WO2015199223A1 - タイヤ用ゴム組成物 - Google Patents
タイヤ用ゴム組成物 Download PDFInfo
- Publication number
- WO2015199223A1 WO2015199223A1 PCT/JP2015/068515 JP2015068515W WO2015199223A1 WO 2015199223 A1 WO2015199223 A1 WO 2015199223A1 JP 2015068515 W JP2015068515 W JP 2015068515W WO 2015199223 A1 WO2015199223 A1 WO 2015199223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rubber composition
- silica
- group
- rubber
- ctab
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/548—Silicon-containing compounds containing sulfur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Definitions
- the present invention relates to a tire rubber composition that achieves both low rolling resistance and wet grip performance at a high level.
- silica is compounded into a rubber composition for tires.
- the amount of silica should be increased in order to improve the wet grip performance of the rubber composition.
- the dispersibility of silica generally deteriorates and rolling resistance increases. That is, it is difficult to improve both the low rolling resistance and the wet grip performance with a rubber composition having a large amount of silica.
- Patent Document 1 proposes blending a specific silane coupling agent having a mercapto group in order to improve the dispersibility of silica.
- a silane coupling agent having a mercapto group
- the amount of silica is large, the dispersibility of the silica is not necessarily improved sufficiently, and both low rolling resistance and wet grip performance are achieved at a higher level. It was requested.
- An object of the present invention is to provide a rubber composition for tires that is improved in low rolling resistance and wet grip performance to the conventional level or more.
- the rubber composition for tires of the present invention that achieves the above object is a rubber composition containing a diene rubber, silica, and a silane coupling agent, and shearing the rubber composition at 110 ° C. and 0.28% shear strain.
- the elastic modulus G ′, the CTAB specific surface area (CTAB) of the silica, the volume fraction ( ⁇ ) in the rubber composition, and the function ⁇ of the 100% elongation stress (M 100 ) of the rubber composition are expressed by the following formula (i ) And the function ⁇ is a real number of 2.5 or more and 20 or less.
- G ′ K ⁇ ⁇ (i) (In the formula (i), G ′ is a shear elastic modulus (MPa) at 110 ° C.
- ⁇ ⁇ ⁇ (1 + 0.0258 ⁇ CTAB ⁇ M 100 ) (ii)
- ⁇ is the volume fraction of silica in the rubber composition
- CTAB is the CTAB specific surface area (m 2 / g) of silica
- M 100 is the stress at 23 ° C. and 100% elongation (MPa) of the rubber composition. ).
- the rubber composition for tires of the present invention contains a diene rubber, silica and a silane coupling agent.
- the silane coupling agent preferably has a mercapto group. Moreover, it is preferable that it is polysiloxane which has an average compositional formula represented by following General formula (1).
- A is a divalent organic group containing a sulfide group
- B is a monovalent hydrocarbon group having 5 to 10 carbon atoms
- C is a hydrolyzable group
- D is an organic group containing a mercapto group
- R 1 is a monovalent hydrocarbon group having 1 to 4 carbon atoms
- a to e are 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ . 2.
- 0 ⁇ 2a + b + c + d + e ⁇ 4 is satisfied, provided that at least one of a and b is not 0.)
- 0 ⁇ a ⁇ 1, 0 ⁇ c ⁇ 3, and A, C, and D are represented by the following general formulas (2), (3), and (4). It is preferably represented.
- n represents an integer of 1 to 10
- x represents an integer of 1 to 6, and * represents a bonding position.
- R 2 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms, and * represents a bonding position.
- m represents an integer of 1 to 10, and * represents a bonding position.
- the pneumatic tire using the rubber composition for tires described above can improve the low rolling resistance and wet grip performance to the conventional level or more.
- FIG. 1 is a partial cross-sectional view in the tire meridian direction showing an example of an embodiment of a pneumatic tire using the rubber composition for a tire of the present invention.
- FIG. 1 shows an example of an embodiment of a pneumatic tire using a rubber composition for a tire.
- the pneumatic tire includes a tread portion 1, a sidewall portion 2, and a bead portion 3.
- the pneumatic tire has two carcass layers 4 in which reinforcing cords extending in the tire radial direction are arranged between the left and right bead portions 3 at predetermined intervals in the tire circumferential direction and embedded in a rubber layer.
- the both ends are folded back from the inner side in the tire axial direction so as to sandwich the bead filler 6 around the bead core 5 embedded in the bead part 3.
- An inner liner layer 7 is disposed inside the carcass layer 4.
- a belt cover layer 9 is disposed on the outer peripheral side of the belt layer 8.
- a tread portion 1 is formed of a tread rubber layer 10 on the outer peripheral side of the belt cover layer 9.
- the tread rubber layer 10 is preferably composed of the rubber composition for tire tread of the present application.
- a side rubber layer 11 is disposed outside the carcass layer 4 of each sidewall portion 2, and a rim cushion rubber layer 12 is provided outside the folded portion of the carcass layer 4 of each bead portion 3.
- the tire rubber composition of the present invention is suitable for constituting the tread rubber layer 10.
- the tire rubber composition of the present invention contains a diene rubber as a rubber component.
- the diene rubber include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, butyl rubber, ethylene- ⁇ -olefin rubber, and chloroprene rubber. Of these, styrene butadiene rubber, butadiene rubber, and natural rubber are preferable.
- the tire rubber composition of the present invention improves the low rolling resistance and wet grip performance of the tire rubber composition by blending silica with diene rubber.
- silica dispersibility is sometimes evaluated by the magnitude of the Pain effect.
- the Payne effect is evaluated by, for example, the magnitude of the shear elastic modulus G ′ at 0.28% strain. When the shear elastic modulus G ′ at 0.28% strain is large, the Payne effect is large and the dispersibility of silica is deteriorated.
- shear modulus G ′ having a strain of 0.28% when the shear modulus G ′ having a strain of 0.28% is small, the Payne effect is small and the dispersibility of silica is good.
- the shear modulus G ′ with a strain of 0.28% can be measured using a viscoelastic spectrometer.
- the action effect of silica can be increased by increasing the interaction between silica and the rubber component. It is done.
- the strength of interaction between silica and the rubber component can be evaluated by the sum of the volume of silica in the rubber composition and the volume of bound rubber around the dispersed silica particles. In other words, when the dispersibility of silica is poor, the amount of bound rubber is relatively small, and the interaction between silica and the rubber component becomes small. Therefore, even if the amount of silica is increased, the characteristics of the rubber composition can be improved efficiently. Cannot be improved.
- the silica is dispersed well, the amount of bound rubber is relatively large, and the interaction between the silica and the rubber component is further increased, thereby effectively improving the properties of the rubber composition. it can.
- the volume of silica and bound rubber is made as large as possible, and By reducing the Payne effect, both wet grip performance and low rolling resistance can be achieved at a high level.
- the volume of silica is determined by the content and specific gravity of silica in the rubber composition.
- the volume of the bound rubber can be measured if it is in an unvulcanized state, but it is difficult to measure quantitatively in industrial products such as vulcanized pneumatic tires. For this reason, when the relationship between the volume of the bound rubber in the unvulcanized rubber composition and the characteristics of the vulcanized rubber molded body obtained by vulcanizing this was experimentally investigated, the volume of the bound rubber was determined by the CTAB specific surface area of silica. It was found that there is a strong correlation with the product ( ⁇ ⁇ CTAB ⁇ M 100 ) of (CTAB), volume fraction ( ⁇ ) and 100% elongation stress (M 100 ) of the rubber composition.
- ⁇ ⁇ ⁇ ((correlation with the total volume of silica and round rubber) is used in this specification using a value (0.0258 ⁇ ⁇ ⁇ CTAB ⁇ M 100 ) that correlates with the bound rubber volume. 1 + 0.0258 ⁇ CTAB ⁇ M 100 ) will be used to evaluate the interaction of silica and rubber components.
- the shear elastic modulus G ′ of the rubber composition at 110 ° C. and 0.28% shear strain the CTAB specific surface area (CTAB) of silica, the volume fraction of silica ( ⁇ ), and the rubber It is necessary that the function ⁇ of the stress at 100% elongation (M 100 ) of the composition satisfies the relationship of the following formula (i).
- G ′ K ⁇ ⁇ (i) (In the formula (i), G ′ is a shear elastic modulus (MPa) at 110 ° C. and 0.28% shear strain, K is a coefficient greater than 0 and 450 or less, and ⁇ is a function represented by the following formula (ii).
- ⁇ ⁇ ⁇ (1 + 0.0258 ⁇ CTAB ⁇ M 100 )
- ⁇ is the volume fraction of silica in the rubber composition
- CTAB is the CTAB specific surface area (m 2 / g) of silica
- M 100 is the stress at 23 ° C. and 100% elongation (MPa) of the rubber composition. ).
- G ′ is a shear elastic modulus (MPa) at 110 ° C. and 0.28% shear strain, and is an index representing the Payne effect of a rubber composition containing silica. That is, a small G ′ means that the dispersibility of silica is good.
- the function ⁇ is a function represented by the above formula (ii) and has a correlation with the total volume of silica and round rubber.
- the function ⁇ is a real number of 2.5 or more and 20 or less, preferably a real number of 3.0 to 16. When the function ⁇ is less than 2.5, the interaction between the silica and the rubber component is insufficient, and the wet performance cannot be sufficiently improved. If the function ⁇ exceeds 20, the rolling resistance performance cannot be sufficiently improved.
- K represents the slope of a straight line connecting the point and the origin when the function ⁇ is plotted on the horizontal axis and the shear modulus G ′ is plotted on the vertical axis. is there.
- a small coefficient K indicates that the shear modulus G ′ (Pain effect) is small when the amount of silica is increased and the function ⁇ correlated with the volume of silica and bound rubber is increased. That is, since the Pain effect can be reduced while increasing the volume of silica and bound rubber, the wet grip performance and the low rolling resistance can be achieved at a high level. Therefore, the coefficient K is a real number of 450 or less, preferably 50 to 440. If the coefficient K exceeds 450, the wet grip performance and the low rolling resistance cannot be achieved.
- ⁇ is the volume fraction of silica in the rubber composition, and is a real number exceeding 0 and less than 1.
- the volume fraction ⁇ can be determined from the blending amount (wt%) of silica in the rubber composition and the specific gravity of silica.
- the volume fraction ⁇ of silica is not particularly limited, but is preferably 0.10 to 0.65, more preferably 0.12 to 0.55. When the volume fraction ⁇ is less than 0.10, the wet performance is insufficient. When the volume fraction ⁇ exceeds 0.65, the rolling resistance is insufficient.
- the CTAB specific surface area of silica is preferably 140 to 450 m 2 / g, more preferably 150 to 400 m 2 / g.
- the CTAB specific surface area is less than 140 m 2 / g, the wet performance is insufficient.
- the CTAB specific surface area exceeds 450 m 2 / g, the rolling resistance is insufficient.
- the CTAB specific surface area of silica is measured according to JIS K6217-3.
- M 100 is the stress (MPa) at 23 ° C. and 100% elongation of the rubber composition.
- the stress M 100 is not particularly limited, but is preferably 1.5 to 10 MPa, and more preferably 1.7 to 9.0 MPa.
- stress M 100 is less than 1.5 MPa, rolling resistance performance and wet performance deteriorates.
- the stress M 100 exceeds 10 MPa, the rolling resistance performance deteriorates.
- the stress M 100 at 23 ° C. and 100% elongation of the rubber composition is a value obtained by measuring the stress at 100% elongation by performing a tensile test at 23 ° C. and 500 mm / min in accordance with JIS K6251. .
- the silane coupling agent preferably has a mercapto group.
- a silane coupling agent having a mercapto group By adding a silane coupling agent having a mercapto group, the dispersibility of silica can be improved.
- the amount of such a silane coupling agent is preferably 1 to 25% by weight, more preferably 3 to 20% by weight, based on the silica weight. If the amount of the silane coupling agent is less than 1% by weight, the dispersibility of silica may not be improved. When the compounding amount of the silane coupling agent exceeds 25% by weight, the rubber composition is liable to cause early vulcanization and the molding processability may be deteriorated.
- the silane coupling agent having a mercapto group is preferably a polysiloxane having an average compositional formula represented by the following general formula (1), which increases affinity with silica and improves its dispersibility. Can do. These silane coupling agents may be blended singly or in combination.
- A is a divalent organic group containing a sulfide group
- B is a monovalent hydrocarbon group having 5 to 10 carbon atoms
- C is a hydrolyzable group
- D is an organic group containing a mercapto group
- R 1 is a monovalent hydrocarbon group having 1 to 4 carbon atoms
- a to e are 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ . 2.
- 0 ⁇ 2a + b + c + d + e ⁇ 4 is satisfied, provided that at least one of a and b is not 0.
- the polysiloxane having the average composition formula represented by the general formula (1) is a mercaptosilane compound, and has a siloxane skeleton as its skeleton.
- the siloxane skeleton can be linear, branched, three-dimensional structures, or a combination thereof.
- this polysiloxane necessarily contains at least one selected from a divalent organic group A containing a sulfide group and a monovalent hydrocarbon group B having 5 to 10 carbon atoms.
- the mercaptosilane compound comprising a polysiloxane having the average composition formula represented by the general formula (1) has a monovalent hydrocarbon group B having 5 to 10 carbon atoms
- the mercapto group is protected and the Mooney scorch time is At the same time it becomes longer, it has excellent workability by having excellent affinity with rubber. Therefore, the subscript b of the hydrocarbon group B in the general formula (1) is preferably 0.10 ⁇ b ⁇ 0.89.
- Specific examples of the hydrocarbon group B preferably include monovalent hydrocarbon groups having 6 to 10 carbon atoms, more preferably 8 to 10 carbon atoms, such as hexyl group, octyl group, and decyl group.
- the silane compound composed of the polysiloxane having the average composition formula represented by the general formula (1) has a divalent organic group A containing a sulfide group, wet performance, wear resistance, workability (particularly Mooney) Maintain and prolong scorch time).
- the subscript a of the divalent organic group A containing a sulfide group in the general formula (1) is preferably 0 ⁇ a ⁇ 0.50.
- the divalent organic group A containing a sulfide group can be a hydrocarbon group that may have a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom.
- the sulfide group-containing organic group A is preferably a group represented by the following general formula (2) from the viewpoint of improving the dispersibility of silica and further improving processability.
- n represents an integer of 1 to 10, and preferably an integer of 2 to 4.
- X represents an integer of 1 to 6, and preferably an integer of 2 to 4. Note that * indicates a binding position.
- the silane compound composed of the polysiloxane having the average composition formula represented by the general formula (1) has a hydrolyzable group C, so that it has excellent affinity and / or reactivity with silica.
- the subscript c of the hydrolyzable group C in the general formula (1) is 1.2 ⁇ c because it has better wet characteristics and processability, better dispersibility of silica, and lower rolling resistance. It is good that it is ⁇ 2.0.
- Specific examples of the hydrolyzable group C include an alkoxy group, a phenoxy group, a carboxyl group, an alkenyloxy group, and the like.
- the hydrolyzable group C is preferably a group represented by the following general formula (3) from the viewpoint of improving the dispersibility of silica and further improving processability.
- * indicates a bonding position.
- R 2 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 6 to 10 carbon atoms (arylalkyl group), or an alkenyl group having 2 to 10 carbon atoms, An alkyl group having 1 to 5 carbon atoms is preferable.
- alkyl group having 1 to 20 carbon atoms include, for example, methyl group, ethyl group, propyl group, butyl group, hexyl group, octyl group, decyl group, octadecyl group and the like.
- aryl group having 6 to 10 carbon atoms include a phenyl group and a tolyl group.
- aralkyl group having 6 to 10 carbon atoms include a benzyl group and a phenylethyl group.
- alkenyl group having 2 to 10 carbon atoms include a vinyl group, a propenyl group, a pentenyl group, and the like.
- the silane compound made of polysiloxane having the average composition formula represented by the general formula (1) can interact and / or react with the diene rubber by having the organic group D containing a mercapto group. Excellent wet performance and wear resistance.
- the subscript d of the organic group D containing a mercapto group is preferably 0.1 ⁇ d ⁇ 0.8.
- the organic group D containing a mercapto group is preferably a group represented by the following general formula (4) from the viewpoint of improving the dispersibility of silica and further improving processability.
- m represents an integer of 1 to 10, and preferably an integer of 1 to 5.
- * indicates a bonding position.
- Specific examples of the group represented by the general formula (4) include * —CH 2 SH, * —C 2 H 4 SH, * —C 3 H 6 SH, * —C 4 H 8 SH, * —C. 5 H 10 SH, * - C 6 H 12 SH, * - C 7 H 14 SH, * - C 8 H 16 SH, * - C 9 H 18 SH, * - C 10 H 20 SH and the like.
- R 1 represents a monovalent hydrocarbon group having 1 to 4 carbon atoms.
- examples of the hydrocarbon group R 1 include a methyl group, an ethyl group, a propyl group, and a butyl group.
- a to e are 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 2, 0 ⁇ 2a + b + c + d + e ⁇ 4 Satisfy the formula.
- one of a and b is not 0.
- the conditions for kneading silica into a diene rubber are preferably 120 to 170 ° C., more preferably 130 to 160 ° C. when this temperature is reached when a silane coupling agent having a mercapto group is blended. To preferably 1 to 15 minutes, more preferably 2 to 10 minutes.
- the kneading conditions of the rubber composition containing a silane coupling agent having no mercapto group are preferably 150 to 175 ° C., more preferably 155 to 170 ° C., and preferably 2 after reaching this temperature.
- the kneading may be performed for ⁇ 15 minutes, more preferably 3 to 10 minutes.
- compounding agents generally include tire reinforcing rubber compositions such as reinforcing fillers other than silica, vulcanization or cross-linking agents, vulcanization accelerators, anti-aging agents, liquid polymers, thermosetting resins, and the like.
- tire reinforcing rubber compositions such as reinforcing fillers other than silica, vulcanization or cross-linking agents, vulcanization accelerators, anti-aging agents, liquid polymers, thermosetting resins, and the like.
- Various compounding agents used can be illustrated.
- the compounding amounts of these compounding agents can be conventional conventional compounding amounts as long as they do not contradict the purpose of the present invention.
- a kneading machine a normal rubber kneading machine, for example, a Banbury mixer, a kneader, a roll or the like can be used.
- Examples of other reinforcing fillers include carbon black, clay, mica, talc, calcium carbonate, aluminum hydroxide, aluminum oxide, titanium oxide and the like.
- carbon black is preferable, and the hardness, strength, and wear resistance of the rubber composition can be increased.
- the blending amount of carbon black is preferably 1 to 15 parts by weight, more preferably 2 to 10 parts by weight with respect to 100 parts by weight of the diene rubber.
- the tire rubber composition of the present invention can be suitably used for a pneumatic tire.
- a pneumatic tire using the rubber composition in the tread portion can improve the low rolling resistance and wet grip performance to the conventional level or more.
- Examples 1 to 9 and Comparative Examples 1 to 9 18 types of rubber compositions for tires (Examples 1 to 9 and Comparative Examples 1 to 9) having the formulations shown in Tables 1 and 2 were used as a common formulation, and sulfur and a vulcanization accelerator were used.
- the components to be removed were kneaded with a 1.7 L closed Banbury mixer for 5 minutes, then discharged and cooled to room temperature.
- a rubber composition for a tire was prepared by adding sulfur and a vulcanization accelerator to the cooled kneaded product and mixing the mixture with a 1.7 L closed Banbury mixer.
- the compounding quantity of the compounding agent described in Table 3 was shown by the weight part with respect to 100 weight part of the diene rubber described in Tables 1 and 2.
- the obtained 18 kinds of rubber compositions were press vulcanized at 160 ° C. for 30 minutes in a predetermined mold to prepare test pieces made of a rubber composition for tires. Using the obtained test piece, a shear modulus G 'and stress at 100% elongation M 100 of shear strain 0.28% were evaluated by the following method
- Shear modulus G 'of 0.28% shear strain The viscoelasticity of the obtained test piece was measured using a viscoelasticity measuring apparatus (RPA2000 manufactured by Alpha Technology Co., Ltd.) under the conditions of shear strain of 0.28% and temperature of 110 ° C. to determine the shear elastic modulus G ′. .
- the mercapto equivalent was measured by the titration method of acetic acid / potassium iodide / potassium iodate added-sodium thiosulfate solution. As a result, it was 730 g / mol, and it was confirmed that the mercapto group content was as set. From the above, the obtained polysiloxane is represented by the following average composition formula. (—C 3 H 6 —S 4 —C 3 H 6 —) 0.071 (—C 8 H 17 ) 0.571 (—OC 2 H 5 ) 1.50 (—C 3 H 6 SH) 0.286 SiO 0.75 Let the obtained polysiloxane be the coupling agent 2.
- the coefficient K exceeded 450, the rolling resistance deteriorated.
- the silica 1 is replaced with the silica 4, but the function ⁇ is less than 2.5 and the coefficient K is 450 or more, so that the rolling resistance performance and the wet performance are deteriorated.
- the amount of silica 4 was increased and the function ⁇ was 2.5 or more, but the coefficient Kga was 450 or more, so that the rolling resistance performance was deteriorated.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Abstract
Description
G′=K×ν (i)
(式(i)において、G′は110℃、0.28%せん断ひずみにおけるせん断弾性率(MPa)、Kは0を超え450以下の係数、νは下記式(ii)で表される関数であり、2.5以上20以下の実数である。
ν=φ×(1+0.0258×CTAB×M100) (ii)
式(ii)において、φはゴム組成物中のシリカの体積分率、CTABはシリカのCTAB比表面積(m2/g)、M100はゴム組成物の23℃、100%伸長時応力(MPa)である。)
G′=K×ν (i)
(式(i)において、G′は110℃、0.28%せん断ひずみにおけるせん断弾性率(MPa)、Kは0を超え450以下の係数、νは下記式(ii)で表される関数であり、2.5以上20以下の実数である。
ν=φ×(1+0.0258×CTAB×M100) (ii)
式(ii)において、φはゴム組成物中のシリカの体積分率、CTABはシリカのCTAB比表面積(m2/g)、M100はゴム組成物の23℃、100%伸長時応力(MPa)である。)
得られた試験片の粘弾性を、粘弾性測定装置(アルファテクノロジー社製RPA2000)を使用して、せん断ひずみ0.28%、温度110℃の条件で測定し、せん断弾性率G′を求めた。
得られた試験片の引張り特性を、JIS K6251に準拠し23℃、500mm/分の条件で測定し、100%伸長時の応力M100を求めた。
各試験片を用いて、ウェットスキッド抵抗ポータブルスキッドレジスタンステスター(谷藤機械工業社製TR-300)を使用して、室温における湿潤コンクリート路面に対する有効摩擦係数μを測定した。得られた結果は、比較例1の値を100とする指数で表わし表1,2の「ウェットグリップ性」の欄に示した。この値が大きいほどウェットスキッド抵抗が大きく、ウェットグリップ性能が優れることを意味する。
各試験片を用いて、JIS K6255に準拠して40℃における反撥弾性率を測定した。得られた結果は、比較例1の値を100とする指数で表わし表1,2の「転がり抵抗」の欄に示した。この値が小さいほど、反撥弾性率が小さく、転がり抵抗が小さいことを意味する。
・SBR:スチレンブタジエンゴム、日本ゼオン社製Nipol 1502
・シリカ1:Solyay社製Zeosil 1165MP、CTAB比表面積が155m2/g
・シリカ2:Evonik社製Ultrasil 9000GR、CTAB比表面積が240m2/g
・シリカ3:PPG Industries社製Hisil EZ200G、CTAB比表面積が280m2/g
・シリカ4:Evonik社製Ultrasil VN3GR、CTAB比表面積が170m2/g
・カップリング剤1:硫黄含有シランカップリング剤、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、Evonik社製Si69
・カップリング剤2:下記の製造方法で合成したポリシロキサン
・カップリング剤3:メルカプト基を有するシランカップリング剤、Momentive社製NXT-Z45
撹拌機、還流冷却器、滴下ロート及び温度計を備えた2Lセパラブルフラスコにビス(トリエトキシシリルプロピル)テトラスルフィド(信越化学工業製 KBE-846)107.8g(0.2mol)、γ―メルカプトプロピルトリエトキシシラン(信越化学工業製 KBE-803)190.8g(0.8mol)、オクチルトリエトキシシラン(信越化学工業製 KBE-3083)442.4g(1.6mol)、エタノール190.0gを納めた後、室温にて0.5N塩酸37.8g(2.1mol)とエタノール75.6gの混合溶液を滴下した。その後、80℃にて2時間攪拌した。その後、濾過して、得られた濾液に5%KOH/EtOH溶液17.0gを滴下し80℃で2時間攪拌した。その後、減圧濃縮、濾過することで褐色透明液体のポリシロキサン480.1gを得た。GPCにより測定した結果、平均分子量は840であり、平均重合度は4.0(設定重合度4.0)であった。また、酢酸/ヨウ化カリウム/ヨウ素酸カリウム添加-チオ硫酸ナトリウム溶液滴定法によりメルカプト当量を測定した結果、730g/molであり、設定通りのメルカプト基含有量であることが確認された。以上より、得られたポリシロキサンは、下記平均組成式で示される。
(-C3H6-S4-C3H6-)0.071(-C8H17)0.571(-OC2H5)1.50(-C3H6SH)0.286SiO0.75
得られたポリシロキサンをカップリング剤2とする。
・カーボンブラック:東海カーボン社製シーストKH
・酸化亜鉛:正同化学社製酸化亜鉛3種
・ステアリン酸:日油社製ビーズステアリン酸YR
・老化防止剤:フレキシス社製6PPD
・加工助剤:Scill&Seilacher社製Struktol EF44
・オイル:昭和シェル石油社製エキストラクト4号S
・硫黄:鶴見化学工業社製金華印油入微粉硫黄
・加硫促進剤1:大内新興化学社製ノクセラーCZ-G
・加硫促進剤2:住友化学社製ソクシノールD-G
比較例3および4のゴム組成物は、CTAB比表面積が大きいシリカ2を配合したが、係数Kが450を超えるので、転がり抵抗が悪化する。
比較例5のゴム組成物は、シリカ3の配合量が少なく関数νが2.5未満であるので、ウェットグリップ性能が悪化する。
比較例6,7のゴム組成物は、シリカ3を増量し関数νが2.5以上になったが、係数Kが450を超えるので、転がり抵抗が悪化する。
比較例8のゴム組成物は、シリカ1をシリカ4い置換したが、関数νが2.5未満、係数Kが450以上となるため転がり抵抗性能およびウェット性能が悪化する。比較例9のゴム組成物は、シリカ4を増量し、関数νが2.5以上となったが、係数Kga450以上となるため転がり抵抗性能が悪化する。
Claims (5)
- ジエン系ゴム、シリカおよびシランカップリング剤を含むゴム組成物であって、該ゴム組成物の110℃、0.28%せん断ひずみにおけるせん断弾性率G′と、前記シリカのCTAB比表面積(CTAB)、ゴム組成物中の体積分率(φ)およびゴム組成物の100%伸長時応力(M100)の関数νとが下記式(i)の関係を満たし、かつ前記関数νが2.5以上20以下の実数であることを特徴とするタイヤ用ゴム組成物。
G′=K×ν (i)
(式(i)において、G′は110℃、0.28%せん断ひずみにおけるせん断弾性率(MPa)、Kは0を超え450以下の係数、νは下記式(ii)で表される関数であり、2.5以上20以下の実数である。
ν=φ×(1+0.0258×CTAB×M100)(ii)
式(ii)において、φはゴム組成物中のシリカの体積分率、CTABはシリカのCTAB比表面積(m2/g)、M100はゴム組成物の23℃、100%伸長時応力(MPa)である。) - 前記シランカップリング剤がメルカプト基を有することを特徴する請求項1に記載のタイヤ用ゴム組成物。
- 請求項1~4のいずれかに記載のタイヤ用ゴム組成物を使用することを特徴とする空気入りタイヤ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/322,071 US9969865B2 (en) | 2014-06-26 | 2015-06-26 | Rubber composition for tire |
EP15811613.7A EP3162845B1 (en) | 2014-06-26 | 2015-06-26 | Rubber composition for tire |
CN201580022094.5A CN106232702A (zh) | 2014-06-26 | 2015-06-26 | 轮胎用橡胶组合物 |
KR1020167030981A KR101748671B1 (ko) | 2014-06-26 | 2015-06-26 | 타이어용 고무 조성물 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014131174A JP5915700B2 (ja) | 2014-06-26 | 2014-06-26 | タイヤ用ゴム組成物 |
JP2014-131174 | 2014-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015199223A1 true WO2015199223A1 (ja) | 2015-12-30 |
Family
ID=54938300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068515 WO2015199223A1 (ja) | 2014-06-26 | 2015-06-26 | タイヤ用ゴム組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9969865B2 (ja) |
EP (1) | EP3162845B1 (ja) |
JP (1) | JP5915700B2 (ja) |
KR (1) | KR101748671B1 (ja) |
CN (1) | CN106232702A (ja) |
WO (1) | WO2015199223A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10808107B2 (en) | 2016-06-27 | 2020-10-20 | The Yokohama Rubber Co., Ltd. | Rubber composition for tire |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7006049B2 (ja) * | 2017-09-08 | 2022-02-10 | 横浜ゴム株式会社 | ゴム組成物及び空気入りタイヤ |
JP7407500B2 (ja) * | 2017-12-28 | 2024-01-04 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及び空気入りタイヤ |
JP7020151B2 (ja) * | 2018-02-02 | 2022-02-16 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及び空気入りタイヤ |
JP7110608B2 (ja) * | 2018-02-02 | 2022-08-02 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及び空気入りタイヤ |
JP7020152B2 (ja) * | 2018-02-02 | 2022-02-16 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及び空気入りタイヤ |
JP7110607B2 (ja) * | 2018-02-02 | 2022-08-02 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及び空気入りタイヤ |
JP7020153B2 (ja) * | 2018-02-02 | 2022-02-16 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及び空気入りタイヤ |
EP3788103A4 (en) | 2018-05-04 | 2022-01-12 | Bridgestone Americas Tire Operations, LLC | RUBBER COMPOSITION FOR TIRE TREAD |
JP2019196418A (ja) * | 2018-05-07 | 2019-11-14 | 横浜ゴム株式会社 | タイヤ用ゴム組成物の製造方法 |
JP7095416B2 (ja) * | 2018-06-06 | 2022-07-05 | 住友ゴム工業株式会社 | トレッド用ゴム組成物及び空気入りタイヤ |
CN110607005A (zh) * | 2019-09-23 | 2019-12-24 | 四川大学 | 具有高抗湿滑性的乳聚丁苯橡胶复合材料及其制备方法 |
CN110607007A (zh) * | 2019-09-23 | 2019-12-24 | 四川大学 | 一种乳聚丁苯橡胶/SiO2复合材料及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0948880A (ja) * | 1995-05-31 | 1997-02-18 | Sumitomo Rubber Ind Ltd | ゴム組成物 |
WO2012035998A1 (ja) * | 2010-09-13 | 2012-03-22 | 横浜ゴム株式会社 | タイヤ用ゴム組成物および空気入りタイヤ |
JP2013213134A (ja) * | 2012-04-02 | 2013-10-17 | Yokohama Rubber Co Ltd:The | ゴム組成物および空気入りタイヤ |
JP2014001357A (ja) * | 2012-05-23 | 2014-01-09 | Yokohama Rubber Co Ltd:The | ゴム組成物および空気入りタイヤ |
JP2014001339A (ja) * | 2012-06-20 | 2014-01-09 | Yokohama Rubber Co Ltd:The | ゴム組成物および空気入りタイヤ |
JP2014019756A (ja) * | 2012-07-13 | 2014-02-03 | Yokohama Rubber Co Ltd:The | ゴム組成物および空気入りタイヤ |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011140613A (ja) | 2009-12-09 | 2011-07-21 | Sumitomo Rubber Ind Ltd | タイヤ用ゴム組成物及び空気入りタイヤ |
JP4788843B1 (ja) | 2010-05-27 | 2011-10-05 | 横浜ゴム株式会社 | タイヤ用ゴム組成物 |
JP4947190B2 (ja) | 2010-05-28 | 2012-06-06 | 横浜ゴム株式会社 | タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ |
EP2748248B1 (en) * | 2011-09-14 | 2018-03-07 | Compagnie Générale des Etablissements Michelin | Tread with ultra efficient vulcanization system |
JP5857681B2 (ja) | 2011-11-29 | 2016-02-10 | 横浜ゴム株式会社 | タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ |
EP2857449B9 (en) | 2012-06-27 | 2017-03-22 | The Yokohama Rubber Co., Ltd. | Tire tread rubber composition and pneumatic tire |
EP2891679B9 (en) * | 2012-08-30 | 2018-09-12 | The Yokohama Rubber Co., Ltd. | Rubber composition for tire treads |
-
2014
- 2014-06-26 JP JP2014131174A patent/JP5915700B2/ja active Active
-
2015
- 2015-06-26 CN CN201580022094.5A patent/CN106232702A/zh active Pending
- 2015-06-26 EP EP15811613.7A patent/EP3162845B1/en active Active
- 2015-06-26 KR KR1020167030981A patent/KR101748671B1/ko active IP Right Grant
- 2015-06-26 US US15/322,071 patent/US9969865B2/en not_active Expired - Fee Related
- 2015-06-26 WO PCT/JP2015/068515 patent/WO2015199223A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0948880A (ja) * | 1995-05-31 | 1997-02-18 | Sumitomo Rubber Ind Ltd | ゴム組成物 |
WO2012035998A1 (ja) * | 2010-09-13 | 2012-03-22 | 横浜ゴム株式会社 | タイヤ用ゴム組成物および空気入りタイヤ |
JP2013213134A (ja) * | 2012-04-02 | 2013-10-17 | Yokohama Rubber Co Ltd:The | ゴム組成物および空気入りタイヤ |
JP2014001357A (ja) * | 2012-05-23 | 2014-01-09 | Yokohama Rubber Co Ltd:The | ゴム組成物および空気入りタイヤ |
JP2014001339A (ja) * | 2012-06-20 | 2014-01-09 | Yokohama Rubber Co Ltd:The | ゴム組成物および空気入りタイヤ |
JP2014019756A (ja) * | 2012-07-13 | 2014-02-03 | Yokohama Rubber Co Ltd:The | ゴム組成物および空気入りタイヤ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3162845A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10808107B2 (en) | 2016-06-27 | 2020-10-20 | The Yokohama Rubber Co., Ltd. | Rubber composition for tire |
Also Published As
Publication number | Publication date |
---|---|
EP3162845B1 (en) | 2020-04-01 |
US9969865B2 (en) | 2018-05-15 |
JP2016008285A (ja) | 2016-01-18 |
EP3162845A4 (en) | 2017-12-20 |
EP3162845A1 (en) | 2017-05-03 |
KR20160134856A (ko) | 2016-11-23 |
CN106232702A (zh) | 2016-12-14 |
KR101748671B1 (ko) | 2017-06-19 |
US20170152370A1 (en) | 2017-06-01 |
JP5915700B2 (ja) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015199223A1 (ja) | タイヤ用ゴム組成物 | |
JP5835351B2 (ja) | タイヤトレッド用ゴム組成物 | |
JP5910666B2 (ja) | タイヤトレッド用ゴム組成物および空気入りタイヤ | |
JP6390255B2 (ja) | ゴム組成物および空気入りタイヤ | |
JP5418141B2 (ja) | ゴム組成物 | |
WO2012035998A1 (ja) | タイヤ用ゴム組成物および空気入りタイヤ | |
JP5614308B2 (ja) | タイヤ用ゴム組成物の製造方法 | |
JP2008163125A (ja) | ゴム組成物およびそれを用いた空気入りタイヤ | |
JP6561847B2 (ja) | タイヤ用ゴム組成物の製造方法および空気入りタイヤ | |
JP6702433B2 (ja) | タイヤ用ゴム組成物の製造方法 | |
JP2016008284A (ja) | タイヤ用ゴム組成物 | |
JP2016030815A (ja) | タイヤ用ゴム組成物 | |
JP7127340B2 (ja) | タイヤ用ゴム組成物の製造方法 | |
JP2016030789A (ja) | 空気入りタイヤ | |
JP6729371B2 (ja) | タイヤ用ゴム組成物 | |
JP7052394B2 (ja) | タイヤ用ゴム組成物の製造方法 | |
JP2016183265A (ja) | タイヤ用ゴム組成物 | |
JP2019182985A (ja) | タイヤ用ゴム組成物の製造方法 | |
JP7073794B2 (ja) | タイヤ用ゴム組成物の製造方法 | |
JP2019196418A (ja) | タイヤ用ゴム組成物の製造方法 | |
JP7119533B2 (ja) | タイヤ用ゴム組成物の製造方法 | |
JP6972839B2 (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP6988317B2 (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
WO2019198718A1 (ja) | タイヤ用ゴム組成物の製造方法 | |
WO2018021118A1 (ja) | ゴム組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15811613 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167030981 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015811613 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015811613 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15322071 Country of ref document: US |