WO2013132645A1 - 核酸増幅方法 - Google Patents

核酸増幅方法 Download PDF

Info

Publication number
WO2013132645A1
WO2013132645A1 PCT/JP2012/056079 JP2012056079W WO2013132645A1 WO 2013132645 A1 WO2013132645 A1 WO 2013132645A1 JP 2012056079 W JP2012056079 W JP 2012056079W WO 2013132645 A1 WO2013132645 A1 WO 2013132645A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcr
temperature
nucleic acid
temperature zone
acid amplification
Prior art date
Application number
PCT/JP2012/056079
Other languages
English (en)
French (fr)
Inventor
秀典 永井
雄介 渕脇
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to US14/384,135 priority Critical patent/US10273532B2/en
Priority to PCT/JP2012/056079 priority patent/WO2013132645A1/ja
Publication of WO2013132645A1 publication Critical patent/WO2013132645A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction

Definitions

  • the present invention relates to a method for amplifying nucleic acid in a meandering flow path at an extremely high speed. More specifically, the present invention uses a continuous-flow microfluidic system to provide fluid delivery conditions and flow path design for precise temperature control and to perform ultrafast polymerase chain reaction (PCR). Regarding the method.
  • PCR polymerase chain reaction
  • Genetic testing is at the heart of various fields such as drug development, forensic medicine, clinical testing, identification of crops and pathogenic microorganisms, disease and risk diagnosis, search for markers, food and environmental safety assessment, crime It has become a universal technology for verification. It is a well-known fact that it is also used for definitive tests for infectious diseases such as foot-and-mouth disease and new influenza that became a problem last year. In 2007, the Ministry of Health, Labor and Welfare Insurance Bureau approved the inclusion of insurance for cancer genetic testing, and clinical testing companies announced the commercialization of genetic testing equipment and kits. It is starting to turn.
  • One of the most powerful basic technologies for detecting a small amount of nucleic acid, which is a gene, with high sensitivity is a technique for analyzing a product obtained by exponentially duplicating part or all of a nucleic acid sequence.
  • PCR Polymerase Chain Reaction
  • PCR Polymerase Chain Reaction
  • millions of copies of DNA fragments can be generated from a single template DNA for a target DNA sequence in the template DNA.
  • PCR repeats a three-phase temperature condition called a thermal cycle to denature DNA into single strands, anneal denatured DNA single strands and primers, and extend primers with a thermostable DNA polymerase enzyme. Individual reactions are repeated sequentially. This cycle is repeated until a sufficient copy number is obtained for analysis. In principle, it is possible to double the number of copies in one cycle of PCR.
  • the PCR method is a powerful technique for exponentially amplifying genes by thermal cycling, but the general-purpose thermal cycler device used for PCR has a slow temperature control due to the huge heat capacity of the aluminum block part that is a heater.
  • the conventional PCR operation of 30 to 40 cycles usually takes 1 to 2 hours. For this reason, even if the latest genetic testing device is used, it takes a total of several hours for analysis, and speeding up the PCR operation has been a major issue since the technology appeared.
  • microfluidic devices related to DNA amplification by PCR have also been developed.
  • Sample thermal cycling is typically done in one of three ways.
  • the first method is a method in which a sample solution is introduced into the device, and temperature cycling is performed over time while the solution is held in the same part.
  • This is very similar to a conventional PCR instrument (Non-patent Documents 1 and 2 and Patent Document 1).
  • this method aims to reduce the heat capacity by reducing the sample amount and speed up the thermal cycle, there is a limit to reducing the heat capacity of the chamber and the heater itself, so in order to perform a sufficient amplification reaction, At least about 30 seconds per cycle is required, and even the earliest apparatus to complete the PCR reaction must spend 15 minutes or more.
  • a plurality of spatially separated temperature zones are connected by a micro flow channel, and the sample solution is repeatedly repeated on the same flow channel so that the sample solution stops in these temperature zones for a predetermined time. It is a method of moving alternately and heating. Although this method is excellent in that each temperature time can be freely set and thermal cycling is possible, a large number of integrated units are used to introduce samples and feed them to those temperature zones by rotating them using a pump. Therefore, it is difficult to reduce the size of the apparatus (Patent Document 3).
  • the third method is a continuous flow PCR in which a sample solution moves through a plurality of temperature zones spatially separated through a microchannel, and the sample solution is continuously fed without stopping. It is a method of calling.
  • these continuous flow PCR methods attention has been focused on a method for controlling the sample temperature at a high speed by flowing it through three meandering channels controlled by a constant temperature (Non-patent Document 3). Since this method does not require temperature changes in external devices such as containers and heaters, the theoretically the fastest temperature control can be expected, and development was carried out with the aim of commercialization, but bubbles were accidentally generated in the heating area. However, due to problems such as frequent stopping of the flow, it has not yet been put into practical use.
  • the PCR sample is continuously fed so as to fill the entire microchannel through two or three separate temperature regions.
  • a continuous flow requires a large amount of PCR sample and requires complicated control.
  • bubbles are likely to be generated in the denaturation temperature region of 95 ° C., and the flow is frequently disturbed or stopped.
  • the fluid resistance is large and the liquid feeding speed is slow, so it is efficient and high speed. As a result, it took about one hour until the end of continuous flow PCR, even if it was a high-speed system, it took more than 15 minutes.
  • genetic testing in cancer treatment has been clarified in terms of its usefulness, such as EGFR gene mutation as an indication of application of anticancer drug Iressa, so that EGFR gene, K-RAS gene, Genetic testing for the EWS-Fil gene, TLS-CHOP gene, SVT-SSX gene, and c-kit gene has recently become an insurance application.
  • Patent No. 3041423 US Pat. No. 6,960,437 WO2006 / 124458
  • An object of the present invention is to provide a method for amplifying nucleic acid in a flow path at an ultra-high speed.
  • the present inventor does not continue to flow the sample solution as in the continuous flow PCR that fills the whole of the conventional microtube and the microchannel, but sends the solution in the size of several microliters with air.
  • the influence of bubble generation was eliminated, and further, high-speed annealing due to high-speed convection inside the sample liquid and high-speed liquid feeding due to low pressure loss were achieved.
  • the sample solution moves slowly in the temperature rising direction and moves fast in the temperature decreasing direction due to a change in vapor pressure during sequential heating in the middle of liquid feeding, while ensuring a long extension reaction time, and a transition temperature. It is a high-speed and highly efficient PCR technique that can suppress the extension of by-products in
  • the present invention appropriately sets the flow channel design and liquid feeding conditions for accurately controlling the temperature with respect to the PCR sample flowing in the segment flow using the micro flow channel, and the nucleic acid in the flow channel is determined.
  • the present invention provides the following nucleic acid amplification method.
  • Item 1 In a nucleic acid amplification method for performing a PCR reaction by supplying a PCR sample solution to a nucleic acid amplification device having a meandering flow path capable of performing at least one PCR cycle, the nucleic acid amplification device corresponds to a loop portion on one side.
  • an annealing temperature zone corresponding to the loop portion opposite to one denaturation temperature zone
  • an extension temperature zone between the annealing temperature zone and the DNA denaturation temperature zone is gas
  • gas A nucleic acid which is fed into a meandering channel by a pump in the shape of a sandwiched sample plug and supplied into the meandering channel in a state separated by one cycle of PCR or more by gas.
  • Amplification method Item 2.
  • a temperature control method that secures an extension reaction time and conversely accelerates the liquid feeding speed in the cooling process from the DNA denaturing temperature zone to the annealing temperature zone and allows the passage speed faster than the heating process is used.
  • Item 2. The nucleic acid amplification method according to Item 1.
  • Item 3. The nucleic acid amplification method according to claim 1 or 2, wherein the PCR sample solution is supplied in a volume equal to or less than the volume of the linear portion of the meandering channel.
  • Item 4. Item 4. The method for amplifying nucleic acid according to any one of Items 1 to 3, wherein a thin film for observing the temperature of the solution in the channel in the chip is used.
  • the temperature control method for the sample plug is as follows: (i) cooling the annealing heater temperature for lowering the temperature to 40 ° C. or less; (ii) maintaining the heat capacity at 200 ⁇ m or more between the parallel flow paths of the meandering flow path And (iii) at least one temperature control method in which the aspect ratio of the cross section of the flow path is set to be larger than 1/8 and smaller than 1 for the generation of bubbles and stable liquid feeding. 5.
  • the nucleic acid amplification method according to any one of 4 above.
  • FIG. 1 shows a DNA denaturation heater block 7
  • temperature control 2 (about 72 ° C.) is an extension reaction heater block 6
  • temperature control 3 (about 55 ° C.) is annealing.
  • Heater block 5 and sample solutions 1 to 3 are sample plugs 8.
  • FIG. 3 is a schematic diagram showing measurement points on a meandering channel for measuring the temperature of a sample plug passing through a microfluidic device for continuous flow PCR. It is a figure which shows the measurement result of the temperature in each point of FIG.
  • FIG. 5 is a diagram showing measurement results at each point in FIG. 4 when the time per cycle on the microfluidic device for continuous flow PCR is 1 to 10 seconds.
  • FIG. 5 is a diagram showing fluorescence intensity detected at the meandering channel outlet of a continuous-flow PCR microfluidic device as a result of performing continuous-flow PCR on a Bacillus subtilis gene by changing the amount of Bacillus subtilis mixed in the sample plug. is there. It is a figure which shows the relationship between the measured fluorescence amount of FIG. 9, and the quantity of Bacillus subtilis previously mixed with the sample plug.
  • the present invention relates to a method for amplifying a nucleic acid by polymerase chain reaction (PCR) at extremely high speed in a microchannel that repeatedly passes through a plurality of temperature zones while meandering. More specifically, the present invention is a flat plate microfluidic system for continuous flow PCR, which uses a microchannel to accurately control the temperature of a PCR sample sandwiched between gases and flowing as a sample plug. It is an object of the present invention to provide a method for amplifying nucleic acid in a flow path at an ultra-high speed by appropriately setting a flow path design and liquid feeding conditions.
  • PCR polymerase chain reaction
  • examples of the plurality of temperature zones include a temperature zone for DNA denaturation, a temperature zone for annealing, and a temperature zone for extension. These three temperature zones may be clearly distinguished by a heating device (heater) or cooling device, etc., and adjacent temperature zones (DNA denaturation temperature zone and extension temperature zone, or extension temperature zone and annealing).
  • the boundary of the temperature zone is not necessarily clear.
  • the temperature zone for extension and the temperature zone for annealing may appear to be one temperature zone that appears to be integrated, but in this specification, even in such a case, the higher temperature part is stretched.
  • the temperature range is expressed as a temperature range, and the lower temperature portion is expressed as an annealing temperature range.
  • FIG. 1 shows a schematic diagram of a microfluidic device 4 for continuous flow PCR for carrying out the present invention.
  • This device includes a PCR reagent inlet 1, a meandering channel 2, and a reservoir 3 for storing a solution after the PCR reaction.
  • One cycle of PCR is a unit consisting of a pair of loop portions on both sides (corresponding to a high temperature denaturation region (corresponding to the temperature region for DNA denaturation) and a low temperature annealing region), and two linear portions connecting the loop portions.
  • the high temperature denaturation region corresponds to the “DNA denaturation temperature region”
  • the low temperature annealing region corresponds to the “annealing temperature region”
  • the two linear portions connecting the loop portions correspond to the “annealing temperature region”.
  • this unit may be formed by one meandering channel 3 or may be formed by a meandering channel 3 in which a large number of the units are connected.
  • one PCR sample solution advances in the meandering channel, one cycle of PCR reaction or multiple cycles of PCR reaction is performed according to the number of units in the meandering channel, and the necessary number of PCR products are formed. Released into the reservoir.
  • the microfluidic device 4 for continuous flow PCR shown in FIG. 1 uses, for example, an NC processing machine and a flow path shape designed on CAD on a cycloolefin resin (COP) flat plate having a length of 76 mm, a width of 52 mm, and a thickness of 2 mm. It was made by cutting.
  • the material of the microfluidic device may be acrylic resin, polycarbonate resin, polystyrene resin, fluorine resin, or the like other than polyolefin resin such as COP.
  • the flow path shape may be formed by a method that can be used for resin microfabrication such as injection molding, nanoimprinting, or soft lithography.
  • a micro flow path is cut using a resin end mill having a diameter of 200 ⁇ m, and the cross section of the flow path has a width of 10 to 1000 ⁇ m, a depth of 10 to 1000 ⁇ m, preferably a width of 400 ⁇ m and a depth of 500 ⁇ m.
  • a straight groove having a width and depth of 0.65 mm is cut from the injection side end of the microchannel to the end of the COP plate, and the exit end has a diameter of 2 mm.
  • a cylindrical reservoir was connected.
  • the microplate seal (97M manufactured by 3M) was joined to the entire surface of the meandering flow path including the metal tube portion, thereby producing a microfluidic device for continuous flow PCR incorporating a PCR sample injection tube.
  • the PCR sample injection tube may not be made of metal, but may be made of resin such as a silicon tube, or may be a tube using a rubber material or a glass material.
  • fusion by a different sealing agent, a tape agent, or a resin material may be sufficient.
  • the seal at the portion covering the reservoir on the microchannel outlet side was cut.
  • three heater blocks 5, 6, and 7 (temperature control 3, 2, and 1 respectively) with a length of 150mm, a width of 15mm, and a height of 10mm with built-in heaters are approximately 0.5mm to 1mm in parallel. 2 were arranged at intervals of and were brought into contact with the microfluidic device for continuous flow PCR produced thereon, whereby the temperature was controlled individually and locally in the three contact areas.
  • Each heater block has the ability to uniformly heat the heater block surface to 120 ° C or higher, and has a function of cooling to 5 ° C or lower by bonding a Peltier element to the bottom side. .
  • each aluminum block 5, 6 and 7 is kept uniform and constant by a heater or Peltier element by PID control based on a temperature sensor provided inside.
  • the set temperatures of the individual aluminum blocks 5, 6, and 7 shown in FIG. 2 were set so that the temperature of the sample solution was 95 ° C., 72 ° C., and 55 ° C. necessary for PCR denaturation, extension, and annealing. It is not necessary to change the temperature of the aluminum block once set as long as continuous flow PCR is performed under the same conditions.
  • the serpentine channel that folds continuously with an interval of 10 to 1000 ⁇ m, preferably 400 ⁇ m every 30 mm length, and three heater blocks and the meandering flow
  • the design was such that the paths were orthogonal and the looped portion of the meandering flow path was in contact with the heater blocks at both ends by 7 mm.
  • the position of the meandering flow path in contact with the heater blocks at both ends can be appropriately changed according to the target temperature and control time.
  • the heater block for continuous flow PCR uses a structure made of stainless steel having a length of 150 mm, a width of 15 mm, and a thickness of 10 mm with a built-in temperature sensor and arranged at intervals of 1 to 2 mm. Of these, one end side was brought into contact with a Peltier to control the temperature to below room temperature. Moreover, it was set as the design which can perform the thermal cycle required for PCR 40 times by making it the design which folds back 40 times each on the heater block of both ends among three heater blocks. 1 and 2 show an example using a meandering flow path capable of executing 40 thermal cycles and three temperature zones, but the meandering flow path may be designed so that a thermal cycle can be executed once. You may design so that there may be two temperature zones.
  • the number of meandering channels can be designed to be two or more. However, in order to enable rapid analysis, it is preferable that the number of channels be one (single).
  • Continuous flow PCR microfluidic device for extension reaction corresponding to one DNA denaturing heater block corresponding to one loop part, annealing heater block corresponding to the other loop part, and straight part connecting both loop parts
  • the heater block has three temperature zones, it should be set to the recommended ratio shown in Table 1 above.
  • One heater block for DNA denaturation corresponding to the loop portion on one side and the other loop portion / straight line When PCR is performed with two temperature settings of the heater block (extension process is performed at a temperature midway from the annealing temperature to the denaturation temperature) that can perform the extension process corresponding to the part, the recommended ratio in Table 1 is used. What is necessary is just to carry out so that it may correspond.
  • the temperature of each heater block was controlled to a target temperature by PID control.
  • the surface temperature of the heater block surface or the microfluidic device for continuous flow PCR is confirmed by a contact-type or non-contact-type temperature sensor as necessary, and the temperature required for each PCR reaction as shown in Table 1 Thus, the temperature of the heater block can be adjusted.
  • the temperature of the surface of the continuous-flow PCR microfluidic device or the flowing fluid, or the surface of the peripheral portion of the microfluidic device for continuous-flow PCR is measured with an infrared camera. Adjustments were made to achieve temperature.
  • PCR PCR reagents
  • PCR reagents were prepared according to the kit. The composition and concentration of reagents such as PCR primers and probes can be changed according to the type of gene to be detected.
  • the PCR sample was fed using a syringe pump filled with a gas in excess of the volume of the continuous flow PCR microfluidic device and the sample injection tube connected in the middle.
  • a syringe pump filled with a gas in excess of the volume of the continuous flow PCR microfluidic device and the sample injection tube connected in the middle.
  • a PCR sample injection tube of a microfluidic device for continuous-flow PCR is passed through a silicon tube with an inner diameter of 0.5 mm, in which 1 to 30 ⁇ L of 300 ⁇ L or more of a PCR reagent is connected to a syringe pump (Model 11 manufactured by Harvard). Injected from. At that time, the syringe pump is prefilled with 300 ⁇ L of air so that the sample solution can flow from the PCR sample injection tube of the continuous flow PCR microfluidic device to the reservoir at the outlet of the microchannel.
  • the flow rate of the syringe pump was set to 65 to 225 ⁇ L / min, and the solution was continuously fed until it was discharged to the reservoir at the outlet end of the microchannel. This corresponds to 1 sec / cycle to 10 sec / cycle as the time required to flow through the flow path length for one cycle in continuous flow PCR.
  • the pump for feeding the PCR sample may be any pump other than a syringe pump as long as it can feed a small amount of solution. Thereby, as shown in FIG. 2, the method of performing continuous flow PCR which sends a very small amount of PCR sample in the shape of a sample plug was established.
  • a high-speed convection and a diffusion-controlled annealing reaction can be achieved in the sample liquid by supplying a segment flow of several microliters and continuing to push with air.
  • One feature of the present invention is that the PCR solution can quickly pass through the high temperature region before the flow becomes unstable due to the generation of bubbles.
  • the fluorescence intensity of the PCR sample after PCR is directly measured with a SELFOC fluorescent fiber detector placed on a meandering channel or in a reservoir position.
  • the PCR sample was transferred to a microplate and then measured using a fluorescence microreader.
  • the use of a microfluidic device for continuous-flow PCR using a sample plug is considered to enable rapid flow and simple PCR control, but excessively rapid liquid delivery is the temperature required for PCR above each temperature zone. There is a possibility of passing before reaching. Therefore, in the present invention, in order to ensure a sufficient reaction time for each of the DNA denaturation, annealing, and elongation reactions, the vapor pressure generated at the interface with the gas before and after the sample plug in the microchannel is effective.
  • the liquid feeding speed is varied so that the sample plug passes through each heater block over a period of time required for each reaction of PCR.
  • Fig. 3 shows the results of measuring the time and speed at which the sample plug passes over the heater block for each reaction using a video camera.
  • the passage time became longer in the heating process related to the extension reaction in the parallel linear flow path portions on the meandering flow path. This is because the high vapor pressure generated in the DNA denaturation reaction heater block is decelerated because it works in the direction opposite to the progress of the sample plug.
  • the sample plug was accelerated by the influence of the same vapor pressure difference, so that the transit time was the shortest. Since the denaturation and annealing of PCR proceed very rapidly, the ratio of each reaction time is equivalent to that in Table 1, so it is optimal for PCR and significantly increases the time for enzymatic extension reaction that proceeds relatively slowly. Suitable for securing.
  • the liquid feeding speed is constant, and the DNA denaturation temperature zone to the annealing temperature zone. Also in the cooling process toward the bottom, it moves at a low speed as in other temperature zones.
  • the annealing process at a transient temperature where the primer cools to the transition temperature at which it binds to the target DNA sequence, the primer may bind to a site other than the target sequence, which generates by-products other than the target gene sequence.
  • the high-speed cooling realized by the present invention is advantageous in that it suppresses the generation of by-products and is advantageous for accurate DNA amplification.
  • the passage speed of each heater block varies as shown in FIG. 3. Therefore, it is necessary to optimize the flow path design and set temperature to reach the set reaction time and temperature. Become. Only when these conditions are satisfied, accurate DNA amplification is realized. For this purpose, it is necessary to accurately measure the temperature in each temperature region including the temperature gradient between the heaters on the chip. Therefore, in the implementation of the present invention, the measurement of the temperature of the PCR sample flowing inside the microchannel with an infrared camera through a polyolefin thin film as a sealing material was examined.
  • the film thickness of the polyolefin sealing material used in the practice of the present invention is 50 ⁇ m, and the temperature of the sample plug can be measured via the sealing material.
  • the film thickness of the sealing material is preferably 0.5 mm or less, or 50 ⁇ m or less
  • the material of the thin film used as the sealing material is not limited to polyolefin resin such as COP, but also acrylic resin or polycarbonate. It may be a series resin, polystyrene resin, or fluorine resin.
  • One feature of the present invention is that it has a method of accurately measuring the temperature of the sample plug inside the meandering flow path by using a thin film sealing material, cover material or film material.
  • the measurement points on the meandering channel are shown in FIG. Moreover, the measurement result of the temperature in each point of FIG. 4 is shown in FIG.
  • the important point in rapid temperature control by liquid feeding using the sample plug is that the cooling process time for annealing is quite short, so the temperature of the annealing heater block is set to 55 to 65 ° C, which is the normal annealing temperature. Even in this case, as shown in FIG. 5, it was not cooled to the set temperature, and the cooling effect was insufficient.
  • each heater temperature is heated or cooled more than the normal annealing temperature for high-speed temperature control on the sample plug.
  • FIG. 6 shows the measurement result of the temperature in the case of the above.
  • the temperature required for PCR was not reached in all temperature ranges.
  • the temperature of the annealing heater block was 20 ° C., it was found that when the time per cycle was 7 s or more, the temperature was excessively cooled and reached 40 ° C. or less where misannealing was likely to occur.
  • optimization of the set temperature and flow rate of each heat block is important for temperature control of continuous flow PCR using a sample plug.
  • the temperature of the annealing heater block is 20 ° C.
  • the optimal flow rate was 5-6 s per cycle.
  • Amplification of DNA by PCR is confirmed by collecting the sample solution reaching the reservoir and determining the amount of change in fluorescence intensity before and after continuous flow PCR with a fluorescence plate reader (Thermochemical Fluoroscan Ascent) set for FAM dye. did.
  • the increase in fluorescence intensity indicating amplification of the target DNA fragment was dependent on the time required for each cycle, as shown in FIG. This is because the heat conduction and reaction time necessary for each reaction of denaturation, annealing, and extension of PCR are sufficiently secured when the flow rate is decreased and the required time for each cycle is lengthened.
  • the flow path length of the straight portion of the meandering flow path is 30 mm, and the volume corresponds to about 5.5 ⁇ L.
  • the amount of the reagent solution is 10 ⁇ L or more
  • the size of the sample plug exceeds the length of one cycle, so the influence of the vapor pressure difference before and after the sample plug is eliminated and the sample solution flows at a constant speed.
  • the sample plug is sized to fit within the straight portion of the meandering channel. Therefore, in the heating or cooling for the thermal cycle, the vapor pressure changes individually at the gas-liquid interface upstream and downstream of the sample plug and changes every moment depending on the position of the meandering channel. Thereby, in the process of the extension reaction from 55 ° C. to 95 ° C., the vapor pressure at the upstream gas-liquid interface increases from the downstream side, so that a force against the flow direction is generated, as shown in FIG.
  • the sample plug moved at a low speed.
  • the vapor pressure on the downstream gas-liquid interface increases and works to accelerate the flow, so the sample plug moves at a speed of 2 to 3 times. .
  • the efficiency is about 2 to 6 times higher even at the same average flow rate. Met.
  • the extension reaction time of 72 ° C. following 55 ° C. is long, which is advantageous for PCR reaction.
  • the shape of the meandering channel of the microfluidic device for continuous flow PCR also affects the temperature control of the sample plug. Therefore, in the implementation of the present invention, the distance between the parallel straight flow paths is changed when the aspect ratio of the cross section (the ratio of the flow path depth to the flow path width) is changed by changing the depth of the micro flow path. The effect on the amplification of the target DNA was evaluated.
  • the aspect ratio should be set to a value greater than 1/8 and less than 1. Is desirable.
  • the channel depth corresponding to 1/8 was 100 ⁇ m
  • the increase in the amount of fluorescence by real-time PCR was decreased, but this was because the channel was too shallow, and this was a heater block for DNA denaturation reaction. This is because the heat is excessively propagated at the position, and the sample plug evaporates.
  • the channel depth corresponding to an aspect ratio of 1 was 800 ⁇ m
  • the increase in the fluorescence amount by real-time PCR was reduced. This is because, when heating or cooling from the bottom surface of the continuous flow PCR microchannel device, temperature unevenness occurred in the cross-sectional direction of the meandering channel, and it was not possible to uniformly control the accurate temperature.
  • the interval between the parallel linear channels of the meandering channel for maintaining a sufficient heat capacity is desirably 200 ⁇ m or more, preferably 400 ⁇ m or more, and most preferably 600 ⁇ m or more. From the above, when using COP-made micro-channels, it is considered effective for accurate temperature control to secure the distance between the channels at intervals similar to the channel width. In order to maintain a sufficient heat capacity, the interval between parallel flow paths of the meandering flow path is ensured, and the aspect ratio of the flow path cross section is set to be larger than 1/8 and less than 1 for the generation of bubbles and stable liquid feeding. It has become clear that this is necessary for more efficient DNA amplification, and a technique for accurate and high-speed temperature control to these sample plugs is one of the features of the present invention.
  • amplification of DNA fragments by continuous flow PCR was examined for Bacillus subtilis genes.
  • the PCR reagent was prepared according to the kit using the Cycle PCR PCR Screening Kit manufactured by Takara. Each PCR reagent was individually subjected to continuous flow PCR. The adjusted PCR reagent was simultaneously injected into a microfluidic device for continuous flow PCR as a 3 ⁇ L sample plug, and fed by a syringe pump (Model 11 manufactured by Harvard) at a flow rate of 100 to 680 ⁇ L / min.
  • a SELFOC fiber fluorescence detector was installed at the position of the meandering channel near the outlet of the microfluidic device for continuous flow PCR, and the fluorescence intensity increased by continuous flow PCR was measured in real time.
  • the fluorescence intensity obtained was changed in proportion to the amount of Bacillus subtilis mixed with.
  • FIG. 10 shows the change in fluorescence intensity as a numerical value and graphed as a calibration curve.
  • the obtained fluorescence intensity was confirmed to have an excellent correlation with the amount of Bacillus subtilis contained in the reagent plug originally prepared as a PCR sample, and it was confirmed that the target gene could be detected.
  • FIG. 9 it was confirmed that by using a microfluidic device for continuous flow PCR, the process from gene amplification to detection can be realized very rapidly, about 6 minutes.
  • a real-time PCR method for confirming amplification of DNA fragments by fluorescence change is used.
  • the technique used in this specification is not limited to real-time PCR, and RT-PCR. It can be used for a nucleic acid amplification technique using a PCR method including

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

流路内の核酸を超高速に増幅するための方法を提供する。 少なくとも1回のPCRサイクルを行うことができる蛇行流路を備えた核酸増幅装置にPCR試料液を供給してPCR反応を行う核酸増幅方法において、前記核酸増幅装置は、片側のループ部に対応する1つのDNA変性用温度帯と反対側のループ部に対応するアニーリング用温度帯、アニーリング用温度帯とDNA変性用温度帯の間の伸長用温度帯を有し、かつ、PCR試料液は気体に挟まれた試料プラグの形状でポンプにより蛇行流路内に送液され、気体によりPCRの1サイクル分或いはそれ以上隔てられた状態で前記蛇行流路内に供給されることを特徴とする、核酸増幅方法。

Description

核酸増幅方法
 本発明は、蛇行流路内の核酸を超高速に増幅するための方法に関する。より具体的には、本発明は、連続流マイクロ流体システムを用いて、温度を正確にコントロールするための送液条件と流路デザインを提供し、超高速なポリメラーゼ連鎖反応(PCR)を実行する方法に関する。
 遺伝子検査は、医薬品開発、法医学、臨床検査、農作物や病原性微生物の同定など、様々な分野における中核をなし、疾患および発症リスク診断、マーカーの探索、食品や環境中の安全性評価、犯罪の立証などにおける普遍的技術となっている。昨年問題となった口蹄疫や、新型インフルエンザなど、感染症の確定検査にも利用されているのは周知の事実である。また、2007年、厚労省保険局が癌遺伝子検査に対する保険収載を認めたことを皮切りに、臨床検査各社が遺伝子検査用機器やキットの市販化を発表し、いよいよ遺伝子検査が医療においても本格化し始めている。
 遺伝子である少量の核酸を高感度に検出する最も強力な基礎技術の1つは、核酸配列の一部または全部を指数関数的に複製し増幅した産物を分析する手法である。
 PCR(Polymerase Chain Reaction)は、DNAのある特定領域を選択的に増幅する強力な技術である。PCRを用いると、テンプレートDNAの中の標的とするDNA配列について、単一のテンプレートDNAから数百万コピーのDNA断片を生成することができる。PCRは、サーマルサイクルと呼ばれる三相の温度条件を繰り返すことにより、単一鎖へのDNAの変性、変性されたDNA一本鎖とプライマーのアニーリング、および熱安定性DNAポリメラーゼ酵素によるプライマーの伸長という個々の反応が順次繰り返される。このサイクルは、分析に必要な十分なコピー数が得られるまで繰り返し行われる。原理上、PCRの1回のサイクルで、コピー数を倍にすることが可能である。実際には、サーマルサイクルが続くと、反応が進行するために必要な反応試薬の濃度が減少するので、増幅されたDNA産物の集積が、最終的に止まる。PCRの一般的詳細については、「Clinical Applications of PCR」、Dennis Lo(編集)、Humana Press(ニュージャージー州トトワ所在)(1998年)、および「PCR Protocols A Guide to Methods and Applications」、M.A.Innisら(編集)、Academic Press Inc.社(カリフォルニア州サンディエゴ所在)(1990年)を参照のこと。
 PCR法は、サーマルサイクルにより遺伝子を指数関数的に増幅する強力な手法であるが、PCRに使用される汎用のサーマルサイクラー装置は、ヒーターであるアルミブロック部の巨大な熱容量のため温度制御が遅く、30~40サイクルのPCR操作に従来1~2時間を要する。そのため、最新の遺伝子検査装置を用いても、分析にトータルで数時間を要しており、PCR操作の高速化は、技術登場以来の大きな課題であった。
 このような課題解決のため、PCRによるDNA増幅に関するマイクロ流体デバイスも開発されている。試料のサーマルサイクリングは、通常、3つの方法のいずれかでなされている。
 第1の方法は、試料液がデバイス内に導入され、溶液が同じ部分に保持されたまま時間の経過とともに温度サイクリングが行われる方法である。これは従来のPCR計測器と非常によく似ている(非特許文献1、2および特許文献1)。しかし、この方法は、試料量の低減により熱容量を小さくし、サーマルサイクルの高速化を目指しているものの、チャンバーやヒーター自身の熱容量の低減に限界があるため、十分な増幅反応を行うには、少なくとも1サイクル当たり30秒程度必要であり、PCR反応の終了までに最も早い装置であっても15分以上費やさなければならない。
 第2の方法は、空間的に離れた複数の温度帯が微小流路で結ばれており、試料液がこれらの温度帯上を所定の時間ずつ停止するように、同一流路上を反復しながら交互に移動し加熱される方法である。この方法では各温度時間を自由に設定してサーマルサイクル可能な点で優れているものの、試料を導入し、ポンプを使って回転する形でそれらの温度帯に送り込むために、多数の一体化された弁およびポンプが必要なため装置の小型化が困難である(特許文献3)。
 また、第3の方法は第2の方法と同様に、微小流路を通じて試料液が空間的に離れた複数の温度帯を移動し、試料液は止まることなく連続的に送り込まれる連続流PCRと呼ぶ方法である。この連続流PCR法の中でも、一定温度に制御された3本のヒーター上で蛇行流路を介して流すことで、試料温度を高速に制御する方式が注目されていた(非特許文献3)。この方式は、容器やヒーター等外部装置の温度変化が不要なため、理論上最も高速な温度制御を期待でき、製品化を目指して開発が行われたが、加熱領域で偶発的に気泡が発生し流れが頻繁に停止するなどの問題から、現在も実用化には至っていない。具体的には、連続流PCRでは2~3ヶ所の個別の温度領域を通して、PCR試料が微小流路全体を満たす様に連続的に送液される。しかし、そのような連続流では、PCR試料が大量に必要となり、かつ複雑な制御が求められる。さらに、95℃の変性温度領域における気泡発生が生じやすく、流れの乱れや停止を招くことが頻繁に起こる。また、各温度帯上を30回~40回程度繰り返し通過できるように、数メートルの微細管や微小流路を通液するため、流体抵抗が大きく送液速度も遅くなるため、効率的で高速な温度制御を妨げ、結局、連続流PCRが終了するまでに1時間程度、例え高速なシステムであっても15分以上を要していた。
 PCR/リアルタイムPCR装置を利用した遺伝子検査の市場は順調に成長しており、特にウイルス性肝炎や性感染症、インフルエンザ等の感染症の遺伝子検査は国内でも急速に普及し始めている。また、癌治療における遺伝子検査は、EGFR遺伝子変異が抗がん剤イレッサの適用目安になる等、その有用性が明らかになったことから、肺癌や膵臓癌などにおけるEGFR遺伝子、K-RAS遺伝子、EWS-Flil遺伝子、TLS-CHOP遺伝子、SVT-SSX遺伝子、c-kit遺伝子に関する遺伝子検査が最近保険適用となった。
 現状では、遺伝子検査をラボや分析センターに持ち帰り行っているが、現場で迅速に実施可能な高速な遺伝子検査システムがあれば、その場で治療や対策の方針を決定できるため、現状の遺伝子検査機器に置き換わる画期的な技術になるものと考えられる。特に、口蹄疫や高病原性インフルエンザなど、パンデミックの水際対策では、現場での迅速かつ的確な判断と、移動に伴う二次感染拡大の防止が重要であり、そのニーズは極めて大きい。特に、臨床や感染症発生の現場で、ただちに遺伝子検査ができるサービスの実現には、低価格で実施可能で、高速かつ簡便な遺伝子検査手法が必要である。
 しかしこれまでの技術では、現場で処理可能な、迅速かつ簡便なPCRを行うことが不可能であり、超高速に増幅を行える方法が望まれていた。
特許第3041423号 米国特許第6,960,437号 WO2006/124458号
Lagallyら(Anal Chem 73:565-570(2001年) 永井らAnal Chem 73:1015-1019(2001年)) Koppら(Science 280:1046-1048(1998年)
 本発明は、流路内の核酸を超高速に増幅するための方法を提供することを目的とする。
 そこで上記課題を解決するために、本発明者は、従来の微細管や微小流路全体を満たす連続流PCRのように試料溶液を流し続けるのではなく、数マイクロリットルサイズで送液し空気で押し続けるセグメントフローとすることで気泡発生の影響を無くし、さらに、試料液内部の高速な対流によるアニーリングの高速化と、低い圧力損失による高速送液に成功した。
 本発明は、送液途中、順次加熱される際に生じる蒸気圧変化により、試料溶液が昇温方向では遅く、降温方向では速く移動することで、長い伸長反応時間を確保しつつも、遷移温度における副生成物の伸長を抑えることが可能な高速かつ高効率なPCR技術である。
 特に、このような流路を用いたサーマルサイクルでは、試料溶液に対して短時間で温度を正確に変化させるための制御が不可欠である。そこで本発明は、微小流路を用いて、セグメントフローで流れるPCR試料に対して、正確に温度を制御するための流路デザインと、送液条件を適切に設定し、流路内の核酸を超高速に増幅するための方法を提供することを目的とする。
 本発明は、以下の核酸増幅方法を提供するものである。
項1. 少なくとも1回のPCRサイクルを行うことができる蛇行流路を備えた核酸増幅装置にPCR試料液を供給してPCR反応を行う核酸増幅方法において、前記核酸増幅装置は、片側のループ部に対応する1つの変性用温度帯と反対側のループ部に対応するアニーリング用温度帯、アニーリング用温度帯とDNA変性用温度帯との間の伸長用温度帯を有し、かつ、PCR試料液は気体に挟まれた試料プラグの形状でポンプにより蛇行流路内に送液され、気体によりPCRの1サイクル分或いはそれ以上隔てられた状態で前記蛇行流路内に供給されることを特徴とする、核酸増幅方法。
項2. 前記試料プラグの前後の気体との界面に生じる蒸気圧差を利用することにより、アニーリング用温度帯からDNA変性用温度帯へ向かう加熱過程における送液速度を遅延させて伸長用温度帯での酵素的伸長反応時間を確保し、逆にDNA変性用温度帯からアニーリング用温度帯へ向かう冷却過程において送液速度を促進させて、前記加熱過程よりも高速に通過させる温度制御方法を利用することを特徴とする項1に記載の核酸増幅方法。
項3. 前記PCR試料液が、前記蛇行流路の直線部分の容積以下の容量で供給されることを特徴とする請求項1または2に記載の核酸増幅方法。
項4. チップ内流路内溶液の温度を観察するための薄膜フィルムを使用することを特徴とする、項1~3のいずれか1項に記載の核酸増幅方法。
項5. 前記試料プラグに対する温度制御方法が、(i)温度下降のためのアニーリング用ヒーター温度を40℃以下に冷却、(ii)熱容量を保持するため蛇行流路の平行する流路同士の間隔を200μm以上に確保、(iii)気泡発生や安定した送液のため流路断面のアスペクト比を1/8より大きく1未満に設定、の少なくとも1つの温度制御方法を包含することを特徴とする項1~4のいずれか1項に記載の核酸増幅方法。
 遺伝子検査のように、医療現場において微量に採取した生体試料から、高感度に遺伝子の有無を検査可能なシステムの実現が求められる。そこで、マイクロ流体デバイスの分析容量の微量化、ならびに体積に対する表面積増大に伴う伝熱効率の最大化の特性という長所を利用して、出来るだけ微量で高速な遺伝子の増幅技術を確立する必要がある。本発明では、遺伝子増幅技術であるPCRの既存法ではなかった空気に挟まれた試料プラグの形態(形状)を利用し、これまでの平板型マイクロ流体デバイスを用いた連続流PCRにおいて課題であった高速と高効率の両立を、試料プラグの前後の空気との界面に生じた試料液自身の蒸気圧を活用することで実現することができる。これにより、新たに特別な外部装置を必要とせず、マイクロ流体デバイスの長所を最大限に生かした連続流PCRシステムの微量化ならびに高速化に資する特徴を備える。
連続流PCR用微小流体デバイス4を示す図である。 図1に示す連続流PCR用微小流体デバイスにおいて、サーマルサイクルのため、蛇行流路の領域毎に温度を制御する方法を示す図である。図2中、温調1(約95℃)はDNA変性用ヒーターブロック7であり、温調2(約72℃)は伸長反応用ヒーターブロック6であり、温調3(約55℃)はアニーリング用ヒーターブロック5であり、試料液1~3は試料プラグ(sample)8である。 試料プラグ前後の蒸気圧差の影響により、連続流PCR用微小流体デバイスの各ヒーターブロック上を通過する試料プラグの通過時間と速度の変動を示すグラフである。 連続流PCR用微小流体デバイスの内を通過する試料プラグの温度を計測するため、蛇行流路上の測定ポイントを示す模式図である。 図4の各ポイントにおける温度の測定結果を示す図である。 連続流PCR用微小流体デバイス上の1サイクル当たりの時間を1~10秒とした場合の、図4の各ポイントにおける測定結果を示す図である。 連続流PCR用微小流体デバイスを用いて、試薬プラグの液量と送液速度を変化させ、試料プラグ形状にて連続流PCRを行った結果、リアルタイムPCRキットのDNA断片の増幅に伴って得られた蛍光強度を示す図である。 連続流PCR用微小流体デバイスを用いて、蛇行流路の流路の深さと、平行する直線流路の間隔を変化させ、試料プラグ形状にて連続流PCRを行った結果、リアルタイムPCRキットのDNA断片の増幅に伴って得られた蛍光強度を示す図である。 試料プラグに混合する枯草菌の量を変化させて、枯草菌の遺伝子に対する連続流PCRを行った結果、連続流PCR用微小流体デバイスの蛇行流路出口にて検出された蛍光強度を示す図である。 図9の計測された蛍光量と、試料プラグにあらかじめ混合した枯草菌の量との関係を示す図である。
 本発明は、複数の温度帯を蛇行しながら繰り返し通過する微小流路内において極めて高速にポリメラーゼ連鎖反応(PCR)により核酸を増幅するための方法に関する。より具体的には、本発明は、連続流PCRのための平板型マイクロ流体システムにおいて、微小流路を用いて、気体に挟まれ試料プラグとして流れるPCR試料に対して、正確に温度を制御するための流路デザインと、送液条件を適切に設定し、流路内の核酸を超高速に増幅するための方法を提供することを目的とする。
 本明細書において、複数の温度帯とは、DNA変性用温度帯、アニーリング用温度帯、伸長用温度帯が挙げられる。これらの3つの温度帯は加熱装置(ヒーター)或いは冷却装置などにより明確に区別されていてもよく、隣接する温度帯(DNA変性用温度帯と伸長用温度帯、或いは、伸長用温度帯とアニーリング用温度帯)の境界は明確でなくてもよい。特に伸長用温度帯とアニーリング用温度帯は、見かけ上一体的になった1つの温度帯に見える場合もあるが、本明細書ではこのような場合であっても、より温度の高い部分を伸長用温度帯と表現し、より温度の低い部分をアニーリング用温度帯と表現する。
 断りのない限り、本明細書で使用されるすべての技術および科学用語は、本発明が関係している技術分野の当業者に通常理解される意味と同じ意味を有する。次に実施の形態を挙げて本発明を具体的に説明するが、本発明はこれらの実施の形態のみに限定されるものではなく、本明細書で説明されているものと類似のまたは同等の多数の方法および材料についてどれも本発明を実施する際に使用することができる。好ましい材料および方法について以下に説明する。
 本発明を実施するための連続流PCR用微小流体デバイス4の模式図を図1に示す。このデバイスは、PCR試薬の注入口1、蛇行流路2、PCR反応後の液を貯蔵するリザーバー3を備える。PCRの1サイクルは、両側の1対のループ部分(高温の変性領域(DNA変性用温度域に対応))と低温のアニーリング領域に対応)、ループ部分を結ぶ2つの直線部分からなる1つのユニットにより行うことができる。高温の変性領域は、「DNA変性用温度域」に対応し、低温のアニーリング領域は、「アニーリング用温度域」に対応し、ループ部分を結ぶ2つの直線部分は、「アニーリング温度域」に対応する。本発明で使用する微小流体デバイスは、このユニットが1つの蛇行流路3により形成されてもよく、前記ユニットが多数連結された蛇行流路3により形成されてもよい。1つのPCR試料液が蛇行流路を進んでいくと、蛇行流路のユニット数に応じて1サイクルのPCR反応或いは多数のサイクルのPCR反応が行われ、必要な数のPCR産物が形成されてリザーバーに放出される。
 図1の連続流PCR用微小流体デバイス4は、例えば長さ76mm、幅52mm、厚さ2mmのシクロオレフィン樹脂(COP)の平板に、CAD上でデザインした流路形状を、NC加工機を用いて切削加工して作製した。このマイクロ流体デバイスの材質は、COP等のポリオレフィン系樹脂以外にも、アクリル系樹脂やポリカーボネイト系樹脂、ポリスチレン樹脂、フッ素系樹脂などであっても良い。また、この流路形状の形成には、NC加工機のような機械加工以外にも、射出成形、あるいはナノインプリンティング、あるいはソフトリソグラフィーなど樹脂の微細加工に利用可能な方法でも良い。切削加工の場合には、微小流路の切削は、直径200μmの樹脂用エンドミルを使用し、流路断面の形状は、幅10~1000μm、深さ10~1000μm、望ましくは幅400μm、深さ500μmの半円形状、あるいは直方形状とした。なお、本発明の実施においては、微小流路の注入側の末端からCOP板の端まで幅および深さが0.65mmの直線上の溝を切削し、出口側の末端には、直径2mmの円筒状のリザーバーが接続する形状とした。注入側の溝部分に外径0.65mmの金属チューブを自然に外れない長さ以上挿入し、液漏れを防ぐために接着剤を金属チューブの外周部のみに塗布後、圧力感受性の粘着剤がコートされたマイクロプレートシール(3M製9795)を、金属チューブ部分を含めた蛇行流路全面を接合することにより、PCR試料注入用チューブを内蔵した連続流PCR用微小流体デバイスを作製した。このPCR試料注入用チューブについては金属製ではなくてもシリコンチューブなど樹脂製であっても良く、あるいはゴム材、あるいはガラス材を用いたチューブなどであっても良い。この蛇行流路部のカバーについては、異なるシール剤、あるいはテープ剤、あるいは樹脂材による熱融着であっても良い。なお、微小流路出口側のリザーバーを覆う部分のシールについては、カットした。
 図2の通り、ヒーターを内蔵した3本の長さ150mm、幅15mm、高さ10mmのヒーターブロック5,6,7(各々温調3,2,1)を平行に、0.5mmから1mm程度の間隔をおいて図2のように配置し、その上に作製した連続流PCR用微小流体デバイスと接触させることで、3ヶ所の接触領域について個別かつ局所的に温度を制御した。各ヒーターブロックは、ヒーターブロック表面を均一に、120℃以上まで加熱可能な性能を有しており、また、底面側にペルチェ素子を接合させることで、5℃以下まで冷却する機能を持たせた。各アルミブロック5,6,7の温度は、内部に設けた温度センサーに基づきPID制御することで、ヒーターもしくはペルチェ素子により均一かつ一定に保持される。図2に示す個々のアルミブロック5,6,7の設定温度は、試料液の温度がPCRの変性、伸長、アニーリングに必要な95℃、72℃、55℃となるように設定した。なお、一度設定したアルミブロックの温度については、同じ条件で連続流PCRを実施する限り変更する必要はない。
 連続流PCR用微小流体デバイスの蛇行流路のデザインについては、30mmの長さ毎に10~1000μm、望ましくは400μmの間隔をおきながら連続的に折り返す蛇行流路とし、3つのヒーターブロックと蛇行流路が直交し、かつ蛇行流路の折り返すループ部分が、両端のヒーターブロックと7mmずつ接触するように設計した。なお、両端のヒーターブロックと接触する蛇行流路の位置は、目的とする温度や制御時間に合わせて、適宜変更可能とする。本発明の実施においては、連続流PCRのためのヒーターブロックは、温度センサーを内蔵した長さ150mm、幅15mm、10mm厚のステンレス製の構造体を利用し、1~2mmの間隔を空けて並べ、そのうち端側の1本については、ペルチェを接触させ室温以下まで温度制御が可能とした。また、3本のヒーターブロックのうち、両端のヒーターブロック上で、各40回ずつ折り返すデザインとすることで、PCRに要するサーマルサイクルを40回実行できる設計とした。図1,2は、サーマルサイクルを40回実行できる蛇行流路と3つの温度帯を用いた例を示しているが、サーマルサイクルを1回実行できるように蛇行流路を設計してもよく、温度帯を2つになるように設計してもよい。
 蛇行流路の本数については、2本以上に設計することも可能であるが、迅速な分析を可能にするためには、1本(単独)の流路であることが好ましい。
 アニーリング、伸長及び変性の好ましい各温度と時間の推奨比率を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 連続流PCR用微小流体デバイスが、片側のループ部に対応する1つのDNA変性用ヒーターブロックと他方のループ部に対応するアニーリング用ヒーターブロックと両側のループ部をつなぐ直線部に対応する伸長反応用ヒーターブロックの3つの温度帯を有する場合には、上記表1の推奨比率になるように設定すればよく、片側のループ部に対応する1つのDNA変性用ヒーターブロックと、他方のループ部/直線部に対応する伸長過程が実施できるヒーターブロック(伸長過程はアニール温度から変性温度の途中の温度で実施する)の2つの温度設定のサーマルサイクルでPCRを行う場合には、表1の推奨比率に対応するように実施すればよい。
 各ヒーターブロックの温度をPID制御により、目的の温度に一定制御した。ヒーターブロック表面あるいは、連続流PCR用微小流体デバイスの表面温度については、必要に応じて、接触式あるいは非接触式の温度センサーにより確認し、表1に示すようなPCRの各反応に必要な温度となるように、ヒーターブロックの温度の調整を可能とする。本発明の実施においては、連続流PCR用微小流体デバイスの表面あるいは流れている流体、あるいはその周辺部の連続流PCR用微小流体デバイスの表面の温度は、赤外線カメラにて測温し、目的の温度となるように調整を行った。
 PCRの試料液としては、リアルタイムPCRの標準的なキット(Takara製CycleavePCR Core Kit)を利用した。キット付属の134bpのDNA試料(Positive Control)を、PCRにおける増幅対象とし、キット通りにPCR試薬を調整した。なお、検出対象の遺伝子の種類に合わせ、PCR用プライマーやプローブなど、試薬の組成及び濃度は変更可能である。
 あらかじめ連続流PCR用微小流体デバイスおよび中間に接続された試料注入用チューブの体積以上の気体を充填しておいたシリンジポンプを用いてPCR試料の送液を行った。空気を満たした容量1mLシリンジポンプを用いて、シリコンチューブを介して、0.1~10μL、望ましくは1~5μLのPCR試料を吸引した後、チップのPCR試料注入用チューブと接続することで、PCR試料を送液した。もしくは、一定量のPCR試料をピペットマンにて吸引後、PCR試料をピペットマン用の交換チップ内部に留めたままはずし、PCR試料注入用チューブに先端を差し込み、さらに他端をシリンジポンプと接続することでも、PCR試料の注入を可能とした。本発明の実施においては、300μL以上のPCR試薬の1μLから30μLを、シリンジポンプ(Harvard製Model11)に接続した内径0.5mmのシリコンチューブを通して、連続流PCR用マイクロ流体デバイスのPCR試料注入用チューブから注入した。その際、試料液が連続流PCR用マイクロ流体デバイスのPCR試料注入用チューブから微小流路出口のリザーバーまで流れきるように、シリンジポンプには300μLの空気をあらかじめ満たしておく。シリンジポンプの流速は、65~225μL/minに設定し、微小流路の出口末端のリザーバーに排出されるまで連続的に送液した。これは、連続流PCRにおける1サイクル分の流路長さを流れる所要時間として、1sec/cycleから10sec/cycleに相当する。また、PCR試料を送液するポンプとしては、シリンジポンプ以外にも、微量の溶液を送液可能であればいかなるポンプであっても良い。これにより、図2に示すように、微少量のPCR試料を試料プラグの形状で送液する連続流PCRを行う方法を確立した。本発明では、数マイクロリットルサイズで送液し、空気で押し続けるセグメントフローとすることにより、試料液の内部で高速な対流や拡散律速のアニーリング反応の高速化が達成できた。また、PCR溶液は気泡発生によって流れが不安定になる前に、高温領域を迅速に通過可能な点が、本発明の特徴の1つである。
 また、前述のTakara製CycleavePCR Core KitのようなリアルタイムPCRにおいては、目的とするDNA配列が増幅される場合に、同時に蛍光を増大させることによって、目的のDNAの増幅を確認し検知する手法である。そのため、本発明の実施においては、目的とするDNAの増幅を確認するため、PCR後におけるPCR試料の蛍光強度を、蛇行流路上あるいはリザーバー位置に設置したSELFOC蛍光ファイバー検出器にて直接計測するか、あるいはPCR試料をマイクロプレートに移し替えた後、蛍光マイクロリーダーを用いて計測した。
 試料プラグを用いた連続流PCR用微小流体デバイスの使用は、迅速な流れと簡便なPCR制御を可能にすると考えられるが、過剰に迅速な送液は各温度帯の上をPCRに必要な温度に至る前に通り過ぎる可能性がある。そのため、本発明においては、DNA変性、アニーリング、伸長の各反応に十分な反応時間を確保することを目的として、微小流路内の試料プラグの前後において、気体との界面に生ずる蒸気圧を効果的に利用し、PCRの各反応に必要な時間をかけて試料プラグが各ヒーターブロックを通過するように送液速度を変動させる点が特徴の1つである。
 ビデオカメラを用いて、試料プラグが各反応用のヒーターブロック上を通過する時間と速度を計測した結果を図3に示す。図3のグラフから明らかなとおり、蛇行流路上の平行する直線流路部分の内、伸長反応に関わる加熱の過程で通過時間は長くなった。これは、DNA変性反応用ヒーターブロックにおいて生じる高い蒸気圧が、試料プラグの進行と対向する方向に働くため減速されたためである。それに対し、DNA変性からアニーリングに向かう冷却過程では、同様の蒸気圧差の影響により試料プラグが加速されるため、通過時間は最も短かった。PCRの変性とアニーリングは極めて迅速に進行するため、この各反応時間の比率は、表1と同等なため、PCRにおいて最適であり、比較的ゆっくり進行する酵素的な伸長反応の時間を有為に確保する上で適している。
 これに対し、試料プラグ形状でなく、従来の、蛇行流路全体をPCR試料で充填するように送液する連続流PCRでは、送液速度は一定であり、DNAの変性温度帯からアニーリング温度帯へ向かう冷却過程においても、その他の温度帯間と同様、低速に移動する。アニーリング過程において、プライマーが標的のDNA配列に結合する転移温度まで冷却する過渡的な温度では、標的配列以外の部位にプライマーが結合する可能性があり、これが目的遺伝子配列以外の副生成物の生成する原因となる。そのため、本発明によって実現される高速な冷却は、副生成物の生成を抑制し、正確なDNA増幅に有利な点が一つの特徴である。
 試料プラグの前後に生じる蒸気圧差により、図3の通り、ヒーターブロックごとの通過速度が変動するため、設定した反応時間および温度に到達するための、流路設計および設定温度の最適化が必要となる。これらの条件が整うことによってはじめて、正確なDNAの増幅が実現される。そのためには、チップ上でのヒーター間の温度勾配を含めた各温度領域の正確な温度の計測が必要となる。そのために、本発明の実施においては、シール材であるポリオレフィンの薄膜を介して、赤外線カメラにより微小流路内部を流れるPCR試料の温度の計測を検討した。本発明の実施において使用したポリオレフィンのシール材の膜厚は、50μmであり、シール材を介して試料プラグの温度を計測可能である。ただし、シール材の膜厚は、0.5mm以下であり、もしくは50μm以下であることが望ましい、また、シール材として用いる薄膜の材質はCOP等のポリオレフィン系樹脂以外にも、アクリル系樹脂やポリカーボネイト系樹脂、ポリスチレン樹脂、フッ素系樹脂であっても良い。本発明では、薄膜のシール材もしくはカバー材もしくはフィルム材を使用することにより、蛇行流路内部の試料プラグの温度を正確に計測する手法を有することがその特徴の1つである。
 本発明の実施において、実際に連続流PCR用微小流体デバイスの内を通過する試料プラグの温度を計測するため、図4に蛇行流路上の測定ポイントを示す。また、図4の各ポイントにおける温度の測定結果を、図5に示す。試料プラグを用いた送液による迅速な温度制御において重要な点は、アニーリングのための冷却過程の時間がかなり短いため、通常のアニーリング温度である55~65℃にアニーリング用ヒーターブロックの温度を設定した場合でも、図5の通り、設定温度まで冷却されず、冷却効果が不十分であった。これは、試料プラグの主成分である水の熱伝導度に比べ、連続流PCR用微小流体デバイスの部材であるCOPの熱伝導度は数倍低く、迅速な熱伝導のためにはより高い温度差が必要となるためである。そのため、アニーリング用ヒーターブロックの温度を下げて観察したところ、試料プラグの温度は図5のとおり、アニーリング用ヒーターブロックの温度に依存して減少した。さらに、PCR後の蛍光強度についても比較したところ、表2のとおり、アニーリング用ヒーターブロックの温度が40℃以下のとき蛍光強度の増加し、DNAが増幅されていることが確認された。特に、本発明の実施においては、アニーリング用ヒーターブロックの温度が20℃のとき、最も蛍光強度は増幅しており、図5から明らかな通り、アニーリング反応に必要な温度まで試料プラグが十分に冷却できたためと考えられる。本発明においては、試料プラグに対する高速な温度制御のために、各ヒーター温度を通常のアニーリング温度より過剰に加熱あるいは冷却することが、特徴の1つである。
Figure JPOXMLDOC01-appb-T000002
 このように各温度領域における試料プラグの到達温度は、流速によって影響を受けるため、シリンジポンプの流速を変化させて、図4の各ポイントにおいて計測し、1サイクル当たりの時間を1~10 sとした場合の温度の測定結果を図6に示す。1サイクル当たり1~2sといった極めて早い送液では、全ての温度領域でPCRに必要な温度に到達しなかった。一方、アニーリング用ヒーターブロックの温度が20℃の場合、1サイクル当たりの時間が7s以上では過剰に冷却され、ミスアニーリングを生じやすい40℃以下まで到達してしまうことが判明した。
 以上のことから、各ヒートブロックの設定温度と流速の最適化が試料プラグを用いた連続流PCRの温度制御に重要であり、本発明の実施において、アニーリング用ヒーターブロックの温度が20℃のとき、流速は1サイクル5~6sが最適であった。
 PCRによるDNAの増幅は、リザーバーに到達した試料液を回収し、FAM色素用に設定した蛍光プレートリーダー(Thermoscientific製Fluoroscan Ascent)にて、連続流PCR前後における蛍光強度の変化量を求めることで確認した。連続流PCRの結果、目的のDNA断片の増幅を示す蛍光強度の増加は、図7に示す通り、1サイクル毎の所要時間に依存した。これは、流速を遅くして1サイクル毎の所要時間を長くすると、PCRの変性、アニーリング、伸長の各反応に必要な熱伝導と反応時間が十分確保されたためである。
 図7にて明らかな通り、本発明の特徴の1つである試料プラグとして、連続流PCRを送液した場合、試料液の体積が少なくなると、PCRの効率が予想以上に向上することが明らかとなった。本発明の実施例では、蛇行流路の直線部分の流路長さは30mmであり容積は約5.5μLに相当する。実施例に示すように、試薬溶液量が10μL以上のときは、試料プラグのサイズが1サイクル分の長さを超えるため、試料プラグ前後の蒸気圧差の影響が無くなり一定の速度で流れるために、伸長反応に寄与する55℃から95℃へ向かう間の72℃の領域と、折り返して、95℃から55℃へ冷却する間に挟まれた72℃の領域の移動時間は等しくなる。しかし、試料液の体積が5.5μLより小さくなると、試料プラグは蛇行流路の直線部分の中に収まるサイズとなる。そのため、サーマルサイクルのための加熱もしくは冷却において、試料プラグの上流および下流の気液界面においては、個々に蒸気圧の変化が生じ、蛇行流路の位置に依存して刻一刻と変化する。これにより、55℃から95℃へ向かう伸長反応の過程では、上流側の気液界面での蒸気圧は、下流側より高まるために流れ方向に逆らう力が発生し、図3に示すように、試料プラグは低速で移動した。それに対し、95℃から55℃へ向かう微小流路内では、下流側の気液界面側の蒸気圧が高くなり流れを加速するように働くため、試料プラグは2~3倍の速度で移動した。
 図7から明らかなように、試料液の体積が、5μL以下の場合のPCRによる蛍光増幅量と、10μL以上の場合を比較すると、同じ平均流速であっても、2倍から6倍ほど高効率であった。このように、試料プラグ両端の蒸気圧の差を利用することで、55℃に続く72℃の伸長反応の時間は長くPCR反応に有利となり、一方、蛇行流路のデザイン上の制約による変性領域(95℃)からアニーリング領域(55℃)に戻る間のPCRに不要な伸長領域(72℃)を高速に通過することで、副生成物のない理想的なサーマルサイクルが実現でき、連続流PCRの高速化と高効率化の両立が初めて実現された。従って、試料プラグは、蛇行流路の直線部分の容積以下の容量で供給されることが、本発明の好ましい特徴の一つである。
 一方、連続流PCR用微小流体デバイスの蛇行流路の形状も、試料プラグの温度制御に影響を及ぼす。そのため、本発明の実施において、微小流路の深さを変えて断面のアスペクト比(流路幅に対する流路深さの比)を変えた場合と、平行する直線流路間の間隔を変えた場合の、目的DNAの増幅への影響を評価した。
 流路幅を800μmと固定し、流路深さの違いによる蛍光量の変化を検討したが、図8に示す通り、そのアスペクト比は、1/8より大きく、1未満の値に設定することが望ましい。1/8に相当する流路深さが100μmの場合には、リアルタイムPCRによる蛍光量の増加量が減少していたが、これは、流路が浅くなり過ぎるために、DNA変性反応用ヒーターブロック位置に置いて、過剰に熱が伝搬し試料プラグの蒸散などの影響が生じたためである。一方、アスペクト比が1に相当する流路深さが800μmの場合には、リアルタイムPCRによる蛍光量の増加量が減少していた。これは連続流PCR用微小流路デバイスの底面から加熱あるいは冷却する際に、蛇行流路の断面方向にて温度ムラが発生し、正確な温度まで均一に制御出来なかったためである。
 また、蛇行流路の平行する直線流路の間隔が狭くなると、単位面積当たりの流路面積の比率が増大するため空気の占める割合が増大し、ヒートブロックからチップ表面まで十分に温度が伝達されていないことが確認された。直線流路間の距離が短いと流路周辺の熱容量が少ないため十分には加熱されず、逆に冷却の場合においても同様で、流路同士の間隔が広いほど効率よく温度が変化した。
 図8に示すように、十分な熱容量を保持するための蛇行流路の平行する直線流路間の間隔は、200μm以上、好ましくは400μm以上、最も好ましくは600μm以上であることが望ましい。以上のことから、COP製の微小流路を利用する場合、流路幅と同程度の間隔で流路同士の距離を確保することが、正確な温度制御に有効であると考えられる。十分な熱容量を保持するため蛇行流路の平行する流路同士の間隔の確保すること、また気泡発生や安定した送液のため流路断面のアスペクト比が1/8より大きく、1未満に設定されていることが、より効率的なDNA増幅に必要であることが明らかとなり、これらの試料プラグへの正確かつ高速な温度制御のための手法が、本発明の特徴の1つである。
 他の遺伝子検出の実施例として、枯草菌の遺伝子を対象に連続流PCRによるDNA断片の増幅を検討した。Takara製CycleavePCRBacteriaScreening Kitを使用し、PCR試薬をキット通りに調整した。各PCR試薬については個別に連続流PCRを行った。調整したPCR試薬を、3μLの試料プラグとして、同時に連続流PCR用微小流体デバイス内に注入し、シリンジポンプ(Harvard製Model11)により、100から680μL/minの流速で送液した。
 複数の試料プラグを同時に導入して連続流PCRを行った際、微小流路上の1サイクル分の長さに2個以上の試料プラグが同時に入ると、理想的なサーマルサイクルに必要な蒸気圧を利用した送液のリズムが乱れてしまう。そのため、各試料プラグについては、1サイクル分以上の十分な間隔をおいて注入した。これにより、個々の試料プラグにおいて、伸長過程が減速し、冷却過程が加速化される送液のリズムが確認され、1回の連続流PCRにおいて、試料プラグの数は1個に限定されず、大量の試料液量にも対応できる。
 連続流PCR用微小流体デバイスの出口付近の蛇行流路の位置に、SELFOCファイバー蛍光検出器を設置し、連続流PCRによって増大した蛍光強度をリアルタイムに測定した結果、図9の通り、あらかじめ試料プラグに混合した枯草菌の量に比例して、得られる蛍光強度が変化した。この蛍光強度の変化を数値化し、検量線としてグラフ化したものを図10に示す。その結果、得られる蛍光強度は、もともとPCR試料として調製した試薬プラグ中に含まれる枯草菌の量に優れた相関性が確認され、目的とする遺伝子の検出が可能であることが確認された。また、図9に示す通り、連続流PCR用微小流体デバイスを使用することにより、遺伝子増幅から検出までを6分程度と、極めて迅速に実現できることが確認された。
 なお、これらの検討においては、蛍光変化によってDNA断片の増幅を確認するリアルタイムPCR法を用いているが、本明細書で使用される技術は、リアルタイムPCRに限定されるものではなく、RT-PCRを含むPCR法を利用した核酸増幅技術に利用可能である。
 上記の結果から、本発明が非常に高速にPCR反応を行えることが明らかになった。
1 PCR試料注入用チューブ
2 蛇行流路
3 リザーバー
4 連続流PCR用微小流体デバイス
5 アニーリング用ヒーターブロック
6 伸長反応用ヒーターブロック
7 DNA変性用ヒーターブロック
8 試料プラグ(sample)

Claims (5)

  1.  少なくとも1回のPCRサイクルを行うことができる蛇行流路を備えた核酸増幅装置にPCR試料液を供給してPCR反応を行う核酸増幅方法において、前記核酸増幅装置は、片側のループ部に対応する1つのDNA変性用温度帯と反対側のループ部に対応するアニーリング用温度帯、アニーリング用温度帯とDNA変性用温度帯との間の伸長用温度帯を有し、かつ、PCR試料液は気体に挟まれた試料プラグの形状でポンプにより蛇行流路内に送液され、気体によりPCRの1サイクル分或いはそれ以上隔てられた状態で前記蛇行流路内に供給されることを特徴とする、核酸増幅方法。
  2.  前記試料プラグの前後の気体との界面に生じる蒸気圧差を利用することにより、アニーリング用温度帯からDNA変性用温度帯へ向かう加熱過程における送液速度を遅延させて伸長用温度帯での酵素的伸長反応時間を確保し、逆にDNA変性用温度帯からアニーリング用温度帯へ向かう冷却過程において送液速度を促進させて、前記加熱過程よりも高速に通過させる温度制御方法を利用することを特徴とする請求項1に記載の核酸増幅方法。
  3.  前記PCR試料液が、前記蛇行流路の直線部分の容積以下の容量で供給されることを特徴とする請求項1または2に記載の核酸増幅方法
  4.  チップ内流路内溶液の温度を観察するための薄膜フィルムを使用することを特徴とする、請求項1~3のいずれか1項に記載の核酸増幅方法。
  5.  前記試料プラグに対する温度制御方法が、(i)温度下降のためのアニーリング用ヒーター温度を40℃以下に冷却、(ii)蛇行流路の平行する流路同士の間隔を200μm以上に確保、(iii)気泡発生や安定した送液のため流路断面のアスペクト比を1/8より大きく1未満に設定、の少なくとも1つの温度制御方法を包含することを特徴とする請求項1~4のいずれか1項に記載の核酸増幅方法。
PCT/JP2012/056079 2012-03-09 2012-03-09 核酸増幅方法 WO2013132645A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/384,135 US10273532B2 (en) 2012-03-09 2012-03-09 Nucleic acid amplification method
PCT/JP2012/056079 WO2013132645A1 (ja) 2012-03-09 2012-03-09 核酸増幅方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056079 WO2013132645A1 (ja) 2012-03-09 2012-03-09 核酸増幅方法

Publications (1)

Publication Number Publication Date
WO2013132645A1 true WO2013132645A1 (ja) 2013-09-12

Family

ID=49116158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056079 WO2013132645A1 (ja) 2012-03-09 2012-03-09 核酸増幅方法

Country Status (2)

Country Link
US (1) US10273532B2 (ja)
WO (1) WO2013132645A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021158A1 (ja) * 2014-08-08 2016-02-11 パナソニックIpマネジメント株式会社 核酸増幅デバイス
US20170130261A1 (en) * 2014-07-08 2017-05-11 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
WO2018084017A1 (ja) * 2016-11-01 2018-05-11 日本板硝子株式会社 反応処理容器および反応処理装置
JP2018117632A (ja) * 2012-05-24 2018-08-02 ユニヴァーシティ・オヴ・ユタ・リサーチ・ファウンデイション エクストリームpcr
JP2020110186A (ja) * 2018-01-15 2020-07-27 日本板硝子株式会社 反応処理装置
JP2021027830A (ja) * 2016-01-05 2021-02-25 日本板硝子株式会社 反応処理装置および反応処理方法
CN113574161A (zh) * 2019-03-15 2021-10-29 国立研究开发法人产业技术综合研究所 核酸扩增方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015138343A1 (en) 2014-03-10 2015-09-17 Click Diagnostics, Inc. Cartridge-based thermocycler
US9623415B2 (en) 2014-12-31 2017-04-18 Click Diagnostics, Inc. Devices and methods for molecular diagnostic testing
US10987674B2 (en) 2016-04-22 2021-04-27 Visby Medical, Inc. Printed circuit board heater for an amplification module
WO2017197040A1 (en) 2016-05-11 2017-11-16 Click Diagnostics, Inc. Devices and methods for nucleic acid extraction
EP3478857A1 (en) 2016-06-29 2019-05-08 Click Diagnostics, Inc. Devices and methods for the detection of molecules using a flow cell
USD800331S1 (en) 2016-06-29 2017-10-17 Click Diagnostics, Inc. Molecular diagnostic device
USD800913S1 (en) 2016-06-30 2017-10-24 Click Diagnostics, Inc. Detection window for molecular diagnostic device
USD800914S1 (en) 2016-06-30 2017-10-24 Click Diagnostics, Inc. Status indicator for molecular diagnostic device
US10434515B2 (en) * 2016-10-03 2019-10-08 University Of Utah Research Foundation Thermal gradient plug flow microfluidic devices for extreme PCR
CN107446811A (zh) * 2017-07-25 2017-12-08 新疆昆泰锐生物技术有限公司 一种用于pcr的管式控温装置及包含该装置的反应仪
CA3078976A1 (en) 2017-11-09 2019-05-16 Visby Medical, Inc. Portable molecular diagnostic device and methods for the detection of target viruses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064848A1 (en) * 1998-06-08 1999-12-16 Caliper Technologies Corp. Microfluidic matrix localization apparatus and methods
JP2001521622A (ja) * 1997-04-04 2001-11-06 カリパー テクノロジーズ コーポレイション 閉ループ生化学分析器
WO2002083952A1 (en) * 2001-04-12 2002-10-24 Caliper Technologies Corp. Systems and methods for high throughput genetic analysis
JP2008529555A (ja) * 2005-02-18 2008-08-07 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド 微生物のゲノムdnaを同定するデバイスおよび方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717085C2 (de) 1997-04-23 1999-06-17 Bruker Daltonik Gmbh Verfahren und Geräte für extrem schnelle DNA-Vervielfachung durch Polymerase-Kettenreaktionen (PCR)
JP4057124B2 (ja) * 1998-01-20 2008-03-05 株式会社豊田自動織機 ジェットルームにおける緯糸把持装置
JP3041423B1 (ja) 1999-02-19 2000-05-15 北陸先端科学技術大学院大学長 集積化されたマイクロウェルを用いたポリメラ―ゼ連鎖反応装置
US6960437B2 (en) 2001-04-06 2005-11-01 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
WO2005075683A1 (en) 2004-02-03 2005-08-18 Postech Foundation High throughput device for performing continuous-flow reactions
KR100552706B1 (ko) * 2004-03-12 2006-02-20 삼성전자주식회사 핵산 증폭 방법 및 장치
JP2008539759A (ja) 2005-05-11 2008-11-20 ナノリティックス・インコーポレイテッド 多数の温度で生化学的又は化学的な反応を実施する方法及び装置
WO2007028084A2 (en) * 2005-09-01 2007-03-08 Canon U.S. Life Sciences, Inc. Method and molecular diagnostic device for detection, analysis and identification of genomic dna
JP5717235B2 (ja) * 2010-03-26 2015-05-13 独立行政法人産業技術総合研究所 核酸増幅方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521622A (ja) * 1997-04-04 2001-11-06 カリパー テクノロジーズ コーポレイション 閉ループ生化学分析器
WO1999064848A1 (en) * 1998-06-08 1999-12-16 Caliper Technologies Corp. Microfluidic matrix localization apparatus and methods
WO2002083952A1 (en) * 2001-04-12 2002-10-24 Caliper Technologies Corp. Systems and methods for high throughput genetic analysis
JP2008529555A (ja) * 2005-02-18 2008-08-07 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド 微生物のゲノムdnaを同定するデバイスおよび方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117632A (ja) * 2012-05-24 2018-08-02 ユニヴァーシティ・オヴ・ユタ・リサーチ・ファウンデイション エクストリームpcr
US20170130261A1 (en) * 2014-07-08 2017-05-11 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
US11781181B2 (en) 2014-07-08 2023-10-10 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
US11098347B2 (en) * 2014-07-08 2021-08-24 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
WO2016021158A1 (ja) * 2014-08-08 2016-02-11 パナソニックIpマネジメント株式会社 核酸増幅デバイス
JPWO2016021158A1 (ja) * 2014-08-08 2017-06-15 パナソニックIpマネジメント株式会社 核酸増幅デバイス
US10626360B2 (en) 2014-08-08 2020-04-21 Panasonic Corporation Nucleic acid amplification device
JP2021027830A (ja) * 2016-01-05 2021-02-25 日本板硝子株式会社 反応処理装置および反応処理方法
US11351552B2 (en) 2016-01-05 2022-06-07 Nippon Sheet Glass Company, Limited Reaction processor, reaction processing vessel, and reaction processing method
JP7223736B2 (ja) 2016-01-05 2023-02-16 日本板硝子株式会社 反応処理装置および反応処理方法
JPWO2018084017A1 (ja) * 2016-11-01 2019-06-24 日本板硝子株式会社 反応処理容器、反応処理装置および反応処理方法
US11607687B2 (en) 2016-11-01 2023-03-21 Nippon Sheet Glass Company, Limited Reaction treatment container and reaction treatment device
WO2018084017A1 (ja) * 2016-11-01 2018-05-11 日本板硝子株式会社 反応処理容器および反応処理装置
JP2020110186A (ja) * 2018-01-15 2020-07-27 日本板硝子株式会社 反応処理装置
JP7330514B2 (ja) 2018-01-15 2023-08-22 株式会社ゴーフォトン 反応処理装置
US12030049B2 (en) 2018-01-15 2024-07-09 Go!Foton, Inc. Reaction processing apparatus
CN113574161A (zh) * 2019-03-15 2021-10-29 国立研究开发法人产业技术综合研究所 核酸扩增方法

Also Published As

Publication number Publication date
US10273532B2 (en) 2019-04-30
US20150031087A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
WO2013132645A1 (ja) 核酸増幅方法
JP7250292B2 (ja) 核酸増幅装置、核酸増幅方法及び核酸増幅用チップ
JP2013055921A (ja) 核酸増幅方法
Jafek et al. Instrumentation for xPCR Incorporating qPCR and HRMA
Wu et al. Fast detection of genetic information by an optimized PCR in an interchangeable chip
JP5717235B2 (ja) 核酸増幅方法
WO2010033338A1 (en) Systems and methods for the amplification of dna
AU2014357646B2 (en) Non-contact infrared thermocycling
CN102559488A (zh) 集成电化学检测技术的定量pcr微流控芯片一体化装置
Wan et al. Sub-5-minute ultrafast PCR using digital microfluidics
Nagai et al. Portable microfluidic system for rapid genetic testing
US20210053059A1 (en) High-speed polymerase chain reaction analysis plate
JP2015139379A (ja) 核酸増幅装置及び核酸増幅方法
JP2024035341A (ja) 試料前処理システム、および試料前処理方法
JP2024086296A (ja) 核酸増幅用チップ、核酸増幅装置、および核酸増幅方法
JP2023546179A (ja) 分子poc診断システム内で統合された熱調節及びpcr
Fuchiwaki et al. Study of DNA amplification efficiency based on temperature analyses of the moving fluid in a liquid-plug flow PCR system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14384135

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12870497

Country of ref document: EP

Kind code of ref document: A1