JP6055922B2 - マイクロ流体デバイス - Google Patents

マイクロ流体デバイス Download PDF

Info

Publication number
JP6055922B2
JP6055922B2 JP2015530662A JP2015530662A JP6055922B2 JP 6055922 B2 JP6055922 B2 JP 6055922B2 JP 2015530662 A JP2015530662 A JP 2015530662A JP 2015530662 A JP2015530662 A JP 2015530662A JP 6055922 B2 JP6055922 B2 JP 6055922B2
Authority
JP
Japan
Prior art keywords
flow path
microfluidic device
reaction solution
reaction
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015530662A
Other languages
English (en)
Other versions
JPWO2015019520A1 (ja
Inventor
宏明 橘
宏明 橘
民谷 栄一
栄一 民谷
真人 齋藤
真人 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Application granted granted Critical
Publication of JP6055922B2 publication Critical patent/JP6055922B2/ja
Publication of JPWO2015019520A1 publication Critical patent/JPWO2015019520A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00837Materials of construction comprising coatings other than catalytically active coatings
    • B01J2219/0084For changing surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00849Materials of construction comprising packing elements, e.g. glass beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00993Design aspects
    • B01J2219/00995Mathematical modeling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Peptides Or Proteins (AREA)
  • Micromachines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、マイクロ流体デバイスに関する。
マイクロ流体デバイスは、極めて少量の試料や試薬を含む反応溶液を反応させることが可能なデバイスであり、微小反応デバイス(マイクロリアクタ)や集積型DNAデバイス、微小電気泳動デバイス等がある。
マイクロ流体デバイスは、反応溶液に所望の温度変化を与える反応デバイスに用いられる。マイクロ流体デバイスを用いることによって、反応溶液に与える温度変化を高速にすることができる。
従来より、温度変化を繰り返し与えることで標的核酸を増幅させる核酸増幅デバイスがあるが、核酸増幅デバイスとしてマイクロ流体デバイスを用いることにより、標的核酸を高速に増幅させることができる。
例えば、特許文献1及び非特許文献1には、デバイスを複数の異なる温度領域に分割しておき、反応溶液が各温度領域を繰り返して通過するように蛇行した蛇行流路を設けた構成が開示されている。
この構成により、反応溶液を蛇行流路中に進行させるだけで反応溶液に所望の温度変化を高速に与えることができる。これにより、反応溶液として核酸を含む溶液を用いた場合に、高速に核酸増幅を行うことができる。
特開2002−18271号公報
Science,vol.280,pp.1046−1048(1998)
しかしながら、上記従来のマイクロ流体デバイスでは、反応溶液の送液速度を一定にすることが難しく、反応溶液が複数の温度領域の各領域に滞留する時間を一定にすることが難しいという問題がある。
特に、反応溶液の送液方法として毛管力を用いた場合には、流路を流れる反応溶液の圧力損失が送液に伴って増大するため、反応溶液の送液が進むにつれて送液速度が減少してしまう。
本発明は、このような課題を解決するためになされたものであり、反応溶液の送液速度を一定にすることができるマイクロ流体デバイスを提供することを目的とする。
上記目的を達成するために、本発明に係るマイクロ流体デバイスの一態様は、所定の異なる温度に設定された複数の温度領域が存在する反応部を通過し、かつ、反応溶液が流れる流路を備え、少なくとも前記反応部における前記流路には、前記反応溶液の送液方向に沿って断面積が減少する領域が含まれていることを特徴とする。
また、本発明に係るマイクロ流体デバイスの一態様については、前記断面積が減少する領域において、前記流路の断面積は単調減少していてもよい。
また、本発明に係るマイクロ流体デバイスの一態様において、前記断面積が減少する領域における前記流路は、先細りテーパ構造であってもよい。
また、本発明に係るマイクロ流体デバイスの一態様については、前記断面積が減少する領域において、前記流路の幅は先細りテーパ状であり、かつ、前記流路の深さは一定であってもよい。
また、本発明に係るマイクロ流体デバイスの一態様については、前記断面積が減少する領域において、前記流路の断面積は段階的に減少していてもよい。
また、本発明に係るマイクロ流体デバイスの一態様において、前記断面積が減少する領域における前記流路は、蛇行する複数のラインからなり、前記断面積が減少する領域における前記流路の断面積は、前記送液方向に沿って前記ラインごとに減少していてもよい。
また、本発明に係るマイクロ流体デバイスの一態様については、前記断面積が減少する領域において、前記流路の幅は前記ラインごとに細くなっており、かつ、前記流路の深さは一定であってもよい。
また、本発明に係るマイクロ流体デバイスの一態様において、前記断面積が減少する領域は、前記反応部における前記流路全体であってもよい。
また、本発明に係るマイクロ流体デバイスの一態様において、前記断面積が減少する領域における前記流路の断面積は、前記流路内に設けられたピラーにより調整されていてもよい。
また、本発明に係るマイクロ流体デバイスの一態様において、前記流路は、複数の温度領域を往復するように構成された蛇行流路であり、前記反応溶液は、前記蛇行流路内を送液されることにより周期的な温度変化が付与されていてもよい。
また、本発明に係るマイクロ流体デバイスの一態様において、前記反応溶液には、標的核酸が含まれており、前記反応溶液が前記反応部における前記流路を通過することによって、前記標的核酸がポリメラーゼ連鎖反応により核酸増幅してもよい。
また、本発明に係るマイクロ流体デバイスの一態様において、前記反応溶液には、被測定物質として細菌又はウイルスが含まれており、当該マイクロ流体デバイスは、前記反応溶液に含まれる前記被測定物質を検出してもよい。
また、本発明に係るマイクロ流体デバイスの一態様において、前記流路内に、前記被測定物質と特異的に反応する抗体が固定化されていてもよい。
また、本発明に係るマイクロ流体デバイスの一態様において、前記流路の一部が分岐されていてもよい。
また、本発明に係るマイクロ流体デバイスの一態様において、前記流路が設けられた基板を備え、前記基板は、シリコン、樹脂又はガラスからなる、としてもよい。
本発明によれば、反応溶液の送液速度を一定にすることができるので、複数の温度領域の各温度領域において反応溶液が存在する時間を一定にすることができる。
図1は、本発明の実施の形態に係るマイクロ流体デバイスの概略構成を示す斜視図である。 図2は、本発明の実施の形態に係るマイクロ流体デバイスの分解斜視図である。 図3は、本発明の実施の形態に係るマイクロ流体デバイスの平面図である。 図4は、本発明の実施の形態に係るマイクロ流体デバイスの断面図である。 図5は、本発明の実施の形態に係るマイクロ流体デバイスにおける温度サイクルを説明するための図である。 図6Aは、本発明の実施の形態に係るマイクロ流体デバイスにおける流路の要部拡大平面図である。 図6Bは、図6AのX−X’線における本発明の実施の形態に係るマイクロ流体デバイスにおける流路の断面図である。 図7は、本発明の実施の形態に係るマイクロ流体デバイスにおける反応溶液の送液時間と送液距離との依存性を示す図である。 図8Aは、本発明の変形例1に係るマイクロ流体デバイスにおける流路の要部拡大平面図である。 図8Bは、図8AのX−X’線における本発明の変形例1に係るマイクロ流体デバイスにおける流路の断面図である。 図9は、本発明の変形例2に係るマイクロ流体デバイスの流路を示す拡大平面図である。 図10Aは、本発明の変形例3に係るマイクロ流体デバイスにおける流路の要部拡大平面図である。 図10Bは、図10AのX−X’線における本発明の変形例3に係るマイクロ流体デバイスにおける流路の断面図である。 図11は、本発明の変形例4に係るマイクロ流体デバイスの流路を示す拡大平面図である。 図12は、本発明の変形例5に係るマイクロ流体デバイスの流路を示す拡大平面図である。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、ステップ及びステップの順序などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
(実施の形態)
本発明の実施の形態に係るマイクロ流体デバイス1の構成について、図1〜図4を用いて説明する。図1は、本発明の実施の形態に係るマイクロ流体デバイスの概略構成を示す斜視図であり、図2は、同マイクロ流体デバイスの分解斜視図であり、図3は、同マイクロ流体デバイスの平面図であり、図4は、同マイクロ流体デバイスの断面図である。
図1〜図4に示すように、本実施の形態に係るマイクロ流体デバイス1は、反応溶液が流れる流路100を備えるデバイス(マイクロチップ)である。
流路100は、反応溶液が一方通行的に流れる反応流路であって、少なくとも、所定の異なる温度に設定された複数の温度領域が存在する反応部110を通過するように構成されている。そして、少なくとも反応部110における流路100には、反応溶液の送液方向に沿って断面積が減少する領域が含まれている。
反応部110は、反応溶液を反応させるための領域である。本実施の形態において、反応溶液は、試料となる標的核酸を含む溶液であり、具体的には、標的核酸と標的核酸を増幅させるための反応試薬とを含む水溶液である。したがって、本実施の形態における反応部110は核酸増幅反応部であり、反応部110では、反応溶液に含まれる標的核酸が増幅する。なお、反応溶液には、ある種のアルコールや界面活性剤等が含まれていてもよい。
このように、本実施の形態におけるマイクロ流体デバイス1は、試料となる標的核酸を増幅させるための核酸増幅デバイスとして用いられている。以下、マイクロ流体デバイス1を用いてPCR(ポリメラーゼ連鎖反応:Polymerase Chain Reaction)法を実施する場合について説明する。PCR法は、ターゲットDNAを温度サイクルにより増幅させる技術である。反応溶液(反応流体)には、ターゲットDNAの他に、PCRプライマやポリメラーゼ酵素、バッファー等が含まれている。このような反応溶液に温度サイクルを付与することで、ターゲットDNAを増幅することができる。増幅したDNAの増幅量は、反応検出機構によって検出することができる。
核酸増幅デバイスとしてのマイクロ流体デバイス1は、標的核酸を含む反応溶液が導入される導入部(インレット)120と、導入部120に導入された反応溶液に含まれる標的核酸を増幅させるための反応部110と、反応部110で増幅された標的核酸を含む反応溶液を排出するための排出部(ドレイン)130と、標的核酸を含む反応溶液を加熱するためのヒータ部140とを備える。
具体的には、マイクロ流体デバイス1は、第1基板10と、第2基板20と、ヒータ部140とによって構成されている。また、ヒータ部140は、設定温度が異なる第1ヒータブロック141と第2ヒータブロック142とを備える。なお、本実施の形態におけるマイクロ流体デバイス1の外形は、例えば縦の長さが40mmで横の長さが20mmの略矩形状である。
以下、マイクロ流体デバイス1の各構成部材の詳細構成について、図1〜図4を用いて詳述する。
[第1基板]
図2に示すように、第1基板10は、導入部120の一部を構成する第1凹部11と、排出部130の一部を構成する第2凹部12と、流路100を構成する溝部13とを備える。第1基板10としては、例えばシリコン基板を用いることができる。
溝部13(流路100)は、第1凹部11と第2凹部12とをつなぐように形成されている。溝部13(流路100)には反応溶液が流れる。具体的には、第1凹部11(導入部120)に反応溶液が導入されると、当該反応溶液は、第2凹部12(排出部130)に向かって溝部13(流路100)内を進行する。
図3に示すように、流路100は、蛇行するように形成された蛇行流路であり、第1ヒータブロック141(第1温度領域)と第2ヒータブロック142(第2温度領域)とを交互に繰り返して通過するように構成されている。
具体的に、反応部110における流路100は、ライン状の流路を所定間隔毎に折り曲げながら連続的に折り返すように(往復するように)形成されている。反応部110における流路100の折り返し回数は、例えば20〜70サイクル程度である。なお、一例として、1サイクルあたりの流路100(主流路100a)の長さは32mmとすることができる。
本実施の形態における流路100は、所定長さのライン状の複数の主流路100aと、対向する各行の主流路100aの端部同士を接続する副流路100bとを有する。主流路100a及び副流路100bは、反応部110に設けられる。
主流路100aは、第1ヒータブロック141と第2ヒータブロック142とを跨ぐように、第1ヒータブロック141及び第2ヒータブロック142の長手方向に略直交させて設けられている。副流路100bは、第1ヒータブロック141及び第2ヒータブロック142の長手方向に略平行するように設けられている。
なお、流路100は、さらに、反応溶液を導入部120から反応部110に導くための流路である導入流路100cと、反応溶液を反応部110から排出部130までに導くための排出流路100dとを有する。
導入流路100cの始端は、流路100全体としての入口であり、導入流路100cの終端は、反応部における流路100の入り口である。また、排出流路100dの始端は、反応部における流路100の出口であり、排出流路100dの終端は、流路100全体としての出口である。
なお、本実施の形態において、流路100を構成する溝部13の内表面には、シリコン酸化膜が形成されている。シリコン酸化膜を形成することによって、流路100(溝部13)の壁面を親水化することができる。本実施の形態では、主流路100a、副流路100b、導入流路100c及び排出流路100dの全てにシリコン酸化膜が形成されている。
このように構成される流路100はマイクロ流路であり、例えば断面形状は矩形状である。この場合、流路100を構成する溝部13の流路幅(溝幅)は、例えば20〜300μmであり、溝部13の深さは50〜150μmである。
なお、溝部13の断面形状は、矩形に限らず、半円形又は逆三角形とすることができる。また、第1凹部11及び第2凹部12は、例えば円形開口の凹部とすることができる。また、第1基板10の材料はシリコンに限らず、樹脂又はガラスであってもよい。
[第2基板]
図1に示すように、第2基板20は、第1基板10を覆う蓋部であり、第1基板10上に配置される。第2基板20としては、例えばガラス基板を用いることができる。
図2に示すように、第2基板20には、導入部120の一部として、第2基板20を貫通する第1貫通孔21が設けられている。また、第2基板20には、排出部130の一部として、第2基板20を貫通する第2貫通孔22が設けられている。第1貫通孔21及び第2貫通孔22は、例えば円形開口を有する貫通孔である。
第1基板10上に第2基板20を載置することによって、溝部13の開口部分が塞がれて全方位が密閉された流路100が構成される。これにより、流路100は、反応溶液の送液方向(進行方向)に垂直な断面における壁面全周が閉じられた構成となり、かつ、導入部120及び排出部130においてのみ外部空間と繋がる構成となる。このように、流路100の全方位を閉じることによって、送液中に反応溶液が揮発することを抑制できる。
なお、第2基板20の材料はガラスに限らず、樹脂又はシリコンであってもよい。
[ヒータ部]
図1〜図3に示すように、ヒータ部140は少なくとも反応部110に配置されており、反応部110の流路100に送液される反応溶液は、ヒータ部140によって所定の温度が付与される。
本実施の形態において、反応部110には、ヒータ部140として、所定の異なる温度に設定された第1ヒータブロック141及び第2ヒータブロック142が配置される。つまり、反応部110には、第1ヒータブロック141及び第2ヒータブロック142の2つのヒータブロックによって所定の異なる温度に設定された2つの温度領域が存在する。
なお、第1ヒータブロック141及び第2ヒータブロック142は、例えば直方体のアルミニウムやステンレス等の金属からなる金属ブロックを用いたヒータである。ヒータ部140としては、ヒータブロック以外に、ガラス基板上に金属薄膜を印刷等により形成した金属薄膜ヒータ等を用いることもできる。
第1温度に設定された第1ヒータブロック141が配置された領域は、第1温度領域である。また、第2温度に設定された第2ヒータブロック142が配置された領域は、第1温度領域とは異なる温度領域である第2温度領域である。
本実施の形態では、第1ヒータブロック141の温度が第2ヒータブロック142の温度よりも高くなるように設定されている。つまり、第1ヒータブロック141が配置された領域は高温領域であり、第2ヒータブロック142が配置された領域は低温領域である。
高温領域である第1ヒータブロック141の温度は、例えば93℃〜98℃であり、本実施の形態では、核酸増幅反応の変性反応温度である約95℃としている。一方、低温領域である第2ヒータブロック142の温度は、例えば50℃〜75℃であり、本実施の形態では、アニール・伸長反応温度である約60℃としている。
図3に示すように、ヒータ部140は温度制御部210に接続されている。これにより、第1ヒータブロック141及び第2ヒータブロック142の各温度は、温度制御部210によって制御することができる。
第1ヒータブロック141と第2ヒータブロック142とは所定の隙間をあけて並べられている。第1ヒータブロック141及び第2ヒータブロック142の上には第1基板10が配置される。具体的には、流路100における主流路100aが第1ヒータブロック141と第2ヒータブロック142とを跨ぐようにして第1基板10がヒータ部140に載置される。これにより、流路100は、2つの温度領域を複数サイクルで往復するように構成される。
この構成により、図5に示すように、導入部120から反応溶液300を導入したときに、反応溶液300は、反応部110における2つの温度領域(第1ヒータブロック141及び第2ヒータブロック142)を交互に繰り返して通過するように排出部130に送液される。つまり、流路100を流れる反応溶液300に対してヒートサイクルを付与することができる。
ここで、本発明の実施の形態に係るマイクロ流体デバイス1を用いた核酸増幅方法について、図1〜図4を参照しながら説明する。
まず、図4に示すように、ピペットを用いて反応溶液300を導入部120に注入する。本実施の形態では、標的核酸を含む反応溶液と反応試薬とを予め混合しておいた溶液を反応溶液としてマイクロ流体デバイス1の導入部120に導入している。
導入部120に導入された反応溶液300は、流路100(導入流路100c)を通って導入部120から反応部110に送液される。
図3に示すように、反応部110に到達した反応溶液は、第1ヒータブロック141と第2ヒータブロック142とを繰り返して往復するように主流路100a及び副流路100bを通ることになる。つまり、反応溶液は、ヒータ部140の高温領域(第1ヒータブロック141)と低温領域(第2ヒータブロック142)とを往復しながら送液されるので、加熱と冷却とが交互に繰り返されることになる。これにより、反応溶液に含まれる標的核酸は、高温領域での変性反応と低温領域でのアニール・伸長反応との繰り返しにより増幅する。このように、送液しながら反応溶液を昇降温させることができるので、非常に高速なフローPCRを実現することができる。したがって、反応溶液に含まれる標的核酸を高速に増幅させることができる。
その後、反応溶液は、排出流路100dを通って反応部110から排出部130へと送液される。本実施の形態では、導入部120に導入された反応溶液の先端が排出部130に到達したときに、標的核酸を含む溶液(本実施形態では反応溶液)の導入部120への導入を停止させており、このときに流路100内に反応溶液が充填されることになる。なお、排出部130に到達した反応溶液は排出部130から随時排出される。
このようにして反応溶液は流路100内を進行する。なお、本実施の形態では、流路100は、反応溶液を毛管力(キャピラリ力)により送液する毛管力運搬機構として、接触角θが鋭角である親水性表面の壁面を有する。具体的には、反応溶液300の送液方向に垂直な断面における溝部13の底部及び両側部の3つの壁面にシリコン酸化膜が形成されている。シリコン酸化膜を形成することによって溝部13の表面を親水化することができ、流路100の内壁面を親水性表面とすることができる。
これにより、反応溶液は、気液界面に生じる毛管力によって流路100内を自送液(Self−propelled flow)されるので、流路100内の自動的に進行する。つまり、反応溶液は、自動搬送によって流路100内に送液されながら反応部110において周期的な温度変化が与えられる。
なお、流路100の壁面の一部が親水性表面であればよいが、送液方向に垂直な断面における流路100の壁面全周が親水性表面である方がよい。この場合、第1基板10の溝部13の表面だけでなく、第2基板20の表面(内面)も親水性表面にすればよい。流路100の断面における壁面の親水性表面の割合が大きいほど、反応溶液に対する毛管力を大きくすることができる。
ここで、流路100中の反応溶液の送液を毛管力(キャピラリ力)によって行う場合の送液速度について説明する。
まず、流路100における毛管力を用いたキャピラリ力の理論について説明する。
キャピラリ力を用いた溶液の送液は、駆動力であるキャピラリ力と、抵抗成分である圧力損失とのつりあいにより決定される。ここで、圧力損失Pは、以下の(式1)で表すことができる。
Figure 0006055922
(式1)において、Qは流量、ηは溶液の粘性、lは流路長である。また、(式1)におけるDは、以下の(式2)で定義される水力直径であり、流路サイズや形状を反映するパラメータである。
Figure 0006055922
(式2)において、Sは流路断面積であり、Uは流路断面の外周長である。
(式1)を、送液速度v及び流路断面積Sを用いて、さらに圧力損失係数αを導入して書き換えると、以下の(式3)で表すことができる。
Figure 0006055922
この(式3)は、ある流路に溶液を送液した場合、その圧力損失Pは、流路長l及び送液速度vに比例することを表している。
ここで、圧力損失Pを示す(式3)とキャピラリ力Pとの力のつりあい(P=P)より、キャピラリ力Pcによる送液速度vは、以下の(式4)で表すことができる。
Figure 0006055922
(式4)において、P/αは、流路のサイズや形状及び溶液種により決まる定数であり、ここで送液係数と定義して、キャピラリ力送液特性の指標として用いる。
キャピラリ力Pによる送液速度vは、この送液係数を比例定数とし、流路長l、つまり送液距離に反比例することになる。
また、(式4)は、時間tと送液距離(流路長l)の微分方程式であるので、これを解くことにより、時間tに対する送液距離lは、以下の(式5)で表され、時間tの平方根に比例することになる。
Figure 0006055922
この送液特性を決定づける(式5)において、圧力損失係数αは、非常に大きな意味を持つパラメータである。
ここで、キャピラリ力Pについて詳述する。キャピラリ力Pは、流路断面を構成する各辺における界面張力の足し合わせにより表現ですることができ、以下の(式6)で表すことができる。
Figure 0006055922
(式6)において、σは溶液の表面張力、Sは流路断面積、α及びθはそれぞれ、流路断面を構成する辺の長さ及び接触角である。例えば、流路の断面形状が矩形である場合のキャピラリ力Pは、以下の(式7)となる。
Figure 0006055922
ここで、w及びdは、それぞれ流路の幅及び深さであり、θ、θ、θ、θは、それぞれ流路の左側壁面(左側面)、右側壁面(右側面)、上側壁面(上面)、下側壁面(底面)における接触角である。
本実施の形態におけるマイクロ流体デバイス1では、反応溶液が、温度の異なる領域及び形状の異なる領域を連続的に流れる。そのため、任意の温度や形状に対応できる送液理論を構築する必要がある。
そこで、溶液(流体)が、ある流路をキャピラリ力Pによって送液されるとし、液先端がx=lの地点にある場合を考える。キャピラリ力Pは、送液される溶液の液先端のみが関与するので(式6)により表され、x=lにおける流路形状や温度により決定される。
一方の圧力損失Pは、x=0の地点からからx=lまでの地点の全ての領域が関与するので、(式3)を拡張し、以下の(式8)として考える必要がある。(式8)において、圧力損失係数αは、任意の地点xにおける温度や形状により決まる定数である。
Figure 0006055922
ここで、圧力損失Pを示す(式8)とキャピラリ力Pとの力のつりあい(P=P)より、フローPCRによる流路における送液速度vは、以下の(式9)により決定されると考えることができる。
Figure 0006055922
この(式9)は、右辺の分母が積分になっていることを除けば、(式4)と同じである。
以上により、送液速度v(流速)は、キャピラリ力Pと圧力損失係数αとによって算出することができる。
[特徴構成及び作用効果]
次に、本発明の実施の形態に係るマイクロ流体デバイス1の特徴構成及び作用効果について、図6A、図6B及び図7を用いて説明する。図6Aは、本発明の実施の形態に係るマイクロ流体デバイスにおける流路の要部拡大平面図であり、図3における実線で囲まれる部分Pの拡大図である。図6Bは、図6AのX−X’線における本発明の実施の形態に係るマイクロ流体デバイスにおける流路の断面図である。図7は、本発明の実施の形態に係るマイクロ流体デバイスにおける反応溶液の送液時間と送液距離との依存性を示す図である。なお、図7において、黒丸印及び黒三角印は各流路構造の実測値を示しており、また、実線及び曲線は各流路構造のシミュレーション値を示している。
図6A及び図6Bに示すように、本実施の形態におけるマイクロ流体デバイス1では、少なくとも反応部110における流路100(主流路100a、副流路100b)には、反応溶液300の送液方向に沿って断面積が減少する領域が含まれている。
本実施の形態において、断面積が減少する領域における流路100は、流路断面積が単調減少するように構成されている。具体的には、断面積が減少する領域における流路100は、流路100の幅が先細りテーパ状であり、かつ、送液方向に沿って流路100の深さが一定である先細りテーパ構造となっている。つまり、流路100の上流から下流にかけて流路100の幅が漸次減少するように構成されている。
このように構成される流路100は、図7に示すように、反応溶液の送液時間に対する反応溶液の送液距離は比例している(図7の「本発明」)。つまり、反応溶液の送液速度を一定に保つことができる。なお、図7では、「本発明」の先細りテーパ流路として、深さが一定の150μmで、幅が300μmから20μmに漸次減少する流路を用いている。
一方、流路断面積が一定である従来の流路(図7の「従来例」)では、図7に示すように、反応溶液の送液速度が一定ではなく、単位時間当たりの送液距離が徐々に短くなっていることが分かる。なお、図7では、「従来例」の単純直線流路として、深さ及び幅がいずれも一定の150μmの流路を用いている。
このように、流路100の構造設計によって反応溶液の流速を制御でき、反応溶液の送液速度を一定できることが分かる。なお、図7に示すように、本発明も従来例もシミュレーション値と実測値とが概ね一致していることが分かる。
以上、本実施の形態におけるマイクロ流体デバイス1によれば、少なくとも反応部110における流路100には、反応溶液の送液方向に沿って断面積が減少する領域が含まれている。
これにより、流路100内に流れる反応溶液の送液速度を所望に制御して反応溶液の送液速度を一定に保つことができる。このため、第1温度領域及び第2温度領域の各温度領域における反応溶液の存在時間を一定に保つことができる。したがって、反応溶液の反応効率を向上させることができる。
特に、本実施の形態では、流路100をテーパ構造としているので、流路100の断面積が単調減少している。これにより、圧力損失及びキャピラリ力を連続的に変化させることができるので、反応溶液の送液速度をより一定に保つことができる。
また、本実施の形態において、流路100の断面積が減少する領域は、反応部110における流路100の全体領域としている。つまり、反応部110の流路100の入口から出口にかけて漸次断面積を減少させている。本実施の形態では、流路100の幅を漸次小さくしている。但し、反応部100における流路100の全域で断面積を減少させなくてもよく、流路100の一部の領域の断面積を小さくする場合であっても、反応溶液の送液速度を所望に制御することができ、反応溶液の送液速度を一定に保つことができる。また、流路長さに対する流路幅の減少率は、例えば0.05μm/mm〜0.2μm/mm程度とすることができる。図7の「本発明」では、ほぼ0.1μm/mmとしている。
また、本実施の形態では、反応溶液として標的核酸を含む溶液を用いており、流路100が第1温度領域と第2温度領域とを交互に繰り返して通過するように構成されている。したがって、一定の送液速度とすることで反応溶液の反応効率を向上するので、高効率のフローPCRを実現することができる。つまり、高効率の核酸増幅を実現できる。
また、本実施の形態では、流路100の断面積が減少する領域において、流路100の深さが一定となっている。これにより、エッチング等によって流路100を容易に作製することができる。さらに、流路100の深さを一定にすることによって、流路100の上方からレーザ光をスキャンして光学測定を行う際に測定光の光路長を一定に保つことができるので、測定精度を向上させることができる。例えば、核酸の増幅量を精度よく算出することができる。
また、本実施の形態では、反応溶液は毛管力によって流路100に送液されるので、シリンジポンプ等の外部ポンプを用いることなく反応溶液を流路100内に進行させることができる。したがって、反応溶液を低コストかつ簡便に行うことができる。例えば、反応溶液として標的核酸を含む溶液を用いる場合、標的核酸の核酸増幅を低コストかつ簡便に行うことができる。
(変形例)
以下、上記実施の形態におけるマイクロ流体デバイスの変形例について説明する。
(変形例1)
図8Aは、本発明の変形例1に係るマイクロ流体デバイスにおける流路の要部拡大平面図であり、図8Bは、図8AのX−X’線における本発明の変形例1に係るマイクロ流体デバイスにおける流路の断面図である。
本変形例におけるマイクロ流体デバイスは、上記実施の形態におけるマイクロ流体デバイス1と同様に、反応部110における流路100には、反応溶液300の送液方向に沿って断面積が減少する領域が含まれている。
本変形例におけるマイクロ流体デバイスが上記実施の形態におけるマイクロ流体デバイス1と異なる点は、上記実施の形態では、深さを一定とし幅を漸次減少させることで流路100のテーパ構造を構成したのに対して、本変形例では、幅を一定とし深さを漸次減少させることで流路100のテーパ構造を実現している。
具体的には、図8A及び図8Bに示すように、流路100は、送液方向に沿って深さが先細りテーパ状であり、かつ、幅が一定である。
以上、本変形例におけるマイクロ流体デバイスによれば、上記実施の形態におけるマイクロ流体デバイス1と同様に、反応溶液300の送液方向に沿って断面積が減少する領域が含まれている。
これにより、流路100内に流れる反応溶液300の送液速度を一定に保つことができるので、第1温度領域及び第2温度領域の各温度領域における反応溶液300の存在時間を一定に保つことができる。したがって、反応溶液300の反応効率を向上させることができる。
(変形例2)
図9は、本発明の変形例2に係るマイクロ流体デバイスの流路を示す拡大平面図である。
本変形例におけるマイクロ流体デバイスは、上記実施の形態におけるマイクロ流体デバイス1と同様に、反応部110における流路100には、反応溶液の送液方向に沿って断面積が減少する領域が含まれている。
本変形例におけるマイクロ流体デバイスが上記実施の形態におけるマイクロ流体デバイス1と異なる点は、上記実施の形態では、流路100の断面積を単調減少させていたのに対して、本変形例では、流路100の断面積を段階的に減少させている。
具体的には、図9に示すように、流路100における複数のライン状の主流路100aの幅を、反応溶液300の送液方向に沿ってラインごとに細くしている。なお、各ラインにおいては、主流路100aの幅及び深さは一定である。これにより、流路100の断面積を送液方向に沿ってラインごとに段階的に減少させている。
以上、本変形例におけるマイクロ流体デバイスによれば、上記実施の形態におけるマイクロ流体デバイス1と同様の効果が得られる。つまり、流路100内に流れる反応溶液300の送液速度を所望に制御して反応溶液300の送液速度を一定にすることができる。したがって、第1温度領域及び第2温度領域の各温度領域における反応溶液300の存在時間を一定に保つことができ、反応溶液300の反応効率を向上させることができる。
また、本変形例では、流路100を直線状に形成しているので、テーパ構造とする場合と比べて、流路100の設計及び作製が容易である。さらに、本変形例では、流路100の深さを一定にしているので、流路100の上方からレーザ光をスキャンして光学測定を行う際に測定光の光路長を一定に保つことができるので、測定精度を向上させることができる。
(変形例3)
図10Aは、本発明の変形例3に係るマイクロ流体デバイスにおける流路の要部拡大平面図であり、図10Bは、図10AのX−X’線における本発明の変形例3に係るマイクロ流体デバイスにおける流路の断面図である。
本変形例におけるマイクロ流体デバイスは、上記実施の形態におけるマイクロ流体デバイス1と同様に、反応部110における流路100には、反応溶液300の送液方向に沿って断面積が減少する領域が含まれている。
本変形例におけるマイクロ流体デバイスが上記実施の形態におけるマイクロ流体デバイス1と異なる点は、上記実施の形態では、流路100をテーパ構造として断面積を減少させていたのに対して、本変形例では、流路100の断面積をピラー160によって調整している。
具体的には、図10A及び図10Bに示すように、流路100内に円柱状のピラー160を複数本立てている。これにより、ピラー160が設けられた領域の流路断面積を、ピラー160が設けられた領域の流路断面積をよりも小さくすることができる。
以上、本変形例におけるマイクロ流体デバイスによれば、上記実施の形態におけるマイクロ流体デバイス1と同様の効果が得られる。つまり、流路100内に流れる反応溶液300の送液速度を所望に制御して反応溶液300の送液速度を一定にすることができる。したがって、第1温度領域及び第2温度領域の各温度領域における反応溶液300の存在時間を一定に保つことができ、反応溶液300の反応効率を向上させることができる。
また、本変形例のようにピラー160を設けることによって、反応溶液300中の試料及び試薬の拡散性を向上させることもできる。
(変形例4)
図11は、本発明の変形例4に係るマイクロ流体デバイスの流路を示す拡大平面図である。
本変形例におけるマイクロ流体デバイスは、流路100の一部が分岐されている。具体的には、図11に示すように、先細りテーパ構造の流路100の先端が3つに分岐されている。
このように流路100の一部を分岐させることによって、反応溶液300の液先端(先頭部分)の送液速度を制御するだけではなく、反応溶液300の液内部の送液速度も制御することができる。
(変形例5)
図12は、本発明の変形例5に係るマイクロ流体デバイスの流路を示す拡大平面図である。
上記実施の形態及び変形例では、マイクロ流体デバイスを、PCR法を実施するための核酸増幅デバイスに適用する例について説明したが、上記実施の形態及び変形例におけるマイクロ流体デバイスを、被測定物質を検出するためのセンサデバイスに適用しても構わない。例えば、マイクロ流体デバイスを、イムノクロマト法を実施するためのセンサデバイスに適用することができる。
この場合、マイクロ流体デバイスに導入する反応溶液には、被測定物質として細菌又はウイルスが含まれており、当該マイクロ流体デバイスは、反応溶液に含まれる被測定物質を検出する。細菌やウイルスは、それぞれ特徴あるDNAを持っている。したがって、その特徴あるDNAをターゲットとしたプライマを設計することにより、マイクロ流体デバイスを、細菌やウイルスの種類や量を検出するセンサとして用いることができる。
例えば、図12に示すように、反応溶液300に含まれる被測定物質である抗原を特異的に検出する場合、図12の領域Aでは、抗原と特異的に反応する物質(抗体)と、抗原との間に免疫反応が生じ、抗原と抗体とが特異的に結合して免疫複合体となる。なお、抗体には予め検出のための蛍光物質が固定化されていてもよい。また、抗原と抗体とを含む反応溶液300は、マイクロ流体デバイスに導入する前に混合してもよいし、抗体を予め領域Aに乾燥して配置しておいてもよい。
免疫反応が生じて形成された免疫複合体を含む反応溶液300は、領域Bまで送液される。領域Bでは、抗原と特異的に反応する抗体(キャプチャー抗体)が予め用意されており、固定化抗体として固定化されている。領域Aで抗体と結合した抗原は、領域Bにおいて固定化抗体と結合する。つまり、固定化抗体上に免疫複合体がトラップされる。これにより、反応溶液300に抗原が含まれていた場合のみ領域Bにおいて蛍光を観察することができ、反応溶液300中の抗原を検出することができる。
本変形例では、流路100がテーパ構造となっており、領域Bの幅が細くなっている。これにより、比表面積(体積に対する表面積)を大きくすることができるので、蛍光物質を濃縮することが可能になり、高感度の測定が可能になる。したがって、反応溶液300を効率よく反応させることができる。
(その他)
以上、本発明に係るマイクロ流体デバイスについて、実施の形態及び変形例に基づいて説明したが、本発明は、上記実施の形態及び変形例に限定されるものではない。
例えば、上記実施の形態及び変形例では、反応部110における流路100を蛇行流路として標的核酸を含む反応溶液に温度変化を繰り返し与えるフローPCRとしたが、フローPCRとせずに標的核酸を含む反応溶液に温度変化を繰り返し与えるようなPCRとしてもよい。但し、上記実施の形態のようにフローとした方が効率良くPCRを実施することができる。
また、上記実施の形態及び変形例では、流路100を蛇行流路としたが、これに限らない。例えば、複数の高温領域(95℃)と複数の低温領域(60℃)とを交互にライン状に配列して、その上に直線状の流路が形成された基板を配置することによって、流路が高温領域と低温領域とを交互に通過するように構成してもよい。
また、上記実施の形態及び変形例では、ヒータ部140は2つの温度領域としたが、互いに温度が異なる3つ以上の温度領域としてもよい。この場合、流路は、反応溶液が異なる複数の温度領域を周期的に通過するように構成されていればよい。
また、上記実施の形態及び変形例では、複数の温度領域の各温度の設定は、ヒータブロックで行ったが、ペルチェ素子等の他の温度制御部材を用いて温度設定してもよい。
また、上記実施の形態及び変形例では、反応溶液は毛管力によって流路100を送液したが、これに限らない。例えば、流路100にシリンジポンプをつないで、反応溶液を送液してもよい。但し、毛管力によって反応溶液を送液する方が、低コストかつ簡便に反応溶液を送液することができる。
その他、各実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
1 マイクロ流体デバイス
10 第1基板
11 第1凹部
12 第2凹部
13 溝部
20 第2基板
21 第1貫通孔
22 第2貫通孔
100 流路
100a 主流路
100b 副流路
100c 導入流路
100d 排出流路
110 反応部
120 導入部
130 排出部
140 ヒータ部
141 第1ヒータブロック
142 第2ヒータブロック
160 ピラー
210 温度制御部
300 反応溶液

Claims (12)

  1. 所定の異なる温度に設定された複数の温度領域が存在する反応部を通過し、かつ、反応溶液が流れる流路を備え、
    少なくとも前記反応部における前記流路は前記反応部全体において、前記反応溶液の送液方向に沿って断面積が減少す
    マイクロ流体デバイス。
  2. 前記反応部における前記流路は、先細りテーパ構造である
    請求項1に記載のマイクロ流体デバイス。
  3. 前記反応部における前記流路において、前記流路の幅は先細りテーパ状であり、かつ、前記流路の深さは一定である
    請求項に記載のマイクロ流体デバイス。
  4. 所定の異なる温度に設定された複数の温度領域が存在する反応部を通過し、かつ、反応溶液が流れる流路を備え、
    少なくとも前記反応部における前記流路には、前記反応溶液の送液方向に沿って断面積が単調に減少する領域が含まれており、
    前記反応部における前記流路には、前記反応溶液の送液方向に沿って断面積が段階的に減少する領域が含まれており、
    前記断面積が段階的に減少する領域における前記流路は、蛇行する複数のラインからなり、
    前記断面積が段階的に減少する領域における前記流路の断面積は、前記送液方向に沿って前記ラインごとに減少している
    イクロ流体デバイス。
  5. 前記断面積が段階的に減少する領域において、前記流路の幅は前記ラインごとに細くなっており、かつ、前記流路の深さは一定である
    請求項に記載のマイクロ流体デバイス。
  6. 前記断面積が減少する領域における前記流路の断面積は、前記流路内に設けられたピラーにより調整されている
    請求項1〜のいずれか1項に記載のマイクロ流体デバイス。
  7. 前記流路は、複数の温度領域を往復するように構成された蛇行流路であり、
    前記反応溶液は、前記蛇行流路内を送液されることにより周期的な温度変化が付与される
    請求項1〜のいずれか1項に記載のマイクロ流体デバイス。
  8. 前記反応溶液には、標的核酸が含まれており、
    前記反応溶液が前記反応部における前記流路を通過することによって、前記標的核酸がポリメラーゼ連鎖反応により核酸増幅する
    請求項に記載のマイクロ流体デバイス。
  9. 前記反応溶液には、被測定物質として細菌又はウイルスが含まれており、
    当該マイクロ流体デバイスは、前記反応溶液に含まれる前記被測定物質を検出する
    請求項1〜のいずれか1項に記載のマイクロ流体デバイス。
  10. 前記流路内に、前記被測定物質と特異的に反応する抗体が固定化されている
    請求項に記載のマイクロ流体デバイス。
  11. 前記流路の一部が分岐されている
    請求項1〜10のいずれか1項に記載のマイクロ流体デバイス。
  12. 前記流路が設けられた基板を備え、
    前記基板は、シリコン、樹脂又はガラスからなる
    請求項1〜11のいずれか1項に記載のマイクロ流体デバイス。
JP2015530662A 2013-08-08 2014-03-10 マイクロ流体デバイス Expired - Fee Related JP6055922B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013165612 2013-08-08
JP2013165612 2013-08-08
PCT/JP2014/001315 WO2015019520A1 (ja) 2013-08-08 2014-03-10 マイクロ流体デバイス

Publications (2)

Publication Number Publication Date
JP6055922B2 true JP6055922B2 (ja) 2016-12-27
JPWO2015019520A1 JPWO2015019520A1 (ja) 2017-03-02

Family

ID=52460884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015530662A Expired - Fee Related JP6055922B2 (ja) 2013-08-08 2014-03-10 マイクロ流体デバイス

Country Status (3)

Country Link
US (1) US9849436B2 (ja)
JP (1) JP6055922B2 (ja)
WO (1) WO2015019520A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015019521A1 (ja) * 2013-08-08 2017-03-02 パナソニックIpマネジメント株式会社 マイクロ流体デバイス

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11243494B2 (en) 2002-07-31 2022-02-08 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US10908066B2 (en) 2010-11-16 2021-02-02 1087 Systems, Inc. Use of vibrational spectroscopy for microfluidic liquid measurement
US8961904B2 (en) 2013-07-16 2015-02-24 Premium Genetics (Uk) Ltd. Microfluidic chip
WO2015019522A1 (ja) * 2013-08-08 2015-02-12 パナソニック株式会社 核酸増幅デバイス、核酸増幅装置及び核酸増幅方法
US11796449B2 (en) 2013-10-30 2023-10-24 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
SG10201811430SA (en) * 2014-07-08 2019-01-30 Aist Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
WO2016132222A2 (en) 2015-02-19 2016-08-25 Premium Genetics (Uk) Ltd. Scanning infrared measurement system
JP6264595B2 (ja) * 2015-03-09 2018-01-24 パナソニックIpマネジメント株式会社 マイクロ流体デバイス
WO2018194665A1 (en) 2017-04-21 2018-10-25 Hewlett-Packard Development Company, L.P. Microfluidic chip
US11278892B2 (en) 2017-04-21 2022-03-22 Hewlett-Packard Development Company, L.P. Chip to chip fluidic interconnect
WO2018194651A1 (en) 2017-04-21 2018-10-25 Hewlett-Packard Development Company, Coplanar fluidic interconnect
EP3582892A4 (en) 2017-04-21 2020-03-04 Hewlett-Packard Development Company, L.P. COPLANAR MICROFLUIDIC HANDLING
JP6891953B2 (ja) 2017-05-31 2021-06-18 株式会社島津製作所 Pesiイオン源用サンプルプレート及び該サンプルプレートを用いた質量分析装置
EP3706906A4 (en) * 2017-11-10 2021-11-03 Visca, LLC DEVICE FOR QUICKLY DETERMINING RADIATION EXPOSURE
WO2019103729A1 (en) * 2017-11-22 2019-05-31 Hewlett-Packard Development Company, L.P. Microfluidic devices with lid for loading fluid
US11331670B2 (en) 2018-05-23 2022-05-17 Abs Global, Inc. Systems and methods for particle focusing in microchannels
US11041199B2 (en) 2018-12-20 2021-06-22 Omniome, Inc. Temperature control for analysis of nucleic acids and other analytes
BE1027013B1 (nl) * 2019-01-31 2020-09-01 Pharmafluidics N V Filter voor chemische reactoren
EP4245140A3 (en) 2019-04-18 2024-01-17 ABS Global, Inc. System and process for continuous addition of cryoprotectant
US11465143B2 (en) 2019-06-07 2022-10-11 Nippon Sheet Glass Company, Limited Reaction processing vessel
JP6652673B1 (ja) * 2019-06-07 2020-02-26 日本板硝子株式会社 反応処理容器
JP7278934B2 (ja) * 2019-12-09 2023-05-22 富士フイルム株式会社 送液装置
JP7278932B2 (ja) * 2019-12-09 2023-05-22 富士フイルム株式会社 検査用容器
JP7278933B2 (ja) * 2019-12-09 2023-05-22 富士フイルム株式会社 検査用容器
US11628439B2 (en) * 2020-01-13 2023-04-18 Abs Global, Inc. Single-sheath microfluidic chip
US20220091065A1 (en) * 2020-09-18 2022-03-24 Visera Technologies Company Limited Sensor device and method of using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565729A (en) * 1991-09-13 1996-10-15 Reveo, Inc. Microchannel plate technology
JP2002018271A (ja) * 2000-07-05 2002-01-22 Kawamura Inst Of Chem Res 微小ケミカルデバイス
US20030219903A1 (en) * 2002-05-21 2003-11-27 Yong Wang Reactors having varying cross-section, methods of making same, and methods of conducting reactions with varying local contact time
JP2005323519A (ja) * 2004-05-13 2005-11-24 Konica Minolta Sensing Inc マイクロ流体デバイス並びに試液の試験方法および試験システム
JP2006208188A (ja) * 2005-01-27 2006-08-10 Kyocera Corp マイクロ化学チップ
JP2009148232A (ja) * 2007-12-21 2009-07-09 Canon Inc 核酸増幅装置
WO2012103533A2 (en) * 2011-01-28 2012-08-02 Siloam Biosciences, Inc. Microfluidic assay devices and methods
JP2013068546A (ja) * 2011-09-22 2013-04-18 Sharp Corp 送液装置及び送液方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790640A (en) * 1985-10-11 1988-12-13 Nason Frederic L Laboratory slide
US4775515A (en) * 1986-11-18 1988-10-04 Cottingham Hugh V Agglutinographic slide
DE3814585A1 (de) * 1988-04-29 1989-11-09 Hoffmann La Roche Testelement fuer agglutinationsuntersuchungen, verfahren zu seiner herstellung und dessen verwendung
US5707799A (en) * 1994-09-30 1998-01-13 Abbott Laboratories Devices and methods utilizing arrays of structures for analyte capture
DE19717085C2 (de) * 1997-04-23 1999-06-17 Bruker Daltonik Gmbh Verfahren und Geräte für extrem schnelle DNA-Vervielfachung durch Polymerase-Kettenreaktionen (PCR)
US6270641B1 (en) * 1999-04-26 2001-08-07 Sandia Corporation Method and apparatus for reducing sample dispersion in turns and junctions of microchannel systems
US6696240B1 (en) * 1999-10-26 2004-02-24 Micronix, Inc. Capillary test strip to separate particulates
US8231845B2 (en) * 2000-10-25 2012-07-31 Steag Microparts Structures for uniform capillary flow
US8900811B2 (en) * 2000-11-16 2014-12-02 Caliper Life Sciences, Inc. Method and apparatus for generating thermal melting curves in a microfluidic device
US20040047767A1 (en) * 2002-09-11 2004-03-11 Richard Bergman Microfluidic channel for band broadening compensation
JP2005278418A (ja) 2004-03-26 2005-10-13 Japan Science & Technology Agency 試料から荷電物質を濃縮及び/又は抽出する方法及びそのためのデバイス
WO2005093420A1 (ja) 2004-03-29 2005-10-06 Riken 実験動物の感染病の原因となる微生物をモニタリングする方法
US20060228258A1 (en) * 2005-04-12 2006-10-12 Chromedx Inc. Blood collection and measurement apparatus
JP2007069164A (ja) 2005-09-08 2007-03-22 Japan Science & Technology Agency マイクロキャピラリーを用いた反応装置及びそれによる接触水素化反応方法
JP2007090306A (ja) 2005-09-30 2007-04-12 Kri Inc 微小構造体の製造方法およびマイクロリアクター
JP4682874B2 (ja) 2006-03-01 2011-05-11 コニカミノルタエムジー株式会社 マイクロリアクタ
US8414847B2 (en) * 2008-09-30 2013-04-09 Forced Physics, Llc Method and apparatus for control of fluid temperature and flow

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565729A (en) * 1991-09-13 1996-10-15 Reveo, Inc. Microchannel plate technology
JP2002018271A (ja) * 2000-07-05 2002-01-22 Kawamura Inst Of Chem Res 微小ケミカルデバイス
US20030219903A1 (en) * 2002-05-21 2003-11-27 Yong Wang Reactors having varying cross-section, methods of making same, and methods of conducting reactions with varying local contact time
JP2005323519A (ja) * 2004-05-13 2005-11-24 Konica Minolta Sensing Inc マイクロ流体デバイス並びに試液の試験方法および試験システム
JP2006208188A (ja) * 2005-01-27 2006-08-10 Kyocera Corp マイクロ化学チップ
JP2009148232A (ja) * 2007-12-21 2009-07-09 Canon Inc 核酸増幅装置
WO2012103533A2 (en) * 2011-01-28 2012-08-02 Siloam Biosciences, Inc. Microfluidic assay devices and methods
JP2013068546A (ja) * 2011-09-22 2013-04-18 Sharp Corp 送液装置及び送液方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015019521A1 (ja) * 2013-08-08 2017-03-02 パナソニックIpマネジメント株式会社 マイクロ流体デバイス

Also Published As

Publication number Publication date
JPWO2015019520A1 (ja) 2017-03-02
US9849436B2 (en) 2017-12-26
WO2015019520A1 (ja) 2015-02-12
US20160199835A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
JP6055922B2 (ja) マイクロ流体デバイス
WO2015019522A1 (ja) 核酸増幅デバイス、核酸増幅装置及び核酸増幅方法
AU2006247752B2 (en) Method and device for conducting biochemical or chemical reactions at multiple temperatures
US10618050B2 (en) Microfluidic device for reducing fluctuation in the solution feeding rate of a reaction solution
RU2525425C2 (ru) Безгазовая камера для текучих сред
JP2015500413A (ja) 変形可能バルブを備えたマイクロ流体デバイス
EP3178919B1 (en) Nucleic acid amplification device
JP6195211B2 (ja) マイクロ流体デバイス
Frey et al. Autonomous microfluidic multi-channel chip for real-time PCR with integrated liquid handling
JP2005253466A (ja) 核酸増幅方法及び装置
Xiang et al. Directional fluid spreading on microfluidic chip structured with microwedge array
US20150259754A1 (en) Droplet-based microfluidic device having a plurality of reaction sites
CN112076807B (zh) 一种自发形成油包水液滴的微流控芯片及装置
Kuo et al. Design optimization of capillary-driven micromixer with square-wave microchannel for blood plasma mixing
US9770717B1 (en) Microfluidic chip with bead integration system
JP2016165247A (ja) 核酸増幅検査装置および核酸増幅検査方法
JP2016165702A (ja) マイクロ流体デバイス
WO2017022155A1 (ja) マイクロ流路デバイスおよびその製造方法
US20090323463A1 (en) Devices And Fluid Flow Methods For Improving Mixing
JP2015213866A (ja) 流体制御システム
JP5205922B2 (ja) 生体物質検出用チップおよび生体物質検出用チップの製造方法
WO2016157893A1 (ja) 混合流路及びこの混合流路を備えたマイクロ流体デバイス
Kutter et al. Microfluidics--Components
Geschke Jærg P. Kutter, Klaus Bo Mogensen, Henning Klank, and Oliver Geschke
Geschke JÖRG P. KUTTER, KLAUS BO MOGENSEN, HENNING KLANK, and OLIVER GESCHKE

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R151 Written notification of patent or utility model registration

Ref document number: 6055922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees