WO2016002280A1 - 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置 - Google Patents

冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置 Download PDF

Info

Publication number
WO2016002280A1
WO2016002280A1 PCT/JP2015/059983 JP2015059983W WO2016002280A1 WO 2016002280 A1 WO2016002280 A1 WO 2016002280A1 JP 2015059983 W JP2015059983 W JP 2015059983W WO 2016002280 A1 WO2016002280 A1 WO 2016002280A1
Authority
WO
WIPO (PCT)
Prior art keywords
outflow
pipe
refrigerant distributor
inflow
main body
Prior art date
Application number
PCT/JP2015/059983
Other languages
English (en)
French (fr)
Inventor
祥彦 佐竹
三宅 展明
雄大 森川
明生 村田
山口 博
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/314,676 priority Critical patent/US10508871B2/en
Priority to GB1622031.1A priority patent/GB2542070B8/en
Priority to CN201580035160.2A priority patent/CN106537067B/zh
Priority to JP2016531145A priority patent/JP6494623B2/ja
Publication of WO2016002280A1 publication Critical patent/WO2016002280A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0444Condensers with an integrated receiver where the flow of refrigerant through the condenser receiver is split into two or more flows, each flow following a different path through the condenser receiver

Definitions

  • the present invention relates to a refrigerant distributor and a heat pump apparatus having the refrigerant distributor.
  • a refrigerant is supplied to each path at the inlet of the heat exchanger.
  • a refrigerant distributor is required.
  • a refrigerant distributor is required to distribute the refrigerant from the main refrigerant flow path to each unit. In such a refrigerant distributor, it is desired from the viewpoint of further improving the performance of the air conditioner to perform distribution to a plurality of paths more evenly and with less variation.
  • the diffusion rate of aluminum in air-conditioning parts has been increasing from the viewpoint of improving the price and performance ratio based on lighter products and material processability.
  • the distribution portion of the refrigerant distributor is formed by machining copper or brass, and copper is used for the outflow tube and the inflow tube.
  • the outflow pipe and the distribution section, and the inflow pipe and the distribution section are brazed and joined, and the outflow pipe is brazed to the heat transfer pipe of the heat exchanger.
  • the heat capacity of the outflow pipe 2 is small and the heat capacity of the distribution section 3 is large, so that the difference in heat capacity is large, and when both members are joined by burner brazing, Management is difficult and brazing is not stable.
  • high frequency induction heating coils are often used at the production site of refrigerant distributors (especially in the case of copper or brass) as brazing heating means from the viewpoint of improving the reproducibility of heat input. .
  • the distribution portion 3 of the refrigerant distributor 1 is formed by machining aluminum and aluminum is also used for the distribution portion 3, the outflow tube 2 and the inflow tube 4. Is done.
  • the outflow pipe 2 and the distribution section 3 and the inflow pipe 4 and the distribution section 3 are brazed and joined.
  • the melting point of the brazing material is about 580 ° C.
  • the melting point of the base material is about 650 ° C., the difference between the melting point of the brazing material and the melting point of the base material, that is, the allowable temperature range.
  • the heat capacity of the distribution part 3 having a cylindrical structure is large and temperature unevenness tends to occur between the inner and outer diameters when joining by burner brazing. Exceeding the range, the base metal is melted, while the brazing material unmelted region is produced, and the temperature control is difficult and the brazing property is deteriorated.
  • the reproducibility of heat input is improved, but since the high frequency current flows mainly on the surface of the work due to the skin effect, heating becomes local and the base material is easily melted with aluminum.
  • the junction between the distribution section 3 and the outflow pipe 2 of the aluminum refrigerant distributor has a large number of outflow pipes 2 and a small difference in melting point between the brazing material and the base material. Since there is a large difference in heat capacity, there is a problem that it is difficult to ensure brazing joint with high reliability.
  • the outflow pipe 2 and the distribution unit 3 having different heat capacities are joined by brazing in the furnace to eliminate the complexity of temperature management (see, for example, Patent Document 1).
  • the distribution unit 3 of the refrigerant distributor 1 is formed by machining, aluminum has poor cutting properties compared to copper or brass, and takes time for machining, resulting in high machining costs. It was.
  • the manufacture of the aluminum refrigerant distributor has been realized by brazing the members having different heat capacities in the furnace as described in Patent Document 1, but the dimensions of the furnace, the workability of the assembly, etc. From the viewpoint, not all members could be brazed in the furnace, for example, the end of the outflow pipe that did not enter the furnace was partially brazed as a separate member. Therefore, the number of members increases and the number of parts to be brazed increases, making the manufacturing process complicated. Since the furnace requires a relatively large cost and space, there is a problem that it is difficult to widely deploy the product widely in general products.
  • the present invention has been made in order to solve the above-described problems, and a refrigerant distributor excellent in brazing and joining with a distribution unit and a plurality of outflow pipes and excellent in productivity with a small number of manufacturing steps, and It aims at obtaining the heat pump apparatus which has the refrigerant distributor.
  • a refrigerant distributor according to the present invention is a refrigerant distributor having an inflow portion into which a refrigerant flows from an inflow pipe and a distribution portion that distributes the inflowed refrigerant to a plurality of outflow pipes. It comprises a main body part to be connected and a plurality of outflow parts connected to the outflow pipe. The outflow part protrudes from the main body part and is formed integrally with the main body part.
  • the outflow portion of the distribution portion protrudes from the main body portion and is formed integrally with the main body portion, the difference in heat capacity between the outflow pipe and the outflow portion is reduced, and further the joining is performed. Since the burner heat can be locally applied to the part, the temperature management of the burner heat is facilitated. Therefore, it is possible to satisfactorily braze and join the distribution portion and the outflow pipe.
  • FIG. 1 is a configuration diagram of a heat exchanger using a refrigerant distributor 1 according to Embodiment 1.
  • FIG. 1 is a longitudinal sectional view of a refrigerant distributor 1 according to Embodiment 1.
  • FIG. 3 is a cross-sectional view of the refrigerant distributor 1 according to Embodiment 1 as seen from the line AA.
  • FIG. 6 is a cross-sectional view taken along line AA of another example 1 of the refrigerant distributor 1 according to the first embodiment. 6 is a cross-sectional view taken along line AA of another example 2 of the refrigerant distributor 1 according to Embodiment 1.
  • 6 is a cross-sectional view taken along line AA of another example 3 of the refrigerant distributor 1 according to Embodiment 1.
  • 6 is a longitudinal sectional view of a refrigerant distributor 1 according to Embodiment 2.
  • FIG. It is a longitudinal cross-sectional view of the conventional refrigerant distributor.
  • 6 is a longitudinal sectional view of a refrigerant distributor 1 according to Embodiment 3.
  • FIG. 6 is a plan view showing a dimensional relationship of a distribution unit 3 according to Embodiment 3.
  • FIG. 10 is a longitudinal sectional view showing a dimensional relationship of a distribution unit 3 according to Embodiment 3.
  • FIG. 6 is a perspective view showing a state before brazing and joining of the refrigerant distributor 1 and the outflow pipe 2 according to Embodiment 3.
  • FIG. 6 is a cross-sectional perspective view showing a state before brazing and joining of the refrigerant distributor 1 and the outflow pipe 2 according to Embodiment 3.
  • FIG. It is the longitudinal cross-sectional view which showed the state before brazing joining which has arrange
  • FIG. 10 is a detailed cross-sectional view showing a state before brazing and joining in which a ring brazing material B17 and a ring brazing material C18 are arranged at the base portion 3f of the distribution unit 3 according to the fourth embodiment.
  • FIG. 1 is a configuration diagram of a heat exchanger using the refrigerant distributor according to the first embodiment.
  • the refrigerant distributor 1 according to the first embodiment includes, for example, a two-phase flow that flows into a fin-and-tube heat exchanger 100 including heat transfer tubes 50 and fins 51 when the heat exchanger 100 functions as an evaporator.
  • the refrigerant is distributed, and details will be described later.
  • the two-phase refrigerant that has flowed into the refrigerant distributor 1 from the inflow pipe 4 branches into the respective outflow sections 3a within the main body 3b of the distribution section 3, and passes through the outflow pipe 2 to constitute each path of the heat exchanger 100. It flows into the heat pipe 50.
  • the two-phase refrigerant that has flowed into the heat transfer tube 50 of the heat exchanger 100 exchanges heat with the air passing through the heat exchanger 100 via the fins 51 integrated with the heat transfer tube 50, and evaporates to become a gas refrigerant.
  • the gas refrigerant merges at the gas header 52 and flows out toward the suction side of the compressor (not shown).
  • the heat transfer tubes 50 and the fins 51 are both made of aluminum or an aluminum alloy.
  • the heat transfer tube 50 may be a circular tube, a flat tube, or any other shape.
  • FIG. 2 is a longitudinal sectional view of the refrigerant distributor 1 according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the refrigerant distributor 1 according to Embodiment 1 as viewed along the line AA.
  • the refrigerant distributor 1 according to the present embodiment includes an aluminum inflow portion 5 and an aluminum distribution portion 3.
  • the distribution unit 3 is integrally formed including a plurality of outflow portions 3a by pressing, and has a cylindrical main body portion 3b and, for example, four outflow portions 3a in a circular tube shape.
  • an outflow hole 3 d communicating with the outflow pipe 2 is opened on the upper surface of the main body 3 b of the distribution unit 3.
  • the inflow portion 5 includes a circular disc portion 5a and a cylindrical portion 5b disposed coaxially with the central axis of the disc portion 5a.
  • the outflow pipe 2 is provided with an expanded portion 2a that is expanded so that the lower end in FIG. 1 is fitted to the outflow portion 3a from the outside, and has a larger diameter than the base portion 2b. Therefore, when fitting the outflow pipe 2 to the outflow part 3a, the expansion part 2a is inserted into the outflow part 3a, and the step between the base part 2b of the outflow pipe 2 and the expansion part 2a is formed at the upper end of the outflow part 3a. Position by contacting.
  • the outer diameter and thickness of the base 2b of the outflow pipe 2 are preferably the same as the outer diameter and thickness of the outflow portion 3a of the distribution section 3.
  • the outer periphery of the disk part 5a of the inflow part 5 is fitted into a circular notch 3c formed on the circumferential surface of the lower end of the main body part 3b.
  • the outer peripheral surface of the cylindrical inflow pipe 4 is fitted in the circular notch 5c formed in the lower end inner peripheral surface of the cylindrical part 5b of the inflow part 5.
  • the burner brazing method is similar to the noco rock brazing method in brazing in a furnace, after applying a fluoride flux to the joint and placing the brazing material on the joint, the brazing material is raised to a melting point of 590 ° C. with a burner, This is a joining method in which a brazing material is melted and joined.
  • the gas burner uses city gas, propane, a mixed gas of acetylene and oxygen, or the like.
  • brazing is performed in the atmosphere, and the temperature of the joint is directly raised by the burner, so it is difficult to control the temperature.
  • the brazing property is poor. If brazing is not successful and an unjoined part is formed, the refrigerant flowing inside flows out to the outside air.
  • the outer diameter and thickness of the base 2b of the outflow pipe 2 are the same as the outer diameter and thickness of the outflow portion 3a of the distribution section 3. Since the heat capacity difference between the outflow part 3a and the outflow pipe 2 in the joint part 6 can be reduced, and the burner heat can be given locally to the joint part 6 as well. The temperature management of heat becomes easy, and the distribution part 3 and the outflow pipe 2 can be brazed and joined well.
  • the distribution unit 3 and the inflow unit 5 are formed by press working, no machining is required, the number of processing steps can be reduced, and productivity can be improved.
  • the burner brazing time per one part of the junction part 6 can be reduced, and productivity can be improved.
  • the outflow part 3a is provided on the upper part of the distribution part 3 and is integrally formed by press working, the outflow pipe 2 is brazed at two points per flow path by the conventional refrigerant distributor shown in FIG. The score can be concentrated in one place, and productivity can be improved.
  • FIGS. 4 to 6 show modifications of the distribution unit 3 of the refrigerant distributor 1 according to the first embodiment.
  • FIG. 4 is a cross-sectional view taken along line AA of another example 1 of the refrigerant distributor 1 according to the first embodiment.
  • FIG. 5 is a cross-sectional view taken along line AA of another example 2 of the refrigerant distributor 1 according to the first embodiment.
  • FIG. 6 is a cross-sectional view taken along line AA of another example 3 of the refrigerant distributor 1 according to the first embodiment. 4 to 6 show examples in which the number of outflow holes 3d of the distribution unit 3 is 2, 6, or 8, but any number of outflow holes 3d may be provided.
  • FIG. The refrigerant distributor 1 according to Embodiment 2 is an embodiment other than the configuration of each joining portion that joins the inflow pipe 4 and the inflow section 5, the distribution section 3 and the inflow section 5, and the outflow pipe 2 and the outflow section 3a. 1 is the same as that of the refrigerant distributor 1. Therefore, differences from the refrigerant distributor 1 according to Embodiment 1 will be mainly described.
  • FIG. 7 is a longitudinal sectional view of the refrigerant distributor 1 according to the second embodiment.
  • the outflow portion 3a is provided with an expanded portion 3e that is expanded so that the upper end in FIG. 7 is fitted to the outflow pipe 2 from the outside, and has a larger diameter than the outflow portion 3a. Therefore, when fitting the outflow pipe 2 to the expansion part 3e, the outflow pipe 2 is inserted into the expansion part 3e, and the lower end of the outflow pipe 2 comes into contact with the step between the outflow part 3a and the expansion part 3e. Positioned. It is desirable that the outer diameter and thickness of the outflow pipe 2 are the same as the outer diameter and thickness of the outflow portion 3a of the distribution section 3.
  • the lower end of the main body part 3 b is fitted to the inner peripheral surface of the cylindrical rib 5 d erected on the outer periphery of the disk part 5 a of the inflow part 5.
  • the inner peripheral surface of the cylindrical inflow pipe 4 is fitted in the notch part 5e formed in the lower end outer peripheral surface of the cylindrical part 5b of the inflow part 5.
  • the refrigerant distributor 1 includes a junction 6 between the outflow pipe 2 and the outflow portion 3a, a junction 7 between the distribution section 3 and the inflow portion 5, and a junction between the inflow pipe 4 and the inflow portion 5. Since all the members 8 are joined in such a posture that the lower member becomes the outside and receives the upper member, the outflow pipe 2, the distribution part 3, the inflow pipe 4, and the inflow part 5 are collectively changed without changing the brazing attitude. Can be brazed. For this reason, the number of brazing steps can be reduced, and the productivity can be improved.
  • brazing process for performing the batch operation of the refrigerant distributor 1 according to the second embodiment can be employed even when the refrigerant distributor 1 according to the first embodiment is turned upside down.
  • the outer diameter and the thickness of the outflow pipe 2 are configured to be the same as the outer diameter and the thickness of the outflow part 3a of the distribution part 3 as in the first embodiment, Since the heat capacity difference between the outflow part 3a and the outflow pipe 2 in the part 6 can be reduced, and the burner heat can be given locally to the joint part 6, the temperature control of the burner heat input becomes easy, The distributor 3 and the outflow pipe 2 can be brazed well.
  • the distribution unit 3 and the inflow unit 5 are formed by press working, no machining is required, the number of processing steps can be reduced, and productivity can be improved.
  • the burner brazing time per one part of the junction part 6 can be reduced, and productivity can be improved.
  • outflow part 3a is provided in the upper part of the distribution part 3 and is integrally formed by press working, the brazing of the outflow pipe 2 that has been brazed at two locations per flow path by the conventional refrigerant distributor shown in FIG. The score can be concentrated in one place, and productivity can be improved.
  • Embodiment 3 The refrigerant distributor 1 according to the third embodiment is substantially the same as the refrigerant distributor according to the first embodiment, except for the configuration of each joining portion that joins the outflow pipe 2 and the outflow portion 3a. Therefore, differences from the refrigerant distributor 1 according to Embodiment 1 will be mainly described.
  • FIG. 9 is a longitudinal sectional view of the refrigerant distributor 1 according to the third embodiment.
  • FIG. 10 is a plan view illustrating a dimensional relationship of the distribution unit 3 according to the third embodiment.
  • FIG. 11 is a longitudinal sectional view showing a dimensional relationship of the distribution unit 3 according to the third embodiment.
  • the main body 3b of the distribution unit 3 is formed by cold forging press-like thick plate drawing (forging drawing).
  • the main body 3b is composed of a top plate 3g and a cylindrical body 3h having a cylindrical space 3j therein.
  • a corner portion 16 having an R shape is provided at a corner portion where the lower surface portion 3i of the top plate portion 3g and the body portion 3h cross each other for stress relaxation.
  • the inflow portion 5 has an outer peripheral cylindrical portion 5f provided on the outer peripheral side of the disc portion 5a and a cylindrical portion 5b to which the inflow pipe 4 is connected, and a circular circle is provided between the outer peripheral cylindrical portion 5f and the cylindrical portion 5b.
  • An annular notch 10 is formed.
  • the notch 10 is formed for suppressing temperature unevenness when the inflow portion 5 is brazed to the distribution portion 3 and for reducing the heat capacity.
  • concentric protrusions are arranged at several locations (3 to 4 locations) at regular intervals as part of the press process for setting the brazing clearance with the outer cylinder portion 5f evenly. (Not shown), making it easy to achieve highly reliable aluminum brazing.
  • the thickness of the outflow portion 3a is 1 to 2 times the thickness of the outflow tube 2 (for example, the outer diameter of the outflow portion 3a is 7 mm, the thickness is 1 mm, the outer diameter of the outflow tube 2 is 5 mm, the thickness is 0.7 mm, etc.) It is set to become.
  • the base portion 3f of the outflow portion 3a is molded as part of the press process so as to have an R shape for the purpose of stress relaxation when an excessive external force is applied in a manufacturing process or the like.
  • the outflow pipe 2 is fitted and brazed to the inner diameter side of the outflow portion 3a. At this time, the lower end of the outflow pipe 2 is positioned in contact with the pipe stopper 9 disposed in the outflow hole 3d.
  • the pipe stopper 9 is a step provided so as to have an inner diameter slightly smaller than the inner diameter of the outflow hole 3d as part of the press working of the outflow section 3a.
  • the level difference may be about 0.3 mm in the radial direction, for example, so that the pressure itself does not cause pressure loss, and a restriction that the inner diameter is larger than the inner diameter of the outflow pipe 2 and a processing restriction that each part can be formed without problems on press working.
  • the inner diameter of the outflow hole 3d may be slightly different from the pipe stopper 9 (not shown, but the portion whose inner diameter is larger than the pipe stopper 9 is only on the outlet part 3a side). Good).
  • the depth L from the upper end of the outflow portion 3a in the axial direction of the outflow hole 3d to the pipe stopper 9 is a fitting depth necessary for the brazed joint (brazing in the axial direction of the outflow portion 3a and the outflow pipe 2).
  • L ⁇ 6 mm is set when the outer diameter of the outflow pipe 2 is 7 mm.
  • this embodiment uses cold forging press work based on such a principle of constant volume, it is possible to realize a thin and tall outflow portion 3a from a thick plate.
  • the region where the plate thickness is reduced is finally directly under the outflow portion 3a, but in the process of forming the outflow portion 3a, not limited to this, the necessary region is pressed and pressed into a plurality of steps as appropriate. You can put meat in and out.
  • the distribution part 3 and the inflow part 5 and the inflow pipe 4 and the inflow part 5 are separately or in advance, respectively. At the same time, they are joined by brazing in a burner or furnace.
  • FIG. 12 is a perspective view showing a state before brazing and joining of the refrigerant distributor 1 and the outflow pipe 2 according to the third embodiment.
  • FIG. 13 is a cross-sectional perspective view showing a state before brazing and joining of the refrigerant distributor 1 and the outflow pipe 2 according to the third embodiment.
  • a ring brazing material A13 is disposed at the upper end of the outflow portion 3a in advance, and a flare that expands outward from the outflow portion 3a as part of the press processing of the outflow portion 3a so as to easily flow into the gap with the outflow pipe 2 A portion 12 is provided.
  • the outer diameter of the flare part 12 is larger than the outer diameter of the outflow part 3a so that the ring brazing material A13 does not easily overflow.
  • a plurality of burners are arranged on the outer periphery of the main body 3b of the distribution unit 3, and the outer peripheral side of the main body 3b is heated by fixing or rotating (spinning the workpiece or revolving the burner). Since the main body portion 3b has a heat capacity corresponding to the thickness of the top plate portion 3g necessary for pressure resistance, it tends to cause a temperature gradient inside and outside in the radial direction and uneven temperature in the circumferential direction.
  • the outflow part 3a is thin and has a small heat capacity and is disposed on the outer peripheral side of the main body part 3b, the burner heat input mainly stored on the outer peripheral side of the main body part 3b is the entire periphery of the outflow part 3a by heat conduction.
  • the outflow part 3a is easily soaked. As described above, the phenomenon in which the outflow portion 3a has less temperature unevenness due to heat conduction and is more easily heated than the main body portion 3b can be confirmed by heat transfer analysis simulation and infrared thermography measurement.
  • the flow of the refrigerant in the refrigerant distributor 1 assembled and joined in this way will be described.
  • the upper end of the inflow portion 5 is provided with a throttle portion 14 having a reduced flow passage cross-sectional area of the refrigerant flow path so that the refrigerant flowing from the inflow pipe 4 has an appropriate flow rate, and has passed through the throttle portion 14.
  • the refrigerant collides with the lower surface portion 3i of the top plate portion 3g. Since the lower surface portion 3i has a planar shape unlike the conical surface in the conventional distributor, even when the refrigerant is a drift where the flow density from the constricted portion 14 is not axisymmetric, the outer surface radially radiates after colliding with the lower surface portion 3i. It is easy to disperse almost uniformly.
  • the outflow hole 3d is arranged so that the inner periphery thereof is substantially in contact with the inner periphery of the cylindrical space 3j, the refrigerant flow 15 radially dispersed along the lower surface portion 3i is the outer wall of the cylindrical space 3j at the radial end. In this case, it is easy to flow into the outflow hole 3d as it is without being scattered, and the refrigerant is distributed and outflowed almost uniformly with high distribution efficiency.
  • Embodiment 4 FIG.
  • the refrigerant distributor 1 according to the fourth embodiment includes an inflow pipe 4 and an inflow part 5, a distribution part 3 and an inflow part 5, an outflow pipe 2 and an outflow part 3 a, and the basic configurations of these joint parts are the same as those in the third embodiment. This is common with the refrigerant distributor 1. Therefore, differences from the refrigerant distributor 1 according to Embodiment 3 will be mainly described.
  • Aluminum is a metal that is easily corroded, so aluminum piping parts are generally designed to prevent corrosion according to the usage environment.
  • plate materials such as an anticorrosion layer clad tube that simultaneously extrudes the sacrificial anticorrosive material on the outer surface side when extruding the pipe material from the material manufacturer, and a zinc spray tube that sprays zinc from the surrounding after extrusion
  • an anticorrosive layer clad plate in which the anticorrosive layer is integrally formed by simultaneously rolling the sacrificial anticorrosive material.
  • plate materials having a relatively thin plate thickness have a wide range of needs and are put on the market, but thick materials are not widely commercialized because there are few needs and mass production effects cannot be expected. Therefore, as a general anti-corrosion measure for thick parts, a method of delaying the progress of corrosion by making the plate thickness thicker or by arranging a sacrificial anti-corrosive material such as zinc near or on the target site May take.
  • the aluminum distribution portion 3 in the fourth embodiment is formed by cold forging drawing (or machining) and pressing from a thick plate, and the main body portion 3b has a thickness of 3 mm or more. Since it remains as a plate, maintaining the thickness may be a measure against corrosion, but for the thin outflow portion 3a, measures such as arranging a zinc-containing material in the vicinity are added.
  • FIG. 14 is a longitudinal sectional view showing a state before brazing and joining in which the ring brazing material B17 and the ring brazing material C18 are arranged at the base portion 3f of the distribution unit 3 according to the fourth embodiment.
  • FIG. 14 is a longitudinal sectional view showing a state before brazing and joining in which the ring brazing material B17 and the ring brazing material C18 are arranged at the base portion 3f of the distribution unit 3 according to the fourth embodiment.
  • FIG. 15 is a perspective view showing a state before brazing and joining in which the ring brazing material B17 and the ring brazing material C18 are arranged at the base portion 3f of the distribution unit 3 according to the fourth embodiment.
  • FIG. 16 is a perspective cross-sectional view showing a state before brazing and joining in which a ring brazing material B17 and a ring brazing material C18 are arranged at the root portion 3f of the distribution unit 3 according to the fourth embodiment.
  • FIG. 17 is a detailed cross-sectional view showing a state before brazing and joining in which the ring brazing material B17 and the ring brazing material C18 are arranged at the base portion 3f of the distribution unit 3 according to the fourth embodiment.
  • an inner ring brazing material B17 formed on the upper surface of the distribution part 3 with a diameter equal to or smaller than the diameter of the inscribed circle with respect to the root part 3f of the N outflow parts 3a One outer ring brazing material C18 formed to have a diameter equal to or larger than the diameter of the circumscribed circle is disposed. That is, it has the outer periphery ring brazing material C18 arrange
  • the outer peripheral ring brazing material C18 is a material containing a larger amount of zinc (Zn) than the brazing material mainly composed of aluminum for aluminum brazing.
  • the inner ring ring brazing in which the heat input is arranged at the root portion 3f simultaneously with the normal ring brazing material A13 according to the fourth embodiment. It is transmitted to the material B17 and the outer ring brazing material C18, and when these ring brazing materials are melted, the dissolved zinc (Zn) is diffused and arranged around the root portion 3f of the outflow portion 3a and the top surface of the top plate portion 3g. Thus, a sacrificial anticorrosive effect satisfying the corrosion life can be obtained.
  • a special brazing material such as zinc spray or zinc coating is not required separately, and a ring brazing material containing zinc is supplied at the same time as a general ring brazing, so that a normal burner or the like can be used.
  • a ring brazing material containing zinc is supplied at the same time as a general ring brazing, so that a normal burner or the like can be used.
  • each of the inner ring brazing material B17 having a diameter equal to or smaller than the diameter of the inscribed circle and the outer peripheral ring brazing material C18 having a diameter equal to or larger than the diameter of the circumscribed circle with respect to the root portion 3f of the outflow portion 3a is shown, it is similar even if a method of arranging N pieces of zinc-containing ring wax (not shown) slightly larger than the outer diameter of the outflow portion 3a at the root portion 3f is used. The effect is obtained. Moreover, what is necessary is just to determine zinc content, the inscribed circle with respect to the base part 3f of the outflow part 3a, the distance from a circumscribed circle, etc.
  • the zinc hoop material itself, for example, looks good at first glance, but in fact it is prone to erosion and needs attention, so its applicability based on the amount used and brazeability Can be determined.
  • Embodiment 5 FIG.
  • the refrigerant distributor 1 according to the fifth embodiment includes an inflow pipe 4 and an inflow part 5, a distribution part 3 and an inflow part 5, an outflow pipe 2 and an outflow part 3 a, and the basic configurations of these joint parts are the same as in the third embodiment. This is common with the refrigerant distributor 1. Therefore, differences from the refrigerant distributor 1 according to Embodiment 3 will be mainly described.
  • the length of the outflow pipe 2 is adjusted in advance according to the pressure loss in each outflow portion 3a obtained in the closed state, or bypassed by the bypass pipe 21 It is possible to design a desired distribution performance by minimizing the influence of drift by setting the position on a diagonal line or the like.
  • a burner has been shown as a brazing heating method.
  • the present invention is not limited to this as long as the features of the distribution unit 3 of the present invention can be utilized. Hot air, a heater (seeds) , Halogen), high-frequency induction heating, electric furnace, or the like may be combined.
  • the present invention is not limited to this as long as the features of the distribution unit 3 according to the present invention can be utilized. Similar effects can be expected even when applied to a combined structure with various pipe parts such as the part 5 and the inflow pipe 4.
  • a cold forging press is used, but the thick top plate portion 3g and the thin outflow portion 3a of the distribution portion 3 are integrally formed so that the features of this example can be utilized. If it exists, it is not necessarily limited to this method, and may be combined with machining or other processing methods according to the target product.
  • the refrigerant distributor 1 according to Embodiments 1 to 5 has been described by way of example when the heat exchanger 100 functions as an evaporator, but may be applied when the heat exchanger 100 functions as a condenser. Good. At this time, the gas refrigerant flowing into the heat exchanger 100 is distributed to the heat transfer tubes 50.
  • the refrigerant distributor 1 is made of aluminum, it is more reliable even if it is made of brass or copper, which has been widely used in conventional air conditioners.
  • it is desirable to reduce the heat capacity of the main body portion 3b and to reduce the difference in heat capacity between the outflow portion 3a and the outflow pipe 2. Therefore, it is possible to form with a press die similar to that of aluminum. It is possible and has a similar effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

 流入管から冷媒が流入するアルミ製の流入部と、流入した冷媒を複数の流出管に分配するアルミ製の分配部とを有する冷媒分配器であって、分配部は、流入部と接続される本体部と、流出管に接続される複数の流出部と、により構成され、流出部は本体部から突設され、本体部と一体に形成されている。

Description

冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置
 本発明は、冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置に関するものである。
 空気調和機や冷凍装置などの冷凍サイクル装置の凝縮器または蒸発器として作用する熱交換器において、内部の冷媒流路を複数パスに分割した場合に、熱交換器の入口には各パスへ冷媒を分割する冷媒分配器が必要である。
 また、例えば、複数台の室外機や室内機を並列に接続してなるマルチ型空気調和装置では、メインの冷媒流路から各ユニットへ冷媒を分配するために、冷媒分配器が必要である。
 このような冷媒分配器では、複数パスへの分配をより均等に、かつ、ばらつきを小さく行うことが空気調和機のさらなる性能向上の観点から望まれている。また、近年、製品の軽量化や素材加工性に基づく価格、性能比向上の観点から、空調部品にアルミの普及率が高まっている。
 熱交換器の伝熱管が銅管の場合は、冷媒分配器の分配部は銅もしくは黄銅を削り出し加工にて成形されたものが使用され、流出管および流入管は銅が使用される。流出管と分配部、および流入管と分配部はそれぞれろう付け接合され、その流出管は熱交換器の伝熱管にろう付け接合される。
 従来の冷媒分配器1においては、図8に示すように流出管2の熱容量は小さく、分配部3の熱容量は大きいため熱容量差が大きくなり、バーナろう付けで両部材を接合する場合に、温度管理が難しく、ろう付け性が安定しない。このバーナろう付けの課題に対し、入熱の再現性向上という観点から、ろう付け加熱手段として高周波誘導加熱コイルが冷媒分配器(特に銅または黄銅製の場合)の生産現場でよく用いられている。
 また、伝熱管がアルミの場合は、冷媒分配器1の分配部3はアルミを削り出し加工にて成形されたものが使用され、分配部3と流出管2および流入管4にもアルミが使用される。そして、流出管2と分配部3、および流入管4と分配部3とはろう付け接合される。
 このときアルミろう付けは、ろう材の融点が約580℃であるのに対して母材の融点が約650℃と、ろう材の融点と母材の融点との差、すなわち許容温度範囲、が約70℃と銅ろう付けの数分の一と小さいので、バーナろう付けで接合する場合に、円柱構造の分配部3の熱容量が大きく内外径間に温度むらが生じやすく、部分的に許容温度範囲を超え、母材が溶けてしまう一方で、ろう材未溶融の領域が生じるなど、温度管理が難しく、ろう付け性が悪化する。また、高周波誘導加熱コイルを用いた場合は、入熱の再現性は向上するが、高周波電流が表皮効果でワーク表面主体に流れるので、加熱が局所的となり、アルミでは母材が溶けやすい。
 つまり、アルミの冷媒分配器の分配部3と流出管2との接合は、流出管2の本数が多い上、ろう材と母材の融点の差が小さく、さらに流出管2と分配部3との熱容量差が大きいので、信頼性の高いろう付接合の確保が難しい問題があった。
 そこで、従来は特に熱容量の異なる流出管2と分配部3との接合を炉中ろう付け接合で行い、温度管理の煩雑さを解消していた(例えば特許文献1を参照)。
 また冷媒分配器1の分配部3は、削り出し加工で成形されるため、アルミの場合は銅もしくは黄銅に比べて切削性が悪く、機械加工に時間を要するため加工費が高いという問題もあった。
特許第5328724号公報
 このように従来、アルミ製の冷媒分配器の製作は、特許文献1に記載があるように熱容量の異なる部材同士を炉中ろう付けで実現していたが、炉の寸法や組み付け作業性等の観点から、全ての部材を炉中ろう付けすることができず、例えば炉に入らない流出管の端部を別部材として部分的にバーナーろう付けしていた。よって、部材点数が多くなるとともに、ろう付けの箇所も多くなり製作工程が煩雑になる。炉は比較的大きなコストやスペースを要するので、汎用的に製品に広く展開するのが難しい、という問題があった。
 また、全ての接合部分をバーナーろう付けで製作すると、分配部と流出管のように熱容量差が大きい部材同士を接合する場合に温度管理が難しく、ろう付け性が安定しない問題があった。特にアルミ製では、熱容量の大きな分配部をバーナや高周波誘導で加熱すると許容温度を超えるような温度むらが出来やすく、部分的に許容温度範囲を超え、母材が溶けてしまう一方で、ろう材未溶融の領域が生じるなど、温度管理が難しかった。
 加えて、冷媒分配器の分配部は、削り出し加工で成形されるため、アルミの場合は銅もしくは黄銅に比べて切削性が悪く、機械加工に時間を要するため加工費が高いという問題もあった。
 本発明は、上記のような課題を解決するためになされたもので、分配部と複数の流出管とのろう付接合が良好でかつ、製作工数の少ない生産性に優れた冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置を得ることを目的とする。
 本発明に係る冷媒分配器は、流入管から冷媒が流入する流入部と、流入した冷媒を複数の流出管に分配する分配部とを有する冷媒分配器であって、分配部は、流入部と接続される本体部と、流出管に接続される複数の流出部と、により構成され、流出部は本体部から突設され、本体部と一体に成形されている。
 本発明に係る冷媒分配器によれば、分配部の流出部は本体部から突設され、本体部と一体に成形されているので、流出管と流出部との熱容量差が小さくなり、さらに接合部に局所的にバーナー入熱を与えることができるため、バーナー入熱の温度管理が容易となる。したがって、分配部と流出管とを良好にろう付け接合することができる。
実施の形態1に係る冷媒分配器1を用いた熱交換器の構成図である。 実施の形態1に係る冷媒分配器1の縦断面図である。 実施の形態1に係る冷媒分配器1のA-A線矢視断面図である。 実施の形態1に係る冷媒分配器1の他の例1のA-A線矢視断面図である。 実施の形態1に係る冷媒分配器1の他の例2のA-A線矢視断面図である。 実施の形態1に係る冷媒分配器1の他の例3のA-A線矢視断面図である。 実施の形態2に係る冷媒分配器1の縦断面図である。 従来の冷媒分配器の縦断面図である。 実施の形態3に係る冷媒分配器1の縦断面図である。 実施の形態3に係る分配部3の寸法関係を示す平面図である。 実施の形態3に係る分配部3の寸法関係を示す縦断面図である。 実施の形態3に係る冷媒分配器1と流出管2とのろう付け接合前の状態を示した斜視図である。 実施の形態3に係る冷媒分配器1と流出管2とのろう付け接合前の状態を示した断面斜視図である。 実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した縦断面図である。 実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した斜視図である。 実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した斜視断面図である。 実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した断面詳細図である。 実施の形態5に係る分配数N=7の製品において、分配部3と、流出管2及びプラグ20とのろう付け接合前の状態を示した斜視図である。 実施の形態5に係る分配数N=6の製品において、分配部3と、流出管2及びバイパス管21とのろう付け接合前の状態を示した斜視図である。 実施の形態5に係る分配数N=6の製品において、分配部3と、流出管2及びバイパス管21とのろう付け接合前の状態を示した断面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 はじめに、本実施の形態1の冷媒分配器1を用いたフィンアンドチューブ型の熱交換器100の構成について説明する。
 図1は、実施の形態1に係る冷媒分配器を用いた熱交換器の構成図である。
 本実施の形態1に係る冷媒分配器1は、例えば熱交換器100が蒸発器として機能するときに伝熱管50とフィン51で構成されるフィンアンドチューブ型の熱交換器100に流入する二相冷媒を分配するものであり、詳細については後述する。流入管4から冷媒分配器1に流入した二相冷媒は、分配部3の本体部3b内で各流出部3aに分岐し、流出管2を通って熱交換器100の各パスを構成する伝熱管50に流入する。
 熱交換器100の伝熱管50に流入した二相冷媒は、伝熱管50と一体化したフィン51を介して、熱交換器100を通過する空気と熱交換し、蒸発してガス冷媒となる。ガス冷媒は、ガスヘッダー52で合流し、圧縮機(図示しない)の吸引側に向かって流出するようになっている。
 伝熱管50とフィン51は、いずれもアルミまたはアルミ合金で構成されている。なお、伝熱管50は、円管、扁平管、その他どのような形状であっても採用可能である。
 次に、冷媒分配器1の構成について説明する。
 図2は、実施の形態1に係る冷媒分配器1の縦断面図である。
 図3は、実施の形態1に係る冷媒分配器1のA-A線矢視断面図である。
 本実施の形態の冷媒分配器1は、アルミ製の流入部5とアルミ製の分配部3から構成されている。分配部3は、プレス加工により複数の流出部3aを含めて一体に成形されており、円筒形状の本体部3bと、円管形状で例えば4箇所の流出部3aと、を有している。分配部3の本体部3bの上面には図2に示すように流出管2に連通する流出孔3dが開口している。流入部5は、円形の円板部5aと、この円板部5aの中心軸に同軸に配置された円筒部5bとにより構成されている。
 流出管2には、図1における下端が流出部3aに外側から嵌合するように拡開した拡開部2aが設けられ、基部2bに比べて大きい口径になっている。よって、流出管2を流出部3aに嵌合する際には拡開部2aを流出部3aに挿入し、流出管2の基部2bと拡開部2aとの段差を流出部3aの上端部に当接させて位置決めをする。
 流出管2の基部2bの外径と肉厚の寸法は、分配部3の流出部3aの外径と肉厚の寸法と同一であることが望ましい。
 分配部3と流入部5とを接合する際には、本体部3bの下端の円周面に形成された円形の切欠部3cに流入部5の円板部5aの外周を嵌合する。そして、流入管4と流入部5とを接合する際には、流入部5の円筒部5bの下端内周面に形成された円形の切欠部5cに円筒形状の流入管4の外周面を嵌合する。
 その後、分配部3と流入部5とをバーナーろう付けにより接合し、さらに流入管4と流入部5、および流出管2と流出部3aとを、それぞれバーナーろう付けにより接合する。
 バーナーろう付け法は、炉中ろう付けのノコロックろう付け法と同様にフッ化物フラックスを接合部に塗布してろう材を接合部に設置した後に、バーナーでろう材を融点590℃まで上昇させ、ろう材を溶かして接合する接合方法である。ガスバーナーは、都市ガス、プロパン、アセチレンと酸素の混合ガス等を用いる。
 バーナーろう付けは、大気中で行い、バーナーで接合部を直接、温度上昇させるので、温度調節が難しい。特に、アルミ相互のろう付けの場合は、融点近くになった時のアルミの色に変化がなく、ろう材と母材の融点差が小さいので、ろう付け性が悪い。ろう付けがうまくいかず、未接合部ができた場合は、中を流れる冷媒が外気に流出してしまう。
 しかし、実施の形態1に係る冷媒分配器1は、流出管2の基部2bの外径と肉厚の寸法が、分配部3の流出部3aの外径と肉厚の寸法と同一となるように構成されているので、接合部6における流出部3aと流出管2との熱容量差を小さくすることができる上、接合部6にも局所的にバーナー入熱を与えることができるため、バーナー入熱の温度管理が容易となり、分配部3と流出管2とを良好にろう付け接合することができる。
 また、分配部3および流入部5は、プレス加工により成形しているので、削り出し加工が不要となり、加工工数を削減でき、生産性を向上することができる。
 また、分配部3の上部に設けている流出部3aの熱容量は小さいので、接合部6の一箇所あたりのバーナーろう付け時間を削減することができ、生産性を向上することができる。
 さらに、分配部3上部に流出部3aを設け、プレス加工により一体に成形しているので、図8に示す従来の冷媒分配器で一流路につき二箇所ろう付けしていた流出管2のろう付点数を一箇所に集約することができ、生産性を向上することができる。
 ここで図4~6に実施の形態1に係る冷媒分配器1の分配部3の変形例を示す。
 図4は、実施の形態1に係る冷媒分配器1の他の例1のA-A線矢視断面図である。
 図5は、実施の形態1に係る冷媒分配器1の他の例2のA-A線矢視断面図である。
 図6は、実施の形態1に係る冷媒分配器1の他の例3のA-A線矢視断面図である。
 図4~6において、分配部3の流出孔3dの数を、2個、6個、8個とした例を示しているが、これ以外に何個の流出孔3d有していてもよい。
 実施の形態2.
 実施の形態2に係る冷媒分配器1は、流入管4と流入部5、分配部3と流入部5、および流出管2と流出部3aとを接合する各接合部分の構成以外は実施の形態1に係る冷媒分配器と共通である。このため実施の形態1に係る冷媒分配器1との相違点を主に説明する。
 図7は、実施の形態2に係る冷媒分配器1の縦断面図である。
 流出部3aは、図7における上端が流出管2に外側から嵌合するように拡開した拡開部3eが設けられ、流出部3aに比べて大きい口径になっている。よって、流出管2を拡開部3eに嵌合する際には流出管2を拡開部3eに挿入し、流出部3aと拡開部3eとの段差に流出管2の下端が当接して位置決めされる。
 流出管2の外径と肉厚の寸法は、分配部3の流出部3aの外径と肉厚の寸法と同一であることが望ましい。
 分配部3と流入部5とを接合する際には、本体部3bの下端を流入部5の円板部5aの外周に立設された円筒状のリブ5dの内周面に嵌合する。そして、流入管4と流入部5とを接合する際には、流入部5の円筒部5bの下端外周面に形成された切欠部5eに円筒形状の流入管4の内周面を嵌合する。
 その後、分配部3と流入部5とをバーナーろう付けにより接合し、さらに流入管4と流入部5、および流出管2と流出部3aとを、それぞれバーナーろう付けにより接合する。
 実施の形態2に係る冷媒分配器1は、流出管2と流出部3aとの接合部6、分配部3と流入部5との接合部7、および流入管4と流入部5との接合部8が全て、下方の部材が外側となって上方の部材を受ける姿勢で接合されているので、流出管2、分配部3、流入管4、および流入部5をろう付け姿勢を変えずに一括でろう付け接合することができる。このため、ろう付け工数を削減することができ、生産性を向上することができる。
 また、ろう付け姿勢を変えずに一括でろう付け接合することができるので、バーナーろう付け以外に自動ろう付けや炉中ろう付けも採用可能であり、作業方法による入熱のバラツキを抑制でき、ろう付けの温度管理を容易にすることができる。
 なお、本実施の形態2に係る冷媒分配器1の一括で作業を行うろう付け工程は、実施の形態1に係る冷媒分配器1の上下を反転させた状態でも採用することが可能である。
 また、実施の形態1と同様に流出管2の外径と肉厚の寸法が、分配部3の流出部3aの外径と肉厚の寸法と同一となるように構成されているので、接合部6における流出部3aと流出管2との熱容量差を小さくすることができる上、接合部6にも局所的にバーナー入熱を与えることができるため、バーナー入熱の温度管理が容易となり、分配部3と流出管2とを良好にろう付け接合することができる。
 また、分配部3および流入部5は、プレス加工により成形しているので、削り出し加工が不要となり、加工工数を削減でき、生産性を向上することができる。
 さらに、分配部3の上部に設けている流出部3aの熱容量は小さいので、接合部6の一箇所あたりのバーナーろう付け時間を削減することができ、生産性を向上することができる。
 そして、分配部3上部に流出部3aを設け、プレス加工により一体に成形しているので、図8に示す従来の冷媒分配器で一流路につき二箇所ろう付けしていた流出管2のろう付け点数を一箇所に集約することができ、生産性を向上することができる。
 実施の形態3.
 実施の形態3に係る冷媒分配器1は、流出管2と流出部3aとを接合する各接合部分の構成以外は実施の形態1に係る冷媒分配器の構成とほぼ共通である。このため実施の形態1に係る冷媒分配器1との相違点を主に説明する。
 図9は、実施の形態3に係る冷媒分配器1の縦断面図である。
 図10は、実施の形態3に係る分配部3の寸法関係を示す平面図である。
 図11は、実施の形態3に係る分配部3の寸法関係を示す縦断面図である。
 分配部3の本体部3bは、冷間鍛造プレス的な厚板の絞り加工(鍛造絞り)により成形される。本体部3bは、天板部3gと、円筒空間3jを内部に有する円筒形状の胴体部3hにより構成されている。天板部3gの下面部3iと胴体部3hとが交わる角部分には、応力緩和のためR形状を有する隅部16が設けられている。
 流入部5は、円板部5aの外周側に設けられた外周筒部5fと、流入管4が接続する円筒部5bとを有し、外周筒部5fと円筒部5bとの間には円環状の切欠部10が形成されている。切欠部10は、流入部5を分配部3にろう付けする際の温度むらの抑制、及び熱容量の低減のために形成されている。また、胴体部3hの内周側には、外周筒部5fとのろう付け隙間の均等設定用に、同芯出し突起(ディンプル)がプレス加工の一環で、数カ所(3~4カ所)均等間隔で設けられており(図示せず)、信頼性の高いアルミろう付けを実現しやすくしている。
 天板部3gにおいて、耐圧強度を確保するための必要天板板厚としては、材料力学での円板の曲げ応力の関係式を用いれば、図10、図11に示す天板部3gの厚みT[mm]、胴体部3hの内径D[mm] 、設計圧力P[Mpa]、材料の許容引張応力σ[N/mm2]として、
 T≧D√(0.19P/σ)   ・・・・(式1)
で表わされる。ここで対象の冷媒分配器1の仕様として、P=4.15[MPa]、σ=8[MPa](アルミ厚板A1070材の125℃温度補正の引張応力)の場合は、
 T≧0.31D
となる。
 一方、内径Dの寸法関係に関しては、流出部3aの外径d[mm]、流出部3aの肉厚t[mm]、隣接する流出部3aのピッチ間距離p[mm]、分配部3の分配数N[本]、流出部3a群のピッチ円直径Dm[mm]とすれば、
 Dmπ≧p×N>d×N     ・・・・(式2)
 D=Dm+(d-2t)     ・・・・(式3)
であり、式2、式3から、
 D≧d×N/π+(d-2t)  ・・・・(式4)
という関係がある。
 ここで高圧ガス保安法、冷凍保安規則に準じた配管肉厚例として、外径d=φ7mm、肉厚t=1mmの値を用いれば、式4より
 D≧2.23N+5
となる。ここで、式1に式4を代入すれば、
 T≧0.69N+1.55    ・・・・(式5)
という関係がある。ここで、本例での分配数N=8の場合、これを式5に代入すれば、
 T≧7[mm]
となり、設計圧力に対して必要強度を確保するためには、天板部3gの厚みTは7mm(流出部3a肉厚の7倍)以上となる。これを適用対象全般の分配数N≧3にあてはめれば、天板部3gの厚みTは、流出部3a肉厚の3倍以上必要となる。
 流出部3aの肉厚は、流出管2の肉厚の1~2倍(たとえば、流出部3aの外径φ7mm、肉厚1mmと、流出管2の外径φ5mm、肉厚0.7mm等)となるように設定されている。流出部3aの根元部3fは、製造工程等での過大な外力付与時の応力緩和を目的として、R形状になるようプレス加工の一環で成形されている。
 流出部3aの内径側には、流出管2が嵌合され、ろう付け接合される。この際、流出管2の下端は、流出孔3d内に配置された配管止め部9に当接して位置決めされる。配管止め部9は、流出部3aのプレス加工の一環により、流出孔3dの内径よりわずかに小さい内径になるよう設けられた段差である。この段差は、半径方向でたとえば0.3mm程度もあればよく、それ自体が圧損にならないよう、流出管2の内径より大きな内径という制約と、プレス加工上で各部が問題なく成形できるという加工制約を満たせば、流出孔3dの内径が配管止め部9を挟んで僅かに異径であってもよい(図示はしていないが、配管止め部9より内径が大きい部分が流出部3a側だけでもよい)。
 流出孔3dの軸方向における流出部3aの上端から配管止め部9までの深さLは、ろう付け継手に必要な嵌まり込み深さ(流出部3aと流出管2との軸方向におけるろう付け接合長さ)として、流出管2の外径φ7mmのときに、L≧6mmと設定される。すると、流出部3aの軸方向長さ(高さh)は、本実施の形態での効果を発揮させるために、ろう付け深さとなるLの半分以上の寸法を確保することが望ましいと考えられるので、この例では、たとえばh=4mmと設定される。
 この例からわかるように、冷媒分配器1では、耐圧上、流出部3aの肉厚t(=1mm)と天板部3gの厚みT(=7mm以上)との肉厚比T/tは、上記例では7倍、N=3以上の適用対象全般では3倍以上と非常に大きい。そのため、従来技術(特許第2776626号公報や特許第3396770号公報を参照)のような同一肉厚レベルの薄板加工である、単純な絞り加工やバーリング加工では本発明の流出部3aを成形することはできない(なお、先行技術文献「プレス順送金型の設計」(日刊工業新聞社)によれば、バーリング加工では、板厚減少の制約から、アルミでT/t≦1/√0.29=最大1.9倍と規定されている)。
 また、本実施例では、N本の流出部3aの肉厚中央径φdm(=d―t=6mm)と流出部長さL(=4mm以上)の比h/dmは、0.67倍以上と比較的大きい。そのため、単純な絞り加工では外縁全周に渡る一定領域の円板面積を縮小する必要があるので複数の流出部形成が困難という制約がある。よって、バーリング加工では、加工前の内径側の円環分体積しか加工後の流出部3aの円筒部体積に充てられないため、高さに限界があり実現が困難である(上記同文献によれば、h/dm≦0.25倍以下)。
 そこで、このような大きな肉厚差があっても、薄く高い流出部3aを形成するため、冷間鍛造的なプレス加工を用いて、厚板の一定領域をプレス加圧し、部分的に板厚を減少させる必要がある。流出部3aの立上げに必要な材料体積の肉を確保し、適切なパンチ・ダイの組合せによる複数工程を経ることにより、その肉を移動、成形し、所望高さの流出部3aを形成する。
 本実施例は、このような体積一定の原理に基づく冷間鍛造的なプレス加工を用いるため、厚板から薄肉、背高の流出部3aを実現することを可能としている。ここで、板厚を減少させる領域は、最終的には流出部3aの直下であるが、流出部3aを形成する過程では、これに限らず、必要な領域をプレス押圧し、適宜複数工程にて肉の出し入れを行えばよい。
 このようにプレス加工で形成されたアルミ製の分配部3と流出管2とを接合する前に、予め、分配部3と流入部5、および、流入管4と流入部5とがそれぞれ別々または同時に、バーナまたは炉中でのろう付けにより接合される。
 図12は、実施の形態3に係る冷媒分配器1と流出管2とのろう付け接合前の状態を示した斜視図である。
 図13は、実施の形態3に係る冷媒分配器1と流出管2とのろう付け接合前の状態を示した断面斜視図である。
 流出部3aの上端には、予めリングろう材A13が配置され、流出管2との隙間に流入しやすいよう、流出部3aのプレス加工の一環により、流出部3aの外方に拡開するフレア部12が設けられている。フレア部12の外径は、リングろう材A13が溢れにくいよう、流出部3aの外径よりも大きな寸法となっている。
 この状態で、分配部3の本体部3bの外周に複数本のバーナを配置し、固定または回転(ワークの自転またはバーナの公転)させて本体部3b外周側を加熱する。本体部3bは耐圧上必要な天板部3gの厚み分の熱容量を持つため、径方向で内外の温度勾配や周方向の温度むらを生じやすい。一方、流出部3aは薄肉、小熱容量で、かつ、本体部3b外周側に配置されているので、主に本体部3b外周側に蓄熱されたバーナ入熱は、熱伝導により流出部3a全周に渡り、流出部3aは均熱化されやすい。このように流出部3aが本体部3bに比べて、熱伝導により温度むらが小さく、均熱化されやすい現象は、伝熱解析シミュレーション、および、赤外線サーモグラフィ測定により確認することができる。
 このように均熱化され昇温した流出部3aから、リングろう材A13、および、流出管2に、熱伝達が行われると、リングろう材A13が溶融し、本体部3bと流出管2とのろう付け接合が行われる。このとき、流出部3aは分配部3に比べ、小熱容量で均熱化されているので、部分的な母材溶融や溶け残りや、ろう回り不足等の少ない、信頼性の高いろう付け接合が行われる。
 このように組立、接合された冷媒分配器1における冷媒の流れを説明する。流入部5の上端には、流入管4から流れてきた冷媒を適切な流速にするため、冷媒流路の流路断面積を小さくした絞り部14が設けられており、絞り部14を通過した冷媒は、天板部3gの下面部3iに衝突する。下面部3iは、従来の分配器における円錐面と異なり平面形状であるため、冷媒が絞り部14からの流れの密度が軸対称でない偏流であっても、下面部3iに衝突後、外周側放射状にほぼ均等に分散しやすい。
 流出孔3dは、その内周が円筒空間3jの内周とほぼ接するように配置されているので、下面部3iに沿って放射状に分散した冷媒流れ15は、径方向終端の円筒空間3jの外壁に当った場合も、他へ飛散することなくそのまま流出孔3dに流入しやすく、分配効率の高い、ほぼ均等な冷媒の分配、流出が行われる。
 実施の形態4.
 実施の形態4に係る冷媒分配器1は、流入管4と流入部5、分配部3と流入部5、および流出管2と流出部3a、これら各接合部分の基本構成は実施の形態3に係る冷媒分配器1と共通である。このため実施の形態3に係る冷媒分配器1との相違点を主に説明する。
 アルミは腐食しやすい金属なので、アルミ配管部品では一般に使用環境等に応じた防食設計を施している。円管自体の防食材としては、素材メーカから、管材を押出しする際に、外表面側に犠牲防食材を同時に押し出す防食層クラッド管や、押出し後に周囲から亜鉛を溶射する亜鉛溶射管等、板材の防食材としては、犠牲防食材を同時に圧延することで防食層を一体形成される防食層クラッド板が提供されている。このような材料に関しては、板厚の比較的薄い板厚材は、広いニーズがあり市場投入されているが、肉厚材はニーズ少なく量産効果が期待できないため、あまり製品化されていない。そこで肉厚の部品の一般的な防食対策としては、板厚をより肉厚にしたり、亜鉛のような犠牲防食材料を対象部位の近傍や表面に配置したりすることにより、腐食進行を遅らせる方法を取ることがある。
 実施の形態4におけるアルミ製の分配部3は、上記のとおり、厚板からの冷間鍛造的な絞り加工(あるいは機械加工)およびプレス加工で形成され、本体部3bは板厚3mm以上の厚板として残っているので肉厚維持が防食対策たり得るが、肉薄の流出部3aについては、亜鉛含有材を近傍に配置する等の対策を追加している。
 図14は、実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した縦断面図である。
 図15は、実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した斜視図である。
 図16は、実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した斜視断面図である。
 図17は、実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した断面詳細図である。
 図14~17に示すように、分配部3の上面にはN本の流出部3aの根元部3fに対して、内接円の直径以下の径に成形された内周リングろう材B17と、外接円の直径以上の径に成形された外周リングろう材C18が各1個配置されている。すなわち、複数の流出部3aの外接円の外側に配置された外周リングろう材C18と、複数の流出部3aの内接円の内側に配置された内周リングろう材B17とを有している。外周リングろう材C18は、アルミろう付け用のアルミを主体としたろう材に比べて、亜鉛(Zn)を多めに含有した材料である。
 流出管2と流出部3aとのバーナろう付け時に分配部3を加熱すると、実施の形態4に係る通常のリングろう材A13と同時に、その入熱が根元部3fに配置された内周リングろう材B17と外周リングろう材C18にも伝達し、これらリングろう材が融解することにより、溶け出した亜鉛(Zn)が流出部3aの根元部3fの周囲や天板部3g上面に拡散、配置され、腐食寿命を満足する犠牲防食効果を得ることができる。
 本実施の形態4によれば、亜鉛溶射や亜鉛塗料などの特別な防食処理工程を別途要することなく、一般的なリングろうと同時に亜鉛入りのリングろう材を供給して、通常のバーナ等のろう付け加熱を施すだけで、本実施例における厚肉の本体部3bと薄肉の流出部3aからなる分配部3の防食対策を簡易に実現することができる。
 なお、上記実施の形態では、流出部3aの根元部3fに対して内接円の直径以下の径の内周リングろう材B17と、外接円の直径以上の径の外周リングろう材C18の各1個を根元部3fに配置する例を示したが、流出部3aの外径より少し大きめの亜鉛含有のリングろう(図示せず)N個を根元部3fに配置する方法を用いても類似の効果が得られる。また、亜鉛含有量や、流出部3aの根元部3fに対する内接円、外接円からの距離等は、腐食環境条件に応じてあらかじめ決定すればよい。また、上記の亜鉛含有材料は、ろう材以外で、たとえば亜鉛フープ材そのものも一見よさそうだが、実際にはエロージョンを起こしやすく注意を要するので、使用量とろう付け性をもとにその適用可否を決定することができる。
 実施の形態5.
 実施の形態5に係る冷媒分配器1は、流入管4と流入部5、分配部3と流入部5、および流出管2と流出部3a、これら各接合部の基本構成は実施の形態3に係る冷媒分配器1と共通である。このため実施の形態3に係る冷媒分配器1との相違点を主に説明する。
 本実施の形態5でのプレス加工という作業性のよい工法で、多岐の分配数Nの用途に対応するために以下の方法を用いる。
 図18は、実施の形態5に係る分配数N=7の製品において、分配部3と、流出管2及びプラグ20とのろう付け接合前の状態を示した斜視図である。
 分配部3の流出部3aの1か所にプラグ20にて栓をした状態で通常のバーナろう付けを行うことにより、プレス加工、ろう付けの作業性、標準化という分配部3の利点を活かし、プラグ20とセットで安価な分配部3を適用しながら、プレス加工段階(N=8)とは異なる分配数(たとえばN=7)に容易に対応することができる。また、プラグ20は流出管2とのアルミろう付けを行いやすくするため、流入部5側端面を中抜き形状とすることにより、熱容量を小さくすることができる。
 図19は、実施の形態5に係る分配数N=6の製品において、分配部3と、流出管2及びバイパス管21とのろう付け接合前の状態を示した斜視図である。
 図20は、実施の形態5に係る分配数N=6の製品において、分配部3と、流出管2及びバイパス管21とのろう付け接合前の状態を示した断面図である。
 分配部3の流出部3aの2か所に、バイパス管21にてバイパスした状態で通常のバーナろう付けを行うことにより、上記同様にプレス加工、ろう付けの作業性、標準化という分配部3の利点を活かし、バイパス管21とセットで安価な分配部3を適用しながら、プレス加工段階(N=8)とは異なる分配数(たとえばN=6)に容易に対応することができる。
 上記実施例では、プレス加工で形成したN=8の分配部3を、N=7、および、N=6の製品に適用する例を示した。製品の分配数がプレス加工段階での分配数Nの約数、すなわち、本例ではN=2、または、N=4の場合は、それらを均等配置するように残りを上記方法で閉栓すれば、その構成で容易にほぼ均等な分配が得られる。約数以外の場合は、均等な分配を確保するため、閉栓状態で得られる各流出部3aでの圧損に応じて、流出管2長をあらかじめ調整設計したり、また、バイパス管21でバイパスする位置を対角線上等にすることで偏流の影響を最小化したりすることにより、所望の分配性能設計が可能となる。
 なお、上記全ての実施例では、ろう付け加熱の方法として、バーナの例を示したが、本発明の分配部3の特長を活かせるのであればこれに限るものではなく、熱風、ヒータ(シーズ、ハロゲン)、高周波誘導加熱、電気炉等、適切な加熱方法を組み合せればよい。
 また、上記実施の形態1~5と5通りの組立構造例を示したが、本発明による分配部3の特長を活かせるのであれば、無論、これに限るものではなく、流出管2、流入部5、流入管4ほか、多岐の配管部品との組合せ構造に適用しても、類似の効果が期待できる。
 また、上記実施例では、冷間鍛造的なプレスを用いたが、分配部3の肉厚な天板部3gと肉薄の流出部3aとを一体で形成し、本例の特長を活かせるのであれば、必ずしもこの工法に限るものではなく、対象製品に応じて機械加工や他の加工法と組み合せればよい。
 なお、本実施の形態1~5に係る冷媒分配器1は、熱交換器100が蒸発器として機能する時を例に説明したが、熱交換器100が凝縮器として機能する時に適用してもよい。この時は、熱交換器100に流入するガス冷媒を各伝熱管50に分配する役割を果たすものである。
 なお、本実施の形態1~5に係る冷媒分配器1は、アルミ製の例を示したが、従来の空調機器で多用されてきた、黄銅製や銅製のものであっても、より信頼性の高いろう付接合を行うためには、本体部3bの小熱容量化、および流出部3aと流出管2との熱容量差の低減は望ましいので、アルミ製と同様のプレス金型で成形することが可能であり、類似の効果を発揮する。
 なお、近年、省エネを追及する目的やオゾン層破壊を防止する目的、また地球温暖化防止の目的からR410A、R404A、R32やCOのように高圧で作動する冷媒が採用される傾向にある。従来のHCFC冷媒に比べ高圧が高く、又低圧は低くなる場合があるため、ろう付け精度の向上がガス漏れ防止に大きく影響を及ぼす。本発明は、適正な部材への入熱により、熟練の作業者でなくても安定的なろう付けを実施することができ、冷媒漏洩がなく品質の高い冷媒分配器を提供することが可能になる。
 1 冷媒分配器、2 流出管、2a 拡開部、2b 基部、3 分配部、3a 流出部、3b 本体部、3c 切欠部、3d 流出孔、3e 拡開部、3f 根元部、3g 天板、3h 胴体部、3i 下面部、3j 円筒空間、4 流入管、5 流入部、5a 円板部、5b 円筒部、5c 切欠部、5d リブ、5e 切欠部、5f 外周筒部、6 接合部、7 接合部、8 接合部、9 配管止め部、10 切欠部、12 フレア部、13 リングろう材A、14 絞り部、15 冷媒流れ、16 隅部、17 内周リングろう材B、18 外周リングろう材C、20 プラグ、21 バイパス管、50 伝熱管、51 フィン、52 ガスヘッダー、100 熱交換器。

Claims (20)

  1.  流入管から冷媒が流入する流入部と、流入した冷媒を複数の流出管に分配する分配部とを有する冷媒分配器であって、
     前記分配部は、前記流入部と接続される本体部と、前記流出管に接続される複数の流出部と、により構成され、
     前記流出部は前記本体部から突設され、該本体部と一体に形成された冷媒分配器。
  2.  前記分配部は、プレス加工により成形された請求項1に記載の冷媒分配器。
  3.  前記本体部は、絞り加工により成形された請求項1に記載の冷媒分配器。
  4.  前記本体部は、前記流出部に開口した流出孔と連通する円筒空間を有し、
     該円筒空間の内周は、前記流出孔の内周と接するように構成された請求項1~3のいずれか1項に記載の冷媒分配器。
  5.  前記分配部、前記流入部、前記流出管及び前記流入管はアルミ製であり、
     前記流出部と前記流出管、前記本体部と前記流入部、前記流入部と前記流入管、をそれぞれろう付け接合する請求項1~4のいずれか1項に記載の冷媒分配器。
  6.  前記流出部は円管形状であり、該流出部の外径と肉厚の寸法は、前記流出管の外径と肉厚の寸法と同一である請求項1~5のいずれか1項に記載の冷媒分配器。
  7.  前記流入部は、前記流入管に接続する円筒部と、前記本体部に接続する円板部とを有し、前記円筒部の内面側には、前記流入管が挿入され、
     前記円板部は、前記本体部の内面側に挿入され、
     前記流出部の端部は、前記流出管に設けられた拡開部の内面側に挿入された請求項1~6のいずれか1項に記載の冷媒分配器。
  8.  前記流入部は、前記流入管に接続する円筒部と、前記本体部に接続する円板部とを有し、
     前記円筒部の外面側には、前記流入管が挿入され、
     前記円板部の外周には、内面側に前記本体部が挿入される円筒形状のリブが形成され、
     前記流出部の端部には、内面側に前記流出管が挿入される拡開部が形成された請求項1~6のいずれか1項に記載の冷媒分配器。
  9.  前記流出部は円管形状であり、該流出部の内径寸法は、前記流出管の外径寸法とほぼ同一であり、前記流出部の肉厚寸法は、前記流出管の肉厚寸法の1~2倍で構成された請求項1~5のいずれか1項に記載の冷媒分配器。
  10.  前記本体部の天板を構成する天板部の肉厚寸法は、前記流出部の肉厚寸法の3倍以上の肉厚で構成された請求項1~5、9のいずれか1項に記載の冷媒分配器。
  11.  前記流出部の軸方向長さは、前記流出部と前記流出管との軸方向におけるろう付け接合長さの半分以上の寸法として構成された請求項1~5、9~10のいずれか1項に記載の冷媒分配器。
  12.  前記流出部に開口する流出孔内には、前記流出孔の内径より径の小さい配管止め部が形成された請求項1~5、9~11のいずれか1項に記載の冷媒分配器。
  13.  前記流出部の端部には、前記流出部の外方に拡開するフレア部が形成された請求項1~5、9~12のいずれか1項に記載の冷媒分配器。
  14.  前記流入部は、前記流入管に接続する円筒部と、前記本体部に接続する外周筒部とを有し、前記円筒部の内面側には、前記流入管が挿入され、
     前記外周筒部は、前記本体部の内面側に挿入され、
     前記流出管の端部は、前記流出部の内径側に挿入された請求項1~5、9~13のいずれか1項に記載の冷媒分配器。
  15.  前記流入部と接続される前記本体部の接続面には、微小な突起が均等間隔で設けられた請求項1~14のいずれか1項に記載の冷媒分配器。
  16.  前記流出部の周囲に亜鉛を含有するリングろう材を配置し、前記リングろう材を加熱することにより、少なくとも前記本体部の上面に、亜鉛を含有する犠牲防食層を形成した請求項1~15のいずれか1項に記載の冷媒分配器。
  17.  前記リングろう材は、複数の前記流出部の外接円の外側に配置された外周リングろう材と、複数の前記流出部の内接円の内側に配置された内周リングろう材の2本で構成された請求項16に記載の冷媒分配器。
  18.  複数の前記流出部の一部には、プラグまたはバイパス配管が取り付けられ、前記流出部の一部が閉栓された請求項1~17のいずれか1項に記載の冷媒分配器。
  19.  前記流入部は、冷媒流路の流路断面積を小さくした絞り部を有する請求項1~18のいずれか1項に記載の冷媒分配器。 
  20.  請求項1~19のいずれか1項に記載の冷媒分配器を用いたヒートポンプ装置。
PCT/JP2015/059983 2014-07-04 2015-03-30 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置 WO2016002280A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/314,676 US10508871B2 (en) 2014-07-04 2015-03-30 Refrigerant distributor, and heat pump device having the refrigerant distributor
GB1622031.1A GB2542070B8 (en) 2014-07-04 2015-03-30 Refrigerant distributor, and heat pump device having the refrigerant distributor
CN201580035160.2A CN106537067B (zh) 2014-07-04 2015-03-30 制冷剂分配器和具有该制冷剂分配器的热泵装置
JP2016531145A JP6494623B2 (ja) 2014-07-04 2015-03-30 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2014/067989 2014-07-04
PCT/JP2014/067989 WO2016002088A1 (ja) 2014-07-04 2014-07-04 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置

Publications (1)

Publication Number Publication Date
WO2016002280A1 true WO2016002280A1 (ja) 2016-01-07

Family

ID=55018684

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/067989 WO2016002088A1 (ja) 2014-07-04 2014-07-04 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置
PCT/JP2015/059983 WO2016002280A1 (ja) 2014-07-04 2015-03-30 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067989 WO2016002088A1 (ja) 2014-07-04 2014-07-04 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置

Country Status (5)

Country Link
US (1) US10508871B2 (ja)
JP (1) JP6494623B2 (ja)
CN (1) CN106537067B (ja)
GB (1) GB2542070B8 (ja)
WO (2) WO2016002088A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955488B1 (ja) * 2015-01-07 2016-07-20 三菱電機株式会社 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置
EP3290830A1 (en) * 2016-08-29 2018-03-07 Advanced Distributor Products LLC Refrigerant distributor for aluminium coils
WO2019151385A1 (ja) 2018-01-31 2019-08-08 ダイキン工業株式会社 冷媒分流器及び空気調和機
JP2019132518A (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 冷媒分流器及び空気調和機
US11181305B2 (en) 2018-01-31 2021-11-23 Daikin Industries, Ltd. Heat exchanger or refrigeration apparatus including heat exchanger
WO2023074328A1 (ja) * 2021-10-25 2023-05-04 ダイキン工業株式会社 熱交換器、空気調和装置、及び熱交換器の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225338B (zh) * 2016-09-28 2018-12-25 南京冷德节能科技有限公司 用于干式管壳式蒸发器的嵌入式均流装置及其安装方法
JP6744842B2 (ja) * 2017-06-06 2020-08-19 三菱日立パワーシステムズ株式会社 回転電機固定子の中空金属部品、回転電機、中空金属部品の製造方法
US20200033073A1 (en) * 2018-07-25 2020-01-30 Mahle International Gmbh Heat exchanger
JP7069350B2 (ja) * 2019-01-10 2022-05-17 三菱電機株式会社 熱交換器、及び冷凍サイクル装置
US12000633B2 (en) * 2019-01-21 2024-06-04 Mitsubishi Electric Corporation Outdoor unit and air-conditioning apparatus
CN114076528B (zh) * 2020-08-13 2024-03-26 中国石油化工股份有限公司 管壳式换热器和流化床换热器
CN118057098A (zh) * 2022-11-18 2024-05-21 浙江盾安禾田金属有限公司 分液器及具有其的换热器组件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148167A (ja) * 1990-10-09 1992-05-21 Matsushita Refrig Co Ltd 冷媒分流器及び冷媒分流装置
JPH08159615A (ja) * 1994-12-07 1996-06-21 Toshiba Corp 冷凍サイクルの冷媒分流構造
JPH08226729A (ja) * 1995-02-21 1996-09-03 Hitachi Ltd 空気調和機用一体形冷凍サイクル部品及び該部品を備えた空気調和機
JPH11316066A (ja) * 1998-05-07 1999-11-16 Mitsubishi Electric Corp 気液二相分配器およびその製造方法
JP2004330266A (ja) * 2003-05-09 2004-11-25 Denso Corp 積層型熱交換器の製造方法
JP2005114214A (ja) * 2003-10-06 2005-04-28 Sharp Corp 冷媒分流器
JP2006112606A (ja) * 2004-10-18 2006-04-27 Calsonic Kansei Corp 多穴管の分岐管への接続構造
WO2010119555A1 (ja) * 2009-04-17 2010-10-21 三菱電機株式会社 熱媒体変換機及び空気調和装置
JP2012013289A (ja) * 2010-06-30 2012-01-19 Mitsubishi Electric Corp 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2027057A (en) * 1933-01-05 1936-01-07 Servel Inc Refrigeration
US3864938A (en) * 1973-09-25 1975-02-11 Carrier Corp Refrigerant flow control device
JPS54150541A (en) * 1978-05-18 1979-11-26 Honda Motor Co Ltd Crankshaft
ES8302892A1 (es) * 1981-07-08 1983-02-16 Sueddeutsche Kuehler Behr "perfeccionamientos en los evaporadores".
JPH0631001B2 (ja) * 1985-10-25 1994-04-27 豊田工機株式会社 動力舵取装置の操舵力制御装置
US4829944A (en) 1986-06-25 1989-05-16 Showa Aluminum Corporation Intake manifold and process for producing same
JPS63264293A (ja) * 1987-04-22 1988-11-01 Showa Alum Corp 吸気マニホ−ルドの製造方法
US5341656A (en) * 1993-05-20 1994-08-30 Carrier Corporation Combination expansion and flow distributor device
CN1188885A (zh) * 1997-01-20 1998-07-29 三星电子株式会社 空调机用热交换机的制冷剂分配器
DE69931914T2 (de) * 1998-05-29 2007-01-18 Daikin Industries, Ltd. Vorrichtung zum zusammenfügen und zum aufteilen einer strömung und die vorrichtung verwendender wärmeaustauscher
CN1427230A (zh) * 2001-12-17 2003-07-02 乐金电子(天津)电器有限公司 空调器中用来固定毛细管的分配管结构
JP4000966B2 (ja) * 2002-09-12 2007-10-31 株式会社デンソー 蒸気圧縮式冷凍機
JP2005292035A (ja) * 2004-04-02 2005-10-20 Shin Kobe Electric Mach Co Ltd 電池状態検知方法
US7392664B2 (en) * 2005-09-27 2008-07-01 Danfoss Chatleff, Inc. Universal coupling device
ES2750364T3 (es) * 2011-02-07 2020-03-25 Carrier Corp Anillo de soldadura fuerte
JP5738781B2 (ja) * 2012-02-10 2015-06-24 ダイキン工業株式会社 空気調和装置
JP2013234828A (ja) * 2012-05-11 2013-11-21 Mitsubishi Electric Corp ディストリビュータ、室外機及び冷凍サイクル装置
JP5998632B2 (ja) * 2012-05-21 2016-09-28 ダイキン工業株式会社 分流器および空気調和機
CN202885363U (zh) * 2012-09-27 2013-04-17 广东美的电器股份有限公司 用于分配制冷剂的分配器
JP5713509B2 (ja) * 2013-07-23 2015-05-07 株式会社関プレス 金属板又は金属棒の端部断面の内部割裂方法、並びに該内部割裂方法による金属容器と金属管の製造方法及び金属部品の接合方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148167A (ja) * 1990-10-09 1992-05-21 Matsushita Refrig Co Ltd 冷媒分流器及び冷媒分流装置
JPH08159615A (ja) * 1994-12-07 1996-06-21 Toshiba Corp 冷凍サイクルの冷媒分流構造
JPH08226729A (ja) * 1995-02-21 1996-09-03 Hitachi Ltd 空気調和機用一体形冷凍サイクル部品及び該部品を備えた空気調和機
JPH11316066A (ja) * 1998-05-07 1999-11-16 Mitsubishi Electric Corp 気液二相分配器およびその製造方法
JP2004330266A (ja) * 2003-05-09 2004-11-25 Denso Corp 積層型熱交換器の製造方法
JP2005114214A (ja) * 2003-10-06 2005-04-28 Sharp Corp 冷媒分流器
JP2006112606A (ja) * 2004-10-18 2006-04-27 Calsonic Kansei Corp 多穴管の分岐管への接続構造
WO2010119555A1 (ja) * 2009-04-17 2010-10-21 三菱電機株式会社 熱媒体変換機及び空気調和装置
JP2012013289A (ja) * 2010-06-30 2012-01-19 Mitsubishi Electric Corp 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955488B1 (ja) * 2015-01-07 2016-07-20 三菱電機株式会社 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置
EP3290830A1 (en) * 2016-08-29 2018-03-07 Advanced Distributor Products LLC Refrigerant distributor for aluminium coils
US10788243B2 (en) 2016-08-29 2020-09-29 Advanced Distributor Products Llc Refrigerant distributor for aluminum coils
US11460129B2 (en) 2016-08-29 2022-10-04 Advanced Distributor Products Llc Refrigerant distributor for aluminum coils
WO2019151385A1 (ja) 2018-01-31 2019-08-08 ダイキン工業株式会社 冷媒分流器及び空気調和機
JP2019132518A (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 冷媒分流器及び空気調和機
US11137184B2 (en) 2018-01-31 2021-10-05 Daikin Industries, Ltd. Refrigerant distributor and air conditioner
US11181305B2 (en) 2018-01-31 2021-11-23 Daikin Industries, Ltd. Heat exchanger or refrigeration apparatus including heat exchanger
WO2023074328A1 (ja) * 2021-10-25 2023-05-04 ダイキン工業株式会社 熱交換器、空気調和装置、及び熱交換器の製造方法
JP2023063700A (ja) * 2021-10-25 2023-05-10 ダイキン工業株式会社 熱交換器、空気調和装置、及び熱交換器の製造方法
JP7323820B2 (ja) 2021-10-25 2023-08-09 ダイキン工業株式会社 熱交換器、空気調和装置、及び熱交換器の製造方法

Also Published As

Publication number Publication date
CN106537067A (zh) 2017-03-22
GB2542070B (en) 2020-06-10
US20170184351A1 (en) 2017-06-29
GB2542070A8 (en) 2020-07-22
CN106537067B (zh) 2019-12-10
WO2016002088A1 (ja) 2016-01-07
GB201622031D0 (en) 2017-02-08
JP6494623B2 (ja) 2019-04-03
US10508871B2 (en) 2019-12-17
JPWO2016002280A1 (ja) 2017-04-27
GB2542070B8 (en) 2020-07-22
GB2542070A (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6494623B2 (ja) 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置
US9566672B2 (en) Method of manufacturing a heat exchanger
JP5955488B1 (ja) 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置
US20090173130A1 (en) Fluid conduits with integral end fittings and associated methods of manufacture and use
US20140151011A1 (en) Heat exchanger and method of manufacturing the same
JP5738781B2 (ja) 空気調和装置
USRE49842E1 (en) Flaring and swaging bits, and methods using same
JP2014074513A (ja) フィンチューブ熱交換器、ヒートポンプ装置及び伝熱フィン
CN105562864A (zh) 高频感应加热用线圈、配管的钎焊装置及方法
CN103940284B (zh) 换热器及其连接方法
JP5328724B2 (ja) 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置
WO2016103487A1 (ja) 熱交換器および空気調和装置
JP5846934B2 (ja) ステンレス鋼管と他の金属管の接続構造体
JP6644095B2 (ja) 冷媒分流器及び空気調和機
CN103837014A (zh) 换热器及其连接方法
CN216618853U (zh) 管套、管路组件和具有该管路组件的空调
JP2004279025A (ja) クロスフィンチューブ式熱交換器
KR20160117376A (ko) 입출구파이프를 포함한 열교환기 제조방법
CN219141170U (zh) 分流器及具有其的制冷系统
KR101694671B1 (ko) 입출구파이프를 포함한 열교환기 제조방법
KR101694670B1 (ko) 열교환기용 입출구파이프 연결부재
EP3006836B1 (en) Method for manufacturing panel radiator, backup member, and panel radiator
JP7069350B2 (ja) 熱交換器、及び冷凍サイクル装置
KR20170130720A (ko) 열교환기용 입출구 파이프
KR20220022025A (ko) 열교환기용 입출구 파이프의 고정구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531145

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15314676

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201622031

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150330

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815454

Country of ref document: EP

Kind code of ref document: A1