WO2016000617A1 - 用于晶体培养的坩埚 - Google Patents

用于晶体培养的坩埚 Download PDF

Info

Publication number
WO2016000617A1
WO2016000617A1 PCT/CN2015/083053 CN2015083053W WO2016000617A1 WO 2016000617 A1 WO2016000617 A1 WO 2016000617A1 CN 2015083053 W CN2015083053 W CN 2015083053W WO 2016000617 A1 WO2016000617 A1 WO 2016000617A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
embossing pattern
partially
depressions
single crystal
Prior art date
Application number
PCT/CN2015/083053
Other languages
English (en)
French (fr)
Inventor
马蒂亚斯 霍赫斯特拉塞尔
程东骥
海克 拉切尔
贝恩德 克莱因帕斯
马丁 韦布霍弗
沃尔夫冈 埃贝勒
沃尔特 黑默勒
Original Assignee
攀时(上海)高性能材料有限公司
攀时奥地利公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 攀时(上海)高性能材料有限公司, 攀时奥地利公司 filed Critical 攀时(上海)高性能材料有限公司
Priority to JP2016576028A priority Critical patent/JP2017521345A/ja
Priority to US15/323,246 priority patent/US20170191188A1/en
Publication of WO2016000617A1 publication Critical patent/WO2016000617A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/007Apparatus for preparing, pre-treating the source material to be used for crystal growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt

Definitions

  • the present invention relates to a crucible for crystal culture, particularly single crystal culture, which is composed of W, Mo, Re, an alloy of these metals or a base alloy, and to a method for producing such a crucible.
  • a crucible for crystal culture in particular for sapphire-single crystal culture, is provided.
  • the crucible is made of W, Mo, Re, an alloy of these metals or a base alloy of these metals.
  • An alloy composed of W, Mo and/or Re means a W-Mo alloy, a W-Re alloy, a Mo-Re alloy or a W-Mo-Re alloy, wherein the total content of Mo, W and Re is >95 atomic % Preferably, it is >98 atomic %, particularly preferably >99 atomic % or 99.5 atomic %.
  • the base alloy comprises an alloy in which the proportion of each metal is greater than 90 atomic %, preferably greater than 95 atomic %, particularly preferably greater than 99 atomic %.
  • Other alloying elements may, for example, be high melting point oxides such as ZrO 2 .
  • At least a portion of the outer surface of the crucible (outer surface) at least partially comprises an embossing pattern having an average tread depth of between 5 and 500 ⁇ m, preferably between 10 and 300 ⁇ m, particularly preferably between 15 and 150 ⁇ m, between 20 and 100 ⁇ m or between 30 and 80 ⁇ m.
  • the embossed pattern refers to a pattern which is uniformly formed, for example, in the form of a groove, or formed as a non-uniform structure, for example, in the form of a porous layer.
  • the outer side surface of the crucible is, for example, at least partially provided with the embossing pattern, whereby the side surface has a structured surface.
  • the average tread depth was measured using a conventional profilometer. In order to determine the average tread depth, it is necessary to measure at least 5 or more measurements. If at least five recesses are placed adjacent to each other, the five adjacent recesses are selected to determine the average pattern depth.
  • the embossing pattern is produced, for example, by pressing, for example turning, milling, grinding and/or drilling, after pressing and sintering the body.
  • the embossing pattern may be generated by a non-cutting process such as laser engraving or EDM (electrical discharge machining).
  • the embossing pattern can be formed by a suitable method, such as turning, in the green state of the powder compact, that is, before sintering. This embossing pattern is maintained throughout the subsequent sintering process.
  • the embossing pattern can be formed by a coating.
  • a porous layer is preferably used for this, and the porous layer is formed by cutting a mortar (a mixture of a powder and a binder). For this, the solidification of the coating can be carried out by a separate heat treatment. If the coating is applied to the compact, solidification can also take place during the sintering process.
  • the crucible In the manufacture of a single crystal, the crucible is usually heated externally by means of thermal radiation, which is generated by a heater placed spaced apart from the crucible.
  • the above-described surface having a embossed pattern has, for example, higher irradiance and absorbance than a smooth, such as a polished or polished surface. Due to the structured outer surface, the crucible has a high degree of irradiance/absorbance. For example, when the heating power is lowered, the heat is dissipated faster by the crucible and the generated heat is absorbed by the crucible faster when the heating power is increased.
  • the enthalpy reacts to changes in temperature and the power of the heater, allowing precise adjustment of the temperature of the melt in the crucible Degree and temperature gradient. In this way, stable, reproducible growth results and equally good quality of the single crystals produced by the ruthenium can be obtained.
  • the outer surface of the side wall of the crucible is at least partially provided with a relief pattern.
  • the outer bottom surface of the crucible may additionally be provided with embossing so that all exposed outer surfaces of the crucible have improved irradiance/absorption which faces the heating device during the manufacture of the single crystal.
  • the relief pattern (in cross section) is at least partially formed as a depression surrounding the crucible or a plurality of depressions surrounding the crucible.
  • a groove, groove in the form of a thread which can be produced in a simple manner by turning, is provided.
  • a plurality of adjacently disposed depressions may be provided, such as a plurality of adjacently disposed grooves or grooves.
  • the embossing pattern may be provided with a plurality of recesses in which a plurality of adjacently disposed recesses are formed; for example a plurality of adjacently disposed blinds formed by milling or drilling a hole, or a plurality of pores formed by a porous layer.
  • the (all) embossing pattern and structure of the outer surface of the crucible are preferably formed by the combination of the above-described depressed portions.
  • depressions are preferably dispersed uniformly or uniformly on the outer surface to achieve uniform irradiance/absorbance over the entire outer surface.
  • the single or plurality of depressions preferably have, at least in sections, a section of a circular, trapezoidal, wedge-shaped and/or rectangular shape.
  • the individual or plurality of recesses at least partially have a circular section which has a radius of 0.2 to 10 mm, preferably 0.5 to 8 mm, further preferably 0.6 to 5 mm, particularly preferably 0.8 to 2 mm.
  • the embossing and the recesses can be produced by means of a tool, for example a blade, in a corresponding blade geometry, for which the depth of the pattern can be easily adjusted by the depth of cut.
  • Suitable materials for tools for processing extremely hard and brittle crucible materials are, for example, polycrystalline diamond (PKD) or cubic crystal boron nitride (CBN).
  • the average spacing between adjacent depressions in the axial direction of the crucible is from 0.2 to 10 mm, preferably from 0.6 to 5 mm, further preferably from 0.7 to 2 mm, particularly preferably from 0.8 to 1.5 mm.
  • the average spacing is determined by measuring at least 5 measurements.
  • the average pitch is determined by forming an average value of the respective pitches.
  • the distance can be easily adjusted, for example, by turning in a corresponding manner in the axial direction of the cymbal (in millimeters per revolution). From this The (thread-shaped) embossing pattern as described above is fabricated on the entire outer surface and side of the crucible in one working process and without removing the tool.
  • the inner surface of the crucible directed towards the inner volume at least partially has a (radial and axial) average roughness Ra of 0.1 to 1.6 ⁇ m, preferably 0.2 to 0.4 ⁇ m.
  • the average roughness of the radial direction is measured radially along the longitudinal axis of the crucible and the axis of symmetry along the inner surface and the average roughness of the axial direction is measured along the inner surface in the direction of the longitudinal axis of the crucible.
  • the inner surface is polished and/or polished, in particular the inner surface is polished and/or polished axially. All internal surfaces preferably have the aforementioned Ra value.
  • the interaction between the inner surface of the crucible and the melt is minimized by a low average roughness Ra and a very smooth surface, thereby obtaining stable and reproducible growth results.
  • a low average roughness Ra since there is a low surface tension on a smooth surface, only a small amount of tension is generated in the produced single crystal.
  • the smooth inner surface also reduces the degree of erosion of the crucible during the single crystal manufacturing process, thereby increasing the service life of the crucible and the crucible can be used for single crystal cultivation multiple times.
  • the inner surface of the crucible has a low degree of irradiance due to a low average roughness Ra.
  • the crucible body is composed of W, Mo, Re, an alloy of these metals or a base alloy of these metals, which is formed by pressing or alternatively by pressing and sintering or alternatively by pressing, sintering and forming (for example Formed by pressure rolls) or alternatively by coating methods (for example CVD, powder jet), the total content of Mo, W and Re is >95 atomic %, preferably >98 atomic %, particularly preferably >99 Atomic number % or 99.5 atomic %.
  • the base alloy includes an alloy in which the proportion of various elements or metals is greater than 90 atomic %, preferably greater than 95 atomic %, It is particularly preferably more than 99 atomic%. Other alloying elements may, for example, be high melting point oxides.
  • the outer surface of the crucible body is then processed such that at least a portion of the outer surface at least partially comprises a relief pattern having a pattern depth of between 5 and 500 ⁇ m, preferably between 10 and 300 ⁇ m, particularly preferably between 15 and 150 ⁇ m, between 20 and 100 ⁇ m or between 30 and 80 ⁇ m. .
  • the outer surface of the body is machined, for example by means of a cutting process, such as turning, milling and/or drilling.
  • the inner surface of the crucible or crucible body directed towards the inner cavity such that the inner surface has a (radial and axial) average roughness Ra of 0.1 to 1.6 ⁇ m, preferably 0.2 to 0.3 ⁇ m.
  • the inner surface is processed, for example, by axially polishing and/or polishing.
  • Figure 1 shows a schematic, not to scale representation, of the crucible during the preparation of the single crystal.
  • Figures 2a-b show schematic, not to scale representations of the outer and inner surfaces of the crucible of Figure 1.
  • Figure 3 shows the results of the contour measurement.
  • Figure 1 shows a schematic, not to scale, cross-sectional view of the crucible 2 during the preparation of the single crystal.
  • the crucible 2 is made of W, Mo, Re or an alloy of these metals to withstand the high temperatures in the process of preparing a single crystal, such as a sapphire single crystal.
  • the ⁇ 2 shown schematically is rotationally symmetrical about the yoke axis A, for example cylindrical or substantially cylindrical.
  • the crucible 2 can be formed into a conical shape, thereby making it easy to take out the single crystal 8 produced in the crucible.
  • the outer dimensions of the crucible 2 can be matched to the desired size of the single crystal to be produced.
  • a sapphire single crystal having a weight of 30 kg, 60 kg, 90 kg, 120 kg or more can be prepared with the corresponding crucible 2.
  • the crucible 2 may have, for example, a diameter of 500 mm and a height of approximately 600 mm.
  • the sidewall heaters 10, 10' and the bottom heater 10" require heating of the crucible 2 by means of thermal radiation.
  • the seed crystal 12 is roughly shown above the crucible 2 from which the single crystal growth begins.
  • the seed crystal 12 remains in the seed holder 14 and slowly pulls the seed crystal from the melt in the crucible 2 (Al 2 O 3 for the sapphire single crystal) to prepare a single crystal. It is then shown on the seed crystal 12.
  • Single crystal 8 which has been pulled out of the melt in the lower region of the crucible 2.
  • a Nikon-Carero bubble method or a Czochralski method can be used, in which the crystal is crystallized
  • the species 12 is immersed into the melt from above.
  • the seed crystals can be placed in the bottom region of the crucible 2 and controllably reverse cooled to achieve slow solidification from the melt.
  • the outer surface 4 and the side surface of the crucible 2 have embossed patterns, and Fig. 2a enlarges and exemplarily shows the embossing pattern.
  • the embossing pattern or surface structure has an average pattern depth a of between 5 and 500 ⁇ m, 10 to 300 ⁇ m, 15 to 150 ⁇ m, 20 to 100 ⁇ m or 30 to 80 ⁇ m.
  • the depth of the pattern is measured by a profilometer, for example a Mitutoyo Formtracer SV-C3200.
  • the starting point of the recess constitutes two raised portions and a recessed portion surrounded by the raised portion. At least 5 or more measurement results were measured to determine the average tread depth a. As shown in Fig.
  • the embossed pattern may be composed of a plurality of depressed portions disposed adjacent to each other and having the above-described pattern depth. If at least 5 depressions are placed adjacent to each other, the five adjacent depressions are selected to determine the average pattern depth Degree a.
  • the results of the exemplary profile measurements are given in Figure 3. For this purpose, an average of at least 5 elevations adjacent to one another is calculated and the average tread depth is thus determined.
  • the embossing or structure of the outer surface 4 can be easily produced, for example, by turning or milling.
  • the embossing in the form of a thread can be produced in a simple and rapid manner during the turning process by means of a correspondingly formed tool, a correspondingly adjusted depth of cut and a correspondingly adjusted feed (millimeters per revolution).
  • the recesses have, for example, a conical, wedge-shaped, trapezoidal, circular or rectangular cross section, for example, the cross-sectional shape can be determined simply by selecting the respective tool and the blade shape of the tool.
  • the embossing in the form of a thread comprises a recess having a circular section having an average radius of 0.2 to 10 mm, 0.6 to 5 mm or 0.8 to 2 mm. In order to determine the average radius, at least 5 or more measurements are measured.
  • the average spacing between adjacent recesses in the axial direction of the crucible 2 may be 0.2 to 10 mm, 0.5 to 8 mm, 0.6 to 5 mm, 0.7 to 2 mm, or 0.8 to 1.5 mm.
  • the feed is adjusted to 0.2 to 10 mm per revolution, 0.5 to 8 mm per revolution, 0.6 to 5 mm per revolution or 0.7 to 2 mm per revolution. In order to determine the average spacing, at least 5 measurements are also selected.
  • Suitable materials for processing extremely hard and brittle tantalum materials are, for example, tools having a blade made of polycrystalline diamond (PKD) or cubic crystal boron nitride (CBN).
  • PLD polycrystalline diamond
  • CBN cubic crystal boron nitride
  • the inner surface 6 of the crucible 2 is very smooth compared to the outer surface 4, whereby the inner surface 6 at least partially has a (radial and axial) average roughness Ra of 0.1 to 1.6 ⁇ m, 0.1 to 1 ⁇ m or 0.2 to 0.3 ⁇ m.
  • the inner surface 6 is axially polished.
  • the inner surface 6 can be polished in the axial direction of the crucible 2 to form a particularly smooth surface.
  • the outer surface of the crucible 2 has a high degree of irradiance and absorbance compared to a smooth surface by the embossing pattern.
  • a comparison of the radiated or absorbed thermal radiation of the rough outer surface 4 of the crucible with the smooth inner surface 6 is qualitatively illustrated by means of arrows in Figures 2a-b. Due to the high radiance/absorbance of the outer surface 4, the heat is dissipated faster by the crucible 2 when the heating power is lowered and the generated heat is absorbed by the crucible 2 faster when the heating power is increased.
  • the ⁇ 2 reacts to the temperature change and the power variation of the heaters 10, 10' relatively quickly, so that the temperature and temperature gradient of the single crystal 8 in ⁇ 2 can be accurately adjusted. In this way, stable, reproducible growth can be obtained The result is as well as the quality of the single crystal 8 produced by ⁇ 2.
  • the very smooth inner surface 6 has only low irradiance and absorbance compared to the rough outer surface 4. Therefore, in the upper region of the crucible 2, only a small amount of heat is radiated through the inner surface 6 onto the single crystal 8, in which the single crystal 8 has been formed and the single crystal does not contact the inner surface 4 of the crucible 2. In the lower region of the melt contact inner surface 6 or the crucible wall of the crucible 2, heat is effectively transferred from the crucible 2 into the melt by heat conduction. Thereby, the temperature gradient in the generated single crystal 8 can be precisely controlled. This is particularly advantageous when preparing a single crystal by means of the Niken-Carlofoss method, in which the temperature and temperature gradient of the single crystal and the melt need to be precisely controlled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

本发明涉及一种用于单晶培养的坩埚,该坩埚由W、Mo、Re、这些金属的合金或基础合金构成;本发明还涉及一种坩埚(2)的制造方法,对此坩埚(2)的指向外侧的外表面(4)的至少一部分至少局部地包含具有5至500μm之间平均花纹深度(a)的凹凸花纹。

Description

用于晶体培养的坩埚 技术领域
本发明涉及一种用于晶体培养、特别是单晶培养的坩埚,该坩埚由W、Mo、Re、这些金属的合金或基础合金构成,本发明还涉及这种坩埚的制造方法。
背景技术
近些年来,极力推动了例如蓝宝石单晶的晶体培养,因为特别是单晶的蓝宝石基体用于外延切割氮化镓(GaN),也用在例如LED(发光二极管)和特定半导体激光器的大规模制造中。
已知各种方法用于单晶培养。例如提出了这样的方法,在这些方法中局部或完全地缓慢从熔体拉动晶种,单晶生长从该晶种开始进行;或者在这些方法中将晶种放置在坩埚的底部区域中并且进行可控地反向冷却,从而缓慢地从熔体凝固。在这些方法中采用由高熔点的金属、特别是由Mo、W、Re、Ir或这些金属的合金构成的坩埚。为了获得尽可能不含杂质或缺陷的单晶,精确地控制坩埚和熔体的供热以及坩埚和熔体或单晶的散热是重要的。
发明内容
本发明的目的在于,提供一种经改善的、用于晶体培养的坩埚,以及一种简单的、用于坩埚制造的方法。
通过权利要求1和12的特征实现了该目的。
有利的设计在从属权利要求中给出。
根据权利要求1提供了一种用于晶体培养、特别是用于蓝宝石-单晶培养的坩埚。该坩埚由W、Mo、Re、这些金属的合金或者这些金属的基础合金制得。由W、Mo和/或Re构成的合金是指W-Mo合金、W-Re合金、Mo-Re合金或W-Mo-Re合金,其中Mo、W和Re的总含量 为>95原子数%,优选>98原子数%,特别优选>99原子数%或99.5原子数%。基础合金包括这样的合金,该合金中各个金属的份额大于90原子数%,优选大于95原子数%,特别优选大于99原子数%。其它的合金元素例如可以是高熔点的氧化物,例如ZrO2。坩埚的至少一部分指向外侧的表面(外表面)至少局部地包含具有5至500μm、优选10至300μm、特别优选15至150μm、20至100μm或者30至80μm之间的平均花纹深度的凹凸花纹。在本发明中,凹凸花纹是指这样一种花纹,该花纹均匀地构成、例如以沟纹的形式,或者形成为不均匀的结构、例如以多孔层的形式。坩埚的外侧侧面例如至少局部地设有该凹凸花纹,由此该侧面具有结构化的表面。对此,用常规的轮廓测量仪测定平均花纹深度。为了测定平均花纹深度需要测量至少5个以上的测量结果。如果至少5个凹陷部相邻地安置,则选择这5个彼此相邻的凹陷部来测定平均花纹深度。
例如在压制和烧结坩埚主体之后通过切削加工、比如车削、铣切、磨削和/或钻孔生成该凹凸花纹。替代性地,可以通过非切削的加工、例如激光雕刻或者EDM(electrical discharge machining=电子放电加工)生成所述的凹凸花纹。对此,以粉末压制品的绿色状态,即在烧结之前,就可以借助适合的方法、例如车削形成该凹凸花纹。在随后的烧结过程中一直保持该凹凸花纹。另外,可以通过涂层来形成该凹凸花纹。对此优选采用多孔层,通过切割灰浆(粉末和粘合剂的混合物)形成该多孔层。对此,可以通过单独的热处理进行涂层的凝固。如果将涂层涂在压制品上,那么在烧结过程中也可以进行凝固。
在制造单晶时,通常借助热辐射从外部加热坩埚,该热辐射由和坩埚相隔安置的加热器生成。上述具有凹凸花纹的表面例如比光滑的、比如磨光或抛光的表面具有更高的辐射度和吸收度。由于结构化的外表面,所以该坩埚具有高的辐射度/吸收度。例如在降低加热功率时较快地由坩埚散发热量并且在提高加热功率时较快地由坩埚吸收所生成的热量。由于具有凹凸花纹的表面,坩埚对温度变化和加热器的功率变化较快地作出反应,从而能够精确地调整坩埚中熔体的温 度和温度梯度。以这种方式可以获得稳定的、能够重现的生长结果以及同样好的、通过坩埚制得的单晶的质量。
优选坩埚侧壁的外表面至少局部地设有凹凸花纹。替代性地,坩埚的外部底面也可以额外设有凹凸花纹,从而坩埚的所有暴露的外表面具有改善的辐射度/吸收度,这些外表面在单晶的制造过程中面向加热装置。
优选凹凸花纹(在截面中)至少局部地形成为一个环绕坩埚的凹陷部或者多个环绕坩埚的凹陷部。例如设置一个环形的、呈螺纹形式的、并且能够以简单的方式通过车削制得的沟纹或沟槽。替代性地,可以设置多个相邻安置的凹陷部,例如多个相邻安置的沟纹或沟槽。附加性地或者替代性地,凹凸花纹可以设有多个凹陷部,在这些凹陷部中形成有多个相邻安置的凹陷部;例如多个相邻安置的、借助铣削或钻孔形成的盲孔,或者多个通过一个多孔层形成的气孔。坩埚外表面的(全部的)凹凸花纹以及结构优选由上述凹陷部的结合形成。
这些凹陷部优选均匀的或者均匀相间地分散在外表面上,从而在整个外表面上获得均匀的辐射度/吸收度。
单个或多个凹陷部优选至少局部地具有节圆形、梯形、楔形和/或矩形的截面。例如单个或多个凹陷部至少局部地具有节圆形的截面,该截面具有0.2至10mm、优选0.5至8mm、进一步优选0.6至5mm、特别优选0.8至2mm的半径。该凹凸花纹以及这些凹陷部可以借助工具、例如刀片以相应的刀刃几何形状制得,对此可以通过切削深度容易地调节花纹深度。对于用来加工极其坚硬以及易碎的坩埚材料的工具来说合适的材料例如为多晶的金刚石(PKD)或者立方晶体的氮化硼(CBN)。
特别优选地,在坩埚的轴向方向上相邻凹陷部之间的平均间距为0.2至10mm、优选为0.6至5mm、进一步优选为0.7至2mm、特别优选为0.8至1.5mm。而通过测量至少5个测量结果来测定平均间距。当6个凹陷部连续时,通过形成相应间距的平均值来确定平均间距。在制造凹凸花纹时例如可以借助车削通过在坩埚的轴向方向上相应地调节工具的进给量(以毫米每转给出)容易地调整间距。由此可以 在一个工作进程中并且无需卸下工具地在坩埚的整个外表面以及侧面上制造如上所述的(螺纹形状的)凹凸花纹。
根据一个优选的设计,坩埚的指向内部容腔的内表面至少局部地具有0.1至1.6μm、优选0.2至0.4μm的(径向和轴向)平均粗糙度Ra。沿内表面径向地围绕坩埚的纵轴以及对称轴测得径向的平均粗糙度以及沿内表面在坩埚的纵轴方向上测得轴向的平均粗糙度。例如磨光和/或抛光内表面,特别是轴向地磨光和/或抛光内表面。全部内部表面优选具有之前提及的Ra值。
通过低的平均粗糙度Ra以及很光滑的表面使坩埚内表面和熔体之间的相互作用减到最小,从而获得稳定的并且能够重现的生长结果。另外,由于在光滑的表面上具有低的表面张力,所以在制得的单晶中也只产生少量张力。通过光滑的内表面也减少了单晶制造过程中坩埚的侵蚀度,从而提高了坩埚的使用寿命并且坩埚能够多次地用于单晶培养。此外,坩埚的内表面由于低的平均粗糙度Ra而具有低的辐射度。在坩埚的(暴露的)内部区域中,较少的热量从坩埚的内表面辐射到已经生成的单晶上,在该区域中已经形成了单晶并且该区域不再被熔体所覆盖。相反地,在熔体接触坩埚内表面的该区域中,热量通过热传导有效地转移到熔体中。该效应在各种制备方法、例如直拉法或尼肯-凯罗泡洛斯法中特别有利,在这些方法中需要冷却已经生成的单晶(或晶种),从而精确地控制所生成单晶的温度梯度。这通过坩埚的上述内表面得以确保。另一个重要的优势在于,粗糙的表面促进晶核形成,这在制取单晶的方法中当然是不希望的。
根据权利要求12提供了一种用于晶体培养的坩埚、特别是如上所述坩埚的制造方法。首先,由W、Mo、Re、这些金属的合金或者这些金属的基础合金构成坩埚主体,该坩埚主体经压制形成或者替代性地经压制和烧结形成或者替代性地经压制、烧结和成型(例如通过压辊)形成或者替代性地通过涂层方法(例如CVD、粉末喷射)形成,对此Mo、W和Re的总含量为>95原子数%,优选>98原子数%,特别优选>99原子数%或99.5原子数%。基础合金包括这样的合金,该合金中各种元素或金属的份额大于90原子数%,优选大于95原子数%, 特别优选大于99原子数%。其它的合金元素例如可以是高熔点的氧化物。然后,加工坩埚主体的外表面,从而外表面的至少一部分至少局部地包含具有5至500μm、优选10至300μm、特别优选15至150μm、20至100μm或者30至80μm之间的花纹深度的凹凸花纹。例如借助切削的加工方法、例如车削、铣削和/或钻孔加工坩埚主体的外表面。
优选加工坩埚或者坩埚主体的、指向内部容腔的内表面,从而内表面具有0.1至1.6μm、优选0.2至0.3μm的(径向和轴向)平均粗糙度Ra。例如通过轴向地磨光和/或抛光加工内表面。
通过根据本发明对外表面和内表面的加工实现了上述优势。坩埚的所有上述特征能够与这种坩埚的制造方法任意地结合。
附图说明
根据附图详细阐述本发明的实施方式。
图1示出了在单晶制备过程中坩埚的示意性的、未按正确比例示出的截面视图。
图2a-b示出了图1的坩埚的外表面和内表面的示意性的、未按正确比例示出的视图。
图3示出了轮廓测量的结果。
附图标记说明
2               坩埚
4               外表面
6               内表面
8               单晶/铸块
10、10′、10″  加热器
12              晶种
14              晶种支架
A               坩埚轴
a               花纹深度
b               间距/进给量
具体实施方式
图1示出了在单晶制备过程中坩埚2的示意性的、未按正确比例示出的截面视图。该坩埚2由W、Mo、Re或这些金属的合金制得,以经受住制备单晶、例如蓝宝石单晶过程中的高温。
示意性示出的坩埚2围绕坩埚轴A旋转对称,例如形成圆柱形或者大致呈圆柱形。坩埚2可以形成为圆锥形,从而使得将坩埚中制得的单晶8取出变得容易。坩埚2的外部尺寸可以与希望的、待制备单晶的尺寸相匹配。例如可以用相应的坩埚2制备具有30kg、60kg、90kg、120kg或更多重量的蓝宝石单晶。坩埚2例如可以具有500mm的直径和大致600mm的高度。
示意性示出的侧壁加热器10、10′和底部加热器10″需要借助热辐射对坩埚2加热。在坩埚2上方粗略地示出了晶种12,单晶生长从该晶种开始。晶种12保持在晶种支架14中并且缓慢地从坩埚2中的熔体(对蓝宝石单晶来说为Al2O3)拉动晶种以制备单晶。然后在晶种12上示出了单晶8,该单晶已经在坩埚2的下部区域中的熔体拉出。正如这里示意性所示,例如可以采用尼肯-凯罗泡洛斯法或直拉法,在该方法中将晶种12从上方浸入熔体中。替代性地(未示出),可以将晶种放置在坩埚2的底部区域中并且可控地反向冷却,从而实现缓慢地从熔体凝固。
坩埚2的外表面4以及侧面具有凹凸花纹,图2a放大并且示例性地示出了凹凸花纹。凹凸花纹或表面结构具有在5至500μm、10至300μm、15至150μm、20至100μm或者30至80μm之间的平均花纹深度a。对此,通过轮廓测量仪、例如三丰轮廓测量仪(Mitutoyo Formtracer)SV-C3200进行花纹深度的测量。对此,凹陷部的起点构成两个增高部以及由增高部包围的凹陷部。至少测量5个以上的测量结果以测定平均花纹深度a。如图2a所示,凹凸花纹可以由多个彼此相邻安置的、具有上述花纹深度的凹陷部构成。如果至少5个凹陷部相邻地安置,则选取这5个彼此相邻的凹陷部来测定平均花纹深 度a。示例性轮廓测量的结果在图3中给出。对此,计算至少5个彼此相邻的增高部的平均值并且由此确定平均花纹深度。
外表面4的凹凸花纹或者结构例如可以通过车削或铣削容易地制得。呈螺纹形式的凹凸花纹可以在车削过程中通过相应构成的工具、相应调节的切削深度以及相应调节的进给量(毫米每转)简单并快速地制得。凹陷部例如具有圆锥形、楔形、梯形、节圆形或矩形的截面,对此例如可以通过选择相应的工具以及工具的刀刃形状简单地确定截面形状。根据一个实施例,螺纹形式的凹凸花纹包含具有平均半径为0.2至10mm、0.6至5mm或者0.8至2mm的节圆形截面的凹陷部。为了测定平均半径,还是测量至少5个以上的测量结果。
在坩埚2的轴向方向上相邻凹陷部之间的平均间距可以是0.2至10mm、0.5至8mm、0.6至5mm、0.7至2mm或者0.8至1.5mm。制造时将进给量调节为0.2至10mm每转、0.5至8mm每转、0.6至5mm每转或0.7至2mm每转。为了测定平均间距,也还是选取至少5个测量结果。
用来加工极其坚硬以及易碎的坩埚材料的合适的材料例如为具有由多晶的金刚石(PKD)或者立方晶体的氮化硼(CBN)构成的刀刃的工具。
坩埚2的内表面6与外表面4相比非常光滑,由此内表面6至少局部地具有0.1至1.6μm、0.1至1μm或者0.2至0.3μm的(径向和轴向)平均粗糙度Ra。例如轴向地磨光内表面6。另外,可以在坩埚2的轴向方向上抛光内表面6,从而形成特别光滑的表面。
通过凹凸花纹,坩埚2的外表面相比于光滑的表面具有高的辐射度和吸收度。在图2a-b中借助箭头定性地示出坩埚的粗糙的外表面4与光滑内表面6所放射或者吸收的热辐射的比较。由于外表面4的高的辐射度/吸收度,所以在降低加热功率时较快地由坩埚2散发热量并且在提高加热功率时较快地由坩埚2吸收所生成的热量。由于具有凹凸花纹以及粗糙的表面,因而坩埚2对温度变化和加热器10、10′的功率变化较快地作出反应,从而能够精确地调整坩埚2中单晶8的温度和温度梯度。以这种方式可以获得稳定的、能够重现的生长 结果以及同样好的、通过坩埚2制得的单晶8的质量。
非常光滑的内表面6与粗糙的外表面4相比仅具有低的辐射度和吸收度。因此,在坩埚2的上部区域中,只有少的热量通过内表面6辐射到单晶8上,在该上部区域中已经形成了单晶8并且该单晶不接触坩埚2的内表面4。在坩埚2的、熔体接触内表面6或者坩埚壁的下部区域中,热量通过热传导有效地由坩埚2转移到熔体中。由此可以精确地控制所生成的单晶8中的温度梯度。这在借助尼肯-凯罗泡洛斯法制备单晶时特别有利,在该方法中需要精确地控制单晶和熔体的温度以及温度梯度。

Claims (13)

  1. 一种用于晶体培养、特别是单晶培养的坩埚,所述坩埚由W、Mo、Re、这些金属的合金或基础合金构成,其特征在于,
    坩埚(2)的外表面(4)至少局部地包含具有5至500μm之间的平均花纹深度(a)的凹凸花纹。
  2. 根据权利要求1所述的坩埚,其特征在于,所述凹凸花纹具有10至300μm之间的平均花纹深度(a)。
  3. 根据权利要求1或2所述的坩埚,其特征在于,所述凹凸花纹具有一个或多个凹陷部,所述凹陷部至少局部地在坩埚(2)的外表面(4)上均匀相间地安置。
  4. 根据前述权利要求中任意一项所述的坩埚,其特征在于,所述凹凸花纹形成为环绕坩埚(2)的凹陷部、特别是沟纹或沟槽,或者形成多个环绕坩埚(2)的凹陷部。
  5. 根据前述权利要求中任意一项所述的坩埚,其特征在于,所述凹凸花纹具有一个或多个含有节圆形、梯形、楔形、圆锥形和/或矩形截面的凹陷部。
  6. 根据前述权利要求中任意一项所述的坩埚,其特征在于,所述凹凸花纹至少局部地具有一个或多个含有半径为0.2至10mm的节圆形截面的凹陷部。
  7. 根据前述权利要求中任意一项所述的坩埚,其特征在于,所述凹凸花纹具有一个或多个至少局部地含有半径为0.8至6mm的节圆形截面的凹陷部。
  8. 根据前述权利要求中任意一项所述的坩埚,其特征在于,所述凹凸花纹具有多个凹陷部并且在坩埚(2)的轴向方向上相邻凹陷部之间的平均间距(b)至少局部地在0.2至10mm之间。
  9. 根据前述权利要求中任意一项所述的坩埚,其特征在于,所述凹凸花纹具有多个凹陷部并且在坩埚(2)的轴向方向上相邻凹陷部之间的间距(b)至少局部地在0.8至6mm之间。
  10. 根据前述权利要求中任意一项所述的坩埚,其特征在于,在制备单晶的过程中坩埚(2)的、暴露的外表面(4)、特别是坩埚(2)的侧壁具有凹凸花纹。
  11. 根据前述权利要求中任意一项所述的坩埚,其特征在于,坩埚(2)的、指向内部容腔的内表面(6)至少局部地具有0.1至1.6μm之间的平均粗糙度Ra,特别是经过轴向上的磨光和/或轴向上的抛光。
  12. 一种用于晶体培养的坩埚、特别是根据前述权利要求中任意一项所述的坩埚(2)的制造方法,所述方法具有以下步骤:
    提供经压制形成的、经压制和烧结形成的、经压制、烧结和成型形成的或者通过涂层方法形成的坩埚主体,
    其特征在于
    加工或涂覆坩埚主体的外表面(4),从而外表面(4)的至少一部分具有至少局部地包含5至500μm平均花纹深度的凹凸花纹。
  13. 根据权利要求12所述的方法,所述方法具有以下步骤:加工坩埚(2)的、指向内部容腔的内表面(6),从而所述内表面(6)至少局部地具有0.1至1.6μm的平均粗糙度Ra。
PCT/CN2015/083053 2014-07-02 2015-07-01 用于晶体培养的坩埚 WO2016000617A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016576028A JP2017521345A (ja) 2014-07-02 2015-07-01 結晶を育成するための坩堝
US15/323,246 US20170191188A1 (en) 2014-07-02 2015-07-01 Crucible for growing crystals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410312751.7 2014-07-02
CN201410312751.7A CN105220223A (zh) 2014-07-02 2014-07-02 用于晶体培养的坩埚

Publications (1)

Publication Number Publication Date
WO2016000617A1 true WO2016000617A1 (zh) 2016-01-07

Family

ID=54989477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083053 WO2016000617A1 (zh) 2014-07-02 2015-07-01 用于晶体培养的坩埚

Country Status (4)

Country Link
US (1) US20170191188A1 (zh)
JP (1) JP2017521345A (zh)
CN (1) CN105220223A (zh)
WO (1) WO2016000617A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287652A (zh) * 2017-05-29 2017-10-24 德令哈晶辉石英材料有限公司 一种抑制熔融硅液面振动的石英坩埚及其制备方法
CN108421824A (zh) * 2018-03-12 2018-08-21 陕西三毅有岩材料科技有限公司 铱板及其加工方法、铱坩埚
CN108580549B (zh) * 2018-03-14 2020-06-09 陕西三毅有岩材料科技有限公司 一种铱板及其加工方法和制备的坩埚
JP7155968B2 (ja) * 2018-12-04 2022-10-19 Tdk株式会社 単結晶育成用ルツボ及び単結晶製造方法
CN111286785A (zh) * 2018-12-07 2020-06-16 昭和电工株式会社 晶体生长装置以及坩埚
EP3702483B1 (de) 2019-02-26 2022-05-11 Heraeus Deutschland GmbH & Co. KG Formkörper aus einer molybdän-aluminium-titan-legierung
CN111778557A (zh) * 2020-06-19 2020-10-16 山东新升光电科技有限责任公司 一种制备蓝宝石单晶用坩埚
CN111703698B (zh) * 2020-06-28 2021-12-21 株洲铼因材料技术有限公司 装料容器及其制备方法以及使用其制备高纯铼的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342688B1 (en) * 2000-06-09 2002-01-29 Cti, Inc. Method for preparing iridium crucibles for crystal growth
CN101024898A (zh) * 2007-01-17 2007-08-29 上海晶生实业有限公司 蓝宝石晶体多坩埚熔体生长技术
CN102560631A (zh) * 2012-01-20 2012-07-11 上海中电振华晶体技术有限公司 蓝宝石晶体的生长方法及设备
CN202390577U (zh) * 2011-11-07 2012-08-22 周兵 单晶硅生长炉的石墨坩埚
CN202744653U (zh) * 2012-08-30 2013-02-20 上海杰姆斯电子材料有限公司 一种直拉法制备单晶硅所使用的石墨坩埚
CN103088419A (zh) * 2011-11-07 2013-05-08 周兵 单晶硅生长炉的石墨坩埚
CN103526280A (zh) * 2013-10-12 2014-01-22 南通路博石英材料有限公司 一种内表面具有凹槽拉晶用石英玻璃坩埚的制备方法
CN103668438A (zh) * 2012-08-30 2014-03-26 上海杰姆斯电子材料有限公司 一种直拉法制备单晶硅所使用的石墨坩埚
WO2014050585A1 (ja) * 2012-09-28 2014-04-03 株式会社アライドマテリアル サファイア単結晶育成用坩堝およびサファイア単結晶育成用坩堝の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140392A (ja) * 1982-02-16 1983-08-20 Komatsu Denshi Kinzoku Kk シリコン単結晶引上方法およびその装置
JP2742534B2 (ja) * 1990-04-20 1998-04-22 日本カーボン株式会社 シリコン単結晶引上げ用黒鉛るつぼ
JP2014031291A (ja) * 2012-08-02 2014-02-20 Sharp Corp 単結晶サファイアインゴット及び坩堝

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342688B1 (en) * 2000-06-09 2002-01-29 Cti, Inc. Method for preparing iridium crucibles for crystal growth
CN101024898A (zh) * 2007-01-17 2007-08-29 上海晶生实业有限公司 蓝宝石晶体多坩埚熔体生长技术
CN202390577U (zh) * 2011-11-07 2012-08-22 周兵 单晶硅生长炉的石墨坩埚
CN103088419A (zh) * 2011-11-07 2013-05-08 周兵 单晶硅生长炉的石墨坩埚
CN102560631A (zh) * 2012-01-20 2012-07-11 上海中电振华晶体技术有限公司 蓝宝石晶体的生长方法及设备
CN202744653U (zh) * 2012-08-30 2013-02-20 上海杰姆斯电子材料有限公司 一种直拉法制备单晶硅所使用的石墨坩埚
CN103668438A (zh) * 2012-08-30 2014-03-26 上海杰姆斯电子材料有限公司 一种直拉法制备单晶硅所使用的石墨坩埚
WO2014050585A1 (ja) * 2012-09-28 2014-04-03 株式会社アライドマテリアル サファイア単結晶育成用坩堝およびサファイア単結晶育成用坩堝の製造方法
CN103526280A (zh) * 2013-10-12 2014-01-22 南通路博石英材料有限公司 一种内表面具有凹槽拉晶用石英玻璃坩埚的制备方法

Also Published As

Publication number Publication date
US20170191188A1 (en) 2017-07-06
CN105220223A (zh) 2016-01-06
JP2017521345A (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
WO2016000617A1 (zh) 用于晶体培养的坩埚
TWI746468B (zh) 薄型SiC晶圓之製造方法及薄型SiC晶圓
Walter et al. Laser-structured grinding tools–Generation of prototype patterns and performance evaluation
US8865324B2 (en) Production method for a bulk SiC single crystal with a large facet and monocrystalline SiC substrate with homogeneous resistance distribution
JP6232329B2 (ja) SiC種結晶の加工変質層の除去方法、SiC種結晶及びSiC基板の製造方法
US20120294790A1 (en) Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
JP2013100217A (ja) 炭化珪素インゴットおよび炭化珪素基板、ならびにこれらの製造方法
TW202022176A (zh) 碳化矽晶圓以及碳化矽晶圓的製造方法
CN110076446A (zh) 包含超硬材料的切削工具及其制造方法
JP2011009700A (ja) 化合物半導体基板の製造方法
US20160040317A1 (en) Method for producing single crystal
US9605358B2 (en) Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
WO2015029987A1 (ja) ダイシングブレード
JP6334253B2 (ja) 炭化珪素単結晶インゴットの加工方法
CN109564869A (zh) 电极用环
JP7311953B2 (ja) SiCウェハの製造方法
Hermani et al. Nanosecond laser processing of diamond materials
CN112351843B (zh) 具有贯通孔的工具、金刚石部件和金刚石材料
US9853181B2 (en) Method for preparing a recrystallised silicon substrate with large crystallites
JP2013256424A (ja) サファイア単結晶育成装置
JP6354399B2 (ja) 坩堝および単結晶の製造方法
JP6394124B2 (ja) 坩堝および単結晶の製造方法
JP7185088B1 (ja) SiC基板及びSiCインゴット
JP5991161B2 (ja) 炭化珪素基板および炭化珪素インゴット、ならびにこれらの製造方法
JP7300247B2 (ja) SiCウェハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016576028

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15323246

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15815291

Country of ref document: EP

Kind code of ref document: A1