WO2015194440A1 - 加熱調理器 - Google Patents
加熱調理器 Download PDFInfo
- Publication number
- WO2015194440A1 WO2015194440A1 PCT/JP2015/066783 JP2015066783W WO2015194440A1 WO 2015194440 A1 WO2015194440 A1 WO 2015194440A1 JP 2015066783 W JP2015066783 W JP 2015066783W WO 2015194440 A1 WO2015194440 A1 WO 2015194440A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frozen food
- temperature
- heating
- steam
- microwave
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C7/00—Stoves or ranges heated by electric energy
- F24C7/02—Stoves or ranges heated by electric energy using microwaves
Definitions
- This invention relates to a cooking device.
- Patent Document 1 JP 2009-127933 A
- the first step of irradiating the food with microwaves is performed by thawing a predetermined amount to the inside of the food in a short time, and then the generation of the microwave is stopped, and the steam supply means and the outside air supply means Because the final thawing is performed by the above method, it is possible to prevent overcooking and scorching of the food due to the microwave, which is likely to occur mainly in the second half of the thawing, and also in the second step, the outside air supply means is operated in addition to the steam supply means Thus, the steam is cooled by the outside air, and there is an advantage that thawing can be performed without spots in a short time while preventing overheating of the foodstuff.
- frozen foods for example, small frozen foods such as frozen rice balls, frozen lunch boxes packed with various ingredients, large frozen foods such as frozen side dishes set, etc. are provided at convenience stores and supermarkets. It has become.
- the above-mentioned conventional cooking device can defrost frozen foods relatively uniformly, but since it does not immediately perform heating suitable for frozen foods after thawing, it is frozen packed with various ingredients. There is a problem that lunch boxes, frozen rice balls, etc. cannot be immediately heated to a temperature suitable for eating.
- an object of the present invention is to heat a frozen food of various sizes or a frozen food containing various foods to a target temperature suitable for eating immediately after thawing as well as thawing. It is to provide a cooking device.
- the heating cooker of the present invention is: A body casing; A heating chamber provided in the main body casing and containing an object to be heated, A microwave generator for generating microwaves for heating the object to be heated in the heating chamber; At least one of a steam generator for generating steam for heating the object to be heated in the heating chamber, and a heater for heating the object to be heated; A sensor for detecting the temperature of the object to be heated in the heating chamber; A frozen food cooking mode selection unit for selecting a frozen food cooking mode; When the frozen food cooking mode selection unit selects the frozen food cooking mode, the microwave generation unit is driven, and the sensor heats a microwave heating temperature at which the temperature of the frozen food as the object to be heated is predetermined.
- the driving of the microwave generator is stopped, the steam generator or the heater is connected to the sensor, and the temperature of the frozen food is predetermined.
- Control to drive until the second condition is satisfied including detecting that the cooking target temperature has been reached, or that the steam generator or heater has been driven for a predetermined driving time. And a control device.
- the frozen food cooking mode selection unit can select the type of frozen food
- the control device responds to the type of frozen food selected by the frozen food cooking mode selection unit from a memory that stores a microwave heating temperature and a cooking target temperature that are predetermined according to the type of frozen food.
- the microwave heating temperature and the cooking target temperature or the predetermined driving time of the steam generator or heater are read out to control the microwave generator and the steam generator or heater.
- the second condition includes maintaining the temperature of the frozen food at the cooking target temperature for a certain period of time.
- the controller Prior to driving the microwave generator, the controller drives the steam generator or the heater to dissolve the surface of the frozen food.
- the sensor is a steam sensor
- the control device determines whether the microwave heating temperature included in the first condition is reached or whether the cooking target temperature is included in the second condition, based on the amount of steam detected by the steam sensor. To do.
- One embodiment is: Comprising the steam generator, The control device determines a time for driving the steam generator according to a time for driving the microwave generator.
- One embodiment is: Comprising the steam generator and the heater;
- the controller drives the steam generator after stopping the microwave generator, and then stops driving the steam generator and drives the heater.
- the present invention provides: A body casing; A heating chamber provided in the main body casing and containing an object to be heated, A microwave generator for generating microwaves for heating the object to be heated in the heating chamber; At least one of a steam generator for generating steam for heating the object to be heated in the heating chamber, and a heater for heating the object to be heated; A sensor for detecting the temperature of the object to be heated in the heating chamber; A frozen food cooking mode selection unit for selecting a frozen food cooking mode; When the frozen food cooking mode selection unit selects the frozen food cooking mode, the steam generator or the heater is driven, and the sensor detects that the surface of the frozen food as the object to be heated has melted.
- the driving of the steam generator or the heater is stopped, and the microwave generator is moved to a cooking target temperature at which the temperature of the frozen food is determined by the sensor. And a control device that controls to drive until a second condition including the fact that it has been detected is satisfied.
- frozen foods of various sizes or frozen foods containing various ingredients can be heated not only to thawing but also to a target temperature suitable for eating immediately after thawing.
- FIG. 1 is a schematic front view of the heating cooker according to the first embodiment of the present invention when the door is closed.
- FIG. 2 is a schematic front view of the heating cooker when the door is opened.
- the heating cooker includes a substantially rectangular parallelepiped main body casing 1, a substantially rectangular parallelepiped heating chamber 2 provided in the main body casing 1, and a front side of the heating chamber 2. And a door 3 for opening and closing the opening 2a.
- a magnetron 4 as an example of a microwave generator for generating a microwave is provided at the rear end of the main casing 1.
- the temperature of an object to be heated in the heating chamber 2 is detected by a vapor sensor 53 (see FIGS. 4 and 5) as an example of the sensor and a temperature sensor 65 (see FIG. 5) such as an infrared sensor. Yes.
- the steam sensor 53 indirectly detects the temperature of the object to be heated through the amount of steam, and the temperature sensor 65 such as an infrared sensor directly detects the temperature of the object to be heated.
- An exhaust duct 5 is provided at the rear of the upper surface of the main casing 1.
- a dew receptacle 6 and a water supply tank 26 are detachably attached to the lower part of the front surface of the main casing 1.
- the dew receptacle 6 is located below the door 3 and can receive water droplets from the rear surface of the door 3 (surface on the heating chamber 2 side).
- the lower part of the door 3 is rotatably attached to the lower part of the front side of the main casing 1.
- a transparent outer glass 7 having heat resistance is provided on the front surface of the door 3 (the surface opposite to the heating chamber 2 side). Further, the door 3 has a handle 8 positioned on the upper side of the outer glass 7 and an operation panel 9 positioned on the right side of the outer glass 7.
- the operation panel 9 has a color liquid crystal display unit 10 and a button group 11.
- the color liquid crystal display unit 10 has a touch panel type switch function, and constitutes a frozen food cooking mode selection unit 69 described later.
- the button group 11 includes a cancel key 12 that is pressed when heating is stopped halfway, and a start key 13 that is pressed when heating is started.
- the operation panel 9 is provided with an infrared light receiving unit 14 that receives infrared rays from a smartphone or the like.
- an object to be heated such as frozen food is accommodated.
- upper shelf receivers 16 ⁇ / b> A and 16 ⁇ / b> B that support the cooking tray 91 are provided on the inner surfaces of the left side portion 2 b and the right side portion 2 c of the heating chamber 2.
- lower shelf receivers 17A and 17B for supporting the cooking tray 92 are provided on the inner surfaces of the left side 2b and the right side 2c of the heating chamber 2.
- the lower shelf receivers 17A and 17B are located below the upper shelf receivers 16A and 16B.
- a gap between the cooking trays 91 and 92 and the rear portion 2d of the heating chamber 2. More specifically, a contact portion (not shown) is provided at the rear end of each of the upper shelf receivers 16A and 16B and the lower shelf receivers 17A and 17B. This abutting part abuts on the cooking trays 91 and 92 before the cooking trays 91 and 92 contact the rear part 2d of the heating chamber 2, and restricts the movement of the cooking trays 91 and 92 to the rear side. At this time, a gap having a length of, for example, 3 mm in the front-rear direction may be generated between the cooking trays 91 and 92 and the rear portion 2d of the heating chamber 2.
- FIG. 3 is a schematic diagram showing the structure of the main part of the heating cooker in an expanded manner for easy understanding.
- the heating chamber 2 is shown as viewed from the left side.
- the heating cooker includes a circulation duct 18, a circulation fan 19, an upper heater 20, an intermediate heater 21, a lower heater 22, a circulation damper 23, a steam generator 24, a tube pump 25, and a water supply tank 26.
- Each of the upper heater 20, the middle heater 21, and the lower heater 22 is a sheathed heater, for example.
- the upper portion 2e of the heating chamber 2 is connected to the rear portion 2d of the heating chamber 2 through an inclined portion 2f that is inclined with respect to the horizontal direction.
- the inclined portion 2f is provided with a plurality of suction ports 27 (see FIG. 2) so as to face the circulation fan 19.
- a plurality of upper outlets 28 are provided in the upper part 2 e of the heating chamber 2.
- a plurality of first rear outlets 29, second rear outlets 30, and third rear outlets 31 are provided in the rear portion 2d of the heating chamber 2, respectively.
- FIG. 3 only three upper air outlets 28 are shown, and only one each of the first rear air outlet 29, the second rear air outlet 30, and the third rear air outlet 31 is shown. As shown in FIG. 2, there are many actual numbers.
- the circulation duct 18 communicates with the inside of the heating chamber 2 through the inlet 27, the upper outlet 28, and the first to third rear outlets 29-31.
- the circulation duct 18 is provided from the upper side to the rear side of the heating chamber 2 and extends so as to exhibit an inverted L shape.
- the width of the circulation duct 18 in the left-right direction is set to be narrower than the width of the heating chamber 2 in the left-right direction.
- the circulation fan 19 is composed of, for example, a centrifugal fan, and is driven by a circulation fan motor 56.
- air air and saturated steam (hereinafter referred to as “air”) in the heating chamber 2 are sucked into the circulation duct 18 from the suction port 27, and the circulation fan 19.
- air saturated steam
- a part of the air or the like sucked by the circulation fan 19 is blown out from the upper upper outlet 28 to the heating chamber 2, and the other part of the air or the like sucked by the circulation fan 19 is From the first to third rear outlets 29, 30, and 31 located below the upper outlet 28, the air is blown into the heating chamber 2.
- the upper heater 20 is disposed in the circulation duct 18 and faces the upper part 2e of the heating chamber 2.
- the upper heater 20 heats air flowing to the upper outlet 28.
- the middle heater 21 is formed in an annular shape and surrounds the circulation fan 19.
- the middle heater 21 heats the air flowing from the circulation fan 19 to the first to third rear outlets 29, 30, 31 on the back surface, that is, heats the air flowing from the circulation fan 19 to the upper heater 20, etc. Further, air or the like from the circulation fan 19 toward the lower heater 22 is heated.
- the lower heater 22 is disposed in the circulation duct 18 and faces the rear part 2d of the heating chamber 2.
- the lower heater 22 heats air flowing to the second and third rear outlets 30 and 31.
- the circulation damper 23 is rotatably provided in the circulation duct 18 and is positioned between the middle heater 21 and the lower heater 22.
- the circulation damper 23 is rotated by a circulation damper motor 59 (shown in FIG. 5).
- the steam generator 24 includes a metal container 34 whose upper end is open, a resin lid 33, and a steam generating heater 32 including a sheathed heater.
- the steam generating heater 32 is cast at the bottom of the container 34. Water from the water supply tank 26 accumulates on the bottom of the container 34, and the steam generating heater 32 heats the water through the bottom of the container 34.
- the saturated steam generated by the water heating is supplied into the heating chamber 2 through a plurality of steam supply ports 37 through the resin steam tube 35 and the metal steam pipe 36. As shown in FIG. 2, there are a plurality of steam supply ports 37, but only one is shown in FIG.
- the saturated steam in the heating chamber 2 is sucked by the circulation fan 19 and sent to the middle heater 21, the upper heater 20 and the lower heater 22, and is heated by the middle heater 21, the upper heater 20 and the lower heater 22. As a result, it becomes superheated steam at 100 ° C. or higher.
- a water level sensor 38 comprising a pair of electrode rods 39A and 39B is attached to the lid 33 of the steam generator 24. Whether or not the water level on the bottom of the container 34 has reached a predetermined level is determined based on whether or not the electrode rods 39A and 39B are in a conductive state.
- the tube pump 25 is made of silicon rubber or the like and the elastically deformable water supply / drainage tube 40 is squeezed by a roller (not shown) to flow the water in the water supply tank 26 to the steam generator 24 or the steam generator 24.
- the water inside is directed toward the water supply tank 26.
- the water tank 26 has a water tank body 41 and a communication pipe 42.
- the communication pipe 42 has one end located in the water supply tank body 41 and the other end located outside the water supply tank 26.
- the other end of the communication pipe 42 is connected to the water supply / drainage tube 40 via the tank joint 44. That is, the inside of the water supply tank main body 41 communicates with the inside of the steam generator 24 via the communication pipe 42 and the like.
- FIG. 4 is a schematic diagram for explaining the configuration of the other part of the heating cooker. 4 also shows the heating chamber 2 as viewed from the right side, as in FIG.
- a natural exhaust port 45 is provided at the lower end of the rear portion 2d of the heating chamber 2.
- the natural exhaust port 45 communicates with the exhaust duct 5 via the first exhaust path 46.
- an exhaust fan 47 made of, for example, a sirocco fan is connected to the first exhaust path 46 so that the heating chamber 2 can be forcibly exhausted.
- the inclined portion 2 f of the heating chamber 2 is provided with a plurality of forced exhaust ports 48 that are opened and closed by the exhaust damper 49 and a plurality of air supply ports 50 that are opened and closed by the air supply damper 51.
- the forced exhaust port 48 communicates with the exhaust duct 5 via the second exhaust path 52.
- the air supply port 50 communicates with a space between the main body casing 1 and the heating chamber 2 through an air supply path 55.
- an air supply fan 54 made of, for example, a sirocco fan is connected to the air supply path 55.
- a steam sensor 53 as an example of a sensor is attached to the second exhaust path 52.
- the steam sensor 53 sends a signal indicating the amount of steam flowing through the second exhaust path 52 to the control device 100 (shown in FIG. 5).
- the exhaust damper 49 and the supply damper 51 are separated by the exhaust damper motor 60 and the supply damper motor 61 (shown in FIG. 5).
- the exhaust damper 49 and the air supply damper 51 are opened by rotating to the position indicated by the dotted line.
- the exhaust fan 47 and the air supply fan 54 are driven by the exhaust fan motor 57 and the air supply fan motor 58 (shown in FIG. 5).
- the air in the heating chamber 2 and the like are drawn out of the heating chamber 2 from the forced exhaust port 48 and the natural exhaust port 45.
- the air supply fan 54 is driven with the air supply damper 51 closed. Thereby, the air blown out from the air supply fan 54 is supplied to the space between the main body casing 1 and the heating chamber 2 via the air supply path 55.
- FIG. 5 is a control block diagram of the heating cooker.
- the cooking device includes a control device 100 including a microcomputer and an input / output circuit.
- the control device 100 includes an upper heater 20, an intermediate heater 21, a lower heater 22, a steam generator 24, a circulation fan motor 56, an exhaust fan motor 57, an air supply fan motor 58, a circulation damper motor 59, an exhaust gas.
- a damper motor 60, an air supply damper motor 61, an operation panel 9, a steam sensor 53, a water level sensor 38, a tube pump 25, a magnetron 4 and the like are connected.
- control device 100 is configured to generate an upper heater 20, an intermediate heater 21, a lower heater 22, steam generation based on signals from the operation panel 9, a steam sensor 53, a temperature sensor 65 such as an infrared sensor, a water level sensor 38, and the like.
- the control device 100 can perform cooking such as baking, steaming, and thawing according to the program stored in the memory 101, but these cookings are normally performed, and the gist of the present invention is as follows. Since the relationship is thin, the description is omitted.
- the color liquid crystal display unit 10 of the operation panel 9 is provided with a frozen food cooking mode selection unit 69 for selecting a frozen food cooking mode.
- the color liquid crystal display unit 10 has a touch panel type switch function, and constitutes a frozen food cooking mode selection unit 69 as shown in FIG.
- the color liquid crystal display unit 10 can also constitute a simple thawing mode selection unit 71, a warming mode selection unit 72, a health set menu mode selection unit 73, and a baking / steaming mode selection unit 74. It has become.
- the frozen food cooking mode selection part 69 shown to (A) of FIG. 6 is comprised by a part of color liquid crystal display part 10 which has a touch-panel type switch function, although a frozen food cooking mode selection part is not shown in figure. , One button in the button group 11 may be used.
- the frozen food cooking mode selection unit 69 is shown in FIG. 6B.
- the type of frozen food to be cooked such as rice balls or lunch boxes.
- the control device 100 stores in the memory 101 a microwave heating temperature, a steam heating time, and a cooking target temperature that are predetermined according to the type of frozen food.
- This microwave heating temperature is a target temperature used during microwave heating of the object to be heated.
- the steam heating time is the time for steam heating of the object to be heated
- the cooking target temperature is the temperature to be heated. This is the target temperature to be used when steaming the object or heating the heater.
- the memory 101 stores the microwave heating temperature, the steam heating time, and the cooking target temperature that are predetermined according to the type of the frozen food. This is because the proper microwave heating temperature, steam heating time, and cooking target temperature are different in a baked rice ball, a frozen lunch box or a frozen side dish set made of a plurality of ingredients in a large food. More specifically, a frozen lunch box or the like in which different foods are mixed on the same plate is likely to cause temperature unevenness due to the characteristics of microwave heating and the difference in thermal conductivity due to the foods. In particular, there is a case where a maximum temperature difference of about 60 ° C. can be produced between the hamburger that is hard to warm and the rice that is easily warmed included in the frozen lunch box.
- the memory 101 stores a microwave heating temperature, a steam heating time, and a cooking target temperature that are predetermined according to the type of frozen food.
- the said control apparatus 100 reads the microwave heating temperature according to the kind of frozen food selected by the frozen food cooking mode selection part 69 from the memory 101, the steam heating time, and the cooking target temperature so that it may cook. It has become.
- the control device 100 is configured to execute the operations shown in FIGS. 8 and 9 by a program stored in the memory 101.
- the cooking device with the above configuration operates as follows.
- a frozen lunch box (not shown) is put in the heating chamber 2 and the frozen food cooking mode selection unit 69 of the color liquid crystal display unit 10 of the operation panel 9 is touched as shown in FIG.
- the display of the frozen food cooking mode selection unit 69 is switched as shown in FIG. 6B.
- the user touches the lunch box display 692 among the rice ball display 691 and the lunch box display 692, Select the type of frozen food to be cooked as lunch.
- control apparatus 100 will microwave-wave according to the selected lunch from the memory 101 which memorize
- a temperature (for example, 80 ° C.) and a cooking target temperature (for example, 70 ° C.) are read (step S2).
- step S3 the process proceeds to step S3, and the start key 13 is pressed while the display on the color liquid crystal display unit 10 is in the state of FIG. 6C to drive the magnetron 4 (step S3). If it does so, the display of the color liquid crystal display part 10 will be in the state of (D) of FIG. In the state shown in FIG. 6D, the finishing temperature can be appropriately selected from “standard”, “slimming”, and “gathering”.
- the temperature unevenness of a heated object such as a lunch box is reduced by heating for a long time with a small output.
- the magnetron 4 is assumed on the assumption that the temperature unevenness occurs. Is driven at the highest possible output, preferably the maximum output, and the heating time is shortened.
- step S4 whether or not the temperature of the frozen lunch box, which is frozen food as an object to be heated, satisfies the first condition, that is, the microwave heating temperature (for example, 80 ° C.) read in step S2. It is determined whether or not (step S4). If NO is determined, step S4 is repeated. If YES is determined, the process proceeds to step S5 in FIG.
- the microwave heating temperature for example, 80 ° C.
- the temperature of the refrigerated lunch is determined in advance by correlating the amount of steam detected by the steam sensor 53 and the temperature of the lunch, and the temperature of the lunch (refrigerated lunch) is determined by the amount of steam detected by the steam sensor 53. Indirect detection.
- the indirectly detected temperature of the refrigerated lunch box is compared with the microwave heating temperature (for example, 80 ° C.) that is the target microwave heating temperature, and the temperature of the refrigerated lunch box is set to the microwave heating temperature (for example, 80 ° C.). It is determined whether or not.
- the temperature of the freezer lunch is directly detected by a temperature sensor 65 such as an infrared temperature sensor, and the temperature of the freezer lunch detected by the temperature sensor 65 is compared with the microwave heating temperature. It may be determined whether or not the wave heating temperature has been reached.
- a temperature sensor 65 such as an infrared temperature sensor
- microwave heating temperature what is necessary is just to set the temperature to which the to-be-heated object is partially the temperature which exceeds the target temperature at the time of completion
- finish of cooking for example, sensor 65, such as an infrared sensor.
- the determination may be made by detecting 80 ° C., which is a temperature exceeding the target temperature, at any location of the surface temperature of the object to be heated detected in (1).
- the temperature sensor 65 such as an infrared sensor that directly detects the temperature may be omitted in the cooking device that uses steam. It is possible and convenient.
- step S4 If it is determined in step S4 that the temperature of the freezer lunch has reached the microwave heating temperature (for example, 80 ° C.), the process proceeds to step S5, the drive of the magnetron 4 is stopped, and the drive of the steam generator 24 is started. Saturated steam is supplied to the heating chamber 2, and the process proceeds to step S6.
- the microwave heating temperature for example, 80 ° C.
- the temperature unevenness of the frozen lunch with the temperature unevenness is eliminated by the microwave heating.
- the temperature is smoothed.
- step S6 it is determined whether or not the second condition is satisfied. That is, the temperature of the freezing lunch detected indirectly by the steam sensor 53 or the temperature of the freezing lunch detected directly by the temperature sensor 65 is compared with the cooking target temperature (for example, 70 ° C.). When the temperature of the freezer lunch is not the cooking target temperature (for example, 70 ° C.), this step S6 is repeated, and when it is determined that the temperature of the freezing lunch is the cooking target temperature (for example, 70 ° C.) (step S6), the process proceeds to step S7.
- the cooking target temperature for example, 70 ° C.
- step S7 it is determined whether or not the steam heating time has elapsed in a state where the freezing lunch is at the cooking target temperature (for example, 70 ° C.), that is, in a state where the freezing lunch is controlled to the cooking target temperature.
- This steam heating time is stored in the memory 101 in advance, and is read from the memory 101 when the cooking target temperature is read.
- this steam heating time is, for example, 5 minutes, and is a time required to eliminate temperature unevenness.
- the fact that the steam heating time has elapsed is included in the second condition in the first embodiment. Until this steam heating time elapses, how much time is left is displayed as shown in FIG.
- a steam heating operation for 4 minutes and an exposure operation for 1 minute may be used.
- This dew blowing operation is performed by the operation of the exhaust fan 47 by the exhaust fan motor 57 and the operation of the air supply fan 54 by the air supply fan motor 58.
- the predetermined steam heating time is allowed to elapse in a state where the frozen food, for example, the frozen lunch box is at the cooking target temperature (for example, 70 ° C.), delicious cooking can be performed.
- the steam heating time for heating with this steam may be determined to be longer according to the length of the microwave heating time. Specifically, the heating time by the microwave is measured by a timer (not shown) of the control device 100, and the steam heating time by the steam is increased according to the measured heating time by the microwave. By controlling the steam generator 24, it is possible to appropriately heat the food and the amount of specific heat.
- step S7 If it is determined in step S7 that the steam heating time has elapsed, the process proceeds to step S8 where the driving of the steam generator 24 is stopped, the exhaust fan motor 57 is driven, and the exhaust fan 19 exhausts the heating chamber 2. Then, the air supply fan motor 58 is driven, and the air supply fan 54 supplies air to the heating chamber 2.
- the display on the color liquid crystal display unit 10 is as shown in FIG. 7F, indicating that the cooking has been completed.
- the frozen food cooking mode can be selected by the frozen food cooking mode selection unit 69, and when the frozen food cooking mode is selected, the control device 100 causes the magnetron 4 to
- the steam sensor 53 or the temperature sensor 65 detects that the temperature of the frozen food has reached a predetermined microwave heating temperature
- the drive of the magnetron 4 is stopped and the steam generator 24 is turned on.
- the sensor 53 or the temperature sensor 65 is driven until it detects that the temperature of the frozen food has reached a predetermined cooking target temperature and satisfies the second condition that the steam heating time has elapsed.
- Heat frozen foods of various sizes or foods containing various ingredients to a target temperature suitable for eating immediately after thawing, not just thawing. It can be.
- the control apparatus 100 is frozen food cooking mode from the memory 101 which memorize
- the microwave heating temperature, the steam heating time and the cooking target temperature corresponding to the type of frozen food selected by the selection unit 69 are read out, and the magnetron 4 and the steam generator 24 are controlled.
- frozen foods containing various foods can be heated not only to thawing but also to a target temperature suitable for eating evenly after thawing.
- microwave heating is performed first, heating is performed at a high output to shorten the time on the assumption that temperature unevenness occurs, and then the heating chamber 2 is heated with steam of about 100 ° C. If the temperature of the frozen food is filled, the temperature of the high temperature portion decreases and the temperature of the low temperature portion increases, so that the temperature unevenness is eliminated. In the heating by microwaves, the temperature unevenness is smaller when heating is performed with a small output, but since it takes time, it is desirable to heat with the maximum output as much as possible.
- the temperature of the frozen food is detected using a temperature sensor 65 such as a steam sensor 53 or an infrared sensor, and if the temperature reaches a specified level, that is, the microwave heating temperature, the process proceeds to the steam heating stage, and the frozen food is Is controlled so that it becomes the cooking target temperature, and is heated only for the steam heating time to smooth the temperature of the frozen food in which the temperature unevenness occurs. If it is a refrigerated lunch box, the temperature unevenness will be considerably resolved in 5 minutes (4 minutes steam + 1 minute dew blowing).
- the same effect can be obtained by heating the heater instead of this steam (for example, the set temperature is 100 ° C.).
- the temperature control of the first embodiment of the cooking device is summarized as follows.
- the temperature of the frozen food is optimally warmed to 60-70 ° C in the end, beyond which the taste is paralyzed and the taste is not felt so much. Therefore, the temperature of the frozen food is finally controlled to 60 to 70 ° C.
- the microwave heating temperature is controlled to 80 ° C., for example.
- the microwave heating temperature is controlled to a temperature much higher than 80 ° C., it takes too much time to finally reach the optimum temperature of 60 to 70 ° C. Even in minutes, the maximum temperature does not drop to 60-70 ° C.
- the microwave heating temperature is beta-modified in order to make the temperature of the frozen food rapidly reach 60-70 ° C without unevenness. Therefore, the steam heating time is controlled to, for example, 3 to 4 minutes.
- the frozen food cooking mode selection part 69 selects the kind of frozen food, Microwave heating temperature according to the kind of frozen food selected by the frozen food cooking mode selection part 69, steam Since the heating time and cooking target temperature are read from the memory 101 and the magnetron 4 and the steam generator 24 are automatically controlled, for example, a small frozen food such as a frozen rice ball and a large frozen food such as a frozen lunch box or a frozen side dish set It is possible to finish the frozen food efficiently by optimizing the heating control.
- the control device 100 includes a frozen food cooking mode selection unit from a memory 101 that stores a microwave heating temperature, a steam heating time, and a cooking target temperature that are predetermined according to the type of frozen food.
- the microwave heating temperature, the steam heating time and the cooking target temperature corresponding to the type of frozen food selected in 69 are read out, and the magnetron 4 and the steam generator 24 are automatically controlled.
- the user may appropriately select, for example, from “standard”, “smooth”, and “hot”.
- whether or not the first condition is satisfied is determined only by determining whether or not the temperature of the frozen lunch box, which is frozen food, has reached a microwave heating temperature (for example, 80 ° C.). However, the first condition is satisfied when the temperature of the freezer lunch reaches a microwave heating temperature (for example, 80 ° C.) and the state of the microwave heating temperature continues for a predetermined period of time. It is good. If it carries out like this, frozen foods, such as a frozen lunch box, can be heated more reliably and appropriately.
- the second condition is set when a predetermined time, that is, a steam heating time has elapsed in a state where the freezing lunch is at a cooking target temperature (for example, 70 ° C.). Although it is determined that it has been satisfied, it may be determined whether or not the second condition is satisfied only by whether or not the refrigerated lunch box has reached a cooking target temperature (for example, 70 ° C.). This simplifies control.
- the frozen food cooking mode selection unit 69 when the frozen food cooking mode selection unit 69 is touched to select the frozen food cooking mode (step S1 in FIG. 8), frozen food cooking is performed.
- the display of the mode selection unit 69 is switched as shown in FIG. 6B, even if the frozen food cooking mode is selected, the display of the frozen food cooking mode selection unit 69 is shown in FIG. Without switching as shown in Fig. 6, it is possible to make a direct transition to the screen as shown in Fig. 6C, and to determine the type of frozen food based on the arrival time to a predetermined temperature while cooking. Good. Further, the remaining time may be calculated from the arrival time up to a predetermined temperature without determining the type of frozen food.
- the temperature of the frozen lunch box as an example of the frozen food becomes the cooking target temperature in the steam sensor 53 or the temperature sensor 65.
- the cooking target temperature it is not always necessary to detect that the cooking target temperature has been reached.
- a control device of a modification drives the steam generator or heater after heating with microwaves, and the steam generator or heater is driven for a predetermined drive time without detecting the cooking target temperature.
- the second condition it may be determined that the second condition is satisfied, and the driving of the steam generator or the heater may be stopped.
- the drive time is stored in advance in the memory according to the type of frozen food selected by the frozen food cooking mode selection unit.
- FIGS. 10 and 11 are flowcharts showing the gist of control of the heating cooker according to the second embodiment.
- steps S1 to S8 are exactly the same as the processes in steps S1 to S8 in FIGS. 8 and 9 of the first embodiment. Therefore, the steps S1 to S8 in FIGS. To avoid this, the description of steps S1 to S8 in FIGS. 8 and 9 is incorporated.
- step S21 after reading the microwave heating temperature and the cooking target temperature according to the type of frozen food in step S2, the process proceeds to step S21, the steam generator 24 is driven, and the process proceeds to step S22.
- one or more of the upper heater 20, the middle heater 21, and the lower heater 22 may be driven.
- frozen food is melted by steam heating (or heater heating) to dissolve the ice on the surface, thereby eliminating the frozen state.
- step S22 the temperature of the frozen food such as a frozen lunch box is indirectly measured by the vapor sensor 53, or the temperature of the frozen food is directly measured by the temperature sensor 65, and the temperature of the frozen food is adjusted to the surface ice. It is determined whether or not the temperature has melted, and if it is determined that the temperature is not, the step S22 is repeated.
- step S22 If it is determined to be good in step S22, the magnetron is driven (step S3) as in the first embodiment, and it is determined whether or not the frozen food has reached the microwave heating temperature (step S4).
- the frozen food is evenly hit with microwaves, and uneven heating is less likely to occur when the temperature rises.
- the steam sensor 53 or the temperature sensor 65 is used to detect the finish of the frozen food, so it can be applied not only to a frozen lunch box but also to a light load such as a grilled rice ball, Various foods can be warmed with good finish automatically instead of manually.
- step S5 the steam generator 24 is driven (step S5) to determine whether or not the frozen food has reached the cooking target temperature (step S6), and the frozen food reaches the cooking target temperature.
- step S7 it is determined whether or not the steam heating time has elapsed.
- step S8 the exhaust damper 49 and the air supply damper 51 are opened, the exhaust fan 47 and the air supply fan 54 are driven (step S8), and the process proceeds to step S23.
- the second condition is that the steam heating time has elapsed with the frozen food at the cooking target temperature and the frozen food at the cooking target temperature.
- the second condition may only satisfy that the frozen food has reached the cooking target temperature.
- step S23 one or more of the upper heater 20, the middle heater 21, and the lower heater 22 are driven for a predetermined time.
- the steam in the heating chamber 2 can be dried to some extent, so that when the frozen food is taken out of the heating chamber 2 after the heating, the wet feel of the frozen food is given. Can be suppressed.
- the mechanical configuration of the heating cooker according to the third embodiment is the same as the mechanical configuration of the heating cooker according to the first embodiment, and therefore the description thereof is omitted with the aid of FIGS. 1 to 7 of the first embodiment. .
- FIGS. 12 and 13 are flowcharts showing the gist of control of the heating cooker according to the third embodiment.
- steps S1 and S6 are exactly the same as the processing of steps S1 and S6 in FIGS. 8 and 9 of the first embodiment, so that steps S1 and S6 of FIGS. In order to avoid this, the description of steps S1 and S6 in FIGS.
- step S32 the steam generator 24 is driven, and the process proceeds to step S22.
- one or more of the upper heater 20, the middle heater 21, and the lower heater 22 may be driven.
- frozen food is melted by steam heating (or heater heating) to dissolve the ice on the surface, thereby eliminating the frozen state.
- step S22 as in step S22 of FIG. 10 of the second embodiment, the temperature of the frozen food such as a frozen lunch box is indirectly measured by the steam sensor 53, or the temperature of the frozen food is directly measured by the temperature sensor 65. Is measured, and it is determined whether or not the temperature of the frozen food has reached a temperature at which the ice on the surface has melted. In the third embodiment, determining that the temperature of the frozen food has reached the temperature at which the ice on the surface has melted determines that the first condition has been satisfied.
- step S22 If YES is determined in step S22, the process proceeds to step S33, the driving of the steam generator 24 is stopped, the supply damper 49 and the exhaust damper 51 are opened, the exhaust fan 47 and the supply fan 54 are driven, and the magnetron 4 is driven and it progresses to step S6.
- step S6 it is determined whether or not the frozen food has reached the cooking target temperature (step S6), and the frozen food is in the cooking target temperature, that is, the magnetron 4 is driven.
- step S34 the driving of the magnetron 4 is stopped (step S35).
- the second condition is that a certain time has passed in a state where the frozen food is at the cooking target temperature and the frozen food is at the cooking target temperature.
- the second condition may only be that the frozen food has reached the cooking target temperature.
- ice on the surface of the frozen food is melted by steam heating or heater heating to eliminate the frozen state, and then microwave heating can be applied to the frozen food evenly. It is possible to make it difficult for heating unevenness to occur when the temperature of the frozen food rises.
- the temperature sensor 65 such as a steam sensor 53 or an infrared sensor is used to detect the finish of frozen food, so that not only heavy loads such as frozen lunch boxes but also light rice balls such as grilled rice balls are used. It can be applied to loads, and can heat various foods automatically and not manually.
- the cooking device of this invention is A body casing 1; A heating chamber 2 provided in the main body casing 1 and containing an object to be heated; A microwave generator 4 for generating microwaves for heating the object to be heated in the heating chamber 2; At least one of a steam generator 24 that generates steam for heating the object to be heated in the heating chamber 2, and heaters 20, 21, and 22 for heating the object to be heated; Sensors 53 and 65 for detecting the temperature of the object to be heated in the heating chamber 2; A frozen food cooking mode selection unit 69 for selecting a frozen food cooking mode; When the frozen food cooking mode selection unit 69 selects the frozen food cooking mode, the microwave generation unit 4 is driven, and the sensors 53 and 65 determine the temperature of the frozen food as the heated object in advance.
- the driving of the microwave generator 4 is stopped, and the steam generator 24 or the heaters 20, 21, 22 are
- the sensors 53 and 65 have detected that the temperature of the frozen food has reached a predetermined cooking target temperature, or the steam generator 24 or the heaters 20, 21 and 22 have a predetermined driving time.
- a control device 100 that controls to drive until the second condition including the fact that it is driven only is satisfied.
- the control device 100 causes the microwave generation unit to 4 and the above-mentioned sensors 53 and 65 satisfy the first condition including detecting that the temperature of the frozen food as the object to be heated has reached a predetermined microwave heating temperature.
- the driving of the microwave generator 4 is stopped, the steam generator 24 or the heaters 20, 21, 22 and the sensors 53, 65 indicate that the temperature of the frozen food has reached a predetermined cooking target temperature.
- frozen food of various sizes, or a frozen food containing various foodstuffs, as well as thawing only, after thawing it can immediately be heated to a target temperature which is suitable for eating.
- the temperature unevenness of the frozen food with temperature unevenness is eliminated by microwave heating,
- the temperature of frozen food can be smoothed.
- the frozen food cooking mode selection unit 69 can select the type of frozen food,
- the control device 100 selects the type of the frozen food selected by the frozen food cooking mode selection unit 69 from the memory 101 that stores the microwave heating temperature and the cooking target temperature that are predetermined according to the type of the frozen food.
- the microwave heating temperature corresponding to the temperature and the cooking target temperature or the predetermined driving time of the steam generator or heater are read out, and the microwave generator 4 and the steam generator 24 or heaters 20 and 21 are read out. , 22 are controlled.
- the microwave heating temperature and cooking according to the type of the frozen food selected by the frozen food cooking mode selection unit 69 are selected.
- the target temperature or driving time is read from the memory 101, and the control device 100 automatically sets the microwave generator 4 and the steam generator 24 so that the frozen food becomes the microwave heating temperature and the cooking target temperature or driving time.
- small frozen foods such as frozen rice balls
- large frozen foods such as frozen lunch boxes and frozen side dishes
- the frozen food containing the food can be heated not only to thawing but also immediately after thawing to a target temperature suitable for eating evenly.
- the second condition includes maintaining the temperature of the frozen food at the cooking target temperature for a certain period of time.
- the controller 100 Prior to the driving of the microwave generator 4, the controller 100 drives the steam generator 24 or the heaters 20, 21, 22 to dissolve the surface of the frozen food.
- the microwaves can be evenly applied to the frozen food. This makes it difficult for uneven heating to occur when the temperature rises.
- the sensor is a vapor sensor 53
- the control device 100 determines whether the microwave heating temperature included in the first condition is reached or whether the cooking target temperature is included in the second condition, depending on the amount of steam detected by the steam sensor 53. Is determined.
- the temperature of the frozen food is indirectly detected based on the amount of steam detected by the steam sensor 53. Therefore, the temperature is directly detected particularly in the cooking device using steam. It is possible to omit the temperature sensor 65 such as an infrared sensor, which is convenient.
- One embodiment is: Comprising the steam generator 24, The control device 100 determines a time for driving the steam generation device 24 according to the time for which the microwave generation unit 4 has been driven.
- the time for driving the steam generator 24 is determined according to the time for which the microwave generator 4 has been driven, it is appropriate for the amount of frozen food and the height of the specific heat. In response to the above, heating can be performed.
- One embodiment is: Comprising the steam generator 24 and the heaters 20, 21, 22;
- the controller 100 stops driving the microwave generator 4 and then drives the steam generator 24. Thereafter, the controller 100 stops driving the steam generator 24 and turns on the heaters 20, 21, and 22. To drive.
- the steam in the heating chamber 22 can be dried to some extent by performing the heaters 20, 21, and 22 after the steam heating, so that when the frozen food is taken out from the heating chamber 22 after the heating is finished. Can suppress the moist feel of frozen foods.
- the present invention provides: A body casing 1; A heating chamber 2 provided in the main body casing 1 and containing an object to be heated; A microwave generator 4 for generating microwaves for heating the object to be heated in the heating chamber 2; At least one of a steam generator 24 that generates steam for heating the object to be heated in the heating chamber 2, and heaters 20, 21, and 22 for heating the object to be heated; Sensors 53 and 65 for detecting the temperature of the object to be heated in the heating chamber 2; A frozen food cooking mode selection unit 69 for selecting a frozen food cooking mode; When the frozen food cooking mode selection unit 69 selects the frozen food cooking mode, the steam generator 24 or the heaters 20, 21 and 22 are driven, and the sensors 53 and 65 serve as the food to be heated.
- the sensor 53 includes a control device 100 that controls to drive until the second condition including that the temperature of the frozen food is detected to be a predetermined cooking target temperature is satisfied.
- the ice on the surface of the frozen food is melted by steam heating or heater heating to eliminate the frozen state of the surface of the frozen food, and then heated by the microphone wave. It is possible to make it difficult to cause uneven heating when the temperature of the frozen food rises.
- the temperature sensor 65 such as the steam sensor 53 or the infrared sensor is used to detect the finish of the food. It can cope with the load and can heat various foods automatically and well.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electric Ovens (AREA)
Abstract
冷凍食品調理モード選択部(69)によって冷凍食品調理モードが選択される。この冷凍食品調理モードが選択されると、制御装置(100)は、マイクロ波発生部(4)を駆動し、センサ(53,65)が、冷凍食品の温度が予め定められたマイクロ波加熱温度になったことを検知したということを含む第1条件を満たすと、上記マイクロ波発生部4の駆動を停止し、蒸気発生装置(24)またはヒータ(20,21,22)を、上記センサ(53,65)が、上記冷凍食品の温度が予め定められた調理目的温度になったことを検知したということを含む第2条件を満たすまで、駆動する。
Description
この発明は、加熱調理器に関する。
従来、加熱調理器としては、特開2009-127933号公報(特許文献1)に記載のものがある。
この従来の加熱調理器は、食材にマイクロ波を照射する第1工程により、短時間で食材内部まで所定量だけ解凍を行った後、マイクロ波の発生を停止して蒸気供給手段および外気供給手段により仕上げ解凍を行うため、主に解凍の後半において発生しやすいマイクロ波による食材の煮え過ぎや焦げ付きを防止でき、また、第2工程においても、蒸気供給手段に加えて外気供給手段を作動させることにより、外気により蒸気が冷却され、食材の過加熱を防止しながら短時間で斑なく解凍を行うことができるという利点を有する。
ところで、最近、コンビニやスーパマーケットなどにおいて、冷凍食品として、例えば、冷凍おにぎり等の小さな冷凍食品や、種々の食材が詰められた冷凍弁当、冷凍総菜セット等の大きな冷凍食品等が提供されるようになってきた。
ところが、上記従来の加熱調理器は、冷凍食品を比較的ムラなく解凍を行うことができるが、解凍後に、直ちに、冷凍食品に適した加熱を行っていないため、種々の食材が詰められた冷凍弁当、冷凍おむすび等を、直ちに、ムラ無く、食するに適した温度に加熱できないと言う問題がある。
そこで、この発明の課題は、種々の大きさの冷凍食品、あるいは、種々の食材を含む冷凍食品を、解凍のみならず、解凍後、直ちに、食するに適した目標温度に加熱することができる加熱調理器を提供することにある。
上記課題を解決するため、この発明の加熱調理器は、
本体ケーシングと、
この本体ケーシング内に設けられると共に、被加熱物が収容される加熱室と、
上記加熱室内の上記被加熱物を加熱するためのマイクロ波を発生するマイクロ波発生部と、
上記加熱室内の上記被加熱物を加熱するための蒸気を発生する蒸気発生装置と、上記被加熱物を加熱するためのヒータとのうちの少なくとも一方と、
上記加熱室内の上記被加熱物の温度を検知するセンサと、
冷凍食品調理モードを選択する冷凍食品調理モード選択部と、
上記冷凍食品調理モード選択部によって冷凍食品調理モードが選択されると、上記マイクロ波発生部を駆動し、上記センサが、上記被加熱物としての冷凍食品の温度が予め定められたマイクロ波加熱温度になったことを検知したということを含む第1条件を満たすと、上記マイクロ波発生部の駆動を停止し、上記蒸気発生装置またはヒータを、上記センサが、上記冷凍食品の温度が予め定められた調理目的温度になったことを検知したということ、または、上記蒸気発生装置もしくはヒータが予め定められた駆動時間だけ駆動されたということを含む第2条件を満たすまで、駆動するように制御する制御装置と
を備えることを特徴としている。
本体ケーシングと、
この本体ケーシング内に設けられると共に、被加熱物が収容される加熱室と、
上記加熱室内の上記被加熱物を加熱するためのマイクロ波を発生するマイクロ波発生部と、
上記加熱室内の上記被加熱物を加熱するための蒸気を発生する蒸気発生装置と、上記被加熱物を加熱するためのヒータとのうちの少なくとも一方と、
上記加熱室内の上記被加熱物の温度を検知するセンサと、
冷凍食品調理モードを選択する冷凍食品調理モード選択部と、
上記冷凍食品調理モード選択部によって冷凍食品調理モードが選択されると、上記マイクロ波発生部を駆動し、上記センサが、上記被加熱物としての冷凍食品の温度が予め定められたマイクロ波加熱温度になったことを検知したということを含む第1条件を満たすと、上記マイクロ波発生部の駆動を停止し、上記蒸気発生装置またはヒータを、上記センサが、上記冷凍食品の温度が予め定められた調理目的温度になったことを検知したということ、または、上記蒸気発生装置もしくはヒータが予め定められた駆動時間だけ駆動されたということを含む第2条件を満たすまで、駆動するように制御する制御装置と
を備えることを特徴としている。
1実施形態では、
上記冷凍食品調理モード選択部は、冷凍食品の種類を選択可能になっており、
上記制御装置は、冷凍食品の種類に応じて予め定められたマイクロ波加熱温度および調理目的温度を記憶しているメモリから、上記冷凍食品調理モード選択部で選択された冷凍食品の種類に応じたマイクロ波加熱温度と、上記調理目的温度または上記蒸気発生装置もしくはヒータの予め定められた駆動時間とを読み出して、上記マイクロ波発生部と、上記蒸気発生装置またはヒータとを制御する。
上記冷凍食品調理モード選択部は、冷凍食品の種類を選択可能になっており、
上記制御装置は、冷凍食品の種類に応じて予め定められたマイクロ波加熱温度および調理目的温度を記憶しているメモリから、上記冷凍食品調理モード選択部で選択された冷凍食品の種類に応じたマイクロ波加熱温度と、上記調理目的温度または上記蒸気発生装置もしくはヒータの予め定められた駆動時間とを読み出して、上記マイクロ波発生部と、上記蒸気発生装置またはヒータとを制御する。
1実施形態では、
上記第2条件は、上記冷凍食品の温度を上記調理目的温度で一定時間持続することを含む。
上記第2条件は、上記冷凍食品の温度を上記調理目的温度で一定時間持続することを含む。
1実施形態では、
上記制御装置は、上記マイクロ波発生部の駆動に先だって、上記蒸気発生装置または上記ヒータを駆動して、上記冷凍食品の表面を溶解させる。
上記制御装置は、上記マイクロ波発生部の駆動に先だって、上記蒸気発生装置または上記ヒータを駆動して、上記冷凍食品の表面を溶解させる。
1実施形態では、
上記センサは、蒸気センサであり、
上記制御装置は、上記蒸気センサの検出した蒸気量によって、上記第1条件に含まれるマイクロ波加熱温度になったか否かや、上記第2条件に含まれる調理目的温度になったか否かを判別する。
上記センサは、蒸気センサであり、
上記制御装置は、上記蒸気センサの検出した蒸気量によって、上記第1条件に含まれるマイクロ波加熱温度になったか否かや、上記第2条件に含まれる調理目的温度になったか否かを判別する。
1実施形態は、
上記蒸気発生装置を備え、
上記制御装置は、上記マイクロ波発生部を駆動していた時間に応じて、上記蒸気発生装置を駆動する時間を定めている。
上記蒸気発生装置を備え、
上記制御装置は、上記マイクロ波発生部を駆動していた時間に応じて、上記蒸気発生装置を駆動する時間を定めている。
1実施形態は、
上記蒸気発生装置および上記ヒータを備え、
上記制御装置は、上記マイクロ波発生部の駆動を停止した後、上記蒸気発生装置を駆動し、その後、上記蒸気発生装置の駆動を停止して、上記ヒータを駆動する。
上記蒸気発生装置および上記ヒータを備え、
上記制御装置は、上記マイクロ波発生部の駆動を停止した後、上記蒸気発生装置を駆動し、その後、上記蒸気発生装置の駆動を停止して、上記ヒータを駆動する。
別の側面では、この発明は、
本体ケーシングと、
この本体ケーシング内に設けられると共に、被加熱物が収容される加熱室と、
上記加熱室内の上記被加熱物を加熱するためのマイクロ波を発生するマイクロ波発生部と、
上記加熱室内の上記被加熱物を加熱するための蒸気を発生する蒸気発生装置と、上記被加熱物を加熱するためのヒータとのうちの少なくとも一方と、
上記加熱室内の上記被加熱物の温度を検知するセンサと、
冷凍食品調理モードを選択する冷凍食品調理モード選択部と、
上記冷凍食品調理モード選択部によって冷凍食品調理モードが選択されると、上記蒸気発生装置またはヒータを駆動し、上記センサが、上記被加熱物としての冷凍食品の表面が溶解した温度なったことを検知したということを含む第1条件を満たすと、上記蒸気発生装置またはヒータの駆動を停止し、上記マイクロ波発生部を、上記センサが、上記冷凍食品の温度が予め定められた調理目的温度になったことを検知したということを含む第2条件を満たすまで、駆動をするように制御する制御装置と
を備える。
本体ケーシングと、
この本体ケーシング内に設けられると共に、被加熱物が収容される加熱室と、
上記加熱室内の上記被加熱物を加熱するためのマイクロ波を発生するマイクロ波発生部と、
上記加熱室内の上記被加熱物を加熱するための蒸気を発生する蒸気発生装置と、上記被加熱物を加熱するためのヒータとのうちの少なくとも一方と、
上記加熱室内の上記被加熱物の温度を検知するセンサと、
冷凍食品調理モードを選択する冷凍食品調理モード選択部と、
上記冷凍食品調理モード選択部によって冷凍食品調理モードが選択されると、上記蒸気発生装置またはヒータを駆動し、上記センサが、上記被加熱物としての冷凍食品の表面が溶解した温度なったことを検知したということを含む第1条件を満たすと、上記蒸気発生装置またはヒータの駆動を停止し、上記マイクロ波発生部を、上記センサが、上記冷凍食品の温度が予め定められた調理目的温度になったことを検知したということを含む第2条件を満たすまで、駆動をするように制御する制御装置と
を備える。
この発明によれば、種々の大きさの冷凍食品、あるいは、種々の食材を含む冷凍食品を、解凍のみならず、解凍後、直ちに、食するに適した目標温度に加熱することができる。
以下、この発明を図示の実施形態により詳細に説明する。
(第1実施形態)
図1は、この発明の第1実施形態の加熱調理器の扉閉鎖時の概略正面図である。また、図2は、上記加熱調理器の扉開放時の概略正面図である。
図1は、この発明の第1実施形態の加熱調理器の扉閉鎖時の概略正面図である。また、図2は、上記加熱調理器の扉開放時の概略正面図である。
上記加熱調理器は、図1、図2に示すように、略直方体形状の本体ケーシング1と、この本体ケーシング1内に設けられた略直方体形状の加熱室2と、この加熱室2の前側の開口部2aを開閉する扉3とを備えている。
また、上記本体ケーシング1内の後部の端部に、マイクロ波を発生するマイクロ波発生装置の一例としてのマグネトロン4を設けている。また、センサの一例としての蒸気センサ53(図4および5を参照)および赤外線センサなどの温度センサ65(図5を参照)で、加熱室2内の被加熱物の温度を検出するようにしている。上記蒸気センサ53は、蒸気の量を介して、被加熱物の温度を間接的に検出し、赤外線センサなどの温度センサ65は被加熱物の温度を直接的に検出する。
上記本体ケーシング1の上面の後部には排気ダクト5を設けている。一方、上記本体ケーシング1の前面の下部には、露受容器6および給水タンク26を着脱可能に取り付けている。この露受容器6は扉3の下側に位置して、扉3の後面(加熱室2側の面)からの水滴を受けることができるようになっている。
上記扉3の下部は、本体ケーシング1の前側の下部に回動可能に取り付けている。この扉3の前面(加熱室2側とは反対側の表面)には、耐熱性を有する透明な外ガラス7を設けている。また、上記扉3は、外ガラス7の上側に位置するハンドル8と、外ガラス7の右側に位置する操作パネル9とを有している。
上記操作パネル9はカラー液晶表示部10およびボタン群11を有している。上記カラー液晶表示部10は、タッチパネル式のスイッチ機能を有し、後述する冷凍食品調理モード選択部69を構成する。また、上記ボタン群11は、途中で加熱を止めるときなどに押す取り消しキー12と、加熱を開始するときに押すあたためスタートキー13とを含んでいる。また、上記操作パネル9には、スマートフォンなどからの赤外線を受ける赤外線受光部14を設けている。
上記加熱室2内には、冷凍食品等の被加熱物を収容する。また、上記加熱室2内には、図3および4に示す金属製の調理トレイ91,92を出し入れ可能に設けている。図2に示すように、上記加熱室2の左側部2b、右側部2cの内面には、調理トレイ91を支持する上棚受け16A,16Bを設けている。また、上記加熱室2の左側部2b、右側部2cの内面には、調理トレイ92を支持する下棚受け17A,17Bを設けている。上記下棚受け17A,17Bは、上棚受け16A,16Bよりも下側に位置する。
上記調理トレイ91,92は、加熱室2内に配置されたとき、加熱室2の後部2dとの間に隙間を有するようになっている。より詳しくは、上棚受け16A,16Bおよび下棚受け17A,17Bのそれぞれの後端部には当接部(図示せず)を設けている。この当接部は、調理トレイ91,92が加熱室2の後部2dに接触する前に、調理トレイ91,92に当接して、調理トレイ91,92の後側への移動を規制する。このとき、上記調理トレイ91,92と加熱室2の後部2dとの間において、前後方向の長さが例えば3mmの隙間が生じるようにしてもよい。
図3は、上記加熱調理器の主要部の構成を、分かり易くするために、展開して示す模式図である。この図3では、加熱室2は左側から見た状態が示されている。
上記加熱調理器は、循環ダクト18、循環ファン19、上ヒータ20、中ヒータ21、下ヒータ22、循環ダンパ23、蒸気発生装置24、チューブポンプ25および給水タンク26を備えている。この上ヒータ20、中ヒータ21および下ヒータ22は、それぞれ、例えば、シーズヒータからなっている。
図3に示すように、上記加熱室2の上部2eは、水平方向に対して傾斜する傾斜部2fを介して加熱室2の後部2dと連なっている。この傾斜部2fには、循環ファン19と対向するように複数の吸込口27(図2を参照)を設けている。また、上記加熱室2の上部2eには、複数の上吹出口28を設けている。また、加熱室2の後部2dには、第1後吹出口29、第2後吹出口30および第3後吹出口31を、それぞれ、複数設けている。なお、図3では、上記上吹出口28は3個だけを示し、第1後吹出口29、第2後吹出口30および第3後吹出口31は各1個だけを示しているが、それらの実際の数は、図2に示すように、多数個ある。
上記循環ダクト18は、吸込口27、上吹出口28および第1~第3後吹出口29~31を介して加熱室2内と連通している。この循環ダクト18は、加熱室2の上側から後側にわたって設けられて、逆L字形状を呈するように延在している。また、循環ダクト18の左右方向の幅は、加熱室2の左右方向の幅より狭く設定している。
上記循環ファン19は、例えば、遠心ファンからなり、循環ファン用モータ56によって駆動する。この循環ファン用モータ56が循環ファン19を駆動すると、加熱室2内の空気や飽和蒸気(以下、「空気など」言う)は、吸込口27から循環ダクト18内に吸い込まれて、循環ファン19の径方向外側へ流出させられる。より詳しくは、循環ファン19によって吸入された空気などの一部は、上方の上吹出口28から、加熱室2へ吹き出され、循環ファン19によって吸入された空気などの他の一部は、上記上吹出口28よりも下側に位置する第1~第3後吹出口29,30,31から、加熱室2へ吹き出される。
上記上ヒータ20は、循環ダクト18内に配置して、加熱室2の上部2eに対向している。この上ヒータ20は、上吹出口28へ流れる空気などを加熱する。
上記中ヒータ21は、環状に形成していて、循環ファン19を取り囲んでいる。この中ヒータ21は、循環ファン19から背面の第1~第3後吹出口29,30,31へ流れる空気などを加熱し、つまり、循環ファン19から上ヒータ20に向かう空気などを加熱し、また、循環ファン19から下ヒータ22に向かう空気などを加熱する。
上記下ヒータ22は、循環ダクト18内に配置し、加熱室2の後部2dに対向している。この下ヒータ22は、第2、第3後吹出口30,31へ流れる空気などを加熱する。
上記循環ダンパ23は、循環ダクト18内に回動可能に設け、中ヒータ21と下ヒータ22との間に位置させている。この循環ダンパ23の回動は循環ダンパ用モータ59(図5に示す)によって行わせる。上記蒸気発生装置24は、上端が開口する金属製の容器34と、樹脂製の蓋33と、シーズヒータからなる蒸気発生用ヒータ32とを有する。上記蒸気発生用ヒータ32は、容器34の底部に鋳込んでいる。この容器34の底部上には給水タンク26からの水が溜まり、この水を、蒸気発生用ヒータ32が容器34の底部を介して加熱する。この水の加熱で発生した飽和蒸気は、樹脂製の蒸気チューブ35と金属製の蒸気管36とを通って、複数の蒸気供給口37から加熱室2内に供給される。なお、蒸気供給口37は図2に示すように、複数個あるが、図3では1個だけを示している。
また、上記加熱室2内の飽和蒸気は、循環ファン19で吸引して、中ヒータ21、上ヒータ20および下ヒータ22に向けて送り、中ヒータ21、上ヒータ20および下ヒータ22で加熱することにより、100℃以上の過熱蒸気となる。
また、上記蒸気発生装置24の蓋33には、一対の電極棒39A,39Bからなる水位センサ38を取り付けている。この電極棒39A,39Bの間が導通状態になったか否かに基づいて、容器34の底部上の水位が所定水位になったか否かを判定する。
上記チューブポンプ25は、シリコンゴム等からなって弾性変形可能な給排水チューブ40をローラ(図示せず)でしごいて、給水タンク26内の水を蒸気発生装置24へ流したり、蒸気発生装置24内の水を給水タンク26に向けて流したりする。
上記給水タンク26は給水タンク本体41および連通管42を有する。この連通管42は、一端部が給水タンク本体41内に位置する一方、他端部が給水タンク26外に位置する。上記給水タンク26がタンクカバー43内に収容されると、連通管42の他端部がタンクジョイント部44を介して給排水チューブ40に接続される。すなわち、給水タンク本体41内が連通管42などを介して蒸気発生装置24内と連通する。
図4は、上記加熱調理器の他の部分の構成を説明するための模式図である。この図4でも、図3と同様に、加熱室2は右側方から見た状態が示されている。
上記加熱室2の後部2dの下端部には自然排気口45を設けている。この自然排気口45は第1排気経路46を介して排気ダクト5に連通している。加熱室2内の空気などが余剰になると、その余剰な空気などが、自然に、自然排気口45から第1排気経路46へ流れ出る。また、この第1排気経路46に、例えばシロッコファンからなる排気ファン47を接続して、加熱室2から強制的に排気ができるようにしている。
また、上記加熱室2の傾斜部2fには、排気ダンパ49で開閉される複数の強制排気口48と、給気ダンパ51で開閉される複数の給気口50とを設けている。この強制排気口48は第2排気経路52を介して排気ダクト5に連通している。一方、上記給気口50は、給気経路55を介して、本体ケーシング1と加熱室2との間の空間に連通している。また、例えばシロッコファンからなる給気ファン54を給気経路55に接続している。
また、上記第2排気経路52には、センサの一例としての蒸気センサ53を取り付けている。この蒸気センサ53は、第2排気経路52を流れる蒸気量を示す信号を制御装置100(図5に示す)へ送出する。
上記加熱室2内の空気などを強制的に本体ケーシング1外へ排出する場合、排気ダンパ用モータ60、給気ダンパ用モータ61(図5に示す)で排気ダンパ49、給気ダンパ51を2点鎖線で示す位置まで回動させて、排気ダンパ49および給気ダンパ51を開く。そして、排気ファン用モータ57、給気ファン用モータ58(図5に示す)で排気ファン47、給気ファン54を駆動する。これにより、加熱室2内の空気などが強制排気口48および自然排気口45から加熱室2外へ引き出される。
また、上記本体ケーシング1と加熱室2との間のマグネトロン4などを冷却する場合、給気ダンパ51が閉じた状態で、給気ファン54が駆動するようにする。これにより、給気ファン54から吹き出された空気が、給気経路55を介して、本体ケーシング1と加熱室2との間の空間に供給される。
図5は上記加熱調理器の制御ブロック図である。
上記加熱調理器は、マイクロコンピュータと入出力回路などからなる制御装置100を備えている。この制御装置100には、上ヒータ20、中ヒータ21、下ヒータ22、蒸気発生装置24、循環ファン用モータ56、排気ファン用モータ57、給気ファン用モータ58、循環ダンパ用モータ59、排気ダンパ用モータ60、給気ダンパ用モータ61、操作パネル9、蒸気センサ53、水位センサ38、チューブポンプ25、マグネトロン4などを接続している。また、上記制御装置100は、操作パネル9、蒸気センサ53、例えば赤外線センサ等の温度センサ65、水位センサ38などからの信号に基づいて、上ヒータ20、中ヒータ21、下ヒータ22、蒸気発生装置24、循環ファン用モータ56、排気ファン用モータ57、給気ファン用モータ58、循環ダンパ用モータ59、排気ダンパ用モータ60、給気ダンパ用モータ61、チューブポンプ25などを制御する。
上記制御装置100は、そのメモリ101に格納されたプログラムによって、あたため、焼き、蒸し、解凍などの調理を行うことができるが、これらの調理は通常行われるもので、本発明の要旨とは、関係が薄いので、その説明を省略する。
以下においては、発明のエッセンスである冷凍食品の調理(単なる解凍ではない。)に、焦点をあてて説明する。
図5に示すように、上記操作パネル9のカラー液晶表示部10には、冷凍食品調理モードを選択するための冷凍食品調理モード選択部69を設けている。上記カラー液晶表示部10は、タッチパネル式のスイッチ機能を有し、図6の(A)に示すように、冷凍食品調理モード選択部69を構成している。上記カラー液晶表示部10は、冷凍食品調理モード選択部69の他に、単なる解凍モード選択部71、あたためモード選択部72、健康セットメニューモード選択部73、焼き・蒸しモード選択部74も構成できるようになっている。
図6の(A)に示す冷凍食品調理モード選択部69は、タッチパネル式のスイッチ機能を有するカラー液晶表示部10の一部により構成しているが、冷凍食品調理モード選択部は、図示しないが、ボタン群11中の1つのボタンで構成してもよい。
さらに、図6の(A)の冷凍食品調理モード選択部69にユーザがタッチして、冷凍食品調理モードが選択されると、冷凍食品調理モード選択部69は、図6の(B)に示す表示に切り替わって、調理すべき冷凍食品の種類、例えば、おにぎり、または、弁当類などを選択できるようになっている。
一方、上記制御装置100は、メモリ101に、冷凍食品の種類に応じて予め定められたマイクロ波加熱温度、蒸気加熱時間および調理目的温度を記憶している。このマイクロ波加熱温度は、被加熱物のマイクロ波加熱時に使用する目標温度であり、一方、蒸気加熱時間は、被加熱物の蒸気加熱を行う時間であり、また、調理目的温度は、被加熱物の蒸気加熱またはヒータ加熱時に使用する目標温度である。
このように、メモリ101に、冷凍食品の種類に応じて予め定められたマイクロ波加熱温度、蒸気加熱時間および調理目的温度を記憶しているのは、例えば、小さな食品で単一な食材からなる焼きおにぎりや、大きな食品で複数の食材からなる冷凍弁当類や冷凍総菜セットなどでは、適切なマイクロ波加熱温度や蒸気加熱時間や調理目的温度が異なるからである。より具体的には、違う食材が同じプレートに混在している冷凍弁当などは、マイクロ波加熱の特性と、食材による熱伝導性の違いとから、温度ムラができ易くなる。特に、冷凍弁当に含まれる温まり難いハンバーグと温まり易いご飯とでは、仕上がりで最大60℃程度の温度差ができる場合がある。例えば、おにぎりなどの小さな食品では、50~60℃までのマイクロ加熱だけでもある程度仕上がりがよくて(なお、加熱温度が高すぎると、おにぎりを食することができない)、マイクロ波加熱温度や仕上げの調理目的温度は比較的低い温度でよいが、大きな食品で複数の材料からなる冷凍弁当類や冷凍総菜セットなどでは、80℃以上の加熱でないと、デンプンのβ化ができなくて、食味が悪くなる。そのため、この第1実施形態では、メモリ101に、冷凍食品の種類に応じて予め定められたマイクロ波加熱温度、蒸気加熱時間および調理目的温度を記憶しているのである。
そして、上記制御装置100は、メモリ101から、冷凍食品調理モード選択部69で選択された冷凍食品の種類に応じたマイクロ波加熱温度、蒸気加熱時間および調理目的温度を読み出して、調理するようになっている。
また、上記制御装置100は、メモリ101に格納されたプログラムによって、図8および9に示された動作を実行するようになっている。
上記構成の加熱調理器は、次のように動作する。
今、加熱室2に図示しない例えば冷凍弁当をいれて、図6の(A)に示すように、操作パネル9のカラー液晶表示部10の冷凍食品調理モード選択部69にタッチして、冷凍食品調理モードを選択すると(図8のステップS1)、冷凍食品調理モード選択部69の表示が図6の(B)に示すように切り替わる。
そして、図6の(B)の状態になっている冷凍食品調理モード選択部69において、おにぎりの表示691、弁当類の表示692のうち、例えば、弁当類の表示692にユーザがタッチして、調理すべき冷凍食品の種類を弁当類と選択する。
そうすると、制御装置100は、冷凍食品の種類に応じて予め定められたマイクロ波加熱温度、蒸気加熱時間および調理目的温度を記憶しているメモリ101から、選択された弁当類に応じたマイクロ波加熱温度(例えば、80℃)および調理目的温度(例えば、70℃)を読み出す(ステップS2)。
次に、ステップS3に進んで、カラー液晶表示部10の表示が図6の(C)の状態で、スタートキー13を押圧して、マグネトロン4を駆動する(ステップS3)。そうすると、カラー液晶表示部10の表示は、図6の(D)の状態になる。この図6の(D)の状態で、仕上がり温度を、「標準」、「ぬるめ」、「あつめ」のうちから、適宜、選択できるようになっている。
上記マグネトロン4によるマイクロ波による加熱は、小さな出力で長時間加熱するほうが弁当類などの被加熱物の温度ムラが少なくなるが、長時間かかるため、温度ムラが起こることを前提にして、マグネトロン4をできるだけ高出力、望ましくは最大出力で駆動するようになっていて、加熱時間を短縮している。
次に、ステップS4では、被加熱物としての冷凍食品である冷凍弁当の温度が、第1の条件を満たしたか否か、つまり、ステップS2に読み出したマイクロ波加熱温度(例えば、80℃)になったか否かを判別し(ステップS4)、否と判別すると、このステップS4を繰り返し、是と判別すると、図9のステップS5に進む。
この冷凍弁当の温度は、蒸気センサ53で検出した蒸気量と弁当類の温度との相関関係を予め求めておいて、蒸気センサ53で検出した蒸気量によって、弁当類(冷凍弁当)の温度を間接的に検出している。この間接的に検出した冷凍弁当の温度と、目標マイクロ波加熱温度であるマイクロ波加熱温度(例えば、80℃)とを比較して、冷凍弁当の温度がマイクロ波加熱温度(例えば、80℃)になったか否かを判別する。
あるいは、赤外線温度センサ等の温度センサ65で、冷凍弁当の温度を直接検出して、この温度センサ65で検出した冷凍弁当の温度とマイクロ波加熱温度とを比較して、冷凍弁当の温度がマイクロ波加熱温度になったか否かを判別してもよい。
なお、マイクロ波加熱温度としては、少なくとも被加熱物が部分的に加熱調理終了時の目標温度を超える温度になっているような温度に設定されていればよく、例えば、赤外線センサ等のセンサ65で検出した被加熱物の表面温度のいずれかの箇所で、目標温度を超えるような温度である80℃が検出されることで判別してもよい。
なお、蒸気センサ53の検出した蒸気量によって、冷凍食品の温度を間接的に検出すると、蒸気を使用する加熱調理器において、温度を直接的に検出する赤外線センサ等の温度センサ65を省くことも可能で、便利である。
ステップS4で、冷凍弁当の温度がマイクロ波加熱温度(例えば、80℃)になったと判別すると、ステップS5に進んで、マグネトロン4の駆動を停止し、蒸気発生装置24の駆動を開始して、加熱室2に飽和蒸気を供給して、ステップS6に進む。
このように、冷凍食品としての冷凍弁当を、マグネトロン4からのマイクロ波で加熱した後、蒸気発生装置24からの蒸気で加熱すると、マイクロ波加熱で温度ムラのある冷凍弁当の温度ムラが解消して、温度が平滑化される。
また、このように、加熱室2に蒸気を入れて、冷凍弁当を蒸気で加熱すると、マイクロ波加熱で乾燥した冷凍弁当などの食品表面を加湿する効果が期待できる。
ステップS6では、第2の条件を満たしたか否かの判別を行う。すなわち、蒸気センサ53で間接的に検出した冷凍弁当の温度、または、温度センサ65で直接検出した冷凍弁当の温度と、上記調理目的温度(例えば、70℃)とを比較する。そして、冷凍弁当の温度が調理目的温度(例えば、70℃)になっていない場合は、このステップS6を繰り返し、冷凍弁当の温度が調理目的温度(例えば、70℃)になったと判別すると(ステップS6)、ステップS7に進む。
ステップS7では、冷凍弁当が調理目的温度(例えば、70℃)になった状態で、つまり、冷凍弁当を調理目的温度に制御した状態で、上記蒸気加熱時間が経過したか否かを判別する。この蒸気加熱時間は、予めメモリ101に記憶されていて、調理目的温度を読み出すときに、メモリ101から読み出される。この蒸気加熱時間は、冷凍食品としての冷凍弁当の場合、例えば、5分であって、温度ムラを解消するのに必要な時間である。この蒸気加熱時間が経過したということは、この第1実施形態では、第2の条件に含まれる。この蒸気加熱時間が経過するまで、後、どれだけ時間があるかは、図7の(E)に示すように、表示される。
あるいは、4分の蒸気加熱運転、1分の露飛ばし運転であってもよい。この露飛ばし運転は、排気ファン用モータ57による排気ファン47の運転、および、給気ファン用モータ58による給気ファン54の運転により行われる。
このように、冷凍食品、例えば、冷凍弁当を、調理目的温度(例えば、70℃)になった状態で、予め定められた蒸気加熱時間経過させるので、美味しい調理を行うことができる。
あるいは、この蒸気で加熱する蒸気加熱時間は、マイクロ波による加熱時間の長さに応じて長くなるように定めてもよい。具体的は、マイクロ波による加熱時間の長さを制御装置100の図示しないタイマーで計時して、この計時したマイクロ波による加熱時間の長さに応じて蒸気による蒸気加熱時間が長くなるように、蒸気発生装置24を制御すると、食品の量や比熱の高さにも、適切に対応して、加熱することができる。
ステップS7で蒸気加熱時間が経過したと判別すると、ステップS8に進んで、蒸気発生装置24の駆動を停止し、排気ファン用モータ57を駆動して、排気ファン19で加熱室2の排気を行い、給気ファン用モータ58を駆動して、給気ファン54で加熱室2への給気を行う。
このとき、カラー液晶表示部10の表示は、図7の(F)のようになり、加熱調理が終了したことが表示される。
この第1実施形態の加熱調理器によれば、上記冷凍食品調理モード選択部69によって冷凍食品調理モードが選択できて、この冷凍食品調理モードが選択されると、上記制御装置100は、マグネトロン4を駆動し、蒸気センサ53または温度センサ65が、冷凍食品の温度が予め定められたマイクロ波加熱温度になったということを検知すると、マグネトロン4の駆動を停止し、蒸気発生装置24を、蒸気センサ53または温度センサ65が、冷凍食品の温度が予め定められた調理目的温度になったことを検知し、かつ、蒸気加熱時間が経過したという第2条件を満たすまで、駆動するので、種々の大きさの冷凍食品、あるいは、種々の食材を含む冷凍食品を、解凍のみならず、解凍後、直ちに、食するに適した目標温度に加熱することができる。
また、この第1実施形態では、制御装置100は、冷凍食品の種類に応じて予め定められたマイクロ波加熱温度、蒸気加熱時間および調理目的温度を記憶しているメモリ101から、冷凍食品調理モード選択部69で選択された冷凍食品の種類に応じたマイクロ波加熱温度、蒸気加熱時間および調理目的温度を読み出して、マグネトロン4と蒸気発生装置24を制御するので、種々の大きさの冷凍食品、あるいは、種々の食材を含む冷凍食品を、解凍のみならず、解凍後、直ちに、ムラなく食するに適した目標温度に加熱することができる。
より詳しくは、この第1実施形態では、最初にマイクロ波加熱を行い、温度ムラが起こることを前提に時間を短縮するために高出力で加熱し、そのあと100℃くらいの蒸気で加熱室2を充満すると、冷凍食品のうちで温度の高い部分は温度が下がり、温度の低い部分は温度が上がるため、結果的に温度ムラが解消される。マイクロ波による加熱は、小さい出力で加熱するほうが温度ムラは小さくなるが、時間がかかるのでなるべく最大出力で加熱するのが望ましい。
そして、蒸気センサ53や赤外線センサ等の温度センサ65を用いて、冷凍食品の温度を検知し、規定のレベル、つまり、マイクロ波加熱温度に到達すれば蒸気加熱のステージに移行して、冷凍食品の温度を、調理目的温度になるように制御し、蒸気加熱時間だけ加熱して、温度ムラの起こっている冷凍食品の温度を平滑化する。冷凍弁当であれば、5分(4分スチーム+1分露飛ばし)で温度ムラがかなり解消される。
また、この蒸気の代わりにヒータ加熱でも同様の効果はある(例えば、設定温度は100℃)。
この加熱調理器の第1実施形態の温度の制御について纏めると、次のようになる。
冷凍食品の温度は、最終的に60~70℃に暖めるのが最適で、それを超えると味覚がマヒしあまり味を感じなくなる。したがって、冷凍食品の温度を、最終的に60~70℃に制御している。
冷凍食品の温度は、最終的に60~70℃に暖めるのが最適で、それを超えると味覚がマヒしあまり味を感じなくなる。したがって、冷凍食品の温度を、最終的に60~70℃に制御している。
一方、デンプンをβ化するためには、80℃以上に加熱する必要があるから、マイクロ波加熱温度を、例えば、80℃に制御する。但し、マイクロ波加熱温度を、80℃よりも遥かに高い温度に制御すると、最終的に最適な温度である60~70℃にするのに時間がかかり過ぎて、例えば、蒸気加熱が4、5分でも、最高温度の箇所が60~70℃に下がらない。
このあたりを考慮して、冷凍食品が最高温度80℃に達してから、最終的に冷凍食品の温度をムラ無く60~70℃に迅速にするために、マイクロ波加熱温度をデンプンをβ化するための下限温度である80℃に制御し、蒸気加熱時間を例えば3~4分に制御している。
また、この第1実施形態では、冷凍食品調理モード選択部69によって、冷凍食品の種類を選択し、冷凍食品調理モード選択部69で選択された冷凍食品の種類に応じたマイクロ波加熱温度、蒸気加熱時間および調理目的温度をメモリ101から読み出して、マグネトロン4と蒸気発生装置24を自動的に制御しているので、例えば、冷凍おにぎりなど小さな冷凍食品と冷凍弁当や冷凍総菜セットなど大きな冷凍食品との加熱制御を夫々最適にして、効率よく冷凍食品を仕上げることができる。
この第1実施形態では、制御装置100は、冷凍食品の種類に応じて予め定められたマイクロ波加熱温度、蒸気加熱時間および調理目的温度を記憶しているメモリ101から、冷凍食品調理モード選択部69で選択された冷凍食品の種類に応じたマイクロ波加熱温度、蒸気加熱時間および調理目的温度を読み出して、マグネトロン4と蒸気発生装置24を自動的に制御しているが、全ての種類の冷凍食品について、ユーザが、例えば、「標準」、「ぬるめ」、「あつめ」のうちから、適宜、選択するようにしてもよい。
また、この第1実施形態では、冷凍食品である冷凍弁当の温度がマイクロ波加熱温度(例えば、80℃)になったか否かの判別のみで、第1条件を満たすか否かを判別していたが、冷凍弁当の温度がマイクロ波加熱温度(例えば、80℃)になった上で、そのマイクロ波加熱温度になった状態が予め定められた一定時間持続したときに、第1条件を満たすとしてもよい。こうすると、より確実かつ適切に、冷凍弁当等の冷凍食品を加熱することができる。
また、この第1実施形態では、冷凍弁当が調理目的温度(例えば、70℃)になった状態で、予め定められた一定時間、つまり、蒸気加熱時間が経過した場合に、第2の条件を満たしたと判別しているが、冷凍弁当が調理目的温度(例えば、70℃)になった否かのみで、第2の条件を満たしたか否かを判別してもよい。こうすると、制御が簡素になる。
また、この第1実施形態では、図6の(A)に示すように、冷凍食品調理モード選択部69にタッチして、冷凍食品調理モードを選択すると(図8のステップS1)、冷凍食品調理モード選択部69の表示が図6の(B)に示すように切り替わるようにしているが、冷凍食品調理モードを選択しても、冷凍食品調理モード選択部69の表示が図6の(B)に示すように切り替わることなく、図6の(C)に示すような画面に直接遷移し、加熱調理を行いながら所定の温度までの到達時間等によって、冷凍食品の種類を判別するようにしてもよい。また、冷凍食品の種類を判別せずに、所定の温度までの到達時間によって残り時間を算出してもよい。
また、上記第1実施形態および変形例では、上記第2条件を満たすためには、上記蒸気センサ53または温度センサ65が、冷凍食品の一例としての冷凍弁当の温度が調理目的温度になったことを検知することが必要であったが、必ずしも、調理目的温度になったことを検知しなくてもよい。
例えば、図示しない変形例の制御装置が、マイクロ波による加熱後、蒸気発生装置またはヒータを駆動し、調理目的温度を検出しないで、上記蒸気発生装置またはヒータが予め定められた駆動時間だけ駆動されたと判別したときに、第2条件を満たしたと判別して、上記蒸気発生装置またはヒータの駆動を停止するようにしてもよい。
上記駆動時間は、メモリに、上記冷凍食品調理モード選択部で選択された冷凍食品の種類に応じて、予め記憶されている。
この変形例の場合、調理目的温度になったか否かの判別をしないので、制御が簡単になる。
(第2実施形態)
この第2実施形態の加熱調理器の機械的構成は、第1実施形態の加熱調理器の機械的構成と同じなので、第1実施形態の図1~7を援用して、その説明を省略する。
この第2実施形態の加熱調理器の機械的構成は、第1実施形態の加熱調理器の機械的構成と同じなので、第1実施形態の図1~7を援用して、その説明を省略する。
図10および11は、この第2実施形態の加熱調理器の制御の要旨を示すフローチャートである。
図10および11において、ステップS1~S8の処理は、第1実施形態の図8および9におけるステップS1~S8の処理と全く同じあるので、図10および11のステップS1~S8については、重複を避けるために、図8および9のステップS1~S8の説明を援用する。
図10において、ステップS2で、冷凍食品の種類に応じて、マイクロ波加熱温度および調理目的温度を読み出した後、ステップS21に進んで、蒸気発生装置24を駆動して、ステップS22に進む。
尤も、蒸気発生装置24に代えて、上ヒータ20、中ヒータ21、下ヒータ22のうちの1つあるいは複数を駆動してもよい。
このように、まず、冷凍食品をスチーム加熱(またはヒータ加熱)で、その表面の氷を溶かして凍結状態を解消する。
ステップS22では、蒸気センサ53で間接的に冷凍弁当等の冷凍食品の温度を測定し、あるいは、温度センサ65で直接的に冷凍食品の温度を測定して、冷凍食品の温度が、表面の氷が溶解した温度になったか否かを判別し、否と判別したときは、このステップS22を繰り返す。
ステップS22で是と判別すると、第1実施形態と同様に、マグネトロンを駆動し(ステップS3)、冷凍食品がマイクロ波加熱温度になったか否かの判別をする(ステップS4)。
このように、冷凍食品の表面の氷を溶かした後、マイクロ波で加熱することで、冷凍食品に均等にマイクロ波が当たり、温度上昇時に加熱ムラが発生し難くなる。
また、冷凍食品のマイクロ波で加熱中は、蒸気センサ53もしくは温度センサ65を用いて、冷凍食品の仕上がりを検知するため、冷凍弁当だけでなく、焼きおにぎりのような軽負荷にも適用でき、様々な食品を手動ではなく自動で仕上がり良く温めることができる。
次に、第1実施形態と同様に、蒸気発生装置24の駆動をし(ステップS5)、冷凍食品が調理目的温度になったか否かを判別し(ステップS6)、冷凍食品が調理目的温度になった状態で、つまり、冷凍食品を調理目的温度に制御した状態で、蒸気加熱時間が経過したか否かを判別し(ステップS7)、その蒸気加熱時間が経過したと判別すると、蒸気発生装置24の駆動を停止し、排気ダンパ49および給気ダンパ51を開き、排気ファン47および給気ファン54を駆動し(ステップS8)、ステップS23に進む。
この第2の実施形態では、第2の条件は、冷凍食品が調理目的温度になり、かつ、冷凍食品が調理目的温度になった状態で、蒸気加熱時間が経過したということである。
尤も、第2の条件は、冷凍食品が調理目的温度になったということだけを満たすだけであってもよい。
ステップS23では、上ヒータ20、中ヒータ21、下ヒータ22のうちの1つあるいは複数を予め定められた一定時間だけ駆動する。
このように、スチーム加熱の後にヒータ加熱を行うことで、加熱室2内の蒸気をある程度乾燥できるため、加熱の終了後、冷凍食品を加熱室2から取り出すときに、冷凍食品の湿った感触を抑えることができる。
(第3実施形態)
この第3実施形態の加熱調理器の機械的構成は、第1実施形態の加熱調理器の機械的構成と同じなので、第1実施形態の図1~7を援用して、その説明を省略する。
この第3実施形態の加熱調理器の機械的構成は、第1実施形態の加熱調理器の機械的構成と同じなので、第1実施形態の図1~7を援用して、その説明を省略する。
図12および13は、この第3実施形態の加熱調理器の制御の要旨を示すフローチャートである。
図12および13において、ステップS1,S6の処理は、第1実施形態の図8および9におけるステップS1,S6の処理と全く同じあるので、図12および12のステップS1,S6については、重複を避けるために、図8および9のステップS1,S6の説明を援用する。
図12において、ステップS31で、第1実施形態の図8のステップS2と同様に、調理すべき冷凍食品の種類を選択し、その選択した冷凍食品の種類に応じた調理目的温度を読み出した後、ステップS32に進んで、蒸気発生装置24を駆動して、ステップS22に進む。
尤も、蒸気発生装置24に代えて、上ヒータ20、中ヒータ21、下ヒータ22のうちの1つあるいは複数を駆動してもよい。
このように、まず、冷凍食品をスチーム加熱(またはヒータ加熱)で、その表面の氷を溶かして凍結状態を解消する。
ステップS22では、第2実施形態の図10のステップS22と同様に、蒸気センサ53で間接的に冷凍弁当等の冷凍食品の温度を測定し、あるいは、温度センサ65で直接的に冷凍食品の温度を測定して、冷凍食品の温度が、表面の氷が溶解した温度になったか否かを判別し、否と判別したときは、このステップS22を繰り返す。この第3実施形態では、冷凍食品の温度が、表面の氷が溶解した温度になったと判定することは、第1の条件を満たしたと判定することになる。
ステップS22で是と判定すると、ステップS33に進んで、蒸気発生装置24の駆動を停止し、給気ダンパ49および排気ダンパ51を開き、排気ファン47および給気ファン54を駆動し、そして、マグネトロン4を駆動し、ステップS6に進む。
このステップS6では、第1実施形態と同様に、冷凍食品が調理目的温度になったか否かを判別し(ステップS6)、冷凍食品が調理目的温度になった状態で、つまり、マグネトロン4の駆動を制御して、冷凍食品を調理目的温度に制御した状態で、一定時間(冷凍食品の種類に応じて予め定められており、メモリに格納されている)が経過したか否かを判別し(ステップS34)、その一定時間が経過したと判別すると、マグネトロン4の駆動を停止する(ステップS35)。
この第3の実施形態では、第2の条件は、冷凍食品が調理目的温度になり、かつ、冷凍食品が調理目的温度になった状態で、一定時間が経過したということである。
尤も、第2の条件は、冷凍食品が調理目的温度になったということだけであってもよい。
この第3実施形態では、まず、冷凍食品の表面の氷をスチーム加熱もしくはヒータ加熱で溶かして凍結状態を解消し、その後、マイクロ波加熱することで、冷凍食品に均等にマイクロ波を当てることができて、冷凍食品の温度上昇時に加熱ムラを発生し難くできる。
また、マイクロ波による加熱中は、蒸気センサ53もしくは赤外線センサ等の温度センサ65を用いて、冷凍食品の仕上がりを検知するため、冷凍弁当のような重負荷だけでなく、焼きおにぎりのような軽負荷にも適用でき、様々な食品を手動ではなく自動で仕上がり良く温めることができる。
この発明および実施形態を纏めると、次のようになる。
この発明の加熱調理器は、
本体ケーシング1と、
この本体ケーシング1内に設けられると共に、被加熱物が収容される加熱室2と、
上記加熱室2内の上記被加熱物を加熱するためのマイクロ波を発生するマイクロ波発生部4と、
上記加熱室2内の上記被加熱物を加熱するための蒸気を発生する蒸気発生装置24と、上記被加熱物を加熱するためのヒータ20,21,22とのうちの少なくとも一方と、
上記加熱室2内の上記被加熱物の温度を検知するセンサ53,65と、
冷凍食品調理モードを選択する冷凍食品調理モード選択部69と、
上記冷凍食品調理モード選択部69によって冷凍食品調理モードが選択されると、上記マイクロ波発生部4を駆動し、上記センサ53,65が、上記被加熱物としての冷凍食品の温度が予め定められたマイクロ波加熱温度になったことを検知したということを含む第1条件を満たすと、上記マイクロ波発生部4の駆動を停止し、上記蒸気発生装置24またはヒータ20,21,22を、上記センサ53,65が、上記冷凍食品の温度が予め定められた調理目的温度になったことを検知したということ、または、上記蒸気発生装置24もしくはヒータ20,21,22が予め定められた駆動時間だけ駆動されたということを含む第2条件を満たすまで、駆動をするように制御する制御装置100と
を備えることを特徴としている。
本体ケーシング1と、
この本体ケーシング1内に設けられると共に、被加熱物が収容される加熱室2と、
上記加熱室2内の上記被加熱物を加熱するためのマイクロ波を発生するマイクロ波発生部4と、
上記加熱室2内の上記被加熱物を加熱するための蒸気を発生する蒸気発生装置24と、上記被加熱物を加熱するためのヒータ20,21,22とのうちの少なくとも一方と、
上記加熱室2内の上記被加熱物の温度を検知するセンサ53,65と、
冷凍食品調理モードを選択する冷凍食品調理モード選択部69と、
上記冷凍食品調理モード選択部69によって冷凍食品調理モードが選択されると、上記マイクロ波発生部4を駆動し、上記センサ53,65が、上記被加熱物としての冷凍食品の温度が予め定められたマイクロ波加熱温度になったことを検知したということを含む第1条件を満たすと、上記マイクロ波発生部4の駆動を停止し、上記蒸気発生装置24またはヒータ20,21,22を、上記センサ53,65が、上記冷凍食品の温度が予め定められた調理目的温度になったことを検知したということ、または、上記蒸気発生装置24もしくはヒータ20,21,22が予め定められた駆動時間だけ駆動されたということを含む第2条件を満たすまで、駆動をするように制御する制御装置100と
を備えることを特徴としている。
上記構成の加熱調理器によれば、上記冷凍食品調理モード選択部69によって冷凍食品調理モードが選択できて、この冷凍食品調理モードが選択されると、上記制御装置100は、上記マイクロ波発生部4を駆動し、上記センサ53,65が、上記被加熱物としての冷凍食品の温度が予め定められたマイクロ波加熱温度になったことを検知したということを含む第1条件を満たすと、上記マイクロ波発生部4の駆動を停止し、上記蒸気発生装置24またはヒータ20,21,22を、上記センサ53,65が、上記冷凍食品の温度が予め定められた調理目的温度になったことを検知したということ、または、上記蒸気発生装置24もしくはヒータ20,21,22が予め定められた駆動時間だけ駆動されたということを含む第2条件を満たすまで、駆動するので、種々の大きさの冷凍食品、あるいは、種々の食材を含む冷凍食品を、解凍のみならず、解凍後、直ちに、食するに適した目標温度に加熱することができる。
また、上記冷凍食品を上記マイクロ波発生部4からのマイクロ波で加熱した後、蒸気発生装置24からの蒸気で加熱すると、マイクロ波加熱で温度ムラのある冷凍食品の温度ムラを解消して、冷凍食品の温度を平滑化できる。
また、このように、上記加熱室2に蒸気を入れて冷凍食品を蒸気で加熱すると、マイクロ波加熱で乾燥した例えば冷凍弁当などの食品表面を加湿する効果がある。
1実施形態では、
上記冷凍食品調理モード選択部69は、冷凍食品の種類を選択可能になっており、
上記制御装置100は、冷凍食品の種類に応じて予め定められたマイクロ波加熱温度および調理目的温度を記憶しているメモリ101から、上記冷凍食品調理モード選択部69で選択された冷凍食品の種類に応じたマイクロ波加熱温度と、上記調理目的温度または上記蒸気発生装置もしくはヒータの予め定められた駆動時間とを読み出して、上記マイクロ波発生部4と、上記蒸気発生装置24またはヒータ20,21,22とを制御する。
上記冷凍食品調理モード選択部69は、冷凍食品の種類を選択可能になっており、
上記制御装置100は、冷凍食品の種類に応じて予め定められたマイクロ波加熱温度および調理目的温度を記憶しているメモリ101から、上記冷凍食品調理モード選択部69で選択された冷凍食品の種類に応じたマイクロ波加熱温度と、上記調理目的温度または上記蒸気発生装置もしくはヒータの予め定められた駆動時間とを読み出して、上記マイクロ波発生部4と、上記蒸気発生装置24またはヒータ20,21,22とを制御する。
上記実施形態によれば、上記冷凍食品調理モード選択部69によって、冷凍食品の種類を選択すると、この冷凍食品調理モード選択部69で選択された冷凍食品の種類に応じたマイクロ波加熱温度および調理目的温度または駆動時間をメモリ101から読み出して、制御装置100が、その冷凍食品がマイクロ波加熱温度および調理目的温度または駆動時間になるように、マイクロ波発生部4と蒸気発生装置24を自動的に制御しているので、例えば、冷凍おにぎりなどの小さな冷凍食品と冷凍弁当や冷凍総菜セットなどの大きな冷凍食品との加熱制御を夫々最適にして、種々の大きさの冷凍食品、あるいは、種々の食材を含む冷凍食品を、解凍のみならず、解凍後、直ちに、ムラなく食するに適した目標温度に加熱することができる。
1実施形態では、
上記第2条件は、上記冷凍食品の温度を上記調理目的温度で一定時間持続することを含む。
上記第2条件は、上記冷凍食品の温度を上記調理目的温度で一定時間持続することを含む。
上記実施形態によれば、冷凍食品が調理目的温度になった状態で、予め定められた一定時間持続するので、美味しい調理を行うことができる。
1実施形態では、
上記制御装置100は、上記マイクロ波発生部4の駆動に先だって、上記蒸気発生装置24または上記ヒータ20,21,22を駆動して、上記冷凍食品の表面を溶解させる。
上記制御装置100は、上記マイクロ波発生部4の駆動に先だって、上記蒸気発生装置24または上記ヒータ20,21,22を駆動して、上記冷凍食品の表面を溶解させる。
上記実施形態によれば、上記蒸気発生装置24または上記ヒータ20,21,22で冷凍食品の表面の氷を溶かした後、マイクロ波で加熱するので、冷凍食品に均等にマイクロ波を当てることができて、温度上昇時に加熱ムラが発生し難くなる。
1実施形態では、
上記センサは、蒸気センサ53であり、
上記制御装置100は、上記蒸気センサ53の検出した蒸気量によって、上記第1条件に含まれるマイクロ波加熱温度になったか否かや、上記第2条件に含まれる調理目的温度になったか否かを判別する。
上記センサは、蒸気センサ53であり、
上記制御装置100は、上記蒸気センサ53の検出した蒸気量によって、上記第1条件に含まれるマイクロ波加熱温度になったか否かや、上記第2条件に含まれる調理目的温度になったか否かを判別する。
上記実施形態によれば、上記蒸気センサ53の検出した蒸気量によって、冷凍食品の温度を間接的に検出しているので、特に、蒸気を使用する加熱調理器において、温度を直接的に検出する赤外線センサ等の温度センサ65を省くことも可能で、便利である。
1実施形態は、
上記蒸気発生装置24を備え、
上記制御装置100は、上記マイクロ波発生部4を駆動していた時間に応じて、上記蒸気発生装置24を駆動する時間を定めている。
上記蒸気発生装置24を備え、
上記制御装置100は、上記マイクロ波発生部4を駆動していた時間に応じて、上記蒸気発生装置24を駆動する時間を定めている。
上記実施形態によれば、上記マイクロ波発生部4を駆動していた時間に応じて、上記蒸気発生装置24を駆動する時間を定めているので、冷凍食品の量や比熱の高さに、適切に対応して、加熱することができる。
1実施形態は、
上記蒸気発生装置24および上記ヒータ20,21,22を備え、
上記制御装置100は、上記マイクロ波発生部4の駆動を停止した後、上記蒸気発生装置24を駆動し、その後、上記蒸気発生装置24の駆動を停止して、上記ヒータ20,21,22を駆動する。
上記蒸気発生装置24および上記ヒータ20,21,22を備え、
上記制御装置100は、上記マイクロ波発生部4の駆動を停止した後、上記蒸気発生装置24を駆動し、その後、上記蒸気発生装置24の駆動を停止して、上記ヒータ20,21,22を駆動する。
上記実施形態によれば、スチーム加熱の後にヒータ20,21,22加熱を行うことで、加熱室22内の蒸気をある程度乾燥できるため、加熱の終了後、冷凍食品を加熱室22から取り出すときに、冷凍食品の湿った感触を抑えることができる。
別の側面では、この発明は、
本体ケーシング1と、
この本体ケーシング1内に設けられると共に、被加熱物が収容される加熱室2と、
上記加熱室2内の上記被加熱物を加熱するためのマイクロ波を発生するマイクロ波発生部4と、
上記加熱室2内の上記被加熱物を加熱するための蒸気を発生する蒸気発生装置24と、上記被加熱物を加熱するためのヒータ20,21,22とのうちの少なくとも一方と、
上記加熱室2内の上記被加熱物の温度を検知するセンサ53,65と、
冷凍食品調理モードを選択する冷凍食品調理モード選択部69と、
上記冷凍食品調理モード選択部69によって冷凍食品調理モードが選択されると、上記蒸気発生装置24またはヒータ20,21,22を駆動し、上記センサ53,65が、上記被加熱物としての冷凍食品の表面が溶解した温度なったことを検知したということを含む第1条件を満たすと、上記蒸気発生装置24またはヒータ20,21,22の駆動を停止し、上記マイクロ波発生部4を、上記センサ53が、上記冷凍食品の温度が予め定められた調理目的温度になったことを検知したということを含む第2条件を満たすまで、駆動をするように制御する制御装置100と
を備える。
本体ケーシング1と、
この本体ケーシング1内に設けられると共に、被加熱物が収容される加熱室2と、
上記加熱室2内の上記被加熱物を加熱するためのマイクロ波を発生するマイクロ波発生部4と、
上記加熱室2内の上記被加熱物を加熱するための蒸気を発生する蒸気発生装置24と、上記被加熱物を加熱するためのヒータ20,21,22とのうちの少なくとも一方と、
上記加熱室2内の上記被加熱物の温度を検知するセンサ53,65と、
冷凍食品調理モードを選択する冷凍食品調理モード選択部69と、
上記冷凍食品調理モード選択部69によって冷凍食品調理モードが選択されると、上記蒸気発生装置24またはヒータ20,21,22を駆動し、上記センサ53,65が、上記被加熱物としての冷凍食品の表面が溶解した温度なったことを検知したということを含む第1条件を満たすと、上記蒸気発生装置24またはヒータ20,21,22の駆動を停止し、上記マイクロ波発生部4を、上記センサ53が、上記冷凍食品の温度が予め定められた調理目的温度になったことを検知したということを含む第2条件を満たすまで、駆動をするように制御する制御装置100と
を備える。
この発明によれば、冷凍食品の表面の氷をスチーム加熱もしくはヒータ加熱で溶かして、冷凍食品の表面の凍結状態を解消し、その後、マイク波により加熱するので、冷凍食品に均等にマイクロ波を当てることができて、冷凍食品の温度上昇時に加熱ムラを発生し難くできる。
また、マイクロ波による加熱中は、例えば、蒸気センサ53もしくは赤外線センサ等の温度センサ65を用いて、食品の仕上がりを検知するため、冷凍弁当等の重負荷だけでなく、焼きおにぎりのような軽負荷にも対応でき、様々な食品を自動で仕上がり良く温めることができる。
第1~第3実施形態および変形例で述べた構成要素は、適宜、組み合わせてもよく、また、適宜、選択、置換、あるいは、削除してもよいのは、勿論である。
1 本体ケーシング
2 加熱室
4 マイクロ波発生部
20,21,22 ヒータ
24 蒸気発生装置
53,65 センサ
69 冷凍食品調理モード選択部
100 制御装置
101 メモリ
53 蒸気センサ
65 温度センサ
2 加熱室
4 マイクロ波発生部
20,21,22 ヒータ
24 蒸気発生装置
53,65 センサ
69 冷凍食品調理モード選択部
100 制御装置
101 メモリ
53 蒸気センサ
65 温度センサ
Claims (5)
- 本体ケーシング(1)と、
この本体ケーシング(1)内に設けられると共に、被加熱物が収容される加熱室(2)と、
上記加熱室(2)内の上記被加熱物を加熱するためのマイクロ波を発生するマイクロ波発生部(4)と、
上記加熱室(2)内の上記被加熱物を加熱するための蒸気を発生する蒸気発生装置(24)と、上記被加熱物を加熱するためのヒータ(20,21,22)とのうちの少なくとも一方と、
上記加熱室(2)内の上記被加熱物の温度を検知するセンサ(53,65)と、
冷凍食品調理モードを選択する冷凍食品調理モード選択部(69)と、
上記冷凍食品調理モード選択部(69)によって冷凍食品調理モードが選択されると、上記マイクロ波発生部(4)を駆動し、上記センサ(53,65)が、上記被加熱物としての冷凍食品の温度が予め定められたマイクロ波加熱温度になったことを検知したということを含む第1条件を満たすと、上記マイクロ波発生部(4)の駆動を停止し、上記蒸気発生装置(24)またはヒータ(20,21,22)を、上記センサ(53,65)が、上記冷凍食品の温度が予め定められた調理目的温度になったことを検知したということ、または、上記蒸気発生装置(24)もしくはヒータ(20,21,22)が予め定められた駆動時間だけ駆動されたということを含む第2条件を満たすまで、駆動するように制御する制御装置(100)と
を備えることを特徴とする加熱調理器。 - 請求項1に記載の加熱調理器において、
上記冷凍食品調理モード選択部(69)は、冷凍食品の種類を選択可能になっており、
上記制御装置(100)は、冷凍食品の種類に応じて予め定められたマイクロ波加熱温度および調理目的温度を記憶しているメモリ(101)から、上記冷凍食品調理モード選択部(69)で選択された冷凍食品の種類に応じたマイクロ波加熱温度と、上記調理目的温度または上記蒸気発生装置(24)もしくはヒータ(20,21,22)の予め定められた駆動時間とを読み出して、上記マイクロ波発生部(4)と、上記蒸気発生装置(24)またはヒータ(20,21,22)とを制御することを特徴とする加熱調理器。 - 請求項1または2に記載の加熱調理器において、
上記制御装置(100)は、上記マイクロ波発生部(4)の駆動に先だって、上記蒸気発生装置(24)または上記ヒータ(20,21,22)を駆動して、上記冷凍食品の表面を溶解させることを特徴とする加熱調理器。 - 請求項1から3のいずれか1つに記載の加熱調理器において、
上記センサは、蒸気センサ(53)であり、
上記制御装置(100)は、上記蒸気センサ(53)の検出した蒸気量によって、上記第1条件に含まれるマイクロ波加熱温度になったか否かや、上記第2条件に含まれる調理目的温度になったか否かを判別することを特徴とする加熱調理器。 - 請求項1から4のいずれか1つに記載の加熱調理器において、
上記蒸気発生装置(24)および上記ヒータ(20,21,22)を備え、
上記制御装置は、上記マイクロ波発生部(4)の駆動を停止した後、上記蒸気発生装置(24)を駆動し、その後、上記蒸気発生装置(24)の駆動を停止して、上記ヒータ(20,21,22)を駆動することを特徴とする加熱調理器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014123340A JP2016003798A (ja) | 2014-06-16 | 2014-06-16 | 加熱調理器 |
JP2014-123340 | 2014-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015194440A1 true WO2015194440A1 (ja) | 2015-12-23 |
Family
ID=54935427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066783 WO2015194440A1 (ja) | 2014-06-16 | 2015-06-10 | 加熱調理器 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016003798A (ja) |
WO (1) | WO2015194440A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6681595B2 (ja) * | 2017-02-24 | 2020-04-15 | パナソニックIpマネジメント株式会社 | 加熱調理器および加熱調理器における再加熱方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH094856A (ja) * | 1995-06-22 | 1997-01-10 | Matsushita Electric Ind Co Ltd | 高周波加熱装置 |
JP2003269728A (ja) * | 2002-03-12 | 2003-09-25 | Matsushita Electric Ind Co Ltd | 蒸気発生機能付き高周波加熱装置の制御方法 |
JP2004286439A (ja) * | 2004-06-02 | 2004-10-14 | Matsushita Electric Ind Co Ltd | 高周波加熱装置 |
JP2005143353A (ja) * | 2003-11-13 | 2005-06-09 | Matsushita Electric Ind Co Ltd | 解凍方法 |
JP2006145203A (ja) * | 2006-02-17 | 2006-06-08 | Matsushita Electric Ind Co Ltd | マイクロ波加熱装置 |
JP2007024388A (ja) * | 2005-07-15 | 2007-02-01 | Matsushita Electric Ind Co Ltd | 加熱調理装置 |
EP1767860A1 (en) * | 2005-09-21 | 2007-03-28 | Whirlpool Corporation | Method of operating an oven having heating system, microwave system and steam system |
JP2009127933A (ja) * | 2007-11-22 | 2009-06-11 | Toshiba Corp | 加熱調理器 |
JP2009150589A (ja) * | 2007-12-19 | 2009-07-09 | Panasonic Corp | 加熱調理器 |
JP2014048012A (ja) * | 2012-09-03 | 2014-03-17 | Mitsubishi Electric Corp | 高周波加熱装置 |
-
2014
- 2014-06-16 JP JP2014123340A patent/JP2016003798A/ja active Pending
-
2015
- 2015-06-10 WO PCT/JP2015/066783 patent/WO2015194440A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH094856A (ja) * | 1995-06-22 | 1997-01-10 | Matsushita Electric Ind Co Ltd | 高周波加熱装置 |
JP2003269728A (ja) * | 2002-03-12 | 2003-09-25 | Matsushita Electric Ind Co Ltd | 蒸気発生機能付き高周波加熱装置の制御方法 |
JP2005143353A (ja) * | 2003-11-13 | 2005-06-09 | Matsushita Electric Ind Co Ltd | 解凍方法 |
JP2004286439A (ja) * | 2004-06-02 | 2004-10-14 | Matsushita Electric Ind Co Ltd | 高周波加熱装置 |
JP2007024388A (ja) * | 2005-07-15 | 2007-02-01 | Matsushita Electric Ind Co Ltd | 加熱調理装置 |
EP1767860A1 (en) * | 2005-09-21 | 2007-03-28 | Whirlpool Corporation | Method of operating an oven having heating system, microwave system and steam system |
JP2006145203A (ja) * | 2006-02-17 | 2006-06-08 | Matsushita Electric Ind Co Ltd | マイクロ波加熱装置 |
JP2009127933A (ja) * | 2007-11-22 | 2009-06-11 | Toshiba Corp | 加熱調理器 |
JP2009150589A (ja) * | 2007-12-19 | 2009-07-09 | Panasonic Corp | 加熱調理器 |
JP2014048012A (ja) * | 2012-09-03 | 2014-03-17 | Mitsubishi Electric Corp | 高周波加熱装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2016003798A (ja) | 2016-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6815644B1 (en) | Multirack cooking in speedcook ovens | |
JP6091356B2 (ja) | 炊飯器 | |
WO2015194440A1 (ja) | 加熱調理器 | |
JP5052988B2 (ja) | 蒸気調理器 | |
JP6267309B2 (ja) | 蒸気調理器 | |
AU2021303000B2 (en) | Cooking apparatus control method | |
JP2010112634A (ja) | 加熱調理器 | |
JP2017067325A (ja) | 加熱調理器 | |
JP6314050B2 (ja) | 加熱調理器 | |
JP6043414B2 (ja) | 蒸気調理器 | |
JP2021032545A (ja) | 加熱調理器 | |
JP5797729B2 (ja) | 蒸気調理器 | |
WO2024195150A1 (ja) | 加熱調理器 | |
JP7303096B2 (ja) | 加熱調理器 | |
JP2009041818A (ja) | 蒸気調理器 | |
JP5518611B2 (ja) | 加熱調理器 | |
JP4432524B2 (ja) | 加熱装置 | |
JP6335670B2 (ja) | 加熱調理器 | |
JP4987635B2 (ja) | 蒸気調理器 | |
JP6778017B2 (ja) | 加熱調理器 | |
JP2017211107A (ja) | 加熱調理器 | |
JP6781575B2 (ja) | 調理器 | |
JP6685177B2 (ja) | 炊飯器 | |
JP2016205655A (ja) | 加熱調理器 | |
JP5486648B2 (ja) | 蒸気調理器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15809638 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15809638 Country of ref document: EP Kind code of ref document: A1 |