WO2016002427A1 - 空冷式単気筒エンジン及び鞍乗型車両 - Google Patents
空冷式単気筒エンジン及び鞍乗型車両 Download PDFInfo
- Publication number
- WO2016002427A1 WO2016002427A1 PCT/JP2015/066255 JP2015066255W WO2016002427A1 WO 2016002427 A1 WO2016002427 A1 WO 2016002427A1 JP 2015066255 W JP2015066255 W JP 2015066255W WO 2016002427 A1 WO2016002427 A1 WO 2016002427A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinder
- oil
- lubricating oil
- head
- air
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J17/00—Weather guards for riders; Fairings or stream-lining parts not otherwise provided for
- B62J17/02—Weather guards for riders; Fairings or stream-lining parts not otherwise provided for shielding only the rider's front
- B62J17/06—Leg guards
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/02—Arrangements for cooling cylinders or cylinder heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/20—Cooling circuits not specific to a single part of engine or machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/02—Cylinders; Cylinder heads having cooling means
- F02F1/04—Cylinders; Cylinder heads having cooling means for air cooling
- F02F1/06—Shape or arrangement of cooling fins; Finned cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/02—Cylinders; Cylinder heads having cooling means
- F02F1/10—Cylinders; Cylinder heads having cooling means for liquid cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/18—Other cylinders
- F02F1/20—Other cylinders characterised by constructional features providing for lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F1/26—Cylinder heads having cooling means
- F02F1/28—Cylinder heads having cooling means for air cooling
- F02F1/30—Finned cylinder heads
- F02F1/32—Finned cylinder heads the cylinder heads being of overhead valve type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F1/26—Cylinder heads having cooling means
- F02F1/36—Cylinder heads having cooling means for liquid cooling
Definitions
- the present invention relates to an air-cooled single cylinder engine and a straddle-type vehicle equipped with the same.
- Patent Documents 1 and 2 propose an air-cooled single-cylinder engine in which an oil passage for cooling is formed in a cylinder head.
- the oil passage is provided to cool the periphery of the spark plug and the exhaust passage that are particularly hot in the cylinder head.
- the oil passage is formed at a position aligned with the combustion chamber defined by the cylinder head and the cylinder body and in the cylinder axial direction.
- air-cooled single-cylinder engines consume more lubricating oil because the engine temperature is higher than that of water-cooled engines.
- the air-cooled single-cylinder engine disclosed in Patent Documents 1 and 2 can reduce the temperature at a particularly high temperature in the engine, but the effect of reducing the consumption of lubricating oil is not sufficient.
- an object of the present invention is to provide an air-cooled single-cylinder engine that can reduce the consumption of lubricating oil while suppressing the manufacturing cost, and a straddle-type vehicle equipped with the same.
- the inventor of the present application has examined the reason why the consumption amount of the lubricating oil cannot be sufficiently reduced even if an oil passage is provided around the ignition plug and the exhaust passage that are particularly hot in the cylinder head.
- the oil passage around the spark plug and the exhaust passage By providing the oil passage around the spark plug and the exhaust passage, the temperature of the cylinder head can be lowered, but the temperature of the cylinder body cannot be lowered sufficiently. For this reason, it has been found that the amount of evaporation of the lubricating oil still increases on the inner wall surface of the cylinder hole formed in the cylinder body, and the consumption of the lubricating oil cannot be sufficiently reduced.
- the inventor of the present application has considered reducing the consumption of the lubricating oil while suppressing the manufacturing cost by providing the oil evaporation suppression having the following configuration in the air-cooled single cylinder engine.
- An air-cooled single-cylinder engine includes a cylinder body having a cylinder portion that forms a cylinder hole in which a piston is accommodated, an intake passage and an exhaust passage that define a combustion chamber together with the cylinder hole and communicate with the combustion chamber
- An air-cooled single-cylinder engine comprising: a fin portion having a plurality of fins provided on an outer surface of the cylinder body; and a cylinder axis of the fin portion in the cylinder body. It is formed in a circumferential range smaller than the circumferential range around the center, and is provided at a position closer to the exhaust passage than the intake passage in the circumferential direction around the cylinder axis, and lubricating oil is placed outside the cylinder hole. Including an oil flow portion for flowing, and an oil evaporation suppression portion for suppressing evaporation of lubricating oil on the inner wall surface of the cylinder hole And wherein the door.
- An air-cooled single-cylinder engine of the present invention includes a fin portion having a plurality of fins provided on an outer surface of a cylinder body, a circumferential range smaller than the circumferential range of the fin portion in the cylinder body, And an oil flow suppressing portion that suppresses evaporation of lubricating oil on the inner wall surface of the cylinder hole.
- the oil evaporation suppression part of the present invention is provided with a fin part having a plurality of fins on the outer surface of the cylinder body, and a technical idea that an oil flow part for flowing lubricating oil to the outside of the cylinder hole is provided in the cylinder body, This is based on a technical idea that the circumferential range of the oil flow part is formed smaller than the circumferential range of the fin part and a technical idea that the oil flow part is provided in a position closer to the exhaust passage than the intake passage in the circumferential direction.
- An air-cooled single unit comprising a cylinder body having a cylinder part that forms a cylinder hole in which a piston is accommodated, and a cylinder head that defines a combustion chamber together with the cylinder hole and has an intake passage and an exhaust passage that communicate with the combustion chamber.
- a cylinder engine hot gas passes through the exhaust passage. Therefore, the circumferential range where the exhaust passage is provided in the inner wall surface of the cylinder hole is likely to become high temperature. Since the oil flow part of the present invention is provided at a position close to the exhaust passage in the circumferential direction of the cylinder body, the temperature tends to be higher on the inner wall surface of the cylinder hole than when the oil flow part is provided only on the cylinder head. The temperature of a location can be lowered.
- the oil flow portion is provided not only in the circumferential portion where the temperature of the inner wall surface of the cylinder hole tends to be high, but also in the circumferential portion where the temperature of the inner wall surface of the cylinder hole tends to be relatively low. .
- the inner part of the cylinder hole is compared to the case where the fin part is provided in a part in the circumferential direction and the oil flow part is not provided.
- the temperature of the circumferential part of the wall surface increases.
- the fin portion and the oil flow portion are combined and provided in the cylinder body such that the circumferential range of the oil flow portion is smaller than the circumferential range of the fin portion.
- an oil flow part can be provided in a part in the circumferential direction in which the temperature of the inner wall surface of the cylinder hole is likely to be high, and an oil flow part is not provided in a part where the temperature is likely to be relatively low.
- the temperature of the entire area in the circumferential direction of the inner wall surface of the cylinder hole can be reduced and the temperature of the inner wall surface of the cylinder hole that tends to be higher than that in the case where the oil flow portion is provided all around the cylinder body.
- the temperature in a part of the direction can be further reduced.
- the air-cooled single-cylinder engine of the present invention is provided with a fin portion having a plurality of fins on the outer surface of the cylinder body and an oil flow portion for allowing the lubricating oil to flow outside the cylinder hole. It is based on the technical idea, the technical idea that the circumferential range of the oil flow part is formed smaller than the circumferential range of the fin part, and the technical idea that the oil flow part is provided in a position closer to the exhaust passage than the intake passage in the circumferential direction.
- the oil evaporation suppression part By providing the oil evaporation suppression part, it is possible to lower the temperature in the entire circumferential direction of the inner wall surface of the cylinder hole, and it is possible to further reduce the temperature of a part of the inner wall surface in the circumferential direction that tends to become high temperature. As a result, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole can be further suppressed, and the consumption amount of the lubricating oil can be further reduced. Further, since the lubricating oil originally provided in the engine is used to reduce the temperature of the inner wall surface of the cylinder hole, an increase in manufacturing cost can be suppressed. Therefore, the air-cooled single-cylinder engine can reduce the consumption of lubricating oil while suppressing an increase in manufacturing cost.
- the oil evaporation suppression portion is provided on the cylinder head side with respect to an intermediate position between the top dead center and the bottom dead center of the piston.
- the inner wall surface of the cylinder hole tends to be relatively hot at a position close to the cylinder head.
- the oil evaporation suppression portion is provided at a position close to the cylinder head in the cylinder body, it is possible to further reduce the temperature of the portion of the inner wall surface of the cylinder hole that tends to become high temperature. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- the oil evaporation suppression part is provided closer to the cylinder head than the middle position between the top dead center and the bottom dead center of the piston. It is provided on the cylinder head side from the middle position between the bottom dead center and the bottom dead center.
- a circumferential range of the oil flow portion overlaps at least a part of a circumferential range of the exhaust passage.
- the oil flow portion can more reliably lower the temperature of the portion of the inner wall surface of the cylinder hole that is likely to be hot. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- the oil evaporation suppression portion is formed on the cylinder head, a head fin portion having a plurality of fins provided on the outer surface of the cylinder head, and a cylinder axis line. It is preferable to include a head oil flow portion that is provided at a position closer to the exhaust passage than the intake passage in the circumferential direction centered and flows lubricating oil to the outside of the combustion chamber.
- the cylinder head becomes hotter than the cylinder body, and heat is transferred from the cylinder head to the cylinder body.
- the oil evaporation suppression portion of the present invention is formed in the cylinder head, a head fin portion having a plurality of fins provided on the outer surface of the cylinder head, in addition to the fin portion and oil jacket provided in the cylinder body, and And a head oil flow portion that is provided at a position closer to the exhaust passage than the intake passage in the circumferential direction, and allows lubricating oil to flow outside the combustion chamber. Therefore, the temperature of the cylinder head which is a heat source can be reduced, and the temperature of the inner wall surface of the cylinder hole can be further reduced.
- the evaporation of the lubricating oil on the inner wall surface of the cylinder hole can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- the oil flow part and the head oil flow part are provided at positions close in the cylinder axial direction. Therefore, compared with the case where the oil flow part and the head oil flow part are provided at positions separated from each other, the configuration for supplying the lubricating oil to the oil flow part and the head oil flow part can be simplified, and the manufacturing cost can be reduced.
- the oil flow portion and the head oil flow portion have the same circumferential range and communicate with each other in the cylinder axial direction.
- the temperature of the inner wall surface of the cylinder hole can be further reduced by providing the oil flow portion and the head oil flow portion in the circumferential direction region of the inner wall surface of the cylinder hole that tends to be particularly hot. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole can be further suppressed, and the consumption amount of the lubricating oil can be further reduced. Moreover, since the structure which supplies lubricating oil to an oil flow part can serve as the structure which supplies lubricating oil to a head oil flow part, manufacturing cost can be reduced.
- the oil flow portion is formed of an oil jacket that is formed outside the cylinder hole and that flows inside while being filled with lubricating oil.
- the oil flow portion formed of the oil jacket is configured so that the lubricating oil flows through the inside of the oil jacket. Therefore, the oil flow portion may have a small width in the radial direction of the cylinder hole. Therefore, since the oil flow part is easily formed, the manufacturing cost can be reduced.
- the oil jacket can be formed at a position close to the cylinder hole in the radial direction of the cylinder portion. Thereby, the temperature of the inner wall surface of a cylinder hole can be lowered more. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- the cylinder body has a hollow chamber formed outside the cylinder portion, and the oil flow portion is formed on an inner wall surface of the hollow chamber on the cylinder hole side.
- an oil collision region constituted by at least a portion in the circumferential direction and at least a portion in the cylinder axis direction, and an oil injection for injecting the lubricating oil toward the oil collision region and causing the entire surface of the oil contact surface to collide with the lubricating oil Part.
- the storage chamber can be used as a hollow chamber of the oil flow portion. Therefore, the manufacturing cost can be reduced compared to the case where a separate hollow chamber is provided.
- the air-cooled single-cylinder engine of the present invention includes a shroud that covers at least a part of the cylinder head and has an air inlet, and a fan that introduces air into the shroud from the air inlet, and the oil flow It is preferable that the portion is provided on the side opposite to the air inlet with respect to the cylinder axis.
- the oil flow portion is provided on the side opposite to the air inlet of the shroud with respect to the cylinder axis. That is, the oil flow portion is provided at a location where the temperature reduction effect on the inner wall surface of the cylinder hole is low even if the fin is provided. Therefore, the temperature of the entire inner wall surface of the cylinder hole can be efficiently reduced by the oil flow portion and the fin portion. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- the oil evaporation suppression unit preferably suppresses evaporation of the lubricating oil having a low temperature viscosity grade lower than 20 W according to SAE viscosity classification on the inner wall surface of the cylinder hole. .
- the air-cooled single-cylinder engine of the present invention includes an oil evaporation suppression unit that suppresses evaporation of lubricating oil on the inner wall surface of the cylinder hole. Therefore, even when a lubricating oil having a low temperature viscosity grade of less than 20 W according to the SAE viscosity classification is used as the lubricating oil, evaporation of the lubricating oil on the inner wall surface of the cylinder hole can be suppressed.
- the lower the viscosity of the lubricating oil the greater the flow rate per hour of the lubricating oil flowing through the oil jacket, and the temperature of the inner wall surface of the cylinder hole can be further reduced. Therefore, when the low-temperature viscosity grade of the lubricating oil is lower than 20 W, the effect of suppressing the evaporation of the lubricating oil on the inner wall surface of the cylinder hole by the oil evaporation suppressing portion can be further enhanced.
- a straddle-type vehicle is a straddle-type vehicle including a body frame, an engine mounted on the body frame, and a pair of leg shields disposed on both sides of the body frame in the vehicle width direction.
- the engine is the air-cooled single cylinder engine of the present invention, wherein the fin portion and the oil flow portion are disposed on both sides of the cylinder axis in the vehicle width direction and between the pair of leg shields.
- the engine is placed between a pair of leg shields. Therefore, if the fin portions are provided on both sides of the cylinder axis in the vehicle width direction, the gap between the fin portion and the leg shield is reduced, and the temperature reduction effect of the inner wall surface of the cylinder hole by the fin portion is reduced.
- the fin portion is provided only on one side of the cylinder axis in the vehicle width direction, and no oil is required on the other side of the cylinder axis in the vehicle width direction with the leg shield. A flow section is provided. Therefore, a large gap can be secured between the fin portion and the leg shield, and the temperature reduction effect of the inner wall surface of the cylinder hole by the fin portion can be improved. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- a straddle-type vehicle of the present invention is a straddle-type vehicle comprising a body frame and an engine mounted on the body frame, and the engine is the air-cooled single cylinder engine of the present invention,
- the cylinder axis extends in the vehicle vertical direction.
- the wind direction when the saddle riding type vehicle travels is a direction intersecting the cylinder axis. Therefore, the degree of receiving wind greatly differs depending on the circumferential position of the outer surface of the cylinder body. Therefore, the temperature of the inner wall surface of the cylinder hole can be adjusted by adjusting the circumferential position of the fin portion and the oil flow portion, for example, by arranging the oil flow portion on the rear side in the traveling direction where the wind hardly hits. .
- the state in which the cylinder axis extends in the vehicle vertical direction is not only the case where the cylinder axis extends strictly in the vehicle vertical direction, but the cylinder axis is ⁇ 45 ° with respect to the vehicle vertical direction. Including the case of tilting in the range.
- FIG. 1 is a right side view of a motorcycle according to a first embodiment of the present invention. It is the left view of the engine of FIG. 1, Comprising: It is the figure which displayed one part by the cross section.
- FIG. 3 is a sectional view taken along line III-III in FIG. 2.
- FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
- (A) is a right side view of a portion of the engine of FIG. 1
- (b) is a bottom view of a portion of the engine of FIG. 1
- (c) is a left side view of a portion of the engine of FIG.
- FIG. 2D is a plan view of a part of the engine of FIG.
- FIG. 6 is a left side view of a motorcycle according to a third embodiment of the present invention.
- FIG. 12 is a front view of the motorcycle shown in Fig. 11. It is the top view of the engine unit of FIG. 11, Comprising: It is the figure which displayed one part by the cross section.
- FIG. 6 is a left side view of a motorcycle according to a fourth embodiment of the present invention. It is the top view of the engine unit of FIG. 14, Comprising: It is the figure which displayed one part by the cross section.
- FIG. 16 is a cross-sectional view taken along line XVI-XVI in FIG. 15. It is sectional drawing of the engine which concerns on the example of a change of 3rd Embodiment of this invention. It is sectional drawing of the engine which concerns on the example of a change of 1st Embodiment of this invention.
- FIG. 6 is a left side view of a motorcycle according to another embodiment of the present invention.
- the present embodiment is an example in which the air-cooled single cylinder engine of the present invention is applied to the engine of the motorcycle 1 shown in FIG.
- the front-rear direction refers to the vehicle front-rear direction viewed from a rider seated on a seat 8 (described later) of the motorcycle 1
- the left-right direction refers to a view viewed from a rider seated on the seat 8.
- the vehicle left-right direction (vehicle width direction).
- the arrow F direction and the arrow B direction of each drawing represent the front and the rear
- the arrow L direction and the arrow R direction represent the left side and the right side
- the arrow U direction and the arrow D direction are Represents the top and bottom.
- the motorcycle 1 of the present embodiment is a scooter.
- the motorcycle 1 includes a front wheel 2, a rear wheel 3, and a body frame 4.
- the vehicle body frame 4 extends in the front-rear direction as a whole.
- the body frame 4 has a head pipe 4a at the front thereof.
- a steering shaft 5 is rotatably inserted into the head pipe 4a.
- An upper end portion of the steering shaft 5 is connected to the handle unit 6.
- the lower end portion of the steering shaft 5 is connected to a pair of front forks 7.
- the lower end of the front fork 7 supports the front wheel 2.
- the seat 8 is supported on the upper part of the body frame 4.
- a footrest plate 9 is supported in front of the seat 8 in the body frame 4.
- the body frame 4 supports a body cover 10 that covers the body frame 4 and the like.
- the vehicle body cover 10 has a form extending upward from the front end and the rear end of the footrest plate 9.
- the body frame 4 is equipped with a swing type engine unit 11 and a fuel tank (not shown).
- the fuel tank is disposed below the seat 8 and is covered by the seat 8 and the vehicle body cover 10.
- the engine unit 11 includes an engine 12 and a transmission 13 connected to the rear portion of the engine 12.
- the transmission 13 is a V-belt type continuously variable transmission.
- the transmission 13 is disposed on the left side of the engine 12 and the rear wheel 3.
- the front portion of the engine 12 is covered with a vehicle body cover 10 from the front and both left and right sides.
- a front end portion of the engine 12 is swingably supported by the vehicle body frame 4 via a pivot shaft 4b.
- a rear end portion of the transmission 13 supports the rear wheel 3.
- a rear suspension 14 is attached between the transmission 13 and the vehicle body frame 4.
- the engine 12 (the air-cooled single cylinder engine of the present invention) is a forced air-cooled engine.
- the engine 12 is an OHC (Over Head Camshaft) type four-cycle single cylinder engine.
- the engine 12 includes a crankcase 20, a cylinder body 21 attached to the front end portion of the crankcase 20, a cylinder head 22 attached to the front end portion of the cylinder body 21, and a cylinder A head cover 23 attached to the front end of the head 22 and a shroud 24 are provided.
- the display of the shroud 24 is omitted.
- FIG. 2 shows a left side surface of the crankcase 20 and cross sections of the cylinder body 21, the cylinder head 22, and the head cover 23.
- the crankcase 20, the cylinder body 21, the cylinder head 22, and the head cover 23 are preferably formed of a light alloy having a higher thermal conductivity than iron, but may be formed of iron or other metals. Specific examples of the light alloy include aluminum, magnesium, an alloy of aluminum and silicon, and an alloy of aluminum and magnesium.
- the crankcase 20, the cylinder body 21, the cylinder head 22, and the head cover 23 are formed by casting, for example.
- the shroud 24 covers the entire cylinder body 21, the entire cylinder head 22, and the rear end of the head cover 23 over the entire circumference. Further, the shroud 24 covers the right side portion of the crankcase 20. An air inflow port 24a is formed in a portion of the shroud 24 that covers the crankcase 20 (that is, the rear right portion of the shroud 24). An air discharge port (not shown) is formed in the front portion of the shroud 24.
- 3 is a cross-sectional view taken along the line III-III in FIG. 2 and also a cross-sectional view taken along the line III-III in FIG.
- a crankshaft 30 extending in the left-right direction is accommodated in the crankcase 20.
- the crankshaft 30 is rotatably supported with respect to the crankcase 20.
- the left end portion of the crankshaft 30 protrudes from the crankcase 20 and is connected to the transmission 13.
- a right end portion of the crankshaft 30 protrudes from the crankcase 20 and is connected to the fan 31.
- the fan 31 is driven to rotate as the crankshaft 30 rotates.
- air is introduced into the shroud 24 through the air inlet 24a, and the introduced air is discharged from an air outlet (not shown).
- an oil pan 20 a extending in the left-right direction is formed at the lower portion of the crankcase 20.
- Lubricating oil is stored in the oil pan 20a.
- the crankcase 20 houses an oil pump 32 that sucks up lubricating oil stored in the oil pan 20a.
- Lubricating oil is pumped by the oil pump 32 and circulates in the engine 12. Details of the flow of the lubricating oil will be described later. Lubricating oil is included in the components of the engine 12.
- Lubricating oil has a low temperature viscosity grade according to SAE viscosity classification specified in SAE J300, which is lower than 20W.
- the lower the viscosity grade the lower the viscosity of the oil.
- the high temperature viscosity grade according to the SAE viscosity classification of the lubricating oil is not particularly limited.
- X is an integer of 0 or more and less than 20
- Y is an integer of 0 or more
- the SAE viscosity grade of the lubricating oil is represented by XW-Y.
- Lubricating oil is composed of base oil and additives.
- the evaporation temperature may be different even if the lubricating oil has the same viscosity.
- the evaporation characteristic of the lubricating oil can be obtained, for example, by a boiling point distribution measuring method by gas chromatography simulated distillation based on ASTM D6352.
- the cylinder body 21 is connected to the front end surface of the crankcase 20. As shown in FIG. 4, the cylinder body 21 includes a cylindrical cylinder portion 50, two protruding portions 51 and 52 that protrude from the outer peripheral surface of the cylinder portion 50, a chain chamber forming portion 53, and a fin portion 54. It has.
- the cylinder part 50, the protrusion parts 51 and 52, the chain chamber forming part 53, and the fin part 54 are integrally formed of the same material.
- the cylinder portion 50 is formed with a cylinder hole 50a in which the piston 33 is slidably accommodated.
- the inner wall surface of the cylinder hole 50a may be plated.
- the piston 33 is connected to the crankshaft 30 via a connecting rod 34.
- the central axis of the cylinder hole 50a that is, the cylinder axis C1 extends in the front-rear direction.
- the cylinder axis C1 is slightly inclined with respect to the front-rear direction so that the front end (end on the cylinder head 22 side) of the cylinder portion 50 is positioned above the rear end (end on the crankcase 20 side).
- the inclination angle of the cylinder axis C1 with respect to the front-rear direction (horizontal direction) is about 5 degrees, but may be in the range of 0 degrees to 45 degrees.
- a groove 50b extending in the circumferential direction around the cylinder axis C1 is formed on the front surface of the cylinder 50.
- the front opening of the groove 50 b is closed by the rear surface of the cylinder head 22.
- the groove 50b is filled with lubricating oil.
- Groove 50b constitutes oil jacket 50b.
- the oil jacket 50 b is formed on the left side and the lower side of the cylinder part 50.
- the oil jacket 50b is formed in a range from a position of about 2 o'clock to a position of about 7 o'clock when viewed from the direction of the cylinder axis C1 (direction A1).
- the oil jacket 50b is provided on the opposite side of the shroud 24 from the air inlet 24a with respect to the cylinder axis C1.
- the oil jacket 50b is provided at a position closer to an exhaust passage 63, which will be described later, than an intake passage 62, which will be described later, in the circumferential direction around the cylinder axis C1.
- the oil jacket 50b is formed in substantially the entire circumferential range of the chain chamber 55 described later in the circumferential direction centering on the cylinder axis C1.
- the oil jacket 50b is formed in the entire circumferential range of the exhaust passage 63 in the circumferential direction around the cylinder axis C1.
- the oil jacket 50b is formed at a substantially central portion of the thickness of the cylinder portion 50 in the radial direction.
- the length of the oil jacket 50b in the radial direction around the cylinder axis C1 is constant over the circumferential direction and the cylinder axis direction (A1 direction).
- the length of the oil jacket 50b in the cylinder axis direction (A1 direction) is constant over the circumferential direction.
- the piston 33 at the top dead center is indicated by a solid line
- the piston 33 at an intermediate position between the top dead center and the bottom dead center is indicated by a two-dot chain line.
- the oil jacket 50b is formed forward (on the cylinder head 22 side) with respect to the intermediate position between the top dead center and the bottom dead center of the piston 33.
- the front surface of the cylinder body 21 is formed with two groove portions (hereinafter referred to as communication portions) 50c and 50d extending in a substantially radial direction from both circumferential ends of the oil jacket 50b.
- the communication portion 50c allows the lower right end of the oil jacket 50b to communicate with a bolt hole 52a described later, and the communication portion 50d allows the upper left end of the oil jacket 50b to communicate with a chain chamber 55 described later.
- the protruding part 51 protrudes from the upper right part of the outer peripheral surface of the cylinder part 50 and extends in the cylinder axial direction (A1 direction).
- the protruding portion 52 protrudes from the lower right portion of the outer peripheral surface of the cylinder portion 50 and extends in the cylinder axial direction (A1 direction).
- Bolt holes 51a and 52a penetrating in the cylinder axis direction (A1 direction) are formed in the protrusions 51 and 52, respectively.
- the cylinder head 22 has bolt holes (not shown) communicating with the bolt holes 51a and 52a, respectively.
- Two stud bolts 35 for connecting the cylinder body 21 and the cylinder head 22 are inserted into the two bolt holes 51 a and 52 a of the cylinder head 22 and the two bolt holes of the cylinder head 22.
- the diameters of the bolt holes 51 a and 52 a are respectively larger than the diameter of the stud bolt 35 to be inserted, and a gap is generated between the inner peripheral surface of the bolt holes 51 a and 52 a and the outer peripheral surface of the stud bolt 35.
- the chain chamber forming portion 53 is provided on the left side portion of the outer peripheral surface of the cylinder portion 50.
- a chain chamber 55 is formed between the chain chamber forming portion 53 and the outer peripheral surface of the cylinder portion 50. That is, the chain chamber 55 is formed outside the cylinder portion 50.
- the chain chamber 55 allows the chain chamber 20 b formed in the crankcase 20 to communicate with the chain chamber 60 formed in the cylinder head 22.
- a timing chain 44 described later is arranged in the chain chambers 55, 20b, 60.
- the cross-sectional shape of the chain chamber 55 perpendicular to the cylinder axial direction (A1 direction) is a substantially rectangular shape that is elongated in the vertical direction.
- the vertical length of the chain chamber 55 is larger than the diameter of the cylinder hole 50a.
- An intermediate position in the vertical direction of the chain chamber 55 is aligned substantially horizontally with the cylinder axis C1.
- the chain chamber forming portion 53 is formed with four bolt holes 53a through which the stud bolts 36 are inserted.
- the fin portion 54 is formed on a part of the outer peripheral portion of the cylinder body 21 in the circumferential direction.
- the fin portion 54 is formed in a substantially half region on the front side (cylinder head 22 side) of the cylinder body 21 in the cylinder axial direction (A1 direction).
- the fin portion 54 is formed closer to the cylinder head 22 than an intermediate position between the top dead center and the bottom dead center of the piston 33.
- the fin portion 54 includes a plurality of fins arranged in the cylinder axial direction (A1 direction). Each fin extends in the circumferential direction around the cylinder axis C1.
- the fin portion 54 is formed on the upper surface, the right surface, and the lower surface of the cylinder body 21.
- the fin portion 54 protrudes from the outer peripheral surface of the cylinder portion 50 and the outer surfaces of the protruding portions 51 and 52. Both ends in the circumferential direction of the fin portion 54 are connected to the right surface of the chain chamber forming portion 53.
- the fin portion 54 is formed in a range of about 200 degrees around the cylinder axis C1. Therefore, the fin part 54 is formed in the circumferential direction range larger than the circumferential direction range of the oil jacket 50b. Further, a part of the circumferential range of the fin portion 54 overlaps a part of the circumferential range of the oil jacket 50b.
- the air introduced into the shroud 24 by the fan 31 comes into contact with the fin portion 54, so that the cylinder body 21 radiates heat from the fin portion 54.
- the cylinder head 22 is connected to the front end surface of the cylinder body 21 via the gasket 25.
- the gasket 25 has holes having substantially the same shape at positions corresponding to the cylinder hole 50a, the oil jacket 50b, the bolt holes 51a, 52a, 53a, and the chain chamber 55 of the cylinder body 21, respectively.
- the gasket 25 is preferably made of a material having a higher thermal conductivity than iron, but may be made of other materials.
- the gasket 25 may be made of metal or may be made of a material other than metal (for example, synthetic resin).
- a substantially hemispherical recess 61 is formed on the rear surface of the cylinder head 22 at a position corresponding to the cylinder hole 50a.
- the diameter of the rear end of the recess 61 is substantially the same as the diameter of the cylinder hole 50a.
- the combustion chamber 26 is defined by the recess 61, the cylinder hole 50 a, and the piston 33.
- an intake passage 62 and an exhaust passage 63 communicating with the combustion chamber 26 are formed inside the cylinder head 22.
- the intake passage 62 is formed in the upper part of the cylinder head 22.
- the intake passage 62 extends obliquely upward and forward from the recess 61 to the upper surface of the cylinder head 22 when viewed from the left-right direction.
- the exhaust passage 63 is formed in the lower part of the cylinder head 22.
- the exhaust passage 63 extends obliquely downward in the forward direction from the recess 61 to the lower surface of the cylinder head 22 when viewed from the left-right direction.
- the exhaust passage 63 of the present embodiment extends in a direction orthogonal to the left-right direction when viewed from the front.
- the exhaust passage 63 may extend downward from the recess 61 to the lower surface of the cylinder head 22 while turning rightward or leftward when viewed from the front.
- the intake passage 62 is a passage for introducing air into the combustion chamber 26.
- the exhaust passage 63 is a passage for discharging high-temperature combustion gas generated in the combustion chamber 26.
- the intake passage 62 is connected to an air cleaner (not shown) via the intake pipe 15.
- a throttle valve (not shown) is provided in the middle of the intake pipe 15. The amount of air supplied to the combustion chamber 26 is adjusted by adjusting the opening of the throttle valve.
- the exhaust passage 63 is connected to the muffler 17 via the exhaust pipe 16.
- a three-way catalyst (not shown) is disposed in the middle of the exhaust pipe 16.
- a spark plug 37 is disposed on the right side of the cylinder head 22.
- a tip portion that is an ignition portion of the spark plug 37 is exposed in the combustion chamber 26 from an insertion port 64 formed in the recess 61.
- the cylinder head 22 is formed with the chain chamber 60 communicating with the chain chamber 55 of the cylinder body 21 and the plurality of bolt holes communicating with the plurality of bolt holes 51a, 52a, 53a of the cylinder body 21. Has been.
- FIG. 4 is a cross-sectional view of the cylinder head 22 as viewed from the front in the cylinder axial direction (A1 direction). Therefore, although the intake passage 62 and the exhaust passage 63 do not originally appear in FIG. 4, the intake passage 62 and the exhaust passage 63 are located at positions corresponding to the vertical and horizontal positions where the intake passage 62 and the exhaust passage 63 are disposed. Is indicated by a two-dot chain line. Further, although the insertion port 64 formed in the recess 61 does not originally appear in FIG. 4, the insertion port 64 is indicated by a two-dot chain line at a position corresponding to the position in the vertical and horizontal directions where the insertion port 64 is arranged. Yes.
- the front part of the cylinder head 22 is covered with a head cover 23. Inside the cylinder head 22 and the head cover 23 are housed an intake valve 38 and an exhaust valve 39 for opening and closing the intake passage 62 and the exhaust passage 63, respectively, and a valve operating mechanism 40 for driving the intake valve 38 and the exhaust valve 39.
- the valve mechanism 40 includes a cam shaft 41 extending in the left-right direction.
- the cam shaft 41 is rotatably supported by the cylinder head 22.
- the left end portion of the cam shaft 41 is disposed in the chain chamber 60 of the cylinder head 22.
- a timing chain 44 is wound around a sprocket 42 provided at the left end of the camshaft 41 and a sprocket 43 provided at the left end of the crankshaft 30.
- the timing chain 44 is a power transmission member that transmits the rotational force of the crankshaft 30 to the valve mechanism 40.
- the intake valve 38 and the exhaust valve 39 are driven to open and close.
- a head fin portion 65 is provided on the outer surface of the cylinder head 22.
- the head fin portion 65 is composed of a plurality of fins arranged in the cylinder axis direction (A1 direction). Each fin extends in the circumferential direction around the cylinder axis C1.
- the head fin portion 65 is formed in a substantially half region on the rear side (cylinder body 21 side) of the cylinder head 22 in the cylinder axial direction (A1 direction).
- the head fin portions 65 are formed on both upper and lower sides of the spark plug 37 on the right surface of the cylinder head 22.
- the white arrow and the solid arrow shown in each figure show a part of the flow of the lubricating oil.
- the solid arrows indicate the flow of the lubricating oil that does not appear in the cross section, and the open arrows indicate the flow of the lubricating oil that appears in the cross section.
- the lubricating oil is used not only for lubricating the sliding portion of the engine 12 but also for lowering the temperature of the inner wall surface of the cylinder hole 50a.
- the crankcase 20 is formed with a passage for supplying the lubricating oil pumped from the oil pump 32 to the crankshaft 30 and a passage for supplying the cylinder body 21.
- the crankcase 20 is formed with an injection port (oil jet hole) 20c for injecting the lubricating oil pumped from the oil pump 32 toward the back surface (rear surface) of the piston 33.
- the lubricating oil supplied to the crankshaft 30 is injected from an injection port (not shown) formed in the connecting rod 34 toward the piston 33 and the inner wall surface of the cylinder hole 50a.
- the lubricating oil sent from the crankcase 20 is applied to the rear surface of the cylinder portion 50 from the rear into the gap between the bolt hole 51a and the stud bolt 35 and the gap between the bolt hole 52a and the stud bolt 35, respectively. Grooves (not shown) for supply are formed.
- a plurality of branch paths (not shown) for supplying lubricating oil to the valves 38 and 39 and the valve operating mechanism 40 are connected to the bolt holes of the cylinder head 22.
- the lubricating oil supplied to the valves 38 and 39 and the valve operating mechanism 40 is discharged into the chain chamber 55, and then flows down due to its own weight and returns to the oil pan 20a.
- the lubricating oil flows in the circumferential direction along the oil jacket 50b, and then is discharged to the chain chamber 55 through the communication portion 50d.
- the lubricating oil discharged to the chain chamber 55 flows down by its own weight and returns to the oil pan 20a.
- the temperature of the lubricating oil flowing through the oil jacket 50b is about 80 to 90 ° C., for example.
- the lubricating oil flowing through the oil jacket 50b takes heat from the cylinder body 21.
- the engine 12 repeats an intake stroke, a compression stroke, a combustion stroke, and an exhaust stroke in order.
- the combustion gas generated in the combustion chamber 26 during the combustion stroke is discharged from the exhaust passage 63 during the exhaust stroke. Therefore, the combustion gas heats the portion on the cylinder head 22 side of the inner wall surface of the cylinder hole 50a, the recess 61 of the cylinder head 22, and the inner wall surface of the exhaust passage 63.
- a portion of the cylinder portion 50 that is aligned with the exhaust passage 63 in the cylinder axial direction (A1 direction) (that is, a portion behind the exhaust passage 63) is configured to transmit heat transmitted from the inner wall surface of the cylinder hole 50a and heat transmitted from the exhaust passage 63. Heated by both.
- the graph of Example 1 shown in FIG. 6 shows the relationship between the circumferential position of the inner wall surface of the cylinder hole 50a of the engine 12 of the present embodiment and the temperature. 6 indicates the clockwise angle in FIG. 4 from the position P1 directly above the cylinder axis C1 shown in FIG. 4, and the vertical axis indicates the inner wall surface of the cylinder hole 50a at the angular position. Shows the temperature.
- the temperature of the inner wall surface of the cylinder hole 50a is specifically the temperature at a position 1.5 mm radially outward from the inner wall surface of the cylinder hole 50a.
- the oil jacket 50b Since the temperature reduction effect by the oil jacket is higher than the temperature reduction effect by the fin portion 54 in the portion on the exhaust passage 63 side that is likely to become high temperature, the oil jacket 50b is provided, so that the oil jacket is not provided. The temperature can be lowered more than 1. On the other hand, since the original temperature of the portion on the intake passage 62 side and the portion on the opposite side of the chain chamber 55 is low, the temperature reduction effect by the oil jacket is lower than the temperature reduction effect by the fin portion 54. By providing, temperature will become higher than the comparative example 1 which does not provide an oil jacket. Therefore, in the comparative example 2, the temperature of the inner wall surface of the cylinder hole 50a is made uniform in the circumferential direction.
- Example 1 the oil jacket 50b is not provided in the portion on the intake passage 62 side and the portion on the opposite side to the chain chamber 55, and the portion on the exhaust passage 63 side and the chain chamber. It is provided on the 55 side. Therefore, for the same reason as in Comparative Example 2 in which the oil jacket is provided on the entire circumference, the part on the chain chamber 55 side and the part on the exhaust passage 63 side of the inner wall surface of the cylinder hole 50a are not provided with an oil jacket at all. The temperature can be lowered more than 1.
- lubricating oil is not used for the portion on the intake passage 62 side and the portion on the opposite side of the chain chamber 55, the corresponding lubricating oil can be used for the portion on the exhaust passage 63 side and the portion on the chain chamber 55 side. it can. As a result, the temperature of the portion on the exhaust passage 63 side and the portion on the chain chamber 55 side can be lowered as compared with Comparative Example 2 in which the oil jacket is provided on the entire circumference.
- the temperature reduction effect by the oil jacket is lower than the temperature reduction effect by the fin portion 54 in the portion on the intake passage 62 side and the portion opposite to the chain chamber 55.
- the temperature can be lowered as compared with Comparative Example 2 in which the oil jacket is provided on the entire circumference.
- Comparative Example 1 since the temperature of the portion on the exhaust passage 63 side and the portion on the chain chamber 55 side can be lowered as compared with Comparative Example 1, the portion on the intake passage 62 side and the portion on the opposite side of the chain chamber 55 The amount of heat transmitted from the portion on the exhaust passage 63 side and the portion on the chain chamber 55 side can be reduced. Therefore, the temperature of the portion on the intake passage 62 side and the portion on the opposite side of the chain chamber 55 can be lowered as compared with Comparative Example 1 in which no oil jacket is provided.
- the graph of FIG. 23 is a graph demonstrating that the consumption of lubricating oil increases as the temperature of the inner wall surface of the cylinder hole increases.
- This graph shows the result of measurement on a test bench using a plurality of types of engines and its approximate curve.
- a plot c in the graph is a result of measurement using the engine 12 of the present embodiment.
- Plot a in the graph is a result of measurement in a water-cooled engine in which a water jacket is formed over the entire circumference of the cylinder body and no fan is provided.
- Plot d in the graph is a result of measurement in an oil-cooled engine in which an oil jacket is formed over the entire circumference of the cylinder body and no fan is provided.
- Plot b and plot e in the graph are the results of measurement in a forced air-cooled engine in which no oil jacket or water jacket is formed on the cylinder body. Since the configuration of the fan (31) (for example, the number of blades) is different between the plot b and the plot e, the amount of air generated by the fan (31) is different. The air volume of the fan 31 in plot c and plot e is the same. Accordingly, the only difference between the engines used in plots c and e is the presence or absence of the oil jacket 50b.
- the plots a to e in the graph of FIG. 23 are results obtained by measuring the engine for a predetermined time under predetermined operating conditions.
- Lubricating oil consumption was measured by comparing the weight of lubricating oil in the engine before and after the test run.
- shaft of FIG. 23 has shown the consumption of the lubricating oil per unit time.
- the horizontal axis of FIG. 23 indicates the temperature of the inner wall surface of the cylinder hole during operation of the engine, specifically, the temperature at a position 1.5 mm radially outward from the inner wall surface. More specifically, the temperatures in the vicinity of the exhaust passage (63) and the chain chamber (55), which are the highest in the circumferential direction, are displayed.
- the temperature of the lubricating oil during the test operation is 125 ⁇ 5 ° C. Moreover, since it is a test of a test bench, there is no air flow and natural wind due to running.
- the high load means that the engine speed and the opening of the throttle valve (hereinafter referred to as throttle opening) satisfy the following conditions.
- the engine rotation speed under a high load is included in the medium speed range or the high speed range when the entire engine speed range is equally divided into three regions (low speed range, medium speed range, and high speed range).
- the throttle opening at high load is divided into three areas (small opening area, medium opening area, and large opening area) when the entire throttle opening area is equally divided into the middle opening area and the large opening area. included.
- the engine 12 of this embodiment does not include the oil jacket 50b ( Compared to Comparative Example 1, plot e), the temperature of the inner wall surface of the cylinder hole is low. Therefore, the engine 12 of this embodiment can suppress the evaporation of the lubricating oil on the inner wall surface of the cylinder hole as compared with the case where the oil jacket 50b is not provided. Therefore, as shown in FIG. 23, the engine 12 (plot c) of the embodiment can reduce the consumption amount of the lubricating oil compared to the case where the oil jacket 50b is not provided (plot e).
- the engine 12 of the embodiment has a lower temperature on the inner wall surface of the cylinder hole than the case where the oil jacket 50b is not provided (plot e), and the lubricating oil Low consumption. From this, it can be said that the engine 12 of the embodiment has less evaporation of the lubricating oil on the inner wall surface of the cylinder hole than in the case where the oil jacket 50b is not provided.
- the amount of consumption of the lubricating oil is not particularly limited as long as it is a value obtained by measurement before and after the engine is operated under the predetermined operating conditions described above.
- the fin portion 54 and the oil jacket 50b correspond to the oil evaporation suppression portion of the present invention.
- the engine 12 of the present embodiment described above has the following characteristics.
- the engine 12 of the present embodiment is formed in a fin portion 54 and a circumferential range smaller than the circumferential range of the fin portion 54, and from the intake passage 62 to the exhaust passage 63 in the circumferential direction around the cylinder axis.
- An oil evaporation suppression unit including an oil jacket 50b provided at a close position is provided.
- the oil evaporation suppression unit includes a technical idea that the fin part 54 and the oil jacket 50b are provided in the cylinder body 21, a technical idea that the circumferential range of the oil jacket 50b is smaller than the circumferential range of the fin part 54, and the oil This is based on the technical idea that the jacket 50b is provided at a position closer to the exhaust passage 63 than the intake passage 62 in the circumferential direction. Since high-temperature gas passes through the exhaust passage 63, the circumferential range in which the exhaust passage 63 is provided on the inner wall surface of the cylinder hole 50a is likely to be hot.
- the oil jacket 50b is provided at a position close to the exhaust passage 63 in the circumferential direction, the temperature of the portion of the inner wall surface of the cylinder hole 50a that is likely to become high temperature as compared with the case where the oil jacket is provided only in the cylinder head 22. Can be reduced. Therefore, as compared with the case where the oil jacket is provided only on the cylinder head 22, evaporation of the lubricating oil on the inner wall surface of the cylinder hole 50a can be further suppressed, and the consumption amount of the lubricating oil can be further reduced. Further, as shown in the graph of FIG.
- the temperature of the entire area in the circumferential direction of the inner wall surface of the cylinder hole 50 a can be reduced as compared with the case where the oil jacket is provided on the entire circumference of the cylinder body (Comparative Example 2).
- the engine 12 of the present embodiment has a technical idea that the fin portion 54 and the oil jacket 50 b are provided in the cylinder body 21, and the circumferential range of the oil jacket 50 b is smaller than the circumferential range of the fin portion 54.
- an oil evaporation suppression portion that is constituted by a technical idea that the oil jacket 50b is provided at a position closer to the exhaust passage 63 than the intake passage 62 in the circumferential direction, the entire circumferential direction of the inner wall surface of the cylinder hole 50a is provided.
- the temperature of a portion in the circumferential direction that tends to become high on the inner wall surface can be further reduced.
- the engine 12 of this embodiment can reduce the consumption amount of lubricating oil while suppressing an increase in manufacturing cost.
- the lubricating oil evaporated in the combustion chamber 26 is discharged to the exhaust pipe 16 through the exhaust passage 63 together with the combustion gas.
- the lubricating oil that has flowed into the exhaust pipe 16 poisons a three-way catalyst (not shown) disposed in the middle of the exhaust pipe 16.
- poisoning of the three-way catalyst can be suppressed by suppressing evaporation of the lubricating oil attached to the inner wall surface of the cylinder hole 50a.
- the inner wall surface of the cylinder hole 50a tends to be relatively hot at a position close to the cylinder head 22.
- the oil jacket 50b is provided closer to the cylinder head 22 than the intermediate position between the top dead center and the bottom dead center of the piston 33. Therefore, the temperature of the portion of the inner wall surface of the cylinder hole 50a that tends to be high can be further reduced. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole 50a can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- the circumferential range of the oil jacket 50 b overlaps the circumferential range of the exhaust passage 63. For this reason, the oil jacket 50b can reliably reduce the temperature of the portion of the inner wall surface of the cylinder hole 50a that is likely to be hot. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole 50a can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- the oil jacket 50b is used as means for lowering the temperature of the inner wall surface of the cylinder hole 50a with the lubricating oil.
- the oil jacket 50b that flows inside with the lubricating oil filled therein may have a small radial width of the cylinder hole 50a. Therefore, the radial width of the cylinder body 21 can be reduced, and the engine 12 can be downsized.
- the oil jacket 50 b can be formed at a position close to the cylinder hole 50 a in the radial direction of the cylinder portion 50. Thereby, the temperature of the inner wall surface of the cylinder hole 50a can be further reduced. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole 50a can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- the oil jacket 50b is provided on the opposite side of the shroud 24 from the air inlet 24a with respect to the cylinder axis C1. That is, the oil jacket 50b is provided at a location where the temperature reduction effect of the inner wall surface of the cylinder hole 50a is low even if the fin portion 54 is provided. Therefore, the temperature of the entire inner wall surface of the cylinder hole 50a can be efficiently reduced by the oil jacket 50b and the fin portion 54. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole 50a can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- lubricating oil with high viscosity was used. Specifically, a lubricating oil having a low temperature viscosity grade of 20 W or higher according to SAE viscosity classification was used. The higher the viscosity of the lubricating oil, the higher the evaporation temperature of the lubricating oil, and the more difficult it is to evaporate. Therefore, in conventional engines, consumption of lubricating oil due to evaporation of lubricating oil has not been a problem. However, in recent years, low-viscosity lubricating oils have been used in engines to improve fuel economy. As a result, there is a problem that the lubricating oil is likely to evaporate and the consumption amount of the lubricating oil increases.
- the engine 12 of the present embodiment includes an oil evaporation suppression portion (an oil jacket 50b and a fin portion 54) that suppresses evaporation of lubricating oil on the inner wall surface of the cylinder hole 50a. Therefore, even when a lubricating oil having a low temperature viscosity grade of less than 20 W according to the SAE viscosity classification is used as the lubricating oil, evaporation of the lubricating oil on the inner wall surface of the cylinder hole 50a can be suppressed. Further, as the viscosity of the lubricating oil is lower, the flow rate per hour of the lubricating oil flowing through the oil jacket 50b increases, and the temperature of the inner wall surface of the cylinder hole 50a can be further lowered.
- an oil evaporation suppression portion an oil jacket 50b and a fin portion 54
- the effect of suppressing the evaporation of the lubricating oil on the inner wall surface of the cylinder hole 50a by the oil evaporation suppressing portion can be further enhanced.
- the engine 112 of this embodiment is different from the engine 12 of the first embodiment in the configuration of the cylinder body 121 and the gasket 125, and the other configurations are the same as the engine 12 of the first embodiment.
- is there. 7 is a cross-sectional view taken along line VII-VII in FIG.
- the cylinder body 121 includes a cylindrical cylinder portion 150, two projecting portions 51 and 52 that project from the outer peripheral surface of the cylinder portion 150, a chain chamber forming portion 153, and a fin portion 54.
- the cylinder body 121 of the present embodiment includes an oil flow portion 156.
- the cylinder part 150 has the same configuration as the cylinder part 50 of the first embodiment except that the oil jacket (groove part) 50b and the communication parts 50c and 50d are not provided.
- a hole is formed in the gasket 25 of the first embodiment at a position corresponding to the oil jacket 50b, whereas this hole is not formed in the gasket 125 of the present embodiment.
- Other configurations of the gasket 125 are the same as those of the gasket 25 of the first embodiment.
- the formation position of the chain chamber forming portion 153 is the same as that of the chain chamber forming portion 53 of the first embodiment.
- a chain chamber 55 similar to that of the first embodiment is formed between the chain chamber forming portion 153 and the outer peripheral surface of the cylinder portion 150.
- an oil passage 157 is formed in a portion radially outside the chain chamber 55 and below the cylinder axis C1 in the vertical direction.
- the oil passage 157 extends in the cylinder axial direction (A1 direction) and penetrates the cylinder body 121.
- the chain chamber forming portion 153 is formed with an oil injection hole 158 (oil injection portion) for communicating the front portion of the oil passage 157 with the chain chamber 55.
- oil injection hole 158 oil injection portion
- a hole extending through the oil passage 157 from the outer peripheral surface of the cylinder body 121 to the inner wall surface of the chain chamber 55 is formed in the chain chamber forming portion 153.
- a portion of the hole on the outer side in the radial direction than the oil passage 157 is closed with a plug.
- the oil injection hole 158 is formed forward (on the cylinder head 22 side) from the middle position (indicated by a two-dot chain line in FIG. 7) between the top dead center and the bottom dead center of the piston 33.
- the oil injection hole 158 extends in a direction orthogonal to the cylinder axial direction. Specifically, the oil injection hole 158 extends substantially parallel to the left-right direction.
- Lubricating oil that has flowed into the oil passage 157 from behind is injected into the chain chamber 55 from the oil injection hole 158 and collides with the outer peripheral surface of the cylinder portion 150.
- the flow rate of the lubricating oil O injected from the oil injection hole 158 is the same as the diameter of the oil injection hole 158. The flow rate is such that it can collide with the outer peripheral surface of the cylinder portion 150.
- a region where the lubricating oil injected from the oil injection hole 158 collides on the outer peripheral surface of the cylinder unit 150 is referred to as an oil collision region 159.
- the diameter of the oil collision area 159 is substantially the same as the diameter of the oil injection hole 158.
- the lubricating oil O colliding with the oil collision area 159 spreads radially around the oil collision area 159 and then flows downward.
- the lubricating oil injected from the oil injection hole 158 collides with a position closer to the exhaust passage 63 than the intake passage 62 in the circumferential direction on the outer peripheral surface of the cylinder portion 150.
- the oil collision area 159 has a position shifted about 25 degrees downward about the cylinder axis C1 from the intersection of the plane passing through the cylinder axis C1 and extending parallel to the left-right direction and the inner wall surface of the cylinder hole 50a. It has become.
- the oil flow portion 156 is formed by a portion where the above-described oil collision region 159 is formed in the cylinder portion 50 and a portion where the oil injection hole 158 is formed in the chain chamber forming portion 53. Moreover, in this embodiment, the fin part 54 and the oil flow part 156 are equivalent to the oil evaporation suppression part of this invention.
- the graph of Example 2 shown in FIG. 10 shows the relationship between the circumferential position of the inner wall surface of the cylinder hole 50a of the engine 112 of this embodiment and the temperature.
- the horizontal axis and vertical axis of the graph of FIG. 10 are the same as those of the graph of FIG.
- the graph of the comparative example 3 shown in FIG. 10 has shown the result in case the oil flow part 156 is not provided and the other structure is substantially the same as the engine 112 of this embodiment.
- the graph of Comparative Example 4 shown in FIG. 10 shows an oil flow portion similar to the oil flow portion 156 of the present embodiment at a position closer to the intake passage 62 than the exhaust passage 63 in the circumferential direction around the cylinder axis C1.
- the other results are the same as those of the engine 112 of the present embodiment.
- the oil flow portion (oil collision region) of Comparative Example 4 was shifted about 10 degrees upward about the cylinder axis C1 from the intersection of the plane extending through the cylinder axis C1 and parallel to the left-right direction and the inner wall surface of the cylinder hole 50a. Is in position.
- the engine 112 of the present embodiment described above has the following characteristics.
- the engine 112 of the present embodiment is formed in a fin portion 54 and a circumferential range smaller than the circumferential range of the fin portion 54, and is provided at a position closer to the exhaust passage 63 than the intake passage 62 in the circumferential direction.
- An oil evaporation suppression unit including an oil flow unit 156 is provided. With this configuration, as in the first embodiment, the cylinder hole 50a is reduced as compared with the case where an oil flow portion is provided in the cylinder head or the oil flow portion is provided all around the cylinder body while suppressing an increase in manufacturing cost.
- the temperature in the entire circumferential direction of the inner wall surface can be reduced, and the temperature of a portion in the circumferential direction that tends to be high in the inner wall surface of the cylinder hole 50a can be further lowered. Therefore, evaporation of the lubricating oil adhering to the inner wall surface of the cylinder hole 50a can be suppressed while suppressing the manufacturing cost, and the consumption amount of the lubricating oil can be further reduced.
- the oil flow portion 156 is used as means for lowering the temperature of the inner wall surface of the cylinder hole 50a with the lubricating oil.
- the oil flow portion 156 uses the chain chamber 55 as a space for injecting lubricating oil. Therefore, the engine 112 can be reduced in size compared to the case where a separate space is formed in the cylinder body 121 just for injecting the lubricating oil.
- the oil flow portion 156 is provided on the opposite side of the air inlet 24a of the shroud 24 with respect to the cylinder axis C1. Therefore, similarly to the first embodiment, the temperature of the entire inner wall surface of the cylinder hole 50a can be efficiently reduced by the oil flow portion 156 and the fin portion 54. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole 50a can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- the cylinder axis C1 extends in the front-rear direction. Therefore, the lubricating oil injected from the oil injection hole 158 flows in the circumferential direction along the outer peripheral surface of the cylinder portion 50 after colliding with the oil collision area 159. Therefore, the temperature of the portion of the inner wall surface of the cylinder hole 50a that is closer to the exhaust passage 63 than the oil collision region 159 can be lowered by the lubricating oil. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole 50a can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- the motorcycle 201 of the present embodiment is a so-called underbone type motorcycle.
- the motorcycle 201 includes a front wheel 202, a rear wheel 203, and a vehicle body frame 204.
- the vehicle body frame 204 extends in the front-rear direction as a whole.
- the body frame 204 has a head pipe 204a at the front thereof.
- a steering shaft (not shown) is rotatably inserted into the head pipe 204a.
- the upper end portion of the steering shaft is connected to the handle unit 206.
- the lower end portion of the steering shaft is connected to a pair of front forks 207.
- a lower end portion of the front fork 207 supports the front wheel 202.
- a pair of swing arms 216 are swingably supported on the body frame 204.
- the rear end portion of the swing arm 216 supports the rear wheel 203.
- a rear suspension 214 is attached between a position behind the swing center of each swing arm 216 and the body frame 204.
- a seat 208 and a fuel tank are supported on the upper part of the body frame 204.
- the vehicle body frame 204 supports a vehicle body cover 210 that covers the vehicle body frame 204 and the like.
- the fuel tank is disposed below the seat 208 and is covered with the seat 208 and the vehicle body cover 210.
- a portion between the head pipe 204a and the seat 208 is low. Thereby, a space is formed between the head pipe 204 a and the seat 208 and above the body frame 204. This space makes it easier for riders to cross the car.
- the engine unit 211 is mounted on the body frame 204.
- the engine unit 211 is disposed below the body frame 204 and supported while being suspended from the body frame 204.
- the front portion of the engine unit 211 is covered with the vehicle body cover 210 from both the left and right sides.
- Footrests 209 are disposed on the left and right sides of the engine unit 211.
- the left and right footrests 209 are supported on the lower surface of the engine unit 211 via a bar-shaped member.
- the body cover 210 includes a front cover 270 disposed in front of the body frame 204, a body cover 271 connected to the rear end of the front cover 270, a front fender 272 disposed above and behind the front wheel 202, and a rear wheel. 203 and a rear fender 273 disposed obliquely above and rearward.
- the front cover 270 includes a front cowl portion 270a disposed above the front fender 272 and a pair of left and right leg shield portions 270b disposed below the front cowl portion 270a.
- the front cowl portion 270a covers the head pipe 204a from the front.
- the leg shield part 270b extends obliquely downward and rearward from the lower end of the front cowl part 270a.
- the leg shield part 270b is disposed in front of the leg of the rider seated on the seat 208. As shown in FIG. 12, a space is formed between the pair of leg shield portions 270b.
- the leg shield part 270b is inclined with respect to a plane perpendicular to the left-right direction. In the present embodiment, the pair of leg shield portions 270b (particularly the upper and lower portions of the leg shield portion 270b) are inclined so as to be separated in the left-right direction toward the rear.
- the front lower portion of the body cover 271 is formed in a bifurcated shape when viewed from the front-rear direction. This bifurcated tip portion is referred to as a leg shield portion 271a.
- the leg shield part 271a of the body cover 271 is connected to the lower part of the leg shield part 270b of the front cover 270.
- the left and right side surfaces of the front part of the engine unit 211 are covered with the lower part of the leg shield part 270b of the front cover 270 and the leg shield part 271a of the body cover 271.
- a combination of the leg shield part 270b of the front cover 270 and the leg shield part 271a of the body cover 271 connected thereto may be referred to as a leg shield.
- the engine unit 211 is a natural air-cooled engine unit.
- the engine unit 211 is an OHC (Over Head Camshaft) type four-cycle single-cylinder engine unit.
- the engine unit 211 corresponds to the air-cooled single cylinder engine of the present invention.
- the engine unit 211 includes a crankcase 220, a cylinder body 221 attached to the front end portion of the crankcase 220, a cylinder head 222 attached to the front end portion of the cylinder body 221, and a cylinder head 222. And a head cover 223 attached to the front end portion.
- FIG. 13 is a top view of the engine unit 211, and only the cylinder body 221 is shown in cross section.
- the crankcase 220 accommodates a crankshaft 230 that extends in the left-right direction.
- the crankshaft 230 is rotatably supported with respect to the crankcase 220.
- the crankcase 220 houses a speed change mechanism 245 connected to the right end portion of the crankshaft 230. In FIG. 13, only some of the components of the speed change mechanism 245 are indicated by broken lines.
- the left end portion of the drive shaft 246 included in the speed change mechanism 245 protrudes from the crankcase 220.
- a sprocket 247 is provided at the left end of the drive shaft 246.
- a chain 248 is wound around the sprocket 247 and a sprocket (not shown) of the rear wheel 203 as a power transmission member.
- the crankcase 220 accommodates a flywheel magneto 249 attached to the left end portion of the crankshaft 230.
- an oil pan for storing lubricating oil is formed in the lower portion of the crankcase 220.
- the crankcase 220 houses an oil pump (not shown) that sucks up lubricating oil stored in an oil pan. Lubricating oil is pumped by this oil pump and circulates in the engine unit 211.
- the cylinder body 221 is connected to the front end surface of the crankcase 220.
- the cylinder body 221 is different in the configuration of the fin portion 254 from the fin portion 54 of the first embodiment, and other configurations are substantially the same as those of the cylinder body 21 of the first embodiment.
- the cylinder axis C2 (the central axis of the cylinder hole 50a) extends in the front-rear direction. Specifically, as in the first embodiment, the cylinder axis C2 is positioned such that the front end (end on the cylinder head 222 side) of the cylinder portion 50 is located above the rear end (end on the crankcase 220 side). Slightly inclined with respect to the front-rear direction. In FIG.
- the tilt angle of the cylinder axis C2 with respect to the front-rear direction (horizontal direction) is about 10 degrees, but may be in the range of 0 degrees to 45 degrees.
- the configuration of the piston 33 and the like disposed inside the cylinder part 50 is the same as that of the first embodiment.
- the fin portion 254 is formed on a part of the outer peripheral portion of the cylinder body 221 in the circumferential direction.
- the formation range of the fin portion 254 is the same as the formation range of the fin portion 54 of the first embodiment. That is, the fin portion 254 is formed in a portion excluding the left surface of the cylinder body 221 (the outer surface of the chain chamber forming portion 53) in the circumferential direction. Therefore, in the left-right direction, a part of the fin portion 254 is disposed on the left side of the cylinder axis C2, and a part of the oil jacket 50b is disposed on the right side of the cylinder axis C2.
- the fin portion 254 of the present embodiment is formed in almost the entire area of the cylinder body 221 in the direction of the cylinder axis C2. During traveling, the air flowing from the front between the pair of leg shields (270b and 271a) comes into contact with the fin portion 254, so that the cylinder body 221 dissipates heat from the fin portion 254.
- the cylinder head 222 is connected to the front end surface of the cylinder body 221 through the gasket 25. On the rear surface of the cylinder head 222, a recess 61 that defines the combustion chamber 26 together with the cylinder hole 50a is formed. A head fin portion is not provided on the outer surface of the cylinder head 222 of the present embodiment. A front portion of the cylinder head 222 is covered with a head cover 223.
- the internal configurations of the cylinder head 222 and the head cover 223 are substantially the same as in the first embodiment.
- the lubricating oil pumped from the oil pump is supplied to the speed change mechanism 245. Except for this point, the flow of the lubricating oil in the engine unit 211 is substantially the same as in the first embodiment.
- the fin part 254 and the oil jacket 50b are equivalent to the oil evaporation suppression part of this invention.
- the engine unit 211 of the present embodiment described above is formed in a fin portion 254 and a circumferential range smaller than the circumferential range of the fin portion 254, and is closer to the exhaust passage 63 than the intake passage 62 in the circumferential direction.
- an oil evaporation suppression part including an oil jacket 50b provided in the container. Therefore, similarly to the engine 12 of the first embodiment, it is possible to suppress the evaporation of the lubricating oil adhering to the inner wall surface of the cylinder hole 50a while suppressing an increase in manufacturing cost, and to further reduce the consumption amount of the lubricating oil. .
- the effect described in 1st Embodiment is about the structure similar to 1st Embodiment.
- the fin portion 254 and the oil jacket 50b are disposed on both sides of the cylinder axis C2 in the left-right direction (vehicle width direction) and between the pair of left and right leg shields (270b and 271a). ing. If the fin portion 254 is provided on both the left and right sides of the cylinder axis C2, the gap between the fin portion 254 and the leg shield (270b and 271a) is reduced. As a result, the amount of air passing through the gap between the fin portion 254 and the leg shield (270b and 271a) is reduced, so that the temperature reduction effect of the inner wall surface of the cylinder hole 50a by the fin portion 254 is reduced.
- the fin portion 254 is provided only on the right side of the cylinder axis C2, and no gap is required between the leg shields (270b and 271a) on the left side of the cylinder axis C2.
- An oil jacket 50b is provided. Therefore, a large gap can be secured between the fin portion 254 and the leg shield (270b and 271a), and the temperature reduction effect of the inner wall surface of the cylinder hole 50a by the fin portion 254 can be improved. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole 50a can be further suppressed, and the consumption amount of the lubricating oil can be further reduced.
- the leg shield part 270b of the front cover 270 and the leg shield part 271a of the body cover 271 constitute the leg shield of the present invention, but the pair of leg shields of the present invention includes the body frame 204 and
- the shape is not particularly limited as long as it is disposed on the left and right sides of the engine unit 211 and disposed in front of the legs of the rider seated on the seat 8.
- the motorcycle 301 of the present embodiment is a sports type motorcycle.
- the engine of the present embodiment may be applied to an on-road type motorcycle or an off-road type motorcycle.
- the motorcycle 301 includes a front wheel 302, a rear wheel 303, and a body frame 304.
- the vehicle body frame 304 has a form extending in the front-rear direction as a whole.
- the body frame 304 has a head pipe 304a at the front thereof.
- a steering shaft (not shown) is rotatably inserted into the head pipe 304a.
- An upper end portion of the steering shaft is connected to the handle unit 306.
- An upper end portion of a pair of front forks 307 is fixed to the handle unit 306.
- the lower end portion of the front fork 307 supports the front wheel 302.
- a pair of swing arms 316 are swingably supported on the body frame 304.
- the rear end of the swing arm 316 supports the rear wheel 303.
- a rear suspension 314 is attached between a position behind the swing center of each swing arm 316 and the body frame 304.
- a seat 308 and a fuel tank 317 are supported on the upper part of the body frame 304.
- the fuel tank 317 is disposed in front of the seat 308.
- the vehicle body frame 304 supports a vehicle body cover 310 that covers the vehicle body frame 304 and the like.
- the engine unit 311 is mounted on the body frame 304.
- the engine unit 311 is disposed below the fuel tank 317. Most of the engine unit 311 whose upper end is covered with the vehicle body cover 310 is exposed to the outside.
- Footrests 309 are disposed on the left and right sides of the engine unit 311. The left and right footrests 309 are supported on the lower surface of the engine unit 311 via bar-shaped members.
- the engine unit 311 is a natural air-cooled engine unit.
- the engine unit 311 is an OHC (Over Head Camshaft) type four-cycle single cylinder engine unit.
- the engine unit 311 corresponds to the air-cooled single cylinder engine of the present invention.
- the engine unit 311 includes a crankcase 320, a cylinder body 321 attached to the upper end portion of the crankcase 320, a cylinder head 322 attached to the upper end portion of the cylinder body 321, and a cylinder head 322. And a head cover 323 attached to the upper end of the head.
- FIG. 15 is a top view of the engine unit 311, and only the cylinder body 321 is shown in cross section.
- the internal structure of the crankcase 320 is almost the same as in the third embodiment.
- the cylinder body 321 is connected to the upper end surface of the crankcase 320.
- the cylinder body 321 is different in the configuration of the fin portion 354 from the fin portion 54 of the first embodiment, and the other configuration is substantially the same as the cylinder body 21 of the first embodiment.
- the cylinder axis C3 (the central axis of the cylinder hole 50a) extends in the vertical direction. Specifically, the cylinder axis C3 is slightly inclined with respect to the vertical direction so that the upper end (end on the cylinder head 322 side) of the cylinder 50 is positioned forward of the lower end (end on the crankcase 320 side). .
- the inclination angle of the cylinder axis C3 with respect to the vertical direction is about 20 degrees, but may be in the range of 0 degrees to 45 degrees.
- the configuration of the piston 33 and the like disposed inside the cylinder part 50 is the same as that of the first embodiment.
- the engine unit 311 of this embodiment corresponds to the case where the inclination of the engine unit 211 of the third embodiment is changed in the vertical direction and the front-rear direction while maintaining the horizontal direction. That is, in the engine unit 311 of the present embodiment, the same configuration as that of the third embodiment has the inclination of the engine unit 211 of the third embodiment changed in the vertical direction and the front-rear direction while maintaining the horizontal direction. It is the same arrangement position as the case. Therefore, in the present embodiment, the oil jacket 50 b is formed on the left side portion and the front side portion of the cylinder body 221.
- the fin portion 354 is formed on almost the entire circumference of the outer peripheral portion of the cylinder body 321. That is, the fin portion 354 of the present embodiment is also formed on the left surface of the cylinder body 321 (the outer surface of the chain chamber forming portion 53). Similarly to the third embodiment, the fin portion 354 is formed in almost the entire area of the cylinder body 321 in the direction of the cylinder axis C3. While traveling, air flowing in the front-rear direction with respect to the motorcycle 301 comes into contact with the fin portion 354, so that the cylinder body 321 radiates heat from the fin portion 354.
- the cylinder head 322 is connected to the upper end surface of the cylinder body 321 through the gasket 25.
- a concave portion 61 that defines the combustion chamber 26 together with the cylinder hole 50 a is formed on the lower surface of the cylinder head 322.
- a head fin portion 365 is formed on the outer surface of the cylinder head 322. The head fin portion 365 is formed in almost the entire area of the cylinder head 322 in the circumferential direction centered on the cylinder axis C3. Further, the head fin portion 365 is formed in almost the entire area of the cylinder head 322 in the direction of the cylinder axis C3.
- the front part of the cylinder head 322 is covered with a head cover 323.
- the internal configurations of the cylinder head 322 and the head cover 323 are substantially the same as in the first embodiment.
- the intake passage 62 is formed in the rear portion of the cylinder head 322, and the exhaust passage 63 is formed in the front portion of the cylinder head 322. Yes.
- the flow of lubricating oil in the engine unit 311 of the present embodiment is the same as that of the third embodiment.
- the fin part 354 and the oil jacket 50b are equivalent to the oil evaporation suppression part of this invention.
- the engine unit 311 of the present embodiment described above is formed in the circumferential direction range smaller than the circumferential direction range of the fin portion 354 and the fin portion 354 and is closer to the exhaust passage 63 than the intake passage 62 in the circumferential direction.
- an oil evaporation suppression part including an oil jacket 50b provided in the container similarly to the engine 12 of the first embodiment, it is possible to suppress the evaporation of the lubricating oil adhering to the inner wall surface of the cylinder hole 50a while suppressing an increase in manufacturing cost, and to further reduce the consumption amount of the lubricating oil. .
- the effect described in 1st Embodiment is about the structure similar to 1st Embodiment.
- the fin portions 54, 254 of the cylinder bodies 21, 121, 221 are provided in portions other than the portion on the chain chamber 55 side in the circumferential direction around the cylinder axis.
- the positions of the fin portions 54 and 254 in the circumferential direction are not limited to this.
- the fin portions 54 and 254 may be provided on the entire circumference of the cylinder body.
- the fin part 354 of the cylinder body 321 is provided in the perimeter of the cylinder body 321, the position regarding the circumferential direction of the fin part 354 is not limited to this.
- the fin portion 354 may be provided in a portion other than the portion on the chain chamber 55 side.
- the head fin portions 65 and 365 are provided on the outer surfaces of the cylinder heads 22 and 322.
- the formation positions of the head fin portions 65 and 365 are not limited to those in the first, second, and fourth embodiments.
- the head fin portion may not be provided.
- the head fin portion is not provided on the outer surface of the cylinder head 222, but a head fin portion may be provided.
- the oil jacket 50b is formed by forming a groove on the end face of the cylinder portion 50 on the cylinder head 22 side.
- the configuration of the oil jacket of the present invention is not limited to this.
- the cylinder body 421 shown in FIG. 17 includes a cylinder part 421a that forms a cylinder hole 50a, and a main body part 421b that is disposed on the outer periphery of the cylinder part 421a.
- a notch 450b extending in the circumferential direction is formed at the end of the inner peripheral surface of the main body 421b on the cylinder head 222 side.
- An oil jacket 421c is formed by the notch 450b and the outer peripheral surface of the cylinder portion 421a.
- the oil jacket 50b is provided at the end of the cylinder bodies 21, 221 and 321 on the cylinder heads 22, 222 and 322 side.
- the position regarding the direction is not limited to this.
- the oil jacket may be formed at a position away from the cylinder head side end surface of the cylinder head on the opposite side to the cylinder head in the cylinder axial direction.
- the oil jacket is preferably provided on the cylinder head side with respect to the intermediate position between the top dead center and the bottom dead center of the piston 33.
- this modification is implemented by forming a groove extending in the circumferential direction on the inner peripheral surface of the main body portion 421b. Is possible.
- the oil jacket 50b is provided in a range from about 2 o'clock position to about 7 o'clock position when viewed from the cylinder axial direction.
- the position in the circumferential direction around the cylinder axis 50b is not limited to this.
- the oil jacket may be provided at any position as long as it is closer to the exhaust passage 63 than the intake passage 62 in the circumferential direction around the cylinder axis.
- the oil jacket 50b is provided in almost the entire circumferential range of the chain chamber 55 in the circumferential direction around the cylinder axis. May be provided in a circumferential range that overlaps only a part of the circumferential range, or may be provided in a circumferential range that does not overlap the circumferential range.
- the oil jacket 50b is provided in the entire circumferential range of the exhaust passage 63 in the circumferential direction around the cylinder axis. It may be provided in a circumferential range that overlaps only a part of the circumferential range of the passage 63, or may be provided in a circumferential range that does not overlap with the circumferential range of the exhaust passage 63.
- the oil jacket may be provided at a position intermediate between the intake passage 62 and the exhaust passage 63 in the circumferential direction around the cylinder axis.
- the cylinder axis extends in the vertical direction. Therefore, the wind direction during traveling is a direction intersecting the cylinder axis, and the front surface (surface on the exhaust passage 63 side) of the outer surface of the cylinder body 321 receives the most wind. Therefore, as a modification of the fourth embodiment, when the oil jacket 50b is provided in a circumferential range that does not overlap with the circumferential range of the exhaust passage 63 in the circumferential direction around the cylinder axis, the fin portion 354 is efficient. In addition, the temperature of the inner wall surface of the cylinder hole 50a can be lowered.
- the oil jacket 50b of the cylinder bodies 21, 221 and 321 forms one space continuous in the cylinder axial direction.
- the oil jacket extends in the cylinder axial direction.
- a plurality of spaces formed side by side may be formed.
- this modification can be implemented by forming a groove portion extending in the circumferential direction so as to be aligned with the notch 450b in the cylinder axial direction on the inner circumferential surface of the main body portion 421b of the cylinder body 421 in FIG.
- the oil jacket 50b of the cylinder bodies 21, 221 and 321 forms one continuous space in the circumferential direction around the cylinder axis.
- a plurality of spaces formed side by side in the circumferential direction around the cylinder axis may be formed.
- the oil jacket 50b is provided only in the cylinder bodies 21, 221 and 321.
- the cylinder head (522) is also provided.
- An oil jacket (hereinafter referred to as a head oil jacket) (566a) that flows while the lubricating oil is full may be provided.
- the head oil jacket may be provided at any position as long as it is closer to the exhaust passage 63 than the intake passage 62 in the circumferential direction around the cylinder axis.
- the head oil jacket may be provided in the same circumferential range as the oil jacket (50b) of the cylinder body (21), for example, as shown in FIGS. Further, the head oil jacket may be provided in a region overlapping with the recess 61 in the cylinder axis direction.
- the temperature of the cylinder head which is a heat source can be further reduced.
- the cylinder head since the lubricating oil hardly adheres to the recess 61, the cylinder head hardly evaporates the lubricating oil.
- the cylinder head since the cylinder head has a higher temperature than the cylinder body, the amount of heat transferred from the cylinder head to the cylinder body can be reduced by lowering the temperature of the cylinder head. Therefore, the temperature of the inner wall surface of the cylinder hole 50a can be further reduced, and evaporation of the lubricating oil can be suppressed. Therefore, the consumption amount of lubricating oil can be further reduced.
- the head oil jacket 566a of the cylinder head 522 in FIG. 18 is configured by a groove formed on the surface on the cylinder body 21 side.
- Two communicating portions 566b and 566c extending outward in the radial direction are formed at both ends in the circumferential direction of the head oil jacket 566a.
- the head oil jacket 566a and the two communication portions 566b and 566c communicate with the oil jacket 50b and the two communication portions 50c and 50d of the cylinder body 21 through the holes of the gasket 25, respectively, in the cylinder axial direction.
- the gasket 625 is different from the gasket 25 of FIG. 18, and the other configuration is the same as that of FIG. 18.
- the gasket 625 has no hole formed at a position facing the oil jacket 50b. Therefore, the communication between the oil jacket 50b and the head oil jacket 566a is blocked by the gasket 625.
- the gasket 625 does not have holes at positions corresponding to the two communication portions 50c and 50d, but the gasket 625 corresponds to one or both of the two communication portions 50c and 50d. May have holes. Further, a hole in the circumferential direction range smaller than the circumferential range of the oil jacket 50b is formed in the gasket 625, and a part of the circumferential direction of the oil jacket 50b and a part of the circumferential direction of the head oil jacket 566a are arranged in the cylinder axial direction. You may make it communicate.
- an oil jacket ( 50b) and the head oil jacket (566a) can further reduce the temperature of the inner wall surface of the cylinder hole 50a. Therefore, the evaporation of the lubricating oil on the inner wall surface of the cylinder hole 50a can be further suppressed, and the consumption amount of the lubricating oil can be further reduced. Further, since the circumferential range of the oil jacket (50b) and the head oil jacket (566a) is the same, the configuration in which the lubricating oil is supplied to the oil jacket (50b) supplies the lubricating oil to the head oil jacket (566a). Since the structure can be doubled, the engine can be further downsized.
- the position of the oil flow portion 156 in the cylinder axial direction is not limited to the position shown in FIG.
- the oil flow portion 156 is preferably provided on the cylinder head 22 side with respect to the intermediate position between the top dead center and the bottom dead center of the piston 33.
- an oil flow portion 756 may be provided at the end of the cylinder body 721 on the cylinder head 22 side.
- a groove portion 758 a that connects the oil passage 157 and the chain chamber 55 is formed on an end surface of the chain chamber forming portion 753 of the cylinder body 721 on the cylinder head 22 side.
- the groove 758a is blocked by the end face on the cylinder head 22 side, so that an oil injection part 758 is formed.
- the lubricating oil injected from the oil injection unit 758 collides with the end on the cylinder head 22 side of the outer peripheral surface of the cylinder unit 50.
- This collided portion is an oil collision area 759. According to this configuration, it is easier to form the oil injection portion than in the second embodiment.
- the oil collision area 759 is close to the cylinder head 22, the temperature of the cylinder head 22 that is a heat source can be lowered as compared with the second embodiment.
- the oil collision region 159 of the oil flow portion 156 is located at a position shifted by about 25 degrees downward from the intersection of the plane extending through the cylinder axis C1 and parallel to the left-right direction and the cylinder hole 50a.
- the oil collision area of the oil flow portion is not limited to this position.
- the position of the oil flow portion 156 in the circumferential direction around the cylinder axis may be any position as long as it is closer to the exhaust passage 63 than the intake passage 62.
- the extending direction of the oil injection hole 158 may be changed, and the position of the oil injection hole 158 may be changed.
- the number of oil injection holes (oil injection parts) 158 and oil collision areas 159 constituting the oil flow part 156 is one, but for example, as shown in FIG.
- the number of oil injection parts (858A, 858B) and oil collision areas (859A, 859B) constituting (856) may be two or more, respectively.
- the two oil injection holes 858A and 858B formed in the chain chamber forming portion 853 of the cylinder body 821 are arranged at substantially the same position in the direction of the cylinder axis C8.
- the two oil collision areas 859A and 859B are also substantially in the same position in the direction of the cylinder axis C8.
- the circumferential range of the oil flow portion 856 is smaller than the circumferential range of the fin portion 54 means that the circumferential range of the oil collision region 859A and the circumferential range of the oil collision region 859B are combined. The range is smaller than the circumferential range of the fin portion 54.
- the plurality of oil injection parts may be formed at different positions in the cylinder axis direction.
- the plurality of oil collision regions may also be formed at different positions in the cylinder axis direction.
- the oil flow part 156 is provided only in the cylinder body 121.
- the cylinder head (922) is configured to inject and collide with lubricating oil.
- An oil flow portion (hereinafter referred to as a head oil flow portion) (967) may be provided.
- a head oil flow portion (967) may be provided.
- an oil passage 957 that communicates with the oil passage 157 is formed in the cylinder head 922 and the gasket 925, and an oil injection hole 968 that communicates the oil passage 957 and the chain chamber 60 is formed in the cylinder head 922.
- the lubricating oil injected from the oil injection hole 968 collides with the oil collision area 969 of the cylinder head 922.
- the head oil flow portion may be provided at any position as long as it is closer to the exhaust passage 63 than the intake passage 62 in the circumferential direction around the cylinder axis.
- the head oil flow part is preferably provided in the same circumferential range as the oil flow part 156 of the cylinder body 121.
- the temperature of the inner wall surface of the cylinder hole 50a can be further reduced. Can do. Therefore, the consumption amount of lubricating oil can be further reduced.
- the circumferential range of the oil flow portion 156 and the head oil flow portion is the same, the configuration for supplying the lubricating oil to the oil flow portion 156 and the head oil flow portion can be simplified, and the engine can be further downsized.
- the head fin part 65 When providing the head oil flow part in the cylinder head, it is preferable to provide the head fin part 65 on the outer surface of the cylinder head. By providing the head fin portion 65 and the head oil flow portion in the cylinder head, the temperature of the cylinder head, which is a heat source, can be further lowered, and the temperature of the inner wall surface of the cylinder hole 50a can be further lowered. Therefore, the consumption amount of lubricating oil can be further reduced.
- the oil flow portion 156 and the head oil flow portion are provided at positions close to the cylinder axial direction. Therefore, compared with the case where the oil flow part 156 and the head oil flow part are provided at positions separated from each other, the configuration for supplying the lubricating oil to the oil flow part 156 and the head oil flow part can be simplified, and the engine can be downsized.
- an oil flow portion 156 similar to that of the second embodiment may be provided instead of providing the oil jacket 50b.
- the cylinder axis extends in the vertical direction. Therefore, when the oil flow part 156 similar to the second embodiment is applied to the engine unit 311 of the fourth embodiment, the lubricating oil injected from the oil injection part collides with the oil collision area, It flows in the cylinder axial direction along the outer peripheral surface. Therefore, the temperature of the wide area of the inner wall surface of the cylinder hole 50a in the cylinder axial direction can be lowered.
- the wind direction during traveling is a direction intersecting the cylinder axis, and the front surface (the surface on the exhaust passage 63 side) of the outer surface of the cylinder body 321 receives the most wind.
- the engine unit 311 of the fourth embodiment is provided with an oil flow portion 156 similar to that of the second embodiment, heat transfer between the fin portion 354 and the inner wall surface of the cylinder hole 50a is blocked by the oil jacket 50b. Therefore, the fin portion 354 can efficiently lower the temperature of the inner wall surface of the cylinder hole 50a.
- An oil cooler for cooling the lubricating oil may be disposed in the lubricating path of the lubricating oil.
- the oil cooler 370 may be disposed in front of and above the engine unit 311 and connected to the engine unit 311 via a pipe (not shown).
- the oil cooler may be directly attached to the air-cooled single cylinder engine.
- the combustion chamber 26 is formed by the recess 61 formed in the cylinder head, the inner surface of the cylinder hole 50a, and the piston 33, but the portion of the cylinder head that forms the combustion chamber 26 is concave. Not necessarily.
- the cylinder bodies 21, 121, 221, 321, the cylinder heads 22, 222, 322, and the head covers 23, 223, 323 are separate members. Three may be integrally formed.
- the timing chain 44 is wound around the sprocket 42 provided on the camshaft 41 and the sprocket 43 provided on the crankshaft 30, but the rotation of the crankshaft 30 is controlled by the camshaft.
- the structure for transmitting to 41 is not limited to the above.
- a pulley may be provided as a rotating body provided on the camshaft 41 and the crankshaft 30 in place of the sprockets 42 and 43, and a timing belt may be used in place of the timing chain 44 which is a power transmission member.
- the intake passage 62 and the exhaust passage 63 extend substantially parallel to the vertical direction or the front-rear direction when viewed from the cylinder axial direction (see FIG. 4 and the like).
- the shape of the passage 63 is not limited to this.
- the position of the opening end formed in the recess 61 of the intake passage 62 is substantially the same as in the first to fourth embodiments, and the opening on the opposite side of the intake passage 62 is the lower surface (first to second) of the cylinder body.
- the intake passage 62 may be curved when viewed from the cylinder axial direction, and it is up and down when viewed from the cylinder axial direction. You may extend linearly so that it may incline with respect to a direction.
- the position of the opening end formed in the recess 61 of the exhaust passage 63 is substantially the same as in the first to fourth embodiments, and the opening on the opposite side of the exhaust passage 63 is the upper surface (first As long as it is formed on the rear surface (modified example of the fourth embodiment) or the rear surface (modified example of the fourth embodiment), the exhaust passage 63 may be curved when viewed from the cylinder axial direction, and from the cylinder axial direction. You may extend linearly so that it may incline with respect to an up-down direction seeing.
- the oil jacket 50b is preferably formed at least in the entire circumferential range of the portion of the exhaust passage 63 that overlaps the cylinder hole 50a in the circumferential direction around the cylinder axis.
- the intake passage 62 may be formed in a bifurcated shape, and the two intake valves 38 may be provided side by side in the left-right direction. .
- two exhaust valves 39 may be provided.
- the cylinder axis direction extends in the front-rear direction, but may extend in the up-down direction. Moreover, in the said 4th Embodiment, although the cylinder axial direction has extended in the up-down direction, you may extend in the front-back direction.
- the engines or engine units of the first to fourth embodiments are air-cooled OHC type 4-cycle single-cylinder engines, but the present invention may be applied to other air-cooled single-cylinder engines.
- the air-cooled engine means an engine having at least air cooling as a cooling method.
- the straddle-type vehicle of the present invention is not limited to the motorcycle according to the first to fourth embodiments.
- the saddle riding type vehicle refers to all vehicles that ride in a state in which an occupant straddles a saddle.
- the straddle-type vehicle of the present invention includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Automatic Cycles, And Cycles In General (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
Abstract
空冷式単気筒エンジンにおいて、製造コストを抑えつつ、潤滑オイルの消費量をより低減することを目的とする。空冷式単気筒エンジン(12)は、シリンダボディ(21)の外表面に設けられた複数のフィンを有するフィン部(54)と、シリンダボディ(21)におけるフィン部(54)のシリンダ軸線(C1)を中心とした周方向範囲よりも小さい周方向範囲に形成され、且つ、シリンダ軸線(C1)を中心とした周方向において吸気通路(62) より排気通路(63)に近い位置に設けられ、シリンダ孔(50a)の外側に潤滑オイルを流すオイル流部(50b)を含み、シリンダ孔(50a)の内壁面における潤滑オイルの蒸発を抑制するオイル蒸発抑制部を備える。
Description
本発明は、空冷式単気筒エンジン、及びこれを備えた鞍乗型車両に関する。
従来、シリンダヘッドとシリンダボディの外周部にフィンを設けた空冷式の単気筒エンジンが知られている。また、シリンダヘッドはシリンダボディよりも高温になりやすい。特許文献1、2には、空冷式の単気筒エンジンにおいて、シリンダヘッドに冷却用のオイル通路を形成したものが提案されている。このオイル通路は、シリンダヘッド内で特に高温となる点火プラグの周りや排気通路の周りを冷却するために設けられている。オイル通路は、シリンダヘッドとシリンダボディとによって区画される燃焼室と、シリンダ軸方向に並ぶ位置に形成されている。
ところで、空冷式の単気筒エンジンは、水冷式エンジンよりエンジンの温度が高いため、潤滑オイルの消費が多い。特許文献1、2の空冷式単気筒エンジンは、エンジンにおいて特に高温となる箇所の温度を下げることはできるものの、潤滑オイルの消費量の低減効果は十分ではなかった。
そこで、本発明は、製造コストを抑えつつ、潤滑オイルの消費量をより低減できる空冷式単気筒エンジン、及びこれを備えた鞍乗型車両を提供することを目的とする。
本願発明者は、シリンダヘッドにおいて、特に高温となる点火プラグや排気通路の周りにオイル通路を設けても、潤滑オイルの消費量を十分に低減できない理由について検討した。
点火プラグや排気通路の周りにオイル通路を設けることによって、シリンダヘッドの温度を低下させることができるものの、シリンダボディの温度を十分に低下させることができない。そのため、シリンダボディに形成されるシリンダ孔の内壁面において潤滑オイルの蒸発量が依然多くなって、潤滑オイルの消費量を十分に低減できていないことに気付いた。
点火プラグや排気通路の周りにオイル通路を設けることによって、シリンダヘッドの温度を低下させることができるものの、シリンダボディの温度を十分に低下させることができない。そのため、シリンダボディに形成されるシリンダ孔の内壁面において潤滑オイルの蒸発量が依然多くなって、潤滑オイルの消費量を十分に低減できていないことに気付いた。
そこで、本願発明者は、空冷式単気筒エンジンにおいて、以下の構成を有するオイル蒸発抑制を設けることで、製造コストを抑えつつ、潤滑オイルの消費量をより低減することを考えた。
本発明の空冷式単気筒エンジンは、ピストンが収容されるシリンダ孔を形成するシリンダ部を備えたシリンダボディと、前記シリンダ孔と共に燃焼室を区画し、前記燃焼室に連通する吸気通路及び排気通路が形成されたシリンダヘッドと、を備える空冷式単気筒エンジンであって、前記シリンダボディの外表面に設けられた複数のフィンを有するフィン部、及び、前記シリンダボディにおける前記フィン部のシリンダ軸線を中心とした周方向範囲よりも小さい周方向範囲に形成され、且つ、シリンダ軸線を中心とした周方向において前記吸気通路より前記排気通路に近い位置に設けられ、前記シリンダ孔の外側に潤滑オイルを流すオイル流部を含み、前記シリンダ孔の内壁面における潤滑オイルの蒸発を抑制するオイル蒸発抑制部を備えることを特徴とする。
本発明の空冷式単気筒エンジンは、シリンダボディの外表面に設けられた複数のフィンを有するフィン部と、シリンダボディにおけるフィン部の周方向範囲よりも小さい周方向範囲に形成され、且つ、周方向において吸気通路より排気通路に近い位置に設けられたオイル流部とを含み、シリンダ孔の内壁面における潤滑オイルの蒸発を抑制するオイル蒸発抑制部を備えている。つまり、本発明のオイル蒸発抑制部は、シリンダボディの外表面に複数のフィンを有するフィン部を設けると共に、シリンダ孔の外側に潤滑オイルを流すオイル流部をシリンダボディに設けるという技術思想と、オイル流部の周方向範囲をフィン部の周方向範囲よりも小さく形成するという技術思想と、オイル流部を周方向において吸気通路より排気通路に近い位置に設けるという技術思想によって成り立っている。
ピストンが収容されるシリンダ孔を形成するシリンダ部を備えたシリンダボディと、シリンダ孔と共に燃焼室を区画し、燃焼室に連通する吸気通路及び排気通路が形成されたシリンダヘッドとを備える空冷式単気筒エンジンにおいて、排気通路内は高温のガスが通過する。そのため、シリンダ孔の内壁面のうち排気通路が設けられている周方向範囲は高温になりやすい。本発明のオイル流部は、シリンダボディの周方向において排気通路に近い位置に設けられているため、シリンダヘッドにのみオイル流部を設ける場合に比べて、シリンダ孔の内壁面のうち高温となりやすい箇所の温度を低下させることができる。したがって、シリンダヘッドにのみオイル流部を設ける場合に比べて、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、オイル流部をシリンダボディに設ける場合、シリンダボディの全周にわたってオイル流部を設けることが考えられる。しかし、そうすると、シリンダ孔の内壁面の温度が高温になりやすい周方向一部分だけでなく、シリンダ孔の内壁面の温度が比較的低くなりやすい周方向一部分にも、オイル流部を設けることになる。シリンダ孔の内壁面の温度が比較的低くなりやすい周方向一部分にオイル流部を設けた場合、当該周方向一部分にフィン部を設けてオイル流部を設けない場合に比べて、シリンダ孔の内壁面における当該周方向一部分の温度が上昇してしまう。これに対して、本発明では、オイル流部の周方向範囲がフィン部の周方向範囲よりも小さい周方向範囲になるように、フィン部とオイル流部とを組み合わせてシリンダボディに設けている。そのため、シリンダ孔の内壁面の温度が高温になりやすい周方向一部分にオイル流部を設けて、温度が比較的低くなりやすい部分にはオイル流部を設けない構成にできる。それにより、オイル流部をシリンダボディの全周に設ける場合に比べて、シリンダ孔の内壁面の周方向全域の温度を低下させることができると共に、シリンダ孔の内壁面のうち高温になりやすい周方向一部分の温度をより低下させることができる。したがって、空冷式のエンジンにおいてオイル流部をシリンダボディの全周に設ける場合に比べて、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
ピストンが収容されるシリンダ孔を形成するシリンダ部を備えたシリンダボディと、シリンダ孔と共に燃焼室を区画し、燃焼室に連通する吸気通路及び排気通路が形成されたシリンダヘッドとを備える空冷式単気筒エンジンにおいて、排気通路内は高温のガスが通過する。そのため、シリンダ孔の内壁面のうち排気通路が設けられている周方向範囲は高温になりやすい。本発明のオイル流部は、シリンダボディの周方向において排気通路に近い位置に設けられているため、シリンダヘッドにのみオイル流部を設ける場合に比べて、シリンダ孔の内壁面のうち高温となりやすい箇所の温度を低下させることができる。したがって、シリンダヘッドにのみオイル流部を設ける場合に比べて、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、オイル流部をシリンダボディに設ける場合、シリンダボディの全周にわたってオイル流部を設けることが考えられる。しかし、そうすると、シリンダ孔の内壁面の温度が高温になりやすい周方向一部分だけでなく、シリンダ孔の内壁面の温度が比較的低くなりやすい周方向一部分にも、オイル流部を設けることになる。シリンダ孔の内壁面の温度が比較的低くなりやすい周方向一部分にオイル流部を設けた場合、当該周方向一部分にフィン部を設けてオイル流部を設けない場合に比べて、シリンダ孔の内壁面における当該周方向一部分の温度が上昇してしまう。これに対して、本発明では、オイル流部の周方向範囲がフィン部の周方向範囲よりも小さい周方向範囲になるように、フィン部とオイル流部とを組み合わせてシリンダボディに設けている。そのため、シリンダ孔の内壁面の温度が高温になりやすい周方向一部分にオイル流部を設けて、温度が比較的低くなりやすい部分にはオイル流部を設けない構成にできる。それにより、オイル流部をシリンダボディの全周に設ける場合に比べて、シリンダ孔の内壁面の周方向全域の温度を低下させることができると共に、シリンダ孔の内壁面のうち高温になりやすい周方向一部分の温度をより低下させることができる。したがって、空冷式のエンジンにおいてオイル流部をシリンダボディの全周に設ける場合に比べて、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
以上のように、本発明の空冷式単気筒エンジンは、シリンダボディの外表面に複数のフィンを有するフィン部を設けると共に、シリンダ孔の外側に潤滑オイルを流すオイル流部をシリンダボディに設けるという技術思想と、オイル流部の周方向範囲をフィン部の周方向範囲よりも小さく形成するという技術思想と、オイル流部を周方向において吸気通路より排気通路に近い位置に設けるという技術思想によって成り立つオイル蒸発抑制部を備えることにより、シリンダ孔の内壁面の周方向全域の温度を低下させると共に、内壁面のうち高温になりやすい周方向一部分の温度をより低下させることができる。その結果、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、シリンダ孔の内壁面の温度を低下させるために、エンジンが元々備えている潤滑オイルを利用しているため、製造コストの増加を抑えることができる。
したがって、空冷式単気筒エンジンは、製造コストの増加を抑えつつ、潤滑オイルの消費量を低減できる。
また、シリンダ孔の内壁面の温度を低下させるために、エンジンが元々備えている潤滑オイルを利用しているため、製造コストの増加を抑えることができる。
したがって、空冷式単気筒エンジンは、製造コストの増加を抑えつつ、潤滑オイルの消費量を低減できる。
本発明の空冷式単気筒エンジンにおいて、前記オイル蒸発抑制部は、前記ピストンの上死点と下死点の中間位置よりも前記シリンダヘッド側に設けられていることが好ましい。
シリンダ孔の内壁面は、シリンダヘッドに近い位置が比較的高温となりやすい。本発明では、オイル蒸発抑制部が、シリンダボディのうちシリンダヘッドに近い位置に設けられるため、シリンダ孔の内壁面のうち高温となりやすい部分の温度をより低下させることができる。したがって、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
なお、本発明において、オイル蒸発抑制部が、ピストンの上死点と下死点の中間位置よりもシリンダヘッド側に設けられるとは、オイル蒸発抑制部の少なくとも一部が、ピストンの上死点と下死点の中間位置よりもシリンダヘッド側に設けられることである。
なお、本発明において、オイル蒸発抑制部が、ピストンの上死点と下死点の中間位置よりもシリンダヘッド側に設けられるとは、オイル蒸発抑制部の少なくとも一部が、ピストンの上死点と下死点の中間位置よりもシリンダヘッド側に設けられることである。
本発明の空冷式単気筒エンジンは、前記オイル流部の周方向範囲が、前記排気通路の周方向範囲の少なくとも一部と重なっていることが好ましい。
この構成によると、オイル流部によって、シリンダ孔の内壁面のうち高温になりやすい箇所の温度をより確実に低下させることができる。したがって、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
本発明の空冷式単気筒エンジンにおいて、前記オイル蒸発抑制部は、前記シリンダヘッドの外表面に設けられた複数のフィンを有するヘッドフィン部、及び、前記シリンダヘッドに形成され、且つ、シリンダ軸線を中心とした周方向において前記吸気通路より前記排気通路に近い位置に設けられ、前記燃焼室の外側に潤滑オイルを流すヘッドオイル流部を含むことが好ましい。
シリンダヘッドは、シリンダボディよりも高温となり、シリンダヘッドからシリンダボディに熱が伝達される。本発明のオイル蒸発抑制部は、シリンダボディに設けられたフィン部およびオイルジャケットに加えて、シリンダヘッドの外表面に設けられた複数のフィンを有するヘッドフィン部と、シリンダヘッドに形成され、且つ、周方向において吸気通路よりも排気通路に近い位置に設けられ、燃焼室の外側に潤滑オイルを流すヘッドオイル流部とを有する。そのため、熱源であるシリンダヘッドの温度を低下させて、シリンダ孔の内壁面の温度をより低下させることができる。したがって、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、オイル流部とヘッドオイル流部は、シリンダ軸方向において近い位置に設けられている。そのため、オイル流部とヘッドオイル流部が離れた位置に設けられる場合に比べて、オイル流部とヘッドオイル流部に潤滑オイルを供給する構成を簡易化でき、製造コストを低減できる。
また、オイル流部とヘッドオイル流部は、シリンダ軸方向において近い位置に設けられている。そのため、オイル流部とヘッドオイル流部が離れた位置に設けられる場合に比べて、オイル流部とヘッドオイル流部に潤滑オイルを供給する構成を簡易化でき、製造コストを低減できる。
本発明の空冷式単気筒エンジンにおいて、前記オイル流部と前記ヘッドオイル流部は、周方向範囲が同じであって、シリンダ軸線方向に連通していることが好ましい。
この構成によると、シリンダ孔の内壁面のうち特に高温になりやすい周方向領域に、オイル流部とヘッドオイル流部を設けることで、シリンダ孔の内壁面の温度をより低下させることができる。したがって、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、オイル流部に潤滑オイルを供給する構成が、ヘッドオイル流部に潤滑オイルを供給する構成を兼ねることができるため、製造コストを低減できる。
また、オイル流部に潤滑オイルを供給する構成が、ヘッドオイル流部に潤滑オイルを供給する構成を兼ねることができるため、製造コストを低減できる。
本発明の空冷式単気筒エンジンにおいて、前記オイル流部は、前記シリンダ孔の外側に形成され、内部を潤滑オイルが充満状態で流れるオイルジャケットからなることが好ましい。
この構成によると、オイルジャケットからなるオイル流部は、その内部を潤滑オイルが充満状態で流れる構成であるため、オイル流部は、シリンダ孔の径方向の幅が小さくて済む。そのため、オイル流部を形成しやすいため、製造コストを低減できる。
また、オイルジャケットは、シリンダ部の径方向においてシリンダ孔に近い位置に形成することができる。これにより、シリンダ孔の内壁面の温度をより低下させることができる。したがって、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、オイルジャケットは、シリンダ部の径方向においてシリンダ孔に近い位置に形成することができる。これにより、シリンダ孔の内壁面の温度をより低下させることができる。したがって、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
本発明の空冷式単気筒エンジンにおいて、前記シリンダボディは、前記シリンダ部の外側に形成された中空室を有しており、前記オイル流部は、前記中空室の前記シリンダ孔側の内壁面のうち、少なくとも周方向一部分で且つ少なくともシリンダ軸線方向の一部分で構成されたオイル衝突領域と、前記オイル衝突領域に向かって潤滑オイルを噴射して前記オイル接触面の全面に潤滑オイルを衝突させるオイル噴射部と、を含むことが好ましい。
この構成によると、シリンダボディが、シリンダ部の外側に部材を収容するための収容室を有している場合、その収容室を、オイル流部の中空室として利用することができる。そのため、別途中空室を設ける場合に比べて、製造コストを低減できる。
本発明の空冷式単気筒エンジンは、前記シリンダヘッドの少なくとも一部を覆い、空気流入口を有するシュラウドと、前記シュラウド内に前記空気流入口から空気を導入させるファンと、を備え、前記オイル流部が、シリンダ軸線に対して前記空気流入口と反対側に設けられていることが好ましい。
この構成によると、オイル流部が、シリンダ軸線に対してシュラウドの空気流入口と反対側に設けられている。つまり、フィンを設けてもシリンダ孔の内壁面の温度低減効果が低い箇所に、オイル流部を設けている。そのため、オイル流部とフィン部によって、シリンダ孔の内壁面全体の温度を効率よく低下させることができる。したがって、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
本発明の空冷式単気筒エンジンにおいて、前記オイル蒸発抑制部は、SAE粘度分類による低温粘度グレードが20Wよりも低い前記潤滑オイルが、前記シリンダ孔の内壁面において蒸発することを抑制することが好ましい。
潤滑オイルの粘度が低いほど、潤滑オイルは蒸発しやすい。これに対して、本発明の空冷式単気筒エンジンは、シリンダ孔の内壁面における潤滑オイルの蒸発を抑制するオイル蒸発抑制部を備えている。そのため、潤滑オイルとして、SAE粘度分類による低温粘度グレードが20Wよりも低い潤滑オイルを用いても、シリンダ孔の内壁面における潤滑オイルの蒸発を抑制することができる。
また、潤滑オイルの粘度が低いほど、オイルジャケットを流れる潤滑オイルの単時間当たりの流量が多くなり、シリンダ孔の内壁面の温度をより低下させることができる。したがって、潤滑オイルの低温粘度グレードが20Wよりも低いことにより、オイル蒸発抑制部によるシリンダ孔の内壁面における潤滑オイルの蒸発を抑制する効果をより高めることができる。
また、潤滑オイルの粘度が低いほど、オイルジャケットを流れる潤滑オイルの単時間当たりの流量が多くなり、シリンダ孔の内壁面の温度をより低下させることができる。したがって、潤滑オイルの低温粘度グレードが20Wよりも低いことにより、オイル蒸発抑制部によるシリンダ孔の内壁面における潤滑オイルの蒸発を抑制する効果をより高めることができる。
本発明の鞍乗型車両は、車体フレームと、前記車体フレームに搭載されるエンジンと、前記車体フレームの車両幅方向両側に配置される一対のレッグシールドと、を備える鞍乗型車両であって、前記エンジンが、上記本発明の空冷式単気筒エンジンであって、前記フィン部と前記オイル流部が、シリンダ軸線の車両幅方向両側で且つ前記一対のレッグシールドの間に配置されることを特徴とする。
この構成によると、エンジンは一対のレッグシールドの間に配置される。そのため、仮に、フィン部がシリンダ軸線の車両幅方向の両側に設けられた場合、フィン部とレッグシールドとの隙間が小さくなり、フィン部によるシリンダ孔の内壁面の温度低減効果が低くなる。これに対して本発明では、シリンダ軸線の車両幅方向の一方側にのみ、フィン部が設けられ、シリンダ軸線の車両幅方向の他方側には、レッグシールドとの間に隙間を必要としないオイル流部が設けられている。そのため、フィン部とレッグシールドとの隙間を大きく確保することができ、フィン部によるシリンダ孔の内壁面の温度低減効果を向上できる。したがって、シリンダ孔の内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
本発明の鞍乗型車両は、車体フレームと、前記車体フレームに搭載されるエンジンと、を備える鞍乗型車両であって、前記エンジンが、上記本発明の空冷式単気筒エンジンであって、前記シリンダ軸線が、車両上下方向に延びていることを特徴とする。
この構成によると、鞍乗型車両の走行時の風向きはシリンダ軸線に交差する方向となる。そのため、シリンダボディの外表面の周方向位置によって風を受ける程度が大きく異なる。そのため、例えば、風のほとんど当たらない進行方向後側にオイル流部を配置するなどして、フィン部とオイル流部の周方向位置を調整することで、シリンダ孔の内壁面の温度を調整できる。
なお、本発明において、シリンダ軸線が車両上下方向に延びている状態とは、シリンダ軸線が厳密に車両上下方向に延びている場合だけでなく、シリンダ軸線が車両上下方向に対して±45°の範囲で傾斜している場合を含む。
なお、本発明において、シリンダ軸線が車両上下方向に延びている状態とは、シリンダ軸線が厳密に車両上下方向に延びている場合だけでなく、シリンダ軸線が車両上下方向に対して±45°の範囲で傾斜している場合を含む。
<第1実施形態>
以下、本発明の第1実施形態について説明する。本実施形態は、図1に示す自動二輪車1のエンジンに本発明の空冷式単気筒エンジンを適用した一例である。なお、以下の説明において、前後方向とは、自動二輪車1の後述するシート8に着座したライダーから視た車両前後方向のことであり、左右方向とは、シート8に着座したライダーから視たときの車両左右方向(車両幅方向)のことである。また、各図面の矢印F方向と矢印B方向は、前方と後方を表しており、矢印L方向と矢印R方向は、左方と右方を表しており、矢印U方向と矢印D方向は、上方と下方を表している。
以下、本発明の第1実施形態について説明する。本実施形態は、図1に示す自動二輪車1のエンジンに本発明の空冷式単気筒エンジンを適用した一例である。なお、以下の説明において、前後方向とは、自動二輪車1の後述するシート8に着座したライダーから視た車両前後方向のことであり、左右方向とは、シート8に着座したライダーから視たときの車両左右方向(車両幅方向)のことである。また、各図面の矢印F方向と矢印B方向は、前方と後方を表しており、矢印L方向と矢印R方向は、左方と右方を表しており、矢印U方向と矢印D方向は、上方と下方を表している。
[自動二輪車1の全体構成]
図1に示すように、本実施形態の自動二輪車1は、スクータである。自動二輪車1は、前輪2と、後輪3と、車体フレーム4とを備えている。車体フレーム4は、全体として前後方向に延びた形態である。
図1に示すように、本実施形態の自動二輪車1は、スクータである。自動二輪車1は、前輪2と、後輪3と、車体フレーム4とを備えている。車体フレーム4は、全体として前後方向に延びた形態である。
車体フレーム4はその前部にヘッドパイプ4aを有する。ヘッドパイプ4aには、ステアリングシャフト5が回転可能に挿入されている。ステアリングシャフト5の上端部は、ハンドルユニット6に連結されている。また、ステアリングシャフト5の下端部は、一対のフロントフォーク7に連結されている。フロントフォーク7の下端部は、前輪2を支持している。
車体フレーム4の上部には、シート8が支持されている。車体フレーム4のうちシート8よりも前方には、足載せ板9が支持されている。車体フレーム4には、車体フレーム4などを覆う車体カバー10が支持されている。車体カバー10は、足載せ板9の前端と後端から上方に延びる形態を有する。
車体フレーム4には、スイング式のエンジンユニット11と燃料タンク(図示せず)が搭載されている。燃料タンクは、シート8の下方に配置されており、シート8と車体カバー10によって覆われている。
エンジンユニット11は、エンジン12と、エンジン12の後部に連結された変速機13を備えている。変速機13は、Vベルト式無段変速機である。変速機13は、エンジン12および後輪3の左方に配置されている。エンジン12の前部は、前方と左右両側方から車体カバー10によって覆われている。エンジン12の前端部は、ピボット軸4bを介して車体フレーム4に揺動可能に支持されている。変速機13の後端部は、後輪3を支持している。また、変速機13と車体フレーム4との間にはリヤサスペンション14が取り付けられている。
[エンジン12の構成]
エンジン12(本発明の空冷式単気筒エンジン)は、強制空冷式のエンジンである。また、エンジン12は、OHC(Over Head Camshaft)型の4サイクル単気筒エンジンである。図2および図3に示すように、エンジン12は、クランクケース20と、クランクケース20の前端部に取り付けられたシリンダボディ21と、シリンダボディ21の前端部に取り付けられたシリンダヘッド22と、シリンダヘッド22の前端部に取り付けられたヘッドカバー23と、シュラウド24を備えている。なお、図2ではシュラウド24の表示を省略している。また、図2は、クランクケース20の左側面と、シリンダボディ21、シリンダヘッド22、ヘッドカバー23の断面を表示している。
エンジン12(本発明の空冷式単気筒エンジン)は、強制空冷式のエンジンである。また、エンジン12は、OHC(Over Head Camshaft)型の4サイクル単気筒エンジンである。図2および図3に示すように、エンジン12は、クランクケース20と、クランクケース20の前端部に取り付けられたシリンダボディ21と、シリンダボディ21の前端部に取り付けられたシリンダヘッド22と、シリンダヘッド22の前端部に取り付けられたヘッドカバー23と、シュラウド24を備えている。なお、図2ではシュラウド24の表示を省略している。また、図2は、クランクケース20の左側面と、シリンダボディ21、シリンダヘッド22、ヘッドカバー23の断面を表示している。
クランクケース20、シリンダボディ21、シリンダヘッド22、およびヘッドカバー23は、鉄よりも熱伝導率の高い軽合金で形成することが好ましいが、鉄またはそれ以外の金属で形成してもよい。この軽合金の具体例としては、例えば、アルミニウム、マグネシウム、アルミニウムとシリコンの合金、アルミニウムとマグネシウムの合金などである。クランクケース20、シリンダボディ21、シリンダヘッド22、およびヘッドカバー23は、例えば鋳造により形成されている。
図3に示すように、シュラウド24は、シリンダボディ21全体とシリンダヘッド22全体とヘッドカバー23の後端部を、全周にわたって覆っている。さらに、シュラウド24は、クランクケース20の右側部分を覆っている。シュラウド24のクランクケース20を覆う部分(つまり、シュラウド24の後右部)には、空気流入口24aが形成されている。また、シュラウド24の前部には、空気排出口(図示せず)が形成されている。なお、図3は、図2のIII-III線断面図であると共に、図4のIII-III線断面図でもある。
クランクケース20の内部には、左右方向に延びるクランク軸30が収容されている。クランク軸30は、クランクケース20に対して回転可能に支持されている。クランク軸30の左端部は、クランクケース20から突出して変速機13に接続されている。クランク軸30の右端部は、クランクケース20から突出して、ファン31に連結されている。ファン31は、クランク軸30の回転に伴って回転駆動される。ファン31の駆動により、空気流入口24aを介してシュラウド24内に空気が導入されて、導入された空気が空気排出口(図示せず)から排出される。
図2に示すように、クランクケース20の下部には、左右方向に延びるオイルパン20aが形成されている。オイルパン20aには潤滑オイルが貯留される。クランクケース20は、オイルパン20aに貯留された潤滑オイルを吸い上げるオイルポンプ32を収容している。潤滑オイルは、このオイルポンプ32により圧送されて、エンジン12内を循環する。潤滑オイルの流れの詳細については後述する。なお、潤滑オイルは、エンジン12の構成要素に含まれる。
潤滑オイルは、SAE J300に規定されるSAE粘度分類による低温粘度グレードが、20Wよりも低い。粘度グレードが低いほどオイルの粘度は低い。潤滑オイルのSAE粘度分類による高温粘度グレードは、特に限定されない。Xを0以上20未満の整数、Yを0以上の整数とすると、潤滑オイルのSAE粘度グレードは、XW-Yで表される。潤滑オイルは、ベースオイルと添加物で構成されている。大まかにいうと、潤滑オイルの粘度が低いほど、潤滑オイルの蒸発温度が低く、蒸発しやすい。ベースオイルの種類(例えば鉱物油であるか合成油であるか)や、添加物によっては、潤滑オイルの粘度が同じであっても蒸発温度が異なる場合がある。潤滑オイルの蒸発特性は、例えば、ASTM D6352に準拠したガスクロマトグラフィー模擬蒸留による沸点分布測定法によって取得できる。
シリンダボディ21は、クランクケース20の前端面に接続されている。図4に示すように、シリンダボディ21は、円筒状のシリンダ部50と、シリンダ部50の外周面から突出して設けられた2つの突出部51、52、チェーン室形成部53、およびフィン部54を備えている。シリンダ部50、突出部51、52、チェーン室形成部53、およびフィン部54は、同一材料で一体成形されている。
シリンダ部50には、ピストン33が摺動自在に収容されるシリンダ孔50aが形成されている。シリンダ孔50aの内壁面にはめっき処理が施されていてもよい。図3に示すように、ピストン33は、コネクティングロッド34を介してクランク軸30に連結されている。図2に示すように、シリンダ孔50aの中心軸、即ち、シリンダ軸線C1は、前後方向に延びている。詳細には、シリンダ軸線C1は、シリンダ部50の前端(シリンダヘッド22側の端部)が後端(クランクケース20側の端部)より上方に位置するように前後方向に対して若干傾いている。本実施形態では、シリンダ軸線C1の前後方向(水平方向)に対する傾斜角度は、約5度であるが、0度以上45度以下の範囲内であればよい。
シリンダ部50の前面には、シリンダ軸線C1を中心とした周方向に延びる溝部50bが形成されている。溝部50bの前側開口は、シリンダヘッド22の後面によって塞がれている。溝部50bには、潤滑オイルが充満状態で流される。溝部50bは、オイルジャケット50bを構成する。
オイルジャケット50bは、シリンダ部50の左側部分と下側部分に形成されている。オイルジャケット50bは、シリンダ軸線C1の方向(A1方向)から見て、時計の約2時の位置から約7時の位置までの範囲に形成されている。オイルジャケット50bは、シリンダ軸線C1に対してシュラウド24の空気流入口24aと反対側に設けられている。オイルジャケット50bは、シリンダ軸線C1を中心とした周方向において後述する吸気通路62よりも後述する排気通路63に近い位置に設けられる。また、オイルジャケット50bは、シリンダ軸線C1を中心とした周方向において、後述するチェーン室55の周方向範囲のほぼ全域に形成されている。また、オイルジャケット50bは、シリンダ軸線C1を中心とした周方向において、排気通路63の周方向範囲の全域に形成されている。
オイルジャケット50bは、シリンダ部50の径方向厚さの略中央部に形成されている。オイルジャケット50bのシリンダ軸線C1を中心とした径方向の長さは、周方向およびシリンダ軸線方向(A1方向)にわたって一定である。また、オイルジャケット50bのシリンダ軸線方向(A1方向)の長さは、周方向にわたって一定である。図3には、上死点にあるピストン33を実線で表示し、上死点と下死点の中間位置にあるピストン33を二点鎖線で表示している。オイルジャケット50bは、ピストン33の上死点と下死点の中間位置よりも、前方(シリンダヘッド22側)に形成されている。
シリンダボディ21の前面には、オイルジャケット50bの周方向の両端から略径方向に延びる2つの溝部(以下、連通部という)50c、50dが形成されている。連通部50cは、オイルジャケット50bの右下端と後述するボルト孔52aとを連通させ、連通部50dは、オイルジャケット50bの左上端と後述するチェーン室55とを連通させる。
突出部51は、シリンダ部50の外周面の右上部から突出し、シリンダ軸線方向(A1方向)に延びている。突出部52は、シリンダ部50の外周面の右下部から突出し、シリンダ軸線方向(A1方向)に延びている。突出部51、52には、それぞれ、シリンダ軸線方向(A1方向)に貫通するボルト孔51a、52aが形成されている。シリンダヘッド22には、ボルト孔51a、52aとそれぞれ連通するボルト孔(図示せず)が形成されている。シリンダヘッド22の2つのボルト孔51a、52aとシリンダヘッド22の2つのボルト孔には、シリンダボディ21とシリンダヘッド22を連結するための2本のスタッドボルト35が挿通される。ボルト孔51a、52aの径は、それぞれ、挿通されるスタッドボルト35の径よりも大きく、ボルト孔51a、52aの内周面とスタッドボルト35の外周面との間には隙間が生じている。
チェーン室形成部53は、シリンダ部50の外周面の左側部分に設けられている。チェーン室形成部53とシリンダ部50の外周面との間には、チェーン室55が形成される。つまり、チェーン室55は、シリンダ部50の外側に形成されている。チェーン室55は、クランクケース20に形成されたチェーン室20bと、シリンダヘッド22に形成されたチェーン室60とを連通させる。チェーン室55、20b、60には、後述するタイミングチェーン44が配置される。図4に示すように、チェーン室55は、シリンダ軸線方向(A1方向)に直交する断面形状が、上下方向に細長い略矩形状となっている。チェーン室55の上下方向長さは、シリンダ孔50aの直径よりも大きい。チェーン室55の上下方向の中間の位置は、シリンダ軸線C1とほぼ水平に並んでいる。また、チェーン室形成部53には、スタッドボルト36が挿通される4つのボルト孔53aが形成されている。
図5(a)~(d)に示すように、フィン部54は、シリンダボディ21の外周部の周方向一部に形成されている。フィン部54は、シリンダ軸線方向(A1方向)において、シリンダボディ21の前側(シリンダヘッド22側)の略半分の領域に形成されている。フィン部54は、ピストン33の上死点と下死点の中間位置よりもシリンダヘッド22側に形成されている。フィン部54は、シリンダ軸線方向(A1方向)に配列された複数のフィンで構成されている。各フィンは、シリンダ軸線C1を中心とした周方向に延びている。フィン部54は、シリンダボディ21の上面と右面と下面に形成されている。フィン部54は、シリンダ部50の外周面と突出部51、52の外表面から突出している。フィン部54の周方向両端は、チェーン室形成部53の右面に接続されている。本実施形態では、フィン部54は、シリンダ軸線C1を中心とした約200度の範囲に形成されている。したがって、フィン部54は、オイルジャケット50bの周方向範囲よりも大きい周方向範囲に形成されている。また、フィン部54の周方向範囲の一部は、オイルジャケット50bの周方向範囲の一部と重なっている。ファン31によってシュラウド24内に導入された空気がフィン部54と接触することにより、シリンダボディ21はフィン部54から放熱する。
シリンダヘッド22は、ガスケット25を介して、シリンダボディ21の前端面に接続されている。ガスケット25は、シリンダボディ21のシリンダ孔50a、オイルジャケット50b、ボルト孔51a、52a、53aおよびチェーン室55のそれぞれと対応する位置に、それぞれとほぼ同じ形状の孔を有する。また、ガスケット25は、鉄よりも熱伝導率の高い材料で形成されていることが好ましいが、それ以外の材料で形成されていてもよい。ガスケット25は、金属で形成されていてもよく、金属以外の材質(例えば合成樹脂)で形成されていてもよい。
図3に示すように、シリンダヘッド22の後面において、シリンダ孔50aに対応する位置には、略半球状の凹部61が形成されている。凹部61の後端の径は、シリンダ孔50aの径とほぼ同じである。この凹部61とシリンダ孔50aとピストン33によって、燃焼室26が区画される。
図2に示すように、シリンダヘッド22の内部には、燃焼室26と連通する吸気通路62および排気通路63が形成されている。吸気通路62は、シリンダヘッド22の上側部分に形成されている。吸気通路62は、左右方向から見て、凹部61からシリンダヘッド22の上面まで前斜め上向きに延びている。排気通路63は、シリンダヘッド22の下側部分に形成されている。排気通路63は、左右方向から見て、凹部61からシリンダヘッド22の下面まで前斜め下向きに延びている。図4に示すように、本実施形態の排気通路63は、前方から見て、左右方向に直交する方向に延びている。排気通路63は、前方から見て、凹部61からシリンダヘッド22の下面まで、右方または左方に曲がりつつ下向きに延びていてもよい。吸気通路62は、燃焼室26に空気を導入するための通路である。排気通路63は、燃焼室26で発生した高温の燃焼ガスを排出するための通路である。
吸気通路62は、図1に示すように、吸気管15を介してエアクリーナー(図示せず)に接続されている。吸気管15の途中には、スロットル弁(図示せず)が設けられている。スロットル弁の開度を調整することで、燃焼室26に供給される空気量が調整される。排気通路63は、図1に示すように、排気管16を介してマフラー17に接続されている。また、排気管16の途中には、三元触媒(図示せず)が配置されている。
図3に示すように、シリンダヘッド22の右側部分には、点火プラグ37が配置されている。点火プラグ37の点火部分である先端部は、凹部61に形成された挿通口64から燃焼室26内に露出している。また、上述したように、シリンダヘッド22には、シリンダボディ21のチェーン室55と連通するチェーン室60と、シリンダボディ21の複数のボルト孔51a、52a、53aと連通する複数のボルト孔が形成されている。
なお、図4は、シリンダヘッド22を前方からシリンダ軸線方向(A1方向)に見た断面図である。そのため、図4には、本来は、吸気通路62、排気通路63は現れないが、吸気通路62および排気通路63が配置された上下左右方向の位置に対応する位置に吸気通路62および排気通路63を二点鎖線で表示している。また、凹部61に形成される挿通口64も図4には本来は表れないが、挿通口64が配置された上下左右方向の位置に対応する位置に挿通口64を二点鎖線で表示している。
シリンダヘッド22の前部は、ヘッドカバー23によって覆われている。シリンダヘッド22とヘッドカバー23の内部には、吸気通路62および排気通路63をそれぞれ開閉する吸気バルブ38および排気バルブ39と、吸気バルブ38および排気バルブ39を駆動するための動弁機構40が収容されている。動弁機構40は、左右方向に延びるカム軸41を含んでいる。カム軸41は、シリンダヘッド22に回転可能に支持されている。カム軸41の左端部は、シリンダヘッド22のチェーン室60に配置されている。カム軸41の左端部に設けられたスプロケット42と、クランク軸30の左端部に設けられたスプロケット43には、タイミングチェーン44が巻き掛けられている。タイミングチェーン44は、クランク軸30の回転力を動弁機構40に伝える動力伝達部材である。クランク軸30の回転に伴ってカム軸41が回転することで、吸気バルブ38および排気バルブ39は開閉駆動される。
図5(a)~(d)に示すように、シリンダヘッド22の外表面には、ヘッドフィン部65が設けられている。ヘッドフィン部65は、シリンダ軸線方向(A1方向)に配列された複数のフィンで構成されている。各フィンは、シリンダ軸線C1を中心とした周方向に延びている。ヘッドフィン部65は、シリンダ軸線方向(A1方向)において、シリンダヘッド22の後側(シリンダボディ21側)の略半分の領域に形成されている。ヘッドフィン部65は、シリンダヘッド22の右面における点火プラグ37の上下両側に形成されている。ファン31によってシュラウド24内に導入された空気がヘッドフィン部65と接触することにより、シリンダヘッド22はヘッドフィン部65から放熱する。シリンダヘッド22は、鉄よりも熱伝導率の高い軽合金で形成されているため、ヘッドフィン部65によってシリンダヘッド22の温度を低下させやすい。
次に、エンジン12における潤滑オイルの流れについて説明する。各図に示す白抜きの矢印と塗りつぶしの矢印は、潤滑オイルの流れの一部を示している。塗りつぶしの矢印は、断面に現れない潤滑オイルの流れを示しており、白抜きの矢印は、断面に現れる潤滑オイルの流れを示している。本実施形態のエンジン12では、潤滑オイルは、エンジン12の摺動部の潤滑のために用いられるだけでなく、シリンダ孔50aの内壁面の温度を下げるためにも用いられる。
クランクケース20には、オイルポンプ32から圧送された潤滑オイルを、クランク軸30に供給するための流路と、シリンダボディ21に供給するための流路が形成されている。また、図3に示すように、クランクケース20には、オイルポンプ32から圧送された潤滑オイルを、ピストン33の裏面(後面)に向けて噴射するための噴射口(オイルジェット孔)20cが形成されている。また、クランク軸30に供給された潤滑オイルは、コネクティングロッド34に形成された噴射口(図示せず)からピストン33およびシリンダ孔50aの内壁面などに向けて噴射される。ピストン33、シリンダ孔50aの内壁面およびクランク軸30に供給された潤滑オイルは、その自重により流れ落ちてオイルパン20aに戻る。なお、凹部61には潤滑オイルはほとんど付着しない。
また、シリンダ部50の後面には、クランクケース20から送られてきた潤滑オイルを、ボルト孔51aとスタッドボルト35との隙間、および、ボルト孔52aとスタッドボルト35との隙間に、それぞれ後方から供給するための溝部(図示せず)が形成されている。
ボルト孔51aとスタッドボルト35との隙間に後方から流入した潤滑オイルは、シリンダヘッド22に形成されたボルト孔(図示せず)とスタッドボルト35との隙間に流入する。シリンダヘッド22のボルト孔には、バルブ38、39と動弁機構40に潤滑オイルを供給するための複数の分岐路(図示せず)が接続されている。バルブ38、39および動弁機構40に供給された潤滑オイルは、チェーン室55に排出された後、潤滑オイルの自重により流れ落ちてオイルパン20aに戻る。
ボルト孔52aとスタッドボルト35との隙間に後方から流入した潤滑オイルは、連通部50cを介してオイルジャケット50bに流入する。この潤滑オイルは、オイルジャケット50bに沿って周方向に流れた後、連通部50dを介してチェーン室55に排出される。チェーン室55に排出された潤滑オイルは、その自重により流れ落ちてオイルパン20aに戻る。オイルジャケット50bを流れる潤滑オイルの温度は、例えば80~90℃程度である。オイルジャケット50bを流れる潤滑オイルは、シリンダボディ21の熱を奪う。
エンジン12は、吸気行程と圧縮行程と燃焼行程と排気行程を順に繰り返す。燃焼行程において燃焼室26で発生した燃焼ガスは、排気行程で排気通路63から排出される。そのため、燃焼ガスによって、シリンダ孔50aの内壁面のうちシリンダヘッド22側の部分と、シリンダヘッド22の凹部61と、排気通路63の内壁面が加熱される。シリンダ部50のうち排気通路63とシリンダ軸線方向(A1方向)に並ぶ部分(即ち、排気通路63の後方の部分)は、シリンダ孔50aの内壁面から伝わる熱と、排気通路63から伝わる熱の両方によって加熱される。
図6に示す実施例1のグラフは、本実施形態のエンジン12のシリンダ孔50aの内壁面の周方向位置と温度との関係を示している。図6のグラフの横軸は、図4に示すシリンダ軸線C1の真上の位置P1から図4中の時計回りの角度を示しており、縦軸はその角度位置でのシリンダ孔50aの内壁面の温度を示している。なお、シリンダ孔50aの内壁面の温度とは、具体的には、シリンダ孔50aの内壁面より1.5mm径方向外側の位置の温度である。また、図6に示す比較例1のグラフは、オイルジャケットを設けず、その他の構成は本実施形態のエンジン12とほぼ同じである場合の結果を示している。また、図6に示す比較例2のグラフは、本実施形態のオイルジャケットの周方向範囲をシリンダ部50のほぼ全周に変更して、その他の構成は本実施形態のエンジン12とほぼ同じである場合の結果を示している。
オイルジャケットを設けない比較例1では、シリンダ孔50aの内壁面は、フィン部54からの放熱によってのみ熱が奪われる。そのため、図6に示すように、シリンダ孔50aの内壁面のうち、外周側にフィン部54が設けられていないチェーン室55側の部分(位置P1からの角度が90°の部分付近)は高温となる。また、排気通路63側の部分(位置P1からの角度が180°の部分付近)は、その外周側にフィン部54が設けられているものの、燃焼ガスから伝わる熱量が最も多いため、チェーン室55側の部分と同様に高温となる。
図6に示すように、オイルジャケットを全周に設けた比較例2では、シリンダ孔50aの内壁面のうち、外周側にフィン部54が設けられていないチェーン室55側の部分は、オイルジャケットを全く設けない比較例1よりも温度が低下する。また、オイルジャケットを全周に設けたことにより、排気通路63側の部分、吸気通路62側の部分、および、チェーン室55と反対側の部分において、シリンダ孔50aの内壁面とフィン部54との間の径方向の熱伝達がオイルジャケットによって遮断されることになる。高温になりやすい部分である排気通路63側の部分は、オイルジャケットによる温度低減効果がフィン部54による温度低減効果よりも高いため、オイルジャケット50bを設けたことにより、オイルジャケットを設けない比較例1よりも温度を低下させることができる。その一方、吸気通路62側の部分およびチェーン室55と反対側の部分は、元々の温度が低いことから、オイルジャケットによる温度低減効果がフィン部54による温度低減効果よりも低いため、オイルジャケットを設けたことにより、オイルジャケットを設けない比較例1よりも温度が高くなってしまう。したがって、比較例2では、シリンダ孔50aの内壁面の温度が周方向に均一化される。
これに対して、実施例1(本実施形態)では、オイルジャケット50bを、吸気通路62側の部分およびチェーン室55と反対側の部分には設けずに、排気通路63側の部分およびチェーン室55側の部分に設けている。そのため、オイルジャケットを全周に設けた比較例2と同様の理由により、シリンダ孔50aの内壁面のうちチェーン室55側の部分および排気通路63側の部分は、オイルジャケットを全く設けない比較例1よりも温度を低下させることができる。また、吸気通路62側の部分およびチェーン室55と反対側の部分には潤滑オイルを使用しないため、その分の潤滑オイルを、排気通路63側の部分およびチェーン室55側の部分に使うことができる。その結果、排気通路63側の部分およびチェーン室55側の部分の温度を、オイルジャケットを全周に設けた比較例2よりも低下させることができる。
また、吸気通路62側の部分およびチェーン室55と反対側の部分は、上述したように、オイルジャケットによる温度低減効果がフィン部54による温度低減効果よりも低いため、この部分にオイルジャケット50bを設けないことにより、オイルジャケットを全周に設けた比較例2に比べて温度を低下させることができる。また、排気通路63側の部分およびチェーン室55側の部分の温度を、比較例1よりも低下させることができるため、吸気通路62側の部分およびチェーン室55と反対側の部分の部分に、排気通路63側の部分およびチェーン室55側の部分から伝わる熱量を低減できる。そのため、吸気通路62側の部分およびチェーン室55と反対側の部分の温度を、オイルジャケットを全く設けない比較例1よりも低下させることができる。
シリンダ孔50aの内壁面の温度が高いほど、内壁面において潤滑オイルが蒸発しやすいため、潤滑オイルの消費量は多くなる。図23のグラフは、シリンダ孔の内壁面の温度が高いほど、潤滑オイルの消費量が多くなることを実証するグラフである。このグラフは、複数種類のエンジンを用いてテストベンチで測定した結果と、その近似曲線を示している。グラフ中のプロットcは、本実施施形態のエンジン12を用いて測定した結果である。グラフ中のプロットaは、シリンダボディの全周にわたってウォータージャケットが形成され且つファンを有しない水冷式のエンジンにおいて測定した結果である。グラフ中のプロットdは、シリンダボディの全周にわたってオイルジャケットが形成され且つファンを有しない油冷式のエンジンにおいて測定した結果である。グラフ中のプロットbとプロットeは、シリンダボディにオイルジャケットやウォータージャケットが形成されていない、強制空冷式のエンジンにおいて測定した結果である。プロットbとプロットeでは、ファン(31)の構成(例えば羽根の枚数)が違っているため、ファン(31)により発生する空気量が異なる。プロットcとプロットeのファン31の風量は同じである。したがって、プロットcとプロットeで用いたエンジンの違いは、オイルジャケット50bの有無だけである。
図23のグラフのプロットa~eは、所定の運転条件で、所定時間エンジンを運転して測定した結果である。潤滑オイルの消費量は、試験運転の前後のエンジン内の潤滑オイルの重量を比較することで測定した。図23の縦軸は、単位時間あたりの潤滑オイルの消費量を示している。また、図23の横軸は、エンジンの運転中のシリンダ孔の内壁面の温度、詳細には、内壁面よりも1.5mm径方向外側の位置の温度を示している。より詳細には、周方向において最も高温となる、排気通路(63)およびチェーン室(55)の近傍の温度を表示している。試験運転時の潤滑オイルの温度は、125±5℃である。また、テストベンチの試験であるため、走行による空気流および自然風はない。
また、上述した所定の運転条件とは、エンジンが高負荷で運転され、且つ、混合ガスの空燃比が理論空燃比(空気過剰率λ=1であるとき)となる条件である。ここでの高負荷とは、エンジン回転速度およびスロットル弁の開度(以下、スロットル開度という)が以下の条件を満たすことである。高負荷でのエンジン回転速度は、エンジン回転速度の全領域を3つの領域(低速度域・中速度域・高速度域)に均等に分けたときの中速度域または高速度域に含まれる。高負荷でのスロットル開度は、スロットル開度の全領域を3つの領域(小開度域・中開度域・大開度域)に均等に分けたときの中開度域または大開度域に含まれる。また、運転条件に空気過剰率λ=1が含まれるのは、以下の2つの理由からである。燃料噴射量が多く、空気過剰率λが1を下回ると、過剰燃料の蒸発に伴う冷却のバラツキによって、シリンダ孔の内壁面の温度の再現性が悪くなる。空気過剰率λ=1のときには、エンジン負荷とシリンダ孔の内壁面の温度が明確な比例関係にあり、データの再現性が高い。これが1つ目の理由である。また空気過剰率λが1を下回ると、噴射された燃料の一部が燃焼されずにシリンダ孔内に溜まる。この未燃燃料が潤滑オイルと混じるため、エンジン内の潤滑オイルの重量を正確に測定できなくなる。これが2つ目の理由である。
図6の実施例1と比較例1、および、図23のプロットc、eから明らかなように、本実施形態のエンジン12(実施例1、プロットc)は、オイルジャケット50bを設けない場合(比較例1、プロットe)に比べて、シリンダ孔の内壁面の温度が低い。したがって、本実施形態のエンジン12は、オイルジャケット50bを設けない場合に比べて、シリンダ孔の内壁面における潤滑オイルの蒸発を抑制できる。そのため、図23に示すように、実施形態のエンジン12(プロットc)は、オイルジャケット50bを設けない場合(プロットe)に比べて、潤滑オイルの消費量を低減できる。
言い換えると、図23の結果から、実施形態のエンジン12(プロットc)は、オイルジャケット50bを設けない場合(プロットe)に比べて、シリンダ孔の内壁面の温度が低く、且つ、潤滑オイルの消費量が少ない。このことから、実施形態のエンジン12は、オイルジャケット50bを設けない場合に比べて、シリンダ孔の内壁面における潤滑オイルの蒸発が少ないといえる。なお、潤滑オイルの消費量は、エンジンを上述した所定の運転条件で運転する前後で測定して得た値であれば、その測定方法の詳細は特に限定されない。
なお、本実施形態では、フィン部54とオイルジャケット50bが、本発明のオイル蒸発抑制部に相当する。
以上説明した本実施形態のエンジン12は、以下の特徴を有する。
本実施形態のエンジン12は、フィン部54と、このフィン部54の周方向範囲よりも小さい周方向範囲に形成され、且つ、シリンダ軸線を中心とした周方向において吸気通路62より排気通路63に近い位置に設けられたオイルジャケット50bとを含むオイル蒸発抑制部を備えている。オイル蒸発抑制部は、シリンダボディ21にフィン部54とオイルジャケット50bを設けるという技術思想と、オイルジャケット50bの周方向範囲をフィン部54の周方向範囲よりも小さく形成するという技術思想と、オイルジャケット50bを周方向において吸気通路62より排気通路63に近い位置に設けるという技術思想とによって成り立っている。
排気通路63内は高温のガスが通過するため、シリンダ孔50aの内壁面のうち排気通路63が設けられている周方向範囲は高温になりやすい。オイルジャケット50bが、周方向において排気通路63に近い位置に設けられていることにより、シリンダヘッド22にのみオイルジャケットを設ける場合に比べて、シリンダ孔50aの内壁面のうち高温となりやすい箇所の温度を低下させることができる。したがって、シリンダヘッド22にのみオイルジャケットを設ける場合に比べて、シリンダ孔50aの内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、図6のグラフで示したように、オイルジャケットをシリンダボディの全周に設ける場合(比較例2)に比べて、シリンダ孔50aの内壁面の周方向全域の温度を低下させることができると共に、シリンダ孔50aの内壁面のうち高温になりやすい周方向一部分の温度をより低下させることができる。そのため、オイルジャケットをシリンダボディの全周に設ける場合に比べて、シリンダ孔50aの内壁面に付着した潤滑オイルの蒸発を抑制することができ、潤滑オイルの消費量をより低減できる。
本実施形態のエンジン12は、フィン部54と、このフィン部54の周方向範囲よりも小さい周方向範囲に形成され、且つ、シリンダ軸線を中心とした周方向において吸気通路62より排気通路63に近い位置に設けられたオイルジャケット50bとを含むオイル蒸発抑制部を備えている。オイル蒸発抑制部は、シリンダボディ21にフィン部54とオイルジャケット50bを設けるという技術思想と、オイルジャケット50bの周方向範囲をフィン部54の周方向範囲よりも小さく形成するという技術思想と、オイルジャケット50bを周方向において吸気通路62より排気通路63に近い位置に設けるという技術思想とによって成り立っている。
排気通路63内は高温のガスが通過するため、シリンダ孔50aの内壁面のうち排気通路63が設けられている周方向範囲は高温になりやすい。オイルジャケット50bが、周方向において排気通路63に近い位置に設けられていることにより、シリンダヘッド22にのみオイルジャケットを設ける場合に比べて、シリンダ孔50aの内壁面のうち高温となりやすい箇所の温度を低下させることができる。したがって、シリンダヘッド22にのみオイルジャケットを設ける場合に比べて、シリンダ孔50aの内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、図6のグラフで示したように、オイルジャケットをシリンダボディの全周に設ける場合(比較例2)に比べて、シリンダ孔50aの内壁面の周方向全域の温度を低下させることができると共に、シリンダ孔50aの内壁面のうち高温になりやすい周方向一部分の温度をより低下させることができる。そのため、オイルジャケットをシリンダボディの全周に設ける場合に比べて、シリンダ孔50aの内壁面に付着した潤滑オイルの蒸発を抑制することができ、潤滑オイルの消費量をより低減できる。
以上のように、本実施形態のエンジン12は、シリンダボディ21にフィン部54とオイルジャケット50bを設けるという技術思想と、オイルジャケット50bの周方向範囲をフィン部54の周方向範囲よりも小さく形成するという技術思想と、オイルジャケット50bを周方向において吸気通路62より排気通路63に近い位置に設けるという技術思想とによって成り立つオイル蒸発抑制部を備えることにより、シリンダ孔50aの内壁面の周方向全域の温度を低下させると共に、内壁面のうち高温になりやすい周方向一部分の温度をより低下させることができる。そのため、シリンダ孔50aの内壁面に付着した潤滑オイルの蒸発を抑制することができ、潤滑オイルの消費量をより低減できる。
また、シリンダ孔50aの内壁面の温度を低下させるために、エンジンが元々備えている潤滑オイルを利用しているため、製造コストの増加を抑えることができる。
したがって、本実施形態のエンジン12は、製造コストの増加を抑えつつ、潤滑オイルの消費量を低減できる。
また、シリンダ孔50aの内壁面の温度を低下させるために、エンジンが元々備えている潤滑オイルを利用しているため、製造コストの増加を抑えることができる。
したがって、本実施形態のエンジン12は、製造コストの増加を抑えつつ、潤滑オイルの消費量を低減できる。
また、燃焼室26内で蒸発した潤滑オイルは、燃焼ガスと共に排気通路63を介して排気管16に排出される。排気管16に流入した潤滑オイルは、排気管16の途中に配置された三元触媒(図示せず)を被毒する。本実施形態では、シリンダ孔50aの内壁面に付着した潤滑オイルの蒸発を抑制することで、三元触媒の被毒を抑制できる。
また、シリンダ孔50aの内壁面は、シリンダヘッド22に近い位置が比較的高温となりやすい。本実施形態では、オイルジャケット50bは、ピストン33の上死点と下死点の中間位置よりもシリンダヘッド22側に設けられる。そのため、シリンダ孔50aの内壁面のうち高温となりやすい部分の温度をより低下させることができる。したがって、シリンダ孔50aの内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、本実施形態では、オイルジャケット50bの周方向範囲が、排気通路63の周方向範囲と重なっている。そのため、オイルジャケット50bによって、シリンダ孔50aの内壁面のうち高温になりやすい箇所の温度をより確実に低下させることができる。したがって、シリンダ孔50aの内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、本実施形態では、シリンダ孔50aの内壁面の温度を潤滑オイルによって低下させる手段としてオイルジャケット50bを用いている。内部を潤滑オイルが充満状態で流れるオイルジャケット50bは、シリンダ孔50aの径方向の幅が小さくて済む。そのため、シリンダボディ21の径方向の幅を小さくでき、エンジン12を小型化できる。また、オイルジャケット50bは、シリンダ部50の径方向においてシリンダ孔50aに近い位置に形成することができる。これにより、シリンダ孔50aの内壁面の温度をより低下させることができる。したがって、シリンダ孔50aの内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、オイルジャケット50bは、シリンダ軸線C1に対してシュラウド24の空気流入口24aと反対側に設けられている。つまり、フィン部54を設けてもシリンダ孔50aの内壁面の温度低減効果が低い箇所に、オイルジャケット50bを設けている。そのため、オイルジャケット50bとフィン部54によって、シリンダ孔50aの内壁面全体の温度を効率よく低下させることができる。したがって、シリンダ孔50aの内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
従来のエンジンでは、粘度の高い潤滑オイルが使用されていた。具体的には、SAE粘度分類による低温粘度グレードが20Wかそれよりも高い潤滑オイルが用いられていた。潤滑オイルの粘度が高いほど、潤滑オイルの蒸発温度が高く、蒸発しにくい。そのため、従来のエンジンでは、潤滑オイルの蒸発による潤滑オイルの消費は問題とならなかった。
ところが、近年では、燃費向上のために、粘度の低い潤滑オイルがエンジンに使用されるようになった。それにより、潤滑オイルが蒸発しやすくなり、潤滑オイルの消費量が多くなるという問題が発生した。
ところが、近年では、燃費向上のために、粘度の低い潤滑オイルがエンジンに使用されるようになった。それにより、潤滑オイルが蒸発しやすくなり、潤滑オイルの消費量が多くなるという問題が発生した。
本実施形態のエンジン12は、シリンダ孔50aの内壁面における潤滑オイルの蒸発を抑制するオイル蒸発抑制部(オイルジャケット50bとフィン部54)を備えている。そのため、潤滑オイルとして、SAE粘度分類による低温粘度グレードが20Wよりも低い潤滑オイルを用いても、シリンダ孔50aの内壁面における潤滑オイルの蒸発を抑制できる。
また、潤滑オイルの粘度が低いほど、オイルジャケット50bを流れる潤滑オイルの単時間当たりの流量が多くなり、シリンダ孔50aの内壁面の温度をより低下させることができる。したがって、潤滑オイルの低温粘度グレードが20Wよりも低いことにより、オイル蒸発抑制部によるシリンダ孔50aの内壁面における潤滑オイルの蒸発を抑制する効果をより高めることができる。
また、潤滑オイルの粘度が低いほど、オイルジャケット50bを流れる潤滑オイルの単時間当たりの流量が多くなり、シリンダ孔50aの内壁面の温度をより低下させることができる。したがって、潤滑オイルの低温粘度グレードが20Wよりも低いことにより、オイル蒸発抑制部によるシリンダ孔50aの内壁面における潤滑オイルの蒸発を抑制する効果をより高めることができる。
<第2実施形態>
次に、本発明の第2実施形態について説明する。但し、上記第1実施形態と同様の構成を有するものについては、同じ符号を用いて適宜その説明を省略する。本実施形態のエンジン112は、第1実施形態と同様のスクータ型の自動二輪車に適用される。
次に、本発明の第2実施形態について説明する。但し、上記第1実施形態と同様の構成を有するものについては、同じ符号を用いて適宜その説明を省略する。本実施形態のエンジン112は、第1実施形態と同様のスクータ型の自動二輪車に適用される。
図7に示すように、本実施形態のエンジン112は、シリンダボディ121とガスケット125の構成が第1実施形態のエンジン12と異なっており、その他の構成は第1実施形態のエンジン12と同じである。なお、図7は、図8のVII-VII線断面図である。
シリンダボディ121は、円筒状のシリンダ部150と、シリンダ部150の外周面から突出して設けられた2つの突出部51、52、チェーン室形成部153、およびフィン部54を備えている。また、本実施形態のシリンダボディ121は、オイル流部156を備えている。
シリンダ部150は、オイルジャケット(溝部)50bおよび連通部50c、50dを有しない点以外は、第1実施形態のシリンダ部50と同様の構成である。また、第1実施形態のガスケット25には、オイルジャケット50bに対応する位置に孔が形成されていたのに対して、本実施形態のガスケット125には、この孔は形成されていない。ガスケット125のそれ以外の構成は、第1実施形態のガスケット25と同様である。
チェーン室形成部153の形成位置は、第1実施形態のチェーン室形成部53と同じである。チェーン室形成部153とシリンダ部150の外周面との間には、第1実施形態と同様のチェーン室55が形成される。チェーン室形成部153において、チェーン室55より径方向外側であって、且つ、上下方向においてシリンダ軸線C1より下側の部分には、オイル通路157が形成されている。オイル通路157は、シリンダ軸線方向(A1方向)に延びており、シリンダボディ121を貫通する。
チェーン室形成部153には、オイル通路157の前部と、チェーン室55とを連通させるオイル噴射孔158(オイル噴射部)が形成されている。このオイル噴射孔158を形成するために、チェーン室形成部153には、オイル通路157を通り、且つ、シリンダボディ121の外周面からチェーン室55の内壁面まで延びる孔が形成されている。そして、この孔のオイル通路157よりも径方向外側の部分が栓で塞がれている。オイル噴射孔158は、ピストン33の上死点と下死点の中間位置(図7中二点鎖線で表示)よりも、前方(シリンダヘッド22側)に形成されている。オイル噴射孔158は、シリンダ軸方向と直交する方向に延びている。詳細には、オイル噴射孔158は、左右方向とほぼ平行に延びている。
シリンダボディ121の後面には、クランクケース20から送られてきた潤滑オイルを、ボルト孔51aとスタッドボルト35との隙間、および、オイル通路157に、それぞれ供給するための溝部(図示せず)が形成されている。ボルト孔51aとスタッドボルト35との隙間に後方から流入した潤滑オイルは、上記第1実施形態と同様のルートを経てオイルパン20aに戻る。
オイル通路157に後方から流入した潤滑オイルは、オイル噴射孔158からチェーン室55内に噴射されて、シリンダ部150の外周面に衝突する。図9(a)に示すように、オイル噴射孔158から噴射される潤滑オイルOの流量は、オイル噴射孔158から噴射された潤滑オイルOが、オイル噴射孔158の直径とほぼ同じ径のままシリンダ部150の外周面に衝突できる流量となっている。シリンダ部150の外周面において、オイル噴射孔158から噴射した潤滑オイルが衝突する領域を、オイル衝突領域159とする。オイル衝突領域159の径は、オイル噴射孔158の径とほぼ同じである。また、図9(b)に示すように、オイル衝突領域159に衝突した潤滑オイルOは、オイル衝突領域159を中心に放射状に広がった後、下方に流れ落ちる。
図8に示すように、オイル噴射孔158から噴射された潤滑オイルは、シリンダ部150の外周面のうち、周方向において吸気通路62より排気通路63に近い位置に衝突する。本実施形態では、オイル衝突領域159は、シリンダ軸線C1を通り左右方向と平行に延びる平面とシリンダ孔50aの内壁面との交点から、シリンダ軸線C1を中心に下方に約25度ずれた位置となっている。
オイル流部156は、シリンダ部50において上述のオイル衝突領域159が形成された部分と、チェーン室形成部53においてオイル噴射孔158が形成された部分とによって形成されている。また、本実施形態では、フィン部54とオイル流部156が、本発明のオイル蒸発抑制部に相当する。
図10に示す実施例2のグラフは、本実施形態のエンジン112のシリンダ孔50aの内壁面の周方向位置と温度との関係を示している。図10のグラフの横軸と縦軸は、図6のグラフと同様である。また、図10に示す比較例3のグラフは、オイル流部156を設けず、その他の構成は本実施形態のエンジン112とほぼ同じである場合の結果を示している。また、図10に示す比較例4のグラフは、シリンダ軸線C1を中心とした周方向において排気通路63よりも吸気通路62に近い位置に、本実施形態のオイル流部156と同様のオイル流部を設けて、その他の構成は本実施形態のエンジン112とほぼ同じである場合の結果を示している。比較例4のオイル流部(オイル衝突領域)は、シリンダ軸線C1を通り左右方向と平行に延びる平面とシリンダ孔50aの内壁面の交点から、シリンダ軸線C1を中心に上方に約10度ずれた位置となっている。
図10に示すように、オイル流部156を設けた比較例3および実施例2では、潤滑オイルが衝突するチェーン室55側の部分の温度が大幅に低下する。それによって、シリンダ部150の周方向全域の温度も低下する。しかし、排気通路63よりも吸気通路62に近い位置にオイル流部を設けた比較例4では、排気通路63側の部分の温度の低下幅が小さい。これに対して、吸気通路62よりも排気通路63に近い位置にオイル流部156を設けた実施例2では、排気通路63側の部分の温度も大幅に低下させることができる。
なお、グラフは省略するが、オイル流部をシリンダヘッド22のほぼ全周に設けた場合は、オイルジャケットをシリンダ部の全周に設ける場合(図6の比較例2)と同様に、排気通路63側の部分、吸気通路62側の部分、および、チェーン室55と反対側の部分において、シリンダ孔50aの内壁面とフィン部54との間の径方向の熱伝達がオイル流部によって遮断されることになる。したがって、シリンダ孔50aの内壁面の温度を全周にわたって、オイル流部を全周に設けた場合よりも低下させることができる。
以上説明した本実施形態のエンジン112は、以下の特徴を有する。
本実施形態のエンジン112は、フィン部54と、このフィン部54の周方向範囲よりも小さい周方向範囲に形成され、且つ、周方向において吸気通路62より排気通路63に近い位置に設けられたオイル流部156とを含むオイル蒸発抑制部を備えている。この構成により、第1実施形態と同様に、製造コストの増加を抑えつつ、シリンダヘッドにオイル流部を設ける場合やオイル流部をシリンダボディの全周に設ける場合に比べて、シリンダ孔50aの内壁面の周方向全域の温度を低下させることができると共に、シリンダ孔50aの内壁面のうち高温になりやすい周方向一部分の温度をより低下させることができる。そのため、製造コストを抑えつつ、シリンダ孔50aの内壁面に付着した潤滑オイルの蒸発を抑制することができ、潤滑オイルの消費量をより低減できる。
本実施形態のエンジン112は、フィン部54と、このフィン部54の周方向範囲よりも小さい周方向範囲に形成され、且つ、周方向において吸気通路62より排気通路63に近い位置に設けられたオイル流部156とを含むオイル蒸発抑制部を備えている。この構成により、第1実施形態と同様に、製造コストの増加を抑えつつ、シリンダヘッドにオイル流部を設ける場合やオイル流部をシリンダボディの全周に設ける場合に比べて、シリンダ孔50aの内壁面の周方向全域の温度を低下させることができると共に、シリンダ孔50aの内壁面のうち高温になりやすい周方向一部分の温度をより低下させることができる。そのため、製造コストを抑えつつ、シリンダ孔50aの内壁面に付着した潤滑オイルの蒸発を抑制することができ、潤滑オイルの消費量をより低減できる。
また、本実施形態では、シリンダ孔50aの内壁面の温度を潤滑オイルによって低下させる手段として、オイル流部156を用いている。オイル流部156は、潤滑オイルを噴射させるための空間として、チェーン室55を利用している。そのため、潤滑オイルを噴射させるためだけに、シリンダボディ121に別途空間を形成する場合に比べて、エンジン112を小型化できる。
また、オイル流部156は、シリンダ軸線C1に対してシュラウド24の空気流入口24aと反対側に設けられている。そのため、第1実施形態と同様に、オイル流部156とフィン部54によって、シリンダ孔50aの内壁面全体の温度を効率よく低下させることができる。したがって、シリンダ孔50aの内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、本実施形態では、シリンダ軸線C1が前後方向に延びている。そのため、オイル噴射孔158から噴射された潤滑オイルは、オイル衝突領域159に衝突した後、シリンダ部50の外周面に沿って周方向に流れる。そのため、シリンダ孔50aの内壁面のうち、オイル衝突領域159よりも排気通路63に近い部分も、潤滑オイルによって温度を低下させることができる。したがって、シリンダ孔50aの内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
<第3実施形態>
次に、本発明の第3実施形態について説明する。但し、上記第1実施形態と同様の構成を有するものについては、同じ符号を用いて適宜その説明を省略する。本実施形態は、図11に示す自動二輪車201のエンジンに本発明の空冷式単気筒エンジンを適用した一例である。以下の説明で用いる前後方向および左右方向の定義は、第1実施形態と同様である。
次に、本発明の第3実施形態について説明する。但し、上記第1実施形態と同様の構成を有するものについては、同じ符号を用いて適宜その説明を省略する。本実施形態は、図11に示す自動二輪車201のエンジンに本発明の空冷式単気筒エンジンを適用した一例である。以下の説明で用いる前後方向および左右方向の定義は、第1実施形態と同様である。
[自動二輪車201の全体構成]
図11に示すように、本実施形態の自動二輪車201は、いわゆるアンダーボーン型の自動二輪車である。自動二輪車201は、前輪202と、後輪203と、車体フレーム204とを備えている。車体フレーム204は、全体として前後方向に延びた形態である。
図11に示すように、本実施形態の自動二輪車201は、いわゆるアンダーボーン型の自動二輪車である。自動二輪車201は、前輪202と、後輪203と、車体フレーム204とを備えている。車体フレーム204は、全体として前後方向に延びた形態である。
車体フレーム204は、その前部にヘッドパイプ204aを有する。ヘッドパイプ204aには、ステアリングシャフト(図示せず)が回転可能に挿入されている。ステアリングシャフトの上端部は、ハンドルユニット206に連結されている。また、ステアリングシャフトの下端部は、一対のフロントフォーク207に連結されている。フロントフォーク207の下端部は、前輪202を支持している。
車体フレーム204には、一対のスイングアーム216が揺動可能に支持されている。スイングアーム216の後端部は、後輪203を支持している。各スイングアーム216の揺動中心より後方の箇所と車体フレーム204との間にはリヤサスペンション214が取り付けられている。
車体フレーム204の上部には、シート208と燃料タンク(図示せず)が支持されている。また、車体フレーム204には、車体フレーム204などを覆う車体カバー210が支持されている。燃料タンクは、シート208の下方に配置されており、シート208と車体カバー210によって覆われている。
車体フレーム204および車体カバー210は、ヘッドパイプ204aとシート208の間の部分が低くなっている。これにより、ヘッドパイプ204aとシート208との間で、且つ、車体フレーム204の上方に、スペースが形成されている。このスペースにより、ライダーは車体を跨ぎやすくなっている。
車体フレーム204には、エンジンユニット211が搭載されている。エンジンユニット211は、車体フレーム204の下方に配置されており、車体フレーム204に吊り下げられた状態で支持されている。エンジンユニット211の前部は、左右両側方から車体カバー210に覆われている。エンジンユニット211の左右両側には、フットレスト209が配置されている。左右のフットレスト209は、棒状の部材を介して、エンジンユニット211の下面に支持されている。
車体カバー210は、車体フレーム204の前方に配置されたフロントカバー270と、フロントカバー270の後端に連結されたボディカバー271と、前輪202の上方および後方に配置されたフロントフェンダー272と、後輪203の上斜め後方に配置されたリヤフェンダー273とを有する。
フロントカバー270は、フロントフェンダー272の上方に配置されたフロントカウル部270aと、フロントカウル部270aの下方に配置された左右一対のレッグシールド部270bによって構成されている。フロントカウル部270aは、ヘッドパイプ204aを前方から覆っている。
レッグシールド部270bは、フロントカウル部270aの下端から下斜め後方に延びている。レッグシールド部270bは、シート208に着座したライダーの脚の前方に配置される。図12に示すように、一対のレッグシールド部270bの間には、スペースが形成されている。レッグシールド部270bは、左右方向に垂直な面に対して傾斜している。本実施形態では、一対のレッグシールド部270b(特にレッグシールド部270bの上部および下部)は、後方に向かうほど左右方向に離れるように傾斜している。
ボディカバー271の前側下部は、前後方向から見て二股状に形成されている。この二股形状の先端部分をレッグシールド部271aとする。ボディカバー271のレッグシールド部271aは、フロントカバー270のレッグシールド部270bの下部に連結されている。エンジンユニット211の前部の左右側面は、フロントカバー270のレッグシールド部270bの下部と、ボディカバー271のレッグシールド部271aによって覆われている。以下の説明において、フロントカバー270のレッグシールド部270bと、これに連結されるボディカバー271のレッグシールド部271aを合わせたものを、レッグシールドと称する場合がある。
[エンジンユニット211の構成]
エンジンユニット211は、自然空冷式のエンジンユニットである。また、エンジンユニット211は、OHC(Over Head Camshaft)型の4サイクル単気筒エンジンユニットである。エンジンユニット211は、本発明の空冷式単気筒エンジンに相当する。
エンジンユニット211は、自然空冷式のエンジンユニットである。また、エンジンユニット211は、OHC(Over Head Camshaft)型の4サイクル単気筒エンジンユニットである。エンジンユニット211は、本発明の空冷式単気筒エンジンに相当する。
図13に示すように、エンジンユニット211は、クランクケース220と、クランクケース220の前端部に取り付けられたシリンダボディ221と、シリンダボディ221の前端部に取り付けられたシリンダヘッド222と、シリンダヘッド222の前端部に取り付けられたヘッドカバー223とを備えている。なお、図13は、エンジンユニット211の上面図であって、シリンダボディ221のみ断面を表示している。
クランクケース220には、左右方向に延びるクランク軸230が収容されている。クランク軸230は、クランクケース220に対して回転可能に支持されている。また、クランクケース220には、クランク軸230の右端部に連結された変速機構245が収容されている。なお、図13では、変速機構245の構成部品の一部のみを破線で表示している。変速機構245が有するドライブ軸246の左端部は、クランクケース220から突出している。ドライブ軸246の左端部には、スプロケット247が設けられている。このスプロケット247と後輪203のスプロケット(図示せず)に、動力伝達部材としてチェーン248が巻き掛けられている。また、クランクケース220には、クランク軸230の左端部に取り付けられたフライホイールマグネト249が収容されている。
図示は省略するが、クランクケース220の下部には、潤滑オイルを貯留するオイルパンが形成されている。また、クランクケース220は、オイルパンに貯留された潤滑オイルを吸い上げるオイルポンプ(図示せず)を収容している。潤滑オイルは、このオイルポンプにより圧送されて、エンジンユニット211内を循環する。
シリンダボディ221は、クランクケース220の前端面に接続されている。シリンダボディ221は、フィン部254の構成が、第1実施形態のフィン部54と異なっており、その他の構成は、第1実施形態のシリンダボディ21とほぼ同様である。シリンダ軸線C2(シリンダ孔50aの中心軸)は、前後方向に延びている。詳細には、シリンダ軸線C2は、第1実施形態と同様に、シリンダ部50の前端(シリンダヘッド222側の端部)が後端(クランクケース220側の端部)より上方に位置するように前後方向に対して若干傾いている。図11では、シリンダ軸線C2の前後方向(水平方向)に対する傾斜角度は、約10度であるが、0度以上45度以下の範囲内であればよい。シリンダ部50の内側に配置されるピストン33等の構成は、第1実施形態と同様である。
図14に示すように、フィン部254は、シリンダボディ221の外周部の周方向一部に形成されている。シリンダ軸線C2を中心とした周方向において、フィン部254の形成範囲は、第1実施形態のフィン部54の形成範囲と同じである。つまり、フィン部254は、周方向において、シリンダボディ221の左面(チェーン室形成部53の外表面)を除く部分に形成されている。したがって、左右方向において、シリンダ軸線C2の左方には、フィン部254の一部が配置され、シリンダ軸線C2の右方には、オイルジャケット50bの一部が配置される。また、本実施形態のフィン部254は、シリンダ軸線C2の方向において、シリンダボディ221のほぼ全域に形成されている。走行中、一対のレッグシールド(270bと271a)の間に前方から流入した空気がフィン部254と接触することにより、シリンダボディ221はフィン部254から放熱する。
シリンダヘッド222は、ガスケット25を介して、シリンダボディ221の前端面に接続されている。シリンダヘッド222の後面には、シリンダ孔50aと共に燃焼室26を区画する凹部61が形成されている。本実施形態のシリンダヘッド222の外表面には、ヘッドフィン部は設けられていない。シリンダヘッド222の前部は、ヘッドカバー223によって覆われている。シリンダヘッド222とヘッドカバー223の内部の構成は、第1実施形態とほぼ同様である。
本実施形態のエンジンユニット211では、オイルポンプから圧送された潤滑オイルは変速機構245に供給される。この点以外は、エンジンユニット211における潤滑オイルの流れは、第1実施形態とほぼ同じである。本実施形態では、フィン部254とオイルジャケット50bが、本発明のオイル蒸発抑制部に相当する。
以上説明した本実施形態のエンジンユニット211は、フィン部254と、このフィン部254の周方向範囲よりも小さい周方向範囲に形成され、且つ、周方向において吸気通路62より排気通路63に近い位置に設けられたオイルジャケット50bとを含むオイル蒸発抑制部を備えている。そのため、第1実施形態のエンジン12と同様に、製造コストの増加を抑えつつ、シリンダ孔50aの内壁面に付着した潤滑オイルの蒸発を抑制することができ、潤滑オイルの消費量をより低減できる。その他、第1実施形態と同様の構成については、第1実施形態で述べた効果を奏する。
また、本実施形態のエンジンユニット211では、フィン部254とオイルジャケット50bが、シリンダ軸線C2の左右方向(車両幅方向)の両側で且つ左右一対のレッグシールド(270bと271a)の間に配置されている。仮に、フィン部254がシリンダ軸線C2の左右両側に設けられた場合、フィン部254とレッグシールド(270bと271a)との隙間が小さくなる。これにより、フィン部254とレッグシールド(270bと271a)との隙間を通過する空気量が低減するため、フィン部254によるシリンダ孔50aの内壁面の温度低減効果が低下してしまう。これに対して本実施形態では、シリンダ軸線C2の右方にのみ、フィン部254が設けられ、シリンダ軸線C2の左方には、レッグシールド(270bと271a)との間に隙間を必要としないオイルジャケット50bが設けられている。そのため、フィン部254とレッグシールド(270bと271a)との隙間を大きく確保することができ、フィン部254によるシリンダ孔50aの内壁面の温度低減効果を向上できる。したがって、シリンダ孔50aの内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
なお、本実施形態では、フロントカバー270のレッグシールド部270bとボディカバー271のレッグシールド部271aが、本発明のレッグシールドを構成しているが、本発明の一対のレッグシールドは、車体フレーム204およびエンジンユニット211の左右両側に配置されるものであって、且つ、シート8に着座したライダーの脚の前方に配置されるものであれば、形状は特に限定されない。
<第4実施形態>
次に、本発明の第4実施形態について説明する。但し、上記第1実施形態および第3実施形態と同様の構成を有するものについては、同じ符号を用いて適宜その説明を省略する。本実施形態は、図14に示す自動二輪車301のエンジンに本発明の空冷式単気筒エンジンを適用した一例である。以下の説明で用いる前後方向および左右方向の定義は、第1実施形態と同様である。
次に、本発明の第4実施形態について説明する。但し、上記第1実施形態および第3実施形態と同様の構成を有するものについては、同じ符号を用いて適宜その説明を省略する。本実施形態は、図14に示す自動二輪車301のエンジンに本発明の空冷式単気筒エンジンを適用した一例である。以下の説明で用いる前後方向および左右方向の定義は、第1実施形態と同様である。
[自動二輪車301の全体構成]
図14に示すように本実施形態の自動二輪車301は、スポーツタイプの自動二輪車である。なお、本実施形態のエンジンは、オンロード型のモーターサイクルに適用してもよく、オフロード型のモーターサイクルに適用してもよい。自動二輪車301は、前輪302と、後輪303と、車体フレーム304とを備えている。車体フレーム304は、全体として前後方向に延びた形態である。
図14に示すように本実施形態の自動二輪車301は、スポーツタイプの自動二輪車である。なお、本実施形態のエンジンは、オンロード型のモーターサイクルに適用してもよく、オフロード型のモーターサイクルに適用してもよい。自動二輪車301は、前輪302と、後輪303と、車体フレーム304とを備えている。車体フレーム304は、全体として前後方向に延びた形態である。
車体フレーム304は、その前部にヘッドパイプ304aを有する。ヘッドパイプ304aには、ステアリングシャフト(図示せず)が回転可能に挿入されている。ステアリングシャフトの上端部は、ハンドルユニット306に連結されている。ハンドルユニット306には、一対のフロントフォーク307の上端部が固定されている。フロントフォーク307の下端部は、前輪302を支持している。
車体フレーム304には、一対のスイングアーム316が揺動可能に支持されている。スイングアーム316の後端部は、後輪303を支持している。各スイングアーム316の揺動中心より後方の箇所と車体フレーム304との間にはリヤサスペンション314が取り付けられている。
車体フレーム304の上部には、シート308と燃料タンク317が支持されている。燃料タンク317は、シート308の前方に配置されている。また、車体フレーム304には、車体フレーム304などを覆う車体カバー310が支持されている。
また、車体フレーム304には、エンジンユニット311が搭載されている。エンジンユニット311は、燃料タンク317の下方に配置されている。エンジンユニット311は、その上端部が車体カバー310で覆われているものの大部分が外部に露出している。エンジンユニット311の左右両側には、フットレスト309が配置されている。左右のフットレスト309は、棒状の部材を介して、エンジンユニット311の下面に支持されている。
[エンジンユニット311の構成]
エンジンユニット311は、自然空冷式のエンジンユニットである。また、エンジンユニット311は、OHC(Over Head Camshaft)型の4サイクル単気筒エンジンユニットである。エンジンユニット311は、本発明の空冷式単気筒エンジンに相当する。
エンジンユニット311は、自然空冷式のエンジンユニットである。また、エンジンユニット311は、OHC(Over Head Camshaft)型の4サイクル単気筒エンジンユニットである。エンジンユニット311は、本発明の空冷式単気筒エンジンに相当する。
図15に示すように、エンジンユニット311は、クランクケース320と、クランクケース320の上端部に取り付けられたシリンダボディ321と、シリンダボディ321の上端部に取り付けられたシリンダヘッド322と、シリンダヘッド322の上端部に取り付けられたヘッドカバー323とを備えている。なお、図15は、エンジンユニット311の上面図であって、シリンダボディ321のみ断面を表示している。
クランクケース320の内部の構造は、第3実施形態とほぼ同様である。シリンダボディ321は、クランクケース320の上端面に接続されている。シリンダボディ321は、フィン部354の構成が、第1実施形態のフィン部54と異なっており、その他の構成は、第1実施形態のシリンダボディ21とほぼ同様である。本実施形態では、シリンダ軸線C3(シリンダ孔50aの中心軸)は、上下方向に延びている。詳細には、シリンダ軸線C3は、シリンダ部50の上端(シリンダヘッド322側の端部)が下端(クランクケース320側の端部)より前方に位置するように上下方向に対して若干傾いている。図14では、シリンダ軸線C3の上下方向に対する傾斜角度は、約20度であるが、0度以上45度以下の範囲内であればよい。シリンダ部50の内側に配置されるピストン33等の構成は、第1実施形態と同様である。
本実施形態のエンジンユニット311は、第3実施形態のエンジンユニット211を、左右方向の向きを維持したまま、上下方向および前後方向に傾きを変えた場合に対応している。つまり、本実施形態のエンジンユニット311において第3実施形態と同じ構成のものは、第3実施形態のエンジンユニット211を、左右方向の向きを維持したまま、上下方向および前後方向に傾きを変えた場合と同じ配置位置となっている。したがって、本実施形態では、オイルジャケット50bは、シリンダボディ221の左側部分と前側部分に形成されている。
図16に示すように、フィン部354は、シリンダボディ321の外周部のほぼ全周に形成されている。つまり、本実施形態のフィン部354は、シリンダボディ321の左面(チェーン室形成部53の外表面)にも形成されている。また、第3実施形態と同様に、フィン部354は、シリンダ軸線C3の方向において、シリンダボディ321のほぼ全域に形成されている。走行中、自動二輪車301に対して前後方向に流れる空気がフィン部354と接触することにより、シリンダボディ321はフィン部354から放熱する。
シリンダヘッド322は、ガスケット25を介して、シリンダボディ321の上端面に接続されている。シリンダヘッド322の下面には、シリンダ孔50aと共に燃焼室26を区画する凹部61が形成されている。シリンダヘッド322の外表面には、ヘッドフィン部365が形成されている。ヘッドフィン部365は、シリンダ軸線C3を中心とした周方向においてシリンダヘッド322のほぼ全域に形成されている。また、ヘッドフィン部365は、シリンダ軸線C3の方向において、シリンダヘッド322のほぼ全域に形成されている。
シリンダヘッド322の前部は、ヘッドカバー323によって覆われている。シリンダヘッド322とヘッドカバー323の内部の構成は、第1実施形態とほぼ同様である。本実施形態では、シリンダ軸線C3が上下方向に延びているため、吸気通路62は、シリンダヘッド322の後側部分に形成されており、排気通路63は、シリンダヘッド322の前側部分に形成されている。
本実施形態のエンジンユニット311における潤滑オイルの流れは、第3実施形態と同様である。本実施形態では、フィン部354とオイルジャケット50bが、本発明のオイル蒸発抑制部に相当する。
以上説明した本実施形態のエンジンユニット311は、フィン部354と、このフィン部354の周方向範囲よりも小さい周方向範囲に形成され、且つ、周方向において吸気通路62より排気通路63に近い位置に設けられたオイルジャケット50bとを含むオイル蒸発抑制部を備えている。そのため、第1実施形態のエンジン12と同様に、製造コストの増加を抑えつつ、シリンダ孔50aの内壁面に付着した潤滑オイルの蒸発を抑制することができ、潤滑オイルの消費量をより低減できる。その他、第1実施形態と同様の構成については、第1実施形態で述べた効果を奏する。
以上、本発明の好適な実施の形態について説明したが、本発明は上記実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。また、後述する変更例は適宜組み合わせて実施することができる。なお、本明細書において「好ましい」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」ということを意味するものである。
上記第1~第3実施形態では、シリンダボディ21、121、221のフィン部54、254は、シリンダ軸線を中心とした周方向において、チェーン室55側の部分以外の部分に設けられているが、フィン部54、254の周方向に関する位置は、これに限定されるものではない。例えば、フィン部54、254をシリンダボディの全周に設けてもよい。
また、上記第4実施形態では、シリンダボディ321のフィン部354は、シリンダボディ321の全周に設けられているが、フィン部354の周方向に関する位置は、これに限定されるものではない。例えば、フィン部354をチェーン室55側の部分以外の部分に設けてもよい。
また、上記第4実施形態では、シリンダボディ321のフィン部354は、シリンダボディ321の全周に設けられているが、フィン部354の周方向に関する位置は、これに限定されるものではない。例えば、フィン部354をチェーン室55側の部分以外の部分に設けてもよい。
上記第1、第2および第4実施形態では、シリンダヘッド22、322の外表面にヘッドフィン部65、365が設けられているが、ヘッドフィン部65、365の形成位置(シリンダ軸線を中心とした周方向に関する位置、および、シリンダ軸線方向に関する位置)は、上記第1、第2および第4実施形態のものに限定されない。また、上記第1、第2および第4実施形態の変更例として、ヘッドフィン部を設けなくてもよい。
また、上記第3実施形態では、シリンダヘッド222の外表面にヘッドフィン部が設けられていないが、ヘッドフィン部を設けてもよい。
また、上記第3実施形態では、シリンダヘッド222の外表面にヘッドフィン部が設けられていないが、ヘッドフィン部を設けてもよい。
上記第1~第3実施形態では、シリンダ部50のシリンダヘッド22側の端面に溝部を形成することで、オイルジャケット50bを形成しているが、本発明のオイルジャケットの構成はこれに限定されない。例えば図17に示すシリンダボディ421は、シリンダ孔50aを形成するシリンダ部421aと、シリンダ部421aの外周に配置される本体部421bとによって構成される。本体部421bの内周面のシリンダヘッド222側の端部には、周方向に延びる切欠き450bが形成されている。この切欠き450bとシリンダ部421aの外周面とによって、オイルジャケット421cが形成されている。
上記第1、第3および第4実施形態では、オイルジャケット50bは、シリンダボディ21、221、321のシリンダヘッド22、222、322側の端部に設けられているが、オイルジャケット50bのシリンダ軸線方向に関する位置は、これに限定されるものではない。オイルジャケットは、シリンダ軸線方向において、シリンダヘッドのシリンダヘッド側の端面から、シリンダヘッドと反対側に離れた位置に形成されていてもよい。但し、オイルジャケットは、ピストン33の上死点と下死点の中間位置よりも、シリンダヘッド側に設けることが好ましい。例えば、図17のシリンダボディ421の本体部421bの内周面に切欠き450bを形成する代わりに、本体部421bの内周面に周方向に延びる溝を形成することで、この変更例は実施可能である。
上記第1、第3および第4実施形態では、オイルジャケット50bは、シリンダ軸線方向から見て、時計の約2時の位置から約7時の位置までの範囲に設けられているが、オイルジャケット50bのシリンダ軸線を中心とした周方向に関する位置は、これに限定されるものではない。オイルジャケットは、シリンダ軸線を中心とした周方向において吸気通路62よりも排気通路63に近い位置であれば、どの位置に設けてもよい。
上記第1、第3および第4実施形態では、オイルジャケット50bは、シリンダ軸線を中心とした周方向において、チェーン室55の周方向範囲のほぼ全域に設けられているが、オイルジャケット50b、221cは、当該周方向範囲の一部分のみと重なる周方向範囲に設けてもよく、当該周方向範囲と重ならない周方向範囲に設けてもよい。
上記第1、第3および第4実施形態では、オイルジャケット50bは、シリンダ軸線を中心とした周方向において、排気通路63の周方向範囲の全域に設けられているが、オイルジャケット50bは、排気通路63の周方向範囲の一部分のみと重なる周方向範囲に設けてもよく、排気通路63の周方向範囲と重ならない周方向範囲に設けてもよい。例えば、オイルジャケットは、シリンダ軸線を中心とした周方向において、吸気通路62と排気通路63の中間の位置に設けてもよい。
第4実施形態に上記の変更例を適用した場合、以下の効果を奏する。
第4実施形態では、シリンダ軸線が上下方向に延びている。そのため、走行時の風向きはシリンダ軸線に交差する方向となり、シリンダボディ321の外表面のうち前面(排気通路63側の面)が最も風を受ける。したがって、第4実施形態の変更例として、オイルジャケット50bが、シリンダ軸線を中心とした周方向において排気通路63の周方向範囲と重ならない周方向範囲に設けられた場合、フィン部354によって効率的にシリンダ孔50aの内壁面の温度を低下させることができる。
第4実施形態では、シリンダ軸線が上下方向に延びている。そのため、走行時の風向きはシリンダ軸線に交差する方向となり、シリンダボディ321の外表面のうち前面(排気通路63側の面)が最も風を受ける。したがって、第4実施形態の変更例として、オイルジャケット50bが、シリンダ軸線を中心とした周方向において排気通路63の周方向範囲と重ならない周方向範囲に設けられた場合、フィン部354によって効率的にシリンダ孔50aの内壁面の温度を低下させることができる。
上記第1、第3および第4実施形態では、シリンダボディ21、221、321のオイルジャケット50bは、シリンダ軸線方向に連続した1つの空間を形成しているが、オイルジャケットは、シリンダ軸線方向に並んで形成された複数の空間を形成していてもよい。例えば、図17のシリンダボディ421の本体部421bの内周面に、切欠き450bとシリンダ軸線方向に並ぶように、周方向に延びる溝部を形成することで、この変更例は実施可能である。
上記第1、第3および第4実施形態では、シリンダボディ21、221、321のオイルジャケット50bは、シリンダ軸線を中心とした周方向に連続した1つの空間を形成しているが、オイルジャケットは、シリンダ軸線を中心とした周方向に並んで形成された複数の空間を形成していてもよい。
上記第1、第3および第4実施形態では、シリンダボディ21、221、321にのみオイルジャケット50bが設けられているが、例えば図18および図19に示すように、シリンダヘッド(522)にも、潤滑オイルが充満状態で流れるオイルジャケット(以下、ヘッドオイルジャケットという)(566a)を設けてもよい。ヘッドオイルジャケットは、シリンダ軸線を中心とした周方向において、吸気通路62よりも排気通路63に近い位置であれば、どの位置に設けてもよい。ヘッドオイルジャケットは、例えば図18および図19に示すように、シリンダボディ(21)のオイルジャケット(50b)と同じ周方向範囲に設けてもよい。また、ヘッドオイルジャケットは、凹部61とシリンダ軸線方向に重なる領域に設けてもよい。
シリンダヘッドにヘッドオイルジャケットを設ける場合、シリンダヘッドの外表面にヘッドフィン部を設けることが好ましい。これにより熱源であるシリンダヘッドの温度をより低下させることができる。上述したように、凹部61には潤滑オイルはほとんど付着しないため、シリンダヘッドでは潤滑オイルの蒸発はほとんど生じない。しかし、シリンダヘッドは、シリンダボディよりも高温となるため、シリンダヘッドの温度を低下させることにより、シリンダヘッドからシリンダボディに伝わる熱量を低減することができる。そのため、シリンダ孔50aの内壁面の温度をより低下させることができ、潤滑オイルの蒸発を抑制できる。したがって、潤滑オイルの消費量をより低減できる。
また、シリンダヘッドにヘッドオイルジャケットを設けて、且つ、ピストン33の上死点と下死点の中間位置よりシリンダヘッド側においてシリンダボディにもオイルジャケットを設けた場合には、オイルジャケットとヘッドオイルジャケットは、シリンダ軸方向に近い位置に設けられることになる。そのため、オイルジャケットとヘッドオイルジャケットが離れた位置に設けられる場合に比べて、オイルジャケットとヘッドオイルジャケットに潤滑オイルを供給する構成を簡易化でき、エンジンを小型化できる。
図18のシリンダヘッド522のヘッドオイルジャケット566aは、シリンダボディ21側の面に形成された溝部で構成されている。ヘッドオイルジャケット566aの周方向両端には、径方向外側に延びる2つの連通部566b、566cが形成されている。ヘッドオイルジャケット566aおよび2つの連通部566b、566cは、ガスケット25の孔を介して、シリンダボディ21のオイルジャケット50bおよび2つの連通部50c、50dと、それぞれシリンダ軸線方向に連通している。
図19では、ガスケット625が図18のガスケット25と異なっており、その他の構成は、図18と同様である。ガスケット625は、オイルジャケット50bと対向する位置に孔が形成されていない。そのため、オイルジャケット50bとヘッドオイルジャケット566aは、ガスケット625により連通が遮断されている。
なお、図19では、ガスケット625は、2つの連通部50c、50dと対応する位置にも孔を有していないが、ガスケット625は、2つの連通部50c、50dの一方または両方と対応する位置に孔を有していてもよい。また、ガスケット625に、オイルジャケット50bの周方向範囲よりも小さい周方向範囲の孔を形成して、オイルジャケット50bの周方向一部とヘッドオイルジャケット566aの周方向一部を、シリンダ軸線方向に連通させてもよい。
図18および図19のように、オイルジャケット(50b)とヘッドオイルジャケット(566a)の周方向範囲が同じ場合、シリンダ孔50aの内壁面のうち特に高温になりやすい周方向領域に、オイルジャケット(50b)とヘッドオイルジャケット(566a)を設けることで、シリンダ孔50aの内壁面の温度をより低下させることができる。したがって、シリンダ孔50aの内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
また、オイルジャケット(50b)とヘッドオイルジャケット(566a)の周方向範囲が同じであるため、オイルジャケット(50b)に潤滑オイルを供給する構成が、ヘッドオイルジャケット(566a)に潤滑オイルを供給する構成を兼ねることができるため、エンジンをより小型化できる。
また、オイルジャケット(50b)とヘッドオイルジャケット(566a)の周方向範囲が同じであるため、オイルジャケット(50b)に潤滑オイルを供給する構成が、ヘッドオイルジャケット(566a)に潤滑オイルを供給する構成を兼ねることができるため、エンジンをより小型化できる。
オイル流部156のシリンダ軸線方向に関する位置は、図7に示す位置に限定されるものではない。但し、オイル流部156は、ピストン33の上死点と下死点の中間位置よりも、シリンダヘッド22側に設けることが好ましい。
例えば、図20に示すように、シリンダボディ721のシリンダヘッド22側の端部に、オイル流部756を設けてもよい。シリンダボディ721のチェーン室形成部753のシリンダヘッド22側の端面には、オイル通路157とチェーン室55とを連通させる溝部758aが形成されている。この溝部758aが、シリンダヘッド22の側の端面で塞がれることで、オイル噴射部758が形成されている。また、オイル噴射部758から噴射された潤滑オイルは、シリンダ部50の外周面のシリンダヘッド22側の端部に衝突する。この衝突した部分がオイル衝突領域759となる。この構成によると、上記第2実施形態よりもオイル噴射部を形成しやすい。また、オイル衝突領域759がシリンダヘッド22に近いため、熱源であるシリンダヘッド22の温度を上記第2実施形態よりも低下させることができる。
例えば、図20に示すように、シリンダボディ721のシリンダヘッド22側の端部に、オイル流部756を設けてもよい。シリンダボディ721のチェーン室形成部753のシリンダヘッド22側の端面には、オイル通路157とチェーン室55とを連通させる溝部758aが形成されている。この溝部758aが、シリンダヘッド22の側の端面で塞がれることで、オイル噴射部758が形成されている。また、オイル噴射部758から噴射された潤滑オイルは、シリンダ部50の外周面のシリンダヘッド22側の端部に衝突する。この衝突した部分がオイル衝突領域759となる。この構成によると、上記第2実施形態よりもオイル噴射部を形成しやすい。また、オイル衝突領域759がシリンダヘッド22に近いため、熱源であるシリンダヘッド22の温度を上記第2実施形態よりも低下させることができる。
上記第2実施形態では、オイル流部156のオイル衝突領域159は、シリンダ軸線C1を通り左右方向と平行に延びる平面と、シリンダ孔50aとの交点から下方に約25度ずれた位置となっているが、オイル流部のオイル衝突領域は、この位置に限定されるものではない。オイル流部156のシリンダ軸線を中心とした周方向に関する位置は、吸気通路62よりも排気通路63に近い位置であれば、どの位置であってもよい。オイル噴射孔158の延在方向を変更してもよく、オイル噴射孔158の位置を変更してもよい。
上記第2実施形態では、オイル流部156を構成するオイル噴射孔(オイル噴射部)158およびオイル衝突領域159の数は、それぞれ1つであるが、例えば図21に示すように、オイル流部(856)を構成するオイル噴射部(858A、858B)およびオイル衝突領域(859A、859B)の数が、それぞれ2つ以上であってもよい。
図21では、シリンダボディ821のチェーン室形成部853に形成された2つのオイル噴射孔858A、858Bは、シリンダ軸線C8の方向においてほぼ同じ位置に配置されている。また、図21では、2つのオイル衝突領域859A、859Bも、シリンダ軸線C8の方向においてほぼ同じ位置となっている。この変更例において、オイル流部856の周方向範囲がフィン部54の周方向範囲よりも小さいとは、オイル衝突領域859Aの周方向範囲と、オイル衝突領域859Bの周方向範囲を合わせた周方向範囲が、フィン部54の周方向範囲よりも小さいことをいう。
オイル流部を構成するオイル噴射部およびオイル衝突領域の数がそれぞれ2つ以上の場合、複数のオイル噴射部は、シリンダ軸線方向において異なる位置に形成されてもよい。また、複数のオイル衝突領域も、シリンダ軸線方向において異なる位置に形成されてもよい。
図21では、シリンダボディ821のチェーン室形成部853に形成された2つのオイル噴射孔858A、858Bは、シリンダ軸線C8の方向においてほぼ同じ位置に配置されている。また、図21では、2つのオイル衝突領域859A、859Bも、シリンダ軸線C8の方向においてほぼ同じ位置となっている。この変更例において、オイル流部856の周方向範囲がフィン部54の周方向範囲よりも小さいとは、オイル衝突領域859Aの周方向範囲と、オイル衝突領域859Bの周方向範囲を合わせた周方向範囲が、フィン部54の周方向範囲よりも小さいことをいう。
オイル流部を構成するオイル噴射部およびオイル衝突領域の数がそれぞれ2つ以上の場合、複数のオイル噴射部は、シリンダ軸線方向において異なる位置に形成されてもよい。また、複数のオイル衝突領域も、シリンダ軸線方向において異なる位置に形成されてもよい。
上記第2実施形態では、シリンダボディ121にのみオイル流部156が設けられているが、例えば図22に示すように、シリンダヘッド(922)にも、潤滑オイルを噴射させて衝突させる構成を有するオイル流部(以下、ヘッドオイル流部という)(967)を設けてもよい。図22では、シリンダヘッド922とガスケット925に、オイル通路157と連通するオイル通路957を形成すると共に、シリンダヘッド922に、オイル通路957とチェーン室60を連通させるオイル噴射孔968を形成している。オイル噴射孔968から噴射された潤滑オイルは、シリンダヘッド922のオイル衝突領域969に衝突する。
ヘッドオイル流部は、シリンダ軸線を中心とした周方向において、吸気通路62よりも排気通路63に近い位置であれば、どの位置に設けてもよい。
シリンダヘッドにヘッドオイル流部を設ける場合、ヘッドオイル流部は、シリンダボディ121のオイル流部156と同じ周方向範囲に設けることが好ましい。この構成によると、シリンダ孔50aの内壁面のうち特に高温になりやすい周方向領域に、オイル流部156とヘッドオイル流部を設けることで、シリンダ孔50aの内壁面の温度をより低下させることができる。したがって、潤滑オイルの消費量をより低減できる。また、オイル流部156とヘッドオイル流部の周方向範囲が同じであるため、オイル流部156とヘッドオイル流部に潤滑オイルを供給する構成を簡易化できるため、エンジンをより小型化できる。
シリンダヘッドにヘッドオイル流部を設ける場合、シリンダヘッドの外表面にヘッドフィン部65を設けることが好ましい。シリンダヘッドにヘッドフィン部65とヘッドオイル流部を設けることにより、熱源であるシリンダヘッドの温度をより低下させて、シリンダ孔50aの内壁面の温度をより低下させることができる。したがって、潤滑オイルの消費量をより低減できる。
また、シリンダヘッドにヘッドオイル流部を設けて、且つ、ピストン33の上死点と下死点の中間位置よりシリンダヘッド側においてシリンダボディにオイル流部156を設けた場合には、オイル流部156とヘッドオイル流部は、シリンダ軸方向に近い位置に設けられることになる。そのため、オイル流部156とヘッドオイル流部が離れた位置に設けられる場合に比べて、オイル流部156とヘッドオイル流部に潤滑オイルを供給する構成を簡易化でき、エンジンを小型化できる。
上記第3および第4実施形態の変更例として、オイルジャケット50bを設ける代わりに、第2実施形態と同様のオイル流部156を設けてもよい。
第4実施形態に上記の変更例を適用した場合、以下の効果を奏する。
第4実施形態では、シリンダ軸線が上下方向に延びている。そのため、第4実施形態のエンジンユニット311に第2実施形態と同様のオイル流部156を適用した場合、オイル噴射部から噴射された潤滑オイルは、オイル衝突領域に衝突した後、シリンダ部50の外周面に沿ってシリンダ軸線方向に流れる。そのため、シリンダ軸線方向においてシリンダ孔50aの内壁面の広い領域の温度を低下させることができる。
また、第4実施形態では、走行時の風向きはシリンダ軸線に交差する方向となり、シリンダボディ321の外表面のうち前面(排気通路63側の面)が最も風を受ける。したがって、第4実施形態のエンジンユニット311に第2実施形態と同様のオイル流部156を設けた場合、オイルジャケット50bにより、フィン部354とシリンダ孔50aの内壁面との間の熱伝達が遮断されることがないため、フィン部354によって効率的にシリンダ孔50aの内壁面の温度を低下させることができる。
第4実施形態では、シリンダ軸線が上下方向に延びている。そのため、第4実施形態のエンジンユニット311に第2実施形態と同様のオイル流部156を適用した場合、オイル噴射部から噴射された潤滑オイルは、オイル衝突領域に衝突した後、シリンダ部50の外周面に沿ってシリンダ軸線方向に流れる。そのため、シリンダ軸線方向においてシリンダ孔50aの内壁面の広い領域の温度を低下させることができる。
また、第4実施形態では、走行時の風向きはシリンダ軸線に交差する方向となり、シリンダボディ321の外表面のうち前面(排気通路63側の面)が最も風を受ける。したがって、第4実施形態のエンジンユニット311に第2実施形態と同様のオイル流部156を設けた場合、オイルジャケット50bにより、フィン部354とシリンダ孔50aの内壁面との間の熱伝達が遮断されることがないため、フィン部354によって効率的にシリンダ孔50aの内壁面の温度を低下させることができる。
潤滑オイルの潤滑経路には、潤滑オイルを冷却するオイルクーラーが配置されていてもよい。走行風がオイルクーラーに当たることで、オイルクーラーを通過する潤滑オイルが冷却される。例えば図24に示すように、オイルクーラー370が、エンジンユニット311より前方且つ上方に配置されて、図示しないパイプを介してエンジンユニット311に接続されていてもよい。また、オイルクーラーは、空冷式単気筒エンジンに直接取り付けられていてもよい。オイルクーラーを設けることで、シリンダ孔50a内に供給される潤滑オイルの温度を低下させることができる。そのため、シリンダ孔50aの内壁面における潤滑オイルの蒸発をより抑制でき、潤滑オイルの消費量をより低減できる。
上記第1~第4実施形態では、シリンダヘッドに形成された凹部61とシリンダ孔50aの内面とピストン33によって燃焼室26は形成されているが、シリンダヘッドの燃焼室26を形成する部分は凹状でなくてもよい。
上記第1~第4実施形態では、シリンダボディ21、121、221、321、シリンダヘッド22、222、322、およびヘッドカバー23、223、323は、別部材であるが、これらのいずれか2つまたは3つが一体成形されていてもよい。
上記第1~第4実施形態では、カム軸41に設けられたスプロケット42と、クランク軸30に設けられたスプロケット43にタイミングチェーン44が巻き掛けられているが、クランク軸30の回転をカム軸41に伝達するための構成は上記に限定されない。カム軸41およびクランク軸30に設けられる回転体としてスプロケット42、43の代わりにプーリを設けて、動力伝達部材であるタイミングチェーン44の代わりに、タイミングベルトを用いてもよい。
上記第1~第4実施形態では、吸気通路62および排気通路63は、シリンダ軸線方向から見て上下方向または前後方向とほぼ平行に延びている(図4等参照)が、吸気通路62および排気通路63の形状は、これに限定されない。
吸気通路62の凹部61に形成される開口端の位置が上記第1~第4実施形態とほぼ同じであって、且つ、吸気通路62の反対側の開口がシリンダボディの下面(第1~第3実施形態の変更例)または前面(第4実施形態の変更例)に形成されていれば、吸気通路62は、シリンダ軸線方向から見て湾曲していてもよく、シリンダ軸線方向から見て上下方向に対して傾斜するように直線状に延びていてもよい。
同様に、排気通路63の凹部61に形成される開口端の位置が上記第1~第4実施形態とほぼ同じであって、且つ、排気通路63の反対側の開口がシリンダボディの上面(第1~第3実施形態の変更例)または後面(第4実施形態の変更例)に形成されていれば、排気通路63は、シリンダ軸線方向から見て湾曲していてもよく、シリンダ軸線方向から見て上下方向に対して傾斜するように直線状に延びていてもよい。
この変更例の場合、オイルジャケット50bは、シリンダ軸線を中心とした周方向において、少なくとも、排気通路63のうちシリンダ孔50aと重なる部分の周方向範囲の全域に形成されていることが好ましい。
吸気通路62の凹部61に形成される開口端の位置が上記第1~第4実施形態とほぼ同じであって、且つ、吸気通路62の反対側の開口がシリンダボディの下面(第1~第3実施形態の変更例)または前面(第4実施形態の変更例)に形成されていれば、吸気通路62は、シリンダ軸線方向から見て湾曲していてもよく、シリンダ軸線方向から見て上下方向に対して傾斜するように直線状に延びていてもよい。
同様に、排気通路63の凹部61に形成される開口端の位置が上記第1~第4実施形態とほぼ同じであって、且つ、排気通路63の反対側の開口がシリンダボディの上面(第1~第3実施形態の変更例)または後面(第4実施形態の変更例)に形成されていれば、排気通路63は、シリンダ軸線方向から見て湾曲していてもよく、シリンダ軸線方向から見て上下方向に対して傾斜するように直線状に延びていてもよい。
この変更例の場合、オイルジャケット50bは、シリンダ軸線を中心とした周方向において、少なくとも、排気通路63のうちシリンダ孔50aと重なる部分の周方向範囲の全域に形成されていることが好ましい。
上記第1~第4実施形態では、吸気バルブ38は1つだけ設けられているが、吸気通路62が二股形状に形成され、2つの吸気バルブ38が左右方向に並んで設けられていてもよい。排気バルブ39についても同様に2つ設けられていてもよい。
上記第1、第2および第3実施形態では、シリンダ軸線方向は、前後方向に延びているが、上下方向に延びていてもよい。
また、上記第4実施形態では、シリンダ軸線方向は、上下方向に延びているが、前後方向に延びていてもよい。
また、上記第4実施形態では、シリンダ軸線方向は、上下方向に延びているが、前後方向に延びていてもよい。
上記第1~第4実施形態のエンジンまたはエンジンユニットは、空冷式のOHC型4サイクル単気筒エンジンであるが、これ以外の空冷式単気筒エンジンに本発明を適用してもよい。なお、本発明において空冷式エンジンとは、冷却方式として少なくとも空冷を有するエンジンという意味である。
本発明の鞍乗型車両は、上記第1~第4実施形態の自動二輪車に限定されるものでなない。なお、鞍乗型車両とは、乗員が鞍にまたがるような状態で乗車する車両全般を指している。本発明の鞍乗型車両には、自動二輪車、三輪車、四輪バギー(ATV:AllTerrainVehicle(全地形型車両))、水上バイク、スノーモービル等が含まれる。
1、201、301 自動二輪車(鞍乗型車両)
4、204、304 車体フレーム
10、210、310 車体カバー
11 エンジンユニット
12、112 エンジン(空冷式単気筒エンジン)
21、121、221、321、421、721、821 シリンダボディ
22、222、322、522、922 シリンダヘッド
24 シュラウド
24a 空気流入口
26 燃焼室
31 ファン
33 ピストン
50、421a シリンダ部
50a シリンダ孔
61 凹部
62 吸気通路
63 排気通路
54、254、354 フィン部(オイル蒸発抑制部)
50b、421c オイルジャケット(オイル流部、オイル蒸発抑制部)
55 チェーン室(中空室)
65、365 ヘッドフィン部(オイル蒸発抑制部)
156、756、856 オイル流部(オイル蒸発抑制部)
158、758、858A、858B オイル噴射孔(オイル噴射部)
159、759 オイル衝突領域
211、311 エンジンユニット(空冷式単気筒エンジン)
270 フロントカバー
270b レッグシールド部(レッグシールド)
271 ボディカバー
271a レッグシールド部(レッグシールド)
566a ヘッドオイルジャケット(ヘッドオイル流部、オイル蒸発抑制部)
967 ヘッドオイル流部(オイル蒸発抑制部)
968 オイル噴射部
969 オイル衝突領域
4、204、304 車体フレーム
10、210、310 車体カバー
11 エンジンユニット
12、112 エンジン(空冷式単気筒エンジン)
21、121、221、321、421、721、821 シリンダボディ
22、222、322、522、922 シリンダヘッド
24 シュラウド
24a 空気流入口
26 燃焼室
31 ファン
33 ピストン
50、421a シリンダ部
50a シリンダ孔
61 凹部
62 吸気通路
63 排気通路
54、254、354 フィン部(オイル蒸発抑制部)
50b、421c オイルジャケット(オイル流部、オイル蒸発抑制部)
55 チェーン室(中空室)
65、365 ヘッドフィン部(オイル蒸発抑制部)
156、756、856 オイル流部(オイル蒸発抑制部)
158、758、858A、858B オイル噴射孔(オイル噴射部)
159、759 オイル衝突領域
211、311 エンジンユニット(空冷式単気筒エンジン)
270 フロントカバー
270b レッグシールド部(レッグシールド)
271 ボディカバー
271a レッグシールド部(レッグシールド)
566a ヘッドオイルジャケット(ヘッドオイル流部、オイル蒸発抑制部)
967 ヘッドオイル流部(オイル蒸発抑制部)
968 オイル噴射部
969 オイル衝突領域
Claims (11)
- ピストンが収容されるシリンダ孔を形成するシリンダ部を備えたシリンダボディと、
前記シリンダ孔と共に燃焼室を区画し、前記燃焼室に連通する吸気通路及び排気通路が形成されたシリンダヘッドと、を備える空冷式単気筒エンジンであって、
前記シリンダボディの外表面に設けられた複数のフィンを有するフィン部、及び、前記シリンダボディにおける前記フィン部のシリンダ軸線を中心とした周方向範囲よりも小さい周方向範囲に形成され、且つ、シリンダ軸線を中心とした周方向において前記吸気通路より前記排気通路に近い位置に設けられ、前記シリンダ孔の外側に潤滑オイルを流すオイル流部を含み、前記シリンダ孔の内壁面における潤滑オイルの蒸発を抑制するオイル蒸発抑制部を備えることを特徴とする空冷式単気筒エンジン。 - 前記オイル蒸発抑制部は、前記ピストンの上死点と下死点の中間位置よりも前記シリンダヘッド側に設けられていることを特徴とする請求項1に記載の空冷式単気筒エンジン。
- 前記オイル流部の周方向範囲が、前記排気通路の周方向範囲の少なくとも一部と重なっていることを特徴とする請求項1又は2に記載の空冷式単気筒エンジン。
- 前記オイル蒸発抑制部は、
前記シリンダヘッドの外表面に設けられた複数のフィンを有するヘッドフィン部、及び、前記シリンダヘッドに形成され、且つ、シリンダ軸線を中心とした周方向において前記吸気通路より前記排気通路に近い位置に設けられ、前記燃焼室の外側に潤滑オイルを流すヘッドオイル流部を含むことを特徴とする請求項2に記載の空冷式単気筒エンジン。 - 前記オイル流部と前記ヘッドオイル流部は、周方向範囲が同じであって、シリンダ軸線方向に連通していることを特徴とする請求項4に記載の空冷式単気筒エンジン。
- 前記オイル流部は、
前記シリンダ孔の外側に形成され、内部を潤滑オイルが充満状態で流れるオイルジャケットからなることを特徴とする請求項1~5の何れかに記載の空冷式単気筒エンジン。 - 前記シリンダボディは、前記シリンダ部の外側に形成された中空室を有しており、
前記オイル流部は、
前記中空室の前記シリンダ孔側の内壁面のうち、少なくとも周方向一部分で且つ少なくともシリンダ軸線方向の一部分で構成されたオイル衝突領域と、
前記オイル衝突領域に向かって潤滑オイルを噴射して前記オイル接触面の全面に潤滑オイルを衝突させるオイル噴射部と、を含むことを特徴とする請求項1~5の何れかに記載の空冷式単気筒エンジン。 - 前記シリンダヘッドの少なくとも一部を覆い、空気流入口を有するシュラウドと、
前記シュラウド内に前記空気流入口から空気を導入させるファンと、を備え、
前記オイル流部が、シリンダ軸線に対して前記空気流入口と反対側に設けられていることを特徴とする請求項1~7の何れかに記載の空冷式単気筒エンジン。 - 前記オイル蒸発抑制部は、SAE粘度分類による低温粘度グレードが20Wよりも低い前記潤滑オイルが、前記シリンダ孔の内壁面において蒸発することを抑制することを特徴とする請求項1~8の何れかに記載の空冷式単気筒エンジン。
- 車体フレームと、
前記車体フレームに搭載されるエンジンと、
前記車体フレームの車両幅方向両側に配置される一対のレッグシールドと、を備える鞍乗型車両であって、
前記エンジンが、請求項1~9の何れかに記載の空冷式単気筒エンジンであって、
前記フィン部と前記オイル流部が、シリンダ軸線の車両幅方向両側で且つ前記一対のレッグシールドの間に配置されることを特徴とする鞍乗型車両。 - 車体フレームと、
前記車体フレームに搭載されるエンジンと、を備える鞍乗型車両であって、
前記エンジンが、請求項1~9の何れかに記載の空冷式単気筒エンジンであって、
前記シリンダ軸線が、車両上下方向に延びていることを特徴とする鞍乗型車両。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016531211A JP6362692B2 (ja) | 2014-06-30 | 2015-06-04 | 空冷式単気筒エンジン及び鞍乗型車両 |
TW104121191A TWI585293B (zh) | 2014-06-30 | 2015-06-30 | Air-cooled single-cylinder engine and cross-type vehicles |
TW104121190A TWI608164B (zh) | 2014-06-30 | 2015-06-30 | Air-cooled single-cylinder engine and straddle-type vehicle |
TW104121189A TWI624587B (zh) | 2014-06-30 | 2015-06-30 | Air-cooled single-cylinder engine and straddle-type vehicle |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-134458 | 2014-06-30 | ||
JP2014-134459 | 2014-06-30 | ||
JP2014134460 | 2014-06-30 | ||
JP2014134458 | 2014-06-30 | ||
JP2014-134460 | 2014-06-30 | ||
JP2014134459 | 2014-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016002427A1 true WO2016002427A1 (ja) | 2016-01-07 |
Family
ID=55018978
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066256 WO2016002428A1 (ja) | 2014-06-30 | 2015-06-04 | 空冷式単気筒エンジン及び鞍乗型車両 |
PCT/JP2015/066255 WO2016002427A1 (ja) | 2014-06-30 | 2015-06-04 | 空冷式単気筒エンジン及び鞍乗型車両 |
PCT/JP2015/066254 WO2016002426A1 (ja) | 2014-06-30 | 2015-06-04 | 空冷式単気筒エンジン及び鞍乗型車両 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066256 WO2016002428A1 (ja) | 2014-06-30 | 2015-06-04 | 空冷式単気筒エンジン及び鞍乗型車両 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066254 WO2016002426A1 (ja) | 2014-06-30 | 2015-06-04 | 空冷式単気筒エンジン及び鞍乗型車両 |
Country Status (3)
Country | Link |
---|---|
JP (3) | JP6286041B2 (ja) |
TW (3) | TWI585293B (ja) |
WO (3) | WO2016002428A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6572805B2 (ja) * | 2016-03-10 | 2019-09-11 | スズキ株式会社 | エンジンのオイル通路構造 |
WO2020141570A1 (ja) * | 2019-01-04 | 2020-07-09 | ヤマハ発動機株式会社 | Mt型シフトペダル付エンジンユニット、及び同エンジンユニットを備えた鞍乗型車両 |
WO2020141571A1 (ja) * | 2019-01-04 | 2020-07-09 | ヤマハ発動機株式会社 | 4ストロークエンジンユニット、及び同エンジンユニットを備えた鞍乗型車両 |
JP7265898B2 (ja) * | 2019-03-19 | 2023-04-27 | 本田技研工業株式会社 | 内燃機関 |
JP7453012B2 (ja) * | 2020-02-14 | 2024-03-19 | 本田技研工業株式会社 | 空冷式内燃機関 |
JP7262432B2 (ja) | 2020-11-05 | 2023-04-21 | 株式会社清水合金製作所 | ガスケット |
CN114508400B (zh) * | 2022-02-14 | 2024-01-16 | 东风汽车集团股份有限公司 | 一种发动机润滑冷却系统、发动机以及汽车 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4844487Y1 (ja) * | 1970-06-01 | 1973-12-21 | ||
JPS57182580A (en) * | 1981-04-30 | 1982-11-10 | Yamaha Motor Co Ltd | Mount structure of engine in chain driving car |
JPH03260359A (ja) * | 1990-03-09 | 1991-11-20 | Mazda Motor Corp | 多気筒エンジンのシリンダブロック構造 |
JPH06306384A (ja) * | 1993-04-22 | 1994-11-01 | Kyoseki Seihin Gijutsu Kenkyusho:Kk | 省燃費型潤滑油 |
JPH08260960A (ja) * | 1995-03-22 | 1996-10-08 | Suzuki Motor Corp | エンジンシリンダの冷却装置 |
JPH1054296A (ja) * | 1996-08-12 | 1998-02-24 | Suzuki Motor Corp | 4サイクルエンジンの冷却装置 |
JP2008274128A (ja) * | 2007-04-27 | 2008-11-13 | Tonengeneral Sekiyu Kk | 内燃機関用潤滑油組成物 |
JP2013133817A (ja) * | 2011-12-27 | 2013-07-08 | Mitsubishi Heavy Ind Ltd | ディーゼルエンジンのシリンダライナの温度制御装置及び方法 |
JP2014114790A (ja) * | 2012-12-12 | 2014-06-26 | Yamaha Motor Co Ltd | 強制空冷式内燃機関およびそれを備えた鞍乗型車両 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07332082A (ja) * | 1994-06-07 | 1995-12-19 | Kubota Corp | 油冷却エンジンのシリンダヘッド冷却装置 |
JP2626972B2 (ja) * | 1995-09-26 | 1997-07-02 | 株式会社クボタ | 頭上弁式強制空冷エンジンの部分液冷装置 |
JP5402247B2 (ja) * | 2009-05-27 | 2014-01-29 | トヨタ自動車株式会社 | シリンダブロック |
JP3182358U (ja) * | 2013-01-08 | 2013-03-21 | ヤマハ発動機株式会社 | 2バルブエンジン |
-
2015
- 2015-06-04 WO PCT/JP2015/066256 patent/WO2016002428A1/ja active Application Filing
- 2015-06-04 WO PCT/JP2015/066255 patent/WO2016002427A1/ja active Application Filing
- 2015-06-04 JP JP2016531210A patent/JP6286041B2/ja active Active
- 2015-06-04 JP JP2016531212A patent/JP6362693B2/ja active Active
- 2015-06-04 WO PCT/JP2015/066254 patent/WO2016002426A1/ja active Application Filing
- 2015-06-04 JP JP2016531211A patent/JP6362692B2/ja active Active
- 2015-06-30 TW TW104121191A patent/TWI585293B/zh active
- 2015-06-30 TW TW104121189A patent/TWI624587B/zh active
- 2015-06-30 TW TW104121190A patent/TWI608164B/zh active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4844487Y1 (ja) * | 1970-06-01 | 1973-12-21 | ||
JPS57182580A (en) * | 1981-04-30 | 1982-11-10 | Yamaha Motor Co Ltd | Mount structure of engine in chain driving car |
JPH03260359A (ja) * | 1990-03-09 | 1991-11-20 | Mazda Motor Corp | 多気筒エンジンのシリンダブロック構造 |
JPH06306384A (ja) * | 1993-04-22 | 1994-11-01 | Kyoseki Seihin Gijutsu Kenkyusho:Kk | 省燃費型潤滑油 |
JPH08260960A (ja) * | 1995-03-22 | 1996-10-08 | Suzuki Motor Corp | エンジンシリンダの冷却装置 |
JPH1054296A (ja) * | 1996-08-12 | 1998-02-24 | Suzuki Motor Corp | 4サイクルエンジンの冷却装置 |
JP2008274128A (ja) * | 2007-04-27 | 2008-11-13 | Tonengeneral Sekiyu Kk | 内燃機関用潤滑油組成物 |
JP2013133817A (ja) * | 2011-12-27 | 2013-07-08 | Mitsubishi Heavy Ind Ltd | ディーゼルエンジンのシリンダライナの温度制御装置及び方法 |
JP2014114790A (ja) * | 2012-12-12 | 2014-06-26 | Yamaha Motor Co Ltd | 強制空冷式内燃機関およびそれを備えた鞍乗型車両 |
Also Published As
Publication number | Publication date |
---|---|
TWI608164B (zh) | 2017-12-11 |
WO2016002428A1 (ja) | 2016-01-07 |
WO2016002426A1 (ja) | 2016-01-07 |
JP6286041B2 (ja) | 2018-02-28 |
JPWO2016002427A1 (ja) | 2017-06-01 |
JP6362693B2 (ja) | 2018-07-25 |
JPWO2016002428A1 (ja) | 2017-06-15 |
TWI585293B (zh) | 2017-06-01 |
TWI624587B (zh) | 2018-05-21 |
TW201604391A (zh) | 2016-02-01 |
TW201608116A (zh) | 2016-03-01 |
JPWO2016002426A1 (ja) | 2017-05-25 |
JP6362692B2 (ja) | 2018-07-25 |
TW201608115A (zh) | 2016-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6362692B2 (ja) | 空冷式単気筒エンジン及び鞍乗型車両 | |
US7827955B2 (en) | Engine for leisure vehicle | |
PH12012000203A1 (en) | Internal combustion engine with straddle-type vehicle equipped with the engine | |
US20130087116A1 (en) | Oil passage structure of engine | |
CN102889127B (zh) | 内燃机和具有该内燃机的骑乘式车辆 | |
JP2016176443A (ja) | 内燃機関の冷却水通路構造 | |
CN102889128A (zh) | 内燃机和具有该内燃机的骑乘式车辆 | |
US20220041245A1 (en) | Straddled vehicle | |
US9200549B2 (en) | Internal combustion engine and motorcycle equipped with the engine | |
US8960684B2 (en) | Internal combustion engine having positioning pins disposed within fluid communication ports | |
JP2008031972A (ja) | 内燃機関 | |
JP6763273B2 (ja) | 自動二輪車の冷却装置 | |
JP6359177B2 (ja) | 内燃機関のシリンダヘッドのオイル通路構造 | |
JP5091754B2 (ja) | シリンダブロック及びシリンダブロックを備えるエンジン | |
JP7428594B2 (ja) | エンジンユニット | |
JP4954613B2 (ja) | スクータ型車両の吸気装置 | |
JP4535487B2 (ja) | 鞍乗型車両 | |
JP4562780B2 (ja) | ユニットスイング式エンジン | |
JP2004044608A (ja) | 4サイクルエンジンの潤滑装置 | |
JP2018188960A (ja) | 鞍乗型車両用のエンジン | |
JP2010001025A (ja) | 鞍乗型車両 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15815739 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016531211 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15815739 Country of ref document: EP Kind code of ref document: A1 |