WO2016009468A1 - 可変圧縮比内燃機関 - Google Patents

可変圧縮比内燃機関 Download PDF

Info

Publication number
WO2016009468A1
WO2016009468A1 PCT/JP2014/068659 JP2014068659W WO2016009468A1 WO 2016009468 A1 WO2016009468 A1 WO 2016009468A1 JP 2014068659 W JP2014068659 W JP 2014068659W WO 2016009468 A1 WO2016009468 A1 WO 2016009468A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression ratio
shaft
control shaft
rotation
internal combustion
Prior art date
Application number
PCT/JP2014/068659
Other languages
English (en)
French (fr)
Inventor
日吉 亮介
田中 儀明
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to MX2017000280A priority Critical patent/MX353822B/es
Priority to RU2017102906A priority patent/RU2635745C1/ru
Priority to JP2016534001A priority patent/JP6176402B2/ja
Priority to EP14897570.9A priority patent/EP3171001B1/en
Priority to CN201480080511.7A priority patent/CN106662009B/zh
Priority to US15/325,098 priority patent/US9850813B2/en
Priority to BR112017000582-4A priority patent/BR112017000582B1/pt
Priority to PCT/JP2014/068659 priority patent/WO2016009468A1/ja
Publication of WO2016009468A1 publication Critical patent/WO2016009468A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/045Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable connecting rod length

Definitions

  • the present invention relates to a control apparatus for a variable compression ratio internal combustion engine provided with a variable compression ratio mechanism capable of changing the engine compression ratio according to the rotational position of a control shaft.
  • Patent Document 1 discloses an internal combustion engine (hereinafter referred to as “variable compression ratio internal combustion engine”) provided with a variable compression ratio mechanism capable of changing the engine compression ratio in accordance with the rotational position of the control shaft.
  • a speed reduction mechanism is provided between the control shaft and an actuator such as a motor that drives the control shaft, and the speed reduction mechanism is provided with a rotation shaft connected to the control shaft via a lever.
  • the rotating shaft is rotatably supported, for example, in a housing fixed to the engine body.
  • variable compression ratio internal combustion engine for example, a high compression ratio side restriction that mechanically restricts the rotation range of the rotation shaft to the high compression ratio side and the low compression ratio side in a housing that rotatably holds the rotation shaft. And a low compression ratio side restricting portion are provided. Then, based on the detection signal of the rotation sensor that detects the rotation position of the rotation shaft, the learning operation of the compression ratio reference position is performed in a state in which the rotation position of the rotation shaft is mechanically restricted and positioned by one restriction portion.
  • the restricting portion and the rotation sensor are provided in the same housing, for example, the detection accuracy of the rotation sensor decreases due to vibration or deformation when the control shaft collides with the stopper surface of the restricting portion, and the compression ratio reference position May cause problems such as a decrease in learning accuracy.
  • the main object of the present invention is to improve the learning accuracy of the compression ratio reference position in the variable compression ratio internal combustion engine provided with the variable compression ratio mechanism.
  • the variable compression ratio internal combustion engine of the present invention includes a control shaft that is rotatably supported by the engine body, a variable compression ratio mechanism that can change the engine compression ratio in accordance with the rotational position of the control shaft, and the control shaft that rotates.
  • the speed reduction mechanism includes a rotating shaft that is rotatably supported in a housing fixed to the engine body, and a lever that connects the rotating shaft and the control shaft.
  • a first restricting portion that is provided in the engine body and mechanically restricts the control shaft to a position most rotated to one of the low compression ratio side and the high compression ratio side; and the housing, And a second restricting portion that mechanically restricts the rotation shaft to the position most rotated to the other side of the low compression ratio side or the high compression ratio side.
  • the first restricting portion restricts the control shaft to a position where the control shaft is most rotated to the high compression ratio side
  • the second restricting portion is set to a position where the rotation shaft is most rotated to the low compression ratio side. It is something to regulate.
  • a rotation sensor that detects a rotation position of one of the control shaft and the rotation shaft, and the other of the control shaft and the rotation shaft are mechanically restricted by the first restriction portion or the second restriction portion.
  • reference position learning means for performing a compression ratio reference position learning operation based on the detection signal of the rotation sensor is provided.
  • the first and second restricting portions for restricting the rotatable range of the compression ratio are provided on the engine body side on which the control shaft is provided and on the housing side on which the rotation shaft is provided. For this reason, the degree of freedom of layout is high.
  • the control shaft or the rotation shaft is mechanically restricted by the restriction portion on the side where the rotation sensor is not provided. By setting it as the state which carried out, the fall of the detection accuracy by a rotation sensor can be suppressed and the learning accuracy of a compression ratio reference position can be improved.
  • variable compression ratio internal combustion engine 1 including a variable compression ratio mechanism 10 according to an embodiment of the present invention will be described with reference to FIGS.
  • a variable compression ratio internal combustion engine 1 is roughly constituted by a cylinder block 2 as an engine body and a cylinder head 3 fixed on the cylinder block 2, and a cylinder 4 of the cylinder head 3.
  • the piston 5 is fitted in the inside so as to be movable up and down.
  • the variable compression ratio mechanism 10 is rotatably supported by the cylinder block 2 and a lower link 11 that is rotatably attached to the crankpin 7 of the crankshaft 6, an upper link 12 that connects the lower link 11 and the piston 5. And a control link 14 that connects the control shaft 13 and the lower link 11 to each other.
  • the upper end of the upper link 12 and the piston 5 are connected to each other by a piston pin 15 so that they can rotate relative to each other.
  • the upper link 12 and the lower link 11 are connected to each other by a first connecting pin 16 so that they can rotate relative to each other.
  • the upper ends of the two are connected by a second connecting pin 17 so as to be relatively rotatable.
  • a lower end portion of the lower link 11 is rotatably attached to a control eccentric shaft portion 18 that is eccentrically provided from a journal portion 13 ⁇ / b> A serving as a rotation center of the control shaft 13.
  • the speed reduction mechanism 22 includes a speed reducer 23 capable of obtaining a large speed reduction, such as a wave gear device, a rotary shaft 24 that rotates integrally with an output shaft of the speed reducer 23, and the rotary shaft 24 and the control shaft 13 (FIG. 1). And a lever 25 for connecting to the other.
  • the rotating shaft 24 is accommodated in a housing 26 that is fixed to the cylinder block 2 and is rotatably supported by the housing 26 in a posture parallel to the control shaft 13.
  • the lever 25 extends through the cylinder block 2 and the slit of the housing 26.
  • the one end of the lever 25 and the tip of the first arm 27 extending in the radial direction from the journal portion 13A of the control shaft 13 are connected via a third connecting pin 28 so as to be relatively rotatable.
  • the other end of the lever 25 and the tip end of the second arm 29 extending in the radial direction from the journal portion 24 ⁇ / b> A serving as the rotation center of the rotating shaft 24 are connected via a fourth connecting pin 30 so as to be relatively rotatable.
  • variable compression ratio mechanism 10 when the rotational position of the control shaft 13 is changed by the motor 21 via the speed reduction mechanism 22, the posture of the lower link 11 is changed via the control link 14, and the piston top dead center position is changed. And the stroke characteristic of the piston 5 including the piston bottom dead center position changes, and the engine compression ratio changes continuously.
  • the housing 26 has a rotational position of the rotary shaft 24 corresponding to the actual compression ratio, that is, a compression ratio reference position, as a compression ratio detection unit that detects an actual compression ratio that is an actual engine compression ratio.
  • a rotation sensor 31 is provided for detection.
  • the motor 21 is provided with a motor rotation number detection sensor 32 for detecting the motor rotation number.
  • the control unit 33 is a digital computer system capable of storing and executing various control processes, and outputs control signals to various actuators based on the engine operating state detected from the sensors 31, 32, etc. Control all over.
  • the variable valve timing mechanism 34 capable of changing the valve timing of the intake valve (or the exhaust valve) is driven and controlled to control the opening timing and closing timing of the intake valve, and the air-fuel mixture in the combustion chamber is spark-ignited.
  • the ignition plug 35 is driven to control the ignition timing, and the electric throttle 36 that opens and closes the intake passage is driven to control the throttle opening.
  • control unit 33 sets a target compression ratio according to the engine operating state, and keeps the deviation between the target compression ratio and the actual compression ratio detected by the rotation sensor 31 as small as possible.
  • the operation of the motor 21 is feedback controlled.
  • the rotatable range of the control shaft 13 and the rotating shaft 24 that rotate in conjunction with each other includes a low compression ratio side stopper surface 41 as a low compression ratio side restricting portion, and a high compression ratio side. It is mechanically restricted and restricted by the high compression ratio side stopper surface 42 as a restricting portion.
  • a low compression ratio side stopper surface 41 is provided in the housing 26, and when the rotary shaft 24 rotates to the lowest compression ratio side (in the direction of arrow Y1 in FIG. 1), the side surface of the second arm 29 is low.
  • the control shaft 13 and the rotating shaft 24 are mechanically locked and regulated at the low compression ratio side stopper position by abutting against the compression ratio side stopper surface 41.
  • the control shaft 13 rotates to the highest compression ratio side (the direction of the arrow Y2 in FIG. 1), the side surface of the first arm 27 becomes the high compression ratio.
  • the control shaft 13 and the rotating shaft 24 are mechanically locked and regulated at the high compression ratio side stopper position by abutting against the side stopper surface 42.
  • the above-described initialization operation is performed.
  • the rotation shaft 24 is abutted against the high compression ratio side stopper surface 42, for example, and the control shaft 13 is mechanically regulated and locked at the high compression ratio side stopper position which is the reference position.
  • the detection value corresponding to the actual compression ratio of the sensor 31 is initialized and learned to a predetermined initial value corresponding to the compression ratio reference position.
  • High compression as a first restricting portion which is provided in the cylinder block 2 as the engine body and mechanically restricts the control shaft 13 to a position most rotated to one side of the low compression ratio side or the high compression ratio side.
  • a low-compression ratio as a second restricting portion that is provided on the specific-side stopper surface 42 and the housing 26 and mechanically restricts the rotary shaft 24 to a position most rotated to the low compression ratio side or the other side of the high compression ratio side.
  • Side stopper surface 41 is provided on the specific-side stopper surface 42 and the housing 26 and mechanically restricts the rotary shaft 24 to a position most rotated to the low compression ratio side or the other side of the high compression ratio side.
  • the compression ratio side stopper surface 42 and the low compression ratio side stopper surface 41 are separately on the control shaft 13 side and the rotating shaft 24 side, the degree of freedom in layout increases, and as will be described later, the compression ratio During the learning operation of the reference position, between the control shaft 13 and the rotation shaft 24, the shaft on which the rotation sensor 24 is provided is different from the shaft on which the rotation position is mechanically restricted by the stopper surfaces 41 and 42. Can be made. As a result, the learning operation can be performed without being affected by vibration or deformation due to the contact of the shaft with the stopper surface, and the detection accuracy in the learning operation can be improved.
  • the high compression ratio side stopper surface 42 as the first restricting portion restricts the control shaft 13 to the position most rotated to the high compression ratio side, and the low compression ratio as the second restricting portion.
  • the side stopper surface 41 is configured to restrict the rotary shaft 24 to the position most rotated to the low compression ratio side.
  • the control shaft 13 is mechanically regulated by the high compression ratio side stopper surface 42 provided on the engine body side, so that the collision with the stopper surface is compared with the case where the control shaft 13 is regulated on the housing side. Since the sound is alleviated by the oil pan of the engine body, the collision sound during the learning operation can be suppressed. Further, the learning time can be shortened by performing the learning by bringing the shaft into contact with only one of the stopper surfaces 41 and 42.
  • a rotation sensor 31 for detecting the rotation position of one of the control shaft 13 and the rotation shaft 24 is provided, and the other shaft of the control shaft 13 and the rotation shaft 24 is moved by the first restriction portion or the second restriction portion.
  • the compression ratio reference position learning operation is performed based on the detection signal of the rotation sensor 31 in a state of being regulated.
  • the rotation position is mechanically restricted by the shaft on which the rotation sensor 24 is provided and the stopper surfaces 41 and 42.
  • the learning operation can be performed without being affected by vibration and deformation caused by the contact of the shaft with the stopper surfaces 41 and 42, and the detection accuracy in the learning operation is improved. be able to.
  • the rotation sensor 31 detects the rotation position of the rotation shaft 24, and the rotation sensor 31 detects the rotation shaft in a state where the control shaft 13 is mechanically restricted by the high compression ratio stopper surface 42.
  • the compression ratio reference position learning operation is performed based on the signal.
  • the control accuracy on the high compression ratio side can be increased by performing a learning operation on the high compression ratio side where the accuracy requirement of the compression ratio is severe Can be improved.
  • the occurrence of knocking can be suppressed on the high compression ratio side, and the valve and the piston can easily approach each other on the high compression ratio side, so that the valve and the piston can be prevented from excessively approaching each other. it can.
  • control accuracy can be improved by offsetting and absorbing variations in length, shaft hole, connecting pin clearance, and the like.
  • the minimum compression ratio at which the maximum load is applied it is effective to increase (preferably maximize) the reduction ratio between the control shaft 13 and the rotary shaft 24 in order to reduce the compression ratio holding torque of the motor 21.
  • a low compression ratio side stopper surface is set on the control shaft 13 side, the motor torque is amplified by an excessive reduction ratio, and the excessive torque acts on the low compression ratio side stopper surface, resulting in a low compression ratio.
  • the side stopper surface may be worn or damaged.
  • the low compression ratio side stopper surface 41 since the low compression ratio side stopper surface 41 is provided on the rotating shaft 24 side, the reduction ratio is not amplified, and excessive torque does not act on the stopper surface 41.
  • the low compression ratio side stopper surface 41 can be protected.
  • the rotary shaft 24 is set so as to be positioned within a predetermined angle range including the position. Structurally, the link center line 25A of the lever 25 (line connecting the center of the third connecting pin 28 and the center of the fourth connecting pin 30) and the link center line 29A of the second arm 29 (the journal of the rotating shaft 24). As the angle ⁇ formed by the line connecting the center of the portion 24A and the center of the fourth connecting pin 30) decreases, the torque around the rotary shaft 24 transmitted from the control shaft 13 to the rotary shaft 24 via the lever 25 decreases. Get smaller.
  • the control shaft 13 and the rotary shaft 24 are locked to the low compression ratio side stopper position, the position where the angle ⁇ is the smallest (the link center line 25A and the link center line 29A are on the same line.
  • the rotation shaft 24 is set to be positioned within a predetermined angle range including
  • the torque acting from the control shaft 13 to the rotating shaft 24 side can be suppressed and stably held at the low compression ratio side stopper position.
  • the rotating shaft 24 is prevented from colliding with the low compression ratio side stopper surface 41, and the collision noise is suppressed, and wear and indentation are generated. Can be suppressed.
  • the surface accuracy of the high compression ratio side stopper surface is set higher than the surface accuracy of the low compression ratio side stopper surface. In this way, by ensuring the surface accuracy of the high compression ratio side stopper surface 42 used for learning control and relaxing the surface accuracy of the low compression ratio side stopper surface 41, for example, the surface of the low compression ratio side stopper surface 41 Processing can be omitted, and productivity can be improved and costs can be reduced by reducing the number of manufacturing steps.

Abstract

 機関本体に回転可能に支持される制御軸(13)と、この制御軸(13)の回転位置に応じて機関圧縮比を変更可能な可変圧縮比機構(10)と、制御軸(13)を回転駆動するアクチュエータ(21)と、アクチュエータ(21)の回転動力を減速して制御軸(13)へ伝達する減速機構(22)と、を有する。この減速機構(22)は、機関本体に固定されたハウジング(26)内に回転可能に支持される回転軸(24)と、この回転軸(24)と制御軸(13)とを連結するレバー(25)と、を有する。機関本体に、制御軸(13)を低圧縮比側もしくは高圧縮比側の一方の側へ最も回転した位置に機械的に規制する第1規制部(42)を設ける。ハウジング(26)に、回転軸(24)を低圧縮比側もしくは高圧縮比側の他方の側へ最も回転した位置に機械的に規制する第2規制部(41)を設ける。

Description

可変圧縮比内燃機関
 本発明は、制御軸の回転位置に応じて機関圧縮比を変更可能な可変圧縮比機構を備えた可変圧縮比内燃機関の制御装置に関する。
 特許文献1には、制御軸の回転位置に応じて機関圧縮比を変更可能な可変圧縮比機構を備えた内燃機関(以下、「可変圧縮比内燃機関」と呼ぶ)が開示されている。制御軸を駆動するモータ等のアクチュエータと制御軸との間には減速機構が設けられ、この減速機構には、レバーを介して制御軸と連結された回転軸が設けられる。回転軸は、例えば機関本体に固定されるハウジング内に回転可能に支持される。
特開2013-253512号公報
 このような可変圧縮比内燃機関では、例えば回転軸を回転可能に保持するハウジングに、回転軸の高圧縮比側及び低圧縮比側への回転可能範囲を機械的に規制する高圧縮比側規制部と及び低圧縮比側規制部が設けられる。そして、回転軸の回転位置を検出する回転センサの検出信号に基づいて、一方の規制部により回転軸の回転位置を機械的に規制・位置決めした状態で、圧縮比基準位置の学習動作が実施される。
 しかしながら、規制部と回転センサとが同じハウジングに設けられていると、例えば規制部のストッパ面に制御軸が衝突する際の振動や変形等によって回転センサの検出精度が低下し、圧縮比基準位置の学習精度が低下するなどの問題を生じるおそれがある。
 そこで本発明は、可変圧縮比機構を備えた可変圧縮比内燃機関における圧縮比基準位置の学習精度を向上することを主たる目的としている。
 本発明の可変圧縮比内燃機関は、機関本体に回転可能に支持される制御軸と、この制御軸の回転位置に応じて機関圧縮比を変更可能な可変圧縮比機構と、上記制御軸を回転駆動するアクチュエータと、上記アクチュエータの回転動力を減速して制御軸へ伝達する減速機構と、を有している。この減速機構は、上記機関本体に固定されたハウジング内に回転可能に支持される回転軸と、この回転軸と制御軸とを連結するレバーと、を有している。
 そして、上記機関本体に設けられ、上記制御軸を低圧縮比側もしくは高圧縮比側の一方の側へ最も回転した位置に機械的に規制する第1規制部と、上記ハウジングに設けられ、上記回転軸を低圧縮比側もしくは高圧縮比側の他方の側へ最も回転した位置に機械的に規制する第2規制部と、を有している。
 例えば、上記第1規制部が、上記制御軸を高圧縮比側へ最も回転した位置に規制するものであり、上記第2規制部が、上記回転軸を低圧縮比側へ最も回転した位置に規制するものである。
 好ましくは、上記制御軸と回転軸の一方の軸の回転位置を検出する回転センサと、上記制御軸と回転軸の他方の軸を、上記第1規制部もしくは第2規制部により機械的に規制した状態で、上記回転センサの検出信号に基づいて、圧縮比基準位置の学習動作を実施する基準位置学習手段と、を有している。
 本発明によれば、制御軸が設けられる機関本体側と、回転軸が設けられるハウジング側とに、それぞれ圧縮比の回転可能範囲を規制する第1,第2規制部を設けている。このために、レイアウトの自由度が高く、例えば回転センサを用いた圧縮比基準位置の学習動作の際に、回転センサが設けられていない側の規制部によって制御軸もしくは回転軸を機械的に規制した状態とすることにより、回転センサによる検出精度の低下を抑制し、圧縮比基準位置の学習精度を向上することができる。
本発明の一実施例に係る可変圧縮比機構を備えた可変圧縮比内燃機関の制御装置を簡略的に示す構成図。 同じく上記実施例の可変圧縮比内燃機関の制御装置を簡略的に示す構成図。
 以下、図1~図3を参照して、本発明の一実施例に係る可変圧縮比機構10を備えた可変圧縮比内燃機関1の制御装置を説明する。
 図1を参照して、可変圧縮比内燃機関1は、機関本体としてのシリンダブロック2と、このシリンダブロック2の上に固定されるシリンダヘッド3と、により大略構成され、シリンダヘッド3のシリンダ4内にはピストン5が昇降可能に嵌合している。
 可変圧縮比機構10は、クランクシャフト6のクランクピン7に回転可能に取り付けられるロアーリンク11と、このロアーリンク11とピストン5とを連結するアッパーリンク12と、シリンダブロック2に回転可能に支持される制御軸13と、この制御軸13とロアーリンク11とを連結する制御リンク14と、を有している。アッパーリンク12の上端とピストン5とはピストンピン15により相対回転可能に連結され、アッパーリンク12とロアーリンク11とは第1連結ピン16により相対回転可能に連結され、ロアーリンク11と制御リンク14の上端とは第2連結ピン17により相対回転可能に連結されている。ロアーリンク11の下端部は、制御軸13の回転中心となるジャーナル部13Aから偏心して設けられた制御偏心軸部18に回転可能に取り付けられている。
 図2に示すように、制御軸13を回転駆動するアクチュエータとしてのモーター21の出力軸21Aと、制御軸13と、の動力伝達経路には、モーター21の出力軸21Aの回転動力を減速して制御軸13へ伝える減速機構22が介装されている。この減速機構22は、波動歯車装置などの大きな減速が得られる減速機23と、この減速機23の出力軸と一体的に回転する回転軸24と、この回転軸24と制御軸13(図1参照)とを連結するレバー25と、を有している。回転軸24はシリンダブロック2に横付け固定されるハウジング26内に収容配置されており、制御軸13と平行な姿勢でハウジング26に回転可能に支持されている。レバー25はシリンダブロック2及びハウジング26のスリットを貫通して延在している。
 レバー25の一端と、制御軸13のジャーナル部13Aから径方向に延びる第1アーム27の先端とは、第3連結ピン28を介して相対回転可能に連結されている。レバー25の他端と、回転軸24の回転中心となるジャーナル部24Aから径方向へ延びる第2アーム29の先端とは、第4連結ピン30を介して相対回転可能に連結されている。
 このような可変圧縮比機構10は、モーター21により減速機構22を介して制御軸13の回転位置を変更すると、制御リンク14を介してロアーリンク11の姿勢が変化して、ピストン上死点位置及びピストン下死点位置を含めたピストン5のストローク特性が変化して、機関圧縮比が連続的に変化する。
 図2を参照して、ハウジング26には、実際の機関圧縮比である実圧縮比を検出する圧縮比検出部として、実圧縮比に対応した回転軸24の回転位置、すなわち圧縮比基準位置を検出する回転センサ31が設けられている。またモーター21には、モーター回転数を検出するモーター回転数検出センサ32が設けられている。
 制御部33は、各種制御処理を記憶及び実行可能なデジタルコンピュータシステムであり、センサ31,32等から検出される機関運転状態に基づいて、各種のアクチュエータに制御信号を出力して、その動作を統括的に制御する。具体的には、吸気弁(あるいは排気弁)のバルブタイミングを変更可能な可変バルブタイミング機構34を駆動制御して吸気弁の開時期及び閉時期を制御し、燃焼室内の混合気を火花点火する点火プラグ35を駆動制御して点火時期を制御し、吸気通路を開閉する電制スロットル36を駆動制御して、スロットル開度を制御する。
 また制御部33は、機関運転状態に応じて目標圧縮比を設定し、この目標圧縮比と、上記回転センサ31により検出される実圧縮比と、の偏差を可及的に小さく維持するように、モーター21の動作をフィードバック制御する。
 図1に簡略的に示すように、互いに連動して回転する制御軸13と回転軸24の回転可能範囲は、低圧縮比側規制部としての低圧縮比側ストッパ面41と、高圧縮比側規制部としての高圧縮比側ストッパ面42と、により機械的に規制・制限されている。この実施例では、低圧縮比側ストッパ面41がハウジング26内に設けられ、回転軸24が最も低圧縮比側(図1の矢印Y1の方向)に回転すると、第2アーム29の側面が低圧縮比側ストッパ面41に突き当てられて、制御軸13及び回転軸24が低圧縮比側ストッパ位置に機械的に係止・規制されるようになっている。また、高圧縮比側ストッパ面42がシリンダブロック2内に設けられ、制御軸13が最も高圧縮比側(図1の矢印Y2の方向)に回転すると、第1アーム27の側面が高圧縮比側ストッパ面42に突き当てられて、制御軸13及び回転軸24が高圧縮比側ストッパ位置に機械的に係止・規制されるようになっている。
 回転センサ31のイニシャライズ動作を実施する所定の機関運転状態、例えば機関始動直後(あるいは機関停止直前)である場合には、上記のイニシャライズ動作が実施される。このイニシャライズ動作では、回転軸24を例えば高圧縮比側ストッパ面42に突き当てて、制御軸13を基準位置である高圧縮比側ストッパ位置に機械的に規制・係止させた状態で、回転センサ31の実圧縮比に対応する検出値を、上記の圧縮比基準位置に対応した所定の初期値に初期化・学習する。これによって、実際の制御軸13及び回転軸24の回転位置と、回転センサ31により検出される実圧縮比と、の対応関係を初期の正常な状態にリセットすることができる。
 次に、このような本実施例において特徴となる構成やその作用効果について、以下に列記する。
 (1)機関本体としてのシリンダブロック2に設けられ、制御軸13を低圧縮比側もしくは高圧縮比側の一方の側へ最も回転した位置に機械的に規制する第1規制部としての高圧縮比側ストッパ面42と、ハウジング26に設けられ、回転軸24を低圧縮比側もしくは高圧縮比側の他方の側へ最も回転した位置に機械的に規制する第2規制部としての低圧縮比側ストッパ面41と、を有している。このように高圧縮比側ストッパ面42と低圧縮比側ストッパ面41とを制御軸13側と回転軸24側に分けて設けることで、レイアウトの自由度が増し、後述するように、圧縮比基準位置の学習動作の際に、制御軸13と回転軸24のうち、回転センサ24が設けられる軸と、ストッパ面41,42により回転位置が機械的に規制される側の軸と、を異ならせることができる。これによって、軸のストッパ面への当接による振動や変形の影響を受けることなく学習動作を実施することができ、学習動作における検出精度を向上することができる。
 (2)また本実施例では、第1規制部としての高圧縮比側ストッパ面42が、制御軸13を高圧縮比側へ最も回転した位置に規制し、第2規制部としての低圧縮比側ストッパ面41が、回転軸24を低圧縮比側へ最も回転した位置に規制するように構成している。つまり、学習動作の際に、機関本体側に設けられる高圧縮比側ストッパ面42によって制御軸13を機械的に規制することで、ハウジング側で規制する場合に比して、ストッパ面への衝突音が機関本体のオイルパンによって緩和されるために、学習動作時における衝突音を抑制することができる。また、ストッパ面41,42の一方にのみ軸を当接させて学習を行なうことで、学習時間を短縮することができる。
 (3)制御軸13と回転軸24の一方の軸の回転位置を検出する回転センサ31を設け、制御軸13と回転軸24の他方の軸を、第1規制部もしくは第2規制部により機械的に規制した状態で、回転センサ31の検出信号に基づいて、圧縮比基準位置の学習動作を実施している。このように、圧縮比基準位置の学習動作の際に、制御軸13と回転軸24のうち、回転センサ24が設けられる軸と、ストッパ面41,42により回転位置が機械的に規制される側の軸と、を異ならせることによって、軸のストッパ面41,42への当接に起因する振動や変形の影響を受けることなく学習動作を実施することができ、学習動作における検出精度を向上することができる。
 (4)また本実施例では、回転センサ31が回転軸24の回転位置を検出するものであり、制御軸13を高圧縮比側ストッパ面42に機械的に規制した状態で、回転センサの検出信号に基づいて、圧縮比基準位置の学習動作を実施するようにしている。
 高圧縮比側は制御軸13の回転角度に対する圧縮比の変化量が大きいことから、圧縮比の精度要求が厳しい高圧縮比側で学習動作を実施することにより、高圧縮比側の制御精度を向上することができる。これによって、高圧縮比側でノッキングの発生を抑制することができるとともに、高圧縮比側ではバルブとピストンとが接近し易いことから、バルブとピストンとが過剰に接近することを抑制することができる。
 また、制御軸13側で回転位置を規制した上で、回転軸24の回転位置を回転センサ31により検出する構成とすることで、制御軸13と回転軸24との間の動力伝達経路におけるリンク長さ,軸孔,連結ピンクリアランス等のばらつきを相殺・吸収して、制御精度を向上することができる。
 更に、最大負荷が作用する最低圧縮比時は、モーター21の圧縮比保持トルクを低減するために、制御軸13と回転軸24間の減速比を大きく(好ましくは、最大化)することが効果的であるが、仮に制御軸13側に低圧縮比側ストッパ面を設定すると、過大な減速比によってモータトルクが増幅されて、過大なトルクが低圧縮比側ストッパ面に作用し、低圧縮比側ストッパ面の摩耗や破損を生じるおそれがある。本実施例では、回転軸24の側に低圧縮比側ストッパ面41を設けているために、減速比が増幅されることがなく、ストッパ面41に過大なトルクが作用することがないので、低圧縮比側ストッパ面41の保護を図ることができる。
 (5)回転軸24を低圧縮比側ストッパ面41に機械的に規制した状態のとき、制御軸13からレバー25を介して回転軸24に伝達される回転軸回りのトルクが最も小さくなる回転位置を含む所定の角度範囲内に回転軸24が位置するように設定されている。構造的には、レバー25のリンク中心線25A(第3連結ピン28の中心と第4連結ピン30の中心とを結ぶ線)と、第2アーム29のリンク中心線29A(回転軸24のジャーナル部24Aの中心と第4連結ピン30の中心とを結ぶ線)と、のなす角度θが小さくなるほど、制御軸13からレバー25を介して回転軸24に伝達される回転軸24回りのトルクが小さくなる。従って、制御軸13及び回転軸24を低圧縮比側ストッパ位置に係止させた状態のとき、上記の角度θが最も小さくなる位置(リンク中心線25Aとリンク中心線29Aとが同一線上にあるとき)を含む所定の角度範囲内に回転軸24が位置するように設定している。
 これによって、大きな燃焼荷重が作用する高負荷時や、大きな慣性荷重が作用する高回転時に、例えば何らかの理由により正常な圧縮比の制御が不能となった場合に、燃焼圧により低圧縮比側ストッパ位置まで低圧縮比化した後、制御軸13から回転軸24側へ作用するトルクを抑制し、低圧縮比側ストッパ位置の状態に安定して保持することができる。また、制御軸13から回転軸24へ変動トルクが作用しても、回転軸24が低圧縮比側ストッパ面41へ衝突することを低減するとともに、その衝突音を抑制し、摩耗や圧痕の発生を抑制することができる。
 (6)高圧縮比側ストッパ面の表面精度を、低圧縮比側ストッパ面の表面精度よりも高く設定している。このように、学習制御に用いられる高圧縮比側ストッパ面42の表面精度を確保しつつ、低圧縮比側ストッパ面41の表面精度を緩和することで、例えば低圧縮比側ストッパ面41の表面加工を省略し、製造工数の削減による生産性の向上及び低コスト化を図ることができる。

Claims (7)

  1.  機関本体に回転可能に支持される制御軸と、
     この制御軸の回転位置に応じて機関圧縮比を変更可能な可変圧縮比機構と、
     上記制御軸を回転駆動するアクチュエータと、
    上記アクチュエータの回転動力を減速して制御軸へ伝達する減速機構と、を有し、
     この減速機構は、上記機関本体に固定されたハウジング内に回転可能に支持される回転軸と、この回転軸と制御軸とを連結するレバーと、を有する可変圧縮比内燃機関において、
     上記機関本体に設けられ、上記制御軸を低圧縮比側もしくは高圧縮比側の一方の側へ最も回転した位置に機械的に規制する第1規制部と、
     上記ハウジングに設けられ、上記回転軸を低圧縮比側もしくは高圧縮比側の他方の側へ最も回転した位置に機械的に規制する第2規制部と、を有する可変圧縮比内燃機関。
  2.  上記第1規制部が、上記制御軸を高圧縮比側へ最も回転した位置に規制するものであり、
     上記第2規制部が、上記回転軸を低圧縮比側へ最も回転した位置に規制するものである、請求項1に記載の可変圧縮比内燃機関。
  3.  上記制御軸と回転軸の一方の軸の回転位置を検出する回転センサと、
     上記制御軸と回転軸の他方の軸を、上記第1規制部もしくは第2規制部により機械的に規制した状態で、上記回転センサの検出信号に基づいて、圧縮比基準位置の学習動作を実施する基準位置学習手段と、
    を有する請求項1又は2に記載の可変圧縮比内燃機関。
  4.  上記回転センサが回転軸の回転位置を検出するものであり、
     上記基準位置学習手段は、上記制御軸を第1規制部により機械的に規制した状態で、上記回転センサの検出信号に基づいて、圧縮比基準位置の学習動作を実施する、
    請求項3に記載の可変圧縮比内燃機関。
  5.  上記回転軸を第2規制部により機械的に規制した状態のとき、上記制御軸からレバーを介して回転軸に伝達される回転軸回りのトルクが最も小さくなる回転位置を含む所定の角度範囲内に上記回転軸が位置するように設定されている請求項1~4のいずれかに記載の可変圧縮比内燃機関の制御装置。
  6.  上記第1規制部が、上記制御軸を高圧縮比側へ最も回転したときに、上記制御軸の一部が突き当てられる高圧縮比側ストッパ面を有し、
     上記第2規制部が、上記回転軸を低圧縮比側へ最も回転したときに、上記回転軸の一部が突き当てられる低圧縮比側ストッパ面を有し、
     上記高圧縮比側ストッパ面の表面精度を、上記低圧縮比側ストッパ面の表面精度よりも高く設定した請求項1~5のいずれかに記載の可変圧縮比内燃機関。
  7.  上記可変圧縮比機構が、
     クランクシャフトのクランクピンに回転可能に取り付けられるロアーリンクと、
     このロアーリンクと内燃機関のピストンとを連結するアッパーリンクと、
     上記制御軸とロアーリンクとを連結する制御リンクと、を有する請求項1~6のいずれかに記載の可変圧縮比内燃機関の制御装置。
PCT/JP2014/068659 2014-07-14 2014-07-14 可変圧縮比内燃機関 WO2016009468A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2017000280A MX353822B (es) 2014-07-14 2014-07-14 Motor de combustión interna de relación de compresión variable.
RU2017102906A RU2635745C1 (ru) 2014-07-14 2014-07-14 Двигатель внутреннего сгорания с переменной степенью сжатия
JP2016534001A JP6176402B2 (ja) 2014-07-14 2014-07-14 可変圧縮比内燃機関
EP14897570.9A EP3171001B1 (en) 2014-07-14 2014-07-14 Variable compression ratio internal combustion engine
CN201480080511.7A CN106662009B (zh) 2014-07-14 2014-07-14 可变压缩比内燃机
US15/325,098 US9850813B2 (en) 2014-07-14 2014-07-14 Variable compression ratio internal combustion engine
BR112017000582-4A BR112017000582B1 (pt) 2014-07-14 2014-07-14 Motor de combustão interna com razão de compressão variável
PCT/JP2014/068659 WO2016009468A1 (ja) 2014-07-14 2014-07-14 可変圧縮比内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068659 WO2016009468A1 (ja) 2014-07-14 2014-07-14 可変圧縮比内燃機関

Publications (1)

Publication Number Publication Date
WO2016009468A1 true WO2016009468A1 (ja) 2016-01-21

Family

ID=55077993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068659 WO2016009468A1 (ja) 2014-07-14 2014-07-14 可変圧縮比内燃機関

Country Status (8)

Country Link
US (1) US9850813B2 (ja)
EP (1) EP3171001B1 (ja)
JP (1) JP6176402B2 (ja)
CN (1) CN106662009B (ja)
BR (1) BR112017000582B1 (ja)
MX (1) MX353822B (ja)
RU (1) RU2635745C1 (ja)
WO (1) WO2016009468A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10125679B2 (en) * 2016-03-29 2018-11-13 GM Global Technology Operations LLC Independent compression and expansion ratio engine with variable compression ratio
EP4001686A1 (en) * 2017-08-01 2022-05-25 NSK Ltd. Reverse input shutoff clutch, electric valve timing adjustment device, variable compression ratio device, and electric power steering device
CN111173622B (zh) * 2018-11-12 2022-03-25 长城汽车股份有限公司 可变压缩比机构控制方法
CN112576383B (zh) * 2019-09-29 2022-09-30 长城汽车股份有限公司 可变压缩比发动机的控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150286A (ja) * 2002-10-29 2004-05-27 Honda Motor Co Ltd 圧縮比可変エンジン
JP2006226133A (ja) * 2005-02-15 2006-08-31 Nissan Motor Co Ltd 内燃機関の可変圧縮比装置
JP2009185629A (ja) * 2008-02-04 2009-08-20 Nissan Motor Co Ltd 可変圧縮比エンジン
JP2011169152A (ja) * 2010-02-16 2011-09-01 Nissan Motor Co Ltd 内燃機関の可変圧縮比装置
WO2013080673A1 (ja) * 2011-11-29 2013-06-06 日産自動車株式会社 可変圧縮比内燃機関の潤滑構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1686203A1 (ru) * 1988-09-26 1991-10-23 Ленинградский Институт Водного Транспорта Двигатель внутреннего сгорани с переменным ходом поршн
US6789515B1 (en) * 1999-11-30 2004-09-14 Institut Francais Du Petrole Method and device for modifying the compression rate to optimize operating conditions of reciprocating piston engines
RU2256085C2 (ru) * 2000-08-08 2005-07-10 Даймлеркрайслер Аг Поршневой двигатель внутреннего сгорания с переменной степенью сжатия
TWI236518B (en) 2002-10-29 2005-07-21 Honda Motor Co Ltd Engine of compression-ratio variable type
US7174865B2 (en) * 2004-07-19 2007-02-13 Masami Sakita Engine with a variable compression ratio
JP5953929B2 (ja) * 2012-05-18 2016-07-20 日産自動車株式会社 可変圧縮比内燃機関
JP6024221B2 (ja) 2012-06-06 2016-11-09 日産自動車株式会社 可変圧縮比内燃機関
WO2014027497A1 (ja) 2012-08-13 2014-02-20 日産自動車株式会社 可変圧縮比内燃機関の制御装置及び制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150286A (ja) * 2002-10-29 2004-05-27 Honda Motor Co Ltd 圧縮比可変エンジン
JP2006226133A (ja) * 2005-02-15 2006-08-31 Nissan Motor Co Ltd 内燃機関の可変圧縮比装置
JP2009185629A (ja) * 2008-02-04 2009-08-20 Nissan Motor Co Ltd 可変圧縮比エンジン
JP2011169152A (ja) * 2010-02-16 2011-09-01 Nissan Motor Co Ltd 内燃機関の可変圧縮比装置
WO2013080673A1 (ja) * 2011-11-29 2013-06-06 日産自動車株式会社 可変圧縮比内燃機関の潤滑構造

Also Published As

Publication number Publication date
EP3171001B1 (en) 2018-05-16
JP6176402B2 (ja) 2017-08-09
EP3171001A4 (en) 2017-05-24
US20170191409A1 (en) 2017-07-06
CN106662009A (zh) 2017-05-10
MX2017000280A (es) 2017-04-27
RU2635745C1 (ru) 2017-11-15
BR112017000582B1 (pt) 2022-04-12
JPWO2016009468A1 (ja) 2017-04-27
US9850813B2 (en) 2017-12-26
BR112017000582A2 (pt) 2017-11-07
MX353822B (es) 2018-01-31
CN106662009B (zh) 2018-06-22
EP3171001A1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP5765494B2 (ja) 内燃機関の制御装置および制御方法
JP6176402B2 (ja) 可変圧縮比内燃機関
JP5668458B2 (ja) 内燃機関の制御装置
JP2004346825A (ja) 内燃機関の可変動弁装置
JP6057026B2 (ja) 可変圧縮比内燃機関の制御装置
JP2016031036A (ja) 内燃機関
JP6743907B2 (ja) 内燃機関の制御方法及び制御装置
JP2007198252A (ja) 内燃機関の制御装置
JP5151901B2 (ja) 内燃機関の可変動弁装置
WO2016067375A1 (ja) 内燃機関の制御装置
JP2011226331A (ja) 内燃機関の可変動弁装置
JP4894286B2 (ja) 内燃機関の可変動弁機構制御装置
JP6380655B2 (ja) 内燃機関
JP2005155432A (ja) 内燃機関の可変動弁装置
JP5652013B2 (ja) 内燃機関の可変動弁装置
JP2008215239A (ja) 内燃機関の可変動弁装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534001

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/000280

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15325098

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017000582

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014897570

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014897570

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017102906

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017000582

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170111