WO2016006612A1 - 核酸増幅装置、核酸増幅方法及び核酸増幅用チップ - Google Patents

核酸増幅装置、核酸増幅方法及び核酸増幅用チップ Download PDF

Info

Publication number
WO2016006612A1
WO2016006612A1 PCT/JP2015/069549 JP2015069549W WO2016006612A1 WO 2016006612 A1 WO2016006612 A1 WO 2016006612A1 JP 2015069549 W JP2015069549 W JP 2015069549W WO 2016006612 A1 WO2016006612 A1 WO 2016006612A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
pcr
acid amplification
sample solution
real
Prior art date
Application number
PCT/JP2015/069549
Other languages
English (en)
French (fr)
Inventor
秀典 永井
俊介 古谷
義久 萩原
雄介 渕脇
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55064241&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016006612(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to US15/322,000 priority Critical patent/US11098347B2/en
Priority to CN201580036603.XA priority patent/CN106536704B/zh
Priority to SG11201610707RA priority patent/SG11201610707RA/en
Priority to JP2016532945A priority patent/JP6226284B2/ja
Priority to EP15818467.1A priority patent/EP3168287A4/en
Priority to CN201910720912.9A priority patent/CN110452808B/zh
Publication of WO2016006612A1 publication Critical patent/WO2016006612A1/ja
Priority to US16/782,794 priority patent/US11781181B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/70Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in livestock or poultry

Definitions

  • the present invention relates to a nucleic acid amplification device, a nucleic acid amplification method, and a nucleic acid amplification chip.
  • Nucleic acid detection is central in various fields such as pharmaceutical research and development, forensic medicine, clinical testing, and identification of crops and pathogenic microorganisms.
  • One of the most powerful basic technologies for detecting a small amount of nucleic acid, which is a gene, with high sensitivity is a technique for analyzing a product obtained by exponentially duplicating part or all of a nucleic acid sequence.
  • PCR method is a powerful technique for selectively amplifying a specific region of DNA.
  • millions of copies of DNA fragments can be generated from a single template DNA for a target DNA sequence in the template DNA.
  • PCR repeats three-phase or two-phase temperature conditions called thermal cycling to denature DNA into single strands, anneal denatured DNA single strands and primers, and primers with a thermostable DNA polymerase enzyme
  • the individual reactions of stretching are repeated in sequence. This cycle is repeated until a sufficient copy number is obtained for analysis.
  • the concentration of the amplified DNA product eventually stops as the concentration of the required reaction reagent decreases.
  • the PCR method is a powerful technique that can selectively amplify the target DNA.
  • the conventional PCR method if the amount of template DNA in the sample before PCR exceeds a certain amount, the amount of amplified DNA after PCR often reaches a plateau, and the amount of template DNA before PCR cannot be quantified. Absent.
  • the real-time PCR method the amount of amplified DNA during PCR can be detected in real time before reaching the plateau, and therefore the amount of template DNA before PCR can be quantified from the state of DNA amplification. Therefore, the real-time PCR method is also called a quantitative PCR method.
  • the quantitative property of the target DNA amount by the real-time PCR method is particularly useful in clinical practice, and is used for monitoring the transition of the viral amount in confirming the therapeutic effect of viral infection such as AIDS virus (HIV). Yes.
  • DNA quantification by real-time PCR is also effective in the diagnosis of opportunistic infections such as herpes virus (HHV), which have been subclinically infectious since early childhood, but proliferate and develop due to physical weakness. is there.
  • HHV herpes virus
  • the PCR method and the real-time PCR method are powerful techniques for exponentially amplifying genes by thermal cycling, but the general-purpose thermal cycler device used for PCR is due to the huge heat capacity of the aluminum block part that is a heater.
  • the temperature control is slow, and the PCR operation of 30 to 40 cycles conventionally takes 1 to 2 hours and sometimes more. For this reason, even with the latest genetic testing equipment, the total analysis usually takes one hour or more, and speeding up the PCR operation has been a major issue since the advent of the technology.
  • Various methods have been developed in order to achieve high speed, but the thermal cycling of the sample is classified into the following three methods.
  • the first method is a method in which a sample solution is introduced into a device and temperature cycling is performed over time while the solution is held in the same portion (Non-patent Document 1 and Patent Document 1).
  • this method aims to reduce the heat capacity by reducing the amount of sample and speed up the thermal cycle, there is a limit to the reduction of the heat capacity of the chamber and the heater itself. About 30 seconds are required, and it takes 15 minutes or more to complete the PCR reaction even with the fastest apparatus.
  • the second method is a method called continuous flow PCR in which the sample liquid moves through a plurality of temperature zones that are spatially separated through a microchannel and the sample liquid is continuously fed without stopping.
  • continuous flow PCR methods a method is known in which the sample temperature is controlled at high speed by flowing through three serpentine channels on three heaters controlled at a constant temperature (Non-patent Document 2). Since this continuous flow PCR method does not require temperature changes of external devices such as containers and heaters, the theoretically fastest temperature control can be expected. In an extremely high speed case, DNA amplification is realized in about 7 minutes.
  • the third method is such that a plurality of spatially separated temperature zones are connected by a micro flow channel, and the sample solution is stopped on these temperature zones for a predetermined time.
  • This is a method of alternately moving while heating on one flow path (Patent Document 2).
  • This method is excellent in that a thermal cycle can be performed by freely setting the time for contacting each temperature zone.
  • a temperature gradient from about 95 ° C. or more to denaturation reaction to about 60 ° C. for annealing reaction is formed.
  • a primer is attached to DNA serving as a template, and DNA contained in the target primer sequence is specifically detected by a DNA polymerase.
  • the PCR method can be used for detection of DNA, but cannot directly detect RNA. Therefore, in order to detect RNA viruses such as influenza viruses and noroviruses, the so-called RT-PCR method is used, in which RNA is used as a template and PCR is performed after synthesizing complementary cDNA once with reverse transcriptase. In practice, a two-step process must be performed. Moreover, since the PCR method and the RT-PCR method require rapid temperature increase and decrease, a special incubator is required, and there is a problem that application to automation is not easy.
  • pandemic borderline measures such as foot-and-mouth disease and highly pathogenic influenza are important for quick and accurate on-site judgment and prevention of secondary infection associated with movement.
  • An object of the present invention is to provide a small-sized nucleic acid amplification apparatus that can be carried on site and capable of real-time PCR at high speed, a plate for the apparatus, and a nucleic acid amplification method.
  • the present invention arranges two temperature zones on a plane and contacts the flow paths so as to be close to each temperature zone. Both ends of the path undergo thermal cycling by causing the plug-like sample solution to reciprocate at the exact position on each temperature zone in the flow path by a mechanism for liquid delivery that is released to atmospheric pressure when the blower or fan is stopped,
  • a reciprocal flow type high-speed real-time nucleic acid amplification device is provided, which is capable of simultaneously confirming the passage of a PCR solution and measuring fluorescence intensity for each thermal cycle.
  • the nucleic acid amplification method includes converting RNA to a cDNA cDNA by reverse transcription and performing a PCR method on the cDNA.
  • the present invention provides the following nucleic acid amplification apparatus, nucleic acid amplification method, and chip.
  • a heater capable of forming a denaturation temperature zone and an extension / annealing temperature zone
  • a fluorescence detector capable of detecting movement of the sample solution between the two temperature zones, and allowing movement of the sample solution between the two temperature zones
  • a pair of liquid feeding mechanisms that are opened to atmospheric pressure when the liquid feeding is stopped, a substrate on which a nucleic acid amplification chip can be placed, and an electric signal from the fluorescence detector relating to the movement of the sample solution are sent to each liquid feeding
  • a reciprocal flow type nucleic acid amplification device comprising a control mechanism for controlling the driving of a mechanism for use, and performing real-time PCR by measuring fluorescence intensity for each thermal cycle.
  • the curved flow path corresponding to the denaturation temperature zone and the extension / annealing temperature zone, the straight intermediate flow path connecting the curved flow paths, and both ends of the flow path (1)
  • a nucleic acid amplification chip having at least one microchannel provided with a connection portion connectable to a liquid feeding mechanism in the nucleic acid amplification apparatus.
  • the liquid feeding mechanism is a microblower or a blower.
  • Step 1 placing the nucleic acid amplification chip according to (2) on the substrate according to (1) so that each of the denaturation temperature zone and the extension / annealing temperature zone includes a curved flow path
  • Step 2 introducing a sample solution into the microchannel
  • Step 3 A step of connecting the liquid feeding mechanism connecting portions at both ends of the microchannel and a pair of liquid feeding mechanisms
  • Step 4 The sample solution is reciprocated between two curved flow paths of the micro flow path by the liquid feeding mechanism to perform thermal cycling, and further the fluorescence intensity of the sample solution for each thermal cycle by the fluorescence detector in the intermediate flow path The process of performing real-time PCR by simultaneously measuring and confirming the passage of the sample solution.
  • the measurement of the fluorescence intensity is performed by simultaneously measuring two or more types of fluorescence wavelengths and simultaneously measuring real-time PCR of a plurality of genes in one channel. Nucleic acid amplification method. (6) The fluorescence intensity is measured using a calibration curve obtained from a cycle number Ct value derived from a matrix of fluorescence intensity (two-dimensional array of amplification curves) for each thermal cycle number (4 Or the nucleic acid amplification method according to (5).
  • the nucleic acid amplification method is selected from the group consisting of polymerase chain reaction (PCR), reverse transcription PCR (RT-PCR), multiplex PCR or RT-PCR, and real-time PCR or RT-PCR (4) to The nucleic acid amplification method according to any one of (6).
  • PCR polymerase chain reaction
  • RT-PCR reverse transcription PCR
  • RT-PCR multiplex PCR or RT-PCR
  • real-time PCR or RT-PCR real-time PCR or RT-PCR
  • liquid feeding mechanisms preferably a blower
  • one fluorescence detector are prepared for each micro flow path, a low-cost and compact portable device can be realized.
  • real-time PCR can be speeded up by simultaneously confirming the passage of the PCR solution and measuring the fluorescence intensity for each thermal cycle at high speed.
  • a pressure source such as a syringe pump is connected to the flow path, and the plug-like sample solution is reciprocated by repeating pressurization and depressurization.
  • the inside of the flow channel on the side connected to these pressure sources from the plug-like sample solution in the flow channel must be a closed system so that the pressure does not escape.
  • Liquid feeding is started when the force on the gas-liquid interface of the plug-like sample solution generated by pressurization or depressurization of the pressure source exceeds the static friction force between the plug-like sample solution and the flow path inner wall.
  • the inside of the flow path by blowing air such as a blower or a fan
  • the inside or the inside of the flow path is used. If the blower or fan is stopped immediately before reaching or immediately before reaching the pressure, the pressure inside the flow channel is instantaneously released to atmospheric pressure, and the pressure acting on the plug-like sample solution is lost, so the liquid is immediately sent. To stop. Therefore, even if there is no plurality of pressure release valves for controlling the position of the sample solution, it is possible to perform accurate position control only by confirming passage of the sample solution at one location between the temperature zones.
  • the present invention utilizes a polymerase chain reaction called PCR, but utilizes multiple cycles of denaturation, annealing of the primer pair to the relative strand, and primer extension resulting in an exponential increase in the copy number of the target nucleic acid sequence.
  • PCR reverse transcription PCR
  • RT-PCR reverse transcriptase
  • cDNA complementary DNA
  • One-Step RT-PCR can also be used as the RT-PCR reaction.
  • One-Step RT-PCR is RT-PCR that allows RT-PCR to be performed quickly and easily in one step from RT incubation to PCR cycling without opening and closing tubes or adding reagents.
  • kits and protocols for One-Step RT-PCR can be used in the art (for example, QIAGEN's OneStepRT-PCRMix, etc.), and these can be selected and implemented as appropriate. it can.
  • FIG. 1 It is a figure which shows the apparatus structure of a nucleic acid amplifier. It is a figure which shows the structure of a PCR chip. It is a figure which shows amplification of the nucleic acid in high-speed real-time PCR. The calibration curve of E. coli used for high-speed real-time PCR is shown. It is the figure which plotted the retention time which can fully amplify target DNA without changing Ct value even if it shortened annealing and extension reaction time for every length of target DNA.
  • Figure 2 shows pathogenic microorganisms A and B and ⁇ -actin gene multiplex PCR.
  • the apparatus configuration used for high-speed real-time PCR includes a substrate (not shown) on which a PCR chip is placed, a temperature control unit for PCR chip, a liquid-feeding microblower as a liquid-feeding mechanism, It consists of a fluorescence detector, a control computer as a control mechanism, and a small battery for power supply.
  • the PCR chip temperature control unit has two cartridge heaters arranged in parallel with an interval of 10 mm so as to be in contact with the seal surface side of the meandering channel portion of the PCR chip without any gap.
  • a K-type thermocouple is joined to each heater for temperature control of the two heaters.
  • the cartridge heater 1 is controlled by a control computer at a temperature necessary for a DNA denaturation reaction necessary for PCR, and the temperature (denaturation temperature range) is preferably 90 to 100 ° C., and particularly preferably 95 ° C.
  • the cartridge heater 2 is controlled by a control computer at a temperature required for DNA annealing reaction and elongation reaction (extension / annealing temperature range), and the temperature is preferably 40 to 75 ° C., particularly 55 to 65 ° C. Is preferred.
  • the temperature zone for the denaturation reaction of DNA, the temperature zone for the annealing reaction and the extension reaction are preferably controlled at a constant temperature, and maintained at a constant temperature by, for example, PID (proportional-integral-derivative) control.
  • the required amount of the PCR solution to be delivered is measured in the range of 5 to 50 ⁇ L, preferably 5 to 25 ⁇ L, using a micropipette or the like, and the micropipette disposable tip is placed with the PCR sample solution still contained. Attach to one end of the microchannel.
  • the sample solution can also be injected into the microchannel of the PCR chip by removing the micropipette body and connecting a pneumatic tube connected to the liquid-feeding microblower instead and pressurizing it with air.
  • the PCR sample solution is mixed with fluorescent dyes such as TaqMan probe, Cycleave probe, E probe (registered trademark), and SYBR GREEN so that real-time PCR is possible together with the components necessary for PCR It is.
  • fluorescent probes such as TaqMan probe, Cycleave probe, E probe (registered trademark), and SYBR GREEN so that real-time PCR is possible together with the components necessary for PCR It is.
  • a reagent kit for real-time PCR or an externally synthesized product can be used.
  • the fluorescence detector is arranged so as to measure the fluorescence intensity with one point on the linear flow channel located at the center of each micro flow channel as a detection point, and is sent from one meandering flow channel portion by pressurization.
  • the liquid-feeding microblower is stopped, and the PCR solution can be held in the other meandering channel portion for a certain period of time.
  • the control computer can simultaneously control two microblowers connected to each microchannel, and continuously monitor the fluorescence intensity at the detection point at the center of each microchannel while monitoring the PCR sample solution.
  • the microblowers are alternately switched to perform thermal cycling so that they move alternately to the meandering flow path portion on each heater for the set time.
  • the control computer simultaneously records the fluorescence intensity change for each cycle that increases as the target DNA is amplified by thermal cycling, and calculates the number of cycles (Ct value) where the fluorescence intensity exceeds a certain threshold. By doing so, it is possible to quantify the initial target DNA amount.
  • the PCR chip used for high-speed real-time PCR has a structure in which four microchannels are formed in parallel by injection molding and a COP resin substrate and a polyolefin transparent seal are joined.
  • Each microchannel has a width and depth of 700 ⁇ m as shown in FIG. 2 and has a structure of meandering and folding back at two locations, and each serpentine channel section sandwiches a straight channel section at the center of the microchannel.
  • the solution is folded four times, and at least 25 ⁇ L of solution can be accommodated only in each meandering flow path portion.
  • regions surrounded by dotted lines are each heated by a heater for thermal cycling in real-time PCR.
  • Both ends of the flow path are individually connected to a small hole (connection portion of the liquid feeding mechanism) penetrating the resin substrate, and even after the entire micro flow path side of the resin substrate is bonded by a polyolefin transparent seal, Conduction by the reaction solution and air is possible from the small hole to each micro flow path.
  • the small hole has a structure that can be equipped with a disposable tip for a micropipette that is generally used in biochemical experiments. After weighing 5 to 25 ⁇ L of PCR solution, the disposable tip is connected as it is. No equipment is required, and it is possible to introduce a PCR solution without contamination such as contamination.
  • the flow path is preferably made of a material that has relatively high thermal conductivity, is stable in the temperature range required for PCR, is hardly eroded by an electrolyte solution or an organic solvent, and does not adsorb nucleic acids or proteins.
  • the material include glass, quartz, silicon, and various plastics.
  • a curved flow path such as a meandering flow path having a loop shape or a spiral shape may be used.
  • the width or depth of the flow path may not be constant, and the width or depth may partially change.
  • the same fluorescence detector be used for both the detection of the passage of the sample solution in the flow path to the different temperature regions and the measurement of the fluorescence intensity for each thermal cycle, but it is also possible to include a plurality of different fluorescence detectors. good.
  • the method of detecting the passage of a sample solution between multiple temperature ranges is based on optical methods such as colorimetry and light absorption, and electrical methods including changes in capacitance and electrochemical reactions. There may be. Two or more temperature regions in contact with the flow path may come into contact with the outside of the flow path, or may be built in the flow path.
  • two meandering channels corresponding to the denaturation temperature zone and the extension / annealing temperature zone are connected by a linear intermediate channel, and the passage of the sample solution and fluorescence are detected in the intermediate channel.
  • an intermediate channel is arranged on a straight line connecting two small holes (connecting part of the solution feeding mechanism), and the passage of the sample solution and fluorescence are detected in this intermediate channel, so that a PCR chip (nucleic acid amplification) Even if the chip is turned upside down (rotated 180 degrees) and placed on the substrate, detection with the fluorescence detector is possible.
  • the PCR chip is fixed to each of these two heaters before use, for example, as shown in FIG. 2 so that the seal surface of each meandering flow path portion surrounded by a dotted line is in close contact, and is removed after use for disposable use. It may be possible to exchange according to Two micro-blowers for feeding liquid are used for each micro-channel on the PCR chip, and are connected to each disposable chip connected to both ends of the micro-channel via a pneumatic tube. The two-way liquid feeding has been realized by operating it. It is also possible to perform, for example, multiplex PCR, in which the number of microblowers for liquid feeding is increased in accordance with the number of microchannels and a plurality of different samples are subjected to thermocycling simultaneously.
  • multiplex PCR refers to PCR using a primer set containing two or more kinds of forward primers in the same reaction solution.
  • primer set refers to a combination of one or more forward primers and reverse primers.
  • each of the reverse primers generates a separate amplification product in combination with two or more kinds of forward primers (as a primer pair).
  • it can be used as a primer set for multiplex PCR.
  • the amplification of the target gene corresponding to each fluorescence wavelength is detected by simultaneously measuring the multiplex PCR and fluorescence intensity in the present invention.
  • detection may be performed using a plurality of fluorescence detectors, the detection can be performed using a detection signal using light of one wavelength.
  • E. coli Escherichia coli
  • a 10-fold dilution series was prepared and used as a standard sample for quantitative confirmation.
  • the target DNA to be amplified in real-time PCR is a 106 bp DNA sequence of E. coli-specific uid A gene (accession number NC_000913.3), and 5'-GTG TGA TAT CTA CCC GCT TCG C-
  • the sequence of 3 ′ (SEQ ID NO: 1) and 5′-AGA ACG GTT TGT GGT TAA TCA GGA-3 ′ (SEQ ID NO: 2) were used as reverse primers, and the final concentration in the PCR solution was 300 nM.
  • the sequence of TaqMan (registered trademark) probe for real-time PCR is 5′-FAM-TCG GCA TCC GGT CAG TGG CAG T-MGB-3 '(SEQ ID NO: 3), and the final concentration in the PCR solution is 200 nM.
  • micropipette disposable tip was also attached to the other end of the microchannel equipped with the micropipette disposable tip containing the PCR solution, and a liquid-feed microblower tube was connected to each.
  • a thermal cycle condition in high-speed real-time PCR after heating for 30 seconds at 98 ° C for DNA polymerase hot start, set the program to repeat 45 cycles of 98 seconds for 2 seconds and 58 ° C for 4 seconds, and control the program of the liquid microblower. Fast real-time PCR was performed.
  • the fluorescence intensity for each cycle in high-speed real-time PCR draws a sigmoid curve similar to that of the existing real-time PCR apparatus, and the speed of fluorescence amplification changes depending on the initial concentration of E. coli.
  • the processing time of high-speed real-time PCR is 6 minutes 40 seconds in 45 cycles, and even in the case of a high-speed thermal cycle device among existing commercially available devices, the processing time of 45 cycles is 45 minutes. High-speed real-time PCR capable of quantifying DNA was achieved.
  • High-speed real-time PCR is a repetition of three processes: DNA denaturation reaction, annealing reaction, and extension reaction replicated by DNA polymerase from the 3 'end of each primer to the template DNA sequence. Is done. Among them, the DNA denaturation reaction and the annealing reaction are completed in a short time without depending on the length of the target DNA. However, the extension reaction requires time depending on the length of the target DNA and the enzyme activity of the DNA polymerase, and it is necessary to set an appropriate thermal cycle time even in high-speed real-time PCR.
  • the common forward primer sequence is 5′-GTT TGA TCC TGG CTC A-3 ′ (SEQ ID NO: 4), and the common TaqMan® probe sequence is 5′-FAM-CGG GTG AGT AAT GTC TGG-TAMRA-3 '(SEQ ID NO: 5) was used in combination with the following reverse primers according to the length of the target DNA.
  • Reverse primer sequence for target DNA length of about 200 bp is 5'-CTT TGG TCT TGC GAC G-3 '(SEQ ID NO: 6)
  • reverse primer sequence of about 400 bp is 5'-GCA TGG CTG CAT CAG-3 '(SEQ ID NO: 7)
  • reverse primer sequence of about 600 bp is 5'-CTG ACT TAA CAA ACC GC-3' (SEQ ID NO: 8)
  • reverse primer sequence of about 800 bp is 5'-TAC CAG GGT ATC TAA TCC -3 ′ (SEQ ID NO: 9)
  • all Tm values were set to about 50 ° C.
  • FIG. 5 shows a graph in which the retention time for sufficiently amplifying the target DNA without changing the Ct value even when the annealing and extension reaction time is shortened is plotted for each length of the target DNA.
  • the short target DNA about 100 bp
  • the result of the above-mentioned uid A gene was used and plotted on the same graph.
  • the annealing and extension reaction times differ depending on the activity of the DNA polymerase.
  • SpeedSTAR registered trademark
  • HS DNA polymerase is approximately 78 bp per second
  • the annealing reaction time excluding the extension reaction is theoretically about 2.7 seconds when the length of the target DNA is 0 ⁇ bp, that is, the X section in FIG. 5 is equivalent, regardless of the type of DNA polymerase. . Since this is consistent with the above-mentioned conventional knowledge, the theoretically fastest real-time PCR can be performed by setting the time based on FIG. 5 according to the length of the target DNA. .
  • Example 3 Multiplex PCR
  • high-speed real-time PCR as an example of application to a multiplex PCR method for confirming the presence or absence of multiple target DNAs from the same sample, using a multicolor fluorescence detector capable of simultaneous measurement of three types of fluorescence, Neisseria gonorrhoeae and We investigated simultaneous detection of Chlamydia trachomatis and ⁇ -actin gene derived from human leukocytes.
  • the multicolor fluorescence detector can measure the fluorescence of blue excitation, green excitation, and red excitation on the same axis.
  • FAM label, Texas red label, and Cy5 label can be detected at the same detection point in the microchannel on the PCR chip. Fluorescence amplification by different types of fluorescent probes can be detected individually. Even when using a multicolor fluorescence detector, it is arranged to measure three types of fluorescence intensity simultaneously with one point on the straight channel located at the center of each microchannel as the detection point.
  • the liquid solution microblower is stopped when the PCR solution sent from the meandering flow path portion of the liquid has passed the detection point, and the PCR solution is held in the other meandering flow path portion for a certain period of time. Can.
  • the lengths of the target DNAs for Neisseria gonorrhoeae and Chlamydia trachomatis, and ⁇ -actin gene, and the Tm values for each primer and fluorescent probe were the same, and the amplification efficiency was designed not to vary.
  • fluorescent probes for Neisseria gonorrhoeae and Chlamydia trachomatis and ⁇ -actin gene Texas® red, Cy5, and FAM-labeled TaqMan® probes were used, respectively, and the final concentration in the PCR solution was 200 ⁇ m each.
  • the final concentration of Neisseria gonorrhoeae and Chlamydia trachomatis, and the three forward primers and the reverse primer for ⁇ -actin gene in the PCR solution is 300 nM each, and other reagents are SpeedSTAR (registered trademark) HS DNA from Takara Bio Inc. Polymerase was used at a final concentration of 0.2 U / ⁇ L, and the attached FAST Buffer I and dNTP Mixture were mixed at the manual concentration to obtain a PCR premixture.
  • Template DNA for Neisseria gonorrhoeae and Chlamydia trachomatis and ⁇ -actin creates synthetic plasmids with their target DNA sequences, high-speed real-time PCR by mixing 4 ng / ⁇ L for positive control and sterile water for NTC instead Carried out.
  • the thermal cycle condition was set to repeat 45 cycles of 96 ° C for 3 seconds and 60 ° C for 8 seconds after heating at 96 ° C for 20 seconds.
  • the thermal cycle time for 45 cycles under these conditions was 9 minutes and 40 seconds.
  • FIG. 6 shows the results of multiplex PCR for Neisseria gonorrhoeae and Chlamydia trachomatis and ⁇ -actin gene using high-speed real-time PCR. Since the sensitivity of the multicolor fluorescence detector to the three colors of fluorescent dyes is different, the result of correcting the dynamic range is shown. In FIG. 6, the bold lines indicate changes in the fluorescence intensity of each of the three types when the template DNA is contained, and clear amplification is obtained compared to the NTC fluorescence signals indicated by the thin lines, realizing simultaneous measurement of multiple items from the same sample. did.
  • the amplification of the target gene corresponding to each fluorescence wavelength is detected by measuring three types of fluorescence intensities at the same time, but the PCR solution sent from one meandering channel portion by pressurization is detected.
  • the PCR solution sent from one meandering channel portion by pressurization is detected.
  • One-step reverse transcription real-time PCR A method that mixes reverse transcriptase with a PCR solution in advance and easily performs reverse transcription reaction from RNA and real-time PCR method from one reaction solution is called One-step reverse transcription real-time PCR method. It is used for the detection of RNA viruses.
  • the operation can be greatly simplified by combining the two steps in the general RT-PCR method, but the reverse transcriptase of the reverse transcription reaction and the real-time PCR method Since DNA polymerases interfere with each other, the problem is that the efficiency of PCR deteriorates.
  • each of reverse transcription reaction and real-time PCR method can be carried out efficiently and sequentially.
  • An efficient One-step reverse transcription real-time PCR method can be performed.
  • quantification of the Norovirus G1 gene and G2 gene was examined by the One-step reverse transcription real-time PCR method.
  • RNA with the target G1 or G2 gene sequence use the standard product attached to commercially available TaKaRa qPCR Norovirus (GI / GII) Typing Kit or RNA that is a transcription product of synthetic DNA, and use RNase-free dilution series. Of sterile water.
  • the primer and probe sequences used were those described in the Norovirus detection method provided by the National Institute of Infectious Diseases Infectious Disease Information Center.
  • the forward primer sequence for G1 gene of Norovirus is 5'-CGY TGG ATG CGN TTY CAT GA-3 '(SEQ ID NO: 10) of COG-1F
  • TaqMan® probe sequence is 5' of RING1-TP (a) -AGA TYG CGA TCY CCT GTC CA-3 '(SEQ ID NO: 11) and RING1-TP (b) 5'- AGA TCG CGG TCT CCT GTC CA-3' (SEQ ID NO: 12)
  • reverse primer sequence is COG-1R 5′- CTT AGA CGC CAT CAT CAT TYA C-3 '(SEQ ID NO: 13).
  • the forward primer sequence for the G2 gene of Norovirus is 5'- CAR GAR BCN ATG TTY AGR TGG ATG AG-3 '(SEQ ID NO: 14) of COG-2F, and the TaqMan (registered trademark) probe sequence is 5'- of RING2AL_TP.
  • fluorescent probes for the G1 gene or G2 gene FAM-labeled TaqMan (registered trademark) probes were used, and the final concentration in the PCR solution was 200 ⁇ m each.
  • each forward primer and reverse primer for the G1 gene or G2 gene in the PCR solution is 300 nM.
  • Takara Bio PrimeScrip registered trademark
  • Reverse Transcriptase or Life Technologies SuperScript registered) Trademark
  • Reverse) Transcriptase at a final concentration of 5 U / ⁇ L
  • RNase inhibitor at a final concentration of 1 U / ⁇ L
  • SpeedSTAR registered trademark
  • HS ⁇ ⁇ DNA polymerase at a final concentration of 0.2 U / ⁇ L
  • supplied FAST Buffer I and dNTP Mixture was mixed at a manual concentration to prepare a one-step reverse transcription real-time PCR premixture.
  • Thermal cycle conditions are 10 seconds at 42 ° C when using Takara Bio's PrimeScrip (registered trademark) Reverse TM Transcriptase for reverse transcription reaction, or when using Life Technologies' SuperScript (registered trademark) Reverse TM Transcriptase. And 10 seconds at 55 ° C.
  • These reverse transcription reactions are carried out in a meandering channel located on the low-temperature heater in the PCR chip for high-speed real-time PCR. After the reverse transcription reaction is completed, the low-temperature heater temperature is increased to 56 ° C. The solution was heated at 96 ° C. for 10 seconds, followed by 45 cycles of 96 ° C. for 3 seconds and 56 ° C. for 8 seconds. The time required for 45 cycles of One-step reverse transcription real-time PCR under these conditions was 10 minutes 20 seconds or less.
  • the fluorescence intensity per cycle in high-speed one-step reverse transcription real-time PCR is the same regardless of the type of reverse transcriptase as long as the initial concentrations of Norovirus G1 gene and G2 gene are the same.
  • a sigmoid curve was drawn, and the number of cycles in which the fluorescence intensity abruptly amplified and rose up was the same.
  • norovirus G1 gene and G2 gene RNA were changed and high-speed One-step reverse transcription real-time PCR was examined, as shown in FIG. 8, norovirus G1 gene and G2 gene
  • the initial concentration of RNA can be quantified by the Ct value, which is the number of cycles in which the fluorescence intensity rapidly amplifies and rises. Generally possible.
  • the mean square of the initial gradient (for example, 5 to 15 cycles may be used, or 5 to 15 cycles immediately before each cycle may be used) Compare the square root (or a weighted average) with the slope after that, and if it increases significantly (for example, 5 times or more, but it may be 2 times or more), the number of cycles Ct rises when the fluorescence intensity amplifies rapidly Derived as a value.
  • FIG. 9 shows the results of creating a calibration curve for the initial concentrations of RNA of the G1 gene and G2 gene of Norovirus from the obtained Ct values. Good linearity is obtained for each RNA concentration of Norovirus G1 gene and G2 gene. Even during the one-step reverse transcription real-time PCR, Ct is promptly detected when the fluorescence intensity rises rapidly. The value can be determined and the initial concentration of RNA can be calculated from the Ct value.
  • the feature of the present invention is that the entire PCR solution passes through the fluorescence detection point for each cycle through the flow path. Therefore, the fluorescent dye generated by real-time PCR has no time to uniformly disperse in the PCR solution for speeding up the thermal cycle, and the fluorescent dye concentration is unevenly distributed in the PCR solution. However, since all the fluorescent dyes are detected and integrated by the fluorescence detector, it is possible to quantify the accurate amount of fluorescence for each cycle.
  • the error bar of the Ct value in the measurement of each RNA concentration is very small, and even with high-speed One-step reverse transcription real-time PCR, it has excellent repeatability and accuracy. It was confirmed that quantification was possible.
  • the apparatus according to the present invention also has portability, and can realize high-speed and real-time PCR at low cost in the clinical and infectious disease sites. It is possible to prevent the spread of infection by early detection of infectious diseases in Japan.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明は、変性温度帯と伸長・アニーリング温度帯を形成できるヒーター、前記2つの温度帯間の試料溶液の移動を検出可能な蛍光検出器、前記2つの温度帯間の試料溶液の移動を可能にし、かつ、送液停止時には大気圧開放される1対の送液用機構、請求項2に記載の核酸増幅用チップを載置可能な基板、試料溶液の移動に関する蛍光検出器からの電気信号が送られて各送液用機構の駆動を制御する制御機構を備え、サーマルサイクル毎の蛍光強度の計測を行うことでリアルタイムPCRを行うことを特徴とするレシプロカルフロー型の核酸増幅装置を提供する。

Description

核酸増幅装置、核酸増幅方法及び核酸増幅用チップ
 本発明は、核酸増幅装置、核酸増幅方法及び核酸増幅用チップに関する。
 核酸の検出は、医薬品の研究開発、法医学、臨床検査、農作物や病原性微生物の種類の同定など、様々な分野において中核をなすものである。癌を含む種々の疾患、微生物の感染、分子系統解析に基づいた遺伝子マーカーなどを検出する能力は、疾患および発症リスク診断、マーカーの探索、食品や環境中の安全性評価、犯罪の立証、および他の多くの技術にとって普遍的技術となっている。
 遺伝子である少量の核酸を高感度に検出する最も強力な基礎技術の1つは、核酸配列の一部または全部を指数関数的に複製し増幅した産物を分析する手法である。
 PCR法は、DNAのある特定領域を選択的に増幅する強力な技術である。PCRを用いると、テンプレートDNAの中の標的とするDNA配列について、単一のテンプレートDNAから数百万コピーのDNA断片を生成することができる。PCRは、サーマルサイクルと呼ばれる三相もしくは二相の温度条件を繰り返すことにより、単一鎖へのDNAの変性、変性されたDNA一本鎖とプライマーのアニーリング、および熱安定性DNAポリメラーゼ酵素によるプライマーの伸長という個々の反応が順次繰り返される。このサイクルは、分析に必要な十分なコピー数が得られるまで繰り返し行われる。原理上、PCRの1回のサイクルで、コピー数を倍にすることが可能である。実際には、サーマルサイクルが続くと、必要な反応試薬の濃度が減少するので、増幅されたDNA産物の集積が、最終的に止まる。PCRの一般的詳細については、「Clinical Applications of PCR」、Dennis Lo(編集)、Humana Press(ニュージャージー州トトワ所在)(1998年)、および「PCR Protocols A Guide to Methods and Applications」、M.A.Innisら(編集)、Academic Press Inc.社(カリフォルニア州サンディエゴ所在)(1990年)を参照のこと。
 PCR法は目的のDNAを選択的に増幅できる強力な手法であるが、増幅したDNAを確認するためには、PCRの終了後に別途ゲル電気泳動などによる確認作業が必要であった。そこで、PCR法の改良として、目的のDNAの増幅量に合わせ蛍光を発生もしくは消光させるリアルタイムPCR法が開発され、試料中の目的のDNAの有無を簡便に確認できるようになった。従来のPCR法では、PCR前の試料中のテンプレートDNA量が一定量を超えると、PCR後の増幅DNA量はプラトーに達していることが多く、PCR前のテンプレートDNA量を定量することは出来ない。しかし、リアルタイムPCR法においては、プラトーに達する前に、PCR途中の増幅DNA量をリアルタイムに検出できるため、DNA増幅の様子からPCR前のテンプレートDNA量を定量することが可能である。そのためリアルタイムPCR法は、定量的PCR法とも呼ばれる。
 リアルタイムPCR法による標的DNA量の定量性は,臨床において特に有用であり、例えばエイズウイルス(HIV)などウイルス感染の治療効果を確認する上で、ウイルス量の推移をモニタリングすること等に利用されている。また、ヘルペスウイルス(HHV)のような、多くが幼児期より不顕性感染しているが、体力減衰等により増殖し発症する日和見感染症の診断においても、リアルタイムPCR法によるDNA定量が有効である。
 PCR法およびリアルタイムPCR法は、サーマルサイクルにより遺伝子を指数関数的に増幅する強力な手法であるが、PCRに使用される汎用のサーマルサイクラー装置は、ヒーターであるアルミブロック部の巨大な熱容量のため温度制御が遅く、30~40サイクルのPCR操作に従来1~2時間、場合によってはそれ以上を要する。そのため、最新の遺伝子検査装置を用いても分析にはトータルで、通常1時間以上を要しており、PCR操作の高速化は、技術登場以来の大きな課題であった。高速化を実現するために種々の方法が開発されているが、試料のサーマルサイクリングに関しては以下の3つの方法に分類される。
 第1の方法は、試料液がデバイス内に導入され、溶液が同じ部分に保持されたまま時間の経過とともに温度サイクリングが行われる方法である(非特許文献1および特許文献1)。この方法は試料量の低減により熱容量を小さくし、サーマルサイクルの高速化を目指しているものの、チャンバーやヒーター自身の熱容量の低減に限界があるため十分な増幅反応を行うには、少なくとも1サイクル当たり30秒程度必要であり、PCR反応の終了までに、最も速い装置であっても15分以上費やさなければならない。
 第2の方法は、微小流路を通じて試料液が空間的に離れた複数の温度帯を移動し、試料液は止まることなく連続的に送り込まれる連続流PCRと呼ぶ方法である。この連続流PCR法の中でも一定温度に制御された3本のヒーター上で蛇行流路を介して流すことで、試料温度を高速に制御する方式が知られている(非特許文献2)。この連続流PCR方式では、容器やヒーター等外部装置の温度変化が不要なため、理論上最も高速な温度制御を期待でき、極めて高速なケースでは7分程度でDNAの増幅を実現している。しかし、連続流PCRを用いて定量的なリアルタイムPCRを行うためには、各サーマルサイクルの蛍光強度を計測するために、蛇行流路の全領域、あるいは同じ温度帯上の蛇行流路の30~50箇所の領域を蛍光観察できる機構が必要となる。具体的には、広い領域を均一に照射可能な励起光源と、蛍光観察用の高感度なビデオカメラもしくはラインスキャナが必要であり、大型かつ高価格なシステム構成となることが避けられない。
 第3の方法は、第2の方法同様、空間的に離れた複数の温度帯が微小流路で結ばれており、試料液がこれらの温度帯上を所定の時間ずつ停止するように、同一流路上を反復しながら交互に移動し加熱される方法である(特許文献2)。この方法では各温度帯に接触する時間を自由に設定してサーマルサイクルが可能な点で優れている。ただし、試料を導入しポンプを使って往復もしくは回転する形でそれらの温度帯に送り込むためには、変性反応のため約95℃以上から、アニーリング反応のための約60℃までの温度勾配が形成された流路内を試料溶液が移動する際、高温側で加熱された試料内で生じた微小な気泡の膨張や気液界面に生ずる蒸気圧差により、流路内の望ましい温度領域位置から溶液が不本意に移動してしまうことを抑制するため、多数の一体化された弁およびポンプや、溶液位置を観察する検出器が必要となり装置の小型化が困難であった(非特許文献3、4および特許文献3)。
 PCR/リアルタイムPCR装置を利用した遺伝子検査の市場は順調に成長しており、特にウイルス性肝炎や性感染症、インフルエンザ等の感染症の遺伝子検査は国内でも急速に普及し始めている。また、癌治療における遺伝子検査は、EGFR遺伝子変異が抗がん剤イレッサの適用目安になる等、その有用性が明らかになったことから、肺癌や膵臓癌などにおけるEGFR遺伝子、K-ras遺伝子、EWS-Flil遺伝子、TLS-CHOP遺伝子、SVT-SSX遺伝子、c-kit遺伝子に関する遺伝子検査が最近保健適用となった。
 PCR法では鋳型となるDNAにプライマーを付着させ、DNAポリメラーゼによって目的のプライマー配列にはさまれるDNAを特異的に検出する。PCR法はDNAの検出に用いることは可能であるが、直接的にRNAの検出をすることができない。したがって、インフルエンザウイルスやノロウイルス等のRNAウイルスを検出するためには、RNAを鋳型とし、逆転写酵素によって、一旦、相補的なcDNA合成してからPCRを行う、いわゆるRT-PCR法を行うこととなり、実質的には2段階の工程を行わなければならない。また、PCR法およびRT-PCR法は急激な昇温、降温を必要とするため、特殊なインキュベーターを必要とし、自動化への適用は容易ではないという課題がある。
 近年、1つのPCR反応系に複数のプライマー対を用いることで、複数の遺伝子領域を同時に増幅するマルチプレックスPCRが注目されている。マルチプレックスPCRを発展させたリアルタイムマルチプレックスPCRは、それぞれのターゲットを、他のターゲットの影響(クロストーク)を受けにくく、感度を落とすことなく、複数の異なるターゲット遺伝子を区別して検出し、定量的な結果を得ることを目的としている。しかし、ラベル可能な蛍光物質の種類や、蛍光波長のオーバーラップの問題のために、2種類以上の定量的マルチプレックス反応は、困難で不可能な場合が多いという報告がある。
 また、現状では、遺伝子検査をラボや分析センターに持ち帰り行っているが、現場で迅速に実施可能な高速なリアルタイムPCR装置があれば、その場で治療や対策の方針を決定できるため、現状の遺伝子検査機器に置き換わる画期的な技術になるものと考えられる。特に、口蹄疫や高病原性インフルエンザなど、パンデミックの水際対策では、現場での迅速かつ的確な判断と、移動に伴う二次感染拡大の防止が重要であり、そのニーズは極めて大きい。
 特に、臨床や感染症発生の現場でただちに遺伝子検査ができるサービスの実現には、低費用で実施可能で、高速かつ可搬性に優れたリアルタイムPCR装置が必要である。
カナダ国特許出願公開第2479452号明細書 特開2003-200041 WO2006/124458
Neuzilら(Lab Chip 10:2632-2634(2010年)) Koppら(Science 280:1046-1048(1998年)) Chiouら(Anal Chem 73:2018-2021(2001年)) Brunklausら(Electrophoresis 33:3222-3228(2012年))
 本発明の目的は、現場に持ち運び可能な小型で高速にリアルタイムPCRが可能な核酸増幅装置、該装置用のプレート及び核酸増幅方法を提供することにある。
 反応の効率化を達成しかつ小型な増幅装置を実現するため、本発明は、2個の温度帯を平面上に配置し、流路をそれぞれの温度帯に近接するように接触させ、当該流路の両端はブロアもしくはファン等の停止時には大気圧開放される送液用機構によりプラグ状の試料溶液が当該流路内で各温度帯上の正確な位置で往復運動させることによりサーマルサイクリングし、その際、PCR溶液の通過の確認とサーマルサイクル毎の蛍光強度の計測を同時に行えることを特徴とするレシプロカルフロー型の高速リアルタイム核酸増幅装置を提供する。さらに、他の例示的な実施形態においては、該核酸増幅方法には、RNA を逆転写によって cDNA に変換し、その cDNA に対して PCR法を行うことを含む。
 すなわち本発明は、以下の核酸増幅装置、核酸増幅方法及びチップを提供するものである。
(1) 変性温度帯と伸長・アニーリング温度帯を形成できるヒーター、前記2つの温度帯間の試料溶液の移動を検出可能な蛍光検出器、前記2つの温度帯間の試料溶液の移動を可能にし、かつ、送液停止時には大気圧開放される1対の送液用機構、核酸増幅用チップを載置可能な基板、試料溶液の移動に関する蛍光検出器からの電気信号が送られて各送液用機構の駆動を制御する制御機構を備え、サーマルサイクル毎の蛍光強度の計測を行うことでリアルタイムPCRを行うことを特徴とするレシプロカルフロー型の核酸増幅装置。
(2) (1)の核酸増幅装置における変性温度帯と伸長・アニーリング温度帯に各々対応する曲線流路、前記曲線流路をつなぐ直線状の中間流路、流路の両端部に(1)の核酸増幅装置における送液用機構に接続可能な接続部を備えた微小流路を少なくとも1つ有する核酸増幅用チップ。
(3) 前記送液用機構がマイクロブロアまたは送風機である、(1)に記載の核酸増幅装置。
(4) 以下の工程を含む、核酸増幅方法:
工程1:変性温度帯と伸長・アニーリング温度帯に各々曲線流路が含まれるように(2)に記載の核酸増幅用チップを(1)に記載の基板上に載置する工程、
工程2:前記微小流路内に試料溶液を導入する工程、
工程3:微小流路両端部の送液用機構接続部と1対の送液用機構を各々接続する工程、
工程4:前記送液用機構により試料溶液を微小流路の2つの曲線流路間で往復させてサーマルサイクリングを行い、さらに中間流路において前記蛍光検出器によりサーマルサイクル毎の試料溶液の蛍光強度の計測と試料溶液の通過の確認を同時に行うことでリアルタイムPCRを行う工程。
(5) 前記蛍光強度の測定が、2種類以上の蛍光波長を同時に計測し、複数の遺伝子のリアルタイムPCRを1本の流路内で同時に測定することを特徴とする、(4)に記載の核酸増幅方法。
(6) 前記蛍光強度の計測を、サーマルサイクル数ごとの蛍光強度の行列(増幅曲線の2次元配列)から導出するサイクル数Ct値から求めた検量線を用いて行うことを特徴とする(4)又は(5)に記載の核酸増幅方法。
(7) 前記核酸増幅方法がポリメラーゼ連鎖反応(PCR)、逆転写PCR(RT-PCR)、マルチプレックスPCRまたはRT-PCR、およびリアルタイムPCRまたはRT-PCRからなる群より選択される(4)~(6)のいずれかに記載の核酸増幅方法。
(8) 前記流路が平面基板上に2本以上形成されており、それぞれの流路について独立して送液操作を可能とすることで、割り込み分析を行うことを特徴とする(4)~(7)のいずれかに記載の核酸増幅方法。
(9) 前記接続部にマイクロピペットのフィルター付きピペットチップの先端を接続して試料溶液を微小流路内に導入し、前記ピペットチップを前記接続部に接続した状態でマイクロピペットを取り外し、その後に前記ピペットチップと前記送液用機構を接続する、(4)~(8)のいずれかに記載の核酸増幅方法。
(10) 前記流路に導入する試料溶液の容量は、5μL~50μLの範囲であることを特徴とする(4)~(9)のいずれかに記載の核酸増幅方法。
(11) (4)~(10)のいずれかの核酸増幅方法に用いられる、(2)に記載の核酸増幅用チップ。
 本発明によれば、微小流路1本あたり2台の送液用機構(好ましくは送風機)と1個の蛍光検出器を準備するため、低費用かつコンパクトなポータブル装置が実現できる。
 また、試料溶液が2個の温度帯を往復するためにPCR溶液の通過の確認とサーマルサイクル毎の蛍光強度の計測を同時にかつ高速で行うことにより、リアルタイムPCRの高速化が達成できる。
 従来の試料溶液の往復運動によるサーマルサイクルを用いる方法では、シリンジポンプ等の圧力源を流路と接続し、加圧ならびに減圧の繰り返しにより、プラグ状の試料溶液の往復送液を行っていた。その際、流路内のプラグ状試料溶液から、これら圧力源と接続される側の流路内部は圧力が逃げないように閉鎖系でなくてはならない。当該圧力源の加圧もしくは減圧により生じたプラグ状試料溶液の気液界面に対する力が、プラグ状試料溶液の流路内壁と間の静止摩擦力を超えた時点で送液が開始される。一方、プラグ状試料溶液を停止させるため加圧もしくは減圧を停止した場合、その時点では圧力源側の閉鎖流路内部には試料溶液の気液界面に作用する圧力が残存しており、動摩擦によりエネルギーが消費されきるまで、しばらく動き続けた後に停止する。特に、PCRのように変性反応のため約95℃以上まで加熱する場合、粘性の変化や微小な気泡の発生など試料溶液の内圧の変動の影響も大きく、ポンプ等の圧力源停止後の移動量はバラツキが大きく、正確な位置へ試料溶液の停止させるためには、流路内部の圧力を開放するための専用の弁や、圧力源の複雑な操作、ならびに溶液位置を確認するための専用のセンサが複数必要であった。
 しかし、本発明においては、プラグ状試料溶液の往復送液にはブロアもしくはファン等の空気の送風による流路内部を加圧もしくは減圧を利用するが、試料溶液が温度帯上の正確な位置へ到達した時点あるいはその直前に、当該ブロアもしくはファン等の送風を停止させると、流路内部の圧力が瞬時に大気圧に開放され、プラグ状試料溶液へ作用する圧力が失われるため送液はすぐに停止する。そのため、試料溶液の位置制御を行うための圧力開放用の複数の弁がなくても、各温度帯の間の1箇所で試料溶液通過を確認するだけで正確な位置制御が可能となる。さらに、往復送液の各サイクルの位置確認を行う点で蛍光計測も同時に行なうことができるので、直線流路上の1点のみを検出点とする最もシンプルな構成のリアルタイムPCR用サーマルサイクラーを実現できる。
 本発明では、PCRと呼ばれるポリメラーゼ連鎖反応を利用するが、複数回のサイクルの変性、プライマー対の相対鎖へのアニーリング、ターゲット核酸配列のコピー数の指数関数的な増加をもたらすプライマーの伸長を利用する。逆転写PCR(RT-PCR)と呼ばれるその変形においては、mRNAから相補的なDNA(cDNA)を生成するために逆転写酵素(RT)が使われ、続いてcDNAがPCRによって増幅され、DNAの多数のコピーを生成する。
 また、RT-PCR反応として、One-Step RT-PCRを用いることもできる。One-Step RT-PCRとは、RTでのインキュベーションからPCRでのサイクリングまで、チューブの開閉や試薬の添加を行うことなく、ワンステップで迅速かつ簡便にRT-PCRを行うことができるRT-PCR法のことであり、当該技術分野ではOne-Step RT-PCRのための様々なキット、プロトコールが使用可能であり(例えば、QIAGENのOneStepRT-PCRMixなど)、適宜それらを選択して実施することができる。
 その他のPCRの多様な変更型については、例えば、米国特許番号第4,683,195号、4,683,202号、および4,800,159号;Mullis等、Meth. Enzymol. 155:335[1987];そしてMurakawa等、DNA 7:287[1988]を参照し、これらのそれぞれはその全体が参照として本明細書に組み込まれる。
核酸増幅装置の装置構成を示す図である。 PCRチップの構成を示す図である。 高速リアルタイムPCRにおける核酸の増幅を示す図である。 高速リアルタイムPCRに用いる大腸菌(E.coli)の検量線を示す。 アニーリング及び伸長反応時間を短縮しても、Ct値が変化せず標的DNAを十分に増幅できる保持時間を、標的DNAの長さ毎にプロットした図である。 病原性微生物A及びB ならびにβアクチン遺伝子マルチプレックスPCRを示す。 異なる逆転写酵素を用いた高速なOne-step逆転写リアルタイムPCRにおけるノロウイルスのG1遺伝子配列もしくはG2遺伝子配列を有するRNAに対する核酸の増幅を示す図である。 高速なOne-step逆転写リアルタイムPCRにおけるノロウイルスのG1遺伝子配列もしくはG2遺伝子配列を有するRNAの異なる初期濃度からの核酸の増幅を示す図である。 ノロウイルスのG1遺伝子配列もしくはG2遺伝子配列を有するRNAに対する高速なOne-step逆転写リアルタイムPCRにおける蛍光強度が急激に増幅して立ち上がるサイクル数Ct値を用いた検量線を示す。
 以下、本発明の反応装置の1つの実施形態を図1から図9を参照しながら説明する。
 高速リアルタイムPCRに使用する装置構成は、図1に示す通り、PCRチップを載置するための基板(図示せず)、PCRチップ用温調部、送液用機構としての送液用マイクロブロア、蛍光検出器、制御機構としての制御用コンピュータ、電源用小型バッテリーから成り立っている。
 PCRチップ用温調部は、カートリッジヒーター2本を、上記PCRチップの蛇行流路部のシール面側と隙間なく接触する様に、10 mmの間隔をおいて平行に配置させた構成としており、2本のヒーターの温度制御のため、各ヒーターにはK型熱電対を接合させている。
 カートリッジヒーター1は、PCRに必要なDNA変性反応に必要な温度に制御用コンピュータにより制御されているが、当該温度(変性温度帯)は90~100℃が望ましく特に95℃が好適である。カートリッジヒーター2はDNAのアニーリング反応及び伸長反応のために必要な温度(伸長・アニーリング温度帯)に制御用コンピュータに制御されているが、当該温度は40~75℃が望ましく、特に55~65℃が好適である。なおDNAの変性反応のための温度帯、アニーリング反応及び伸長反応のための温度帯は、一定の温度に制御することが好ましく、例えばPID(比例-積分-微分)制御により定温保持される。
 送液するPCR溶液は、5~50 μL、好適には5~25 μLの範囲内で必要量をマイクロピペッター等により計量し、当該PCR試料溶液を内包した状態のまま、マイクロピペットのディスポチップを微小流路の一端に装着する。マイクロピペット本体をはずし、代わりに送液用マイクロブロアに接続された空圧用チューブを接続し送風により加圧することで、PCRチップの微小流路中へ試料溶液を注入されることもできる。
 当該PCR試料溶液は、PCRに必要な成分と合わせて、リアルタイムPCRが可能なように、あらかじめTaqManプローブやCycleaveプローブ、Eプローブ(登録商標)と呼ばれる蛍光プローブや、SYBR GREEN等の蛍光色素を混合してある。これら蛍光プローブについては、リアルタイムPCR用試薬キットや外注合成品を使用することが出来る。
 蛍光検出器は、各微小流路の中心に位置する直線流路上の1点を検出点として蛍光強度を計測するように配置されており、加圧により一方の蛇行流路部から送液された当該PCR溶液が、検出点を通過し終えた時点で、送液用マイクロブロアを停止させ、当該PCR溶液を、他方の蛇行流路部内に一定時間保持されることができる。
 制御用コンピュータは同時に、各微小流路に接続された2個ずつのマイクロブロアのプログラム制御が可能であり、各微小流路中心の上記検出点の蛍光強度を連続モニタリングしながら、当該PCR試料溶液が各ヒーター上の蛇行流路部へ設定した時間ずつ交互に移動する様、当該マイクロブロアについて交互にスイッチングしサーマルサイクリングを行う。当該制御用コンピュータは、さらに、リアルタイムPCR法において、サーマルサイクリングにより標的DNAが増幅するにつれ増加するサイクル毎の蛍光強度変化も同時に記録し、蛍光強度がある閾値を超えるサイクル数(Ct値)を算出することで、初期の標的DNA量を定量することが可能である。
 高速リアルタイムPCRに使用するPCRチップ(核酸増幅用チップ)は、射出成形により4本の微小流路を並列に形成した、COP製樹脂基板と、ポリオレフィン製透明シールを接合した構造である。
 各微小流路は図2に示すような幅及び深さ700 μmで2箇所蛇行して折り返す構造を有しており、各蛇行流路部は微小流路の中心の直線流路部を挟むように、4回ずつ折り返し、各蛇行流路部のみで少なくとも25 μLの溶液量を収容可能としている。
 図2において点線で囲まれた領域(変性温度帯と伸長・アニーリング温度帯)は、リアルタイムPCRにおけるサーマルサイクルのため、それぞれヒーターにより加熱される。
 当該流路の両端は、樹脂基板を貫通する小孔(送液用機構の接続部)と個々に連結しており、樹脂基板の微小流路側全面をポリオレフィン製透明シールにより接合した後も、当該小孔から微小流路毎に反応溶液および空気による導通が可能としている。
 当該小孔は、生化学実験において一般的に使用されるマイクロピペット用の使い捨てチップを装着できる構造としており、5~25 μLのPCR溶液を計量後、そのまま使い捨てチップを接続することで、専用の器具が不要で、コンタミネーション等の汚染が無くPCR溶液を導入可能である。
 なお、当該流路は平面基板上に2本以上形成することにより、もしくは当該流路を有する平面基板を2枚以上並列して配置することにより、それぞれの流路について独立して送液操作を可能とすることで、割り込み分析を行うことが可能である。
 流路は、熱伝導性が比較的高くPCRに必要な温度範囲において安定で、電解質溶液や有機溶媒に侵食されにくく、かつ核酸やタンパク質を吸着しない材質であることが好ましい。材質として、ガラス、石英、シリコン、各種プラスチックが例示される。複数の温度領域と接触する流路の形状については、直線流路以外にも、ループ形状を有する蛇行流路や渦巻き状など曲線流路でもよい。また、流路の幅もしくは深さは一定でなくても良く、部分的に幅もしくは深さが変化しても良い。
 異なる温度領域への流路内の試料溶液の通過の検出と、サーマルサイクル毎の蛍光強度の計測は、同一の蛍光検出器が兼ねることが望ましいが、異なる複数の蛍光検出器を含んでもいても良い。複数の温度領域の間において試料溶液の通過を検出する方法は、蛍光検出以外にも比色や光吸収などの光学的手法や、静電容量の変化や電気化学反応などを含む電気的手法であってもよい。流路と接触する2個以上の温度領域は、流路の外部から接触してもよく、もしくは流路の内部に内蔵されても良い。
 図2に示す微小流路では、変性温度帯と伸長・アニーリング温度帯に対応する2つの蛇行流路を直線状の中間流路で連結され、中間流路において試料溶液の通過と蛍光を検出する。図2では、2つの小孔(送液用機構の接続部)をつなぐ直線上に中間流路が配置され、この中間流路で試料溶液の通過と蛍光を検出するので、PCRチップ(核酸増幅用チップ)の上下を反転させて(180度回転して)基板に配置しても蛍光検出器での検出が可能である。
 PCRチップは使用前にこれら2本のヒーターのそれぞれに、例えば、図2に示すように点線で囲まれた各蛇行流路部のシール面が密着する様に固定され、使用後には取り外し使い捨て用途に合わせ交換することを可能にしてもよい。送液用マイクロブロアは、上記PCRチップ上の微小流路1本当たり2個を利用し、当該微小流路の両端に接続した使い捨てチップ毎に1個ずつ空圧用チューブを介して接続させ、相互に作動させることで、双方向の送液を実現している。また、微小流路の本数にあわせて、送液用マイクロブロアの個数を増加して、複数の異なる試料を同時にサーマサイクリングする、例えばマルチプレックスPCRを行うことも可能である。
 本発明においてマルチプレックスPCRとは、フォワードプライマーを2種類以上含むプライマーセットを同一反応液中で用いるPCRをいう。本発明において「プライマーセット」とは、それぞれ1又は2種以上のフォワードプライマー及びリバースプライマーを組み合わせたものをいう。ここで本発明に係るプライマーセットは、リバースプライマーを1種のみ含む場合であっても、そのリバースプライマーが2種以上のフォワードプライマーとの組み合わせで(プライマー対として)それぞれ別個の増幅産物を生成するときは、マルチプレックスPCR用プライマーセットとして使用することができる。
 本発明におけるマルチプレックスPCR、蛍光強度を同時に計測することにより、それぞれの蛍光波長に対応した標的遺伝子の増幅を検知している。複数の蛍光検出器を用いて検出を行っても良いが、1つの波長の光を用いた検出信号でも実行可能である。
 以下、実施例を挙げて本発明を具体的に説明するが、これらの実施例は本発明の範囲を限定するものではない。
 [実施例1]大腸菌の定量
 高速リアルタイムPCR用のPCRチップ及び本発明の装置を用いて、大腸菌(Escherichia coli:E. coli)の定量を行った
 レシチンブイヨン液体培地により大腸菌(DH5α株)を一晩培養し、寒天プレート培地検査によるコロニーカウントに基づき、1×104 cfu/μLの大腸菌懸濁液を調製後、10倍希釈系列を作製し定量確認用の標準試料とした。
 リアルタイムPCRにおいて増幅する標的DNAは、大腸菌特異的なuid A遺伝子(アクセッション番号NC_000913.3)の106 bpのDNA配列とし、PCR用フォーワードプライマーに5’-GTG TGA TAT CTA CCC GCT TCG C-3’(配列番号1)、リバースプライマーに5’-AGA ACG GTT TGT GGT TAA TCA GGA-3’ (配列番号2)の配列を用い、PCR溶液中に最終濃度は各300 nMとした。また、リアルタイムPCR用のTaqMan(登録商標)プローブの配列としては、5’-FAM-TCG GCA TCC GGT CAG TGG CAG T-MGB-3’ (配列番号3)とし、PCR溶液中の最終濃度は、200 nMとした。
 その他の試薬については、タカラバイオ社のSpeedSTAR(登録商標) HS DNA polymeraseを最終濃度0.1 U/μLにて使用し、付属のFAST Buffer I及びdNTP Mixtureをマニュアル通りの濃度で混合し、PCR用プレミクスチャーとした。各濃度の大腸菌懸濁液0.5 μLを12 μLの上記PCR用プレミクスチャーとマイクロピペッターにより混合し、PCR溶液を吸引した状態のままマイクロピペッターの使い捨てチップの先を、PCRチップの微小流路の一端の小孔へ挿入し、当該使い捨てチップとマイクロピペットをリリースした。PCR溶液を内包したマイクロピペット用使い捨てチップを装着した微小流路の他端についても、空のマイクロピペット用使い捨てチップを装着し、それぞれに送液用マイクロブロアのチューブを接続した。高速リアルタイムPCRにおけるサーマルサイクル条件として、DNAポリメラーゼのホットスタートのため98℃で30秒加熱後、さらに98℃で2秒と58℃で4秒を45サイクル繰り返す設定とし、送液マイクロブロアのプラグラム制御により高速リアルタイムPCRを実行した。
 高速リアルタイムPCRにおけるサイクル毎の蛍光強度は、図3に示す通り、既存のリアルタイムPCR装置同様のシグモイド曲線を描き、大腸菌の初期濃度に依存して蛍光増幅の速度が変化している。
 蛍光強度の任意の閾値と交わるサイクル数をCt値とし、大腸菌の初期濃度に対する検量線をプロットすると、図4のように良好な直線性が得られ、0 cfu/μLであるNo template control(NTC)のCt値が45サイクル以上であることから、100 cfu/μLの濃度であっても定量が可能であることが確認され、既存のリアルタイムPCR装置と同等の検出感度であることが確認された。
 高速リアルタイムPCRの処理時間は、45サイクルで6分40秒であり、既存の市販装置のうち高速なサーマルサイクル装置であっても45サイクルの処理時間は45分であることから極めて高速に微生物やDNAの定量が可能な高速リアルタイムPCRが達成できた。
 [実施例2]高速PCR条件の検討
 高速リアルタイムPCRは、DNA変性反応及び、アニーリング反応、ならびに各プライマーの3’末端から鋳型DNA配列に合わせDNAポリメラーゼにより複製される伸長反応の3つの過程の繰り返しにより行われる。そのうち、DNA変性反応及びアニーリング反応は、標的DNAの長さに依存せず、短時間で完了する。しかし、伸長反応は、標的DNAの長さ及びDNAポリメラーゼの酵素活性に依存した時間が必要で、高速リアルタイムPCRにおいてもサーマルサイクルの適切な時間設定が必要である。
 大腸菌(DH5α株)の16S ribosomal RNA遺伝子(アクセッション番号KC_768803.1)の104 copiesを鋳型DNAとし、そのうちの約200~800 bpと標的DNAの長さを変えて、45サイクルの高速リアルタイムPCRを行った。
 共通のフォーワードプライマー配列は5’-GTT TGA TCC TGG CTC A-3’ (配列番号4)、共通のTaqMan(登録商標)プローブ配列は5’- FAM-CGG GTG AGT AAT GTC TGG-TAMRA-3’ (配列番号5)とし、標的DNAの長さに合わせ、以下のリバースプライマーを組み合わせて使用した。
標的DNA長さが約200 bp用のリバースプライマー配列は5’-CTT TGG TCT TGC GAC G-3’ (配列番号6)、約400 bpのリバースプライマー配列は5’-GCA TGG CTG CAT CAG-3’ (配列番号7)、約600 bpのリバースプライマー配列は5’- CTG ACT TAA CAA ACC GC-3’ (配列番号8)、約800 bpのリバースプライマー配列は5’- TAC CAG GGT ATC TAA TCC-3’ (配列番号9)とし、Tm値はいずれも約50℃に揃えて設定した。
 アニーリング及び伸長反応時間を短縮しても、Ct値が変化せず標的DNAを十分に増幅できる保持時間を、標的DNAの長さ毎にプロットしたグラフを図5に示す。なお、約100 bpの短い標的DNAについては、上述のuid A遺伝子の結果を使用し、同一のグラフにプロットした。図5より、同一の標的DNAの長さであっても、DNAポリメラーゼの活性によりアニーリング及び伸長反応時間が異なり、SpeedSTAR(登録商標)HS DNA polymeraseでは1秒あたり約78 bp、ExTaq HS DNA polymeraseでは1秒あたり約22 bpであった。
 さらに、伸長反応を除くアニーリング反応の時間は、理論上、標的DNAの長さが0 bpの場合、つまり図5におけるX切片が相当し、DNAポリメラーゼの種類に関係せず約2.7秒であった。これは、先述の従来の知見と一致していることから、標的DNAの長さに合わせて、図5に基づく時間を設定することにより、理論上最速のリアルタイムPCRを実施することが可能である。
[実施例3]マルチプレックスPCR
 高速リアルタイムPCRにおいて、同一サンプルから複数の標的DNAの有無を確認するマルチプレックスPCR法への適応例として、3種類の蛍光の同時計測が可能な多色蛍光検出器を利用して、Neisseria gonorrhoeae及びChlamydia trachomatis、さらにヒト白血球由来βアクチン遺伝子の同時検出を検討した。
 多色蛍光検出器は同軸で青色励起、緑色励起、赤色励起の各蛍光を定量可能であり、PCRチップ上の微小流路の同一検出点にて、FAM標識、Texas red標識、Cy5標識の3種類の蛍光プローブによる蛍光増幅を個別に検出できる。
多色蛍光検出器を使用する場合も、各微小流路の中心に位置する直線流路上の1点を検出点として3種類の蛍光強度を同時に計測するように配置されており、加圧により一方の蛇行流路部から送液された当該PCR溶液が、検出点を通過し終えた時点で、送液用マイクロブロアを停止させ、当該PCR溶液を、他方の蛇行流路部内に一定時間保持されることができる。
 Neisseria gonorrhoeae及びChlamydia trachomatis、ならびにβアクチン遺伝子に対する標的DNAの長さと、各プライマーと蛍光プローブについてのTm値はそれぞれ同一とし、増幅効率に差が生じないように設計した。
 Neisseria gonorrhoeae及びChlamydia trachomatis、ならびにβアクチン遺伝子に対する蛍光プローブには、それぞれTexas red、Cy5、FAM標識のTaqMan(登録商標)プローブを利用し、PCR溶液中の最終濃度は各200 nMとした。
 Neisseria gonorrhoeae及びChlamydia trachomatis、ならびにβアクチン遺伝子に対する3種類のフォーワードプライマー並びにリバースプライマーのPCR溶液中の最終濃度は各300 nMとし、その他の試薬については、タカラバイオ社のSpeedSTAR(登録商標) HS DNA polymeraseを最終濃度0.2 U/μLにて使用し、付属のFAST Buffer I及びdNTP Mixtureをマニュアル通りの濃度で混合し、PCR用プレミクスチャーとした。
 Neisseria gonorrhoeae及びChlamydia trachomatis 、ならびにβアクチンに対する鋳型DNAはそれぞれの標的DNA配列を有する合成プラスミドを作成し、ポジティブコントロールには4 ng/μLを、NTCには滅菌水を代わりに混合して高速リアルタイムPCRを実施した。
サーマルサイクル条件は、ホットスタートに96℃で20秒加熱後、さらに96℃で3秒と60℃で8秒を45サイクル繰り返す設定とした。この条件における45サイクルのサーマルサイクル時間は、9分40秒であった。
 高速リアルタイムPCRを用いたNeisseria gonorrhoeae及びChlamydia trachomatis ならびにβアクチン遺伝子に対するマルチプレックスPCRの結果を図6に示す。なお、多色蛍光検出器の3色の蛍光色素に対する感度は異なるため、ダイナミックレンジを補正した結果を示している。図6において太線は鋳型DNAを含有した場合の3種類のそれぞれの蛍光強度の変化を示し、細線で示すNTCの蛍光シグナルに比べ明確な増幅が得られ、同一試料からの多項目同時計測を実現した。
 なお、3種類の蛍光強度を同時に計測することにより、それぞれの蛍光波長に対応した標的遺伝子の増幅を検知しているが、加圧により一方の蛇行流路部から送液された当該PCR溶液が、検出点を通過し終えた時点で、送液用マイクロブロアを停止させて、溶液の通過を検知する場合には、全ての蛍光検出器を使用する必要はなく、いずれか1つの波長の光を用いた検出信号でも実行可能である。
 [実施例4]One-step逆転写リアルタイムPCR
 PCR溶液に逆転写酵素をあらかじめ混合させ、手軽にRNAからの逆転写反応とリアルタイムPCR法を1つの反応液から実施する手法が、One-step逆転写リアルタイムPCR法と呼ばれ、インフルエンザウイルスやノロウイルスなどのRNAウイルスの検出に利用されている。One-step逆転写リアルタイムPCR法では、一般的なRT-PCR法の様における2段階の工程をまとめることで、操作を著しく簡略化できるが、逆転写反応の逆転写酵素と、リアルタイムPCR法のDNAポリメラーゼが互いに干渉するため、PCRの効率が悪くなることが課題となっている。しかし、高速な温度制御により逆転写酵素とDNAポリメラーゼのそれぞれの活性に最適な温度へ速やかに移行することにより、逆転写反応とリアルタイムPCR法のそれぞれを効率よく順番に実施することができ、高効率なOne-step逆転写リアルタイムPCR法を行うことが可能である。実際に、高速リアルタイムPCR用のPCRチップ及び本発明の装置を用いて、ノロウイルスのG1遺伝子及びG2遺伝子を、One-step逆転写リアルタイムPCR法により定量を検討した。
 標的となるG1遺伝子もしくはG2遺伝子の配列を有するRNAは、市販のTaKaRa qPCR Norovirus (GI/GII) Typing Kitに付属の標準品もしくは合成DNAの転写産物であるRNAを使用し、希釈系列をRNaseフリーの滅菌水を用いて調製した。
 プライマー及びプローブの配列は、国立感染症研究所感染症情報センター提供のノロウイルスの検出法に記載の各配列を使用した。ノロウイルスのG1遺伝子に対するフォーワードプライマー配列はCOG-1Fの5’-CGY TGG ATG CGN TTY CAT GA-3’ (配列番号10)、TaqMan(登録商標)プローブ配列はRING1‐TP(a)の5’- AGA TYG CGA TCY CCT GTC CA-3’ (配列番号11)及びRING1‐TP(b)の5’- AGA TCG CGG TCT CCT GTC CA-3’ (配列番号12)、リバースプライマー配列はCOG-1Rの5’- CTT AGA CGC CAT CAT CAT TYA C-3’ (配列番号13)とした。また、ノロウイルスのG2遺伝子に対するフォーワードプライマー配列はCOG-2Fの5’- CAR GAR BCN ATG TTY AGR TGG ATG AG-3’(配列番号14)、TaqMan(登録商標)プローブ配列はRING2AL_TPの5’- TGG GAG GGS GAT CGC RAT CT-3’ (配列番号15)、リバースプライマー配列はCOG-2Rの5’- TCG ACG CCA TCT TCA TTC ACA-3’ (配列番号16)とした。
 G1遺伝子もしくはG2遺伝子に対する蛍光プローブには、いずれもFAM標識のTaqMan(登録商標)プローブを利用し、PCR溶液中の最終濃度は各200 nMとした。
 G1遺伝子もしくはG2遺伝子に対する各フォーワードプライマー並びにリバースプライマーのPCR溶液中の最終濃度を300 nMとし、その他の試薬については、タカラバイオ社のPrimeScrip(登録商標)Reverse Transcriptaseもしくはライフテクノロジーズ社のSuperScript(登録商標)Reverse Transcriptaseを最終濃度5 U/μL、RNase阻害剤を最終濃度1 U/μL、SpeedSTAR(登録商標) HS DNA polymeraseを最終濃度0.2 U/μLにて使用し、付属のFAST Buffer I及びdNTP Mixtureをマニュアル通りの濃度で混合し、One-step逆転写リアルタイムPCR用プレミクスチャーとした。
 サーマルサイクル条件は、逆転写反応にタカラバイオ社のPrimeScrip(登録商標)Reverse Transcriptaseを用いた場合には、42℃で10秒もしくはライフテクノロジーズ社のSuperScript(登録商標)Reverse Transcriptaseを用いた場合には、55℃で10秒とした。これら逆転写反応は、高速リアルタイムPCR用のPCRチップにおける低温側のヒーター上に位置する蛇行流路部内にて行い、逆転写反応が終了後、低温側ヒーター温度を56℃まで上昇させ、引き続き送液させることにより、ホットスタートに96℃で10秒加熱後、さらに96℃で3秒と56℃で8秒を45サイクル繰り返す設定とした。この条件における45サイクルのOne-step逆転写リアルタイムPCRに要した時間は、10分20秒以下であった。
 高速なOne-step逆転写リアルタイムPCRにおけるサイクル毎の蛍光強度は、図7に示す通り、ノロウイルスのG1遺伝子及びG2遺伝子の初期濃度が同一であれば、逆転写酵素の種類に依存せず同様のシグモイド曲線を描き、蛍光強度が急激に増幅して立ち上がるサイクル数はそれぞれ一致した。
 次に、ノロウイルスのG1遺伝子及びG2遺伝子のRNAの初期濃度を変化させて、高速なOne-step逆転写リアルタイムPCRの検討を行ったところ、図8に示す通り、ノロウイルスのG1遺伝子及びG2遺伝子のそれぞれについて、初期濃度に依存して蛍光強度が急激に増幅して立ち上がるサイクル数が変化した。この蛍光強度が急激に増幅して立ち上がるサイクル数は、RNAの初期濃度の順に並んでおり、そのため、蛍光強度が急激に増幅して立ち上がるサイクル数であるCt値により、RNAの初期濃度の定量が一般的に可能である。
 ただし、図8に示す、ノロウイルスのG1遺伝子に対する増幅曲線においては、サーマルサイクルに合わせ、なだらかに蛍光強度が増幅する形でベースラインが右肩上がりとなり、あるサイクル数から急激に蛍光強度が増加することが確認された。そのため、ある一定値の蛍光強度を閾値として、それを超えるサイクル数をCt値とする通常の方法では、正確なCt値を見積もることが困難である。
 そこで、ベースラインが一定値ではない場合においても、One-step逆転写リアルタイムPCRの最中に適切に消え高強度が立ち上がるCt値を検出するため、サーマルサイクル数ごとに計測された蛍光強度の行列(増幅曲線の2次元配列)から導出することとした。
 増幅曲線の2次元配列のCt値までの傾きに対して、急激に立ち上がる傾きを検出するため、蛍光強度のバラツキが大きい場合には、必要に応じて移動平均を行いつつ、前進方向の1階微分をサーマルサイクル毎に行い、得られた傾きに関する新たな2次元配列のうち、初期(例えば5~15サイクルでもよく、あるいは各サイクルにおけるその直前の5~15サイクルでも良い)の傾きの二乗平均平方根(あるいは加重平均でもよい)と、それ以降の傾きを比較し、有意(例えば5倍以上だが、2倍以上でもよい)に増加した場合を、蛍光強度が急激に増幅して立ち上がるサイクル数Ct値として導出した。
 得られたCt値から、ノロウイルスのG1遺伝子及びG2遺伝子のRNAの初期濃度に対する検量線を作成した結果を図9に示す。ノロウイルスのG1遺伝子及びG2遺伝子の各RNA濃度に対して良好な直線性が得られており、One-step逆転写リアルタイムPCRの途中であっても、蛍光強度が急激に立ち上がった時点で速やかにCt値を決定でき、そのCt値からRNAの初期濃度について算出可能である。
 本発明の特徴は、PCR溶液全体が、流路を通じて蛍光検出点をサイクル毎に通過する方式となっている。したがって、リアルタイムPCRによって生成した蛍光色素が、サーマルサイクルの高速化のためPCR溶液中に均一に分散する時間が無く、蛍光色素の濃度としてPCR溶液中に不均一に分布していた場合であっても、全ての蛍光色素が蛍光検出器により検出され積算されるため、サイクル毎に正確な蛍光量を定量することが可能である。
 したがって、図9に示す通り、検量範囲内において、各RNA濃度の測定におけるCt値のエラーバーはとても小さく、高速なOne-step逆転写リアルタイムPCRであっても繰り返し再現性に優れた、正確な定量が可能であることが確認された。
 本発明に関する装置は可搬性も有し、臨床や感染症発生の現場において、低費用で高速かつリアルタイムPCRを実現することができ、具体的には、治療効果の迅速な確認や、畜産・養鶏における感染症の早期発見により感染の拡大を防ぐことが可能である。

Claims (11)

  1. 変性温度帯と伸長・アニーリング温度帯を形成できるヒーター、前記2つの温度帯間の試料溶液の移動を検出可能な蛍光検出器、前記2つの温度帯間の試料溶液の移動を可能にし、かつ、送液停止時には大気圧開放される1対の送液用機構、核酸増幅用チップを載置可能な基板、試料溶液の移動に関する蛍光検出器からの電気信号が送られて各送液用機構の駆動を制御する制御機構を備え、サーマルサイクル毎の蛍光強度の計測を行うことでリアルタイムPCRを行うことを特徴とするレシプロカルフロー型の核酸増幅装置。
  2. 請求項1の核酸増幅装置における変性温度帯と伸長・アニーリング温度帯に各々対応する曲線流路、前記曲線流路をつなぐ直線状の中間流路、流路の両端部に請求項1の核酸増幅装置における送液用機構に接続可能な接続部を備えた微小流路を少なくとも1つ有する核酸増幅用チップ。
  3. 前記送液用機構がマイクロブロアまたは送風機である、請求項1に記載の核酸増幅装置。
  4. 以下の工程を含む、核酸増幅方法:
    工程1:変性温度帯と伸長・アニーリング温度帯に各々曲線流路が含まれるように請求項2に記載の核酸増幅用チップを請求項1に記載の基板上に載置する工程、
    工程2:前記微小流路内に試料溶液を導入する工程、
    工程3:微小流路両端部の送液用機構接続部と1対の送液用機構を各々接続する工程、
    工程4:前記送液用機構により試料溶液を微小流路の2つの曲線流路間で往復させてサーマルサイクリングを行い、さらに中間流路において前記蛍光検出器によりサーマルサイクル毎の試料溶液の蛍光強度の計測と試料溶液の通過の確認を同時に行うことでリアルタイムPCRを行う工程。
  5. 前記蛍光強度の測定が、2種類以上の蛍光波長を同時に計測し、複数の遺伝子のリアルタイムPCRを1本の流路内で同時に測定することを特徴とする、請求項4に記載の核酸増幅方法。
  6. 前記蛍光強度の計測を、サーマルサイクル数ごとの蛍光強度の行列(増幅曲線の2次元配列)から導出するサイクル数Ct値から求めた検量線を用いて行うことを特徴とする請求項4又は5に記載の核酸増幅方法。
  7. 前記核酸増幅方法が、ポリメラーゼ連鎖反応(PCR)、逆転写PCR(RT-PCR)、One-step RT-PCR、マルチプレックスPCRまたはマルチプレックスRT-PCR、およびリアルタイムPCRまたはリアルタイムRT-PCRまたはからなる群より選択される、請求項4~6のいずれかに記載の核酸増幅方法。
  8. 前記流路が平面基板上に2本以上形成されており、それぞれの流路について独立して送液操作を可能とすることで、割り込み分析を行うことを特徴とする請求項4~7のいずれかに記載の核酸増幅方法。
  9. 前記接続部にマイクロピペットのフィルター付きピペットチップの先端を接続して試料溶液を微小流路内に導入し、前記ピペットチップを前記接続部に接続した状態でマイクロピペットを取り外し、その後に前記ピペットチップと前記送液用機構を接続する、請求項4~8のいずれかに記載の核酸増幅方法。
  10. 前記流路に導入する試料溶液の容量は、5μL~50μLの範囲であることを特徴とする請求項4~9のいずれかに記載の核酸増幅方法。
  11. 請求項4~10のいずれかの核酸増幅方法に用いられる、請求項2に記載の核酸増幅用チップ。
     
PCT/JP2015/069549 2014-07-08 2015-07-07 核酸増幅装置、核酸増幅方法及び核酸増幅用チップ WO2016006612A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/322,000 US11098347B2 (en) 2014-07-08 2015-07-07 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
CN201580036603.XA CN106536704B (zh) 2014-07-08 2015-07-07 核酸扩增装置、核酸扩增方法以及核酸扩增用芯片
SG11201610707RA SG11201610707RA (en) 2014-07-08 2015-07-07 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
JP2016532945A JP6226284B2 (ja) 2014-07-08 2015-07-07 核酸増幅装置、核酸増幅方法及び核酸増幅用チップ
EP15818467.1A EP3168287A4 (en) 2014-07-08 2015-07-07 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
CN201910720912.9A CN110452808B (zh) 2014-07-08 2015-07-07 核酸扩增装置、核酸扩增方法以及核酸扩增用芯片
US16/782,794 US11781181B2 (en) 2014-07-08 2020-02-05 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-140758 2014-07-08
JP2014140758 2014-07-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/322,000 A-371-Of-International US11098347B2 (en) 2014-07-08 2015-07-07 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
US16/782,794 Continuation US11781181B2 (en) 2014-07-08 2020-02-05 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification

Publications (1)

Publication Number Publication Date
WO2016006612A1 true WO2016006612A1 (ja) 2016-01-14

Family

ID=55064241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069549 WO2016006612A1 (ja) 2014-07-08 2015-07-07 核酸増幅装置、核酸増幅方法及び核酸増幅用チップ

Country Status (6)

Country Link
US (2) US11098347B2 (ja)
EP (1) EP3168287A4 (ja)
JP (8) JP6226284B2 (ja)
CN (2) CN106536704B (ja)
SG (2) SG11201610707RA (ja)
WO (1) WO2016006612A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199933A1 (ja) * 2016-05-18 2017-11-23 日本板硝子株式会社 反応処理装置および反応処理装置の制御方法
JP2018000188A (ja) * 2016-07-05 2018-01-11 クレド バイオメディカル ピーティーイー リミテッド 核酸をリアルタイムで定量化する方法
JP2018108055A (ja) * 2017-01-05 2018-07-12 東洋紡株式会社 ノロウイルスg2型を検出するためのオリゴヌクレオチドプローブ
WO2018151246A1 (ja) * 2017-02-16 2018-08-23 東洋紡株式会社 Rnaを検出する方法およびrnaを検出するための試薬
WO2018225577A1 (ja) * 2017-06-06 2018-12-13 日本板硝子株式会社 反応処理装置
WO2019052522A1 (zh) * 2017-09-18 2019-03-21 星源智(珠海)生物科技有限公司 一种核酸测定方法
CN109971617A (zh) * 2019-04-30 2019-07-05 郭嘉杰 一种pcr扩增装置的低温处理系统
WO2020129116A1 (ja) * 2018-12-17 2020-06-25 日本板硝子株式会社 反応処理装置、反応処理容器および反応処理方法
WO2020189581A1 (ja) * 2019-03-15 2020-09-24 国立研究開発法人産業技術総合研究所 核酸増幅方法
JP2020171315A (ja) * 2019-04-05 2020-10-22 日本板硝子株式会社 反応処理容器、反応処理容器の製造方法および反応処理方法
US11020746B2 (en) * 2016-12-06 2021-06-01 Nippon Sheet Glass Company, Limited Reaction processor
WO2022034866A1 (ja) 2020-08-11 2022-02-17 杏林製薬株式会社 核酸増幅チップ
WO2022034867A1 (ja) 2020-08-11 2022-02-17 杏林製薬株式会社 核酸増幅装置、核酸増幅方法及び試料溶液位置制御方法
JP2022066343A (ja) * 2016-11-01 2022-04-28 日本板硝子株式会社 反応処理容器、反応処理装置、反応処理方法および反応処理容器の使用方法
WO2022153999A1 (ja) * 2021-01-14 2022-07-21 杏林製薬株式会社 反応処理容器、及び反応処理装置
US11465143B2 (en) 2019-06-07 2022-10-11 Nippon Sheet Glass Company, Limited Reaction processing vessel
WO2022219758A1 (ja) * 2021-04-14 2022-10-20 株式会社日立ハイテク サンプルのpcr解析を実行するためのデバイス、pcr反応装置、pcrシステムおよびpcr方法
JP7393070B1 (ja) 2023-08-04 2023-12-06 株式会社ゴーフォトン Pcr方法
JP7417794B2 (ja) 2019-12-10 2024-01-19 杏林製薬株式会社 核酸増幅方法、核酸増幅装置及び核酸増幅用チップ
JP7458394B2 (ja) 2018-11-12 2024-03-29 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ 液体サンプルを調製、検出、分析のための自動化システム

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201610707RA (en) 2014-07-08 2017-01-27 Nat Inst Of Advanced Ind Scien Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
CN107083426A (zh) * 2017-03-30 2017-08-22 杭州晶格科学仪器有限公司 一种荧光定量检测方法
KR102206856B1 (ko) * 2017-12-11 2021-01-25 (주)바이오니아 중합효소 연쇄반응 시스템
JP7470095B2 (ja) * 2018-07-10 2024-04-17 ジェン-プローブ・インコーポレーテッド 核酸を検出および定量するための方法およびシステム
JP2020146297A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146308A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146306A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146312A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146314A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146301A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146300A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146309A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146310A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146302A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146304A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146315A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146317A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146299A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146307A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146311A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146298A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146303A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146313A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146316A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
JP2020146305A (ja) * 2019-03-14 2020-09-17 株式会社三洋物産 遊技機
CN110628607A (zh) * 2019-10-10 2019-12-31 上海纽钛测控技术有限公司 适合突发事件现场应用的高效恒温pcr装置及实现方法
CN112322472B (zh) * 2020-11-05 2022-07-12 上海交通大学 一种适用于核酸检测的即时检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065607A (ja) * 2003-08-26 2005-03-17 Hitachi Ltd 遺伝子処理チップおよび遺伝子処理装置
JP2005323519A (ja) * 2004-05-13 2005-11-24 Konica Minolta Sensing Inc マイクロ流体デバイス並びに試液の試験方法および試験システム
JP2007101200A (ja) * 2005-09-30 2007-04-19 Yokogawa Electric Corp 化学反応用カートリッジおよびその使用方法
JP2008253227A (ja) * 2007-04-09 2008-10-23 Hitachi Software Eng Co Ltd 反応装置及び反応チップ
JP2009517075A (ja) * 2005-11-30 2009-04-30 デルタドット・リミテッド 標識を利用しない固有のイメージングを用いたリアルタイムpcrのモニタリング
JP2011117805A (ja) * 2009-12-02 2011-06-16 Beckman Coulter Inc マイクロ流体チップ
JP2013055921A (ja) * 2011-09-09 2013-03-28 National Institute Of Advanced Industrial Science & Technology 核酸増幅方法
JP2014507937A (ja) * 2011-01-06 2014-04-03 メソ スケール テクノロジーズ エルエルシー アッセイカートリッジ及びその使用方法

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515646B2 (ja) 1995-09-18 2004-04-05 大塚電子株式会社 マルチキャピラリ電気泳動装置
JP2002014100A (ja) 2000-06-29 2002-01-18 Kanegafuchi Chem Ind Co Ltd 反応チップ用基板およびこれから作製した反応チップ
US7094379B2 (en) 2001-10-24 2006-08-22 Commissariat A L'energie Atomique Device for parallel and synchronous injection for sequential injection of different reagents
FR2831081B1 (fr) 2001-10-24 2004-09-03 Commissariat Energie Atomique Dispositif d'injection parallelisee et synchronisee pour injections sequentielles de reactifs differents
US7041481B2 (en) * 2003-03-14 2006-05-09 The Regents Of The University Of California Chemical amplification based on fluid partitioning
CA2479452C (en) 2003-08-30 2008-11-04 F.Hoffmann-La Roche Ag Method and device for determining analytes in a liquid
JP2005204678A (ja) 2004-01-19 2005-08-04 Terumo Corp プレフィルドシリンジ製造方法、プレフィルドシリンジ製造用治具およびプレフィルドシリンジ製造装置
KR100552706B1 (ko) 2004-03-12 2006-02-20 삼성전자주식회사 핵산 증폭 방법 및 장치
KR100906749B1 (ko) 2004-03-25 2009-07-09 (주)바이오니아 인터컬레이팅 형광염료가 표지된 프로브를 이용한 핵산 증폭 측정 방법
JP2006271216A (ja) 2005-03-28 2006-10-12 Dainippon Ink & Chem Inc 特定の塩基配列を有する核酸の有無を判定するシステムおよび判定方法
JP2008539759A (ja) 2005-05-11 2008-11-20 ナノリティックス・インコーポレイテッド 多数の温度で生化学的又は化学的な反応を実施する方法及び装置
AU2007225038B2 (en) * 2006-03-15 2013-08-29 Perkinelmer Health Sciences, Inc. Integrated nucleic acid assays
JP4685691B2 (ja) 2006-04-13 2011-05-18 株式会社日立ソリューションズ 検査チップ及び検査チップシステム
JP4903518B2 (ja) 2006-08-22 2012-03-28 三菱エンジニアリングプラスチックス株式会社 蛍光検出分析基板用芳香族ポリカーボネート樹脂組成物および蛍光検出分析基板
WO2008061129A2 (en) * 2006-11-14 2008-05-22 University Of Utah Research Foundation Methods and compositions related to continuous flow thermal gradient pcr
CN101542122B (zh) 2006-12-09 2011-05-04 株式会社村田制作所 压电微型鼓风机
JP5104097B2 (ja) 2007-07-27 2012-12-19 株式会社村田製作所 流体移送装置
JP4957480B2 (ja) 2007-09-20 2012-06-20 株式会社村田製作所 圧電マイクロポンプ
JP5224801B2 (ja) * 2007-12-21 2013-07-03 キヤノン株式会社 核酸増幅装置
WO2009113356A1 (ja) 2008-03-12 2009-09-17 コニカミノルタエムジー株式会社 反応検出装置
JP5303983B2 (ja) 2008-03-26 2013-10-02 株式会社島津製作所 反応処理方法及び反応処理装置
WO2009125676A1 (ja) 2008-04-09 2009-10-15 コニカミノルタエムジー株式会社 検査システム
JP5115626B2 (ja) 2008-06-03 2013-01-09 株式会社村田製作所 圧電マイクロブロア
EP2312158B1 (en) 2008-06-05 2016-04-27 Murata Manufacturing Co. Ltd. Piezoelectric microblower
RU2385940C1 (ru) * 2008-10-23 2010-04-10 Общество с ограниченной ответственностью "ВИНТЕЛ" Способ определения нуклеиновых кислот методом полимеразно-цепной реакции в режиме реального времени и устройство для его осуществления
JP5310373B2 (ja) 2009-05-14 2013-10-09 ソニー株式会社 光学的検出装置
EP2437887B1 (en) 2009-06-04 2016-05-11 Lockheed Martin Corporation Multiple-sample microfluidic chip for dna analysis
JP5277214B2 (ja) 2010-07-27 2013-08-28 株式会社日立ハイテクノロジーズ 自動分析装置
EP2611942A4 (en) 2010-08-31 2015-01-14 Canon Us Life Sciences Inc ANTI-TURNING AT TEMPERATURE CHANGING
US9114399B2 (en) 2010-08-31 2015-08-25 Canon U.S. Life Sciences, Inc. System and method for serial processing of multiple nucleic acid assays
EP2441520A1 (en) 2010-10-12 2012-04-18 Eppendorf AG Real-time amplification and micro-array based detection of nucleic acid targets in a flow chip assay
US10131903B2 (en) * 2011-04-01 2018-11-20 The Regents Of The University Of California Microfluidic platform for synthetic biology applications
EP2699698B9 (en) 2011-04-20 2020-07-15 Mesa Biotech, Inc. Oscillating amplification reaction for nucleic acids
JP5211336B2 (ja) 2012-02-16 2013-06-12 株式会社メトラン ポンプユニット、呼吸補助装置
WO2013132645A1 (ja) * 2012-03-09 2013-09-12 独立行政法人産業技術総合研究所 核酸増幅方法
JP6075722B2 (ja) 2012-06-21 2017-02-08 ハンファテクウィン株式会社Hanwha Techwin Co.,Ltd. 作業機械
US20140005066A1 (en) * 2012-06-29 2014-01-02 Advanced Liquid Logic Inc. Multiplexed PCR and Fluorescence Detection on a Droplet Actuator
JP5692468B2 (ja) 2012-08-10 2015-04-01 株式会社村田製作所 ブロア
US10550917B2 (en) 2013-03-14 2020-02-04 Cordell E. Ebeling Slide-glide privacy blind barrier system
JP6055922B2 (ja) * 2013-08-08 2016-12-27 パナソニック株式会社 マイクロ流体デバイス
SG11201610707RA (en) * 2014-07-08 2017-01-27 Nat Inst Of Advanced Ind Scien Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065607A (ja) * 2003-08-26 2005-03-17 Hitachi Ltd 遺伝子処理チップおよび遺伝子処理装置
JP2005323519A (ja) * 2004-05-13 2005-11-24 Konica Minolta Sensing Inc マイクロ流体デバイス並びに試液の試験方法および試験システム
JP2007101200A (ja) * 2005-09-30 2007-04-19 Yokogawa Electric Corp 化学反応用カートリッジおよびその使用方法
JP2009517075A (ja) * 2005-11-30 2009-04-30 デルタドット・リミテッド 標識を利用しない固有のイメージングを用いたリアルタイムpcrのモニタリング
JP2008253227A (ja) * 2007-04-09 2008-10-23 Hitachi Software Eng Co Ltd 反応装置及び反応チップ
JP2011117805A (ja) * 2009-12-02 2011-06-16 Beckman Coulter Inc マイクロ流体チップ
JP2014507937A (ja) * 2011-01-06 2014-04-03 メソ スケール テクノロジーズ エルエルシー アッセイカートリッジ及びその使用方法
JP2013055921A (ja) * 2011-09-09 2013-03-28 National Institute Of Advanced Industrial Science & Technology 核酸増幅方法

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465150B2 (en) 2016-05-18 2022-10-11 Nippon Sheet Glass Company, Limited Reaction treatment device and method for controlling reaction treatment device
TWI731082B (zh) * 2016-05-18 2021-06-21 日商日本板硝子股份有限公司 反應處理裝置及反應處理裝置的控制方法
CN109072159B (zh) * 2016-05-18 2022-05-10 日本板硝子株式会社 反应处理装置以及反应处理装置的控制方法
JP2019180418A (ja) * 2016-05-18 2019-10-24 日本板硝子株式会社 反応処理装置および反応処理装置の制御方法
JP7122291B2 (ja) 2016-05-18 2022-08-19 日本板硝子株式会社 反応処理装置および反応処理装置の制御方法
CN109072159A (zh) * 2016-05-18 2018-12-21 日本板硝子株式会社 反应处理装置以及反应处理装置的控制方法
WO2017199933A1 (ja) * 2016-05-18 2017-11-23 日本板硝子株式会社 反応処理装置および反応処理装置の制御方法
JPWO2017199933A1 (ja) * 2016-05-18 2019-03-14 日本板硝子株式会社 反応処理装置および反応処理装置の制御方法
JP2018000188A (ja) * 2016-07-05 2018-01-11 クレド バイオメディカル ピーティーイー リミテッド 核酸をリアルタイムで定量化する方法
US10510436B2 (en) 2016-07-05 2019-12-17 Credo Biomedical Pte Ltd. Using serial dilutions of reference samples to construct a reference table for sigmoidal fitting in real-time PCR copy number analysis
JP7369475B2 (ja) 2016-11-01 2023-10-26 株式会社ゴーフォトン 反応処理容器、反応処理装置、反応処理方法および反応処理容器の使用方法
JP2022066343A (ja) * 2016-11-01 2022-04-28 日本板硝子株式会社 反応処理容器、反応処理装置、反応処理方法および反応処理容器の使用方法
US11020746B2 (en) * 2016-12-06 2021-06-01 Nippon Sheet Glass Company, Limited Reaction processor
JP2018108055A (ja) * 2017-01-05 2018-07-12 東洋紡株式会社 ノロウイルスg2型を検出するためのオリゴヌクレオチドプローブ
JP7172606B2 (ja) 2017-02-16 2022-11-16 東洋紡株式会社 Rnaを検出する方法およびrnaを検出するための試薬
JP2022081563A (ja) * 2017-02-16 2022-05-31 東洋紡株式会社 Rnaを検出する方法およびrnaを検出するための試薬
JPWO2018151246A1 (ja) * 2017-02-16 2019-12-12 東洋紡株式会社 Rnaを検出する方法およびrnaを検出するための試薬
JP7315053B2 (ja) 2017-02-16 2023-07-26 東洋紡株式会社 Rnaを検出する方法およびrnaを検出するための試薬
WO2018151246A1 (ja) * 2017-02-16 2018-08-23 東洋紡株式会社 Rnaを検出する方法およびrnaを検出するための試薬
JP2019134710A (ja) * 2017-06-06 2019-08-15 日本板硝子株式会社 反応処理装置
JP6507323B1 (ja) * 2017-06-06 2019-04-24 日本板硝子株式会社 反応処理装置
WO2018225577A1 (ja) * 2017-06-06 2018-12-13 日本板硝子株式会社 反応処理装置
RU2750599C1 (ru) * 2017-06-06 2021-06-29 Ниппон Шит Глас Кампани, Лимитед Устройство для проведения реакции
CN110603315B (zh) * 2017-06-06 2022-08-09 日本板硝子株式会社 反应处理装置
CN110603315A (zh) * 2017-06-06 2019-12-20 日本板硝子株式会社 反应处理装置
US11541394B2 (en) 2017-06-06 2023-01-03 Nippon Sheet Glass Company, Limited Reaction processor
WO2019052522A1 (zh) * 2017-09-18 2019-03-21 星源智(珠海)生物科技有限公司 一种核酸测定方法
JP7458394B2 (ja) 2018-11-12 2024-03-29 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ 液体サンプルを調製、検出、分析のための自動化システム
WO2020129116A1 (ja) * 2018-12-17 2020-06-25 日本板硝子株式会社 反応処理装置、反応処理容器および反応処理方法
WO2020189581A1 (ja) * 2019-03-15 2020-09-24 国立研究開発法人産業技術総合研究所 核酸増幅方法
JP7341492B2 (ja) 2019-04-05 2023-09-11 株式会社ゴーフォトン 反応処理容器、反応処理容器の製造方法および反応処理方法
JP2020171315A (ja) * 2019-04-05 2020-10-22 日本板硝子株式会社 反応処理容器、反応処理容器の製造方法および反応処理方法
CN109971617A (zh) * 2019-04-30 2019-07-05 郭嘉杰 一种pcr扩增装置的低温处理系统
US11465143B2 (en) 2019-06-07 2022-10-11 Nippon Sheet Glass Company, Limited Reaction processing vessel
JP7417794B2 (ja) 2019-12-10 2024-01-19 杏林製薬株式会社 核酸増幅方法、核酸増幅装置及び核酸増幅用チップ
WO2022034867A1 (ja) 2020-08-11 2022-02-17 杏林製薬株式会社 核酸増幅装置、核酸増幅方法及び試料溶液位置制御方法
WO2022034866A1 (ja) 2020-08-11 2022-02-17 杏林製薬株式会社 核酸増幅チップ
WO2022153999A1 (ja) * 2021-01-14 2022-07-21 杏林製薬株式会社 反応処理容器、及び反応処理装置
WO2022219758A1 (ja) * 2021-04-14 2022-10-20 株式会社日立ハイテク サンプルのpcr解析を実行するためのデバイス、pcr反応装置、pcrシステムおよびpcr方法
JP7393070B1 (ja) 2023-08-04 2023-12-06 株式会社ゴーフォトン Pcr方法

Also Published As

Publication number Publication date
US11098347B2 (en) 2021-08-24
CN106536704B (zh) 2020-03-06
JP2021000106A (ja) 2021-01-07
JP2019047812A (ja) 2019-03-28
JPWO2016006612A1 (ja) 2017-04-27
JP7250292B2 (ja) 2023-04-03
SG11201610707RA (en) 2017-01-27
JP6226284B2 (ja) 2017-11-08
CN106536704A (zh) 2017-03-22
JP2023075250A (ja) 2023-05-30
CN110452808A (zh) 2019-11-15
EP3168287A4 (en) 2018-01-24
JP6765659B2 (ja) 2020-10-07
JP2022033853A (ja) 2022-03-02
CN110452808B (zh) 2022-11-22
JP2018183172A (ja) 2018-11-22
US20200157607A1 (en) 2020-05-21
JP6460362B2 (ja) 2019-01-30
JP6530548B2 (ja) 2019-06-12
US11781181B2 (en) 2023-10-10
JP2019150050A (ja) 2019-09-12
SG10201811430SA (en) 2019-01-30
JP6996717B2 (ja) 2022-02-03
US20170130261A1 (en) 2017-05-11
JP2018033460A (ja) 2018-03-08
JP6519888B2 (ja) 2019-05-29
EP3168287A1 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP6460362B2 (ja) 核酸増幅装置、核酸増幅方法及び核酸増幅用チップ
Cao et al. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications
JP6669699B2 (ja) 連続的な増幅反応のための方法および装置
Chen et al. Present status of microfluidic PCR chip in nucleic acid detection and future perspective
WO2013132645A1 (ja) 核酸増幅方法
JP5518035B2 (ja) 閉鎖系の多段階核酸増幅反応
US20110048951A1 (en) Digital microfluidics based apparatus for heat-exchanging chemical processes
Chang et al. Detection of viruses directly from the fresh leaves of a Phalaenopsis orchid using a microfluidic system
Chen et al. An integrated microfluidic loop-mediated isothermal amplification platform for koi herpesvirus detection
JP2013055921A (ja) 核酸増幅方法
US20210053059A1 (en) High-speed polymerase chain reaction analysis plate
JP2015139379A (ja) 核酸増幅装置及び核酸増幅方法
US20220145360A1 (en) Nucleic acid amplification method
Yang et al. Simultaneous amplification of DNA in a multiplex circular array shaped continuous flow PCR microfluidic chip for on-site detection of bacterial
US20180208970A1 (en) Direct quantitative pcr device and method of use thereof
KR20180023545A (ko) 비정형 폐렴균 검출용 프라이머 및 프로브 세트, 이를 이용한 pcr 장치 및 비정형 폐렴균 검출 방법
KR20180023544A (ko) 정형성 폐렴균 검출용 프라이머 및 프로브 세트, 이를 이용한 pcr 장치 및 정형성 폐렴균 검출 방법
Tsang et al. Automated system for multiplexing detection of COVID-19 and other respiratory pathogens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532945

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015818467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015818467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15322000

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE