WO2016000433A1 - 脱水机 - Google Patents
脱水机 Download PDFInfo
- Publication number
- WO2016000433A1 WO2016000433A1 PCT/CN2014/096040 CN2014096040W WO2016000433A1 WO 2016000433 A1 WO2016000433 A1 WO 2016000433A1 CN 2014096040 W CN2014096040 W CN 2014096040W WO 2016000433 A1 WO2016000433 A1 WO 2016000433A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laundry
- motor
- duty ratio
- detection
- dewatering tank
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 claims abstract description 25
- 230000008859 change Effects 0.000 claims abstract description 7
- 230000018044 dehydration Effects 0.000 claims description 108
- 238000006297 dehydration reaction Methods 0.000 claims description 108
- 238000005259 measurement Methods 0.000 claims description 9
- 238000006073 displacement reaction Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 225
- 238000012937 correction Methods 0.000 description 55
- 230000001186 cumulative effect Effects 0.000 description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 40
- 238000005406 washing Methods 0.000 description 30
- 238000012545 processing Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 7
- 238000010981 drying operation Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000004904 shortening Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F34/00—Details of control systems for washing machines, washer-dryers or laundry dryers
- D06F34/14—Arrangements for detecting or measuring specific parameters
- D06F34/16—Imbalance
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F23/00—Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry
- D06F23/04—Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and rotating or oscillating about a vertical axis
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F33/00—Control of operations performed in washing machines or washer-dryers
- D06F33/30—Control of washing machines characterised by the purpose or target of the control
- D06F33/32—Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
- D06F33/40—Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry of centrifugal separation of water from the laundry
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F35/00—Washing machines, apparatus, or methods not otherwise provided for
- D06F35/005—Methods for washing, rinsing or spin-drying
- D06F35/007—Methods for washing, rinsing or spin-drying for spin-drying only
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/02—Characteristics of laundry or load
- D06F2103/04—Quantity, e.g. weight or variation of weight
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/26—Imbalance; Noise level
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2105/00—Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
- D06F2105/46—Drum speed; Actuation of motors, e.g. starting or interrupting
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2105/00—Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
- D06F2105/62—Stopping or disabling machine operation
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F34/00—Details of control systems for washing machines, washer-dryers or laundry dryers
- D06F34/28—Arrangements for program selection, e.g. control panels therefor; Arrangements for indicating program parameters, e.g. the selected program or its progress
- D06F34/32—Arrangements for program selection, e.g. control panels therefor; Arrangements for indicating program parameters, e.g. the selected program or its progress characterised by graphical features, e.g. touchscreens
Definitions
- the invention relates to a dewatering machine.
- Patent Document 1 listed below discloses a washing machine having a dehydrating function.
- the motor that rotates the washing and dewatering tank containing the laundry is controlled to rotate the motor at 120 rpm by controlling the duty ratio of the applied voltage, and then stably rotates at 240 rpm, and finally Stable rotation at 800 rpm.
- the duty ratio at the time when the rotational speed of the motor is accelerated from 120 rpm to 240 rpm and then 3.6 seconds is taken as the reference duty ratio.
- the comparison duty ratio a target value regarding the duty ratio that changes with time in a state where the motor is stably rotated at 240 rpm is calculated based on the reference duty ratio. Further, if the difference between the actual duty ratio acquired at a predetermined timing and the comparison duty ratio at the same timing in a state where the motor is stably rotated at 240 rpm is equal to or greater than a predetermined threshold value, it is determined that the laundry is biased so that the motor is biased. The rotation stops.
- Patent Document 1 Japanese Laid-Open Patent Publication No. 2011-240040
- the reference duty ratio is a major factor in the detection accuracy of whether or not the laundry is biased.
- a time of 3.6 seconds elapses from the acceleration of the motor.
- the duty cycle is always considered to be the reference duty cycle. Therefore, if the reference duty ratio is a duty ratio obtained at a timing deviated from an appropriate timing due to the influence of the load amount, the detection accuracy of the presence or absence of the laundry may have a poor influence.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a dehydrator that improves the detection accuracy of whether or not a laundry is biased.
- Another object of the present invention is to provide a dehydrator which can shorten the time required for the dehydration operation.
- the present invention provides a dehydrator comprising: a dewatering tank for containing laundry, which is rotated to dehydrate the laundry; an electric motor to rotate the dewatering tank; and a load amount measuring device When the water tank starts to rotate, the load amount of the laundry in the dewatering tank is measured, and the drive control device controls the duty ratio of the voltage applied to the motor after the measurement of the load amount by the load amount measuring device.
- the motor is stably rotated at a first rotation speed, and then, in order to actually dehydrate the laundry, the motor is stably rotated at a second rotation speed higher than the first rotation speed;
- the present invention is characterized in that it includes an executing device that selectively performs dehydration for washing based on the index, in a case where the stop control device stops the rotation of the dewatering tank Any one of the rotation of the dewatering tank and the treatment for correcting the deviation of the laundry in the dewatering tank.
- the present invention is characterized in that the drive control device stabilizes the motor at a predetermined speed lower than the first rotation speed before the motor is stably rotated at the first rotation speed In the case where the rotation of the dewatering tank for restarting the dehydration of the laundry is performed, the execution device shortens a period in which the motor is stably rotated at the predetermined speed.
- the present invention provides a dehydrator comprising: a dewatering tank for containing laundry, which is rotated for dehydrating the laundry; an electric motor for rotating the dewatering tank; and a drive control device for controlling the pair a duty ratio of a voltage applied by the motor to cause the motor to stably rotate at a first rotational speed, after which the motor is actually dehydrated to make the motor at a second higher than the first rotational speed
- the rotation speed is stably rotated;
- the obtaining means acquires the duty ratio every predetermined timing within a predetermined period after the acceleration of the motor is started toward the first rotation speed; and the counting means is obtained by the obtaining means If the duty ratio is greater than the duty ratio just acquired, the count value with the initial value of zero is incremented by one, and if the duty ratio obtained by the acquisition device is lower than the duty ratio just acquired before, the The count value is reset to the initial value; and the determining means determines that the laundry is biased in the dewatering tank if the count value is equal to or greater
- the present invention provides a dehydrator comprising: a dewatering tank for containing laundry, which is rotated for dehydrating the laundry; an electric motor for rotating the dewatering tank; and a drive control device for controlling the pair a duty ratio of a voltage applied by the motor to cause the motor to stably rotate at a first rotational speed, after which the motor is actually dehydrated to make the motor at a second higher than the first rotational speed
- the rotation speed is stably rotated
- the obtaining means acquires the duty ratio every predetermined timing while the rotation speed of the motor reaches the second rotation speed from the first rotation speed;
- the determining means if When the duty ratio acquired by the acquisition device is equal to or greater than a predetermined threshold value, it is determined that the laundry is biased in the dewatering tank, and the control device is stopped, and the determination device determines that the laundry is biased. Stopping the rotation of the dewatering tank; receiving means for receiving a selection of dewatering conditions for the laundry; threshold changing means for receiving the selection according to the receiving
- the duty ratio of the voltage applied to the electric motor that rotates the dehydration tank is controlled, whereby the motor is stably rotated at the first rotation speed, and thereafter, the motor is made to be larger than the first The second rotation speed at which the rotation speed is high is stably rotated, thereby actually dehydrating the laundry in the dewatering tank.
- the reference duty cycle is acquired by the acquisition device in the accelerated state of the motor to the first rotational speed. Moreover, the acquisition device acquires the reference share After the air ratio, in the predetermined period, based on the index indicating that the duty ratio of the voltage applied to the motor to maintain the first rotation speed changes from the reference duty ratio, it is determined whether or not the laundry in the dewatering tank is biased. When it is determined that the laundry is biased, the rotation of the dewatering tank is stopped.
- the timing determining means determines the timing at which the acquiring means acquires the reference duty ratio based on the measured amount of load. .
- the reference duty ratio is acquired at an appropriate timing in consideration of the influence of the load amount, and therefore, it is possible to accurately detect the presence or absence of the laundry based on the reference duty ratio. As a result, it is possible to improve the detection accuracy of whether or not the laundry is biased.
- the washing for the washing is performed based on the index indicating that the duty ratio changes from the reference duty ratio.
- the process of correcting the laundry bias can be uniformly performed. Therefore, as long as the deviation of the laundry is small, the dewatering tank can be rotated immediately to start dewatering again, thereby shortening the time required for the dehydration operation.
- the rotation is shortened. During this process, therefore, further time to achieve the dehydration operation is shortened.
- the duty ratio of the voltage applied to the electric motor that rotates the dehydration tank is controlled, whereby the motor is stably rotated at the first rotation speed, and then the motor is compared The second rotational speed at which the first rotational speed is high is stably rotated, thereby actually dehydrating the laundry in the dewatering tank.
- the duty ratio is acquired every predetermined period for a predetermined period, and each duty ratio is The duty cycle just obtained is compared. In detail, if the acquired duty ratio is equal to or higher than the duty ratio just acquired, the count value whose initial value is zero is incremented by one, and if the obtained duty ratio is lower than the duty ratio just acquired before, The count value is reset to the initial value.
- the count value is equal to or greater than a predetermined threshold value, it is determined that the laundry is biased in the dewatering tank, and the rotation of the dewatering tank is stopped.
- the duty ratio of the voltage applied to the electric motor that rotates the dehydration tank is controlled, whereby the motor is stably rotated at the first rotation speed, and then the motor is compared The second rotational speed at which the first rotational speed is high is stably rotated, thereby actually dehydrating the laundry in the dewatering tank.
- the duty ratio is acquired every predetermined timing during the period in which the rotational speed of the motor reaches the second rotational speed from the first rotational speed. When the duty ratio is equal to or greater than a predetermined threshold value, it is determined that the laundry is biased in the dewatering tank, and the rotation of the dewatering tank is stopped.
- the dehydrator can receive a selection of dehydration conditions for the laundry in the receiving device, and can change the threshold according to the received dehydration conditions. Thereby, in the dehydration operation under each dehydration condition, it is possible to detect whether or not the laundry is biased by the threshold value suitable for each dehydration condition, thereby improving the detection accuracy of the presence or absence of the laundry.
- Fig. 1 is a schematic longitudinal sectional right side view of a dehydrator 1 according to an embodiment of the present invention.
- FIG. 2 is a block diagram showing the electrical configuration of the dehydrator 1.
- FIG. 3 is a timing chart showing a state of the number of revolutions of the motor 6 in the spin-drying operation performed by the dehydrator 1.
- FIG. 5A is a flowchart showing an outline of detection 1 to detection 4 for detecting the presence or absence of the laundry in the dehydration tank 4 during the dehydration operation.
- FIG. 5B is a flowchart showing an outline of the detection 1 to the detection 4 for detecting the presence or absence of the laundry in the dehydration tank 4 during the dehydration operation.
- FIG. 6A is a flowchart showing a control operation of the detection 1 and the detection 2.
- FIG. 6B is a flowchart showing the control operation of the detection 1 and the detection 2.
- FIG. 7 is a graph showing the relationship between the difference Sn of the number of revolutions of the motor 6 and the number of revolutions in association with the detection 1.
- FIG. 8 is a graph showing the relationship between the number of revolutions of the motor 6 and the cumulative value U of the absolute value of the difference of the difference S in association with the detection 2.
- FIG. 9A is a flowchart showing a control operation of the detection 3 and the detection 4.
- FIG. 9B is a flowchart showing the control operation of the detection 3 and the detection 4.
- FIG. 10 is a graph showing the relationship between the time and the first count value E in association with the detection 3.
- FIG. 11 is a graph showing the relationship between the time and the corrected duty ratio dn_diff in association with the detection 4.
- FIG. 12 is a flowchart showing an outline of detection 5-1 and detection 5-2 for detecting whether or not the laundry in the dewatering tank 4 is deviated during the dehydrating operation.
- FIG. 13 is a flowchart showing a control operation related to the detection 5-1.
- Fig. 14 is a graph showing the relationship between the rotational speed and the movement cumulative value Cn in association with the detection 5-1 and the detection 5-2.
- Fig. 15 is a flowchart showing the control operation of the detection 5-2.
- Fig. 16 is a flowchart showing a control operation of detecting bubbles in a dehydrating operation.
- Fig. 1 is a schematic longitudinal sectional right side view of a dehydrator 1 according to an embodiment of the present invention.
- the vertical direction in FIG. 1 is referred to as the vertical direction X of the dehydrator 1, and the left-right direction in FIG. 1 is referred to as the front-rear direction Y of the dehydrator 1.
- the upper side is referred to as an upper X1
- the lower side is referred to as a lower X2.
- the left side in FIG. 1 is referred to as front Y1
- the right side in FIG. 1 is referred to as rear Y2.
- the dehydrator 1 includes all the devices that can perform the dehydration operation of the laundry Q. Therefore, the dehydrator 1 includes not only a device having only a dehydrating function but also a washing machine or a washing and drying machine having a dehydrating function. Hereinafter, the dehydrator 1 will be described by taking a washing machine as an example.
- the dehydrator 1 includes a casing 2, an outer tank 3, a dewatering tank 4, a rotary wing 5, an electric motor 6, and a transmission mechanism 7.
- the casing 2 is made of, for example, metal and formed in a box shape.
- the upper surface 2A of the casing 2 is formed to be inclined with respect to the front-rear direction Y so as to extend upward toward the rear side Y2.
- An opening 8 that communicates with the inside and outside of the casing 2 is formed on the upper surface 2A.
- a door 9 that opens and closes the opening 8 is provided on the upper surface 2A.
- an operation portion 20 composed of a liquid crystal operation panel or the like is provided in a region further forward than the opening 8 by Y1.
- the outer tub 3 is made of, for example, a resin, and is formed in a bottomed cylindrical shape.
- the outer tank 3 has a substantially cylindrical circumferential wall 3A arranged in the vertical direction X, a bottom wall 3B that blocks the hollow portion of the circumferential wall 3A from the lower side X2, and an edge on the X1 side of the upper side of the circumferential wall 3A.
- An annular annular wall 3C projecting from the center of the circumference of the circumferential wall 3A.
- a hollow portion that communicates the circumferential wall 3A from the upper side X1 is formed inside the annular wall 3C. The entrance and exit of the branch 10.
- the entrance and exit 10 is opposed to the opening 8 of the casing 2 from the lower X2, and is in a communicating state.
- a door 11 that opens and closes the inlet and outlet 10 is provided in the annular wall 3C.
- the bottom wall 3B is formed in a disk shape extending substantially horizontally, and a through hole 3D penetrating the bottom wall 3B is formed at a center of the center of the bottom wall 3B.
- Water is accumulated in the outer tank 3.
- the water supply path 12 connected to the tap of the tap water is connected from the upper side X1, and the tap water is supplied from the water supply path 12 to the outer tank 3.
- a water supply valve 13 that opens and closes to start or stop the water supply is provided in the middle of the water supply path 12.
- the drain passage 14 is connected from the lower side X2, and the water in the outer tank 3 is discharged from the drain passage 14 to the outside of the machine.
- a drain valve 15 that opens or closes to start or stop the drain is provided.
- the dewatering tank 4 is made of, for example, metal, and has a bottomed cylindrical shape that is smaller than the outer tank 3, and can accommodate the laundry Q therein.
- the dewatering tank 4 has a substantially cylindrical circumferential wall 4A arranged in the vertical direction X and a bottom wall 4B that blocks the hollow portion of the circumferential wall 4A from the lower side X2.
- the inner circumferential surface of the circumferential wall 4A is the inner circumferential surface of the dewatering tank 4.
- the upper end portion of the inner circumferential surface of the circumferential wall 4A is an inlet and outlet 21 that exposes the hollow portion of the circumferential wall 4A upward.
- the entrance and exit 21 is opposed to the entrance and exit 10 of the outer tub 3 from the lower side X2, and is in a communicating state.
- the entrances and exits 10 and 21 are opened and closed by the door 11 together.
- the user of the dehydrator 1 causes the laundry Q to enter and exit the dewatering tank 4 via the open opening 8, the inlets 10 and 21.
- the dewatering tank 4 is housed in the outer tank 3 coaxially.
- the dewatering tank 4 in a state of being housed in the outer tub 3 serves as the center shaft, and is rotatable about the axis 16 extending in the vertical direction X.
- a plurality of through holes are formed in the circumferential wall 4A and the bottom wall 4B of the dewatering tank 4, and water in the outer tank 3 can pass between the outer tank 3 and the dewatering tank 4 through the through holes. Therefore, the water level in the outer tank 3 coincides with the water level in the dewatering tank 4.
- the bottom wall 4B of the dewatering tank 4 is formed in a disk shape extending substantially parallel to the upper wall XB of the outer tank 3 at an interval from the upper side X1, and is formed in the bottom wall 4B at a center position of the circle coincident with the axis 16
- the through hole 4C of the bottom wall 4B is provided in the bottom wall 4B.
- the support shaft 17 is inserted into the through hole 3D of the bottom wall 3B of the outer tub 3, and the lower end portion of the support shaft 17 is located below the bottom wall 3B by X2.
- the rotor blade 5 is a so-called pulsator and is formed in a disk shape centered on the axis 16 and is disposed concentrically with the dewatering tank 4 along the bottom wall 4B in the dewatering tank 4.
- a rotary shaft 18 extending from the center of the circle thereof along the axis 16 toward the lower side X2 is provided on the rotary wing 5.
- the rotating shaft 18 is inserted into the hollow portion of the support shaft 17, and the lower end portion of the rotating shaft 18 is located below the bottom wall 3B of the outer tub 3 by X2.
- the motor 6 is realized by a variable frequency motor.
- the motor 6 is disposed in the casing 2 below the lower portion X2 of the outer tank 3.
- the motor 6 has an output shaft 19 that rotates about the axis 16 .
- the transmission mechanism 7 is interposed between the lower end portion of each of the support shaft 17 and the rotary shaft 18 and the upper end portion of the output shaft 19.
- the transmission mechanism 7 selectively transmits the driving force output from the output shaft 19 of the motor 6 to one or both of the support shaft 17 and the rotation shaft 18.
- the dewatering tank 4 and the rotary vane 5 rotate about the axis 16.
- the laundry Q in the dewatering tank 4 is stirred by the rotating dewatering tank 4 and the blades 5A of the rotary vane 5.
- the dewatering tank 4 and the rotary vane 5 are integrally rotated and rotated at a high speed, thereby dehydrating the laundry Q in the dewatering tank 4.
- FIG. 2 is a block diagram showing the electrical configuration of the dehydrator 1.
- the dehydrator 1 includes a load amount measuring device, a drive control device, an acquisition device, a timing determination device, a determination device, a stop control device, an execution device, a counting device, a receiving device, and a control unit 30 as a threshold value changing device.
- the control unit 30 is configured as, for example, a microcomputer including a memory 32 such as a CPU 31, a ROM, or a RAM, a timer 35, and a counter 36, and is built in the casing 2 (see FIG. 1).
- the dehydrator 1 further includes a water level sensor 33 and a rotational speed reading device 34.
- the water level sensor 33 and the rotational speed reading device 34, the motor 6, the transmission mechanism 7, the water supply valve 13, the drain valve 15, and the operation unit 20 are electrically connected to the control unit 30, respectively.
- the water level sensor 33 is a sensor that detects the water level of the outer tank 3 and the dewatering tank 4, and the detection result of the water level sensor 33 is input to the control unit 30 in real time.
- the rotational speed reading device 34 is a device that reads the rotational speed of the motor 6 and strictly reads the rotational speed of the output shaft 19 of the motor 6, and is constituted by, for example, a Hall IC.
- the rotational speed read by the rotational speed reading device 34 is input to the control unit 30 in real time.
- the control unit 30 controls the duty ratio of the voltage applied to the motor 6 based on the input rotational speed, thereby rotating the motor 6 at a desired rotational speed.
- the control unit 30 controls the transmission mechanism 7 to switch the transmission target of the driving force of the motor 6 to one or both of the support shaft 17 and the rotation shaft 18.
- the control unit 30 controls opening and closing of the water supply valve 13 and the drain valve 15. As described above, when the user operates the operation unit 20 to select the dehydration condition or the like of the laundry Q, the control unit 30 receives the selection.
- FIG. 3 is a timing chart showing a state of the number of revolutions of the motor 6 in the spin-drying operation performed by the dehydrator 1.
- the horizontal axis represents the elapsed time
- the vertical axis represents the rotational speed of the motor 6 (unit: rpm).
- the control unit 30 measures the amount of load of the laundry Q in the dewatering tank 4 when the dewatering tank 4 starts to rotate. After the load amount is measured, the control unit 30 causes the motor 6 to stably rotate at 120 rpm after raising the rotational speed of the motor 6 to a predetermined speed of 120 rpm. Thereafter, after the control unit 30 raises the motor 6 from 120 rpm to a first rotation speed of 240 rpm, the motor 6 is stably rotated at 240 rpm. Thereafter, after the control unit 30 raises the motor 6 from 240 rpm to a second rotation speed of 800 rpm, the motor 6 is stably rotated at 800 rpm.
- the laundry Q in the dewatering tank 4 is officially dehydrated by the stable rotation at 800 rpm of the motor 6.
- the laundry Q in the dewatering tank 4 is in a state of being displaced from the circumferential direction of the dewatering tank 4, the laundry Q in the dewatering tank 4 is biased.
- the dewatering tank 4 is eccentrically rotated, whereby the dewatering tank 4 is largely swung, and the dehydrator 1 is greatly vibrated, and noise may be generated.
- control unit 30 detects whether or not the laundry Q in the dewatering tank 4 is biased in the middle of the dehydration operation, and stops the motor 6 if a bias is detected.
- the control unit 30 performs five kinds of electrical detections of detection 1, detection 2, detection 3, detection 4, and detection 5 as such detection.
- the detection 1 to the detection 4 are executed in a low-speed eccentricity detection section constituted by an acceleration period in which the rotational speed of the motor 6 is increased from 120 rpm to 240 rpm and a predetermined period after the acceleration of the motor 6 is started at 240 rpm.
- the detection 5 is executed during a high-speed eccentricity detection section during a period in which the rotational speed of the motor 6 reaches 800 rpm from 240 rpm.
- FIG. 4 is a graph showing the relationship between the weight of the laundry Q accommodated in the dewatering tank 4 and the amount of load detected by the dehydrator 1 based on the weight of the laundry Q.
- the horizontal axis represents the weight (unit: kg) of the laundry Q
- the vertical axis represents the detected value of the load amount.
- control unit 30 measures the amount of laundry Q in the dewatering tank 4 when the dewatering tank 4 starts to rotate.
- the control unit 30 rotates the dewatering tank 4 at a predetermined number of revolutions.
- a value obtained by accumulating a constant value of the duty ratio of the voltage applied to the motor 6 is detected as a load amount. If the laundry Q becomes heavier, a high voltage must be applied to the motor 6 in order to rotate the dewatering tank 4, and therefore, as the voltage increases, the amount of load increases. In this way, the control unit 30 electrically measures the amount of load of the laundry Q.
- 5A and 5B are flowcharts showing an outline of the detection 1 to the detection 4.
- step S1 when the dehydration rotation of the dewatering tank 4 is started by the start of the dehydration operation (step S1), the control unit 30 measures the load amount of the laundry Q in the dewatering tank 4 as described above (step S2), and thereafter The motor 6 is stably rotated at 120 rpm for a predetermined time (step S3).
- step S4 the control unit 30 starts the acceleration of the motor 6 to 240 rpm (step S4), and the addition of the motor 6 During the speed period, the above-described detection 1 is carried out (step S5).
- the detection 1 is not OK (NO in step S5), that is, when the control unit 30 determines that the laundry Q is biased, the control unit 30 stops the motor 6 and stops the rotation of the dewatering tank 4 ( In step S6), it is determined whether or not the dehydration operation can be restarted (step S7).
- the restarting of the spin-drying operation means that the control unit 30 stops the spin-drying operation after stopping the rotation of the dewatering tank 4, and then restarts the spin-drying tank 4 to restart the spin-drying operation. Although the details will be described later, depending on the degree of bias of the laundry Q, the restart may be performed.
- step S8 the control unit 30 performs the restart (step S8).
- the control unit 30 shortens the period of stable rotation of 120 rpm, and is shorter than the period of stable rotation of 120 rpm in the previously dehydrated operation.
- the laundry Q is attached to the inner peripheral surface of the dewatering tank 4 to a certain extent and is substantially dehydrated. Therefore, the period of stable rotation of 120 rpm can be shortened. Thereby, the time for realizing the dehydration operation is shortened. In addition, such a period shortening can also be performed in each subsequent restart.
- step S9 the control unit 30 performs processing such as imbalance correction (step S9).
- the control unit 30 opens the water supply valve 13 after closing the drain valve 15, and supplies water to the predetermined water level in the dewatering tank 4, thereby immersing the laundry Q in the dewatering tank 4 in water to make it easy to loosen. .
- the control unit 30 rotates the dewatering tank 4 and the rotary blade 5, and the laundry Q attached to the inner circumferential surface of the dewatering tank 4 is peeled off and stirred, thereby correcting the laundry in the dewatering tank 4.
- Q's bias the control unit 30 opens the water supply valve 13 after closing the drain valve 15, and supplies water to the predetermined water level in the dewatering tank 4, thereby immersing the laundry Q in the dewatering tank 4 in water to make it easy to loosen.
- step S5 when the detection 1 is OK (YES in step S5), that is, when the control unit 30 determines that the laundry Q is not biased in the detection 1, the control unit 30 is in the acceleration period of the motor 6. The above-described detection 2 is continued (step S10).
- step S10 When the detection 2 is not OK (NO in step S10), that is, when the control unit 30 determines that the laundry Q is biased, the control unit 30 stops the motor 6 and the dehydration tank 4, and stops the dehydration operation ( Step S11). Thereafter, the control unit 30 confirms that the dehydration condition of the dehydration operation that has been suspended this time is "blanket washing process" or "dehydration only operation” (step S12).
- the blanket washing process refers to a dewatering condition in which the laundry Q, which is easily absorbed by a blanket, is dehydrated.
- the dehydration condition is the felt washing process (YES in step S12), that is, in the case where the restarting of the current dehydration operation is not performed before the restart (YES in step S13)
- the control unit 30 performs the shortening.
- the restart of the stable rotation of 120 rpm (step S14).
- the dehydration operation is not the dehydration operation performed following the cleaning operation and the rinsing operation, but refers to the dehydration condition in which the washed laundry Q is put into the dewatering tank 4 and the laundry Q is dehydrated.
- the control unit 30 performs restart (step S14).
- the control unit 30 may prompt the user to reposition the laundry Q in the dewatering tank 4 by notifying the error by the display of the operation unit 20 or the buzzer or the like. On the other hand, if it is not before the restart (NO in step S13), the control unit 30 performs the imbalance correction (step S15).
- step S12 when the dehydration condition is neither the felt washing process nor the dehydration only operation (NO in step S12), the control unit 30 determines that the dehydration operation of the current suspension is before the restart, and judges whether or not it is possible. Restart (step S16). If it is before the restart and can be restarted (YES in step S16), the control unit 30 performs a restart to shorten the period of stable rotation of 120 rpm (step S17). If the condition such as before restarting and restarting is not satisfied (NO in step S16), the control unit 30 performs imbalance correction (step S18).
- step S10 When the detection 2 is OK (YES in step S10), that is, when the control unit 30 determines in the detection 2 that the laundry Q is not biased, the control unit 30 confirms whether or not the value of the timer 35 is per The set value of the load amount is equal to or greater (step S19). In other words, the control unit 30 confirms in step S19 whether or not the measurement time of the timer 35 has reached the set value corresponding to the load amount of the laundry Q in the dehydration tank 4. The set value will be detailed later.
- the control unit 30 When the value of the timer 35 is equal to or greater than the set value of the load amount (YES in step S19), the control unit 30 performs the above-described detection 3 and detection 4 in a state where the motor 6 is stably rotated at 240 rpm (step S20). ). In the case where the detection 3 and the detection 4 are not OK (NO in step S20), that is, control When the unit 30 determines that the laundry Q has a bias, the control unit 30 stops the motor 6 and the dehydration tank 4, stops the dehydration operation (step S11), and executes the corresponding processing in steps S12 to S18.
- step S20 when the detection 3 and the detection 4 are OK (YES in step S20), that is, when the detection unit 30 determines that the laundry Q is not biased, the control unit 30 follows the control unit 30.
- the motor 6 was stably rotated at 240 rpm, and dehydration at 240 rpm was continued (step S21).
- FIGS. 6A and 6B are flowcharts showing control operations of the detection 1 and the detection 2. First, the detection 1 and the detection 2 will be described with reference to FIGS. 6A and 6B.
- the detection 1 and the detection 2 are detections of whether or not the laundry Q is deflected by the rotational speed of the motor 6.
- step S4 the control unit 30 starts the acceleration of the motor 6 to 240 rpm, and starts the detection 1 and the detection 2.
- the control unit 30 starts the timer 35, starts time measurement, and measures the rotation speed V0 of the motor 6 at the start of acceleration by the rotation speed reading device 34 (step S31).
- the rotational speed V0 is before and after 120 rpm.
- the motor 6 as the detection time of the detection 1 and the detection 2 differs in the acceleration period of 240 rpm for each load amount. This is because the more the amount of the laundry Q, the more time it takes for the rotational speed of the motor 6 to reach 240 rpm. Therefore, the set value per load amount in the acceleration period of the motor 6 is obtained in advance based on an experiment or the like, and is stored in the memory 32.
- control unit 30 starts counting of the counter 36 (step S32), initializes the counter 36 every 0.3 seconds, and counts every 0.3 seconds (steps S33 and S34).
- the control unit 30 measures the number of revolutions Vn (n: count value) of the motor 6 at the time of counting every time (step S35).
- the control unit 30 calculates the difference Sn of the rotational speed Vn-1 measured before the measured rotational speeds Vn and Vn in step S35. Further, the control unit 30 also calculates the cumulative value U of the absolute value of the difference between the difference Sn and the difference Sn-1 before it in step S35.
- Step S36 the control unit 30 confirms whether or not the value of the timer 35 is equal to or greater than the set value per load amount, that is, whether the measurement time of the timer 35 has reached the set value corresponding to the load amount of the laundry Q in the dehydration tank 4 ( Step S36).
- Step S36 corresponds to the above-described step S19 (refer to FIG. 5A).
- the control unit 30 determines whether or not the difference Sn calculated by the operation is applied to the detection 1 (step S38). This predetermined amount is obtained in advance by an experiment or the like and stored in the memory 32.
- FIG. 7 is a graph showing the relationship between the number of revolutions of the motor 6 and the difference Sn in association with the detection 1.
- the horizontal axis represents the rotational speed (unit: rpm)
- the vertical axis represents the difference Sn (unit: rpm).
- step S38 When the control unit 30 determines that the difference Sn acts on the detection 1 (YES in step S38), the rotation of the motor 6 is stopped (step S6 described above), and the corresponding processing in steps S7 to S9 described above is executed (refer to FIG. 5A). ). The processing of steps S31 to S38 is included in the above-described step S5 (refer to FIG. 5A).
- control unit 30 determines whether or not the cumulative value U calculated by the operation is applied to the detection 2 (step S39).
- the control unit 30 does not perform the determination in the detection 1 in the step S38, but performs the detection in the step S39.
- the next decision When the amount of the laundry Q exceeds a certain amount and is excessive, the amount of water leached from the laundry Q increases, or the laundry Q abruptly adheres to the inner peripheral surface of the dewatering tank 4, and the like.
- the bias of the object Q changes sharply, so that the detection 1 may not be performed stably. Therefore, in the case where the amount of the laundry Q exceeds a certain amount, the detection 1 is omitted.
- FIG. 8 is a graph showing the relationship between the number of revolutions of the motor 6 and the cumulative value U in association with the detection 2.
- the horizontal axis represents time (unit: sec)
- the vertical axis represents cumulative value U (unit: rpm).
- the threshold value two threshold values of the lower threshold indicated by the four corners and the upper threshold indicated by the triangular points are set. The upper threshold is a value higher than the lower threshold.
- the control unit 30 determines that The cumulative value U acts on the detection 2 (YES in step S39).
- the instability of the acceleration of the dewatering tank 4 indicating whether or not the laundry Q is biased is detected based on the cumulative value U.
- step S39 When the control unit 30 determines that the cumulative value U has acted on the detection 2 (YES in step S39), the rotation of the motor 6 is stopped (step S11 described above), and the corresponding processing in steps S12 to S18 described above is executed.
- the processing of steps S31 to S37 and step S39 is included in the above-described step S10 (see FIG. 5A).
- control unit 30 determines in step S16 whether or not the bias of the laundry Q is large so that the cumulative value U is equal to or greater than the upper threshold. The degree, or whether the dehydration operation of this suspension is restarted.
- step S16 When the cumulative value U is equal to or greater than the upper threshold or has been restarted (YES in step S16), the control unit 30 performs imbalance correction (step S18). When the cumulative value U is lower than the upper threshold and has not been restarted (NO in step S16), the control unit 30 performs restart (step S17). The determination as to whether or not the cumulative value U is equal to or greater than the upper threshold is equivalent to the determination of whether or not the restart is possible in step S16 of FIG. 5B, and whether or not the restart has been performed corresponds to whether or not the determination is made before the restart in step S16 of FIG. 5B.
- the control unit 30 determines whether or not the bias applied to the detection 2 is small enough to be restarted, or the extent to which the imbalance correction is required, based on whether or not the cumulative value U is equal to or greater than the upper threshold.
- the size of the bias is used to selectively perform restart and imbalance correction.
- step S36 determines whether the laundry Q is unbiased in any of the detections of the detection 1 and the detection 2 (YES in step S36).
- control is performed.
- the unit 30 ends the detection 1 and the detection 2 (step S40).
- step S40 the control unit 30 acquires the duty ratio of the voltage applied to the motor 6 at the time when the value of the timer 35 reaches the set value as the reference duty ratio d0.
- the motor 6 is in an accelerated state up to 240 rpm.
- the control unit 30 determines the timing at which the reference duty ratio d0 is obtained in step S40 based on the amount of load measured when the dewatering tank 4 is dehydrated and rotated. In other words, the control unit 30 changes the timings of the detection 3 and the detection 4 after the end detection 1 and the detection 2 are started, based on the amount of load. Therefore, the detection 3 and the detection 4 can be performed at an optimum timing corresponding to the amount of the laundry Q.
- FIGS. 9A and 9B are flowcharts showing control operations regarding the detection 3 and the detection 4. Detection 3 and detection 4 will be described with reference to Figs. 9A and 9B.
- the detection 3 and the detection 4 are detections of whether or not the laundry Q having a duty ratio of the voltage applied to the motor 6 is biased.
- the control unit 30 acquires the reference duty ratio d0 in the above-described step S40, and starts the detection 3 and the detection 4. At the start of the detection 3 and the detection 4, the rotational speed of the motor 6 is in a state of reaching 240 rpm, and the motor 6 is stably rotated at 240 rpm.
- the first count value E and the second count value T are present in association with the detection 3 and the detection 4, and are stored in the memory 32.
- the control unit 30 clears the first count value E and the second count value T to the initial values of 0 (zero), respectively (step S41).
- control unit 30 starts the timer 35, starts time measurement (step S42), and monitors whether or not the value of the timer 35 exceeds 8.1 seconds.
- the third detection and the fourth detection are executed within a predetermined period of 8.1 seconds after the reference duty ratio d0 is acquired.
- control unit 30 starts the counting of the counter 36 in step S42, initializes the counter 36 every 0.3 seconds, and counts every 0.3 seconds (steps S43 and S44).
- the control unit 30 increments the second count value T by 1 (+1) at the timing at which the counter 36 is initialized in step S44, that is, the timing per count.
- the control unit 30 acquires the duty ratio dn(n: count value) of the voltage applied to the motor 6 at the time of counting every time it counts (step S45). In other words, the control unit 30 acquires the duty ratio dn at a predetermined timing every 0.3 seconds in the predetermined period of 8.1 seconds described above.
- step S45 the control unit 30 calculates the correction duty ratio dn_diff for each timing of 0.3 seconds based on the following equations (1) and (2).
- the correction duty ratio dn_diff corrects the value of the duty ratio dn acquired at the same timing in such a manner that the detection of the detection 4 can be performed with high precision.
- a and B in the formulas (1) and (2) are constants obtained by experiments or the like.
- Dn_diff A ⁇ dn-dn_x...(1)
- Step S47 if the acquired duty ratio dn is equal to or higher than the duty ratio dn-1 acquired at the previous timing (YES in step S46), the control section 30 increments the first count value E by 1 (+1) ( Step S47).
- the duty ratio dn initially acquired by the control unit 30 is the above-described reference duty ratio d0.
- the control section 30 resets the first count value E to the initial value. 0 (zero) (step S48).
- control unit 30 confirms whether or not the value of the timer 35 is 8.1 seconds or less, that is, whether the measurement time of the timer 35 exceeds 8.1 seconds (step S49).
- step S49 When the value of the timer 35 is 8.1 seconds or less (YES in step S49), if the load amount of the laundry Q in the dewatering tank 4 is equal to or greater than a certain amount (YES in step S50), the control unit 30 determines whether the latest first count value E acts on the detection 3 (step S51). The certain amount passes the experiment, etc. It is obtained in advance and stored in the memory 32.
- FIG. 10 is a graph showing the relationship between the time and the first count value E in association with the detection 3.
- the horizontal axis represents time (unit: sec)
- the vertical axis represents the first count value E.
- two threshold values of a lower threshold indicated by a one-dot chain line and an upper threshold indicated by a two-dot chain line are set.
- the upper threshold and the lower threshold are independent of the elapsed time and are constant values.
- the upper threshold is a value higher than the lower threshold.
- the motor 6 can be stably rotated at 240 rpm, and therefore, the duty ratio dn is gradually decreased. Thereby, the first count value E is stabilized in the vicinity of 0 (zero) of the initial value as indicated by the solid line.
- the eccentricity is large and the laundry Q is biased, in order to maintain the rotational speed of the motor 6 at 240 rpm, a high voltage is required, and therefore the duty ratio dn is reduced.
- the first count value E does not return to the initial value and increases, and as indicated by the broken line, the lower threshold is exceeded at an arbitrary timing. If the bias of the laundry Q is large, the first count value E also exceeds the upper threshold.
- the control unit 30 determines that the first count value E acts on the detection 3 (YES in step S51). In other words, when the first count value E in the predetermined period of 8.1 seconds is equal to or greater than a predetermined threshold value, the control unit 30 determines that the laundry Q is biased in the dewatering tank 4.
- control unit 30 determines that the first count value E is lower than the lower threshold value and does not act on the detection 3 (NO in step S51), it is determined whether or not the correction duty ratio dn_diff calculated by the controller is applied to the detection 4 ( Step S52).
- the control unit 30 does not perform the determination in the detection 3 in step S51, but performs the detection in step S52. 4 judgments. This is because if the detection 3 is performed with the amount of the laundry Q being less than a certain amount, the duty ratio dn will converge at an earlier stage, and the first count value E may be unstable and cannot be stabilized. Perform detection 3 on the ground. Therefore, in the case where the amount of the laundry Q is less than a certain amount, the detection 3 is omitted.
- FIG. 11 is a graph showing the relationship between the time and the corrected duty ratio dn_diff in association with the detection 4.
- the horizontal axis represents time (unit: sec)
- the vertical axis represents correction duty ratio dn_diff.
- two threshold values of a lower threshold indicated by a one-dot chain line and an upper threshold indicated by a two-dot chain line are set for the threshold.
- the upper threshold and the lower threshold are gradually increased according to the elapsed time.
- the upper threshold is a value higher than the lower threshold.
- the correction duty ratio dn_diff is gradually lower than the lower threshold as shown by the solid line. cut back.
- the correction duty ratio dn_diff does not decrease and exceeds the lower threshold as indicated by a broken line. If the bias of the laundry Q is large, the correction duty ratio dn_diff also exceeds the upper threshold. Therefore, returning to FIG. 9A, if the correction duty ratio dn_diff is equal to or greater than the lower threshold value, the control unit 30 determines that the correction duty ratio dn_diff acts on the detection 4 (YES in step S52).
- the correction duty ratio dn_diff obtained in the above equations (1) and (2) is such that the elapsed time is the case where the duty ratio dn is equal to or larger than the reference duty ratio d0. And increase the value set by the way. Therefore, the correction duty ratio dn_diff does not act on the threshold only when the duty ratio dn falls normally from the reference duty ratio d0.
- the first count value E for the detection 3 and the correction duty ratio dn_diff for the detection 4 are duty ratios indicating the voltage applied to the motor 6 for maintaining the 240 rpm for a predetermined period of 8.1 seconds as described above.
- the control unit 30 determines whether or not the laundry Q in the dewatering tank 4 is biased based on such an index.
- the first count value E for the detection 3 and the correction duty ratio dn_diff for the detection 4 are obtained based on the reference duty ratio d0, and therefore, the reference duty ratio d0 is the detection accuracy of whether or not the left and right laundry Q is biased.
- the control unit 30 measures the load amount of the laundry Q in the dewatering tank 4 (step S2 in Fig. 5A), and determines the acquisition standard based on the measured load amount.
- the timing of the duty ratio d0 (step S36 of Fig. 6A).
- the reference duty ratio d0 is acquired at an appropriate timing in consideration of the influence of the load amount, it is possible to perform the detection of whether or not the laundry Q is biased with high precision in the detection 3 and the detection 4 based on the reference duty ratio d0. . As a result, the detection accuracy of the presence or absence of the laundry Q is improved.
- control unit 30 determines that the first count value E acts on the detection 3 (YES in step S51), or determines that the correction duty ratio dn_diff acts on the detection 4 (YES in step S52). , Then, the rotation of the motor 6 is stopped (step S11 described above), and the corresponding processing in steps S12 to S18 described above is executed.
- the processing of steps S40 to S52 is included in the above-described step S20 (refer to FIG. 5A).
- Steps S16A and S16B in Fig. 16 are included in the above-described step S16 (refer to Fig. 5B). Specifically, the determination in step S16A corresponds to whether or not the determination is made before the restart in step S16 of FIG. 5B, and the determination in step S16B corresponds to the determination as to whether or not the restart is possible in step S16 of FIG. 5B.
- step S16A determines whether or not the dehydration operation of the current suspension is before the restart. If it is before the restart (YES in step S16A), the control unit 30 determines whether or not the bias of the laundry Q is reduced to the extent that the first count value E and the correction duty ratio dn_diff are lower than the respective upper thresholds.
- Step S17 In the case of restarting (YES in step S16A), that is, when the first count value E and the correction duty ratio dn_diff are lower than the respective upper thresholds (YES in step S16B), the control section 30 performs a restart ( Step S17).
- step S18 When it is not the case before the restart, that is, if it has been restarted (NO in step S16A), the control unit 30 performs the imbalance correction (step S18). Further, even before restarting (YES in step S16A), when at least one of the first count value E and the correction duty ratio dn_diff is equal to or greater than the respective upper threshold (NO in step S16B), The control unit 30 also performs an imbalance correction (step S18).
- control unit 30 determines the bias acting on the detection 3 or the detection 4 based on the first count value E and the correction duty ratio dn_diff in steps S16B to S18. Whether it is small enough to be restarted or large enough to require an imbalance correction.
- control unit 30 selectively performs one of the restart and the imbalance correction based on the degree of the first count value E and the correction duty ratio dn_diff, in other words, whether or not these values are equal to or higher than the respective upper thresholds. Therefore, if it is determined that the laundry Q is biased, the imbalance correction can be uniformly performed. Therefore, if the first count value E and the correction duty ratio dn_diff are values indicating that the deviation of the laundry Q is small, the time for realizing the dehydration operation is shortened by performing the restart immediately.
- step S53 if it is determined that the laundry Q is not biased, if the value of the timer 35 has elapsed for 8.1 seconds (NO in step S49), the control unit 30 ends the detection. 3 and detection 4 (step S53).
- FIG. 12 is a flowchart showing an outline of the detection 5-1 and the detection 5-2.
- Detection 5-1 and detection 5-2 are detections of whether or not the laundry Q with the duty ratio is biased.
- step S60 the control unit 30 accelerates the motor 6 from 240 rpm to the target number of rotations of 800 rpm described above.
- the control unit 30 acquires the duty ratio of the voltage applied to the motor 6 at that time as the ⁇ value (step S61).
- 300 rpm is a rotational speed at which the water is not accumulated in the dewatering tank 4 and is least affected by the eccentricity of the dewatering tank 4. Therefore, the ⁇ value at 300 rpm is the duty ratio in the state which is least affected by the eccentricity of the dewatering tank 4 and is only affected by the load amount of the laundry Q.
- step S62 the control unit 30 performs the above-described detection 5-1 while the number of revolutions is from 600 pm to 729 rpm (step S62).
- the detection 6-1 is not OK (NO in step S62)
- the control unit 30 stops the motor 6 and stops the dewatering tank 4.
- Rotation step S63.
- the control unit 30 determines whether or not the restart is performed before the restart, that is, whether the restart is performed in the current dehydration operation (step S64).
- step S64 If it is before the restart (YES in step S64), the control section 30 performs a restart (step S65). If it is not before the restart (NO in step S64), the control unit 30 performs the imbalance correction (step S66).
- step S62 when the detection 5-1 is OK (YES in step S62), that is, when the control unit 30 determines that the laundry Q is not biased, the control unit 30 is in the motor 6 when the detection 5-1 determines that the laundry Q is not biased. In the state where the acceleration is continued from 730 rpm, the above-described detection 5-2 is continued (step S67).
- step S67 When the detection 5-2 is OK (YES in step S67), that is, when the detection unit 30 determines that the laundry Q is not biased, the control unit 30 accelerates the motor 6 to the target. After the rotation speed (800 rpm), the motor 6 is stably rotated at the target rotation speed, whereby the dehydration of the laundry Q is continued (step S68).
- step S67 when the detection 5-2 is not OK (NO in step S67), that is, when the control unit 30 determines that the laundry Q is biased, the control unit 30 causes the motor 6 to have the above target. The rotation speed below the rotation speed is stably rotated, thereby continuing the dehydration of the laundry Q (step S69).
- FIG. 13 is a flowchart showing a control operation related to the detection 5-1.
- step S70 in a state where the motor 6 is continuously accelerated in the above-described step S61 (see Fig. 12), the control unit 30 reaches 600 rpm according to the number of revolutions of the motor 6, and starts detection 5-1 (step S70).
- control unit 30 starts counting by the counter 36 (step S71), initializes the counter 36 every 0.3 seconds, and counts every 0.3 seconds (steps S72 and S73).
- the control unit 30 obtains the number of revolutions of the motor 6 at the time of counting and the duty ratio dn(n: count value) of the voltage applied to the motor 6 at the time of counting (step S74). In other words, the control unit 30 acquires the number of revolutions of the motor 6 and the duty ratio dn every predetermined timing while the rotational speed of the motor 6 reaches 800 rpm from 240 rpm.
- step S74 the control unit 30 calculates the correction value Bn obtained by the above-described ⁇ value correction duty ratio dn based on the following equation (3).
- X and Y in the formula (3) are constants obtained by experiments or the like.
- the detection 5-1 can be performed with high precision by using the correction value Bn obtained by changing the weight correction duty ratio dn by the equation (3).
- the control unit 30 calculates the movement cumulative value Cn (n: count value) of the correction value Bn in step S74.
- the moving cumulative value Cn (n: count value) is a value obtained by totaling five correction values Bn that are consecutive in the counting order.
- the rear four correction values Bn among the five correction values Bn constituting the movement cumulative value Cn-1, and the movement cumulative value Cn are constituted.
- the front four correction values Bn of the five correction values Bn are respectively the same value. Further, the number of correction values Bn totaled to constitute the movement cumulative value Cn is not limited to the above five.
- control unit 30 calculates a threshold value regarding the movement cumulative value Cn based on the following formula (4) (step S75).
- Threshold (speed) ⁇ a + b... equation (4)
- a and b in the formula (4) are constants obtained by experiments or the like, and are stored in the memory 32. Further, these constants a and b differ depending on the number of revolutions of the motor 6 at the current time or the selected dewatering conditions. Therefore, among the thresholds here, there are a plurality of values at the same rotational speed. Further, the threshold value is a value that is not affected by the above-described ⁇ value, which is clear from the formula (4).
- control unit 30 confirms whether or not the number of revolutions of the motor 6 at the current time is lower than 730 rpm (step S76).
- control unit 30 determines whether or not the latest moving cumulative value Cn is applied to the detection 5-1 (step S77).
- Fig. 14 is a graph showing the relationship between the rotational speed and the movement cumulative value Cn in association with the detection 5-1 and the detection 5-2.
- the horizontal axis represents the rotation speed (unit: rpm)
- the vertical axis represents the movement cumulative value Cn.
- Dehydration is carried out in the dehydration condition after the "test rinse” in which the water is accumulated in the dewatering tank 4 and the laundry Q is rinsed.
- Dehydration conditions such as “watering dehydration” of the dehydration operation and the above-mentioned “restart” of the dehydration operation while draining the water while washing the water. These dehydration conditions are selected by the user's operation of the operation unit 20, and the selection is received by the control unit 30.
- the acceleration of the motor 6 requires force, but in the case of dehydration or restart of the water, it is discharged to some extent from the laundry. The state of the water, so the force required for the acceleration of the motor 6 is small.
- the control unit 30 After the washing operation or the dehydration operation after the test rinsing, since the strict detection is the second threshold value, the control unit 30 uses the first threshold value higher than the second threshold value. On the other hand, in the dehydration operation in which the water is dehydrated or restarted, the control unit 30 uses the second threshold value lower than the first threshold value because of the slight detection of the first threshold value. Therefore, even when a large amount of water is contained in the laundry Q or when a certain amount of water is discharged from the laundry Q, the detection 5-1 can be performed using a threshold value suitable for each case.
- the control unit 30 uses a first threshold that is higher than the second threshold. Further, when the load amount of the laundry Q in the dewatering tank 4 is small, since the detection 5-1 is a slight threshold detection, the control unit 30 uses the second threshold lower than the first threshold. . Therefore, the detection 5-1 is performed using a threshold value suitable for each case in which the load amount of the laundry Q is different.
- threshold values of the first threshold and the second threshold are exemplified, but the threshold may be set to three or more types according to various dehydration conditions or load amounts.
- the cumulative value of the movement Cn at each rotational speed is increased as compared with the case where the eccentricity is small and the laundry Q is not biased (see the solid line). Big. If the deviation of the laundry Q is large, the movement cumulative value Cn exceeds the set threshold, that is, the corresponding one of the first threshold and the second threshold.
- control unit 30 determines that the moving cumulative value Cn acts on the detection 5-1 (YES in step S77).
- step S77 When the control unit 30 determines that the movement cumulative value Cn has acted on the detection 5-1 (YES in step S77), the rotation of the motor 6 is stopped (step S63 described above), and the corresponding processing in steps S64 to S66 described above is executed.
- the processing of steps S71 to S77 is included in the above-described step S62 (refer to FIG. 12).
- Step S78 When the detection 5-1 determines that the laundry Q is not biased, if the rotation speed of the motor 6 reaches 730 rpm (NO in step S76), the control unit 30 ends the detection 5-1, and then starts the detection 5-2. (Step S78).
- Fig. 15 is a flowchart showing the control operation of the detection 5-2.
- control unit 30 starts the detection 5-2 as the number of revolutions of the motor 6 reaches 730 rpm (step S78 described above).
- control unit 30 starts counting of the counter 36 (step S79), initializes the counter 36 every 0.3 seconds, and counts every 0.3 seconds (steps S80 and S81).
- the control unit 30 is the same as the step S74 in the detection 5-1, and acquires the rotation speed of the motor 6 at the time of counting and the duty ratio dn of the voltage applied to the motor 6 at the time of counting, and calculates the correction value Bn and the movement accumulation.
- the value Cn (step S82).
- the control unit 30 calculates a threshold value regarding the movement cumulative value Cn based on the above formula (4) (step S83).
- the constants a and b constituting the equation (4) are the same as the detection 5-1, and differ depending on the number of revolutions of the motor 6 at the current time or the selected dehydration condition. Therefore, among the thresholds here, there are a plurality of values such as the first threshold and the second threshold described above at the same number of revolutions.
- control unit 30 confirms whether or not the number of revolutions of the motor 6 at the current time has reached the target number of revolutions (800 rpm) (step S84).
- control unit 30 determines whether or not the latest moving cumulative value Cn acts on Detection 5-2 (step S85).
- the rotation speed is lower.
- the moving cumulative value Cn increases. If the deviation of the laundry Q is large, the movement cumulative value Cn exceeds the corresponding threshold value, that is, the first threshold value and the second threshold value.
- control unit 30 determines that the moving cumulative value Cn acts on the detection 5-2 (YES in step S85).
- control unit 30 determines that the movement cumulative value Cn has acted on the detection 5-2 (YES in step S85)
- the control unit 30 acquires the determined time, that is, detects the rotation speed L of the motor 6 when the detection 5-2 is detected (step S86).
- control unit 30 continues the rotation of the motor 6 by stably rotating the motor 6 at the number of revolutions L obtained by strictly assuming that the value of the first digit is rounded off at the number L (zero) at the number of revolutions L, and continues the dehydration of the laundry Q (described above). Step S69). At this time, the control unit 30 extends the dehydration time at the rotation speed L so as to obtain the same dehydration effect as when the original target rotation speed is dehydrated.
- step S84 the control unit 30 ends the detection 5-2 and turns to the target.
- the motor 6 is stably rotated, whereby the dehydration of the laundry Q is continued (step S68 described above).
- the control unit 30 changes the threshold value based on the dehydration conditions received by the operation unit 20 in the detection 5-1 and the detection 5-2 (steps S75 and S83). In addition, if the calculated cumulative value Cn calculated based on the obtained duty ratio dn and strictly the acquired duty ratio dn is equal to or greater than the predetermined threshold value to be changed, the control unit 30 determines that it is inside the dehydration tank 4.
- the laundry Q is biased. In other words, in the dehydration operation under each dehydration condition, whether or not the laundry Q is biased can be detected based on the threshold value suitable for each dehydration condition, so that the detection accuracy of the presence or absence of the laundry Q is improved.
- control unit 30 can also perform control for detecting the air bubbles in the drain passage 14 in parallel with the control regarding the above-described detections 1 to 5.
- Fig. 16 is a flowchart showing a control operation of detecting bubbles in a dehydrating operation.
- control unit 30 starts dehydration rotation of dewatering tank 4 by starting dehydration operation (step S1 described above). Thereby, the number of revolutions of the motor 6 rises as described above (refer to FIG. 3).
- the control unit 30 acquires the applied voltage duty ratio, which is the duty ratio of the number of revolutions of the motor 6 and the voltage applied to the motor 6, at predetermined timings in the spin-drying operation (step S91).
- the control unit 30 calculates the voltage limit value V_limit (step S93).
- the voltage limit value V_limit is a duty ratio of the maximum voltage applied to the motor 6 per revolution, and is calculated by substituting the rotation speed into a predetermined equation.
- control unit 30 checks whether or not the applied voltage duty ratio acquired in step S91 is equal to or greater than the voltage limit value V_limit at each timing, and detects air bubbles in the drain passage 14 (step S94).
- the control unit 30 determines that the air bubble is blocked by the air passage 14 (YES in step S94). On the other hand, if the applied voltage duty ratio is lower than the voltage limit value V_limit, the control unit 30 determines that the air bubble is not blocked by the air passage 14 (NO in step S94).
- control unit 30 determines whether or not the restart is performed before the restart, that is, in connection with the current dehydration operation. Step S95).
- step S95 If it is before the restart (YES in step S95), the control unit 30 performs a restart (step S96). If it is not before the restart (NO in step S95), the control unit 30 performs the imbalance correction (step S97). Even in the case where either the restart or the imbalance correction is performed, the operation is repeated after temporarily stopping the dehydration operation. Therefore, during the dehydration operation or the repeated operation, the bubbles of the drainage path 14 are naturally reduced.
- step S98 the control unit 30 ends the process of detecting bubbles.
- control of Fig. 16 is not only used for detecting the bubble but also for detecting the phenomenon of "water immersion” in which the water in the outer tank 3 cannot reach the drainage path due to vibration or the like.
- the motor 6 is used as the variable frequency motor, and the duty ratio is used to control the motor 6.
- the voltage applied to the motor 6 is used instead of the duty ratio. The value of the motor 6 is controlled.
- the duty ratio is often acquired and used for various determinations, but the duty ratio may also be the original data of the acquired duty ratio, or may be a correction value corrected according to needs. It is also possible to use a value calculated based on the duty ratio like the above-described movement cumulative value Cn.
- the dewatering tank 4 of the above embodiment is vertically disposed so as to be rotatable about the axis 16 extending in the vertical direction X.
- the dewatering tank 4 may be disposed obliquely by extending the axis 16 obliquely with respect to the vertical direction X.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Control Of Washing Machine And Dryer (AREA)
- Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)
Abstract
一种脱水机,实现洗涤物有无偏倚的检测精度的提高。脱水机(1)包含使脱水槽(4)旋转的电动的电机(6)和控制部(30)。控制部(30)在脱水槽(4)开始旋转时,测定、脱水槽(4)内的洗涤物(Q)的负载量。控制部(30)通过在测定负载量之后控制对电机(6)施加的电压的占空比,使电机(6)以第一旋转速度稳定旋转,之后使电机(6)以比第一旋转速度高的第二旋转速度稳定旋转。控制部(30)在电机(6)至第一旋转速度的加速状态下,在根据测得的负载量决定的定时获取基准占空比。在获取了基准占空比之后,在规定期间内,基于表示占空比从基准占空比开始变化的样子的指标,控制部(30)判定脱水槽(4)内的洗涤物(Q)有无偏倚。
Description
本发明涉及脱水机。
下述专利文献1中公开有具有脱水功能的洗衣机。在通过该洗衣机进行洗涤物的脱水运转时,使收容有洗涤物的洗涤脱水槽旋转的电机,通过控制施加的电压的占空比,使电机以120rpm稳定旋转之后,以240rpm稳定旋转,最后以800rpm稳定旋转。
如果洗涤脱水槽内的洗涤物以偏向洗涤脱水槽的周向配置的不平衡状态进行脱水运转,则振动或噪音增大。因此,该洗衣机中,检测洗涤脱水槽内的洗涤物有无偏倚。
具体而言,电机的旋转速度从120rpm向240rpm开始加速之后经过3.6秒的时刻的占空比作为基准占空比获取。另外,作为比较占空比,基于基准占空比运算在电机以240rpm稳定旋转的状态下经时变化的关于占空比的目标值。而且,如果在电机以240rpm稳定旋转的状态下每规定的定时获取的实际的占空比和同定时下的比较占空比之差为规定的阈值以上,则判定为洗涤物有偏倚,使电机的旋转停止。
现有技术文献
专利文献
专利文献1:日本特开2011-240040号公报
发明所要解决的课题
专利文献1的洗衣机中,在电机的旋转速度从120rpm向240rpm开始加速后经过了3.6秒的时刻,判断为电机的旋转速度到达240rpm,将该时刻的占空比看作是基准占空比。
但是,电机的旋转速度到达240rpm所需的时间根据洗涤脱水槽内的洗涤物的负载量的大小进行变动,因此,不限于在上述3.6秒为一定。
基准占空比为左右洗涤物有无偏倚的检测精度的主要因素。但是,在专利文献1的情况下,不考虑负载量的大小,从电机的加速开始经过了3.6秒的时刻
的占空比一律被看作是基准占空比。因此,如果该基准占空比为在因受到负载量的影响而偏离适当的定时的定时所获取的占空比,则洗涤物有无偏倚的检测精度可能会产生差影响。
另外,这样,在具备检测洗涤物有无偏倚的结构的情况下,脱水运转的时间缩短成为总是寻求的课题。
发明内容
本发明是鉴于这样的背景而创立的,其目的在于,提供一种实现洗涤物有无偏倚的检测精度的提高的脱水机。
另外,本发明的目的还在于,提供实现脱水运转的时间缩短的脱水机。
用于解决课题的技术方案
本发明提供一种脱水机,其特征在于,包含:脱水槽,收容洗涤物,为将洗涤物脱水而进行旋转;电动的电机,使所述脱水槽旋转;负载量测定装置,在所述脱水槽开始旋转时,测定所述脱水槽内的洗涤物的负载量;驱动控制装置,在所述负载量测定装置进行的负载量的测定之后,控制对所述电机施加的电压的占空比,由此使所述电机以第一旋转速度稳定旋转,之后,为将洗涤物真正地脱水,而使所述电机以比所述第一旋转速度高的第二旋转速度稳定旋转;获取装置,在所述电机至所述第一旋转速度的加速状态下,获取对所述电机施加的电压的占空比作为基准占空比;定时决定装置,决定所述获取装置获取所述基准占空比的定时;判定装置,在所述获取装置获取了所述基准占空比之后,在规定期间内,基于表示为维持所述第一旋转速度而对所述电机施加的电压的占空比从所述基准占空比开始变化的样子的指标,判定所述脱水槽内的洗涤物有无偏倚;停止控制装置,在所述判定装置判定为洗涤物有偏倚的情况下,使所述脱水槽的旋转停止,所述定时决定装置根据所述负载量测定装置测得的负载量来决定所述获取装置获取所述基准占空比的定时。
另外,本发明的特征在于,包含执行装置,该执行装置在所述停止控制装置使所述脱水槽的旋转停止的情况下,根据所述指标选择性地执行用于使洗涤物的脱水再开始的所述脱水槽的旋转、以及修正所述脱水槽内的洗涤物的偏倚的处理的任一种。
另外,本发明的特征在于,所述驱动控制装置在使所述电机以所述第一旋转速度稳定旋转之前,使所述电机以比所述第一旋转速度低的规定速度稳定旋
转,所述执行装置在执行用于再开始洗涤物的脱水的所述脱水槽的旋转的情况下,缩短使所述电机以所述规定速度稳定旋转的期间。
另外,本发明提供一种脱水机,其特征在于,包含:脱水槽,收容洗涤物,为将洗涤物脱水而进行旋转;电动的电机,使所述脱水槽旋转;驱动控制装置,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度稳定旋转,之后,为将洗涤物真正地脱水,而使所述电机以比所述第一旋转速度高的第二旋转速度稳定旋转;获取装置,将所述电机的加速朝向所述第一旋转速度开始之后,在规定期间内,每规定的定时获取所述占空比;计数装置,如果通过所述获取装置获取的占空比为之前刚获取的占空比以上,则使初始值为零的计数值加1,如果通过所述获取装置获取的占空比低于之前刚获取的占空比,则将所述计数值复位为所述初始值;判定装置,如果所述计数值为规定的阈值以上,则判定为在所述脱水槽内,洗涤物有偏倚;停止控制装置,在所述判定装置判定为洗涤物有偏倚的情况下,使所述脱水槽的旋转停止。
另外,本发明提供一种脱水机,其特征在于,包含:脱水槽,收容洗涤物,为将洗涤物脱水而进行旋转;电动的电机,使所述脱水槽旋转;驱动控制装置,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度稳定旋转,之后,为将洗涤物真正地脱水,而使所述电机以比所述第一旋转速度高的第二旋转速度稳定旋转;获取装置,在所述电机的旋转速度从所述第一旋转速度到达所述第二旋转速度的期间内,按每规定的定时获取所述占空比;判定装置,如果所述获取装置获取到的所述占空比为规定的阈值以上,则判定为在所述脱水槽内,洗涤物有偏倚;停止控制装置,在所述判定装置判定为洗涤物有偏倚的情况下,使所述脱水槽的旋转停止;接收装置,接收有关洗涤物的脱水条件的选择;阈值变更装置,根据所述接收装置接收到选择的脱水条件来变更所述阈值。
发明效果
根据本发明,作为脱水机的脱水运转,控制对使脱水槽旋转的电动的电机施加的电压的占空比,由此,使电机以第一旋转速度稳定旋转,之后,使电机以比第一旋转速度高的第二旋转速度稳定旋转,由此将脱水槽内的洗涤物真正地脱水。
与脱水槽内的洗涤物有无偏倚的检测相关联,在电机至第一旋转速度的加速状态下,通过获取装置获取基准占空比。而且,获取装置获取了所述基准占
空比之后,在规定期间内,基于表示为维持第一旋转速度而对电机施加的电压的占空比从基准占空比开始变化的样子的指标,判定脱水槽内的洗涤物有无偏倚。在判定为洗涤物有偏倚的情况下,停止脱水槽的旋转。
作为这种有无偏倚的检测的一环,在脱水槽开始旋转时,测定脱水槽内的洗涤物的负载量,定时决定装置根据测得的负载量来决定获取装置获取基准占空比的定时。由此,基准占空比在考虑到负载量的影响的适宜的定时获取,因此,可以基于该基准占空比来高精度地执行洗涤物有无偏倚的检测。其结果是,实现洗涤物有无偏倚的检测精度的提高。
另外,根据本发明,在根据洗涤物有无偏倚的判定使脱水槽的旋转停止的情况下,根据表示占空比从基准占空比开始变化的样子的指标来选择性地执行用于使洗涤物的脱水再开始的脱水槽的旋转、以及修正脱水槽内的洗涤物有无偏倚的处理的任一种。
即,如果判定为洗涤物有偏倚,则可以一律地执行修正洗涤物偏倚的处理。因此,只要是洗涤物的偏倚小的指标,就可以马上使脱水槽旋转而再开始脱水,由此,实现脱水运转的时间缩短。
另外,根据本发明,在包含使电机以比第一旋转速度低的规定速度稳定旋转的过程的脱水运转中,在执行用于使洗涤物的脱水再开始的脱水槽的旋转的情况下,缩短该过程的期间,因此,实现脱水运转的进一步的时间缩短。
另外,根据本发明,作为脱水机的脱水运转,控制对使脱水槽旋转的电动的电机施加的电压的占空比,由此,使电机以第一旋转速度稳定旋转,之后,使电机以比第一旋转速度高的第二旋转速度稳定旋转,由此将脱水槽内的洗涤物真正地脱水。
与脱水槽内的洗涤物有无偏倚的检测相关联,在朝向第一旋转速度开始所述电机的加速之后,在规定期间内,每规定的定时获取占空比,并将各占空比与之前刚获取的占空比进行比较。详细而言,如果所获取的占空比为之前刚获取的占空比以上,则将初始值为零的计数值加1,如果所获取的占空比低于之前刚获取的占空比,则将计数值复位为初始值。
而且,如果所述计数值为规定的阈值以上,则判定为在脱水槽内,洗涤物有偏倚,使脱水槽的旋转停止。
这样,如果为总是监视定时相邻的占空比彼此之间的变化的结构,则即使检测开始时获取的从最初的占空比的变化小,也能够进行实时地捕捉检测中途
的占空比的变化的正确的检测,因此,实现洗涤物有无偏倚的检测精度的提高。
另外,根据本发明,作为脱水机的脱水运转,控制对使脱水槽旋转的电动的电机施加的电压的占空比,由此,使电机以第一旋转速度稳定旋转,之后,使电机以比第一旋转速度高的第二旋转速度稳定旋转,由此将脱水槽内的洗涤物真正地脱水。与脱水槽内的洗涤物有无偏倚的检测相关联,在电机的旋转速度从第一旋转速度到达第二旋转速度的期间内,每规定的定时获取占空比。如果该占空比为规定的阈值以上,则判定为在脱水槽内,洗涤物有偏倚,使脱水槽的旋转停止。
该脱水机可以在接收装置中接收有关洗涤物的脱水条件的选择,可以根据接收到的脱水条件来变更阈值。由此,在各脱水条件下的脱水运转中,可以通过适合各脱水条件的阈值来检测洗涤物有无偏倚,因此,实现洗涤物有无偏倚的检测精度的提高。
图1是本发明一实施方式的脱水机1的示意性的纵剖右视图。
图2是表示脱水机1的电气结构的框图。
图3是表示由脱水机1实施的脱水运转下的电机6的转速的状态的时间图。
图4是表示收容于脱水机1的脱水槽4的洗涤物的重量、和根据洗涤物的重量由脱水机1检测的负载量的关系的图表。
图5A是表示用于检测在脱水运转中脱水槽4内的洗涤物有无偏倚的检测1~检测4的概要的流程图。
图5B是表示用于检测在脱水运转中脱水槽4内的洗涤物有无偏倚的检测1~检测4的概要的流程图。
图6A是表示有关检测1及检测2的控制动作的流程图。
图6B是表示有关检测1及检测2的控制动作的流程图。
图7是与检测1相关联地表示电机6的转速和转速的差分Sn的关系的图表。
图8是与检测2相关联地表示电机6的转速和有关差分S的差分的绝对值的累积值U的关系的图表。
图9A是表示有关检测3及检测4的控制动作的流程图。
图9B是表示有关检测3及检测4的控制动作的流程图。
图10是与检测3相关联地表示时间和第一计数值E的关系的图表。
图11是与检测4相关联地表示时间和校正占空比dn_diff的关系的图表。
图12是表示用于检测在脱水运转中脱水槽4内的洗涤物有无偏倚的检测5-1及检测5-2的概要的流程图。
图13是表示有关检测5-1的控制动作的流程图。
图14是与检测5-1及检测5-2相关联地表示转速和移动累积值Cn的关系的图表。
图15是表示有关检测5-2的控制动作的流程图。
图16是表示在脱水运转中检测气泡的控制动作的流程图。
以下,参照附图具体说明本发明的实施方式。
图1是本发明一实施方式的脱水机1的示意性纵剖面右侧面图。
将图1中的上下方向称为脱水机1的上下方向X,将图1中的左右方向称为脱水机1的前后方向Y,首先,说明脱水机1的概要。上下方向X中,将上方称为上方X1,将下方称为下方X2。前后方向Y中,将图1中的左方称为前方Y1,将图1中的右方称为后方Y2。
脱水机1包含可进行洗涤物Q的脱水运转的所有的装置。因此,脱水机1中,不仅包含仅具有脱水功能的装置,而且还包含具有脱水功能的洗衣机或洗涤干燥机。以下,以洗衣机为例来说明脱水机1。
脱水机1包含机壳2、外槽3、脱水槽4、旋转翼5、电动的电机6、传递机构7。
机壳2例如为金属制,形成为箱状。机壳2的上表面2A以随着朝向后方Y2向上方X1延伸的方式相对于前后方向Y倾斜地形成。在上表面2A形成有连通机壳2的内外的开口8。在上表面2A设有对开口8进行开闭的门9。在上表面2A,在比开口8更靠前方Y1的区域设有由液晶操作面板等构成的操作部20。使用者通过操作操作部20,可以自由地选择脱水条件、或对脱水机1指示运转开始或运转停止等。
外槽3例如为树脂制,形成为有底圆筒状。外槽3具有沿上下方向X配置的大致圆筒状的圆周壁3A、从下方X2堵塞圆周壁3A的中空部分的底壁3B、将圆周壁3A的上方X1侧的端缘镶边并同时向圆周壁3A的圆中心侧伸出的环状的环状壁3C。在环状壁3C的内侧形成有从上方X1连通圆周壁3A的中空部
分的出入口10。出入口10从下X2与机壳2的开口8对置,处于连通的状态。在环状壁3C上设有对出入口10进行开闭的门11。底壁3B形成为大致水平地延伸的圆板状,在底壁3B的圆中心位置形成有贯通底壁3B的贯通孔3D。
在外槽3内积存水。外槽3上,从上方X1连接与自来水的水龙头连接的供水路12,从供水路12向外槽3内供给自来水。在供水路12的中途设置为了开始或停止供水而进行开闭的供水阀13。在外槽3上,从下方X2连接排水路14,外槽3内的水从排水路14排出到机外。在排水路14的中途设置为开始或停止排水而进行开闭的排水阀15。
脱水槽4例如为金属制,形成为比外槽3小一圈的有底圆筒状,可以在内部收容洗涤物Q。脱水槽4具有沿上下方向X配置的大致圆筒状的圆周壁4A、和从下方X2堵塞圆周壁4A的中空部分的底壁4B。
圆周壁4A的内周面为脱水槽4的内周面。圆周壁4A的内周面的上端部为使圆周壁4A的中空部分向上方X1露出的出入口21。出入口21从下方X2与外槽3的出入口10对置,处于连通的状态。出入口10及21通过门11一并进行开闭。脱水机1的使用者经由开放的开口8、出入口10及21使洗涤物Q出入脱水槽4。
脱水槽4被以同轴状收容于外槽3内。收容于外槽3内的状态的脱水槽4成为该中心轴,以沿上下方向X延伸的轴线16为中心可进行旋转。另外,在脱水槽4的圆周壁4A及底壁4B形成多个未图示的贯通孔,外槽3内的水经由该贯通孔可以在外槽3和脱水槽4和之间往来。因此,外槽3内的水位和脱水槽4内的水位一致。
脱水槽4的底壁4B形成为相对于外槽3的底壁3B向上方X1隔开间隔大致平行地延伸的圆板状,在底壁4B上,在与轴线16一致的圆中心位置形成贯通底壁4B的贯通孔4C。在底壁4B上设置包围贯通孔4C并沿轴线16向下方X2延伸出的管状的支承轴17。支承轴17插通于外槽3的底壁3B的贯通孔3D,支承轴17的下端部位于比底壁3B更靠下方X2。
旋转翼5是所谓的波轮,形成为以轴线16为圆中心的圆盘状,在脱水槽4内沿底壁4B与脱水槽4同心状地配置。在旋转翼5上,在面临脱水槽4的出入口21的上表面设置放射状地配置的多个叶片5A。在旋转翼5上设置从其圆中心沿轴线16向下方X2延伸的旋转轴18。旋转轴18插通支承轴17的中空部分,旋转轴18的下端部位于比外槽3的底壁3B更靠下方X2。
本实施方式中,电机6通过变频电机实现。电机6在机壳2内配置于外槽3的下方X2。电机6具有以轴线16为中心进行旋转的输出轴19。传递机构7介于支承轴17及旋转轴18各自的下端部和输出轴19的上端部之间。传递机构7将电机6从输出轴19输出的驱动力选择性地传递给支承轴17及旋转轴18的一方或两方。作为传递机构7,使用公知的机构。
如果来自电机6的驱动力传递到支承轴17及旋转轴18,则脱水槽4及旋转翼5绕轴线16旋转。在清洗运转及漂洗运转中,脱水槽4内的洗涤物Q通过旋转的脱水槽4及旋转翼5的叶片5A进行搅拌。另外,在漂洗运转后的脱水运转中,脱水槽4及旋转翼5成为一体并高速旋转,由此将脱水槽4内的洗涤物Q脱水。
图2是表示脱水机1的电气结构的框图。
参照图2,脱水机1包含负载量测定装置、驱动控制装置、获取装置、定时决定装置、判定装置、停止控制装置、执行装置、计数装置、接收装置、作为阈值变更装置的控制部30。控制部30例如作为包含CPU31、ROM或RAM等存储器32、定时器35、计数器36的微机而构成,被内置于机壳2内(参照图1)。
脱水机1还包含水位传感器33和转速读取装置34。水位传感器33及转速读取装置34以及上述的电机6、传递机构7、供水阀13、排水阀15及操作部20分别与控制部30电连接。
水位传感器33是检测外槽3及脱水槽4的水位的传感器,水位传感器33的检测结果被实时地输入控制部30。
转速读取装置34是读取电机6的旋转速度、严格来说读取电机6的输出轴19的转速的装置,例如由霍尔IC构成。转速读取装置34所读取的转速被实时地输入控制部30。控制部30基于所输入的转速控制对电机6施加的电压的占空比,由此使电机6以所希望的转速旋转。
控制部30控制传递机构7,由此将电机6的驱动力的传递目的切换到支承轴17及旋转轴18的一方或两方。控制部30控制供水阀13及排水阀15的开闭。如上述,如果使用者操作操作部20来选择洗涤物Q的脱水条件等,则控制部30接收其选择。
其次,对脱水机1进行的脱水运转进行说明。
图3是表示脱水机1实施的脱水运转的电机6的转速的状态的时间图。图3的时间图中,横轴表示经过时间,纵轴表示电机6的转速(单位:rpm)。
参照图3,在脱水运转中,控制部30在脱水槽4开始旋转时测定脱水槽4内的洗涤物Q的负载量。在测定负载量之后,控制部30在使电机6的旋转速度上升至120rpm这样的规定速度之后,使电机6以120rpm稳定旋转。之后,控制部30使电机6从120rpm上升至240rpm这样的第一旋转速度之后,使电机6以240rpm稳定旋转。之后,控制部30使电机6从240rpm上升至800rpm这样的第二旋转速度之后,使电机6以800rpm稳定旋转。通过电机6的800rpm下的稳定旋转,将脱水槽4内的洗涤物Q正式地脱水。
如果脱水槽4内的洗涤物Q处于偏离脱水槽4的周向配置的状态,则脱水槽4内的洗涤物Q有偏倚。如果在该状态下进行脱水运转,则脱水槽4偏心旋转,由此,脱水槽4大幅摆动,给予脱水机1大的振动,可能会产生噪音。
因此,控制部30在脱水运转的中途检测脱水槽4内的洗涤物Q有无偏倚,如果检测到有偏倚,则停止电机6。控制部30作为这样的检测,执行检测1、检测2、检测3、检测4及检测5这5种电气检测。
检测1~检测4在由电机6的旋转速度从120rpm上升至240rpm的加速期间、和向240rpm开始电机6的加速之后的规定期间构成的低速偏心检测区间执行。检测5在电机6的旋转速度从240rpm到达800rpm的期间即高速偏心检测区间执行。
图4是表示收容于脱水槽4的洗涤物Q的重量和根据洗涤物Q的重量由脱水机1检测的负载量的关系的图表。图4的图表中,横轴表示洗涤物Q的重量(单位:kg),纵轴表示负载量的检测值。
参照图4,如上述,控制部30在脱水槽4开始旋转时测定脱水槽4内的洗涤物Q的负载量。控制部30在脱水槽4开始旋转时使脱水槽4以规定转速旋转,此时,将对施加于电机6的电压的占空比累积一定数所得的值作为负载量进行检测。如果洗涤物Q变重,则为使脱水槽4旋转就必须要对电机6施加高的电压,因此,随着电压增高,负载量增大。这样,控制部30电气测定洗涤物Q的负载量。
图5A及图5B是表示检测1~检测4的概要的流程图。
参照图5A及图5B,如果通过开始脱水运转而开始脱水槽4的脱水旋转(步骤S1),则如上述,控制部30测定脱水槽4内的洗涤物Q的负载量(步骤S2),之后,使电机6以120rpm稳定旋转规定时间(步骤S3)。
之后,控制部30开始电机6向240rpm的加速(步骤S4),在电机6的加
速期间,实施上述的检测1(步骤S5)。在检测1不OK的情况下(步骤S5中为“否”),即,控制部30判定为洗涤物Q有偏倚的情况下,控制部30使电机6停止,使脱水槽4的旋转停止(步骤S6),之后,判定可否重启脱水运转(步骤S7)。
脱水运转的重启是指,控制部30在使脱水槽4的旋转停止而中止了脱水运转之后,为再启动脱水运转而使脱水槽4再一次旋转。详情后述,但根据洗涤物Q的偏倚程度,有时也可以进行重启。
在未实施重启的重启前的情况下(步骤S7中“是”),控制部30执行重启(步骤S8)。控制部30在重启的脱水运转中,缩短120rpm的稳定旋转的期间,使其比之前中止的脱水运转中的120rpm的稳定旋转的期间短。在重启的情况下,洗涤物Q处于某程度上贴附于脱水槽4的内周面来大致脱水的状态,因此,也可以缩短120rpm的稳定旋转的期间。由此,实现脱水运转的时间缩短。此外,这样的期间缩短也可以在接着之后的各重启中执行。
如果重启不能执行(步骤S7中“否”),则控制部30执行不平衡修正这样的处理(步骤S9)。在不平衡修正中,控制部30在关闭排水阀15之后将供水阀13开放,向脱水槽4内供水至规定水位,由此,将脱水槽4内的洗涤物Q浸渍于水中使其容易松散。在该状态下,控制部30通过使脱水槽4及旋转翼5旋转,将贴附于脱水槽4的内周面的洗涤物Q剥下进行搅拌,由此,修正脱水槽4内的洗涤物Q的偏倚。
另一方面,在检测1为OK的情况下(步骤S5中“是”),即,控制部30在检测1中判定为洗涤物Q无偏倚的情况下,控制部30在电机6的加速期间继续执行上述的检测2(步骤S10)。
在检测2不为OK的情况下(步骤S10中“否”),即,控制部30判定为洗涤物Q有偏倚的情况下,控制部30使电机6及脱水槽4停止,中止脱水运转(步骤S11)。之后,控制部30确认本次中止的脱水运转的脱水条件是“毛毯洗涤过程”或是“仅脱水运转”(步骤S12)。
毛毯洗涤过程是指将毛毯等容易吸收水的洗涤物Q进行脱水的脱水条件。在脱水条件为毛毯洗涤过程的情况下(步骤S12中“是”),即关于本次中止的脱水运转未实施重启的重启前的情况下(步骤S13中“是”),控制部30执行缩短120rpm的稳定旋转的期间的重启(步骤S14)。
在毛毯洗涤过程的情况下,从毛毯渗出并积存于外槽3的大量的水成为脱
水槽4的旋转的阻力,由此,控制部30往往误判定为检测2不为OK。而且,如果与误判定无关地进行不平衡修正,使毛毯再次吸收大量的水,则在之后的检测2中可能会再次进行误判定。因此,在毛毯洗涤过程中判定为检测2不为OK的情况下,如果未实施重启(步骤S13中“是”),则就不进行不平衡修正而进行重启(步骤S14)。另一方面,如果不为重启前的情况,即关于本次中止的脱水运转已实施重启(步骤S13中“否”),则控制部30执行不平衡修正(步骤S15)。
仅脱水运转不是接着清洗运转及漂洗运转而执行的脱水运转,而是指将已漂洗的洗涤物Q投入脱水槽4,将该洗涤物Q进行脱水的脱水条件。在脱水条件为仅脱水的运转情况(步骤S12中“是”),即重启前的情况下(步骤S13中“是”),控制部30执行重启(步骤S14)。
如果在仅脱水的运转情况下,已漂洗的洗涤物Q因不平衡修正而被润湿,则事先准备已漂洗的洗涤物Q的意义会消失。因此,在仅脱水的运转中,在判定为检测2不为OK的情况下,如果未实施重启,则就不进行不平衡修正而进行重启。此外,控制部30也可以通过利用操作部20的显示或蜂鸣器等报知错误,催促使用者在脱水槽4内重新放置洗涤物Q。另一方面,在不为重启前的情况下(步骤S13中“否”),控制部30执行不平衡修正(步骤S15)。
另一方面,在脱水条件既不是毛毯洗涤过程又不是仅脱水的运转的情况下(步骤S12中“否”),控制部30关于本次中止的脱水运转定为重启前,并且从此判断是否可重启(步骤S16)。如果为重启前并且可重启(步骤S16中“是”),则控制部30执行缩短120rpm的稳定旋转的期间的重启(步骤S17)。如果不满足为重启前并且可重启这样的条件(步骤S16中“否”),则控制部30执行不平衡修正(步骤S18)。
而且,在检测2为OK的情况下(步骤S10中“是”),即控制部30在检测2中判定为洗涤物Q无偏倚的情况下,控制部30确认定时器35的值是否为每负载量的设定值以上(步骤S19)。即,控制部30在步骤S19中确认定时器35的测量时间是否到达与脱水槽4内的洗涤物Q的负载量相对应的设定值。设定值在以后详述。
如果定时器35的值为每负载量的设定值以上(步骤S19中“是”),则在电机6以240rpm稳定旋转的状态下,控制部30实施上述的检测3及检测4(步骤S20)。在检测3及检测4不为OK的情况下(步骤S20中“否”),即控制
部30判定为洗涤物Q具有偏倚的情况下,控制部30使电机6及脱水槽4停止,中止脱水运转(步骤S11),在步骤S12~S18执行相应的处理。
另一方面,在检测3及检测4为OK的情况下(步骤S20中“是”),即,控制部30在检测3及检测4判定为洗涤物Q无偏倚的情况下,控制部30接着使电机6以240rpm稳定旋转,继续240rpm下的脱水(步骤S21)。
其次,对检测1~检测4分别详细进行说明。
图6A及图6B是表示有关检测1及检测2的控制动作的流程图。首先,参照图6A及图6B说明检测1及检测2。检测1及检测2是利用电机6的旋转速度的洗涤物Q有无偏倚的检测。
控制部30在上述的步骤S4中,开始电机6向240rpm的加速,开始检测1及检测2。首先,控制部30启动定时器35,开始时间测量,并且利用转速读取装置34测定加速开始时的电机6的转速V0(步骤S31)。转速V0为120rpm前后。
关于定时器35的值、即测量时间,作为检测1及检测2的检测时间的电机6向240rpm的加速期间按每个负载量有所不同。这是因为,洗涤物Q的量越多,电机6的旋转速度到达240rpm越耗费时间。因此,关于电机6的加速期间的每负载量的设定值根据实验等事先求出,并存储于存储器32中。
然后,控制部30启动计数器36的计数(步骤S32),通过每经过0.3秒将计数器36初始化,每0.3秒进行计数(步骤S33及步骤S34)。
控制部30在每次计数时测定计数时的电机6的转速Vn(n:计数值)(步骤S35)。控制部30在步骤S35运算测得的转速Vn和Vn之前测得的转速Vn-1的差分Sn。进而,控制部30在步骤S35还运算有关差分Sn和其之前的差分Sn-1的差分的绝对值的累积值U。
其次,控制部30确认定时器35的值是否为每负载量的设定值以上、即定时器35的测量时间是否到达与脱水槽4内的洗涤物Q的负载量相对应的设定值(步骤S36)。步骤S36相当于上述的步骤S19(参照图5A)。
在定时器35的值低于每负载量的设定值的情况下,即定时器35的测量时间未到达对应的设定值的情况下(步骤S36中“否”),如果脱水槽4内的洗涤物Q的负载量为一定量以下(步骤S37中“是”),则控制部30判定方才运算的差分Sn是否作用于检测1(步骤S38)。该一定量通过实验等预先求出,并存储于存储器32中。
详细而言,关于差分Sn,事先决定阈值,并将其存储于存储器32。图7是与检测1相关联地表示电机6的转速和差分Sn的关系的图表。图7的图表中,横轴表示转速(单位:rpm),纵轴表示差分Sn(单位:rpm)。
图7中,参照虚线箭头所示的转速的范围,在偏心减小而看作是洗涤物Q无偏倚的情况下,脱水槽4的加速稳定,因此,如实线所示,差分Sn的偏差小。但是,在偏心增大而看作是洗涤物Q有偏倚的情况下,脱水槽4的加速不稳定,因此,如虚线所示,差分Sn的偏差大,差分Sn的最小值低于阈值。因此,返回图6A,如果差分Sn为阈值以下,则控制部30判定为差分Sn作用于检测1(步骤S38中“是”)。这样,在检测1中,基于差分Sn来检测表示洗涤物Q有无偏倚的脱水槽4的加速的不稳定度。
控制部30如果判定为差分Sn作用于检测1(步骤S38中“是”),则停止电机6的旋转(上述的步骤S6),执行上述的步骤S7~S9中的相应的处理(参照图5A)。步骤S31~步骤S38的处理包含于上述的步骤S5(参照图5A)。
控制部30在通过差分Sn超过阈值而判定为作用于检测1时(步骤S38中“否”),判定方才运算的累积值U是否作用于检测2(步骤S39)。
另外,如果脱水槽4内的洗涤物Q的负载量超过一定量(步骤S37中“否”),则控制部30不执行步骤S38中的检测1下的判定,而执行步骤S39中的检测2下的判定。这是因为,在洗涤物Q的量超过一定量而过多的情况下,因从洗涤物Q浸出的水的量增多,或洗涤物Q突然贴附于脱水槽4的内周面等而洗涤物Q的偏倚急变化,从而可能不能稳定地执行检测1。因此,在洗涤物Q的量超过一定量的情况下,检测1省略。
将累积值U是否作用于检测2用于判定,对于累积值U事先决定阈值,并存储于存储器32。图8是与检测2相关联地表示电机6的转速和累积值U的关系的图表。图8的图表中,横轴表示时间(单位:sec),纵轴表示累积值U(单位:rpm)。参照图8,关于阈值,设定由四角的点所示的下侧阈值和三角的点表示的上侧阈值这两种阈值。上侧阈值为比下侧阈值高的值。
在偏心小、洗涤物Q无偏倚的情况下,脱水槽4的加速稳定,因此,如实线所示,累积值U在所有的定时均低于下侧阈值。但是,在偏心大、洗涤物Q有偏倚的情况下,脱水槽4的加速不稳定,因此,如虚线所示,累积值U在任意的定时均超过下侧阈值。如果洗涤物Q的偏倚增大,则累积值U也超过上侧阈值。因此,返回图6A,如果累积值U为下侧阈值以上,则控制部30判定为
累积值U作用于检测2(步骤S39中“是”)。这样,检测2中,基于累积值U来检测表示洗涤物Q有无偏倚的脱水槽4的加速的不稳定度。
控制部30在判定为累积值U作用于检测2时(步骤S39中“是”),停止电机6的旋转(上述的步骤S11),执行上述的步骤S12~S18中相应的处理。步骤S31~S37及步骤S39的处理包含于上述的步骤S10(参照图5A)。
在脱水条件既不是毛毯洗涤过程又不是仅脱水的运转的情况下(步骤S12中“否”),控制部30在步骤S16中判断洗涤物Q的偏倚是否大成使累积值U为上侧阈值以上的程度,或者关于本次中止的脱水运转是否为已重启。
在累积值U为上侧阈值以上的情况、或已重启的情况下(步骤S16中“是”),控制部30执行不平衡修正(步骤S18)。在累积值U低于上侧阈值,且尚未重启的情况下(步骤S16中“否”),控制部30执行重启(步骤S17)。累积值U是否为上侧阈值以上的判断相当于图5B的步骤S16中的可否重启的判断,是否已重启的判断相当于图5B的步骤S16中的是否为重启前的判断。
这样,控制部30在步骤S16~S18中,基于累积值U是否为上侧阈值以上来判定作用于检测2的偏倚小到能接着重启的程度,或大到需要不平衡修正的程度,并根据偏倚的大小来选择性地执行重启和不平衡修正。
而且,如果在检测1及检测2的任一检测中均判定为洗涤物Q无偏倚的状态下,定时器35的值到达每负载量的设定值(步骤S36中“是”),则控制部30结束检测1及检测2(步骤S40)。另外,控制部30在步骤S40中获取在定时器35的值到达设定值的时刻对电机6施加的电压的占空比作为基准占空比d0。在定时器35的值到达设定值并执行步骤S40的处理的时刻,电机6处于至240rpm的加速状态。
如上述,步骤S36中的设定值对于脱水槽4内的洗涤物Q的每负载量有所不同。因此,控制部30根据脱水槽4脱水旋转时测得的负载量,决定在步骤S40中获得基准占空比d0的定时。换言之,控制部30根据负载量来变更结束检测1及检测2并开始之后的检测3及检测4的定时。因此,可以在与洗涤物Q的量相对应的最佳的定时执行检测3及检测4。
图9A及图9B是表示关于检测3及检测4的控制动作的流程图。参照图9A及图9B,说明检测3及检测4。检测3及检测4是利用对电机6施加的电压的占空比的洗涤物Q有无偏倚的检测。
控制部30在上述的步骤S40中获取基准占空比d0,并开始检测3及检测4。
在开始检测3及检测4时,电机6的旋转速度处于到达240rpm的状态,电机6以240rpm进行稳定旋转。
与检测3及检测4相关联地存在第一计数值E和第二计数值T,并将其存储于存储器32。控制部30在开始检测3及检测4时,将第一计数值E和第二计数值T分别清零为0(零)的初始值(步骤S41)。
而且,控制部30使定时器35启动,开始时间测量(步骤S42),并监视定时器35的值是否超过8.1秒。第三检测及第四检测在获取到基准占空比d0之后,在8.1秒这样的规定期间内执行。
另外,控制部30在步骤S42使计数器36的计数启动,每经过0.3秒使计数器36初始化,由此每0.3秒进行计数(步骤S43及步骤S44)。控制部30在步骤S44将计数器36初始化的定时、即每计数的定时,将第二计数值T加1(+1)。
控制部30在每次计数时,获取在计数时对电机6施加的电压的占空比dn(n:计数值)(步骤S45)。即,控制部30在上述的8.1秒这样的规定期间内每隔0.3秒这样的规定的定时获取占空比dn。
另外,控制部30在步骤S45中,基于以下的式(1)及(2)运算0.3秒的每定时的校正占空比dn_diff。校正占空比dn_diff是以能够高精度地执行检测4的检测的方式校正在相同的定时获取的占空比dn的值。此外,式(1)及(2)中的A及B是通过实验等求出的常数。
dn_diff=A·dn-dn_x…式(1)
dn_x=(A·d0)-(B·T)…式(2)
其次,如果所获取的占空比dn为在之前的定时获取的占空比dn-1以上(步骤S46中“是”),则控制部30将第一计数值E加1(+1)(步骤S47)。顺便说,在第三检测中,控制部30最初获取的占空比dn为上述的基准占空比d0。另一方面,如果所获取的占空比dn低于在之前的定时获取的占空比dn-1(步骤S46中“否”),则控制部30将第一计数值E复位为初始值的0(零)(步骤S48)。
而且,控制部30确认定时器35的值是否为8.1秒以下,即定时器35的测量时间是否超过8.1秒(步骤S49)。
在定时器35的值为8.1秒以下的情况下(步骤S49中“是”),如果脱水槽4内的洗涤物Q的负载量为一定量以上(步骤S50中“是”),则控制部30判定最新的第一计数值E是否作用于检测3(步骤S51)。该一定量通过实验等
预先求出,并存储于存储器32。
详细而言,关于第一计数值E,事先决定阈值,并将其存储于存储器32。图10是与检测3相关联地表示时间和第一计数值E的关系的图表。图10的图表中,横轴表示时间(单位:sec),纵轴表示第一计数值E。参照图10,关于阈值,设定由单点划线表示的下侧阈值、和由双点划线表示的上侧阈值这两种阈值。上侧阈值及下侧阈值分别与经过时间无关,为一定的值。上侧阈值为比下侧阈值高的值。
在偏心小、洗涤物Q无偏倚的情况下,即使为小的电压,电机6也能够以240rpm稳定旋转,因此,占空比dn逐渐减少。由此,第一计数值E如实线所示,在初始值的0(零)的附近稳定。
但是,在偏心大、洗涤物Q有偏倚的情况下,为了以240rpm维持电机6的旋转速度,需要高的电压,因此,占空比dn减少。由此,第一计数值E不会返回初始值而增加,如虚线所示,在任意的定时都超过下侧阈值。如果洗涤物Q的偏倚大,则第一计数值E也超过上侧阈值。
因此,返回图9A,如果最新的第一计数值E为下侧阈值以上,则控制部30判定为第一计数值E作用于检测3(步骤S51中“是”)。即,如果上述的8.1秒这样的规定期间内的第一计数值E为规定的阈值以上,则控制部30判定为在脱水槽4内,洗涤物Q有偏倚。
如果为如检测3总是监视定时在相邻的占空比dn彼此之间的变化的结构,则即使从检测开始时获取的最初的占空比dn即基准占空比d0的变化小,也能够进行实时地捕捉检测中途的占空比dn的变化的正确的检测。因此,实现洗涤物Q有无偏倚的检测精度的提高。
而且,控制部30如果因第一计数值E低于下侧阈值而判定为未作用于检测3(步骤S51中“否”),则判定方才运算的校正占空比dn_diff是否作用于检测4(步骤S52)。
另外,如果脱水槽4内的洗涤物Q的负载量低于一定量(步骤S50中“否”),则控制部30不执行步骤S51中的检测3下的判定,而执行步骤S52中的检测4下的判定。这是因为,如果在洗涤物Q的量少于一定量的程度的情况下执行检测3,则因占空比dn在较早的阶段会收敛,而第一计数值E可能不稳定,不能稳定地执行检测3。因此,在洗涤物Q的量低于一定量的情况下,省略检测3。
关于校正占空比dn_diff是否作用于检测4的判定,对校正占空比dn_diff
事先决定阈值并将其存储于存储器32。图11是与检测4相关联地表示时间和校正占空比dn_diff的关系的图表。图11的图表中,横轴表示时间(单位:sec),纵轴表示校正占空比dn_diff。参照图11,对阈值设定由单点划线表示的下侧阈值和由双点划线表示的上侧阈值这两种阈值。上侧阈值及下侧阈值分别根据经过时间而逐渐增大。上侧阈值为比下侧阈值高的值。
在偏心小、洗涤物Q无偏倚的情况下,即使为小的电压,电机6也能够以240rpm稳定旋转,因此,校正占空比dn_diff如实线所示,在低于下侧阈值的同时,逐渐减少。
但是,在偏心大、洗涤物Q有偏倚的情况下,为以240rpm维持电机6的旋转速度,需要高的电压,因此,校正占空比dn_diff如虚线所示,不减少而超过下侧阈值。如果洗涤物Q的偏倚大,则校正占空比dn_diff也超过上侧阈值。因此,返回图9A,如果校正占空比dn_diff为下侧阈值以上,则控制部30判定为校正占空比dn_diff作用于检测4(步骤S52中“是”)。
此外,上述的式(1)及(2)中求出的校正占空比dn_diff为以在占空比dn与基准占空比d0相同或比基准占空比d0大的情况下随着经过时间而增大的方式设定的值。因此,校正占空比dn_diff仅在占空比dn从基准占空比d0正常下降的情况下不作用于阈值。
如上,用于检测3的第一计数值E和用于检测4的校正占空比dn_diff是表示在上述的8.1秒这样的规定期间内,为维持240rpm而对电机6施加的电压的占空比dn从基准占空比d0开始变化的样子的指标。控制部30在检测3及检测4中,基于这样的指标来判定脱水槽4内的洗涤物Q有无偏倚。
另外,用于检测3的第一计数值E和用于检测4的校正占空比dn_diff基于基准占空比d0求出,因此,基准占空比d0为左右洗涤物Q有无偏倚的检测精度的主要因素。在脱水机1中,如上述,控制部30在脱水槽4开始旋转时,测定脱水槽4内的洗涤物Q的负载量(图5A的步骤S2),并根据测得的负载量决定获取基准占空比d0的定时(图6A的步骤S36)。由此,由于基准占空比d0在考虑到负载量的影响的适宜的定时获取,所以可以基于该基准占空比d0,在检测3及检测4高精度地执行洗涤物Q有无偏倚的检测。其结果是,实现洗涤物Q有无偏倚的检测精度的提高。
而且,就控制部30而言,如果判定为第一计数值E作用于检测3(步骤S51中“是”)、或者判定为校正占空比dn_diff作用于检测4(步骤S52中“是”),
则停止电机6的旋转(上述的步骤S11),执行上述的步骤S12~S18中相应的处理。步骤S40~S52的处理包含于上述的步骤S20(参照图5A)。
图16中的步骤S16A及步骤S16B包含于上述的步骤S16(参照图5B)。详细而言,步骤S16A中的判断相当于图5B的步骤S16中的是否为重启前的判断,步骤S16B中的判断相当于图5B的步骤S16中的可否重启的判断。
在脱水条件不为毛毯洗涤过程及仅脱水的运转的任一种的情况下(步骤S12中“否”),控制部30在步骤S16A中关于本次中止的脱水运转判断是否为重启前。如果为重启前(步骤S16A中“是”),则控制部30判断洗涤物Q的偏倚是否减小到第一计数值E及校正占空比dn_diff低于各自的上侧阈值的程度。
在为重启前(步骤S16A中“是”),即第一计数值E及校正占空比dn_diff低于各自的上侧阈值的情况下(步骤S16B中“是”),控制部30执行重启(步骤S17)。
在不为重启前的情况、即已重启的情况下(步骤S16A中“否”),控制部30执行不平衡修正(步骤S18)。另外,即使在重启前(步骤S16A中“是”),在第一计数值E及校正占空比dn_diff的至少任一个为各自的上侧阈值以上的情况下(步骤S16B中“否”),控制部30也执行不平衡修正(步骤S18)。
这样,控制部30在于步骤S11中停止了脱水槽4的旋转的情况下,在步骤S16B~S18中,根据第一计数值E及校正占空比dn_diff来判断作用于检测3或检测4的偏倚是否小到可接着重启的程度、或大到需要不平衡修正的程度。
即,控制部30根据第一计数值E及校正占空比dn_diff的程度,换言之,这些值是否为各自的上侧阈值以上,选择性地执行重启及不平衡修正的任一方。因此,如果判定为洗涤物Q有偏倚,则可以一律不执行不平衡修正。因此,如果第一计数值E及校正占空比dn_diff为显示洗涤物Q的偏倚小的值,则通过马上执行重启,实现脱水运转的时间缩短。
而且,在检测3及检测4的任一检测中,在判定为洗涤物Q无偏倚的状态下,如果定时器35的值经过8.1秒(步骤S49中“否”),则控制部30结束检测3及检测4(步骤S53)。
其次,详细说明检测5。具体而言,检测5分为检测5-1和检测5-2。图12是表示检测5-1及检测5-2的概要的流程图。检测5-1及检测5-2为利用占空比的洗涤物Q有无偏倚的检测。
参照图12,在检测3及检测4结束之后,240rpm下的电机6的稳定旋转还
继续规定时间。随着该规定时间的经过,控制部30将电机6从240rpm加速至上述的800rpm这样的目标转速(步骤S60)。
控制部30在电机6被加速的状态下,电机6的旋转速度到达300rpm时,获取在该时刻对电机6施加的电压的占空比作为α值(步骤S61)。300rpm是水不为积存于脱水槽4的状态而最不受脱水槽4的偏心的影响的转速。因此,300rpm下的α值是最不会受脱水槽4的偏心的影响而仅受到洗涤物Q的负载量的影响的状态下的占空比。
而且,控制部30在电机6被继续加速的状态下,在转速从600pm到729rpm的期间,实施上述的检测5-1(步骤S62)。在检测6-1不为OK的情况下(步骤S62中“否”),即,在控制部30判定为洗涤物Q有偏倚的情况下,控制部30使电机6停止,停止脱水槽4的旋转(步骤S63)。这样,在脱水运转中止之后,控制部30判断是否为重启前,即关于本次中止的脱水运转,重启是否已执行(步骤S64)。
如果在重启前(步骤S64中“是”),则控制部30执行重启(步骤S65)。如果不在重启前(步骤S64中“否”),则控制部30执行不平衡修正(步骤S66)。
另一方面,在检测5-1为OK的情况下(步骤S62中“是”),即,控制部30在检测5-1判定为洗涤物Q无偏倚的情况下,控制部30在电机6从730rpm继续被加速的状态下,继续实施上述的检测5-2(步骤S67)。
在检测5-2为OK的情况下(步骤S67中“是”),即,控制部30在检测5-2判定为洗涤物Q无偏倚的情况下,控制部30在使电机6加速至目标转速(800rpm)之后,使电机6以目标转速稳定旋转,由此继续洗涤物Q的脱水(步骤S68)。
另一方面,在检测5-2不为OK的情况下(步骤S67中“否”),即,控制部30判定为洗涤物Q有偏倚的情况下,控制部30使电机6以上述的目标转速以下的旋转速度稳定旋转,由此继续洗涤物Q的脱水(步骤S69)。
其次,对检测5-1及检测5-2分别进行详细说明。
图13是表示有关检测5-1的控制动作的流程图。
参照图13,控制部30在经过上述的步骤S61(参照图12)而继续对电机6加速的状态下,根据电机6的转速到达600rpm,开始检测5-1(步骤S70)。
而且,控制部30启动计数器36进行的计数(步骤S71),每经过0.3秒将计数器36初始化,由此每0.3秒进行计数(步骤S72及步骤S73)。
控制部30在每次计数时获得计数时的电机6的转速和计数时对电机6施加的电压的占空比dn(n:计数值)(步骤S74)。即,控制部30在电机6的旋转速度从240rpm到达800rpm的期间内,每规定的定时获取电机6的转速和占空比dn。
另外,控制部30在步骤S74,基于以下的式(3)来运算由上述的α值校正占空比dn而得到的校正值Bn。此外,式(3)中的X及Y是通过实验等求得的常数。与单纯的比例计算不同,利用通过式(3)改变加权校正占空比dn而得到的校正值Bn,可以高精度地执行检测5-1。
Bn=dn-(α·X+Y)…式(3)
另外,控制部30在步骤S74中,运算校正值Bn的移动累积值Cn(n:计数值)。移动累积值Cn(n:计数值)是将按计数顺序连续的五个校正值Bn合计所得的值。顺便说,某移动累积值Cn和其之前的移动累积值Cn-1中,构成移动累积值Cn-1的五个校正值Bn中的后侧四个校正值Bn、和构成移动累积值Cn的五个校正值Bn中的前侧四个校正值Bn分别为相同的值。此外,为构成移动累积值Cn而合计的校正值Bn的数不限于上述的五个。
其次,控制部30基于以下的式(4)运算有关移动累积值Cn的阈值(步骤S75)。
阈值=(转速)·a+b…式(4)
式(4)中的a及b是通过实验等求得的常数,被存储于存储器32。另外,这些常数a及b根据当前时刻的电机6的转速或所选择的脱水条件而不同。因此,在此的阈值中,在相同的转速下存在多个值。此外,阈值为未受到上述的α值的影响的值从式(4)可明确。
而且,控制部30确认当前时刻的电机6的转速是否低于730rpm(步骤S76)。
在当前时刻的电机6的转速低于730rpm的情况下(步骤S76中“是”),控制部30判定最新的移动累积值Cn是否作用于检测5-1(步骤S77)。
图14是与检测5-1及检测5-2相关联地表示转速和移动累积值Cn的关系的图表。图14的图表中,横轴表示转速(单位:rpm),纵轴表示移动累积值Cn。参照图14,关于步骤S75中运算出的阈值,例如根据脱水条件的不同来设定由单点划线表示的第一阈值和由双点划线表示的第二阈值这两种阈值。第一阈值比第二阈值高。
脱水条件中存在脱水槽4中积存水并漂洗洗涤物Q的“试漂洗”后进行脱水
运转的脱水条件、一边排水一边对洗涤物Q淋水而进行脱水运转的“淋水脱水”、上述的“重启”等脱水条件。这些脱水条件通过使用者对操作部20的操作来选择,该选择由控制部30接收。在清洗运转后或试漂洗后的脱水运转中,由于洗涤物中含有大量的水,所以电机6的加速需要力,但在淋水脱水或重启的情况下,由于处于从洗涤物排出了某程度的水的状态,所以电机6的加速所需的力很小。
在清洗运转后或试漂洗后的脱水运转中,由于为第二阈值这种严格的检测,所以控制部30使用比第二阈值高的第一阈值。另一方面,在淋水脱水或重启的脱水运转中,由于为第一阈值这种稍缓的检测,所以控制部30使用比第一阈值低的第二阈值。因此,无论是在洗涤物Q中含有大量水的情况下,还是在从洗涤物Q排出了某程度的水的情况下,都能够使用适用于各自情况的阈值来执行检测5-1。
另外,根据这种与脱水条件的差异相同的宗旨,在脱水槽4内的洗涤物Q的负载量多的情况下,由于在检测5-1为第二阈值这种严格的检测,所以控制部30使用比第二阈值高的第一阈值。另外,在脱水槽4内的洗涤物Q的负载量少的情况下,由于在检测5-1为第一阈值这种稍缓的检测,所以控制部30使用比第一阈值低的第二阈值。因此,使用适合于洗涤物Q的负载量不同的各情况的阈值来执行检测5-1。
此外,图14中,示例了第一阈值及第二阈值这两种阈值,但该阈值也可以根据各种脱水条件或负载量设定三种以上。
而且,在偏心大、洗涤物Q有偏倚的情况下(参照图14的虚线),与偏心小、洗涤物Q无偏倚的情况(参照实线)相比,各转速下的移动累积值Cn增大。如果洗涤物Q的偏倚大,则移动累积值Cn超过所设定的阈值、即第一阈值及第二阈值中相对应的一方。
因此,返回图13,如果最新的移动累积值Cn为设定的阈值以上,则控制部30判定为移动累积值Cn作用于检测5-1(步骤S77中“是”)。
控制部30判定为移动累积值Cn作用于检测5-1时(步骤S77中“是”),停止电机6的旋转(上述的步骤S63),执行上述的步骤S64~S66中相应的处理。步骤S71~S77的处理包含于上述的步骤S62(参照图12)。
而且,在检测5-1判定为洗涤物Q无偏倚的状态下,如果电机6的转速到达730rpm(步骤S76中“否”),则控制部30结束检测5-1,接着开始检测5-2(步骤S78)。
图15是表示有关检测5-2的控制动作的流程图。
参照图15,控制部30在继续对电机6加速的状态下,随着电机6的转速到达730rpm,开始检测5-2(上述的步骤S78)。
而且,控制部30启动计数器36的计数(步骤S79),通过每经过0.3秒将计数器36初始化,每0.3秒进行计数(步骤S80及步骤S81)。
控制部30与检测5-1下的步骤S74相同,每次计数时获取计数时的电机6的转速、和计数时对电机6施加的电压的占空比dn,并运算校正值Bn和移动累积值Cn(步骤S82)。
其次,控制部30基于上述的式(4),运算有关移动累积值Cn的阈值(步骤S83)。构成该式(4)的常数a及b与检测5-1相同,根据当前时刻的电机6的转速或所选择的脱水条件而不同。因此,在此的阈值中在相同的转速下存在如上述的第一阈值及第二阈值那样的多个值。
而且,控制部30确认当前时刻的电机6的转速是否到达目标转速(800rpm)(步骤S84)。
在当前时刻的电机6的转速低于目标转速的情况下(步骤S84中“是”),与检测5-1的情况(步骤S77)相同,控制部30判定最新的移动累积值Cn是否作用于检测5-2(步骤S85)。
详细而言,参照图14,在偏心大、洗涤物Q有偏倚的情况下(参照图14的虚线),与偏心小、洗涤物Q无偏倚的情况(参照实线)相比,各转速下的移动累积值Cn增大。如果洗涤物Q的偏倚大,则移动累积值Cn在所设定的阈值、即第一阈值及第二阈值超过相对应的一方。
因此,返回图15,如果最新的移动累积值Cn为所设定的阈值以上,则控制部30判定为移动累积值Cn作用于检测5-2(步骤S85中“是”)。
控制部30在判定为移动累积值Cn作用于检测5-2时(步骤S85中“是”),获取判定的时刻,即检测检测5-2时的电机6的转速L(步骤S86)。
而且,控制部30通过以所获取的转速L、严格上说在转速L上将第一位的数值舍去0(零)所得的转速使电机6稳定旋转,继续洗涤物Q的脱水(上述的步骤S69)。此时,控制部30以得到与以本来的目标转速脱水时相同的脱水效果的方式延长转速L下的脱水时间。
而且,在检测5-2中判定为洗涤物Q无偏倚的状态下,如果电机6的转速到达目标转速(步骤S84中“否”),则控制部30结束检测5-2,并以目标转
速使电机6稳定旋转,由此,继续洗涤物Q的脱水(上述的步骤S68)。
如上,控制部30在检测5-1及检测5-2中根据由操作部20接收到的脱水条件来变更阈值(步骤S75及步骤S83)。而且,如果基于所获取的占空比dn、严格来说为所获取的占空比dn运算出的移动累积值Cn为所变更的规定的阈值以上,则控制部30判定为在脱水槽4内,洗涤物Q有偏倚。即,在各脱水条件下的脱水运转中,根据适于各脱水条件的阈值可以检测洗涤物Q有无偏倚,因此,实现洗涤物Q有无偏倚的检测精度的提高。
本发明不限于以上所说明的实施方式,在权利要求记载的范围中可以进行各种变更。
例如,在脱水运转的期间、特别是电机6的转速低于600rpm的期间,会产生气泡堵塞排水路14的中途而不能顺畅地排水的现象。因此,控制部30也可以与有关上述的检测1~5的控制并行地执行检测排水路14中的气泡的控制。
图16是表示脱水运转中检测气泡的控制动作的流程图。
参照图16,控制部30通过开始脱水运转而开始脱水槽4的脱水旋转(上述的步骤S1)。由此,电机6的转速如上述那样上升(参照图3)。
控制部30在脱水运转中的每隔规定的定时,获取电机6的转速和对电机6施加的电压的占空比即施加电压占空比(步骤S91)。
如果电机6的转速低于600rpm(步骤S92中“是”),则控制部30运算电压限制值V_limit(步骤S93)。电压限制值V_limit为在每转速对电机6施加的最大电压的占空比,通过向规定的式代入转速而算出。
而且,控制部30通过在各定时确认在步骤S91所获取的施加电压占空比是否为电压限制值V_limit以上,检测排水路14中的气泡(步骤S94)。
详细而言,在气泡堵塞排水路14而不能排水的情况下,水积存于脱水槽4的底部而成为脱水槽4旋转的阻力,因此,为使脱水槽4旋转,必须要对电机6施加与电压限制值V_limit以上的施加电压占空比相当的电压。因此,如果施加电压占空比为电压限制值V_limit以上,则控制部30判定为处于气泡堵塞了排水路14的状态(步骤S94中“是”)。另一方面,如果施加电压占空比低于电压限制值V_limit,则控制部30判定为不是气泡堵塞排水路14的状态(步骤S94中“否”)。
控制部30在判定为处于气泡堵塞排水路14的状态时(步骤S94中“是”),判断是否为重启前、即与本次中止的脱水运转相关地判断重启是否已执行(步
骤S95)。
如果为重启前(步骤S95中“是”),则控制部30执行重启(步骤S96)。如果不为重启前(步骤S95中“否”),则控制部30执行不平衡修正(步骤S97)。即使在执行重启及不平衡修正的任一方的情况下,都是在暂时中止脱水运转后重复运转。因此,在脱水运转或重复运转的期间,排水路14的气泡自然消减。
另一方面,如果电机6的转速为600rpm以上(步骤S92中“否”),则控制部30结束检测气泡的处理(步骤S98)。
另外,图16的控制不仅用于气泡的检测,而且还用于检测因振动等而外槽3内的水不能到达排水路的“浸水”这种现象。
在以上的实施方式中,以电机6为变频电机作为前提,使用占空比来控制电机6,但在电机6为有刷电机的情况下,代替占空比,而使用对电机6施加的电压的值来控制电机6。
另外,在以上的说明中,关于转速,使用120rpm、240rpm、800rpm等具体的数值,但这些具体的数值为根据脱水机1的性能而变化的值。另外,在以上的说明中,往往获取占空比并将其用于各种判定,但该占空比也可以是所获取的占空比的原始数据,也可以是根据需要校正的校正值,还可以是如上述的移动累积值Cn那样根据占空比算出的值。
另外,以上实施方式的脱水槽4按照以沿上下方向X延伸的轴线16为中心可旋转的方式垂直配置,但也可以通过将轴线16相对于上下方向X倾斜地延伸来倾斜配置脱水槽4。
附图标记说明
1 脱水机
4 脱水槽
6 电机
30 控制部
dn 占空比
d0 基准占空比
dn_diff 校正占空比
E 第一计数值
Q 洗涤物
Claims (5)
- 一种脱水机,其特征在于,包含:脱水槽,收容洗涤物,为将洗涤物脱水而进行旋转;电动的电机,使所述脱水槽旋转;负载量测定装置,在所述脱水槽开始旋转时,测定所述脱水槽内的洗涤物的负载量;驱动控制装置,在所述负载量测定装置进行的负载量的测定之后,控制对所述电机施加的电压的占空比,由此使所述电机以第一旋转速度稳定旋转,之后,为将洗涤物真正地脱水,而使所述电机以比所述第一旋转速度高的第二旋转速度稳定旋转;获取装置,在所述电机至所述第一旋转速度的加速状态下,获取对所述电机施加的电压的占空比作为基准占空比;定时决定装置,决定所述获取装置获取所述基准占空比的定时;判定装置,在所述获取装置获取了所述基准占空比之后,在规定期间内,基于表示为维持所述第一旋转速度而对所述电机施加的电压的占空比从所述基准占空比开始变化的样子的指标,判定所述脱水槽内的洗涤物有无偏倚;停止控制装置,在所述判定装置判定为洗涤物有偏倚的情况下,使所述脱水槽的旋转停止,所述定时决定装置根据所述负载量测定装置测得的负载量来决定所述获取装置获取所述基准占空比的定时。
- 根据权利要求1所述的脱水机,其特征在于,包含执行装置,该执行装置在所述停止控制装置使所述脱水槽的旋转停止的情况下,根据所述指标选择性地执行用于使洗涤物的脱水再开始的所述脱水槽的旋转、以及修正所述脱水槽内的洗涤物的偏倚的处理的任一种。
- 根据权利要求2所述的脱水机,其特征在于,所述驱动控制装置在使所述电机以所述第一旋转速度稳定旋转之前,使所述电机以比所述第一旋转速度低的规定速度稳定旋转,所述执行装置在执行用于再开始洗涤物的脱水的所述脱水槽的旋转的情况下,缩短使所述电机以所述规定速度稳定旋转的期间。
- 一种脱水机,其特征在于,包含:脱水槽,收容洗涤物,为将洗涤物脱水而进行旋转;电动的电机,使所述脱水槽旋转;驱动控制装置,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度稳定旋转,之后,为将洗涤物真正地脱水,而使所述电机以比所述第一旋转速度高的第二旋转速度稳定旋转;获取装置,将所述电机的加速朝向所述第一旋转速度开始之后,在规定期间内,每规定的定时获取所述占空比;计数装置,如果通过所述获取装置获取的占空比为之前刚获取的占空比以上,则使初始值为零的计数值加1,如果通过所述获取装置获取的占空比低于之前刚获取的占空比,则将所述计数值复位为所述初始值;判定装置,如果所述计数值为规定的阈值以上,则判定为在所述脱水槽内,洗涤物有偏倚;停止控制装置,在所述判定装置判定为洗涤物有偏倚的情况下,使所述脱水槽的旋转停止。
- 一种脱水机,其特征在于,包含:脱水槽,收容洗涤物,为将洗涤物脱水而进行旋转;电动的电机,使所述脱水槽旋转;驱动控制装置,通过控制对所述电机施加的电压的占空比,使所述电机以第一旋转速度稳定旋转,之后,为将洗涤物真正地脱水,而使所述电机以比所述第一旋转速度高的第二旋转速度稳定旋转;获取装置,在所述电机的旋转速度从所述第一旋转速度到达所述第二旋转速度的期间内,按每规定的定时获取所述占空比;判定装置,如果所述获取装置获取到的所述占空比为规定的阈值以上,则判定为在所述脱水槽内,洗涤物有偏倚;停止控制装置,在所述判定装置判定为洗涤物有偏倚的情况下,使所述脱水槽的旋转停止;接收装置,接收有关洗涤物的脱水条件的选择;阈值变更装置,根据所述接收装置接收到选择的脱水条件来变更所述阈值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014134757 | 2014-06-30 | ||
JP2014-134757 | 2014-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016000433A1 true WO2016000433A1 (zh) | 2016-01-07 |
Family
ID=55018398
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/096040 WO2016000433A1 (zh) | 2014-06-30 | 2014-12-31 | 脱水机 |
PCT/CN2015/077299 WO2016000479A1 (zh) | 2014-06-30 | 2015-04-23 | 脱水机 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/077299 WO2016000479A1 (zh) | 2014-06-30 | 2015-04-23 | 脱水机 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180155862A1 (zh) |
JP (1) | JP6350874B2 (zh) |
KR (1) | KR102005360B1 (zh) |
CN (1) | CN107709650B (zh) |
WO (2) | WO2016000433A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108757719A (zh) * | 2018-06-14 | 2018-11-06 | 佛山市奥耶克思机械设备有限公司 | 一种具有高稳定性的转筒 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016188437A1 (zh) * | 2015-05-26 | 2016-12-01 | 海尔亚洲株式会社 | 脱水机 |
KR20190102483A (ko) * | 2018-02-26 | 2019-09-04 | 엘지전자 주식회사 | 세탁기 및 그의 제어방법 |
CN111058228B (zh) * | 2019-12-31 | 2024-06-14 | 合肥海尔滚筒洗衣机有限公司 | 用于洗涤设备的脱水控制方法 |
KR102477491B1 (ko) | 2021-04-28 | 2022-12-15 | 일쌍산업영농조합법인 | 곡물 탈수장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1106481A (zh) * | 1993-08-26 | 1995-08-09 | 株式会社东芝 | 洗衣机 |
JP2005177090A (ja) * | 2003-12-18 | 2005-07-07 | Sanyo Electric Co Ltd | ドラム式洗濯機 |
CN101701405A (zh) * | 2009-02-19 | 2010-05-05 | 南京乐金熊猫电器有限公司 | 洗衣机的脱水速度控制装置及其方法 |
CN102251369A (zh) * | 2010-05-20 | 2011-11-23 | 三洋电机株式会社 | 洗衣机 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3091511B2 (ja) * | 1991-04-12 | 2000-09-25 | 株式会社東芝 | 洗濯機 |
JP2000140481A (ja) * | 1998-11-11 | 2000-05-23 | Sanyo Electric Co Ltd | ドラム式洗濯機 |
JP3607117B2 (ja) * | 1999-05-21 | 2005-01-05 | 株式会社東芝 | ドラム式洗濯機 |
JP3641581B2 (ja) * | 2000-10-24 | 2005-04-20 | 株式会社東芝 | ドラム式洗濯機 |
KR100671193B1 (ko) * | 2003-06-06 | 2007-01-18 | 산요덴키가부시키가이샤 | 드럼식 세탁기 |
JP2006000387A (ja) * | 2004-06-17 | 2006-01-05 | Sanyo Electric Co Ltd | ドラム式洗濯機 |
JP4822974B2 (ja) * | 2006-08-02 | 2011-11-24 | 三洋電機株式会社 | 洗濯機 |
JP2008284405A (ja) * | 2008-09-05 | 2008-11-27 | Mitsubishi Electric Corp | 洗濯機 |
JP2008307414A (ja) * | 2008-09-26 | 2008-12-25 | Sanyo Electric Co Ltd | 洗濯機 |
JP2011240041A (ja) * | 2010-05-20 | 2011-12-01 | Sanyo Electric Co Ltd | 洗濯機 |
KR101709493B1 (ko) * | 2013-11-08 | 2017-02-23 | 엘지전자 주식회사 | 모터 구동장치 및 이를 구비하는 세탁물 처리기기 |
-
2014
- 2014-12-31 WO PCT/CN2014/096040 patent/WO2016000433A1/zh active Application Filing
-
2015
- 2015-04-23 WO PCT/CN2015/077299 patent/WO2016000479A1/zh active Application Filing
- 2015-05-26 JP JP2015106538A patent/JP6350874B2/ja active Active
-
2016
- 2016-05-26 KR KR1020177037320A patent/KR102005360B1/ko active IP Right Grant
- 2016-05-26 CN CN201680028339.XA patent/CN107709650B/zh active Active
- 2016-05-26 US US15/576,592 patent/US20180155862A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1106481A (zh) * | 1993-08-26 | 1995-08-09 | 株式会社东芝 | 洗衣机 |
JP2005177090A (ja) * | 2003-12-18 | 2005-07-07 | Sanyo Electric Co Ltd | ドラム式洗濯機 |
CN101701405A (zh) * | 2009-02-19 | 2010-05-05 | 南京乐金熊猫电器有限公司 | 洗衣机的脱水速度控制装置及其方法 |
CN102251369A (zh) * | 2010-05-20 | 2011-11-23 | 三洋电机株式会社 | 洗衣机 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108757719A (zh) * | 2018-06-14 | 2018-11-06 | 佛山市奥耶克思机械设备有限公司 | 一种具有高稳定性的转筒 |
CN108757719B (zh) * | 2018-06-14 | 2019-11-19 | 泉州台商投资区天泰工业设计有限公司 | 一种具有高稳定性的转筒 |
Also Published As
Publication number | Publication date |
---|---|
CN107709650A (zh) | 2018-02-16 |
JP6350874B2 (ja) | 2018-07-04 |
JP2016026536A (ja) | 2016-02-18 |
KR102005360B1 (ko) | 2019-07-30 |
WO2016000479A1 (zh) | 2016-01-07 |
KR20180012807A (ko) | 2018-02-06 |
CN107709650B (zh) | 2019-10-01 |
US20180155862A1 (en) | 2018-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4943772B2 (ja) | 洗濯機及び布量算出方法 | |
KR101287536B1 (ko) | 세탁기 및 그 제어방법 | |
WO2016000433A1 (zh) | 脱水机 | |
AU2008258190B2 (en) | Drum-type washing machine | |
KR101156713B1 (ko) | 드럼 세탁기 및 그 제어방법 | |
KR102486254B1 (ko) | 세탁기 및 그 제어방법 | |
JP2005199090A (ja) | 脱水機のアンバランス補正装置 | |
WO2016091215A1 (zh) | 脱水机 | |
JP3416573B2 (ja) | 洗濯機 | |
CN107614779B (zh) | 洗衣机 | |
JP6998645B2 (ja) | 洗濯機 | |
JP2008279120A (ja) | ドラム式洗濯機 | |
WO2016188437A1 (zh) | 脱水机 | |
JP2019115389A (ja) | 洗濯機 | |
US11952699B2 (en) | Washing machine and control method thereof | |
KR102639687B1 (ko) | 세탁기 및 그 제어 방법 | |
JP2001062185A (ja) | ドラム式洗濯機 | |
KR20080057709A (ko) | 드럼세탁기의 언밸런스 감지방법 | |
KR20180010308A (ko) | 세탁기 | |
JPH07178281A (ja) | 全自動洗濯機 | |
KR20000045039A (ko) | 세탁기의 불균형 감지방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14896458 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14896458 Country of ref document: EP Kind code of ref document: A1 |