WO2016002280A1 - 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置 - Google Patents
冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置 Download PDFInfo
- Publication number
- WO2016002280A1 WO2016002280A1 PCT/JP2015/059983 JP2015059983W WO2016002280A1 WO 2016002280 A1 WO2016002280 A1 WO 2016002280A1 JP 2015059983 W JP2015059983 W JP 2015059983W WO 2016002280 A1 WO2016002280 A1 WO 2016002280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- outflow
- pipe
- refrigerant distributor
- inflow
- main body
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/027—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
- F28F9/0275—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
- F25B41/42—Arrangements for diverging or converging flows, e.g. branch lines or junctions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0477—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/044—Condensers with an integrated receiver
- F25B2339/0444—Condensers with an integrated receiver where the flow of refrigerant through the condenser receiver is split into two or more flows, each flow following a different path through the condenser receiver
Definitions
- the present invention relates to a refrigerant distributor and a heat pump apparatus having the refrigerant distributor.
- a refrigerant is supplied to each path at the inlet of the heat exchanger.
- a refrigerant distributor is required.
- a refrigerant distributor is required to distribute the refrigerant from the main refrigerant flow path to each unit. In such a refrigerant distributor, it is desired from the viewpoint of further improving the performance of the air conditioner to perform distribution to a plurality of paths more evenly and with less variation.
- the diffusion rate of aluminum in air-conditioning parts has been increasing from the viewpoint of improving the price and performance ratio based on lighter products and material processability.
- the distribution portion of the refrigerant distributor is formed by machining copper or brass, and copper is used for the outflow tube and the inflow tube.
- the outflow pipe and the distribution section, and the inflow pipe and the distribution section are brazed and joined, and the outflow pipe is brazed to the heat transfer pipe of the heat exchanger.
- the heat capacity of the outflow pipe 2 is small and the heat capacity of the distribution section 3 is large, so that the difference in heat capacity is large, and when both members are joined by burner brazing, Management is difficult and brazing is not stable.
- high frequency induction heating coils are often used at the production site of refrigerant distributors (especially in the case of copper or brass) as brazing heating means from the viewpoint of improving the reproducibility of heat input. .
- the distribution portion 3 of the refrigerant distributor 1 is formed by machining aluminum and aluminum is also used for the distribution portion 3, the outflow tube 2 and the inflow tube 4. Is done.
- the outflow pipe 2 and the distribution section 3 and the inflow pipe 4 and the distribution section 3 are brazed and joined.
- the melting point of the brazing material is about 580 ° C.
- the melting point of the base material is about 650 ° C., the difference between the melting point of the brazing material and the melting point of the base material, that is, the allowable temperature range.
- the heat capacity of the distribution part 3 having a cylindrical structure is large and temperature unevenness tends to occur between the inner and outer diameters when joining by burner brazing. Exceeding the range, the base metal is melted, while the brazing material unmelted region is produced, and the temperature control is difficult and the brazing property is deteriorated.
- the reproducibility of heat input is improved, but since the high frequency current flows mainly on the surface of the work due to the skin effect, heating becomes local and the base material is easily melted with aluminum.
- the junction between the distribution section 3 and the outflow pipe 2 of the aluminum refrigerant distributor has a large number of outflow pipes 2 and a small difference in melting point between the brazing material and the base material. Since there is a large difference in heat capacity, there is a problem that it is difficult to ensure brazing joint with high reliability.
- the outflow pipe 2 and the distribution unit 3 having different heat capacities are joined by brazing in the furnace to eliminate the complexity of temperature management (see, for example, Patent Document 1).
- the distribution unit 3 of the refrigerant distributor 1 is formed by machining, aluminum has poor cutting properties compared to copper or brass, and takes time for machining, resulting in high machining costs. It was.
- the manufacture of the aluminum refrigerant distributor has been realized by brazing the members having different heat capacities in the furnace as described in Patent Document 1, but the dimensions of the furnace, the workability of the assembly, etc. From the viewpoint, not all members could be brazed in the furnace, for example, the end of the outflow pipe that did not enter the furnace was partially brazed as a separate member. Therefore, the number of members increases and the number of parts to be brazed increases, making the manufacturing process complicated. Since the furnace requires a relatively large cost and space, there is a problem that it is difficult to widely deploy the product widely in general products.
- the present invention has been made in order to solve the above-described problems, and a refrigerant distributor excellent in brazing and joining with a distribution unit and a plurality of outflow pipes and excellent in productivity with a small number of manufacturing steps, and It aims at obtaining the heat pump apparatus which has the refrigerant distributor.
- a refrigerant distributor according to the present invention is a refrigerant distributor having an inflow portion into which a refrigerant flows from an inflow pipe and a distribution portion that distributes the inflowed refrigerant to a plurality of outflow pipes. It comprises a main body part to be connected and a plurality of outflow parts connected to the outflow pipe. The outflow part protrudes from the main body part and is formed integrally with the main body part.
- the outflow portion of the distribution portion protrudes from the main body portion and is formed integrally with the main body portion, the difference in heat capacity between the outflow pipe and the outflow portion is reduced, and further the joining is performed. Since the burner heat can be locally applied to the part, the temperature management of the burner heat is facilitated. Therefore, it is possible to satisfactorily braze and join the distribution portion and the outflow pipe.
- FIG. 1 is a configuration diagram of a heat exchanger using a refrigerant distributor 1 according to Embodiment 1.
- FIG. 1 is a longitudinal sectional view of a refrigerant distributor 1 according to Embodiment 1.
- FIG. 3 is a cross-sectional view of the refrigerant distributor 1 according to Embodiment 1 as seen from the line AA.
- FIG. 6 is a cross-sectional view taken along line AA of another example 1 of the refrigerant distributor 1 according to the first embodiment. 6 is a cross-sectional view taken along line AA of another example 2 of the refrigerant distributor 1 according to Embodiment 1.
- 6 is a cross-sectional view taken along line AA of another example 3 of the refrigerant distributor 1 according to Embodiment 1.
- 6 is a longitudinal sectional view of a refrigerant distributor 1 according to Embodiment 2.
- FIG. It is a longitudinal cross-sectional view of the conventional refrigerant distributor.
- 6 is a longitudinal sectional view of a refrigerant distributor 1 according to Embodiment 3.
- FIG. 6 is a plan view showing a dimensional relationship of a distribution unit 3 according to Embodiment 3.
- FIG. 10 is a longitudinal sectional view showing a dimensional relationship of a distribution unit 3 according to Embodiment 3.
- FIG. 6 is a perspective view showing a state before brazing and joining of the refrigerant distributor 1 and the outflow pipe 2 according to Embodiment 3.
- FIG. 6 is a cross-sectional perspective view showing a state before brazing and joining of the refrigerant distributor 1 and the outflow pipe 2 according to Embodiment 3.
- FIG. It is the longitudinal cross-sectional view which showed the state before brazing joining which has arrange
- FIG. 10 is a detailed cross-sectional view showing a state before brazing and joining in which a ring brazing material B17 and a ring brazing material C18 are arranged at the base portion 3f of the distribution unit 3 according to the fourth embodiment.
- FIG. 1 is a configuration diagram of a heat exchanger using the refrigerant distributor according to the first embodiment.
- the refrigerant distributor 1 according to the first embodiment includes, for example, a two-phase flow that flows into a fin-and-tube heat exchanger 100 including heat transfer tubes 50 and fins 51 when the heat exchanger 100 functions as an evaporator.
- the refrigerant is distributed, and details will be described later.
- the two-phase refrigerant that has flowed into the refrigerant distributor 1 from the inflow pipe 4 branches into the respective outflow sections 3a within the main body 3b of the distribution section 3, and passes through the outflow pipe 2 to constitute each path of the heat exchanger 100. It flows into the heat pipe 50.
- the two-phase refrigerant that has flowed into the heat transfer tube 50 of the heat exchanger 100 exchanges heat with the air passing through the heat exchanger 100 via the fins 51 integrated with the heat transfer tube 50, and evaporates to become a gas refrigerant.
- the gas refrigerant merges at the gas header 52 and flows out toward the suction side of the compressor (not shown).
- the heat transfer tubes 50 and the fins 51 are both made of aluminum or an aluminum alloy.
- the heat transfer tube 50 may be a circular tube, a flat tube, or any other shape.
- FIG. 2 is a longitudinal sectional view of the refrigerant distributor 1 according to the first embodiment.
- FIG. 3 is a cross-sectional view of the refrigerant distributor 1 according to Embodiment 1 as viewed along the line AA.
- the refrigerant distributor 1 according to the present embodiment includes an aluminum inflow portion 5 and an aluminum distribution portion 3.
- the distribution unit 3 is integrally formed including a plurality of outflow portions 3a by pressing, and has a cylindrical main body portion 3b and, for example, four outflow portions 3a in a circular tube shape.
- an outflow hole 3 d communicating with the outflow pipe 2 is opened on the upper surface of the main body 3 b of the distribution unit 3.
- the inflow portion 5 includes a circular disc portion 5a and a cylindrical portion 5b disposed coaxially with the central axis of the disc portion 5a.
- the outflow pipe 2 is provided with an expanded portion 2a that is expanded so that the lower end in FIG. 1 is fitted to the outflow portion 3a from the outside, and has a larger diameter than the base portion 2b. Therefore, when fitting the outflow pipe 2 to the outflow part 3a, the expansion part 2a is inserted into the outflow part 3a, and the step between the base part 2b of the outflow pipe 2 and the expansion part 2a is formed at the upper end of the outflow part 3a. Position by contacting.
- the outer diameter and thickness of the base 2b of the outflow pipe 2 are preferably the same as the outer diameter and thickness of the outflow portion 3a of the distribution section 3.
- the outer periphery of the disk part 5a of the inflow part 5 is fitted into a circular notch 3c formed on the circumferential surface of the lower end of the main body part 3b.
- the outer peripheral surface of the cylindrical inflow pipe 4 is fitted in the circular notch 5c formed in the lower end inner peripheral surface of the cylindrical part 5b of the inflow part 5.
- the burner brazing method is similar to the noco rock brazing method in brazing in a furnace, after applying a fluoride flux to the joint and placing the brazing material on the joint, the brazing material is raised to a melting point of 590 ° C. with a burner, This is a joining method in which a brazing material is melted and joined.
- the gas burner uses city gas, propane, a mixed gas of acetylene and oxygen, or the like.
- brazing is performed in the atmosphere, and the temperature of the joint is directly raised by the burner, so it is difficult to control the temperature.
- the brazing property is poor. If brazing is not successful and an unjoined part is formed, the refrigerant flowing inside flows out to the outside air.
- the outer diameter and thickness of the base 2b of the outflow pipe 2 are the same as the outer diameter and thickness of the outflow portion 3a of the distribution section 3. Since the heat capacity difference between the outflow part 3a and the outflow pipe 2 in the joint part 6 can be reduced, and the burner heat can be given locally to the joint part 6 as well. The temperature management of heat becomes easy, and the distribution part 3 and the outflow pipe 2 can be brazed and joined well.
- the distribution unit 3 and the inflow unit 5 are formed by press working, no machining is required, the number of processing steps can be reduced, and productivity can be improved.
- the burner brazing time per one part of the junction part 6 can be reduced, and productivity can be improved.
- the outflow part 3a is provided on the upper part of the distribution part 3 and is integrally formed by press working, the outflow pipe 2 is brazed at two points per flow path by the conventional refrigerant distributor shown in FIG. The score can be concentrated in one place, and productivity can be improved.
- FIGS. 4 to 6 show modifications of the distribution unit 3 of the refrigerant distributor 1 according to the first embodiment.
- FIG. 4 is a cross-sectional view taken along line AA of another example 1 of the refrigerant distributor 1 according to the first embodiment.
- FIG. 5 is a cross-sectional view taken along line AA of another example 2 of the refrigerant distributor 1 according to the first embodiment.
- FIG. 6 is a cross-sectional view taken along line AA of another example 3 of the refrigerant distributor 1 according to the first embodiment. 4 to 6 show examples in which the number of outflow holes 3d of the distribution unit 3 is 2, 6, or 8, but any number of outflow holes 3d may be provided.
- FIG. The refrigerant distributor 1 according to Embodiment 2 is an embodiment other than the configuration of each joining portion that joins the inflow pipe 4 and the inflow section 5, the distribution section 3 and the inflow section 5, and the outflow pipe 2 and the outflow section 3a. 1 is the same as that of the refrigerant distributor 1. Therefore, differences from the refrigerant distributor 1 according to Embodiment 1 will be mainly described.
- FIG. 7 is a longitudinal sectional view of the refrigerant distributor 1 according to the second embodiment.
- the outflow portion 3a is provided with an expanded portion 3e that is expanded so that the upper end in FIG. 7 is fitted to the outflow pipe 2 from the outside, and has a larger diameter than the outflow portion 3a. Therefore, when fitting the outflow pipe 2 to the expansion part 3e, the outflow pipe 2 is inserted into the expansion part 3e, and the lower end of the outflow pipe 2 comes into contact with the step between the outflow part 3a and the expansion part 3e. Positioned. It is desirable that the outer diameter and thickness of the outflow pipe 2 are the same as the outer diameter and thickness of the outflow portion 3a of the distribution section 3.
- the lower end of the main body part 3 b is fitted to the inner peripheral surface of the cylindrical rib 5 d erected on the outer periphery of the disk part 5 a of the inflow part 5.
- the inner peripheral surface of the cylindrical inflow pipe 4 is fitted in the notch part 5e formed in the lower end outer peripheral surface of the cylindrical part 5b of the inflow part 5.
- the refrigerant distributor 1 includes a junction 6 between the outflow pipe 2 and the outflow portion 3a, a junction 7 between the distribution section 3 and the inflow portion 5, and a junction between the inflow pipe 4 and the inflow portion 5. Since all the members 8 are joined in such a posture that the lower member becomes the outside and receives the upper member, the outflow pipe 2, the distribution part 3, the inflow pipe 4, and the inflow part 5 are collectively changed without changing the brazing attitude. Can be brazed. For this reason, the number of brazing steps can be reduced, and the productivity can be improved.
- brazing process for performing the batch operation of the refrigerant distributor 1 according to the second embodiment can be employed even when the refrigerant distributor 1 according to the first embodiment is turned upside down.
- the outer diameter and the thickness of the outflow pipe 2 are configured to be the same as the outer diameter and the thickness of the outflow part 3a of the distribution part 3 as in the first embodiment, Since the heat capacity difference between the outflow part 3a and the outflow pipe 2 in the part 6 can be reduced, and the burner heat can be given locally to the joint part 6, the temperature control of the burner heat input becomes easy, The distributor 3 and the outflow pipe 2 can be brazed well.
- the distribution unit 3 and the inflow unit 5 are formed by press working, no machining is required, the number of processing steps can be reduced, and productivity can be improved.
- the burner brazing time per one part of the junction part 6 can be reduced, and productivity can be improved.
- outflow part 3a is provided in the upper part of the distribution part 3 and is integrally formed by press working, the brazing of the outflow pipe 2 that has been brazed at two locations per flow path by the conventional refrigerant distributor shown in FIG. The score can be concentrated in one place, and productivity can be improved.
- Embodiment 3 The refrigerant distributor 1 according to the third embodiment is substantially the same as the refrigerant distributor according to the first embodiment, except for the configuration of each joining portion that joins the outflow pipe 2 and the outflow portion 3a. Therefore, differences from the refrigerant distributor 1 according to Embodiment 1 will be mainly described.
- FIG. 9 is a longitudinal sectional view of the refrigerant distributor 1 according to the third embodiment.
- FIG. 10 is a plan view illustrating a dimensional relationship of the distribution unit 3 according to the third embodiment.
- FIG. 11 is a longitudinal sectional view showing a dimensional relationship of the distribution unit 3 according to the third embodiment.
- the main body 3b of the distribution unit 3 is formed by cold forging press-like thick plate drawing (forging drawing).
- the main body 3b is composed of a top plate 3g and a cylindrical body 3h having a cylindrical space 3j therein.
- a corner portion 16 having an R shape is provided at a corner portion where the lower surface portion 3i of the top plate portion 3g and the body portion 3h cross each other for stress relaxation.
- the inflow portion 5 has an outer peripheral cylindrical portion 5f provided on the outer peripheral side of the disc portion 5a and a cylindrical portion 5b to which the inflow pipe 4 is connected, and a circular circle is provided between the outer peripheral cylindrical portion 5f and the cylindrical portion 5b.
- An annular notch 10 is formed.
- the notch 10 is formed for suppressing temperature unevenness when the inflow portion 5 is brazed to the distribution portion 3 and for reducing the heat capacity.
- concentric protrusions are arranged at several locations (3 to 4 locations) at regular intervals as part of the press process for setting the brazing clearance with the outer cylinder portion 5f evenly. (Not shown), making it easy to achieve highly reliable aluminum brazing.
- the thickness of the outflow portion 3a is 1 to 2 times the thickness of the outflow tube 2 (for example, the outer diameter of the outflow portion 3a is 7 mm, the thickness is 1 mm, the outer diameter of the outflow tube 2 is 5 mm, the thickness is 0.7 mm, etc.) It is set to become.
- the base portion 3f of the outflow portion 3a is molded as part of the press process so as to have an R shape for the purpose of stress relaxation when an excessive external force is applied in a manufacturing process or the like.
- the outflow pipe 2 is fitted and brazed to the inner diameter side of the outflow portion 3a. At this time, the lower end of the outflow pipe 2 is positioned in contact with the pipe stopper 9 disposed in the outflow hole 3d.
- the pipe stopper 9 is a step provided so as to have an inner diameter slightly smaller than the inner diameter of the outflow hole 3d as part of the press working of the outflow section 3a.
- the level difference may be about 0.3 mm in the radial direction, for example, so that the pressure itself does not cause pressure loss, and a restriction that the inner diameter is larger than the inner diameter of the outflow pipe 2 and a processing restriction that each part can be formed without problems on press working.
- the inner diameter of the outflow hole 3d may be slightly different from the pipe stopper 9 (not shown, but the portion whose inner diameter is larger than the pipe stopper 9 is only on the outlet part 3a side). Good).
- the depth L from the upper end of the outflow portion 3a in the axial direction of the outflow hole 3d to the pipe stopper 9 is a fitting depth necessary for the brazed joint (brazing in the axial direction of the outflow portion 3a and the outflow pipe 2).
- L ⁇ 6 mm is set when the outer diameter of the outflow pipe 2 is 7 mm.
- this embodiment uses cold forging press work based on such a principle of constant volume, it is possible to realize a thin and tall outflow portion 3a from a thick plate.
- the region where the plate thickness is reduced is finally directly under the outflow portion 3a, but in the process of forming the outflow portion 3a, not limited to this, the necessary region is pressed and pressed into a plurality of steps as appropriate. You can put meat in and out.
- the distribution part 3 and the inflow part 5 and the inflow pipe 4 and the inflow part 5 are separately or in advance, respectively. At the same time, they are joined by brazing in a burner or furnace.
- FIG. 12 is a perspective view showing a state before brazing and joining of the refrigerant distributor 1 and the outflow pipe 2 according to the third embodiment.
- FIG. 13 is a cross-sectional perspective view showing a state before brazing and joining of the refrigerant distributor 1 and the outflow pipe 2 according to the third embodiment.
- a ring brazing material A13 is disposed at the upper end of the outflow portion 3a in advance, and a flare that expands outward from the outflow portion 3a as part of the press processing of the outflow portion 3a so as to easily flow into the gap with the outflow pipe 2 A portion 12 is provided.
- the outer diameter of the flare part 12 is larger than the outer diameter of the outflow part 3a so that the ring brazing material A13 does not easily overflow.
- a plurality of burners are arranged on the outer periphery of the main body 3b of the distribution unit 3, and the outer peripheral side of the main body 3b is heated by fixing or rotating (spinning the workpiece or revolving the burner). Since the main body portion 3b has a heat capacity corresponding to the thickness of the top plate portion 3g necessary for pressure resistance, it tends to cause a temperature gradient inside and outside in the radial direction and uneven temperature in the circumferential direction.
- the outflow part 3a is thin and has a small heat capacity and is disposed on the outer peripheral side of the main body part 3b, the burner heat input mainly stored on the outer peripheral side of the main body part 3b is the entire periphery of the outflow part 3a by heat conduction.
- the outflow part 3a is easily soaked. As described above, the phenomenon in which the outflow portion 3a has less temperature unevenness due to heat conduction and is more easily heated than the main body portion 3b can be confirmed by heat transfer analysis simulation and infrared thermography measurement.
- the flow of the refrigerant in the refrigerant distributor 1 assembled and joined in this way will be described.
- the upper end of the inflow portion 5 is provided with a throttle portion 14 having a reduced flow passage cross-sectional area of the refrigerant flow path so that the refrigerant flowing from the inflow pipe 4 has an appropriate flow rate, and has passed through the throttle portion 14.
- the refrigerant collides with the lower surface portion 3i of the top plate portion 3g. Since the lower surface portion 3i has a planar shape unlike the conical surface in the conventional distributor, even when the refrigerant is a drift where the flow density from the constricted portion 14 is not axisymmetric, the outer surface radially radiates after colliding with the lower surface portion 3i. It is easy to disperse almost uniformly.
- the outflow hole 3d is arranged so that the inner periphery thereof is substantially in contact with the inner periphery of the cylindrical space 3j, the refrigerant flow 15 radially dispersed along the lower surface portion 3i is the outer wall of the cylindrical space 3j at the radial end. In this case, it is easy to flow into the outflow hole 3d as it is without being scattered, and the refrigerant is distributed and outflowed almost uniformly with high distribution efficiency.
- Embodiment 4 FIG.
- the refrigerant distributor 1 according to the fourth embodiment includes an inflow pipe 4 and an inflow part 5, a distribution part 3 and an inflow part 5, an outflow pipe 2 and an outflow part 3 a, and the basic configurations of these joint parts are the same as those in the third embodiment. This is common with the refrigerant distributor 1. Therefore, differences from the refrigerant distributor 1 according to Embodiment 3 will be mainly described.
- Aluminum is a metal that is easily corroded, so aluminum piping parts are generally designed to prevent corrosion according to the usage environment.
- plate materials such as an anticorrosion layer clad tube that simultaneously extrudes the sacrificial anticorrosive material on the outer surface side when extruding the pipe material from the material manufacturer, and a zinc spray tube that sprays zinc from the surrounding after extrusion
- an anticorrosive layer clad plate in which the anticorrosive layer is integrally formed by simultaneously rolling the sacrificial anticorrosive material.
- plate materials having a relatively thin plate thickness have a wide range of needs and are put on the market, but thick materials are not widely commercialized because there are few needs and mass production effects cannot be expected. Therefore, as a general anti-corrosion measure for thick parts, a method of delaying the progress of corrosion by making the plate thickness thicker or by arranging a sacrificial anti-corrosive material such as zinc near or on the target site May take.
- the aluminum distribution portion 3 in the fourth embodiment is formed by cold forging drawing (or machining) and pressing from a thick plate, and the main body portion 3b has a thickness of 3 mm or more. Since it remains as a plate, maintaining the thickness may be a measure against corrosion, but for the thin outflow portion 3a, measures such as arranging a zinc-containing material in the vicinity are added.
- FIG. 14 is a longitudinal sectional view showing a state before brazing and joining in which the ring brazing material B17 and the ring brazing material C18 are arranged at the base portion 3f of the distribution unit 3 according to the fourth embodiment.
- FIG. 14 is a longitudinal sectional view showing a state before brazing and joining in which the ring brazing material B17 and the ring brazing material C18 are arranged at the base portion 3f of the distribution unit 3 according to the fourth embodiment.
- FIG. 15 is a perspective view showing a state before brazing and joining in which the ring brazing material B17 and the ring brazing material C18 are arranged at the base portion 3f of the distribution unit 3 according to the fourth embodiment.
- FIG. 16 is a perspective cross-sectional view showing a state before brazing and joining in which a ring brazing material B17 and a ring brazing material C18 are arranged at the root portion 3f of the distribution unit 3 according to the fourth embodiment.
- FIG. 17 is a detailed cross-sectional view showing a state before brazing and joining in which the ring brazing material B17 and the ring brazing material C18 are arranged at the base portion 3f of the distribution unit 3 according to the fourth embodiment.
- an inner ring brazing material B17 formed on the upper surface of the distribution part 3 with a diameter equal to or smaller than the diameter of the inscribed circle with respect to the root part 3f of the N outflow parts 3a One outer ring brazing material C18 formed to have a diameter equal to or larger than the diameter of the circumscribed circle is disposed. That is, it has the outer periphery ring brazing material C18 arrange
- the outer peripheral ring brazing material C18 is a material containing a larger amount of zinc (Zn) than the brazing material mainly composed of aluminum for aluminum brazing.
- the inner ring ring brazing in which the heat input is arranged at the root portion 3f simultaneously with the normal ring brazing material A13 according to the fourth embodiment. It is transmitted to the material B17 and the outer ring brazing material C18, and when these ring brazing materials are melted, the dissolved zinc (Zn) is diffused and arranged around the root portion 3f of the outflow portion 3a and the top surface of the top plate portion 3g. Thus, a sacrificial anticorrosive effect satisfying the corrosion life can be obtained.
- a special brazing material such as zinc spray or zinc coating is not required separately, and a ring brazing material containing zinc is supplied at the same time as a general ring brazing, so that a normal burner or the like can be used.
- a ring brazing material containing zinc is supplied at the same time as a general ring brazing, so that a normal burner or the like can be used.
- each of the inner ring brazing material B17 having a diameter equal to or smaller than the diameter of the inscribed circle and the outer peripheral ring brazing material C18 having a diameter equal to or larger than the diameter of the circumscribed circle with respect to the root portion 3f of the outflow portion 3a is shown, it is similar even if a method of arranging N pieces of zinc-containing ring wax (not shown) slightly larger than the outer diameter of the outflow portion 3a at the root portion 3f is used. The effect is obtained. Moreover, what is necessary is just to determine zinc content, the inscribed circle with respect to the base part 3f of the outflow part 3a, the distance from a circumscribed circle, etc.
- the zinc hoop material itself, for example, looks good at first glance, but in fact it is prone to erosion and needs attention, so its applicability based on the amount used and brazeability Can be determined.
- Embodiment 5 FIG.
- the refrigerant distributor 1 according to the fifth embodiment includes an inflow pipe 4 and an inflow part 5, a distribution part 3 and an inflow part 5, an outflow pipe 2 and an outflow part 3 a, and the basic configurations of these joint parts are the same as in the third embodiment. This is common with the refrigerant distributor 1. Therefore, differences from the refrigerant distributor 1 according to Embodiment 3 will be mainly described.
- the length of the outflow pipe 2 is adjusted in advance according to the pressure loss in each outflow portion 3a obtained in the closed state, or bypassed by the bypass pipe 21 It is possible to design a desired distribution performance by minimizing the influence of drift by setting the position on a diagonal line or the like.
- a burner has been shown as a brazing heating method.
- the present invention is not limited to this as long as the features of the distribution unit 3 of the present invention can be utilized. Hot air, a heater (seeds) , Halogen), high-frequency induction heating, electric furnace, or the like may be combined.
- the present invention is not limited to this as long as the features of the distribution unit 3 according to the present invention can be utilized. Similar effects can be expected even when applied to a combined structure with various pipe parts such as the part 5 and the inflow pipe 4.
- a cold forging press is used, but the thick top plate portion 3g and the thin outflow portion 3a of the distribution portion 3 are integrally formed so that the features of this example can be utilized. If it exists, it is not necessarily limited to this method, and may be combined with machining or other processing methods according to the target product.
- the refrigerant distributor 1 according to Embodiments 1 to 5 has been described by way of example when the heat exchanger 100 functions as an evaporator, but may be applied when the heat exchanger 100 functions as a condenser. Good. At this time, the gas refrigerant flowing into the heat exchanger 100 is distributed to the heat transfer tubes 50.
- the refrigerant distributor 1 is made of aluminum, it is more reliable even if it is made of brass or copper, which has been widely used in conventional air conditioners.
- it is desirable to reduce the heat capacity of the main body portion 3b and to reduce the difference in heat capacity between the outflow portion 3a and the outflow pipe 2. Therefore, it is possible to form with a press die similar to that of aluminum. It is possible and has a similar effect.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Branch Pipes, Bends, And The Like (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Abstract
Description
また、例えば、複数台の室外機や室内機を並列に接続してなるマルチ型空気調和装置では、メインの冷媒流路から各ユニットへ冷媒を分配するために、冷媒分配器が必要である。
このような冷媒分配器では、複数パスへの分配をより均等に、かつ、ばらつきを小さく行うことが空気調和機のさらなる性能向上の観点から望まれている。また、近年、製品の軽量化や素材加工性に基づく価格、性能比向上の観点から、空調部品にアルミの普及率が高まっている。
従来の冷媒分配器1においては、図8に示すように流出管2の熱容量は小さく、分配部3の熱容量は大きいため熱容量差が大きくなり、バーナろう付けで両部材を接合する場合に、温度管理が難しく、ろう付け性が安定しない。このバーナろう付けの課題に対し、入熱の再現性向上という観点から、ろう付け加熱手段として高周波誘導加熱コイルが冷媒分配器(特に銅または黄銅製の場合)の生産現場でよく用いられている。
このときアルミろう付けは、ろう材の融点が約580℃であるのに対して母材の融点が約650℃と、ろう材の融点と母材の融点との差、すなわち許容温度範囲、が約70℃と銅ろう付けの数分の一と小さいので、バーナろう付けで接合する場合に、円柱構造の分配部3の熱容量が大きく内外径間に温度むらが生じやすく、部分的に許容温度範囲を超え、母材が溶けてしまう一方で、ろう材未溶融の領域が生じるなど、温度管理が難しく、ろう付け性が悪化する。また、高周波誘導加熱コイルを用いた場合は、入熱の再現性は向上するが、高周波電流が表皮効果でワーク表面主体に流れるので、加熱が局所的となり、アルミでは母材が溶けやすい。
そこで、従来は特に熱容量の異なる流出管2と分配部3との接合を炉中ろう付け接合で行い、温度管理の煩雑さを解消していた(例えば特許文献1を参照)。
また冷媒分配器1の分配部3は、削り出し加工で成形されるため、アルミの場合は銅もしくは黄銅に比べて切削性が悪く、機械加工に時間を要するため加工費が高いという問題もあった。
また、全ての接合部分をバーナーろう付けで製作すると、分配部と流出管のように熱容量差が大きい部材同士を接合する場合に温度管理が難しく、ろう付け性が安定しない問題があった。特にアルミ製では、熱容量の大きな分配部をバーナや高周波誘導で加熱すると許容温度を超えるような温度むらが出来やすく、部分的に許容温度範囲を超え、母材が溶けてしまう一方で、ろう材未溶融の領域が生じるなど、温度管理が難しかった。
加えて、冷媒分配器の分配部は、削り出し加工で成形されるため、アルミの場合は銅もしくは黄銅に比べて切削性が悪く、機械加工に時間を要するため加工費が高いという問題もあった。
はじめに、本実施の形態1の冷媒分配器1を用いたフィンアンドチューブ型の熱交換器100の構成について説明する。
図1は、実施の形態1に係る冷媒分配器を用いた熱交換器の構成図である。
本実施の形態1に係る冷媒分配器1は、例えば熱交換器100が蒸発器として機能するときに伝熱管50とフィン51で構成されるフィンアンドチューブ型の熱交換器100に流入する二相冷媒を分配するものであり、詳細については後述する。流入管4から冷媒分配器1に流入した二相冷媒は、分配部3の本体部3b内で各流出部3aに分岐し、流出管2を通って熱交換器100の各パスを構成する伝熱管50に流入する。
伝熱管50とフィン51は、いずれもアルミまたはアルミ合金で構成されている。なお、伝熱管50は、円管、扁平管、その他どのような形状であっても採用可能である。
図2は、実施の形態1に係る冷媒分配器1の縦断面図である。
図3は、実施の形態1に係る冷媒分配器1のA-A線矢視断面図である。
本実施の形態の冷媒分配器1は、アルミ製の流入部5とアルミ製の分配部3から構成されている。分配部3は、プレス加工により複数の流出部3aを含めて一体に成形されており、円筒形状の本体部3bと、円管形状で例えば4箇所の流出部3aと、を有している。分配部3の本体部3bの上面には図2に示すように流出管2に連通する流出孔3dが開口している。流入部5は、円形の円板部5aと、この円板部5aの中心軸に同軸に配置された円筒部5bとにより構成されている。
流出管2の基部2bの外径と肉厚の寸法は、分配部3の流出部3aの外径と肉厚の寸法と同一であることが望ましい。
その後、分配部3と流入部5とをバーナーろう付けにより接合し、さらに流入管4と流入部5、および流出管2と流出部3aとを、それぞれバーナーろう付けにより接合する。
図4は、実施の形態1に係る冷媒分配器1の他の例1のA-A線矢視断面図である。
図5は、実施の形態1に係る冷媒分配器1の他の例2のA-A線矢視断面図である。
図6は、実施の形態1に係る冷媒分配器1の他の例3のA-A線矢視断面図である。
図4~6において、分配部3の流出孔3dの数を、2個、6個、8個とした例を示しているが、これ以外に何個の流出孔3d有していてもよい。
実施の形態2に係る冷媒分配器1は、流入管4と流入部5、分配部3と流入部5、および流出管2と流出部3aとを接合する各接合部分の構成以外は実施の形態1に係る冷媒分配器と共通である。このため実施の形態1に係る冷媒分配器1との相違点を主に説明する。
流出部3aは、図7における上端が流出管2に外側から嵌合するように拡開した拡開部3eが設けられ、流出部3aに比べて大きい口径になっている。よって、流出管2を拡開部3eに嵌合する際には流出管2を拡開部3eに挿入し、流出部3aと拡開部3eとの段差に流出管2の下端が当接して位置決めされる。
流出管2の外径と肉厚の寸法は、分配部3の流出部3aの外径と肉厚の寸法と同一であることが望ましい。
その後、分配部3と流入部5とをバーナーろう付けにより接合し、さらに流入管4と流入部5、および流出管2と流出部3aとを、それぞれバーナーろう付けにより接合する。
実施の形態3に係る冷媒分配器1は、流出管2と流出部3aとを接合する各接合部分の構成以外は実施の形態1に係る冷媒分配器の構成とほぼ共通である。このため実施の形態1に係る冷媒分配器1との相違点を主に説明する。
図10は、実施の形態3に係る分配部3の寸法関係を示す平面図である。
図11は、実施の形態3に係る分配部3の寸法関係を示す縦断面図である。
分配部3の本体部3bは、冷間鍛造プレス的な厚板の絞り加工(鍛造絞り)により成形される。本体部3bは、天板部3gと、円筒空間3jを内部に有する円筒形状の胴体部3hにより構成されている。天板部3gの下面部3iと胴体部3hとが交わる角部分には、応力緩和のためR形状を有する隅部16が設けられている。
T≧D√(0.19P/σ) ・・・・(式1)
で表わされる。ここで対象の冷媒分配器1の仕様として、P=4.15[MPa]、σ=8[MPa](アルミ厚板A1070材の125℃温度補正の引張応力)の場合は、
T≧0.31D
となる。
Dmπ≧p×N>d×N ・・・・(式2)
D=Dm+(d-2t) ・・・・(式3)
であり、式2、式3から、
D≧d×N/π+(d-2t) ・・・・(式4)
という関係がある。
D≧2.23N+5
となる。ここで、式1に式4を代入すれば、
T≧0.69N+1.55 ・・・・(式5)
という関係がある。ここで、本例での分配数N=8の場合、これを式5に代入すれば、
T≧7[mm]
となり、設計圧力に対して必要強度を確保するためには、天板部3gの厚みTは7mm(流出部3a肉厚の7倍)以上となる。これを適用対象全般の分配数N≧3にあてはめれば、天板部3gの厚みTは、流出部3a肉厚の3倍以上必要となる。
流出孔3dの軸方向における流出部3aの上端から配管止め部9までの深さLは、ろう付け継手に必要な嵌まり込み深さ(流出部3aと流出管2との軸方向におけるろう付け接合長さ)として、流出管2の外径φ7mmのときに、L≧6mmと設定される。すると、流出部3aの軸方向長さ(高さh)は、本実施の形態での効果を発揮させるために、ろう付け深さとなるLの半分以上の寸法を確保することが望ましいと考えられるので、この例では、たとえばh=4mmと設定される。
図13は、実施の形態3に係る冷媒分配器1と流出管2とのろう付け接合前の状態を示した断面斜視図である。
流出部3aの上端には、予めリングろう材A13が配置され、流出管2との隙間に流入しやすいよう、流出部3aのプレス加工の一環により、流出部3aの外方に拡開するフレア部12が設けられている。フレア部12の外径は、リングろう材A13が溢れにくいよう、流出部3aの外径よりも大きな寸法となっている。
実施の形態4に係る冷媒分配器1は、流入管4と流入部5、分配部3と流入部5、および流出管2と流出部3a、これら各接合部分の基本構成は実施の形態3に係る冷媒分配器1と共通である。このため実施の形態3に係る冷媒分配器1との相違点を主に説明する。
図14は、実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した縦断面図である。
図15は、実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した斜視図である。
図16は、実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した斜視断面図である。
図17は、実施の形態4に係る分配部3の根元部3fに、リングろう材B17とリングろう材C18を配置したろう付け接合前の状態を示した断面詳細図である。
実施の形態5に係る冷媒分配器1は、流入管4と流入部5、分配部3と流入部5、および流出管2と流出部3a、これら各接合部の基本構成は実施の形態3に係る冷媒分配器1と共通である。このため実施の形態3に係る冷媒分配器1との相違点を主に説明する。
図18は、実施の形態5に係る分配数N=7の製品において、分配部3と、流出管2及びプラグ20とのろう付け接合前の状態を示した斜視図である。
図20は、実施の形態5に係る分配数N=6の製品において、分配部3と、流出管2及びバイパス管21とのろう付け接合前の状態を示した断面図である。
分配部3の流出部3aの2か所に、バイパス管21にてバイパスした状態で通常のバーナろう付けを行うことにより、上記同様にプレス加工、ろう付けの作業性、標準化という分配部3の利点を活かし、バイパス管21とセットで安価な分配部3を適用しながら、プレス加工段階(N=8)とは異なる分配数(たとえばN=6)に容易に対応することができる。
Claims (20)
- 流入管から冷媒が流入する流入部と、流入した冷媒を複数の流出管に分配する分配部とを有する冷媒分配器であって、
前記分配部は、前記流入部と接続される本体部と、前記流出管に接続される複数の流出部と、により構成され、
前記流出部は前記本体部から突設され、該本体部と一体に形成された冷媒分配器。 - 前記分配部は、プレス加工により成形された請求項1に記載の冷媒分配器。
- 前記本体部は、絞り加工により成形された請求項1に記載の冷媒分配器。
- 前記本体部は、前記流出部に開口した流出孔と連通する円筒空間を有し、
該円筒空間の内周は、前記流出孔の内周と接するように構成された請求項1~3のいずれか1項に記載の冷媒分配器。 - 前記分配部、前記流入部、前記流出管及び前記流入管はアルミ製であり、
前記流出部と前記流出管、前記本体部と前記流入部、前記流入部と前記流入管、をそれぞれろう付け接合する請求項1~4のいずれか1項に記載の冷媒分配器。 - 前記流出部は円管形状であり、該流出部の外径と肉厚の寸法は、前記流出管の外径と肉厚の寸法と同一である請求項1~5のいずれか1項に記載の冷媒分配器。
- 前記流入部は、前記流入管に接続する円筒部と、前記本体部に接続する円板部とを有し、前記円筒部の内面側には、前記流入管が挿入され、
前記円板部は、前記本体部の内面側に挿入され、
前記流出部の端部は、前記流出管に設けられた拡開部の内面側に挿入された請求項1~6のいずれか1項に記載の冷媒分配器。 - 前記流入部は、前記流入管に接続する円筒部と、前記本体部に接続する円板部とを有し、
前記円筒部の外面側には、前記流入管が挿入され、
前記円板部の外周には、内面側に前記本体部が挿入される円筒形状のリブが形成され、
前記流出部の端部には、内面側に前記流出管が挿入される拡開部が形成された請求項1~6のいずれか1項に記載の冷媒分配器。 - 前記流出部は円管形状であり、該流出部の内径寸法は、前記流出管の外径寸法とほぼ同一であり、前記流出部の肉厚寸法は、前記流出管の肉厚寸法の1~2倍で構成された請求項1~5のいずれか1項に記載の冷媒分配器。
- 前記本体部の天板を構成する天板部の肉厚寸法は、前記流出部の肉厚寸法の3倍以上の肉厚で構成された請求項1~5、9のいずれか1項に記載の冷媒分配器。
- 前記流出部の軸方向長さは、前記流出部と前記流出管との軸方向におけるろう付け接合長さの半分以上の寸法として構成された請求項1~5、9~10のいずれか1項に記載の冷媒分配器。
- 前記流出部に開口する流出孔内には、前記流出孔の内径より径の小さい配管止め部が形成された請求項1~5、9~11のいずれか1項に記載の冷媒分配器。
- 前記流出部の端部には、前記流出部の外方に拡開するフレア部が形成された請求項1~5、9~12のいずれか1項に記載の冷媒分配器。
- 前記流入部は、前記流入管に接続する円筒部と、前記本体部に接続する外周筒部とを有し、前記円筒部の内面側には、前記流入管が挿入され、
前記外周筒部は、前記本体部の内面側に挿入され、
前記流出管の端部は、前記流出部の内径側に挿入された請求項1~5、9~13のいずれか1項に記載の冷媒分配器。 - 前記流入部と接続される前記本体部の接続面には、微小な突起が均等間隔で設けられた請求項1~14のいずれか1項に記載の冷媒分配器。
- 前記流出部の周囲に亜鉛を含有するリングろう材を配置し、前記リングろう材を加熱することにより、少なくとも前記本体部の上面に、亜鉛を含有する犠牲防食層を形成した請求項1~15のいずれか1項に記載の冷媒分配器。
- 前記リングろう材は、複数の前記流出部の外接円の外側に配置された外周リングろう材と、複数の前記流出部の内接円の内側に配置された内周リングろう材の2本で構成された請求項16に記載の冷媒分配器。
- 複数の前記流出部の一部には、プラグまたはバイパス配管が取り付けられ、前記流出部の一部が閉栓された請求項1~17のいずれか1項に記載の冷媒分配器。
- 前記流入部は、冷媒流路の流路断面積を小さくした絞り部を有する請求項1~18のいずれか1項に記載の冷媒分配器。
- 請求項1~19のいずれか1項に記載の冷媒分配器を用いたヒートポンプ装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/314,676 US10508871B2 (en) | 2014-07-04 | 2015-03-30 | Refrigerant distributor, and heat pump device having the refrigerant distributor |
GB1622031.1A GB2542070B8 (en) | 2014-07-04 | 2015-03-30 | Refrigerant distributor, and heat pump device having the refrigerant distributor |
CN201580035160.2A CN106537067B (zh) | 2014-07-04 | 2015-03-30 | 制冷剂分配器和具有该制冷剂分配器的热泵装置 |
JP2016531145A JP6494623B2 (ja) | 2014-07-04 | 2015-03-30 | 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2014/067989 | 2014-07-04 | ||
PCT/JP2014/067989 WO2016002088A1 (ja) | 2014-07-04 | 2014-07-04 | 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016002280A1 true WO2016002280A1 (ja) | 2016-01-07 |
Family
ID=55018684
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/067989 WO2016002088A1 (ja) | 2014-07-04 | 2014-07-04 | 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置 |
PCT/JP2015/059983 WO2016002280A1 (ja) | 2014-07-04 | 2015-03-30 | 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/067989 WO2016002088A1 (ja) | 2014-07-04 | 2014-07-04 | 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10508871B2 (ja) |
JP (1) | JP6494623B2 (ja) |
CN (1) | CN106537067B (ja) |
GB (1) | GB2542070B8 (ja) |
WO (2) | WO2016002088A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5955488B1 (ja) * | 2015-01-07 | 2016-07-20 | 三菱電機株式会社 | 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置 |
EP3290830A1 (en) * | 2016-08-29 | 2018-03-07 | Advanced Distributor Products LLC | Refrigerant distributor for aluminium coils |
WO2019151385A1 (ja) | 2018-01-31 | 2019-08-08 | ダイキン工業株式会社 | 冷媒分流器及び空気調和機 |
JP2019132518A (ja) * | 2018-01-31 | 2019-08-08 | ダイキン工業株式会社 | 冷媒分流器及び空気調和機 |
US11181305B2 (en) | 2018-01-31 | 2021-11-23 | Daikin Industries, Ltd. | Heat exchanger or refrigeration apparatus including heat exchanger |
WO2023074328A1 (ja) * | 2021-10-25 | 2023-05-04 | ダイキン工業株式会社 | 熱交換器、空気調和装置、及び熱交換器の製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106225338B (zh) * | 2016-09-28 | 2018-12-25 | 南京冷德节能科技有限公司 | 用于干式管壳式蒸发器的嵌入式均流装置及其安装方法 |
JP6744842B2 (ja) * | 2017-06-06 | 2020-08-19 | 三菱日立パワーシステムズ株式会社 | 回転電機固定子の中空金属部品、回転電機、中空金属部品の製造方法 |
US20200033073A1 (en) * | 2018-07-25 | 2020-01-30 | Mahle International Gmbh | Heat exchanger |
JP7069350B2 (ja) * | 2019-01-10 | 2022-05-17 | 三菱電機株式会社 | 熱交換器、及び冷凍サイクル装置 |
US12000633B2 (en) * | 2019-01-21 | 2024-06-04 | Mitsubishi Electric Corporation | Outdoor unit and air-conditioning apparatus |
CN114076528B (zh) * | 2020-08-13 | 2024-03-26 | 中国石油化工股份有限公司 | 管壳式换热器和流化床换热器 |
CN118057098A (zh) * | 2022-11-18 | 2024-05-21 | 浙江盾安禾田金属有限公司 | 分液器及具有其的换热器组件 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04148167A (ja) * | 1990-10-09 | 1992-05-21 | Matsushita Refrig Co Ltd | 冷媒分流器及び冷媒分流装置 |
JPH08159615A (ja) * | 1994-12-07 | 1996-06-21 | Toshiba Corp | 冷凍サイクルの冷媒分流構造 |
JPH08226729A (ja) * | 1995-02-21 | 1996-09-03 | Hitachi Ltd | 空気調和機用一体形冷凍サイクル部品及び該部品を備えた空気調和機 |
JPH11316066A (ja) * | 1998-05-07 | 1999-11-16 | Mitsubishi Electric Corp | 気液二相分配器およびその製造方法 |
JP2004330266A (ja) * | 2003-05-09 | 2004-11-25 | Denso Corp | 積層型熱交換器の製造方法 |
JP2005114214A (ja) * | 2003-10-06 | 2005-04-28 | Sharp Corp | 冷媒分流器 |
JP2006112606A (ja) * | 2004-10-18 | 2006-04-27 | Calsonic Kansei Corp | 多穴管の分岐管への接続構造 |
WO2010119555A1 (ja) * | 2009-04-17 | 2010-10-21 | 三菱電機株式会社 | 熱媒体変換機及び空気調和装置 |
JP2012013289A (ja) * | 2010-06-30 | 2012-01-19 | Mitsubishi Electric Corp | 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2027057A (en) * | 1933-01-05 | 1936-01-07 | Servel Inc | Refrigeration |
US3864938A (en) * | 1973-09-25 | 1975-02-11 | Carrier Corp | Refrigerant flow control device |
JPS54150541A (en) * | 1978-05-18 | 1979-11-26 | Honda Motor Co Ltd | Crankshaft |
ES8302892A1 (es) * | 1981-07-08 | 1983-02-16 | Sueddeutsche Kuehler Behr | "perfeccionamientos en los evaporadores". |
JPH0631001B2 (ja) * | 1985-10-25 | 1994-04-27 | 豊田工機株式会社 | 動力舵取装置の操舵力制御装置 |
US4829944A (en) | 1986-06-25 | 1989-05-16 | Showa Aluminum Corporation | Intake manifold and process for producing same |
JPS63264293A (ja) * | 1987-04-22 | 1988-11-01 | Showa Alum Corp | 吸気マニホ−ルドの製造方法 |
US5341656A (en) * | 1993-05-20 | 1994-08-30 | Carrier Corporation | Combination expansion and flow distributor device |
CN1188885A (zh) * | 1997-01-20 | 1998-07-29 | 三星电子株式会社 | 空调机用热交换机的制冷剂分配器 |
DE69931914T2 (de) * | 1998-05-29 | 2007-01-18 | Daikin Industries, Ltd. | Vorrichtung zum zusammenfügen und zum aufteilen einer strömung und die vorrichtung verwendender wärmeaustauscher |
CN1427230A (zh) * | 2001-12-17 | 2003-07-02 | 乐金电子(天津)电器有限公司 | 空调器中用来固定毛细管的分配管结构 |
JP4000966B2 (ja) * | 2002-09-12 | 2007-10-31 | 株式会社デンソー | 蒸気圧縮式冷凍機 |
JP2005292035A (ja) * | 2004-04-02 | 2005-10-20 | Shin Kobe Electric Mach Co Ltd | 電池状態検知方法 |
US7392664B2 (en) * | 2005-09-27 | 2008-07-01 | Danfoss Chatleff, Inc. | Universal coupling device |
ES2750364T3 (es) * | 2011-02-07 | 2020-03-25 | Carrier Corp | Anillo de soldadura fuerte |
JP5738781B2 (ja) * | 2012-02-10 | 2015-06-24 | ダイキン工業株式会社 | 空気調和装置 |
JP2013234828A (ja) * | 2012-05-11 | 2013-11-21 | Mitsubishi Electric Corp | ディストリビュータ、室外機及び冷凍サイクル装置 |
JP5998632B2 (ja) * | 2012-05-21 | 2016-09-28 | ダイキン工業株式会社 | 分流器および空気調和機 |
CN202885363U (zh) * | 2012-09-27 | 2013-04-17 | 广东美的电器股份有限公司 | 用于分配制冷剂的分配器 |
JP5713509B2 (ja) * | 2013-07-23 | 2015-05-07 | 株式会社関プレス | 金属板又は金属棒の端部断面の内部割裂方法、並びに該内部割裂方法による金属容器と金属管の製造方法及び金属部品の接合方法 |
-
2014
- 2014-07-04 WO PCT/JP2014/067989 patent/WO2016002088A1/ja active Application Filing
-
2015
- 2015-03-30 CN CN201580035160.2A patent/CN106537067B/zh active Active
- 2015-03-30 GB GB1622031.1A patent/GB2542070B8/en active Active
- 2015-03-30 US US15/314,676 patent/US10508871B2/en active Active
- 2015-03-30 JP JP2016531145A patent/JP6494623B2/ja active Active
- 2015-03-30 WO PCT/JP2015/059983 patent/WO2016002280A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04148167A (ja) * | 1990-10-09 | 1992-05-21 | Matsushita Refrig Co Ltd | 冷媒分流器及び冷媒分流装置 |
JPH08159615A (ja) * | 1994-12-07 | 1996-06-21 | Toshiba Corp | 冷凍サイクルの冷媒分流構造 |
JPH08226729A (ja) * | 1995-02-21 | 1996-09-03 | Hitachi Ltd | 空気調和機用一体形冷凍サイクル部品及び該部品を備えた空気調和機 |
JPH11316066A (ja) * | 1998-05-07 | 1999-11-16 | Mitsubishi Electric Corp | 気液二相分配器およびその製造方法 |
JP2004330266A (ja) * | 2003-05-09 | 2004-11-25 | Denso Corp | 積層型熱交換器の製造方法 |
JP2005114214A (ja) * | 2003-10-06 | 2005-04-28 | Sharp Corp | 冷媒分流器 |
JP2006112606A (ja) * | 2004-10-18 | 2006-04-27 | Calsonic Kansei Corp | 多穴管の分岐管への接続構造 |
WO2010119555A1 (ja) * | 2009-04-17 | 2010-10-21 | 三菱電機株式会社 | 熱媒体変換機及び空気調和装置 |
JP2012013289A (ja) * | 2010-06-30 | 2012-01-19 | Mitsubishi Electric Corp | 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5955488B1 (ja) * | 2015-01-07 | 2016-07-20 | 三菱電機株式会社 | 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置 |
EP3290830A1 (en) * | 2016-08-29 | 2018-03-07 | Advanced Distributor Products LLC | Refrigerant distributor for aluminium coils |
US10788243B2 (en) | 2016-08-29 | 2020-09-29 | Advanced Distributor Products Llc | Refrigerant distributor for aluminum coils |
US11460129B2 (en) | 2016-08-29 | 2022-10-04 | Advanced Distributor Products Llc | Refrigerant distributor for aluminum coils |
WO2019151385A1 (ja) | 2018-01-31 | 2019-08-08 | ダイキン工業株式会社 | 冷媒分流器及び空気調和機 |
JP2019132518A (ja) * | 2018-01-31 | 2019-08-08 | ダイキン工業株式会社 | 冷媒分流器及び空気調和機 |
US11137184B2 (en) | 2018-01-31 | 2021-10-05 | Daikin Industries, Ltd. | Refrigerant distributor and air conditioner |
US11181305B2 (en) | 2018-01-31 | 2021-11-23 | Daikin Industries, Ltd. | Heat exchanger or refrigeration apparatus including heat exchanger |
WO2023074328A1 (ja) * | 2021-10-25 | 2023-05-04 | ダイキン工業株式会社 | 熱交換器、空気調和装置、及び熱交換器の製造方法 |
JP2023063700A (ja) * | 2021-10-25 | 2023-05-10 | ダイキン工業株式会社 | 熱交換器、空気調和装置、及び熱交換器の製造方法 |
JP7323820B2 (ja) | 2021-10-25 | 2023-08-09 | ダイキン工業株式会社 | 熱交換器、空気調和装置、及び熱交換器の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106537067A (zh) | 2017-03-22 |
GB2542070B (en) | 2020-06-10 |
US20170184351A1 (en) | 2017-06-29 |
GB2542070A8 (en) | 2020-07-22 |
CN106537067B (zh) | 2019-12-10 |
WO2016002088A1 (ja) | 2016-01-07 |
GB201622031D0 (en) | 2017-02-08 |
JP6494623B2 (ja) | 2019-04-03 |
US10508871B2 (en) | 2019-12-17 |
JPWO2016002280A1 (ja) | 2017-04-27 |
GB2542070B8 (en) | 2020-07-22 |
GB2542070A (en) | 2017-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6494623B2 (ja) | 冷媒分配器、及びその冷媒分配器を有するヒートポンプ装置 | |
US9566672B2 (en) | Method of manufacturing a heat exchanger | |
JP5955488B1 (ja) | 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置 | |
US20090173130A1 (en) | Fluid conduits with integral end fittings and associated methods of manufacture and use | |
US20140151011A1 (en) | Heat exchanger and method of manufacturing the same | |
JP5738781B2 (ja) | 空気調和装置 | |
USRE49842E1 (en) | Flaring and swaging bits, and methods using same | |
JP2014074513A (ja) | フィンチューブ熱交換器、ヒートポンプ装置及び伝熱フィン | |
CN105562864A (zh) | 高频感应加热用线圈、配管的钎焊装置及方法 | |
CN103940284B (zh) | 换热器及其连接方法 | |
JP5328724B2 (ja) | 冷媒分配器及びこの冷媒分配器を用いたヒートポンプ装置 | |
WO2016103487A1 (ja) | 熱交換器および空気調和装置 | |
JP5846934B2 (ja) | ステンレス鋼管と他の金属管の接続構造体 | |
JP6644095B2 (ja) | 冷媒分流器及び空気調和機 | |
CN103837014A (zh) | 换热器及其连接方法 | |
CN216618853U (zh) | 管套、管路组件和具有该管路组件的空调 | |
JP2004279025A (ja) | クロスフィンチューブ式熱交換器 | |
KR20160117376A (ko) | 입출구파이프를 포함한 열교환기 제조방법 | |
CN219141170U (zh) | 分流器及具有其的制冷系统 | |
KR101694671B1 (ko) | 입출구파이프를 포함한 열교환기 제조방법 | |
KR101694670B1 (ko) | 열교환기용 입출구파이프 연결부재 | |
EP3006836B1 (en) | Method for manufacturing panel radiator, backup member, and panel radiator | |
JP7069350B2 (ja) | 熱交換器、及び冷凍サイクル装置 | |
KR20170130720A (ko) | 열교환기용 입출구 파이프 | |
KR20220022025A (ko) | 열교환기용 입출구 파이프의 고정구조 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15815454 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016531145 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15314676 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 201622031 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20150330 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15815454 Country of ref document: EP Kind code of ref document: A1 |