 장비가 요구되지 않으므로 보다 더 비용 효율적이다.
최종적으로 상기 코어-쉘 형태의 원료분말을 900 ~ 1100 ℃에서 소결하여 R-Fe-B계 소결자석을 제조한다.
구체적으로, 상기 코어-쉘 형태의 원료분말을 가지고 소결을 진행하게 되면, 소결공정 중 635 ℃ 근처에 도달하면서 R-리치상은 액상으로 존재하기 시작한다.
상기 온도 이상이 되면서부터 코어-쉘 형태의 미세구조를 갖는 원료분말은 코어를 둘러싸고 있는 고융점 금속을 포함하는 쉘이 결정립계를 따라 액상의 R-리치상에 확산되어가며 결정립 주변으로 2차상을 형성하여 상기 결정립을 더욱 확실하게 고립이 된다.
또한, 상기 쉘은 고융점 금속을 포함하고, 이러한 고융점 금속은 Nd2Fe14B 코어 분말 표면에 존재하는 Nd1.xFe4B4와 반응하여 2차상을 형성 시켜 소결 공정 중 결정립 성장을 효과적으로 제어함으로써 결정립의 입자크기를 낮은 수준으로 균일하게 유지할 수 있다.
또한, 상기 2 차상이 입계에 형성되어 결정립간의 모세관력을 변화시켜 젖음성이 향상되고 그로 인해 R-리치상이 결정립 계면 사이에 보다 잘 침투되어 용이하게 결정립을 고립시킬 수 있다.
상기 소결 공정을 통해 소결 입자의 크기를 제한하고, 균일한 미세구조를 갖는 소결자석을 제조할 수 있으며, 이러한 소결자석은 기존 소결자석에 비해 상대 밀도가 99% 이상, 보자력이 10 ~ 20 kOe이고 잔류자속밀도는 1 ~ 1.7 T로 향상되었으며 중희토류 원소를 사용하지 않아도 이러한 고특성의 소결 자석을 제조가 가능하였다. 이와 같이 제조된 고특성 소결 자석은 전동기, 발전기, 그린 에너지 등 자성소재와 그 응용부품에서 중희토류 소결자석을 대체하여 이용될 수 있다.
또한, 본 발명의 또 다른 관점은 상기 R-Fe-B계 소결자석의 제조방법에 사용되는 고융점 금속 전구체용 몰리브덴 펜타에톡사이드(Molybdenum pentaethoxide)의 용도에 관한 것으로, 특히, 수성 상으로 상기 R-Fe-B계 분말과 같은 입자의 표면에 고융점 금속인 Mo를 코팅하기 위한 방식 특성을 향상시키기 위한 조성물로서의 몰리브덴 펜타에톡사이드(Molybdenum pentaethoxide; Mo(OC2H5)5)의 용도에 관한 것이다.
상기 R-Fe-B계 분말과 같은 입자를 고융점 금속(Mo)로 액상 코팅하는 경우에 있어서, 몰리브덴 펜타에톡사이드(Molybdenum pentaethoxide; Mo(OC2H5)5)의 존재는 상기 R-Fe-B계 분말 표면에 얇고 균일한 코팅층(쉘층)이 형성되도록 한다.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
실시예 1.
(1) Nd14Fe80B6(Nd:14,Fe:80,B:6(원자%))의 조성을 갖는 시편을 제조함에 있어서 각각의 원료재료를 1600 ℃에서 용해시킨 후, 스트립 캐스팅법(strip casting)을 사용하여 합금 스트립을 제조하였다. 제조된 합금 스트립을 수소/탈수소처리하여 결정립계에 미세크랙이 형성되도록 한 후, 젯밀링을 통해 분쇄하고 평균 입경(D50) 5.0 ㎛입자크기를 갖는 분말로 분급하였다. 이때, 입자의 크기분포는 2 ~ 10 ㎛이고 표준편차는 0.94이다.
(2) 고융점 금속 전구체로서 Mo pentaethoxide(Mo(OC2H5)5)를 이용하였으며 이를 알코올 무수물(Absolute alcohol)에 용해시켜 혼합액을 제조하고, 여기에, 상기 분말을 침지(dipping) 시킨 다음, 아르곤 분위기 하에서 건조를 하였다. 이후, 750 ℃에서 30 분간 열분해하여 유기물을 제거하고, 코어-쉘 형태의 원료분말을 제조하였다. 이때, 상기 분말로부터 유도된 R2Fe14B가 코어로 형성되고, 상기 고융점 금속 전구체로부터 유도된 Mo가 쉘로 형성되었다.
(3) 다음으로, 상기 제조된 코어-쉘 원료분말을 자장성형기를 이용해 20 kOe의 정자장(static magnetic field)하에서 성형하여 20 × 12 × 15 ㎣ 크기의 성형체로 제조하였다. 이때 성형압력은 1.2 톤이고 성형체의 상대밀도는 48%였다.
이어, 성형체를 2.4×10-6 torr 이하의 진공이 유지되는 진공로에서 소결하되 액상인 Nd-리치상이 충분히 Nd2Fe14B 간의 결정립계로 균일한 분포를 유도하도록 1070 ℃에서 4 시간 동안 소결하여 Nb-Fe-B계 소결자석을 제조하였다.
도 2는 고융점 금속 전구체(Mo(OC2H5)5)의 TGA와 DSC 분석 결과를 나타내는 그래프로, 이에 따르면, 고융점 금속 전구체의 무게 변화가 290 ℃와 750 ℃ 각 두 지점에서 발생하였다는 것을 알 수 있다. 또한, DSC 분석 그래프를 통해 발열반응인 것을 알 수 있다.
상기 결과로부터 실시예 1(1)의 분말에서 실시예 1(2)의 코어-쉘 형태의 원료분말을 제조하기 위한 열분해 공정의 최적 조건을 결정하였다.
도 3은 Mo를 첨가한 성형체와 Mo를 첨가하지 않은 성형체의 XRD 분석 결과이며, 두 시편 모두 Nd2Fe14B상와 Nd-리치상의 피크가 확인되었으며, 이외에도 Nd1.xFe4B4상의 피크가 확인되었다. Nd1.xFe4B4상은 Nd-Fe-B 분말 제조 시 B의 양에 비해 Fe의 양이 상대적으로 적을 때 나타날 수 있는 상으로서 Nd-Fe-B 분말의 표면에 존재하는 것으로 알려져 있다. 그러나 Mo를 첨가한 성형체에서는 낮은 강도를 가지는 Mo상의 피크가 확인되었다.
도 4는 Mo가 코팅된 Nd-Fe-B 분말의 표면 및 단면을 주사전자현미경으로 관찰한 결과로, point A는 상기 코어-쉘 형태의 원료분말의 쉘 부분이고, point B는 상기 코어-쉘 형태의 원료분말의 코어 부분이다.
도 4에 나타난 바와 같이, EDS 분석을 실시한 결과 Nd-Fe-B 분말의 내부에는 Nd, Fe, O 만이 확인되었으며, Nd-Fe-B 분말의 표면에는 Nd, Fe, O 원소 이외에도 Mo가 확인되었다.
즉, 이러한 결과로부터 Nd-Fe-B 분말의 표면에만 제한적으로 고융점 금속 원소인 Mo가 코팅되었음을 알 수 있다.
도 5는 Mo가 코팅된 Nd-Fe-B 분말의 소결 완료 후의 미세구조 변화를 SEM(BSE) 및 EPMA를 통하여 분석한 결과이다. SEM(BSE) 분석결과 Nd2Fe14B(φ, hard magnet phase)인 어두운 상(dark phase), Nd-리치상(non-magnet phase)인 밝은 상(bright area) 이외에도 Nd-리치상이 존재하는 결정립계에 명암(contrast) 차이가 나는 2차상(second phase)이 존재하고 있음을 관찰하였다. 관찰된 2차상의 원소를 분석하기 위하여 EPMA mapping을 진행하였다. 분석 결과 BSE 이미지 분석 결과에서 확인된 2차상은 Mo 원자를 다량으로 포함하는 상(phase)으로 분석되었다. 형성된 2차상은 삼중점(triple junction) 및 결정립계(grain boundary)에 1 ㎛ 미만(sub micron)의 크기를 가지며 소결 시편 전체에 균일하게 하게 분포하고 있었다. 시편 전체의 균일한 2차상 의 분포는 분말 제조 시 액상을 통한 코팅 방법으로 Nd-Fe-B 표면에 Mo 원소를 고르게 분포시킨 결과로 판단된다. 소결 공정 중 결정립계에 균일하게 형성된 2차상은 결정립계(grain boundary) 및 삼중점(Triple Junction)에 존재함에 따라 결정립계 이동(grain boundary migration)을 제한할 가능성이 있다. 또한, 이러한 Mo 원소를 포함하는 2차상은 Nd2Fe14B상 내에 존재하지 않는 것으로 분석되었다. 이는 극미량의 Mo 첨가에 의한 2차상의 형성을 유도함에 따라 Nd2Fe14B상 내에 Mo가 용해(dissolution)되는 것을 효과적으로 억제한 것으로 판단된다. 추가로, Nd-rich가 매우 연속적인 형태를 나타내면서 Nd2Fe14B상을 고립화(isolation)시키는 미세구조 변화를 관찰할 수 있었다. 이러한 Nd-리치상 미세구조를 가지는 소결자석은 핵 생성 보자력 기구에서 강자성 간의 상호 교환 작용에 의한 보자력 감소를 효과적으로 제어시킬 수 있는 미세구조로 기대할 수 있다.
도 6는 SEM 및 EPMA 이미지에서 확인된 2차상의 정확한 상분석을 위하여 Mo를 포함하는 소결자석과 Mo를 포함하지 않는 소결자석의 XRD 분석을 실시한 결과를 나타낸 그래프이다. 소결 시편의 XRD 분석결과, Mo 첨가 시편의 경우 Nd2Fe14B및 Nd-리치상 이외에도 다량의 Mo2FeB2상 및 미량의 MoFe2상이 확인되었다. 초기 Nd2Fe14B분말의 표면에는 과량의 Nd와 Nd1.xFe4B4상이 미량으로 붙어 있어 분말 표면에 존재하는 Mo와의 반응을 일으켜 금속간 화합물(intermetallic compound phase)상을 형성한 것으로 판단된다. 열역학적 표준 생성 깁스 에너지(standard Gibbs free energy formations)을 고려했을 때, Nd2Fe14B상은, Nd1.xFe4B4상에 비해 매우 안정적이다. 또한, Mo와 반응 할 수 있는 분말은 이원계 상태도(Binary Alloy Phase Diagrams)를 고려해 보았을 때, Mo-Nd는 화합물을 형성 할 수 없으며, Mo-Fe는 화합물을 형성할 수 있다. 그 결과 코어(Nd2Fe14B powder)-쉘(Mo element) 형태를 보이는 분말은 소결 공정 중 다음과 같은 화학 반응식으로 금속간화합물상(2차상)이 형성될 가능성이 존재한다.
(1) 4Mo + Nd2Fe14B→ 2 Mo2FeB2+2Fe+1.xNd
(2) XFe + Mo→MoFeX
소결 공정 중 식 (1)과 같이 Nd-Fe-B 분말 표면에 존재하는 Nd1.xFe4B4와 Mo가 반응을 하여 Mo2FeB2상이 형성될 수 있다. 하지만 소결 완료 후의 시편의 XRD 상 분석에서 확인되는 MoFeX상의 경우는 형성 가능성이 여러 가지로 고려된다. 기존에 존재하는 Nd-리치상에 미량으로 존재 하는 Fe에 의하여 Mo와 반응을 할 수 있으며 또는 Mo2FeB2상 생성 이후의 잔존하는 Fe와의 반응으로 형성될 가능성도 있다. 본 발명에서 관찰된 상은 이러한 Mo-Fe 계열의 화합물 중의 하나인 MoFe2상으로 관찰되었다.
도 7은 중희토류(Dy)를 포함하지 않은 분말(HREE free)(a), Mo를 포함하지 않은 소결자석(b), 0.03 중량% Mo를 포함하는 소결자석(c), 0.05 중량% Mo를 포함하는 소결자석(d) 및 0.2 중량% Mo를 포함하는 소결자석(e)의 주사전자현미경(BSE), 편광 이미지(optical microscope; OM) 및 이를 이용한 평균 결정립 및 결정립 크기 분포 그래프이며, 500 배의 배율로 관찰 시 확인 가능한 약 1,000 ~ 1,100 개의 Nd2Fe14B상의 결정립의 평균 결정립 크기 및 분포 값을 측정한 결과이다. 이미지 분석 결과 0.03, 0.05 중량% 및 0.20 중량% Mo 첨가 소결 시편의 평균 결정립 크기는 각각 6.07 ± 0.13 ㎛과 5.88 ± 0.11 ㎛, 5.60 ± 0.11 ㎛로 분석 되었으며, 이를 Mo 첨가하지 않은 시편의 평균 결정립 크기(7.4 ± 0.22 ㎛)와 비교해보면 대략 1.33 ~ 1.8 ㎛ 미세하다. 또한 결정립 크기의 분포를 분석하기 위해 상기 측정된 결정립들의 표준편차를 확인한 결과, Mo 첨가 시편의 표준편차는 0.03, 0.05 중량% 및 0.20 중량% Mo 첨가량에 따라 1.53, 1.42 ㎛ 및 1.3 ㎛로 측정되었으며, Mo 첨가하지 않은 시편의 경우에는 2.5 ㎛로 분석되었다. 즉, Mo 첨가량이 증가할수록 표준 편차가 낮아지는 결과가 나타났다. 이러한 결과는 Mo 첨가량이 증가할수록 균일한 결정립 크기를 가진다고 판단할 수 있다. 또한, 극미량 첨가만으로도 결정립 크기가 감소하는 원인으로는 Mo 유기물을 이용한 액상코팅 방법으로 Nd-Fe-B 분말 표면에 Mo를 고르게 분포시켰기 때문이다.
도 8은 Mo를 포함하지 않은 소결자석, 0.03 중량% Mo를 포함하는 소결자석, 0.05 중량% Mo를 포함하는 소결자석 및 0.2 중량% Mo를 포함하는 소결자석의 보자력 변화를 보여주는 그래프이다.
도 8에 나타난 바와 같이, 상기 소결 시편들의 자성특성 측정 결과 Mo를 첨가하지 않은 시편의 경우 보자력이 11.88 kOe(잔류자속 밀도; 1.37 T)이지만, 각각 0.03, 0.05, 0.20 중량% Mo 첨가 시편의 경우는 12.83, 13.1, 13.95 kOe의 보자력을 나타내었다. 특히, 0.20 중량% Mo 첨가 시편의 경우 Mo를 첨가하지 않은 시편에 비해 2.07 kOe 증가하였음을 확인하였다. 특히, Mo 첨가 시편의 경우 첨가량이 증가하여도 잔류자속밀도는 1.35 ~ 1.37 T로 동일하거나 약간 감소하였다.
상기 결과를 통해 고융점 금속(Mo)의 첨가는 도 7에서 설명한 바와 같이 결정립의 생성 및 성장을 효과적으로 억제하므로, 결정립의 크기를 균일하게 한다.
또한, 본 발명의 소결자석 제조과정에 있어서, 고융점 금속 전구체를 이용하여 개선된 액상 코팅법을 적용함으로써, 미세한 크기의 2차상을 소결자석 내에 균일하게 분포시켰으며, 이를 통해 보다 미세하고 균일한 결정립 성장을 유도하였다. 특히 극미량 첨가만으로 결정립 성장 제어 효과가 매우 크다.
결론적으로 보자력의 향상은 극미량 첨가 방법을 통해 선택적으로 결정립립 계에 2차상 형성을 유도함에 따라 소결 공정 중 결정립 크기 증가를 효과적으로 제한하였기 때문으로 판단된다. 특히 이러한 미세구조는 Nd2Fe14B내의 Mo의 용해(dissolution)를 효과적으로 제한하여 잔류자속밀도 감소를 최소화할 수 있었다.
본 발명에 따른 R-Fe-B계 소결자석은 고융점 금속을 R-Fe-B계 원료분말의 표면에 형성하여 미세한 2차상을 시편 전체의 삼중점 및 결정립계에 고르게 분포함으로써, 소결자석의 미세구조를 효과적으로 제한할 수 있으므로, 기존 R-Fe-B계 소결자석이 가지는 물리적 자기적 특성의 한계를 극복할 수 있을 뿐만 아니라, 중희토류 수급문제로부터 자유롭고 그에 따라 가격적으로 저렴한 장점을 가진다.

Claims (11)

  1. R-Fe-B계(R=La, Ce, Nd, Pr, Pm, Sm, Eu 또는 Nb) 소결자석에 있어서,
    상기 소결자석은 경희토류 원소를 포함하는 R2Fe14B 결정립이 주상을 이루고,
    상기 결정립 주위를 경희토류 원소를 포함하는 R-리치상이 둘러싼 미세 구조로 이루어지며,
    상기 R2Fe14B 결정립에 의해 형성되는 삼중점 또는 R2Fe14B 결정립계에 고융점 금속 원소를 포함하는 2차상을 포함하며,
    인접한 두 R2Fe14B 결정립 간 근접도(Contiguity)가 50% 이하를 갖는 것인 R-Fe-B계 소결자석.
  2. 제1항에 있어서,
    상기 2차상은 Mo2FeB2, MoFe2인 것을 특징으로 하는 R-Fe-B계 소결자석.
  3. 제1항에 있어서,
    상기 R2Fe14B 결정립은 평균 입경이 5 ~ 6.5 ㎚인 것을 특징으로 하는 R-Fe-B계 소결자석.
  4. 제1항에 있어서,
    상기 소결자석은 보자력이 10 ~ 20 kOe이고, 잔류자속밀도는 1 ~ 1.7 T인 것을 특징으로 하는 R-Fe-B계 소결자석.
  5. Ⅰ) 고융점 금속 전구체가 용해된 무수 알코올에 R-Fe-B계 분말을 혼합함과 함께 상기 R-Fe-B계 분말의 표면에 상기 고융점 금속 전구체가 코팅되는 단계;
    Ⅱ) 상기 고융점 금속 전구체가 코팅된 R-Fe-B계 분말을 건조하고, 열분해하여 코어-쉘 형태의 원료분말을 제조하는 단계; 및
    Ⅲ) 상기 원료분말을 소결하여 R-Fe-B계 소결자석을 제조하는 단계를 포함하는 R-Fe-B계 소결자석의 제조방법.
  6. 제5항에 있어서,
    상기 고융점 금속 전구체는 몰리브덴 펜타에톡사이드(Molybdenum pentaethoxide; Mo(OC2H5)5)인 것을 특징으로 하는 R-Fe-B계 소결자석의 제조방법.
  7. 제5항에 있어서,
    상기 Ⅱ) 단계에서 열분해는 상압에서 750 ~ 1000 ℃로 수행하는 것을 특징으로 하는 R-Fe-B계 소결자석의 제조방법.
  8. 제5항에 있어서,
    상기 Ⅱ) 단계에서 열분해는 10-3 torr 이하의 감압하에서 250 ~ 400 ℃로 수행하는 것을 특징으로 하는 R-Fe-B계 소결자석의 제조방법.
  9. 제5항에 있어서,
    상기 Ⅲ) 단계 소결은 900 ~ 1100 ℃ 에서 수행하는 것을 특징으로 하는 R-Fe-B계 소결자석의 제조방법.
  10. 제5항에 있어서,
    상기 Ⅲ) 소결 단계에서 승온 속도는 5 ~ 15 ℃/분인 것을 특징으로 하는 R-Fe-B계 소결자석의 제조방법.
  11. 제5항에 따른 R-Fe-B계 소결자석의 제조방법에 사용되는 고융점 금속 전구체용 몰리브덴 펜타에톡사이드(Molybdenum pentaethoxide).
PCT/KR2015/007314 2014-07-14 2015-07-14 중희토류 원소를 포함하지 않는 r-fe-b계 소결자석 및 이의 제조방법 WO2016010348A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580043655.XA CN107077940A (zh) 2014-07-14 2015-07-14 不含重稀土元素的基于r‑fe‑b的烧结磁体及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140088349A KR101719871B1 (ko) 2014-07-14 2014-07-14 중희토류 원소를 포함하지 않는 R-Fe-B계 소결자석 및 이의 제조방법
KR10-2014-0088349 2014-07-14

Publications (2)

Publication Number Publication Date
WO2016010348A1 true WO2016010348A1 (ko) 2016-01-21
WO2016010348A9 WO2016010348A9 (ko) 2016-03-24

Family

ID=55078766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007314 WO2016010348A1 (ko) 2014-07-14 2015-07-14 중희토류 원소를 포함하지 않는 r-fe-b계 소결자석 및 이의 제조방법

Country Status (3)

Country Link
KR (1) KR101719871B1 (ko)
CN (1) CN107077940A (ko)
WO (1) WO2016010348A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825754A (zh) * 2019-02-11 2019-05-31 西安交通大学 一种改性Mo2FeB2基金属陶瓷及其制备方法
CN111161950A (zh) * 2020-03-19 2020-05-15 浙江凯文磁业有限公司 一种用于重稀土晶界渗透前处理装置及处理工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102356630B1 (ko) * 2018-01-10 2022-01-26 주식회사 엘지화학 희토류 자석
KR102632582B1 (ko) * 2019-10-07 2024-01-31 주식회사 엘지화학 소결 자석의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251755A (ja) * 1996-12-27 2005-09-15 Canon Inc 粉末材料、電極構造体、それらの製造方法及び二次電池
JP2005286174A (ja) * 2004-03-30 2005-10-13 Tdk Corp R−t−b系焼結磁石
JP2008263179A (ja) * 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd 希土類永久磁石及びその製造方法
JP2011216695A (ja) * 2010-03-31 2011-10-27 Nitto Denko Corp 希土類永久磁石の製造方法
KR20120021939A (ko) * 2010-08-23 2012-03-09 한양대학교 산학협력단 η상을 갖는 R-Fe-B계 소결자석 및 이의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851515A3 (en) * 1996-12-27 2004-10-27 Canon Kabushiki Kaisha Powdery material, electrode member, method for manufacturing same and secondary cell
JP5130270B2 (ja) 2009-09-30 2013-01-30 株式会社日立製作所 磁性材料及びそれを用いたモータ
EP2503570B1 (en) * 2010-03-31 2015-01-21 Nitto Denko Corporation Manufacturing method for permanent magnet
JP5501832B2 (ja) * 2010-03-31 2014-05-28 日東電工株式会社 永久磁石及び永久磁石の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251755A (ja) * 1996-12-27 2005-09-15 Canon Inc 粉末材料、電極構造体、それらの製造方法及び二次電池
JP2005286174A (ja) * 2004-03-30 2005-10-13 Tdk Corp R−t−b系焼結磁石
JP2008263179A (ja) * 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd 希土類永久磁石及びその製造方法
JP2011216695A (ja) * 2010-03-31 2011-10-27 Nitto Denko Corp 希土類永久磁石の製造方法
KR20120021939A (ko) * 2010-08-23 2012-03-09 한양대학교 산학협력단 η상을 갖는 R-Fe-B계 소결자석 및 이의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825754A (zh) * 2019-02-11 2019-05-31 西安交通大学 一种改性Mo2FeB2基金属陶瓷及其制备方法
CN111161950A (zh) * 2020-03-19 2020-05-15 浙江凯文磁业有限公司 一种用于重稀土晶界渗透前处理装置及处理工艺
CN111161950B (zh) * 2020-03-19 2024-05-07 浙江凯文磁业有限公司 一种用于重稀土晶界渗透前处理装置及处理工艺

Also Published As

Publication number Publication date
KR101719871B1 (ko) 2017-03-24
CN107077940A (zh) 2017-08-18
WO2016010348A9 (ko) 2016-03-24
KR20160008326A (ko) 2016-01-22

Similar Documents

Publication Publication Date Title
WO2016010348A1 (ko) 중희토류 원소를 포함하지 않는 r-fe-b계 소결자석 및 이의 제조방법
JP7220300B2 (ja) 希土類永久磁石材料、原料組成物、製造方法、応用、モーター
WO2016175377A1 (ko) 열적 안정성이 향상된 망간비스무트계 소결자석 및 이들의 제조 방법
CN102347126B (zh) 一种高性能烧结钕铁硼稀土永磁材料及制造方法
US6447621B1 (en) R-T-B rare earth sintered magnet having improved squareness ratio and method for producing same
WO2016093379A1 (ko) 비자성 합금을 포함하는 열간가압변형 자석 및 이의 제조방법
WO2011004894A1 (ja) NdFeB焼結磁石及びその製造方法
CN111834118B (zh) 一种提高烧结钕铁硼磁体矫顽力的方法及烧结钕铁硼磁体
WO2015046732A1 (ko) 열간가압성형 공정을 이용한 이방성 열간가압성형 자석의 제조방법 및 이 방법으로 제조된 열간가압성형 자석
WO2012102497A2 (en) R-fe-b sintered magnet with enhanced mechanical properties and method for producing the same
JP2005325450A (ja) 磁性材料の製造方法、防錆層付き磁性材料粉末及びそれを用いたボンド磁石
JPH07122413A (ja) 希土類永久磁石およびその製造方法
WO2020111772A1 (ko) 희토류 자석 제조방법
WO2020045865A1 (ko) 자석 분말의 제조 방법 및 자석 분말
WO2021071236A1 (ko) 소결 자석의 제조 방법
WO2014204106A1 (ko) 영구 자석의 제조 방법
JP2020031144A (ja) R―t―b系希土類永久磁石
US20230377783A1 (en) Rare earth sintered magnet, method of manufacturing rare earth sintered magnet, rotor, and rotating machine
WO2014058218A1 (ko) 에이치디디알공법 중 수소방출및재결합단계 제어방법과, 수소방출및재결합단계를 포함하는 희토류-철-보론계 희토류자성분말의 제조방법 및 이에 따라 제조된 희토류-철-보론계 희토류자성분말
US7018487B2 (en) Magnet containing low rare earth element and method for manufacturing the same
WO2021060849A1 (ko) 소결 자석의 제조 방법 및 소결 자석
JP2739502B2 (ja) 耐酸化性の優れた永久磁石合金
WO2024106628A1 (ko) 경-연자성 복합 자성 입자 및 이의 제조방법, 이를 포함하는 영구자석
KR102172058B1 (ko) 자성 분말 및 이의 제조방법
WO2022080963A1 (ko) 자성 분말의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821544

Country of ref document: EP

Kind code of ref document: A1