WO2016002912A1 - 伸縮式回転伝達軸 - Google Patents

伸縮式回転伝達軸 Download PDF

Info

Publication number
WO2016002912A1
WO2016002912A1 PCT/JP2015/069212 JP2015069212W WO2016002912A1 WO 2016002912 A1 WO2016002912 A1 WO 2016002912A1 JP 2015069212 W JP2015069212 W JP 2015069212W WO 2016002912 A1 WO2016002912 A1 WO 2016002912A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
guide plate
groove
contact
radially
Prior art date
Application number
PCT/JP2015/069212
Other languages
English (en)
French (fr)
Inventor
祥史 黒川
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN201580011501.2A priority Critical patent/CN106062397B/zh
Priority to JP2016531462A priority patent/JP6146539B2/ja
Priority to EP15814678.7A priority patent/EP3101295B1/en
Priority to US15/122,219 priority patent/US10330141B2/en
Publication of WO2016002912A1 publication Critical patent/WO2016002912A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic
    • F16C3/035Shafts; Axles telescopic with built-in bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/185Steering columns yieldable or adjustable, e.g. tiltable adjustable by axial displacement, e.g. telescopically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/06Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement
    • F16D3/065Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement by means of rolling elements

Definitions

  • the present invention relates to an improvement of a telescopic rotation transmission shaft that can be used as a shaft that can transmit rotational force (torque) and can be expanded and contracted in the axial direction.
  • the telescopic rotation transmission shaft of the present invention is applied to, for example, a steering shaft or an intermediate shaft (intermediate shaft) that constitutes a steering apparatus for an automobile.
  • the automobile steering device is configured as shown in FIG. 15, for example, so that the movement of the steering wheel 1 is transmitted to the steering gear unit 2.
  • the movement of the steering wheel 1 is transmitted to the input shaft 6 of the steering gear unit 2 through the steering shaft 3, the universal joint 4a, the intermediate shaft 5, and the universal joint 4b.
  • the steering gear unit 2 pushes and pulls the pair of left and right tie rods 7 and 7 to give a desired steering angle to the steered wheels.
  • an electric power steering device is incorporated in which the electric motor 8 applies an assisting force corresponding to the force applied by the driver to the steering wheel 1 to the steering shaft 3.
  • FIGS. 16 to 17 show an example of a telescopic rotation transmission shaft capable of transmitting such a rotational force and capable of relative displacement (expansion / contraction) in the axial direction.
  • 16 to 17 includes an inner shaft 9, an outer shaft 10, and a plurality of balls 11, 11.
  • Inner side grooves 12 and 12 are formed in the axial direction at two locations in the circumferential direction of the outer peripheral surface of the inner shaft 9 so as to be recessed radially inward. Moreover, each of the balls 11, 11 is arranged in an assembled state at the position where the phase in the circumferential direction is shifted by 90 degrees with respect to each of the inner grooves 12, 12.
  • channels 13 and 13 which are not carried out are provided.
  • the outer shaft 10 has a hollow cylindrical shape into which the inner shaft 9 can be inserted.
  • the outer side concave grooves 14 and 14 are respectively recessed in the radially outward direction at positions aligned with the inner side concave grooves 12 and 12 at two circumferential positions on the inner peripheral surface of the outer shaft 10. It is formed in the axial direction.
  • groove 14,14 in the position which the phase regarding the circumferential direction shifted
  • the outer side preliminary recessed grooves 15 and 15 are not provided.
  • each ball 11, 11 is arranged between the inner side and outer side concave grooves 12, 14 in a state of being arranged in series in the axial direction. Then, rotation can be transmitted between the shafts 9 and 10 via the balls 11 and 11, and the shafts 9 and 10 can slide in the axial direction.
  • Patent Document 3 in order to suppress the rattling generated in the telescopic rotation transmission shaft as described above, prevent the generation of abnormal noise, and ensure a stable telescopic operation.
  • a structure in which a guide plate such as a leaf spring having a preload imparting function is incorporated is considered.
  • a guide plate is installed between the inner surface of the inner groove and the rolling surface of each ball, and each ball is pressed against the inner surface of the outer groove to preload each ball. By giving, shakiness of the telescopic rotation transmission shaft is suppressed.
  • the following problems may occur depending on the structure of each part. May occur.
  • each guide plate may be damaged by fatigue due to long-term use. is there.
  • each guide plate may be damaged by fatigue due to long-term use.
  • each guide plate Compressive load is repeatedly applied to the surface of each ball from the rolling surface of each ball. For this reason, if the back surface (surface opposite to the rolling surface) of each guide plate is not supported by the inner surface of the inner concave groove, there is a possibility of repeated tensile deformation and damage to each guide plate. Cause.
  • the second and third problems described above are likely to occur at the same time and frequently when the telescopic rotation transmission shaft is used as a steering shaft or intermediate shaft in a vehicle.
  • each guide plate when each guide plate is greatly bent and deformed, there is a possibility that each guide plate and the outer peripheral surface of the inner shaft (or the inner peripheral surface of the outer shaft) come into contact. In addition, excessive wear may occur in the contact portion.
  • the present invention provides a telescopic rotation transmission shaft capable of realizing a structure capable of suppressing the rattling of the telescopic rotation transmission shaft while preventing damage to the guide plate and preventing wear of each part. It was invented to realize.
  • the telescopic rotation transmission shaft of the present invention includes an inner shaft, an outer shaft, a plurality of balls, an inner guide plate, and an outer guide plate, and the inner shaft and the outer shaft are disposed between each other.
  • the combination of transmission of rotational force and relative displacement in the axial direction is possible.
  • the inner shaft is provided with an inner concave groove that is recessed inward in the radial direction and extended in the axial direction at least at one circumferential position on the outer peripheral surface.
  • the outer shaft has a hollow cylindrical shape into which the inner shaft can be inserted, and is recessed radially outward at a position aligned with the inner groove at least at one circumferential position of the inner circumferential surface.
  • groove extended in the axial direction is provided.
  • Each of the balls is arranged in series in the axial direction at a portion between the inner side concave groove and the outer side concave groove.
  • the inner guide plate is sandwiched between the rolling surface of each ball and the inner surface of the inner groove.
  • the outer guide plate is sandwiched between the rolling surface of each ball and the inner surface of the outer groove.
  • the rotational force is generated between the inner shaft and the outer shaft.
  • the rolling surface of each ball and the radially outer surface of the inner guide plate are brought into contact with each other only at two inner contact portions that are separated from each other in the circumferential direction.
  • the inner radial side surface of the inner contact portion the portion located on the back side of the inner contact portion, the portion closest to the inner contact portion
  • the inner contact portion the portion located on the back side of the inner contact portion, the portion closest to the inner contact portion
  • the inner surface of the outer groove is elastically deformed radially outward from the state before the assembly (if necessary, the inner groove is Preload is applied to each ball by elastically deforming the inner surface radially inward.
  • a preload is applied to each ball regardless of the elasticity of the inner guide plate and the outer guide plate.
  • the radially outer surface of each of the balls is a rolling surface between the inner contact portions of the two locations.
  • An inner first non-contact portion is provided which does not contact and whose inner surface in the radial direction does not contact the inner surface of the inner groove.
  • the radially outer surfaces of the inner contact portions of the two locations have the radially outer surfaces rolling the balls.
  • a pair of inner second non-contact portions are provided which do not contact the surface and whose inner surface in the radial direction does not contact the inner surface of the inner groove.
  • the inner guide plate is formed in a cylindrical shape or a partial cylindrical shape, and is fitted on the outer peripheral surface of the inner shaft with a tightening margin.
  • the partial cylindrical shape includes a discontinuous portion having a short circumferential length of a discontinuous portion provided at one circumferential direction, and a discontinuous portion having a long circumferential length, for example, a semicylinder. Shape and 1/4 cylindrical shape.
  • the inner surface in the radial direction is in contact with the rolling surface of each ball in the portion between the two outer contact portions.
  • An outer first non-contact portion is provided that does not contact and whose outer surface in the radial direction does not contact the inner surface of the outer groove.
  • the radially inner side surfaces of the two outer contact portions of the two outer contact portions are rolling of the balls.
  • a pair of outer second non-contact portions are provided that do not contact the surface and that do not contact the radially outer surface with the inner surface of the outer groove.
  • the outer guide plate is cylindrical or partially cylindrical, and is fitted with a tight margin on the inner peripheral surface of the outer shaft.
  • the guide plate has a partial cylindrical shape.
  • the inner side concave grooves are provided at two positions on the outer peripheral surface of the inner shaft that are 180 degrees out of phase with respect to the circumferential direction.
  • Two side grooves are provided on the inner peripheral surface of the outer shaft at positions aligned with the two inner grooves, and the plurality of balls are formed by the two inner grooves and the two outer grooves.
  • Two rows are arranged between the side grooves and the outer circumferential surface of the inner shaft is radially inward at a position where the phase in the circumferential direction is shifted by 90 degrees with respect to the two inner grooves.
  • Two inner side pre-grooves that are recessed and extend in the axial direction are provided.
  • the inner side concave grooves are provided at two positions on the outer peripheral surface of the inner shaft that are 180 degrees out of phase with respect to the circumferential direction.
  • Two side grooves are provided on the inner peripheral surface of the outer shaft at positions aligned with the two inner grooves, and the plurality of balls are formed by the two inner grooves and the two outer grooves.
  • Two rows are arranged between the side grooves, and the inner shaft has a hollow cylindrical shape.
  • the inner side concave grooves are provided at two positions on the outer peripheral surface of the inner shaft that are 180 degrees out of phase with respect to the circumferential direction.
  • Two side grooves are provided on the inner peripheral surface of the outer shaft at positions aligned with the two inner grooves, and the plurality of balls are formed by the two inner grooves and the two outer grooves.
  • Two rows are arranged between the side grooves and the inner circumferential surface of the outer shaft is radially outward at a position where the phase in the circumferential direction is shifted by 90 degrees with respect to the two outer side grooves.
  • Two outer side pre-grooves are provided which are recessed in the axial direction and extend in the axial direction.
  • the telescopic rotation transmission shaft of the present invention configured as described above, a structure capable of suppressing rattling can be realized while preventing damage to the guide plate and preventing wear of each part. That is, in the case of the present invention, for each ball constituting the telescopic rotation transmission shaft, the inner surface of the outer side groove that elastically deforms radially outward in the assembled state, or elastically deforms radially inward. By using the inner surface of the inner groove, the preload is applied to each ball so as to suppress the rattling of the telescopic rotation transmission shaft.
  • the inner guide plate may be supported by the inner surface of the inner concave groove on the inner side of the inner contact portion that contacts the rolling surface of each ball. You may support the part located in the back side of the outer side contact part which contacts a rolling surface with the inner surface of an outer side ditch
  • Sectional drawing which shows the expansion-contraction type rotation transmission shaft of the 1st example of embodiment.
  • the A section enlarged view of FIG. (A) is sectional drawing which shows the state which attached the inner side guide plate to the inner shaft.
  • (B) is sectional drawing which shows the state which attached the outer side guide plate to the outer shaft.
  • Sectional drawing which shows another example of the state which attached the inner side guide plate to the inner shaft.
  • Sectional drawing equivalent to FIG. 1 which shows the 2nd example of embodiment.
  • Sectional drawing equivalent to FIG. 1 which shows the 3rd example of embodiment.
  • Sectional drawing equivalent to FIG. 1 which shows the 4th example of embodiment.
  • Sectional drawing equivalent to FIG. 1 which shows the 5th example of embodiment.
  • Sectional drawing equivalent to FIG. 1 which shows the 6th example of embodiment.
  • Sectional drawing equivalent to FIG. 1 which shows the 7th example of embodiment.
  • Sectional drawing equivalent to FIG. 1 which shows the 8th example of embodiment.
  • Sectional drawing equivalent to FIG. 1 which shows the 9th example of embodiment.
  • Sectional drawing equivalent to FIG. 2 which shows the 10th example of embodiment.
  • the partial vertical side view which shows an example of the steering device for motor vehicles.
  • Sectional drawing which shows an example of the expansion-contraction type rotational transmission shaft of a conventional structure.
  • the telescopic rotation transmission shaft 16 of this example is used as various shafts that require both functions of torque (rotational force) transmission and axial expansion / contraction.
  • the telescopic rotation transmission shaft 16 of this example is applied to, for example, the intermediate shaft 5 and the steering shaft 3 shown in FIG.
  • the telescopic rotation transmission shaft 16 of the present example includes an inner shaft 9a, an outer shaft 10a, and a plurality of balls 11 and 11 as well as the structure shown in FIGS.
  • a plate 17 and an outer guide plate 18 are provided.
  • the entire inner shaft 9a has a substantially cruciform shape (hollow shape).
  • Inner side concave grooves 12a and 12a are respectively provided at two circumferentially equidistant positions (diameter opposite side positions) on the outer peripheral surface of the inner shaft 9a while being recessed radially inward and extending in the axial direction.
  • the two inner-side concave grooves 12a and 12a are 180 degrees out of phase with respect to the circumferential direction.
  • Inner side auxiliary grooves 13a and 13a are provided on the outer peripheral surface of the inner shaft 9a at positions where the phase in the circumferential direction is shifted by 90 degrees with respect to the inner side grooves 12a and 12a.
  • Each inner-side preliminary groove 13a, 13a has the same shape as each inner-side groove 12a, 12a, but the balls 11, 11 are not arranged in the assembled state of the telescopic rotation transmission shaft 16.
  • the inner side concave grooves 12a and 12a and the inner side preliminary concave grooves 13a and 13a are formed by plastic deformation with the outer peripheral surface of the cylindrical material facing radially inward. Therefore, portions of the inner peripheral surface of the inner shaft 9a that are aligned with the inner side concave grooves 12a, 12a and the inner side preliminary concave grooves 13a, 13a protrude radially inward.
  • each inner-side concave groove 12a (and each inner-side preliminary concave groove 13a) is a composite arc formed by smoothly continuing a plurality of arcs having different curvature radii. More specifically, a pair of large-diameter arc portions 19, 19 provided on both sides in the width direction (circumferential direction) of each inner-side concave groove 12 a is made to have a radius of curvature larger than both large-diameter arc portions 19, 19.
  • the small-diameter arc portion 20 having a small diameter is formed into a substantially Gothic arch shape that is smoothly continuous at the center in the width direction. Further, the radius of curvature R12 of the large-diameter arc portion 19 is made larger than the radius of curvature R11 of the rolling surface of each ball 11 (R12> R11).
  • the outer shaft 10a has a hollow cylindrical shape into which the inner shaft 9a can be inserted.
  • the outer peripheral surface of the outer shaft 10a is a single cylindrical surface.
  • a plurality of concave grooves recessed radially outward are formed on the inner peripheral surface of the outer shaft 10a. That is, in the inner circumferential surface of the outer shaft 10a, two outer circumferential grooves that are aligned with the inner concave grooves 12a, 12a are recessed radially outward and extended in the axial direction.
  • the grooves 14a and 14a are each formed in the axial direction.
  • outer side preliminary grooves 15a and 15a are provided at positions where the phase in the circumferential direction is shifted by 45 degrees and 90 degrees with respect to the outer side concave grooves 14a and 14a.
  • channel 15a, 15a is the same shape as each outer side groove
  • bowl 11,11 is not arrange
  • a large number of outer side preliminary concave grooves 15a and 15a and a number of small concave grooves 21 and 21 are provided on the inner peripheral surface of the outer shaft 10a.
  • the rigidity of the outer shaft 10a in the circumferential direction is reduced, and the outer shaft 10a is easily elastically deformed (expanded diameter).
  • each outer side concave groove 14a (and outer side preliminary concave groove 15a) is a composite arc formed by smoothly continuing a plurality of arcs having different curvature radii. More specifically, a pair of large-diameter arc portions 19a, 19a provided on both sides in the width direction (circumferential direction) of each outer-side concave groove 14a is made to have a radius of curvature more than both large-diameter arc portions 19a, 19a.
  • a small Gothic arch that is smoothly continuous at the central portion in the width direction by a small-diameter circular arc portion 20a.
  • the radius of curvature R14 of the large-diameter arc portion 19a is larger than the radius of curvature R11 of the rolling surface of each ball 11 (R14> R11).
  • the cross-sectional shape of each outer groove 14a is the same as the cross-sectional shape of each inner groove 12a.
  • Each ball 11, 11 is made of a material such as SUJ2, SUJ3, SCM420H, for example.
  • the balls 11 and 11 are arranged in series in the axial direction between the inner side concave grooves 12a and 12a and the outer side concave grooves 14a and 14a.
  • the balls 11, 11 are arranged between the inner side concave grooves 12 a, 12 a and the outer side concave grooves 14 a, 14 a via the inner guide plate 17 and the outer guide plate 18, respectively. Is arranged.
  • the inner guide plate 17 is made of a metal plate such as a stainless steel plate or a spring steel plate, and has a substantially semi-cylindrical shape (substantially C-shaped cross section) as a whole. Further, the inner guide plate 17 has a constant thickness t, and a pair of inner guide main body portions 22 and 22 provided at both ends in the circumferential direction, and the inner guide main body portions 22 and 22 are connected to each other. One inner connecting part 23 to be connected.
  • the inner guide main body portion 22 has a concave arc shape whose cross-sectional shape is recessed inward in the radial direction, and is formed by smoothly connecting a plurality of partial cylindrical portions having different curvature radii. Specifically, a pair of large diameter cylindrical portions 24, 24 provided on both sides in the width direction (circumferential direction) is made wider by a small diameter cylindrical portion 25 having a smaller radius of curvature than both large diameter cylindrical portions 24, 24. Each inner guide main body 22 is configured by smoothly continuing in the center in the direction.
  • the radius of curvature R17 of the outer surface in the radial direction of the large-diameter cylindrical portion 24 is made larger than the radius of curvature R11 of the rolling surface of each ball 11 (R11 ⁇ R17), and the inner radius of the large-diameter cylindrical portion 24 is within the radial direction.
  • the curvature radius R17 + t of the side surface is made smaller than the curvature radius R12 of the large-diameter arc portion 19 of each inner side concave groove 12a (R17 + t ⁇ R12).
  • each inner guide main body 22 both large-diameter cylindrical portions 24, 24 and small-diameter cylindrical portion 25
  • the inner side surface and the radially outer side surface are parallel to each other.
  • the inner connecting portion 23 has an arc shape in cross section and has a radius of curvature in a free state slightly smaller than the outer diameter of the outer peripheral surface of the inner shaft 9a (the portion deviated in the circumferential direction from each concave groove 12a, 13a). It is small.
  • the inner guide plate 17 having the above-described configuration is mounted on the inner shaft 9a by fitting the inner connecting portion 23 to the outer peripheral surface of the inner shaft 9a with a margin.
  • each inner guide main body portion 22 is separated in the circumferential direction with respect to the inner surface of the inner groove 12a formed on the outer peripheral surface of the inner shaft 9a. Only two positions (inner bearing portions 29a and 29b described later) are in contact with each other, or as shown in FIG. 4, the entire inner radial surface of each inner guide body 22 is recessed on the inner side.
  • the groove 12a is slightly separated from the inner surface in the radial direction.
  • each inner side formed on the outer peripheral surface of the inner shaft 9a is between the inner peripheral surface of the inner connecting portion 23 constituting the inner guide plate 17 and the outer peripheral surface of the inner shaft 9a.
  • a gap based on the presence of the preliminary concave grooves 13a and 13a is formed.
  • the outer guide plate 18 is made of a metal plate such as a stainless steel plate or a spring steel plate, like the inner guide plate 17, and is formed in a substantially semi-cylindrical shape (substantially C-shaped cross section) as a whole. Further, the outer guide plate 18 has a constant thickness t as a whole and the same thickness as the inner guide plate 17, and a pair of outer guide body portions 26, 26 provided at both ends in the circumferential direction. And one outer connecting portion 27 that connects the outer guide main body portions 26 and 26 to each other.
  • the outer guide main body portions 26 and 26 have a concave arc shape whose cross-sectional shape is recessed outward in the radial direction, and are formed by smoothly continuing a plurality of partial cylindrical portions having different curvature radii. Specifically, a pair of large-diameter cylindrical portions 24a and 24a provided on both sides in the width direction (circumferential direction) are made wider by a small-diameter cylindrical portion 25a having a smaller radius of curvature than both large-diameter cylindrical portions 24a and 24a. Each of the outer guide main body portions 26 and 26 is configured by smoothly continuing in the central portion in the direction.
  • the radius of curvature R18 of the radially inner side surface of the large diameter cylindrical portion 24a is made larger than the radius of curvature R11 of the rolling surface of each ball 11 (R11 ⁇ R18), and the radially outer side of the large diameter cylindrical portion 24a is outside.
  • the curvature radius R18 + t of the side surface is made smaller than the curvature radius R14 of the large-diameter arc portion 19a of each outer side concave groove 14a (R18 + t ⁇ R14).
  • each outer guide main body portion 26 (both large-diameter cylindrical portions 24a, 24a and small-diameter cylindrical portion 25a) are coaxial with each other.
  • the inner side surface and the radially outer side surface are parallel to each other.
  • the outer connecting portion 27 has a circular arc cross section, and has a radius of curvature in a free state larger than the inner diameter of the inner peripheral surface of the outer shaft 10a (the portion that deviates in the circumferential direction from each of the concave grooves 14a, 15a, 21). Slightly larger.
  • each outer guide main body portion 26 is circumferentially separated from the inner surface of the outer groove 14a formed on the outer peripheral surface of the outer shaft 10a.
  • the entire outer radial surface of each outer guide main body portion 26 is the outer groove 14a. It is in a state slightly separated from the inner surface of the inner surface in the radial direction.
  • each outer formed on the inner peripheral surface of the outer shaft 10a is between the outer peripheral surface of the outer connecting portion 27 constituting the outer guide plate 18 and the inner peripheral surface of the outer shaft 10a.
  • a gap is formed based on the presence of the side preliminary recessed grooves 15a, 15a and the small recessed grooves 21, 21.
  • the inner guide plate 17 is mounted (externally fitted) on the inner shaft 9a in advance and the outer guide plate 18 is mounted on the outer shaft 10a. (Internal fitting). As shown in FIG. 5, a plurality of balls are provided between the inner guide body portions 22 and 22 constituting the inner guide plate 17 and the outer guide body portions 26 and 26 constituting the outer guide plate 18.
  • the inner shaft 9a is inserted inside the outer shaft 10a so that 11 and 11 are sandwiched in a state of being arranged in series in the axial direction.
  • the inner surfaces of the outer side concave grooves 14a, 14a are pressed outwardly in the radial direction by the balls 11, 11 via the outer guide plate 18. .
  • the entire outer shaft 10a including the inner surfaces of the outer side concave grooves 14a, 14a is elastically deformed radially outward from the state before assembly (the outer shaft 10a is elastically expanded in diameter). That is, in the case of this example, the preload is applied to the balls 11 and 11 regardless of the elasticity of the inner guide plate 17 and the outer guide plate 18 (preload application by elasticity is almost zero).
  • each outer-side groove 14a, 14a is elastically deformed, and the inner surface of each inner-side groove 13a (only the inner surface or the entire inner shaft 9a including the inner surface) is in a state before assembly. Also, it may be elastically deformed radially inward.
  • each ball 11 and each inner guide body in a state where no rotational force is transmitted between the inner shaft 9a and the outer shaft 10a.
  • the radially outer surface of the portion 22 contacts only at the two inner contact portions 28a and 28b that are spaced apart in the circumferential direction.
  • the inner side exists at a position aligned with each inner contact portion 28 a, 28 b (the portion on the back side where the distance from the inner contact portions 28 a, 28 b is the shortest). Only the support portions 29a and 29b are supported by the inner surface of each inner groove 12a.
  • each inner guide main body 22 the radially outer surface is a rolling surface of each ball 11 between the two inner contact portions 28 a and 28 b (inner bearing portions 29 a and 29 b).
  • An inner first non-contact portion 30 is provided that does not contact the inner surface of the inner concave groove 12a.
  • a substantially crescent-shaped inner first gap 31 is formed between the radially outer surface of the inner first non-contact portion 30 and the rolling surface of each ball 11.
  • a substantially crescent-shaped inner second gap 32 is formed between the side surface and the inner surface of each inner concave groove 12a.
  • each inner guide main body 22 the radially outer side surfaces of the two inner contact portions 28 a and 28 b (inner bearing portions 29 a and 29 b) are the rolling surfaces of the balls 11.
  • a pair of inner second non-contact portions 33a and 33b are provided in which the inner surface in the radial direction does not contact the inner surface of the inner groove 12a.
  • substantially wedge-shaped inner third gaps 34a and 34b are formed, respectively.
  • substantially wedge-shaped inner fourth gaps 35a and 35b are formed.
  • each ball 11 and the radially inner side surface of the outer guide main body portion 26 constituting the outer guide plate 18 are in contact only at the two outer contact portions 36a and 36b separated in the circumferential direction.
  • the outer side exists at a position aligned with each outer contact portion 36a, 36b (the portion on the back side where the distance from the outer contact portion 36a, 36b is the shortest). Only the support portions 37a and 37b are supported by the inner surface of each outer-side concave groove 14a.
  • each outer guide main body portion 26 between the two outer contact portions 36a and 36b (outer bearing portions 37a and 37b), the radially inner side surface is the rolling surface of each ball 11.
  • the outer first non-contact portion 38 is provided that does not contact with the inner surface of the outer side concave groove 14a.
  • a substantially crescent-shaped outer first gap 39 is formed between the radially inner side surface of the outer first non-contact portion 38 and the rolling surface of each ball 11, and the outer first non-contact portion 38 is radially outer.
  • a substantially crescent-shaped outer second gap 40 is formed between the side surface and the inner surface of each outer-side concave groove 14a.
  • the radially inner side surfaces of the two outer contact portions 36 a and 36 b are the rolling surfaces of the balls 11.
  • a pair of outer second non-contact portions 41a and 41b are formed which do not come into contact with each other and whose radial outer side surfaces do not come into contact with the inner side of the outer groove 14a.
  • substantially wedge-shaped outer third gaps 42a and 42b are formed, respectively.
  • Substantially wedge-shaped outer fourth gaps 43a and 43b are formed between the radially outer surfaces of the contact portions 41a and 41b and the inner surfaces of the respective outer grooves 14a.
  • the inner contact portion 28a and the inner support portion 29a, and the outer contact portion 36a and the outer support portion 37a are located at the center of each ball 11. Located on the same straight line passing through. Similarly, the inner contact portion 28 b and the inner support portion 29 b, and the outer contact portion 36 b and the outer support portion 37 b are located on the same straight line passing through the center of each ball 11. In the case of this example, the intersection angle (contact angle) of these two straight lines is about 60 to 80 degrees.
  • the telescopic rotation transmission shaft 16 of the present example is configured such that the inner shaft 9a and the outer shaft 10a are connected to each other via the balls 11, 11 and the inner guide plate 17 and the outer guide plate 18. It is configured by combining transmission of rotational force and relative displacement in the axial direction. And, according to the telescopic rotation transmission shaft 16 of this example having such a configuration, the structure that can suppress the rattling can be prevented while preventing the inner guide plate 17 and the outer guide plate 18 from being damaged and wearing of each part. realizable.
  • the balls 11, 11 are elastically deformed radially outward in the assembled state without being preloaded by the elasticity of the inner guide plate 17 and the outer guide plate 18.
  • a preload is applied to each of the balls 11 and 11 by using the inner surfaces of the outer side concave grooves 14a and 14a (the outer shaft 10a that elastically expands the diameter), so that rattling of the telescopic rotation transmission shaft 16 is suppressed. I have to.
  • the structure that can suppress the rattling of the telescopic rotation transmission shaft 16 is caused to cause a large bending deformation in the inner guide plate 17 and the outer guide plate 18 after the telescopic rotation transmission shaft 16 is assembled. Can be realized.
  • the inner guide main body 22 constituting the inner guide plate 17 with the inner guide plate 17 and the outer guide plate 18 mounted on the inner shaft 9 a and the outer shaft 10 a, respectively.
  • the postures (attachment positions) of the outer guide main body portions 26, 26 constituting the outer guide plate 22 and the outer guide plate 18 are the same as the postures after the assembly is completed, the bending deformation in the assembled state can be made substantially zero.
  • the inner support portions 29a and 29b located on the back side of the inner contact portions 28a and 28b that are in contact with the rolling surface of each ball 11 in the inner guide plate 17 are replaced with the inner side concave grooves 12a. It is supported by the inner surface.
  • bowl 11 among the outer side guide plates 18 is supported by the inner surface of the outer side ditch
  • the portion that contacts the rolling surface of each ball 11 is the sum of the inner contact portions 28a and 28b and the outer contact portions 36a and 36b. It remains as four places, or three or two of them (a total of two places, one inside contact portion and one outside contact portion). In either case, both the inside and outside guide plates 17, 18 are used. It is possible to prevent a large bending deformation from occurring. Further, when the inner shaft 9a and the outer shaft 10a are relatively displaced in the axial direction, the balls 11, 11 roll on the inner and outer guide plates 17, 18 so that the inner and outer It is possible to prevent the two guide plates 17 and 18 from undergoing large tensile deformation.
  • the inner side concave grooves 12a, 12a are provided on the outer peripheral surface of the inner shaft 9a at positions where the phases in the circumferential direction are shifted from each other by 180 degrees, and the outer side concave grooves 14a, 14a is provided on the inner peripheral surface of the outer shaft 10a at two positions aligned with the two inner side concave grooves 12a, 12a.
  • the plurality of balls 11, 11 includes two inner side concave grooves 12a, 12a and Two rows are arranged between the two outer side concave grooves 14a and 14a.
  • Two inner side pre-grooves 13a and 13a are preferably provided at positions where the phase is shifted by 90 degrees. That is, rather than providing only two inner-side grooves 12a, 12a, inner-side preliminary grooves 13a, 13a are further provided, and four grooves 12a, 12a, 13a, 13a are provided at equal intervals on the outer peripheral surface of the inner shaft 9a. It is easier and more stable to form the groove.
  • the rigidity in the circumferential direction of the inner shaft 9a is reduced, so that the inner shaft 9a is elastically deformed (reduced diameter).
  • the inner shaft 9a has a hollow cylindrical shape, the rigidity of the inner shaft 9a in the circumferential direction is reduced, and the inner shaft 9a is easily elastically deformed (reduced diameter).
  • two outer side preliminary recessed grooves 15a and 15a are provided on the inner peripheral surface of the outer shaft 10a at positions where the phases in the circumferential direction are shifted by 90 degrees with respect to the two outer side concave grooves 14a and 14a.
  • the outer side preliminary concave grooves 15a, 15a are further provided, and the four concave grooves 14a, 14a, Providing 15a, 15a is easier and more stable in grooving. Further, by forming the outer side preliminary grooves 15a and 15a in addition to the outer side concave grooves 14a and 14a, rigidity in the circumferential direction of the outer shaft 10a is reduced, so that the outer shaft 10a is elastically deformed (reduced diameter). ).
  • the outer guide plate 18a has a cylindrical shape, and a pair of outer guide main body portions 26, 26 and a pair of outer connecting portions 27, 27 are alternately continued in the circumferential direction. It is in the point which constituted.
  • the outer guide plate 18a can be mounted on the inner peripheral surface of the outer shaft 10a using the elasticity exerted by the two outer connecting portions 27, 27.
  • the support rigidity with respect to the inner peripheral surface can be increased.
  • it is the same as that of the case of the 1st example of embodiment mentioned above.
  • the inner guide plate 17a has a cylindrical shape, and a pair of inner guide main body portions 22 and 22 and a pair of inner connection portions 23 and 23 are alternately continued in the circumferential direction. It is in the point which constituted.
  • the inner guide plate 17a can be mounted on the outer peripheral surface of the inner shaft 9a by utilizing the elasticity exerted by the two inner connecting portions 23, 23. Support rigidity with respect to the outer peripheral surface can be increased. About another structure and an effect, it is the same as that of the case of the 1st example of embodiment mentioned above.
  • a fourth example of the embodiment of the present invention will be described with reference to FIG.
  • the feature of this example is that both the characteristic parts of the second example and the third example of the embodiment described above are combined. That is, as the outer guide plate 18a, the overall shape is a cylindrical shape, and a pair of outer guide main body portions 26, 26 and a pair of outer connecting portions 27, 27 are alternately continued in the circumferential direction. As the inner guide plate 17a, the overall shape is a cylindrical shape, and the pair of inner guide main body portions 22 and 22 and the pair of inner connecting portions 23 and 23 are alternately continuous in the circumferential direction.
  • a fifth example of the embodiment of the present invention will be described with reference to FIG.
  • the feature of this example is the structure of the first example of the embodiment described above. Between the inner side preliminary recessed grooves 13a and 13a and the outer side preliminary recessed grooves 15a and 15a in which the balls 11 and 11 are not arranged. Also in the portion, each ball 11, 11 is arranged.
  • the inner guide plate 17b the overall shape is a cylindrical shape, and is adjacent to the inner guide main body portions 22 and 22 provided at four circumferentially equal intervals in the circumferential direction.
  • the inner guide main body parts 22 and 22 provided with inner connection parts 23a and 23a that connect each other are used.
  • the overall shape is a cylindrical shape, and the outer guide main body portions 26 and 26 provided at four circumferentially equal intervals, and the outer guide main body portions 26 and 26 adjacent to each other in the circumferential direction. Are provided with outer connecting portions 27a, 27a for connecting the two.
  • a total of four inner side guide main-body parts 22 and 22 are each arrange
  • the main body portions 26 and 26 are disposed in the pair of outer side concave grooves 14a and 14a and the pair of outer side preliminary concave grooves 15a and 15a, respectively.
  • bowl 11,11 is connected between each inner side ditch
  • the ball rows arranged in series in the axial direction are provided at four locations in the circumferential direction, rattling between the inner shaft 9a and the outer shaft 10a. Can be more effectively prevented.
  • the ball rows arranged in series in the axial direction are provided at four locations in the circumferential direction, rattling between the inner shaft 9a and the outer shaft 10a. Can be more effectively prevented.
  • it is the same as that of the case of the 1st example of embodiment mentioned above.
  • FIG. 18 A sixth example of the embodiment of the present invention will be described with reference to FIG.
  • the characteristic part of this example is that the shape of the outer guide plate 18c is devised with respect to the structure of the fifth example of the embodiment described above.
  • the outer guide plate 18c is formed as a hollow cylinder having a discontinuous portion 45 in one circumferential direction, and the outer guide main body portions 26, 26 provided at four circumferentially spaced intervals. And three outer connecting portions 27a and 27a are used.
  • a structure in which one outer connecting portion 27a is omitted from the outer guide plate 18b of the fifth example of the embodiment described above is adopted.
  • the outer guide plate 18c is easily expanded and contracted in the radial direction, so that the assembly workability can be improved and the support rigidity for the inner peripheral surface of the outer shaft 10a can be improved. .
  • the assembly workability can be improved and the support rigidity for the inner peripheral surface of the outer shaft 10a can be improved.
  • the support rigidity for the inner peripheral surface of the outer shaft 10a can be improved.
  • a seventh example of the embodiment of the invention will be described with reference to FIG.
  • the characteristic part of this example is that the shape of the inner guide plate 17c is devised with respect to the structure of the sixth example of the embodiment described above. That is, in the case of this example, two inner guide plates 17c are mounted on the outer peripheral surface of the inner shaft 9a as a partial cylindrical shape (about 1/4 cylindrical shape).
  • Each inner guide plate 17c includes a pair of inner guide main body portions 22 and 22 provided at both ends in the circumferential direction, and one inner connecting portion 23b that connects the inner guide main body portions 22 and 22 to each other. I am using something.
  • the two inner guide plates 17c and 17c are mounted at opposite positions with respect to the diameter direction of the inner shaft 9a.
  • one inner connecting portion 23a can be omitted as compared with the structure of the sixth example, the material cost can be reduced.
  • it is the same as that of the case of the 1st example and 6th example of embodiment mentioned above.
  • the inner shaft 9b has a hollow cylindrical shape.
  • the inner shaft 9b is radially inwardly recessed and extended in the axial direction at three circumferentially equidistant positions (positions where the phase in the circumferential direction is shifted by 120 degrees) on the outer peripheral surface of the inner shaft 9b.
  • Side grooves 12a and 12a are provided, respectively.
  • the outer shaft 10b into which the inner shaft 9b is inserted has a hollow cylindrical shape.
  • three outer circumferential grooves that are aligned with the inner concave grooves 12a and 12a are recessed radially outward and extended in the axial direction.
  • the grooves 14a and 14a are each formed in the axial direction.
  • the inner side preliminary groove 13a, the outer side preliminary groove 15a, and the small groove 21 provided in the structure of the first example of the embodiment described above are not provided.
  • the inner guide plate 17d is formed in a partially cylindrical shape having a discontinuous portion 45a at one place in the circumferential direction.
  • the inner guide plate 17d includes inner guide main body portions 22 and 22 provided at three equal intervals in the circumferential direction, and two inner connecting portions 23b and 23b.
  • the outer guide plate 18d has a cylindrical shape as a whole.
  • the outer guide plate 18d has three outer connecting portions that connect the outer guide main body portions 26, 26 provided at three circumferentially equidistant positions and the outer guide main body portions 26, 26 adjacent to each other in the circumferential direction. 27b, 27b.
  • bowl 11,11 is connected between each inner side ditch
  • the portions are arranged in series in the axial direction.
  • the ball rows arranged in series in the axial direction are provided at three locations in the circumferential direction, compared to a structure provided only at two locations in the circumferential direction, Shaking between the inner shaft 9b and the outer shaft 10b can be more effectively prevented.
  • it is the same as that of the case of the 1st example of embodiment mentioned above.
  • inner side concave grooves 12a and 12a are respectively provided at two circumferentially equidistant intervals on the outer peripheral surface of the inner shaft 9c so as to be recessed radially inward and extending in the axial direction.
  • the other part of the outer peripheral surface of the inner shaft 9c is cylindrical.
  • the outer shaft 10c into which the inner shaft 9c is inserted is a hollow cylinder.
  • two outer circumferential grooves 14a, 12a aligned with the inner concave grooves 12a, 12a are recessed radially outward and extended in the axial direction. 14a are formed in the axial direction, and the other portions are cylindrical.
  • the inner side preliminary groove 13a, the outer side preliminary groove 15a, and the small groove 21 provided in the structure of the first example of the embodiment are not provided.
  • the forming operation of each of the concave grooves 13a, 15a, and 21 is unnecessary, so that the processing cost can be reduced.
  • the part and both side parts are also brought into contact with the inner surface of the inner groove 12a. Further, not only the two outer support portions 37a and 37b that are spaced apart in the circumferential direction on the radially outer surface of the outer guide main body portion 26a, but also the portions between both the outer support portions 37a and 37b and both side portions are arranged on the outer side. It is made to contact
  • the structures of the examples of the above-described embodiments can be implemented in appropriate combination. Also, various changes can be made in the shape, structure, and material of each component.
  • the telescopic rotation transmission shaft of the present invention can be preferably applied to an intermediate shaft or a steering shaft among components of an automobile steering device provided with an electric power steering device.
  • the present invention is not limited to the shaft constituting the automobile steering device, but can be implemented as a rotation transmission shaft constituting various rotary machine devices such as machine tools and playground equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Ocean & Marine Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Controls (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

 本発明の伸縮式回転伝達軸においては、各玉(11)の転動面とインナ側凹溝(12a)及びアウタ側凹溝(14a)の内面との間に、夫々内側案内板(17)及び外側案内板(18)を挟持している。各玉(11)の転動面と内側案内板(17)の径方向外側面、及び各玉(11)の転動面と外側案内板(18)の径方向内側面を、夫々円周方向に離隔した2個所の接触部(28a、28b、36a、36b)でのみ接触させている。更に、内側案内板(17)及び外側案内板(18)の径方向内側面のうち、各接触部(28a、28b、36a、36b)と整合する部分を、夫々インナ側凹溝(12a)及びアウタ側凹溝(14a)の内面によって支承している。更に、組立後におけるアウタ側凹溝(14a)及び/又はインナ側凹溝(12a)の内面を、組立前における位置よりも径方向外方に弾性変形させておくことで、各玉(11)に予圧を付与している。

Description

伸縮式回転伝達軸
  本発明は、回転力(トルク)を伝達可能で、且つ、軸方向に伸縮可能なシャフトとして使用する、伸縮式回転伝達軸の改良に関する。本発明の伸縮式回転伝達軸は、例えば、自動車の操舵装置を構成するステアリングシャフトや中間シャフト(インターミディエイトシャフト)等に適用される。
  自動車の操舵装置は、例えば図15に示す様に構成して、ステアリングホイール1の動きをステアリングギヤユニット2に伝達する様にしている。ステアリングホイール1の動きは、ステアリングシャフト3と、自在継手4aと、中間シャフト5と、自在継手4bと、を介して、ステアリングギヤユニット2の入力軸6に伝達される。すると、ステアリングギヤユニット2が、左右1対のタイロッド7、7を押し引きして、操舵輪に所望の舵角を付与する。図15に示した例では、電動モータ8によりステアリングシャフト3に対し、運転者がステアリングホイール1に加えた力に応じた補助力を付与する、電動式パワーステアリング装置を組み込んでいる。
  又、上述の様な操舵装置を構成するステアリングシャフト3や中間シャフト5として、例えば特許文献1、2に記載されたものが、従来から知られている。特許文献1、2に記載された構造の場合には、内軸と外軸との間に複数個の玉を配置する事により、各玉を介して両軸同士の間で回転力を伝達可能とすると共に、両軸同士の軸方向に関する相対変位を可能としている。図16~17は、この様な回転力を伝達可能で、且つ、軸方向の相対変位(伸縮)を可能とした伸縮式回転伝達軸の1例を示している。図16~17に示した伸縮式回転軸は、内軸9と、外軸10と、複数の玉11、11と、を備える。内軸9の外周面の円周方向2個所には、径方向内方に凹入する状態で、インナ側凹溝12、12が、それぞれ軸方向に形成されている。又、各インナ側凹溝12、12に対し円周方向に関する位相が90度ずれた位置に、各インナ側凹溝12、12と同形状であるが、組立状態で各玉11、11が配置されない、インナ側予備凹溝13、13を設けている。
  又、外軸10は、内軸9を挿入可能な中空筒状としている。外軸10の内周面の円周方向2個所で各インナ側凹溝12、12と整合する位置には、径方向外方に凹入する状態で、アウタ側凹溝14、14が、それぞれ軸方向に形成されている。又、各アウタ側凹溝14、14に対し円周方向に関する位相が90度ずれた位置に、各アウタ側凹溝14、14と同形状であるが、組立状態で各玉11、11が配置されない、アウタ側予備凹溝15、15を設けている。又、各玉11、11は、インナ側、アウタ側各凹溝12、14同士の間に、それぞれ配置されている。各玉11、11は、図16に示す様に、インナ側、アウタ側各凹溝12、14同士の間に、それぞれ複数個ずつ、軸方向に直列に並べた状態で配置されている。そして、両軸9、10同士の間で、各玉11、11を介して回転の伝達が可能で、且つ、両軸9、10同士が互いに軸方向に摺動可能としている。
  ところで、上述した様な伸縮式回転伝達軸に生じるがたつきを抑制し、異音の発生を防止すると共に、安定した伸縮動作を確保する為に、例えば特許文献3に記載されている様に、予圧付与機能を有する板ばねの如き案内板を組み込む構造が考えられている。特許文献3の従来構造の場合、インナ側凹溝の内面と各玉の転動面との間部分に案内板を設置し、各玉をアウタ側凹溝の内面に押し付け、各玉に予圧を付与する事により、伸縮式回転伝達軸のがたつきを抑制している。但し、この従来構造の様に、インナ側凹溝の内面と各玉の転動面との間部分に案内板を設置する構造を採用した場合、各部の構造如何によっては、次の様な問題を生じる可能性がある。
  第一に、伸縮式回転伝達軸を組み立てた後の状態で、各案内板が大きく撓み変形する構造の場合には、各案内板が、長期間に亙る使用による疲労により、損傷する可能性がある。
  第二に、回転力の伝達時に、各案内板が大きく撓み変形する構造の場合にも、各案内板が、長期間に亙る使用による疲労により、損傷する可能性がある。
  第三に、伸縮式回転伝達軸を構成する内軸と外軸とが軸方向に相対変位する事により、各玉が各案内板の表面(転走面)上を転走すると、各案内板の表面には、各玉の転動面から繰り返し圧縮荷重が加わる。この為、各案内板の裏面(転走面とは反対側の面)がインナ側凹溝の内面によって支承されていない場合には、引っ張り変形が繰り返し加わる可能性があり、各案内板の損傷の原因になる。
  尚、上述した第二の問題と第三の問題とは、伸縮式回転伝達軸をステアリングシャフトや中間シャフトとして車両に組み込んで使用する場合に、同時に且つ頻繁に発生し易い。
  第四に、上述した第一及び第二の理由により、各案内板が大きく撓み変形した場合、各案内板と内軸の外周面(又は外軸の内周面)とが接触する可能性があり、当該接触部に過大な摩耗が生じる可能性がある。
日本国特開2008-6903号公報 日本国特開2007-16951号公報 日本国特表2011-500421号公報
  本発明は、上述の様な事情に鑑みて、伸縮式回転伝達軸のがたつきを抑えられる構造を、案内板の損傷防止と各部の摩耗を防止しつつ実現できる、伸縮式回転伝達軸を実現すべく発明したものである。
  本発明の伸縮式回転伝達軸は、内軸と、外軸と、複数個の玉と、内側案内板と、外側案内板と、を備え、前記内軸と前記外軸とを、互いの間での回転力の伝達及び軸方向の相対変位を可能に組み合わせて成る。
  前記内軸は、外周面の円周方向の少なくとも1個所に、径方向内方に凹入すると共に軸方向に伸長した、インナ側凹溝を設けている。
  前記外軸は、前記内軸を挿入可能な中空筒状であり、内周面の円周方向の少なくとも1個所で前記インナ側凹溝と整合する位置に、径方向外方に凹入すると共に軸方向に伸長したアウタ側凹溝を設けている。
  前記各玉は、前記インナ側凹溝と前記アウタ側凹溝との間部分に、軸方向に直列に配置されている。
  前記内側案内板は、前記各玉の転動面と前記インナ側凹溝の内面との間に挟持されている。
  前記外側案内板は、前記各玉の転動面と前記アウタ側凹溝の内面との間に挟持されている。
  特に本発明の伸縮式回転伝達軸の場合には、伸縮式回転伝達軸を組み立てた(前記内軸と前記外軸とを組み合わせた)後、前記内軸と前記外軸との間で回転力を伝達していない状態で、前記各玉の転動面と前記内側案内板の径方向外側面とを、円周方向に離隔した2個所の内側接触部でのみ接触させると共に、前記内側案内板の径方向内側面のうち、前記各内側接触部と整合する部分(前記内側接触部の裏側に位置する部分であり、前記内側接触部からの距離が最も近い部分)を、前記インナ側凹溝の内面によって支承している。
  前記伸縮式回転伝達軸を組み立てた後、前記内軸と前記外軸との間で回転力を伝達していない状態で、前記各玉の転動面と前記外側案内板の径方向内側面とを、円周方向に離隔した2個所の外側接触部でのみ接触させると共に、前記外側案内板の径方向外側面のうち、前記各外側接触部と整合する部分(前記外側接触部の裏側に位置する部分であり、前記外側接触部からの距離が最も近い部分)を、前記アウタ側凹溝の内面によって支承している。
  更に、前記伸縮式回転伝達軸を組み立てた後の状態で、少なくとも前記アウタ側凹溝の内面を、組み立て以前の状態よりも径方向外方に弾性変形させる(必要に応じてインナ側凹溝の内面を径方向内方に弾性変形させる)事により、前記各玉に予圧を付与している。
  本発明の伸縮式回転伝達軸を実施する場合には、前記内側案内板及び前記外側案内板の弾力によらず、前記各玉に予圧を付与する。
  本発明の伸縮式回転伝達軸を実施する場合には、前記内側案内板のうちで、前記2個所の内側接触部同士の間部分に、その径方向外側面が前記各玉の転動面と接触せず、且つ、その径方向内側面が前記インナ側凹溝の内面と接触しない、内側第一非接触部を設ける。
  本発明の伸縮式回転伝達軸を実施する場合には、前記内側案内板のうちで、前記2個所の内側接触部の円周方向両側部分に、その径方向外側面が前記各玉の転動面と接触せず、且つ、その径方向内側面が前記インナ側凹溝の内面と接触しない、1対の内側第二非接触部を設ける。
  本発明の伸縮式回転伝達軸を実施する場合には、前記内側案内板を、円筒状又は部分円筒状とし、前記内軸の外周面に対し締め代を有する状態で外嵌する。
  尚、前記部分円筒状には、円周方向1個所に設けた不連続部の円周方向長さの短い欠円筒状のものから、不連続部の円周方向長さの長い、例えば半円筒状や1/4円筒状のもの等も含む。
  本発明の伸縮式回転伝達軸を実施する場合には、前記外側案内板のうちで、前記2個所の外側接触部同士の間部分に、その径方向内側面が前記各玉の転動面と接触せず、且つ、その径方向外側面が前記アウタ側凹溝の内面と接触しない、外側第一非接触部を設ける。
  本発明の伸縮式回転伝達軸を実施する場合には、前記外側案内板のうちで、前記2個所の外側接触部の円周方向両側部分に、その径方向内側面が前記各玉の転動面と接触せず、且つ、その径方向外側面が前記アウタ側凹溝の内面と接触しない、1対の外側第二非接触部を設ける。
  本発明の伸縮式回転伝達軸を実施する場合には、前記外側案内板を、円筒状又は部分円筒状とし、前記外軸の内周面に対し締め代を有する状態で内嵌する。
  本発明の伸縮式回転伝達軸を実施する場合には、前記内側案内板と前記外側案内板とのうちの少なくとも何れか一方の案内板を、複数(例えば2つ又は3つ)設け、それぞれの案内板を部分円筒状とする。
  本発明の伸縮式回転伝達軸を実施する場合には、前記インナ側凹溝は、前記内軸の外周面において、互いに円周方向に関する位相が180度ずれた位置に2つ設けられ、前記アウタ側凹溝は、前記外軸の内周面において、前記2つのインナ側凹溝と整合する位置に2つ設けられ、前記複数個の玉は、前記2つのインナ側凹溝と前記2つのアウタ側凹溝との間部分に、二列配置され、前記内軸の外周面には、前記2つのインナ側凹溝に対し円周方向に関する位相が90度ずれた位置に、径方向内方に凹入するとともに軸方向に伸長したインナ側予備凹溝が2つ設けられる。
  本発明の伸縮式回転伝達軸を実施する場合には、前記インナ側凹溝は、前記内軸の外周面において、互いに円周方向に関する位相が180度ずれた位置に2つ設けられ、前記アウタ側凹溝は、前記外軸の内周面において、前記2つのインナ側凹溝と整合する位置に2つ設けられ、前記複数個の玉は、前記2つのインナ側凹溝と前記2つのアウタ側凹溝との間部分に、二列配置され、前記内軸は中空筒状である。
  本発明の伸縮式回転伝達軸を実施する場合には、前記インナ側凹溝は、前記内軸の外周面において、互いに円周方向に関する位相が180度ずれた位置に2つ設けられ、前記アウタ側凹溝は、前記外軸の内周面において、前記2つのインナ側凹溝と整合する位置に2つ設けられ、前記複数個の玉は、前記2つのインナ側凹溝と前記2つのアウタ側凹溝との間部分に、二列配置され、前記外軸の内周面には、前記2つのアウタ側凹溝に対し円周方向に関する位相が90度ずれた位置に、径方向外方に凹入するとともに軸方向に伸長したアウタ側予備凹溝が2つ設けられる。
  上述の様に構成する本発明の伸縮式回転伝達軸によれば、がたつきを抑えられる構造を、案内板の損傷防止と各部の摩耗を防止しつつ実現できる。
  即ち、本発明の場合には、伸縮式回転伝達軸を構成する各玉に対し、組み立て後の状態で径方向外方に弾性変形するアウタ側凹溝の内面、又は径方向内方に弾性変形するインナ側凹溝の内面を利用して、各玉に予圧を付与し、伸縮式回転伝達軸のがたつきを抑える様にしている。この為、伸縮式回転伝達軸のがたつきを抑えられる構造を、この伸縮式回転伝達軸を組み立てた後の状態で、内側案内板や外側案内板に大きな撓み変形を生じさせる事なく実現できる。
  尚、各玉に予圧を付与する際に、内側案内板や外側案内板の弾力によっては予圧を付与しないようにすれば、内側案内板や外側案内板の撓み変形をさらに抑制することができる。
  又、内側案内板のうち、各玉の転動面と接触する内側接触部の裏側に位置する部分を、インナ側凹溝の内面により支承してもよく、外側案内板のうち、各玉の転動面と接触する外側接触部の裏側に位置する部分を、アウタ側凹溝の内面により支承してもよい。この場合、内軸と外軸との間で回転力を伝達する際に、内側、外側両案内板に大きな撓み変形が生じる事を防止できる。又、内軸と外軸とが軸方向に相対変位する際に、各玉が内側、外側両案内板上を転走する事に起因して、内側、外側両案内板に大きな引っ張り変形が生じる事を防止できる。
  更に、本発明の場合には、上述した様に、組立完了後の状態及び回転力の伝達時に、内側、外側両案内板に大きな撓み変形が生じる事を防止できる為、内側、外側両案内板と内軸の外周面又は外軸の内周面とが接触する場合にも、当該接触部で過大な摩耗が生じる事を防止できる。
  この結果、本発明の伸縮式回転伝達軸によれば、がたつきを抑えられる構造を、内側案内板及び外側案内板の損傷防止と各部の摩耗を防止しつつ実現できる。
  又、請求項4、5に記載した発明によれば、内側案内板の径方向内側面とインナ側凹溝の内面とが接触する部分の面積を小さくできる為、各部の摩耗をより有効に防止できる。
実施形態の第1例の伸縮式回転伝達軸を示す断面図。 図1のA部拡大図。 (A)は内軸に内側案内板を装着した状態を示す断面図。(B)は外軸に外側案内板を装着した状態を示す断面図。 内軸に内側案内板を装着した状態の別例を示す断面図。 伸縮式回転伝達軸の分解斜視図。 実施形態の第2例を示す、図1に相当する断面図。 実施形態の第3例を示す、図1に相当する断面図。 実施形態の第4例を示す、図1に相当する断面図。 実施形態の第5例を示す、図1に相当する断面図。 実施形態の第6例を示す、図1に相当する断面図。 実施形態の第7例を示す、図1に相当する断面図。 実施形態の第8例を示す、図1に相当する断面図。 実施形態の第9例を示す、図1に相当する断面図。 実施形態の第10例を示す、図2に相当する断面図。 自動車用操舵装置の1例を示す、部分縦断側面図。 従来構造の伸縮式回転伝達軸の1例を示す断面図。 図16のB-B断面図。
  [実施形態の第1例]
  本発明の実施形態の第1例について、図1~5を参照しつつ説明する。本例の伸縮式回転伝達軸16は、トルク(回転力)の伝達と軸方向の伸縮との両方の機能を必要とされる、各種シャフトとして使用するものである。本例の伸縮式回転伝達軸16は、例えば図15に示した中間シャフト5やステアリングシャフト3に適用される。したがって、本例の伸縮式回転伝達軸16は、例えば図16~17に示した構造と同様に、内軸9aと、外軸10aと、複数の玉11、11と、を備えると共に、内側案内板17と、外側案内板18と、を備える。
  内軸9aは、全体を略十字筒状(中空状)としている。内軸9aの外周面の円周方向等間隔2個所(直径方向反対側位置)には、径方向内方に凹入すると共に軸方向に伸長する状態で、インナ側凹溝12a、12aをそれぞれ設けている。すなわち、2個所のインナ側凹溝12a、12aは、互いに円周方向に関する位相が180度ずれている。又、内軸9aの外周面には、各インナ側凹溝12a、12aに対し円周方向に関する位相が90度ずれた位置に、インナ側予備凹溝13a、13aを設けている。各インナ側予備凹溝13a、13aは、各インナ側凹溝12a、12aと同形状であるが、伸縮式回転伝達軸16の組立状態で各玉11、11が配置されない。本例の場合には、インナ側凹溝12a、12a及びインナ側予備凹溝13a、13aを、円筒状の素材の外周面を径方向内方に向けて塑性変形する事により形成している。この為、内軸9aの内周面のうち、各インナ側凹溝12a、12a及び各インナ側予備凹溝13a、13aと整合する部分は、径方向内方に向けて突出している。
  又、本例の場合には、各インナ側凹溝12a(及び各インナ側予備凹溝13a)の断面形状を、曲率半径の異なる複数の円弧を滑らかに連続させて成る複合円弧としている。より具体的には、各インナ側凹溝12aの幅方向(円周方向)両側部分に設けられた1対の大径円弧部19、19を、両大径円弧部19、19よりも曲率半径の小さい小径円弧部20により幅方向中央部で滑らかに連続させた、略ゴシックアーチ状としている。又、大径円弧部19の曲率半径R12を、各玉11の転動面の曲率半径R11よりも大きくしている(R12>R11)。
  外軸10aは、内軸9aを挿入可能な中空筒状である。外軸10aの外周面は、単一円筒面状である。外軸10aの内周面には、径方向外方に凹入した複数の凹溝を形成している。即ち、外軸10aの内周面のうち、各インナ側凹溝12a、12aと整合する円周方向2個所に、径方向外方に凹入すると共に軸方向に伸長する状態で、アウタ側凹溝14a、14aをそれぞれ軸方向に形成している。又、外軸10aの内周面には、各アウタ側凹溝14a、14aに対し円周方向に関する位相が45度及び90度ずれた位置に、アウタ側予備凹溝15a、15aを設けている。各アウタ側予備凹溝15a、15aは、各アウタ側凹溝14a、14aと同形状であるが、伸縮式回転伝達軸16の組立状態で各玉11、11が配置されない。更に、外軸10aの内周面のうち、円周方向に関して各アウタ側凹溝14aと各アウタ側予備凹溝15aとの間部分、及び、円周方向に関して隣り合うアウタ側予備凹溝15a、15a同士の間部分に、アウタ側凹溝14a及びアウタ側予備凹溝15aよりも径方向に関する深さ寸法及び円周方向に関する開口幅が小さい、小凹溝21、21を設けている。本例の場合には、外軸10aの内周面に、本来必要であるアウタ側凹溝14a、14aに加えて、各アウタ側予備凹溝15a、15a及び各小凹溝21、21を多数形成する事により、外軸10aの円周方向に関する剛性を低下させて、外軸10aを弾性変形(拡径)させ易くしている。
  又、本例の場合には、各アウタ側凹溝14a(及びアウタ側予備凹溝15a)の断面形状を、曲率半径の異なる複数の円弧を滑らかに連続させて成る複合円弧としている。より具体的には、各アウタ側凹溝14aの幅方向(円周方向)両側部分に設けられた1対の大径円弧部19a、19aを、両大径円弧部19a、19aよりも曲率半径の小さい小径円弧部20aにより幅方向中央部で滑らかに連続させた、略ゴシックアーチ状としている。又、大径円弧部19aの曲率半径R14を、各玉11の転動面の曲率半径R11よりも大きくしている(R14>R11)。尚、本例の場合、各アウタ側凹溝14aの断面形状を、各インナ側凹溝12aの断面形状と同形状としている。
  各玉11、11は、例えばSUJ2、SUJ3、SCM420H等の材料から造られている。又、各玉11、11は、各インナ側凹溝12a、12aと各アウタ側凹溝14a、14aとの間部分に、軸方向に直列に配置されている。特に本例の場合には、各玉11、11をそれぞれ、内側案内板17及び外側案内板18を介して、各インナ側凹溝12a、12aと各アウタ側凹溝14a、14aとの間部分に配置している。
  内側案内板17は、ステンレス鋼板やばね鋼板等の金属板製で、全体を略半円筒状(断面略C字形)に形成されている。又、内側案内板17は、全体に亙り板厚tが一定であり、円周方向両端部に設けられた1対の内側案内本体部22、22と、両内側案内本体部22、22同士を連結する1つの内側連結部23と、を備える。
  内側案内本体部22は、断面形状が径方向内方に向けて凹んだ凹円弧状であり、曲率半径の異なる複数の部分円筒部を滑らかに連続させて成る。具体的には、幅方向(円周方向)両側部分に設けられた1対の大径円筒部24、24を、両大径円筒部24、24よりも曲率半径の小さい小径円筒部25により幅方向中央部で滑らかに連続させる事により、各内側案内本体部22を構成している。又、大径円筒部24の径方向外側面の曲率半径R17を、各玉11の転動面の曲率半径R11よりも大きくし(R11<R17)、且つ、大径円筒部24の径方向内側面の曲率半径R17+tを、各インナ側凹溝12aの大径円弧部19の曲率半径R12よりも小さくしている(R17+t<R12)。尚、各内側案内本体部22(両大径円筒部24、24及び小径円筒部25)の径方向内側面の曲率中心と径方向外側面の曲率中心とは、互いに同軸であり、これら径方向内側面と径方向外側面とは互いに平行になっている。
  内側連結部23は、断面円弧形で、自由状態での曲率半径を、内軸9aの外周面(各凹溝12a、13aから円周方向に外れた部分)の外径寸法よりも僅かに小さくしている。
  上述の様な構成を有する内側案内板17は、内側連結部23を内軸9aの外周面に締め代を有する状態で外嵌する事により、内軸9aに装着される。そして、この状態で、各内側案内本体部22は、図3(A)に示した様に、内軸9aの外周面に形成したインナ側凹溝12aの内面に対し、円周方向に離隔した2個所位置(後述する内側支承部29a、29b)でのみ接触した状態になるか、又は、図4に示した様に、各内側案内本体部22の径方向内側面の全体が、インナ側凹溝12aの内面から径方向外方に僅かに離隔した状態となる。又、この様な装着状態で、内側案内板17を構成する内側連結部23の内周面と、内軸9aの外周面との間には、内軸9aの外周面に形成した各インナ側予備凹溝13a、13aの存在に基づく隙間が形成される。
  外側案内板18は、内側案内板17と同様に、ステンレス鋼板やばね鋼板等の金属板製で、全体を略半円筒状(断面略C字形)に形成されている。又、外側案内板18は、全体に亙り板厚tが一定で、且つ、内側案内板17と同じ板厚であり、円周方向両端部に設けられた1対の外側案内本体部26、26と、両外側案内本体部26、26同士を連結する1つの外側連結部27と、を備える。
  外側案内本体部26、26は、断面形状が径方向外方に向けて凹んだ凹円弧状であり、曲率半径の異なる複数の部分円筒部を滑らかに連続させて成る。具体的には、幅方向(円周方向)両側部分に設けられた1対の大径円筒部24a、24aを、両大径円筒部24a、24aよりも曲率半径の小さい小径円筒部25aにより幅方向中央部で滑らかに連続させる事により、各外側案内本体部26、26を構成している。又、大径円筒部24aの径方向内側面の曲率半径R18を、各玉11の転動面の曲率半径R11よりも大きくし(R11<R18)、且つ、大径円筒部24aの径方向外側面の曲率半径R18+tを、各アウタ側凹溝14aの大径円弧部19aの曲率半径R14よりも小さくしている(R18+t<R14)。尚、各外側案内本体部26(両大径円筒部24a、24a及び小径円筒部25a)の径方向内側面の曲率中心と径方向外側面の曲率中心とは、互いに同軸であり、これら径方向内側面と径方向外側面とは互いに平行になっている。
  外側連結部27は、断面円弧形で、自由状態での曲率半径を、外軸10aの内周面(各凹溝14a、15a、21から円周方向に外れた部分)の内径寸法よりも僅かに大きくしている。
  上述の様な構成を有する外側案内板18は、外側連結部27を外軸10aの内周面に締め代を有する状態で内嵌する事により、外軸10aに装着される。そして、この状態で、各外側案内本体部26は、図3(B)に示した様に、外軸10aの外周面に形成したアウタ側凹溝14aの内面に対し、円周方向に離隔した2個所位置(後述する外側支承部37a、37b)でのみ接触した状態になるか、又は、図示は省略するが、各外側案内本体部26の径方向外側面の全体が、アウタ側凹溝14aの内面から径方向内方に僅かに離隔した状態となる。又、この様な装着状態で、外側案内板18を構成する外側連結部27の外周面と、外軸10aの内周面との間には、外軸10aの内周面に形成した各アウタ側予備凹溝15a、15a及び各小凹溝21、21の存在に基づく隙間が形成される。
  本例の伸縮式回転伝達軸16を組み立てる場合には、上述した様に、予め内側案内板17を内軸9aに装着(外嵌)しておくと共に、外側案内板18を外軸10aに装着(内嵌)しておく。そして、図5に示した様に、内側案内板17を構成する内側案内本体部22、22と、外側案内板18を構成する外側案内本体部26、26と、の間に、複数個の玉11、11を軸方向に直列に並べた状態で挟持する様に、内軸9aを外軸10aの内側に挿入する。特に本例の場合には、この挿入作業に伴って、各玉11、11により、外側案内板18を介して、各アウタ側凹溝14a、14aの内面を径方向外方に向けて押圧する。これにより、各アウタ側凹溝14a、14aの内面を含む外軸10a全体を、組み立て以前の状態よりも径方向外方に弾性変形させる(外軸10aを弾性的に拡径させる)。すなわち、本例の場合には、内側案内板17及び外側案内板18の弾力によらずに(弾力による予圧付与をほぼゼロとして)、各玉11、11に予圧を付与する様にしている。尚、必要に応じて、各アウタ側凹溝14a、14aの内面を弾性変形させると共に、各インナ側凹溝13aの内面(内面のみ又は内面を含む内軸9a全体)を、組み立て以前の状態よりも径方向内方に弾性変形させても良い。
  又、上述の様な伸縮式回転伝達軸16の組立完了後、内軸9aと外軸10aとの間で回転力を伝達していない状態で、各玉11の転動面と各内側案内本体部22の径方向外側面とは、円周方向に離隔した2個所の内側接触部28a、28bでのみ接触する。又、各内側案内本体部22の径方向内側面のうち、各内側接触部28a、28bと整合する位置(裏側部分で、内側接触部28a、28bからの距離が最も短い部分)に存在する内側支承部29a、29bのみが、各インナ側凹溝12aの内面によって支持された状態となる。
  この為、各内側案内本体部22のうちで、2個所の内側接触部28a、28b(内側支承部29a、29b)同士の間部分には、その径方向外側面が各玉11の転動面と接触せず、且つ、その径方向内側面が各インナ側凹溝12aの内面と接触しない、内側第一非接触部30が設けられる。内側第一非接触部30の径方向外側面と各玉11の転動面との間には、略三日月状の内側第一隙間31が形成され、内側第一非接触部30の径方向内側面と各インナ側凹溝12aの内面との間には、略三日月状の内側第二隙間32が形成される。又、各内側案内本体部22のうちで、2個所の内側接触部28a、28b(内側支承部29a、29b)の円周方向両側部分に、その径方向外側面が各玉11の転動面と接触せず、且つ、その径方向内側面がインナ側凹溝12aの内面と接触しない、1対の内側第二非接触部33a、33bが設けられる。各内側第二非接触部33a、33bの径方向外側面と各玉11の転動面との間には、略楔状の内側第三隙間34a、34bがそれぞれ形成され、各内側第二非接触部33a、33bの径方向内側面と各インナ側凹溝12aの内面との間には、略楔状の内側第四隙間35a、35bが形成される。
  これに対し、各玉11の転動面と外側案内板18を構成する外側案内本体部26の径方向内側面とは、円周方向に離隔した2個所の外側接触部36a、36bでのみ接触する。又、各外側案内本体部26の径方向外側面のうち、各外側接触部36a、36bと整合する位置(裏側部分で、外側接触部36a、36bからの距離が最も短い部分)に存在する外側支承部37a、37bのみが、各アウタ側凹溝14aの内面によって支持された状態となる。
  この為、各外側案内本体部26のうちで、2個所の外側接触部36a、36b(外側支承部37a、37b)同士の間部分には、その径方向内側面が各玉11の転動面と接触せず、且つ、その径方向外側面が各アウタ側凹溝14aの内面と接触しない、外側第一非接触部38が設けられる。外側第一非接触部38の径方向内側面と各玉11の転動面との間には、略三日月状の外側第一隙間39が形成され、外側第一非接触部38の径方向外側面と各アウタ側凹溝14aの内面との間には、略三日月状の外側第二隙間40が形成される。又、外側案内本体部26のうちで、2個所の外側接触部36a、36b(外側支承部37a、37b)の円周方向両側部分に、その径方向内側面が各玉11の転動面と接触せず、且つ、その径方向外側面がアウタ側凹溝14aの内面と接触しない、1対の外側第二非接触部41a、41bが形成される。これら両外側第二非接触部41a、41bの径方向内側面と各玉11の転動面との間には、略楔状の外側第三隙間42a、42bがそれぞれ形成され、各外側第二非接触部41a、41bの径方向外側面と各アウタ側凹溝14aの内面との間には、略楔状の外側第四隙間43a、43bが形成される。
  又、上述した様に、内側案内板17及び外側案内板18を組み込んだ状態で、内側接触部28a及び内側支承部29a、並びに、外側接触部36a及び外側支承部37aが、各玉11の中心を通る同一直線上に位置する。同様に、内側接触部28b及び内側支承部29b、並びに、外側接触部36b及び外側支承部37bが、各玉11の中心を通る同一直線上に位置する。そして、本例の場合には、これら両直線の交角(接触角)を、約60~80度としている。
  以上の様に、本例の伸縮式回転伝達軸16は、内軸9aと外軸10aとを、各玉11、11と内側案内板17及び外側案内板18を介して、互いの間での回転力の伝達及び軸方向の相対変位を可能に組み合わせる事により構成される。そして、この様な構成を有する本例の伸縮式回転伝達軸16によれば、がたつきを抑えられる構造を、内側案内板17及び外側案内板18の損傷防止と各部の摩耗を防止しつつ実現できる。
  即ち、本例の場合には、各玉11、11に対し、内側案内板17及び外側案内板18の弾力によっては予圧を付与せずに、組み立て後の状態で径方向外方に弾性変形する各アウタ側凹溝14a、14aの内面(弾性的に拡径する外軸10a)を利用して、各玉11、11に予圧を付与し、伸縮式回転伝達軸16のがたつきを抑える様にしている。この為、伸縮式回転伝達軸16のがたつきを抑えられる構造を、伸縮式回転伝達軸16を組み立てた後の状態で、内側案内板17及び外側案内板18に大きな撓み変形を生じさせる事なく実現できる。特に、図3に示した構造の様に、内側案内板17及び外側案内板18を、内軸9a及び外軸10aにそれぞれ装着した状態で、内側案内板17を構成する内側案内本体部22、22及び外側案内板18を構成する外側案内本体部26、26の姿勢(取り付け位置)が、組立完了後の姿勢と同じである場合には、組立完了状態での撓み変形をほぼゼロにできる。
  又、本例の場合には、内側案内板17のうち、各玉11の転動面と接触する内側接触部28a、28bの裏側に位置する内側支承部29a、29bを、インナ側凹溝12aの内面により支承する。そして、外側案内板18のうち、各玉11の転動面と接触する外側接触部36a、36bの裏側に位置する外側支承部37a、37bを、アウタ側凹溝14aの内面により支承している。この為、内軸9aと外軸10aとの間で回転力を伝達する際に、各玉11の転動面と接触する部分は、内側接触部28a、28b及び外側接触部36a、36bの合計4個所のままか、このうちの3個所又は2個所(内側接触部1個所と外側接触部1個所の合計2個所)となるが、何れの場合にも、内側、外側両案内板17、18に大きな撓み変形が生じる事を防止できる。又、内軸9aと外軸10aとが軸方向に相対変位する際に、各玉11、11が内側、外側両案内板17、18上を転走する事に起因して、これら内側、外側両案内板17、18に大きな引っ張り変形が生じる事を防止できる。
  更に、本例の場合には、上述した様に、組立完了後の状態及び回転力の伝達時に、内側、外側両案内板17、18に大きな撓み変形が生じる事を防止できる為、内側、外側両案内板17、18と内軸9aの外周面又は外軸10aの内周面とが接触する場合にも、当該接触部で過大な摩耗が生じる事を防止できる。
  この結果、本例の伸縮式回転伝達軸16によれば、がたつきを抑えられる構造を、内側案内板17及び外側案内板18の損傷防止と各部の摩耗を防止しつつ実現できる。
  更に、本例の場合には、インナ側凹溝12a、12aは、内軸9aの外周面において、互いに円周方向に関する位相が180度ずれた位置に2つ設けられ、アウタ側凹溝14a、14aは、外軸10aの内周面において、2つのインナ側凹溝12a、12aと整合する位置に2つ設けられ、複数個の玉11、11は、2つのインナ側凹溝12a、12aと2つのアウタ側凹溝14a、14aとの間部分に、二列配置される。
  このように、複数個の玉11が直列で二列配置される場合には、本例のように、2つのインナ側凹溝12a、12a(二列の玉11、11)に対し円周方向に関する位相が90度ずれた位置に、インナ側予備凹溝13a、13aが2つ設けられるとよい。すなわち、2つのインナ側凹溝12a、12aのみを設けるよりも、さらにインナ側予備凹溝13a、13aを設け、内軸9aの外周面に等間隔で4つの凹溝12a、12a、13a、13aを設ける方が、溝加工が容易であり安定する。又、インナ側凹溝12a、12aに加えて、インナ側予備凹溝13a、13aを形成する事により、内軸9aの円周方向に関する剛性が低下するので、内軸9aが弾性変形(縮径)し易くなる。
  又、内軸9aが中空筒状であるので、内軸9aの円周方向に関する剛性が低下し、内軸9aが弾性変形(縮径)し易くなる。
  又、外軸10aの内周面には、2つのアウタ側凹溝14a、14aに対し円周方向に関する位相が90度ずれた位置に、アウタ側予備凹溝15a、15aが2つ設けられる、このように、2つのアウタ側凹溝14a、14aのみを設けるよりも、さらにアウタ側予備凹溝15a、15aを設け、外軸10aの内周面に等間隔で4つの凹溝14a、14a、15a、15aを設ける方が、溝加工が容易であり安定する。又、アウタ側凹溝14a、14aに加えて、アウタ側予備凹溝15a、15aを形成する事により、外軸10aの円周方向に関する剛性が低下するので、外軸10aが弾性変形(縮径)し易くなる。
  [実施形態の第2例]
  本発明の実施形態の第2例について、図6を参照しつつ説明する。本例の特徴は、外側案内板18aを、円筒形状とし、1対の外側案内本体部26、26と、1対の外側連結部27、27とを、円周方向に関して交互に連続させる事により構成した点にある。この様な構成を有する本例の場合には、2つの外側連結部27、27が発揮する弾力を利用して、外側案内板18aを外軸10aの内周面に装着できる為、外軸10aの内周面に対する支持剛性を高める事ができる。
  その他の構成及び作用効果については、上述した実施形態の第1例の場合と同様である。
  [実施形態の第3例]
  本発明の実施形態の第3例について、図7を参照しつつ説明する。本例の特徴は、内側案内板17aを、円筒形状とし、1対の内側案内本体部22、22と、1対の内側連結部23、23とを、円周方向に関して交互に連続させる事により構成した点にある。この様な構成を有する本例の場合には、2つの内側連結部23、23が発揮する弾力を利用して、内側案内板17aを内軸9aの外周面に装着できる為、内軸9aの外周面に対する支持剛性を高める事ができる。
  その他の構成及び作用効果については、上述した実施形態の第1例の場合と同様である。
  [実施形態の第4例]
  本発明の実施形態の第4例について、図8を参照しつつ説明する。本例の特徴は、上述した実施形態の第2例と第3例の特徴部分を両方組み合わせた点にある。即ち、外側案内板18aとして、全体形状が円筒形状であり、1対の外側案内本体部26、26と、1対の外側連結部27、27とを、円周方向に関して交互に連続させたものを使用する共に、内側案内板17aとして、全体形状が円筒形状であり、1対の内側案内本体部22、22と、1対の内側連結部23、23とを、円周方向に関して交互に連続させたものを使用している。この様な構成を有する本例の場合には、外側案内板18a及び内側案内板17aのそれぞれの支持剛性を高める事ができる。
  その他の構成及び作用効果については、上述した実施形態の第1例、第2例、及び第3例の場合と同様である。
  [実施形態の第5例]
  本発明の実施形態の第5例について、図9を参照しつつ説明する。本例の特徴は、前述した実施形態の第1例の構造で、玉11、11が配置されていなかった、インナ側予備凹溝13a、13aと、アウタ側予備凹溝15a、15aとの間部分にも、各玉11、11を配置した点にある。この為、本例の場合には、内側案内板17bとして、全体形状が円筒形状であり、円周方向等間隔4個所に設けられた内側案内本体部22、22と、円周方向に隣り合う内側案内本体部22、22同士を連結する内側連結部23a、23aと、を備えたものを使用している。又、外側案内板18bとして、全体形状が円筒形状であり、円周方向等間隔4個所に設けられた外側案内本体部26、26と、円周方向に隣り合う外側案内本体部26、26同士を連結する外側連結部27a、27aと、を備えたものを使用している。そして、合計4個の内側案内本体部22、22を、1対のインナ側凹溝12a、12a及び1対のインナ側予備凹溝13a、13a内にそれぞれ配置すると共に、合計4個の外側案内本体部26、26を、1対のアウタ側凹溝14a、14a及び1対のアウタ側予備凹溝15a、15a内にそれぞれ配置する。そして、各玉11、11を、各内側案内本体部22、22及び各外側案内本体部26、26を介して、各インナ側凹溝12a、12aと各アウタ側凹溝14a、14aとの間部分及び各インナ側予備凹溝13a、13aと各アウタ側予備凹溝15a、15aとの間部分に、軸方向に直列に配置している。この様な構成を有する本例の場合には、軸方向に直列に配置した玉列を、円周方向に関して4個所に設けている為、内軸9aと外軸10aとの間のがたつきをより有効に防止できる。
  その他の構成及び作用効果については、上述した実施形態の第1例の場合と同様である。
  [実施形態の第6例]
  本発明の実施形態の第6例について、図10を参照しつつ説明する。本例の特徴部分は、上述した実施形態の第5例の構造に関し、外側案内板18cの形状を工夫した点にある。即ち、本例の場合には、外側案内板18cを、円周方向1個所に不連続部45を有する欠円筒状として、円周方向等間隔4個所に設けられた外側案内本体部26、26と、3つの外側連結部27a、27aと、を備えたものを使用している。言い換えれば、本例の外側案内板18cの場合には、上述した実施形態の第5例の外側案内板18bから、1つの外側連結部27aを省略した構造を採用している。この様な構成を有する本例の場合には、外側案内板18cが径方向に拡縮し易くなる為、組み付け作業性の向上を図れると共に、外軸10aの内周面に対する支持剛性の向上を図れる。
  その他の構成及び作用効果については、上述した実施形態の第1例及び第5例の場合と同様である。
  [実施形態の第7例]
  本発明の実施形態の第7例について、図11を参照しつつ説明する。本例の特徴部分は、上述した実施形態の第6例の構造に関し、内側案内板17cの形状を工夫した点にある。即ち、本例の場合には、内側案内板17cを、部分円筒状(約1/4円筒状)として、内軸9aの外周面に2つ装着している。各内側案内板17cは、円周方向両端部に設けられた1対の内側案内本体部22、22と、両内側案内本体部22、22同士を連結する1つ内側連結部23bと、を備えたものを使用している。そして、本例の場合には、2つの内側案内板17c、17cを、内軸9aの直径方向に関して反対位置に装着している。この様な構成を有する本例の場合には、第6例の構造に比べて、1つの内側連結部23aを省略できる為、材料コストの低減を図れる。
  その他の構成及び作用効果については、上述した実施形態の第1例及び第6例の場合と同様である。
  [実施形態の第8例]
  本発明の実施形態の第8例について、図12を参照しつつ説明する。本例の場合には、内軸9bを中空筒状としている。又、内軸9bの外周面の円周方向等間隔3個所(円周方向に関する位相が120度ずつずれた位置)に、径方向内方に凹入すると共に軸方向に伸長する状態で、インナ側凹溝12a、12aをそれぞれ設けている。又、内軸9bをその内側に挿入する外軸10bを、中空筒状としている。又、外軸10bの内周面のうち、各インナ側凹溝12a、12aと整合する円周方向3個所に、径方向外方に凹入すると共に軸方向に伸長する状態で、アウタ側凹溝14a、14aをそれぞれ軸方向に形成している。本例の場合、前述した実施形態の第1例の構造で設けていた、インナ側予備凹溝13aやアウタ側予備凹溝15a、小凹溝21は設けていない。
  又、本例の場合には、内側案内板17dを、円周方向1個所に不連続部45aを有する欠円筒状としている。又、内側案内板17dは、円周方向等間隔3個所に設けられた内側案内本体部22、22と、2つの内側連結部23b、23bと、を備える。外側案内板18dは、全体形状が円筒形状である。又、外側案内板18dは、円周方向等間隔3個所に設けられた外側案内本体部26、26と、円周方向に隣り合う外側案内本体部26、26同士を連結する3つの外側連結部27b、27bと、を備える。そして、各玉11、11を、各内側案内本体部22、22及び各外側案内本体部26、26を介して、各インナ側凹溝12a、12aと各アウタ側凹溝14a、14aとの間部分に、軸方向に直列に配置している。この様な構成を有する本例の場合には、軸方向に直列に配置した玉列を、円周方向に関して3個所に設けている為、円周方向に関して2個所にのみ設ける構造と比べて、内軸9bと外軸10bとの間のがたつきをより有効に防止できる。
  その他の構成及び作用効果については、上述した実施形態の第1例の場合と同様である。
  [実施形態の第9例]
  本発明の実施形態の第9例について、図13を参照しつつ説明する。本例の場合には、内軸9cの外周面の円周方向等間隔2個所に、径方向内方に凹入すると共に軸方向に伸長する状態で、インナ側凹溝12a、12aをそれぞれ設けている。内軸9cの外周面のその他の部分は、円筒面状とされる。又、内軸9cをその内側に挿入する外軸10cは、中空筒状である。外軸10cの内周面のうち、各インナ側凹溝12a、12aと整合する円周方向2個所に、径方向外方に凹入すると共に軸方向に伸長する状態で、アウタ側凹溝14a、14aをそれぞれ軸方向に形成し、その他の部分を円筒面状としている。本例の場合、実施形態の第1例の構造で設けていた、インナ側予備凹溝13a、アウタ側予備凹溝15a、及び、小凹溝21は設けていない。この様な構成を有する本例の場合には、これら各凹溝13a、15a、21の形成作業が不要になる為、加工コストの低減を図れる。
  その他の構成及び作用効果については、上述した実施形態の第1例及び第6例の場合と同様である。
  [実施形態の第10例]
  本発明の実施形態の第10例について、図14を参照しつつ説明する。本例の特徴は、内側案内板17dを構成する内側案内本体部22aの径方向内側面とインナ側凹溝12aの内面との接触状態を工夫すると共に、外側案内板18dを構成する外側案内本体部26aの径方向外側面とアウタ側凹溝14aの内面との接触状態を工夫した点にある。
  即ち、本例の場合には、内側案内本体部22aの径方向内側面を、円周方向に離隔した2個所の内側支承部29a、29bだけでなく、両内側支承部29a、29b同士の間部分及び両側部分も、インナ側凹溝12aの内面に当接させている。又、外側案内本体部26aの径方向外側面を、円周方向に離隔した2個所の外側支承部37a、37bだけでなく、両外側支承部37a、37b同士の間部分及び両側部分も、アウタ側凹溝14aの内面に当接させている。この様な構成を有する本例の場合には、内側、外側両案内板17d、18dの撓み変形及び引っ張り変形をより有効に防止できる。
  その他の構成及び作用効果については、上述した実施形態の第1例の場合と同様である。
  本発明を実施する場合に、上述した実施形態の各例の構造は、適宜組み合わせて実施する事ができる。又、構成各部の形状、構造、材質についても、各種変更して実施できる。又、本発明の伸縮式回転伝達軸は、電動式パワーステアリング装置を備えた自動車用操舵装置の構成部材のうち、中間シャフトやステアリングシャフトに好ましく適用できる。更には、自動車用操舵装置を構成するシャフトに限らず、工作機械、遊具等、各種回転機械装置を構成する回転伝達用シャフトとして実施する事もできる。
 本出願は、2014年7月3日出願の日本特許出願2014-137845に基づくものであり、その内容はここに参照として取り込まれる。
   1  ステアリングホイール
   2  ステアリングギヤユニット
   3  ステアリングシャフト
   4、4a 自在継手
   5  中間シャフト
   6  入力軸
   7  タイロッド
   8  電動モータ
   9、9a、9b、9c 内軸
  10、10a、10b、10c 外軸
  11  玉
  12、12a インナ側凹溝
  13、13a インナ側予備凹溝
  14、14a アウタ側凹溝
  15、15a アウタ側予備凹溝
  16  伸縮式回転伝達軸
  17、17a、17b、17c、17d 内側案内板
  18、18a、18b、18c、18d 外側案内板
  19、19a 大径円弧部
  20、20a 小径円弧部
  21  小凹溝
  22  内側案内本体部
  23、23a、23b  内側連結部
  24、24a 大径円筒部
  25、25a 小径円筒部
  26  外側案内本体部
  27、27a、27b 外側連結部
  28a、28b 内側接触部
  29a、29b 内側支承部
  30  内側第一非接触部
  31  内側第一隙間
  32  内側第二隙間
  33a、33b 内側第二非接触部
  34a、34b 内側第三隙間
  35a、35b 内側第四隙間
  36a、36b 外側接触部
  37a、37b 外側支承部
  38  外側第一非接触部
  39  外側第一隙間
  40  外側第二隙間
  41a、41b 外側第二非接触部
  42a、42b 外側第三隙間
  43a、43b 外側第四隙間
  45、45a 不連続部

Claims (13)

  1.   外周面の円周方向の少なくとも1個所に、径方向内方に凹入すると共に軸方向に伸長したインナ側凹溝を設けた内軸と、
      前記内軸を挿入可能な中空筒状で、内周面の円周方向の少なくとも1個所で前記インナ側凹溝と整合する位置に、径方向外方に凹入すると共に軸方向に伸長したアウタ側凹溝を設けた外軸と、
      前記インナ側凹溝と前記アウタ側凹溝との間部分に軸方向に直列に配置された複数個の玉と、
      前記各玉の転動面と前記インナ側凹溝の内面との間に挟持された内側案内板と、
      前記各玉の転動面と前記アウタ側凹溝の内面との間に挟持された外側案内板と、
      を備え、前記内軸と前記外軸とを、互いの間での回転力の伝達及び軸方向の相対変位を可能に組み合わせた伸縮式回転伝達軸であって、
      前記各玉の転動面と前記内側案内板の径方向外側面とは、円周方向に離隔した2個所の内側接触部でのみ接触し、前記内側案内板の径方向内側面のうち、前記各内側接触部と整合する部分が前記インナ側凹溝の内面によって支承されており、
      前記各玉の転動面と前記外側案内板の径方向内側面とは、円周方向に離隔した2個所の外側接触部でのみ接触し、前記外側案内板の径方向外側面のうち、前記各外側接触部と整合する部分が前記アウタ側凹溝の内面によって支承されており、
      前記伸縮式回転伝達軸を組み立てた後の状態で、少なくとも前記アウタ側凹溝の内面を、組み立て以前の状態よりも径方向外方に弾性変形させる事により、前記各玉に予圧を付与している
      事を特徴とする伸縮式回転伝達軸。
  2.   外周面の円周方向の少なくとも1個所に、径方向内方に凹入すると共に軸方向に伸長したインナ側凹溝を設けた内軸と、
      前記内軸を挿入可能な中空筒状で、内周面の円周方向の少なくとも1個所で前記インナ側凹溝と整合する位置に、径方向外方に凹入すると共に軸方向に伸長したアウタ側凹溝を設けた外軸と、
      前記インナ側凹溝と前記アウタ側凹溝との間部分に軸方向に直列に配置された複数個の玉と、
      前記各玉の転動面と前記インナ側凹溝の内面との間に挟持された内側案内板と、
      前記各玉の転動面と前記アウタ側凹溝の内面との間に挟持された外側案内板と、
      を備え、前記内軸と前記外軸とを、互いの間での回転力の伝達及び軸方向の相対変位を可能に組み合わせた伸縮式回転伝達軸であって、
      前記各玉の転動面と前記内側案内板の径方向外側面とは、円周方向に離隔した2個所の内側接触部でのみ接触し、前記内側案内板の径方向内側面のうち、前記各内側接触部と整合する部分が前記インナ側凹溝の内面によって支承されており、
      前記各玉の転動面と前記外側案内板の径方向内側面とは、円周方向に離隔した2個所の外側接触部でのみ接触し、前記外側案内板の径方向外側面のうち、前記各外側接触部と整合する部分が前記アウタ側凹溝の内面によって支承されており、
      前記伸縮式回転伝達軸を組み立てた後の状態で、少なくとも前記インナ側凹溝の内面を、組み立て以前の状態よりも径方向内方に弾性変形させる事により、前記各玉に予圧を付与している
      事を特徴とする伸縮式回転伝達軸。
  3.   前記内側案内板及び前記外側案内板の弾力によらず、前記各玉に予圧を付与している、請求項1又は2に記載した伸縮式回転伝達軸。
  4.   前記内側案内板のうちで、前記2個所の内側接触部同士の間部分に、その径方向外側面が前記各玉の転動面と接触せず、且つ、その径方向内側面が前記インナ側凹溝の内面と接触しない、内側第一非接触部が設けられている、請求項1~3のうちの何れか1項に記載した伸縮式回転伝達軸。
  5.   前記内側案内板のうちで、前記2個所の内側接触部の円周方向両側部分に、その径方向外側面が前記各玉の転動面と接触せず、且つ、その径方向内側面が前記インナ側凹溝の内面と接触しない、1対の内側第二非接触部が設けられている、請求項1~4のうちの何れか1項に記載した伸縮式回転伝達軸。
  6.   前記内側案内板は、円筒状又は部分円筒状であり、前記内軸の外周面に対し締め代を有する状態で外嵌されている、請求項1~5のうちの何れか1項に記載した伸縮式回転伝達軸。
  7.   前記外側案内板のうちで、前記2個所の外側接触部同士の間部分に、その径方向内側面が前記各玉の転動面と接触せず、且つ、その径方向外側面が前記アウタ側凹溝の内面と接触しない、外側第一非接触部が設けられている、請求項1~6のうちの何れか1項に記載した伸縮式回転伝達軸。
  8.   前記外側案内板のうちで、前記2個所の外側接触部の円周方向両側部分に、その径方向内側面が前記各玉の転動面と接触せず、且つ、その径方向外側面が前記アウタ側凹溝の内面と接触しない、1対の外側第二非接触部が設けられている、請求項1~7のうちの何れか1項に記載した伸縮式回転伝達軸。
  9.   前記外側案内板は、円筒状又は部分円筒状であり、前記外軸の内周面に対し締め代を有する状態で内嵌されている、請求項1~8のうちの何れか1項に記載した伸縮式回転伝達軸。
  10.   前記内側案内板と前記外側案内板とのうちの少なくとも何れか一方の案内板を、複数設け、それぞれを部分円筒状とする、請求項1~9のうちの何れか1項に記載した伸縮式回転伝達軸。
  11.   前記インナ側凹溝は、前記内軸の外周面において、互いに円周方向に関する位相が180度ずれた位置に2つ設けられ、
      前記アウタ側凹溝は、前記外軸の内周面において、前記2つのインナ側凹溝と整合する位置に2つ設けられ、
      前記複数個の玉は、前記2つのインナ側凹溝と前記2つのアウタ側凹溝との間部分に、二列配置され、
      前記内軸の外周面には、前記2つのインナ側凹溝に対し円周方向に関する位相が90度ずれた位置に、径方向内方に凹入するとともに軸方向に伸長したインナ側予備凹溝が2つ設けられる、請求項1~10のうちの何れか1項に記載した伸縮式回転伝達軸。
  12.   前記インナ側凹溝は、前記内軸の外周面において、互いに円周方向に関する位相が180度ずれた位置に2つ設けられ、
      前記アウタ側凹溝は、前記外軸の内周面において、前記2つのインナ側凹溝と整合する位置に2つ設けられ、
      前記複数個の玉は、前記2つのインナ側凹溝と前記2つのアウタ側凹溝との間部分に、二列配置され、
      前記内軸は中空筒状である、請求項1~10のうちの何れか1項に記載した伸縮式回転伝達軸。
  13.   前記インナ側凹溝は、前記内軸の外周面において、互いに円周方向に関する位相が180度ずれた位置に2つ設けられ、
      前記アウタ側凹溝は、前記外軸の内周面において、前記2つのインナ側凹溝と整合する位置に2つ設けられ、
      前記複数個の玉は、前記2つのインナ側凹溝と前記2つのアウタ側凹溝との間部分に、二列配置され、
      前記外軸の内周面には、前記2つのアウタ側凹溝に対し円周方向に関する位相が90度ずれた位置に、径方向外方に凹入するとともに軸方向に伸長したアウタ側予備凹溝が2つ設けられる、請求項1~10のうちの何れか1項に記載した伸縮式回転伝達軸。
PCT/JP2015/069212 2014-07-03 2015-07-02 伸縮式回転伝達軸 WO2016002912A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580011501.2A CN106062397B (zh) 2014-07-03 2015-07-02 伸缩式旋转传递轴
JP2016531462A JP6146539B2 (ja) 2014-07-03 2015-07-02 伸縮式回転伝達軸
EP15814678.7A EP3101295B1 (en) 2014-07-03 2015-07-02 Extensible rotation transmission shaft
US15/122,219 US10330141B2 (en) 2014-07-03 2015-07-02 Extensible rotation transmission shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014137845 2014-07-03
JP2014-137845 2014-07-03

Publications (1)

Publication Number Publication Date
WO2016002912A1 true WO2016002912A1 (ja) 2016-01-07

Family

ID=55019438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069212 WO2016002912A1 (ja) 2014-07-03 2015-07-02 伸縮式回転伝達軸

Country Status (5)

Country Link
US (1) US10330141B2 (ja)
EP (1) EP3101295B1 (ja)
JP (1) JP6146539B2 (ja)
CN (1) CN106062397B (ja)
WO (1) WO2016002912A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104214232B (zh) * 2013-05-21 2017-07-28 操纵技术Ip控股公司 滚动元件中间轴组件及其组装方法
JP5975199B1 (ja) * 2015-01-14 2016-08-23 日本精工株式会社 ステアリング装置
JP6471803B2 (ja) * 2015-07-27 2019-02-20 日本精工株式会社 伸縮式回転伝達軸及びその製造方法
US10415646B2 (en) * 2016-09-16 2019-09-17 Steering Solutions Ip Holding Corporation Telescoping roller I-shaft and method of assembly
KR102177510B1 (ko) * 2017-09-28 2020-11-11 남양넥스모 주식회사 차량용 유니버설 조인트 및 이의 제조 방법
GB2579371B (en) * 2018-11-29 2022-08-24 Zf Automotive Uk Ltd Steering column assembly
DE102020201703A1 (de) * 2020-02-11 2021-08-12 Thyssenkrupp Ag Lenksäule für ein Kraftfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106599A (ja) * 2002-09-13 2004-04-08 Nsk Ltd 車両ステアリング用伸縮軸
JP2005231625A (ja) * 2005-04-27 2005-09-02 Nsk Ltd 車両ステアリング用伸縮軸
JP2006224767A (ja) * 2005-02-16 2006-08-31 Nsk Ltd 車両ステアリング用伸縮軸
JP2008164150A (ja) * 2007-01-05 2008-07-17 Nsk Ltd 伸縮式回転伝達軸
JP2009107428A (ja) * 2007-10-29 2009-05-21 Nsk Ltd 車両ステアリング用伸縮軸
JP2009191978A (ja) * 2008-02-15 2009-08-27 Nsk Ltd 伸縮軸及び伸縮軸を備えたステアリング装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1165538A (en) * 1966-01-12 1969-10-01 Internat Res And Dev Company L Improvements in and relating to Homopolar Electric Machines
US3730393A (en) * 1969-08-28 1973-05-01 Polytube Flexible cylinder for collapsible squeeze tube
DE3513340A1 (de) * 1985-04-13 1986-10-23 Daimler-Benz Ag, 7000 Stuttgart Mitnehmerverbindung zwischen einer welle und einer nabe
DE3730393C2 (de) * 1987-09-10 1994-01-13 Lemfoerder Metallwaren Ag Lenkwelle für Kraftfahrzeuge, bestehend aus axial ineinander verschieblichen Wellenteilen
DE19817290B4 (de) * 1998-04-18 2009-02-12 Skf Linearsysteme Gmbh Längswälzlager
JP4196642B2 (ja) 2002-10-24 2008-12-17 日本精工株式会社 車両ステアリング用伸縮軸
EP1566324A4 (en) * 2002-11-29 2007-08-01 Nsk Ltd TELESCOPIC SHAFT FOR VEHICLE STEERING
EP1588921A4 (en) * 2003-01-10 2006-11-29 Nsk Ltd TELESCOPIC SHAFT FOR STEERING A MOTOR VEHICLE
JP4190905B2 (ja) 2003-02-06 2008-12-03 日本精工株式会社 車両用ステアリング装置
JP2005114068A (ja) * 2003-10-08 2005-04-28 Koyo Seiko Co Ltd スプライン継手
JP4457309B2 (ja) 2005-07-08 2010-04-28 株式会社ジェイテクト 伸縮自在シャフトを製造する方法
JP2008006903A (ja) 2006-06-28 2008-01-17 Jtekt Corp 伸縮軸の内軸およびこれの製造方法
EP2197728A4 (en) 2007-10-15 2012-12-05 Deok Chang Machinery Co Ltd TELESCOPIC SHAFT FOR VEHICLE
JP5077360B2 (ja) 2010-01-12 2012-11-21 日本精工株式会社 伸縮軸の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106599A (ja) * 2002-09-13 2004-04-08 Nsk Ltd 車両ステアリング用伸縮軸
JP2006224767A (ja) * 2005-02-16 2006-08-31 Nsk Ltd 車両ステアリング用伸縮軸
JP2005231625A (ja) * 2005-04-27 2005-09-02 Nsk Ltd 車両ステアリング用伸縮軸
JP2008164150A (ja) * 2007-01-05 2008-07-17 Nsk Ltd 伸縮式回転伝達軸
JP2009107428A (ja) * 2007-10-29 2009-05-21 Nsk Ltd 車両ステアリング用伸縮軸
JP2009191978A (ja) * 2008-02-15 2009-08-27 Nsk Ltd 伸縮軸及び伸縮軸を備えたステアリング装置

Also Published As

Publication number Publication date
CN106062397A (zh) 2016-10-26
JP6146539B2 (ja) 2017-06-14
CN106062397B (zh) 2019-11-15
EP3101295A4 (en) 2017-01-18
JPWO2016002912A1 (ja) 2017-04-27
EP3101295A1 (en) 2016-12-07
EP3101295B1 (en) 2018-10-03
US10330141B2 (en) 2019-06-25
US20160369835A1 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6146539B2 (ja) 伸縮式回転伝達軸
JP4770193B2 (ja) 車両ステアリング用伸縮軸
JP6547899B2 (ja) トルク伝達用継手及び電動式パワーステアリング装置
US20160332659A1 (en) Reducer of electric power-assisted steering apparatus
EP3173646B1 (en) Torque-transmitting joint and electric power steering device
JP2015180837A (ja) 伸縮軸
KR20170107787A (ko) 자동차용 유니버설 조인트의 슬라이딩케이지
JP2008164150A (ja) 伸縮式回転伝達軸
JP2007008286A (ja) 車両ステアリング用伸縮軸
US8827821B2 (en) Telescoping shaft roller assembly in steering column
JP2017009049A (ja) 伸縮式回転伝達軸
JP5347881B2 (ja) 車両ステアリング用伸縮軸
JP6471803B2 (ja) 伸縮式回転伝達軸及びその製造方法
JP2016075331A (ja) 伸縮式回転伝達軸
JP2009180322A (ja) 伸縮軸及び伸縮軸を備えたステアリング装置
JP2009190423A (ja) ステアリング装置用伸縮軸
JP2011073543A5 (ja)
JP2005349964A (ja) 車両ステアリング用伸縮軸
JP2007139091A (ja) 伸縮自在シャフト
JP2016217407A (ja) 自在継手
JP2006189127A (ja) 伸縮軸
JP2010084915A (ja) 伸縮式回転伝達軸
JP2005344747A (ja) 動力伝達シャフト
JP6318930B2 (ja) 電動式パワーステアリング装置
JP5157771B2 (ja) 伸縮式回転伝達軸

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531462

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015814678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015814678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15122219

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE