WO2015194272A1 - 刃先回転式ミーリング工具及びこれを用いた切削方法 - Google Patents

刃先回転式ミーリング工具及びこれを用いた切削方法 Download PDF

Info

Publication number
WO2015194272A1
WO2015194272A1 PCT/JP2015/063079 JP2015063079W WO2015194272A1 WO 2015194272 A1 WO2015194272 A1 WO 2015194272A1 JP 2015063079 W JP2015063079 W JP 2015063079W WO 2015194272 A1 WO2015194272 A1 WO 2015194272A1
Authority
WO
WIPO (PCT)
Prior art keywords
insert
tool
cutting
axis
cutting edge
Prior art date
Application number
PCT/JP2015/063079
Other languages
English (en)
French (fr)
Inventor
英二 社本
鈴木 教和
侑 長谷川
堀池 伸和
石川 陽一
Original Assignee
国立大学法人名古屋大学
三菱重工航空エンジン株式会社
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学, 三菱重工航空エンジン株式会社, 三菱マテリアル株式会社 filed Critical 国立大学法人名古屋大学
Priority to US15/319,171 priority Critical patent/US10300539B2/en
Priority to CN201580031995.0A priority patent/CN106573318B/zh
Priority to KR1020167035774A priority patent/KR102251915B1/ko
Priority to EP15810491.9A priority patent/EP3159087A4/en
Publication of WO2015194272A1 publication Critical patent/WO2015194272A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/109Shank-type cutters, i.e. with an integral shaft with removable cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/1009Ball nose end mills
    • B23C5/1027Ball nose end mills with one or more removable cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/22Securing arrangements for bits or teeth or cutting inserts
    • B23C5/24Securing arrangements for bits or teeth or cutting inserts adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/22Securing arrangements for bits or teeth or cutting inserts
    • B23C5/2239Securing arrangements for bits or teeth or cutting inserts with cutting inserts clamped by a clamping member acting almost perpendicular on the cutting face
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/04Overall shape
    • B23C2200/045Round
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/20Top or side views of the cutting edge
    • B23C2200/203Curved cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • B23C2210/0421Cutting angles negative
    • B23C2210/0435Cutting angles negative radial rake angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • B23C2210/0442Cutting angles positive
    • B23C2210/045Cutting angles positive axial rake angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • B23C2210/0442Cutting angles positive
    • B23C2210/0457Cutting angles positive radial rake angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/16Fixation of inserts or cutting bits in the tool
    • B23C2210/163Indexing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/20Number of cutting edges
    • B23C2210/202Number of cutting edges three
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/50Cutting inserts
    • B23C2210/506Cutting inserts mounted so as to be able to rotate freely

Definitions

  • the present invention provides a cutting edge rotating milling in which a disc-shaped cutting insert is rotatably mounted around an insert axis on an insert mounting seat formed on a tip outer periphery of a tool body that rotates about a tool axis.
  • the present invention relates to a tool and a cutting method for cutting a work material using the tool.
  • a cutting edge rotating milling tool used for milling (rolling) using a difficult-to-cut material such as a heat-resistant alloy as a work material
  • a difficult-to-cut material such as a heat-resistant alloy as a work material
  • Patent Documents 1 and 2 A cutting insert having a disk shape and a cutting edge on the outer peripheral edge is mounted on the insert mounting seat formed on the outer periphery of the tip of the tool body that rotates about the tool axis so as to be rotatable about the insert axis.
  • the front surface is arranged to face the front in the tool rotation direction along the tool axis
  • the back surface is a rake surface. It arrange
  • the force applied to the cutting edge when the cutting insert cuts into the work material is applied to the insert mounting seat.
  • the cutting insert is driven to rotate around the insert axis. Thereby, it is suppressed that only the predetermined part of a cutting blade is continuously used for cutting, and it prevents the fall of the partial cutting edge of this cutting blade, a blade tip defect, etc.
  • the conventional cutting edge rotating milling tool has the following problems.
  • the rotational axis of the cutting insert or the like by the force received when the cutting edge of the cutting insert mounted on the insert mounting seat cuts into the work material (Patent) There is a possibility that the shaft portion 32 and the ball 8 in Document 1 and the support pin 9) in Patent Document 2 may be deformed, worn, or damaged. In particular, such problems are likely to occur in heavy cutting of difficult-to-cut materials.
  • this type of cutting edge rotating milling tool there is room for improvement in stably rotating the cutting insert mounted on the insert mounting seat around the insert axis.
  • the present invention has been made in view of such circumstances, and is capable of preventing deformation, wear, breakage, and the like of a rotating support such as a rotating shaft of a cutting insert and mounted on an insert mounting seat. It is possible to stably follow and rotate the insert around the insert axis, thereby stably increasing the machining accuracy of the cutting and extending the tool life, and to provide a cutting method using the same. It is an object.
  • the present invention proposes the following means. That is, the present invention provides a cutting edge rotation in which a disc-shaped cutting insert is rotatably mounted around an insert axis on an insert mounting seat formed on the outer periphery of a tip of a tool body that rotates about a tool axis.
  • the said cutting insert has the front and back which cross
  • the surface is the said tool among the said front and back surfaces It is arranged so as to face the front in the tool rotation direction along the axis, and the back surface is arranged so as to face the rear in the tool rotation direction, and is seated on the insert mounting seat.
  • a circular cutting edge extending around the insert axis is formed, and a tool tip edge along the tool axis direction of the cutting edge rotates in a tool circumferential direction around the tool axis.
  • a virtual plane obtained from a trajectory obtained by moving a tangent line passing through the tool tip edge in the virtual circle formed in this manner toward the tool base end side along the tool axis direction in parallel with the tool axis is defined as a reference plane.
  • an angle ARt at which the intersecting line of the reference plane and the cutting edge virtual plane including the cutting edge is inclined with respect to the tool axis projected onto the reference plane is ⁇ 30 ° to ⁇ 60. It extends within the range of ° and passes through the tool tip edge toward the outside of the tool radial direction with respect to a predetermined tool radial direction passing through the tool tip edge in the tool radial direction perpendicular to the tool axis.
  • the angle RR at which the cutting edge tangent of the cutting edge is inclined is in the range of ⁇ 30 ° to ⁇ 75 °.
  • the present invention provides a cutting edge rotating type in which a disc-shaped cutting insert is rotatably mounted around an insert axis on an insert mounting seat formed on the outer periphery of a tip of a tool body that rotates about a tool axis.
  • the said cutting insert has the front and back which cross
  • the surface is the said tool axis line among the said front and back It is arranged so as to face the front in the tool rotation direction along the circumference, and the back surface is arranged so as to face the rear in the tool rotation direction, and is seated on the insert mounting seat.
  • a circular cutting edge extending along the axis is formed, and a tool tip edge along the tool axis direction of the cutting edge rotates in a tool circumferential direction around the tool axis.
  • an angle ARt at which the intersecting line of the reference plane and the cutting edge virtual plane including the cutting edge is inclined with respect to the tool axis projected onto the reference plane is ⁇ 30 ° to ⁇ 60 °.
  • the cutting is extended to the outside of the tool radial direction through the tool tip edge with respect to a predetermined tool radial direction passing through the tool tip edge in the tool radial direction perpendicular to the tool axis.
  • the angle RR at which the blade edge tangent is inclined is in the range of ⁇ 20 ° to 30 °.
  • the present invention provides a cutting edge rotating type in which a disc-shaped cutting insert is rotatably mounted around an insert axis on an insert mounting seat formed on the outer periphery of a tip of a tool body that rotates about a tool axis.
  • a cutting method for cutting a work material using a milling tool wherein the cutting insert has front and back surfaces intersecting the insert axis, and outer peripheral surfaces connecting peripheral edges of the front and back surfaces, Among the front and back surfaces, the front surface is disposed so as to face the front in the tool rotation direction along the tool axis, the back surface is disposed so as to face the rear in the tool rotation direction, and is seated on the insert mounting seat.
  • the peripheral edge of the surface is formed with a circular cutting edge extending around the insert axis, and the cutting radius of the insert is perpendicular to the insert axis.
  • the intersection of the predetermined insert radial direction passing through the point of application of the concentrated load and the cutting edge is the cutting representative point.
  • the main component force direction at the cutting representative point out of the force received by the cutting insert from the work material during the cutting process which is a direction along the line and is a direction toward the rear of the tool rotation direction.
  • the angle of the insert axis is inclined, and setting within a range of ⁇ 20 °.
  • the direction of the insert axis of the cutting insert attached to the insert mounting seat of the tool body is the first perpendicular to the tangent of the cutting edge passing through the cutting representative point.
  • the main component force of the force (the cutting force or cutting resistance, including the component of the cutting edge force or edge force) received when the cutting edge of the cutting insert cuts into the work material Since it is set to be parallel to the direction of the resultant force (synthetic cutting force) with the back component force, the rotary shaft located on the insert axis of the cutting insert and the cutting insert can be rotated from the outside in the insert radial direction.
  • the rotary support such as a radial bearing that is supported by the bearing is pressed by the resultant force from the insert radial direction (that is, from the shearing direction of the rotary support such as the rotary shaft). While being suppressed, the resultant force, it is possible to efficiently escape to the insert mounting seat via the rear surface of the cutting insert. Thereby, deformation
  • “Preventing the generation of excessive friction torque” means that, for example, when the cutting insert is rotatably supported by a rotary support body such as a radial bearing from the outside in the insert radial direction, the friction torque becomes too large and rotates. It means preventing the phenomenon that becomes difficult. In other words, the direction of the resultant force acting from the work material at the time of cutting with respect to the cutting representative point on the cutting edge, which is determined according to the desired cutting process (predetermined cutting conditions, etc.) by the cutting edge rotating milling tool. By determining the inclination of the insert axis in advance so as to be parallel to each other, the load on the rotary support of the cutting insert can be stably and significantly reduced.
  • the “cutting representative points” in this specification will be described.
  • the force received when the cutting edge of the cutting insert attached to the tool body cuts into the work material is distributed over the entire area where the cutting insert comes into contact with the work material, including the outflowing chips.
  • Load distributed load
  • the distributed load is concentrated load based on the force and moment that the cutting insert receives from such distributed load (moment viewed from the center of the insert)
  • the intersection of a predetermined insert radial direction passing through the concentrated load application point (a point corresponding to the center of gravity of the distributed load) and the cutting edge is referred to as a “cutting representative point” in this specification.
  • the cutting representative point is the point closest to the average point of action of the cutting force during the cutting process among the cutting edges.
  • the cutting representative point is located on the cutting edge of the cutting insert. However, even when the cutting insert rotates following the insert axis, the cutting representative point does not rotate with the cutting insert, and the relative position to the tool does not change.
  • the “instantaneous cutting direction at the cutting representative point” is the direction of the relative instantaneous speed between the tool and the work material at the cutting representative point, and is rotated and moved mainly with the rotation of the tool. To do. Further, “in the plane of the first imaginary plane, the direction in which the insert axis extends is set parallel to the direction of the resultant force of the main component force and the back component force, or a predetermined minute angle is set.
  • the first virtual It means that the angle at which the insert axis is inclined with respect to the direction of the resultant force is within a range of ⁇ 20 ° within a plane surface (as viewed from the tangential direction of the cutting edge passing through the cutting representative point). That is, the angle formed between the two straight lines of the insert axis and the direction of the resultant force is within a range of ⁇ 20 °, and this is set as “set in parallel or at a predetermined minute angle”. Represents.
  • the angle is ⁇ 10 °, and more preferably, the angle is ⁇ 5 °, and when the angle is 0 °, the insert axis is parallel to the direction of the resultant force. Yes (set in parallel).
  • the angle at which the insert axis is inclined with respect to the direction of the resultant force is within a range of ⁇ 20 ° means that the angle formed between the direction of the resultant force and the insert axis is 20 ° or less. It points to something.
  • the angle at which the insert axis is inclined with respect to the direction of the resultant force is within a range of ⁇ 10 ° means that the angle formed between the direction of the resultant force and the insert axis is 10 ° or less.
  • the angle at which the insert axis is inclined with respect to the direction of the resultant force is within a range of ⁇ 5 ° means that the angle formed between the direction of the resultant force and the insert axis is 5 ° or less. Point to.
  • the direction in which the insert axis extends with respect to the direction of the resultant force is not limited to “parallel”, and a slight angle range is provided for the following reason. That is, the direction of the resultant force may vary depending on, for example, the rake face shape of the cutting insert, the cutting edge processing and wear state of the cutting edge, the friction coefficient of the work material, cutting conditions (cutting, feeding, etc.), and so on. Since it is difficult to set the direction in which the insert axis extends in parallel to the direction of the resultant force, the range in which the effect of the present invention can be sufficiently obtained is as follows. It is set to make. "
  • the rotary support such as the rotary shaft of the cutting insert is difficult to be pressed from the insert radial direction, so the force that the cutting blade receives when the cutting insert cuts into the work material, The cutting insert is stably rotated around the insert axis with respect to the insert mounting seat.
  • the feed force other than the main component force and the back component force (the component force toward the tangential direction passing through the cutting representative point of the cutting edge, passing through the cutting representative point)
  • the friction force with the rotation mechanism such as the thrust slide bearing member is largely canceled to generate a driven rotation
  • the rotation of the cutting insert Since the force that presses the rotating support such as the shaft is sufficiently small compared to the force other than the feed force, it can be generally ignored as the force that presses the rotating support of the cutting insert from the insert radial direction.
  • the insert axis extends so as to be parallel to the direction of the resultant force in the plane of the first virtual plane.
  • the insert axis of the cutting insert since the direction in which the insert axis of the cutting insert extends and the direction of the resultant force are substantially parallel to each other, specifically, the insert axis gradually increases toward the front in the tool rotation direction. Inclined and extended toward the tip end in the axial direction (that is, inclined forward) or / and gradually inclined toward the outer side in the tool radial direction toward the front in the tool rotation direction. Will be. Therefore, it is possible to easily secure a space for disposing a rotation mechanism such as a thrust slide bearing member for rotating the cutting insert in the insert mounting seat.
  • a rotation mechanism such as a thrust slide bearing member for rotating the cutting insert in the insert mounting seat.
  • the insert axis extends in an inclined manner in this way, particularly in a multi-blade cutting edge milling tool in which a plurality of cutting inserts are mounted, between adjacent insert mounting seats around the tool axis. Even when the interval tends to be narrow, it is possible to easily secure a space for disposing the rotation mechanism.
  • the angle ARt is in the range of ⁇ 30 ° to ⁇ 60 °
  • the angle RR is in the range of ⁇ 30 ° to ⁇ 75 °.
  • the angle ARt referred to in this specification is an axial rake angle in consideration of an instantaneous cutting direction at the tool tip edge of a cutting edge used for cutting.
  • the angle ARt is ⁇ (minus)
  • it is a negative (negative) axial rake angle
  • it is + (plus)
  • it is positive (positive).
  • Axial rake angle is Specifically, when the angle ARt is ⁇ in FIG.
  • the cross line CL gradually extends forward in the tool rotation direction T from the tool distal end edge 5a toward the tool proximal end side.
  • the angle ARt is +, although not particularly shown, the cross line CL gradually extends toward the rear in the tool rotation direction T from the tool distal end edge 5a toward the tool proximal end side.
  • the angle ARt is an angle that does not consider the shape of the rake face adjacent to the cutting edge of the cutting insert, and thus can be said to be an apparent axial rake angle.
  • the reference plane is a virtual plane perpendicular to the instantaneous cutting direction at the tool tip edge 5a of the cutting edge 5.
  • the angle RR is a radial rake angle at the tool tip edge of a cutting edge used for cutting.
  • FIGS. 1 and 20 when the angle RR is ⁇ (minus) in the front view when the blade edge milling tools 1 and 31 are viewed from the distal end in the tool axis O direction toward the proximal end side, Negative (negative) radial rake angle. When + (plus), positive (positive) radial rake angle. Specifically, when the angle RR is ⁇ in FIG.
  • the blade edge tangent L2 gradually extends backward in the tool rotation direction T from the tool tip edge 5a toward the outside in the tool radial direction.
  • the angle ARt is outside the above range (greater than ⁇ 30 ° or less than ⁇ 60 °)
  • the direction of the insert axis and the direction of the resultant force in the plane of the first imaginary plane Are difficult to maintain so that they are parallel to each other, and the load (pressing force from the insert radial direction) on the rotating shaft (rotating support) of the cutting insert due to the resultant force becomes difficult to be suppressed, and the above-described effects are achieved. There is a risk that it may be difficult to obtain stably.
  • the angle RR is out of the above range, specifically, when the angle RR is larger than ⁇ 30 ° (and smaller than ⁇ 20 °), the cutting insert can be stably combined with the angle ARt. There is a possibility that it is difficult to obtain the effect of driven rotation. On the other hand, when the angle RR is smaller than ⁇ 75 °, the cutting force at the time of cutting may increase and chatter vibration may easily occur. Further, according to the cutting edge rotating milling tool of the present invention, the angle ARt is in the range of ⁇ 30 ° to ⁇ 60 °, and the angle RR is in the range of ⁇ 20 ° to 30 °.
  • the cutting insert Due to the force that the cutting blade receives when the cutting insert cuts into the work material, the cutting insert is more stably driven and rotated around the insert axis relative to the insert mounting seat. It becomes. Then, by attaching the cutting insert to the insert mounting seat so as to be in the range of the angle ARt and the range of the angle RR described above, the driven rotation of the cutting insert can be stably obtained, and rake face wear or the like is remarkable. Suppressed, it can be expected to extend the tool life.
  • the angle ARt when the angle ARt is outside the above range (greater than ⁇ 30 ° or less than ⁇ 60 °), the direction of the insert axis and the direction of the resultant force in the plane of the first imaginary plane Are difficult to maintain so that they are parallel to each other, and the load on the rotating shaft of the cutting insert (pressing force from the insert radial direction) due to the resultant force becomes difficult to be suppressed, and the above-described effects can be stably obtained. May be difficult. Further, when the angle RR is smaller than ⁇ 20 ° (and larger than ⁇ 30 °), there is a possibility that the effect of stably following and rotating the cutting insert by the combination with the angle ARt may not be obtained.
  • angle RR is greater than 30 °
  • chatter vibration is likely to occur during machining, and the outer peripheral surface (flank) of the cutting insert easily interferes with the work material, and the unit around the tool axis of the tool body
  • a movement amount that is, a feed amount fz
  • the clearance angle of the outer peripheral surface of the cutting insert is increased for the purpose of securing the feed amount fz, it may be difficult to sufficiently secure the blade angle of the cutting edge, and there is a concern that the blade tip may be lost.
  • the present invention it is possible to prevent deformation, wear, breakage, and the like of the rotary support such as the rotary shaft of the cutting insert, and to stably drive the cutting insert mounted on the insert mounting seat around the insert axis.
  • the cutting accuracy can be stably increased and the tool life can be extended.
  • the inside of the cutting edge along the insert radial direction gradually increases from the cutting edge toward the inside of the insert radial direction.
  • a tapered rake face inclined from the front surface along the insert axial direction toward the back surface side may be formed.
  • the apparent axial rake angle (angle AR) is negative.
  • the substantial axial rake angle is more positive (positive) than the apparent axial rake angle.
  • the sharpness of the cutting edge is stably enhanced.
  • the apparent radial rake angle (angle RR) is a negative (negative) mounting posture.
  • the substantial radial rake angle is set to be more positive (positive) than the apparent radial rake angle.
  • the sharpness of the cutting edge is stably increased.
  • the same effect as described above can be obtained when the insert axis gradually extends toward the front end side in the tool axis direction and the outside in the tool radial direction as it goes forward in the tool rotation direction.
  • the outer peripheral surface of the cutting insert is gradually moved outward in the radial direction of the insert from the cutting edge toward the back surface side along the insert axial direction. It is good also as the taper-shaped flank which inclines toward.
  • the blade angle of the cutting edge can be ensured to be large, and the blade tip can be prevented from being damaged.
  • the cutting insert has a through-hole extending on the insert axis and opening in the front and back surfaces, and having a smaller diameter than the through-hole,
  • a rotating shaft having a shaft portion that is inserted into a through-hole and attached to the insert mounting seat, and a head that is larger in diameter than the through-hole and disposed with a gap between the surface and the shaft.
  • a restricting portion capable of adjusting a position along the insert axial direction of the rotary shaft relative to the insert mounting seat, and capable of regulating movement of the rotary shaft relative to the insert mounting seat along the insert axial direction. It is good as well.
  • the cutting insert is driven to rotate relative to the insert mounting seat while being supported from the inside in the radial direction of the insert by the shaft portion of the rotation shaft (rotation support) inserted through the through-hole, and the head of the rotation shaft. It is secured by the part. And by adjusting the position along the insert axial direction of the rotary shaft relative to the insert mounting seat, the gap (clearance) between the head of the rotary shaft and the surface of the cutting insert can be set to a desired value, After this adjustment, the movement along the insert axis direction of the rotating shaft relative to the insert mounting seat can be restricted by the restricting portion.
  • the rotating shaft is set according to the wear (wear) state of the rotating mechanism. After moving forward and backward in the insert axial direction and finely adjusting the position, the position can be fixed, so that the driven rotation of the cutting insert relative to the insert mounting seat is more stably maintained.
  • the insert mounting seat may have an axisymmetric mounting surface around the insert axis.
  • the mounting surface of the insert mounting seat has an axisymmetric shape centered on the insert axis (center axis), specifically, this mounting surface is, for example, a circular plane perpendicular to the insert axis, insert axis A conical surface, a spherical surface, or a combination of these shapes with the center axis as the center. Accordingly, the resultant force transmitted from the cutting insert to the insert mounting seat can be distributed and received over the entire mounting surface of the insert mounting seat, and local wear and the like on the mounting surface can be prevented. Thus, the effects of the above can be obtained stably over a long period of time.
  • the cutting edge milling tool of the present invention and the cutting method using the same, it is possible to prevent deformation, wear, breakage, and the like of a rotating support such as a rotating shaft of a cutting insert, and to be mounted on an insert mounting seat.
  • the insert can be stably driven and rotated about the insert axis, whereby the machining accuracy of the cutting can be stably increased and the tool life can be extended.
  • FIG. 1 is a front view showing a cutting edge rotating milling tool according to a first embodiment of the present invention (a drawing in which a cutting edge rotating milling tool is viewed from the tool axis direction in a front end face direction). It is a side view which shows A arrow of the blade edge
  • FIG. 2 is a side sectional view showing a section EE of the cutting edge rotating milling tool of FIG. 1. It is a figure which expands and shows the principal part of FIG.
  • FIG. 9B It is a sectional side view (longitudinal sectional view) of the cutting insert of FIG. 9B. It is a figure which shows the various angles of the cutting insert with which the blade edge
  • the direction of the resultant force of the main component force and the back component force and the extending direction of the insert axis line are set substantially parallel within the plane of the first virtual plane perpendicular to the tangent line of the cutting edge passing through the cutting representative point. It is a figure explaining this.
  • FIG. 1 It is a perspective view explaining the 2nd virtual plane (processing surface) and the inclination angle of cutting when a cutting representative point exists in a tool tip edge (5a). It is a perspective view explaining the 2nd virtual plane (processing surface) and the inclination angle of cutting when a cutting representative point exists in a tool tip edge (5a). It is a perspective view explaining the 2nd virtual plane (working surface) and the inclination angle of cutting when a cutting representative point exists in the middle point (5c) between a tool tip edge and a tool outside diameter edge. It is the front view which looked at the surface of the cutting insert from the insert axial direction in front, and is a figure explaining cutting representative points.
  • FIG. 1 It is a perspective view explaining the 2nd virtual plane (processing surface) and the inclination angle of cutting when a cutting representative point exists in a tool tip edge (5a). It is a perspective view explaining the 2nd virtual plane (working surface) and the inclination angle of cutting when a cutting representative point exists in the middle point (5c)
  • An example of the case is shown. It is a graph explaining the range of angle ARt and angle RR suitable for the blade insert rotary milling tool which concerns on 1st, 2nd embodiment of this invention to rotate a cutting insert stably. It is a perspective view which shows the blade-tip rotary milling tool which concerns on 2nd Embodiment of this invention.
  • FIG. 20 It is a front view (figure which looked at a tip side from the direction of a tool axis to the front of a blade edge rotation type milling tool) which shows a blade edge rotation type milling tool concerning a 2nd embodiment of the present invention. It is a side view which shows the G arrow of the blade edge
  • the cutting edge rotating milling tool 1 of this embodiment includes a tool body 2 made of steel or the like, a cutting insert 3 made of a hard material such as cemented carbide, and the like.
  • a cutting insert 3 having a disk shape is freely rotatable around the insert axis C on the insert mounting seat 4 formed on the outer periphery of the tip of the tool body 2 that rotates about the tool axis O. Removably mounted.
  • the cutting insert 3 is a so-called round piece insert having a circular cutting edge 5, and the cutting edge 5 is attached to the insert mounting seat 4 in the state where the cutting edge 5 is on the distal end side and the radially outer side of the tool body 2. It protrudes toward.
  • the cutting edge rotating milling tool 1 has a base end portion of a tool body 2 attached to a main shaft of a machine tool (not shown) and rotated in a tool rotation direction T around a tool axis O to make difficult machining such as a heat-resistant alloy. It is used for cutting (especially heavy cutting) of work materials such as materials.
  • This cutting edge rotating milling tool 1 is a force that the cutting blade 5 receives when the cutting insert 3 cuts into the work material (cutting force or cutting resistance, including the component of the cutting edge force or edge force).
  • This is a rotary milling tool in which the cutting insert 3 is driven (passively) around the insert axis C with respect to the insert mounting seat 4.
  • the insert mounting seat 4 side along the tool axis O direction of the tool body 2 is referred to as the tool tip side or simply the tip side (the lower side in FIGS. 2 to 6),
  • the side opposite to the insert mounting seat 4 along is called the tool base end side or simply the base end side (the upper side in FIGS. 2 to 6).
  • a direction perpendicular to the tool axis O is referred to as a tool radial direction, and a direction around the tool axis O is referred to as a tool circumferential direction.
  • the direction in which the tool body 2 is rotated during cutting is referred to as the tool rotation direction T or the front of the tool rotation direction T, and the direction toward the opposite side of the tool rotation direction T (the front) is the tool. It is referred to as the rear of the rotation direction T.
  • a direction orthogonal to the insert axis C of the cutting insert 3 is referred to as an insert radial direction, and a direction around the insert axis C is referred to as an insert circumferential direction.
  • the tool body 2 has a columnar shape or a disk shape, and is rotatable around the tool axis O that is the central axis thereof.
  • the tool body 2 has a cylindrical shape, and a portion (shank portion) other than the tip portion is formed to have a larger diameter than the tip portion (blade portion) of the tool body 2.
  • the distal end portion of the tool body 2 is gradually reduced in diameter toward the tool distal end side to form a taper shape.
  • a plurality of chip pockets 6 are formed on the outer periphery of the tip of the tool body 2 so as to be cut out in a concave shape from the outer periphery of the tip with an interval in the tool circumferential direction.
  • insert mounting seats 4 to which the cutting insert 3 is detachably mounted are formed on the wall surfaces facing the tool rotation direction T, respectively.
  • the insert mounting seat 4 has a mounting surface 4a facing the tool rotation direction T, a regulating surface 4b rising from the peripheral edge of the mounting surface 4a, a rotating shaft mounting hole 4c drilled in the mounting surface 4a, A coolant hole (not shown) for ejecting coolant (cutting fluid) is formed between the insert mounting seat 4 and the cutting insert 3.
  • the insert mounting seat 4 has a sheet-like thrust sliding bearing member (rotating mechanism) interposed between the cutting insert 3 and the mounting surface 4a. 8 is provided.
  • the mounting surface 4 a is formed in a substantially circular flat shape corresponding to the shape of the cutting insert 3. Specifically, the mounting surface 4 a has an axially symmetric shape with the insert axis C as the center. .
  • the “axially symmetric shape” referred to in the present specification includes not only a configuration that is strictly axially symmetric but also a configuration that is generally axially symmetric.
  • the mounting surface 4a In the side view of the tool main body 2 shown in FIG. 3 (side view of the insert mounting seat 4), the mounting surface 4a gradually moves backward in the tool rotation direction T toward the tip side (lower side in FIG. 3) of the tool main body 2. It is inclined toward.
  • the attachment surface 4a is inclined toward the back of the tool rotation direction T gradually as it goes to the outer side of a tool radial direction.
  • the regulation surface 4b is a flat wall surface that rises from the base end side edge of the tool body 2 on the mounting surface 4a toward the front in the tool rotation direction T and faces the tool tip side.
  • the regulating surface 4b extends linearly.
  • the rotating shaft mounting hole 4c has a multi-stage cylindrical hole shape, and the inner diameter of the end (opening portion) that opens to the mounting surface 4a in the rotating shaft mounting hole 4c is one step higher than the inner diameter of the portion other than the opening. It is getting bigger.
  • a portion of the rotating shaft mounting hole 4c other than the opening is a female screw portion subjected to female screw processing. Further, between the insert mounting seats 4 adjacent to each other in the circumferential direction of the tool at the distal end portion of the tool body 2, an opening is made in the outer peripheral surface of the distal end portion, and it extends along the tool radial direction so A screw hole 7 communicating with the inside is formed.
  • the coolant hole communicates with the main shaft of the machine tool attached to the base end portion of the tool body 2 through the inside of the tool body 2. Further, when the mounting surface 4a of the insert mounting seat 4 is viewed from the front, the center axis of the coolant hole extends along the insert circumferential direction of the cutting insert 3 (along the tangential direction of the insert circumferential direction). The direction of the coolant ejected from the coolant hole opened in the mounting surface 4 a is set so as to follow the driven rotational direction of the cutting insert 3 relative to the insert mounting seat 4.
  • a thrust sliding bearing member (sliding bearing member) 8 has a disk shape, and the center of a pair of circular surfaces facing the thickness direction (the central axis direction of the thrust sliding bearing member 8) A hole 8a formed through the thrust slide bearing member 8 is opened. Further, a part of the outer peripheral surface of the thrust slide bearing member 8 is formed with a notch portion 8b that is notched linearly in a front view when the thrust slide bearing member 8 is viewed from the thickness direction.
  • the thrust sliding bearing member 8 is formed with a coolant circulation hole 8c that penetrates the thrust sliding bearing member 8 in the thickness direction.
  • the cutting insert 3 is seated out of a pair of circular surfaces facing the thickness direction in the thrust slide bearing member 8.
  • One circular surface 8 d is an attachment surface of the insert attachment seat 4. That is, when the insert mounting seat 4 includes the thrust sliding bearing member 8, the back surface 10 of the cutting insert 3 (the surface facing rearward in the tool rotation direction T) is the tool in the thrust sliding bearing member 8 of the insert mounting seat 4. It is seated on one circular surface (mounting surface) 8d facing forward in the rotation direction T.
  • One circular surface 8d has an axisymmetric shape with the insert axis C as the center.
  • the hole 8a communicates with the rotating shaft mounting hole 4c, and the coolant circulation hole 8c communicates with the coolant hole.
  • the notch portion 8b is disposed so as to face the restricting surface 4b and can be locked, thereby restricting rotation of the thrust slide bearing member 8 in the insert circumferential direction with respect to the mounting surface 4a.
  • the cutting insert 3 is predetermined by applying a coolant sprayed from the coolant hole through the coolant circulation hole 8 c to the seating surface 13 of the cutting insert 3. It is made easier to follow and rotate in the insert circumferential direction.
  • the insert mounting seat 4 includes the thrust slide bearing member 8 has been described.
  • the present invention is not limited to this.
  • the insert mounting seat 4 is replaced by the thrust slide bearing member 8.
  • a thrust rolling bearing member (rolling bearing member) may be provided.
  • the back surface 10 of the cutting insert 3 is seated on a mounting surface facing forward in the tool rotation direction T in the thrust rolling bearing member of the insert mounting seat 4. Further, these bearing members are not provided on the insert mounting seat 4, and the back surface 10 of the cutting insert 3 may be directly seated on the mounting surface 4 a of the tool body 2.
  • the cutting insert 3 includes front and back surfaces 9 and 10 that intersect the insert axis C (substantially orthogonal to the insert axis C), and peripheral edges of the front and back surfaces 9 and 10. And an outer peripheral surface 11 for connecting the two.
  • the “front and back surfaces 9 and 10 intersecting the insert axis C” as used in this specification means that the insert axis C is disposed in a through-hole 14 to be described later that opens on the front and back surfaces 9 and 10. This indicates a state in which C penetrates the centers (virtual centers) of the front and back surfaces 9 and 10.
  • the outer peripheral surface 11 has extended and connected the peripheral edges of the front and back surfaces 9 and 10 so that the insert axial line C direction may be met.
  • the front surface 9 of the front and back surfaces 9 and 10 faces forward in the tool rotation direction T in a state where the cutting insert 3 is mounted on the insert mounting seat 4 of the tool body 2.
  • the rear surface 10 is disposed so as to face the rear in the tool rotation direction T, and is seated on the insert mounting seat 4 (in this embodiment, the thrust slide bearing member 8 of the insert mounting seat 4).
  • FIG. 9A in FIG. 9B and 10, the peripheral edge of the surface 9, a circular shape extending along the insert circumferential direction, the cutting edge 5 which are arranged on the cutting edge virtual plane VS 0 perpendicular to the insert axis C While being formed, the cutting edge 5 projects in the direction of the insert axis C from the portion other than the cutting edge 5 on the surface 9.
  • the inner surface of the cutting edge 5 on the front surface 9 in the insert radial direction is gradually inclined from the front surface 9 along the insert axis C direction toward the rear surface 10 side from the cutting edge 5 toward the inner side of the insert radial direction.
  • a tapered rake face 12 is formed.
  • the direction from the front surface 9 toward the back surface 10 side in the insert axis C direction may be simply referred to as the back surface 10 side along the insert axis C direction.
  • the direction from the back surface 10 toward the front surface 9 side in the insert axis C direction may be simply referred to as the front surface 9 side along the insert axis C direction.
  • the angle ⁇ at which the rake face 12 is inclined with respect to the cutting edge virtual plane VS 0 is, for example, in the range of 35 ° to 50 °. .
  • Sites other than the cutting edge 5 and the rake face 12 on the surface 9 have a planar shape perpendicular to the insert axis C.
  • the outer peripheral edge of the back surface 10 is recessed by one step from the portion other than the outer peripheral edge.
  • a portion of the back surface 10 other than the outer peripheral edge portion is a seating surface 13 that seats on the mounting surface of the insert mounting seat 4 (the circular surface 8d of the thrust slide bearing member 8 in this embodiment).
  • the seating surface 13 has a planar shape perpendicular to the insert axis C corresponding to the mounting surface of the insert mounting seat 4 having a planar shape perpendicular to the insert axis C.
  • the cutting insert 3 is formed with a through hole 14 that extends on the insert axis C and opens to the front and back surfaces 9 and 10.
  • both end portions of the through hole 14 in the direction of the insert axis C are larger in diameter than portions other than the both end portions.
  • the portions other than the both end portions of the through hole 14 have a substantially constant inner diameter over the entire direction of the insert axis C.
  • the outer peripheral surface 11 of the cutting insert 3 is gradually inclined outward in the insert radial direction from the cutting edge 5 forming the outer peripheral edge of the surface 9 toward the back surface 10 side from the surface 9 along the insert axis C direction.
  • a tapered flank 15 is formed.
  • the angle ⁇ at which the flank 15 is inclined with respect to the insert axis C is, for example, in the range of 10 ° to 35 °.
  • a second numbering surface 16 whose inclination with respect to the insert axis C is gentler than the flank 15 is located on the back surface 10 side along the insert axis C direction with respect to the flank 15. Is formed. That is, the displacement amount in the second picking surface 16 is smaller than the displacement amount in the insert radial direction per unit length along the insert axis C direction in the flank 15. Further, the end portion on the back surface 10 side along the insert axis C direction in the outer peripheral surface 11 has a cylindrical surface shape with the insert axis C as the center. With such a configuration, the outer peripheral surface 11 of the cutting insert 3 is expanded in diameter from the front surface 9 along the insert axis C direction toward the back surface 10 side. Further, in the longitudinal sectional view shown in FIG. 10, the blade angle ⁇ centered on the cutting edge 5 formed between the rake face 12 and the flank face 15 is, for example, in the range of 65 ° to 75 °. .
  • the cutting edge rotating milling tool 1 includes a rotating shaft (rotating support) 17 and a regulating portion as a cutting insert clamping mechanism for rotatably mounting the cutting insert 3 to the insert mounting seat 4.
  • the rotary shaft 17 has a smaller diameter than the through hole 14 of the cutting insert 3 and the hole 8a of the thrust slide bearing member 8, and is inserted into the through hole 14 and the hole 8a to be attached to the insert mounting seat 4.
  • a head portion 17b having a diameter larger than that of the through hole 14 and disposed with a gap between the head 9 and the surface 9.
  • the end portion of the shaft portion 17a opposite to the head portion 17b has a smaller diameter than a portion other than the end portion, and is a male screw portion subjected to male screw processing.
  • the male screw portion of the shaft portion 17a is screwed into the female screw portion of the rotary shaft mounting hole 4c, so that the rotary shaft 17 is detachably attached to the insert mounting seat 4, and the male screw with respect to the female screw portion is mounted.
  • the screw screw 18 is screwed into the screw hole 7 of the tool body 2, and the tip of the screw screw 18 is brought into contact with the shaft portion 17 a of the rotating shaft 17, whereby the insert mounting seat 4 extends along the insert axis C direction of the rotating shaft 17.
  • the movement can be restricted, and a restriction part having these screw holes 7 and female screws 18 is configured.
  • the tip of the female screw 18 is in contact with a portion of the shaft portion 17a other than the male screw portion (see FIG. 24).
  • the insert axis C of the cutting insert 3 is in front of the tool rotation direction T in a state where the cutting insert 3 is mounted on the insert mounting seat 4. As it goes, it gradually extends and inclines toward the tip side of the tool.
  • the present invention is not limited to this, and the insert axis C of the cutting insert 3 may be inclined and extended toward the outside in the tool radial direction gradually toward the front in the tool rotation direction T.
  • the insert axis C of the cutting insert 3 may be inclined and extended toward the front in the tool rotation direction T and toward the outside in the tool radial direction as it goes forward in the tool rotation direction T.
  • the direction in which the insert axis C is inclined is determined by setting the following representative cutting points.
  • the direction of the inclination of the insert axis C is not uniquely determined by determining the cutting representative point.
  • the direction of the inclination for facilitating the driven rotation of the cutting insert 3 is determined. Is done.
  • a second virtual plane VS including a first virtual plane VS1 perpendicular to the tangent L2 of the cutting edge 5 passing through the cutting representative point, and a virtual straight line L1 along the instantaneous cutting direction at the tangent L2 and the cutting representative point. 2 along the intersection line L (the left-right direction in FIG.
  • a component force along the main component force direction at the cutting representative point is a main component force F1
  • the main component force F1 and the force of the back component force F2 F3 The direction in which the insert axis C extends with respect to the direction is set to be parallel or set at a predetermined minute angle (that is, set to be substantially parallel).
  • symbol F4 in FIG. 13 is the force (It is a cutting force or cutting resistance, and includes the component of a cutting edge force or edge force) when the cutting blade 5 cuts into a workpiece, and processes it.
  • a component force in the direction of the tangent L2 passing through the cutting representative point of the cutting edge 5 that is, a component force passing through the cutting representative point and perpendicular to the first virtual plane VS1).
  • a feed component force F4 In the specification, it is called a feed component force F4.
  • the feed component force F4 is set so as to go outward in the tool radial direction.
  • the “cutting representative point” in the present specification will be described.
  • the force received by the cutting insert 3 is a cutting area of the cutting insert 3 cut into the work material.
  • the contact area between the rake face 12 and the work material / chip including the area shown by hatching in FIG.
  • the load distributed over the entire surface of the rake face 12 is based on the force and moment (the moment viewed from the center of the insert) applied to the cutting insert 3 by such a distributed load.
  • a predetermined point passing through the point of application of the concentrated load (a point corresponding to the center of gravity of the distributed load) P And the insert radially ID, and the intersection of the cutting edge 5, is referred to herein as "cutting representative point”.
  • the point of action of the concentrated load when the distributed load acting on the cutting insert 3 from the work material during cutting is indicated by the symbol P.
  • An intersection 5c between a predetermined insert radial direction ID passing through and a circular cutting edge 5 is a representative cutting point. It can also be said that the cutting representative point is the point closest to the average point of action of the cutting force during cutting of the cutting edge 5.
  • the cutting representative point is located on the cutting edge 5 of the cutting insert 3, but even when the cutting insert 3 is driven to rotate around the insert axis C, the cutting representative point does not rotate together with the cutting insert 3, and the relative position to the tool is It does not change.
  • the “instantaneous cutting direction at the cutting representative point” is the direction of the relative instantaneous speed between the tool and the work material at the cutting representative point, and is rotated and moved mainly with the rotation of the tool. To do.
  • the 12 is an amount that depends on the feed amount per blade, and the tool body 2 of the cutting edge rotating milling tool 1 is fed in the tool radial direction, thereby rotating the tool.
  • the cutting edge 5 of the cutting insert 3 located in front of the direction T (the cutting edge 5 represented by a two-dot chain line) cuts the work material
  • the cutting edge 5 is positioned behind the cutting direction T of the tool.
  • the cutting edge 5 (the cutting edge 5 represented by a solid line) of the (current) cutting insert 3 cuts a region indicated by hatching in FIG.
  • the “amount f depending on the feed amount per blade” is different from the feed amount fz in general and depends on the tool rotation position and the mounting angle of the insert axis C. I decided to call it.
  • the cutting representative points are the part (tool tip edge 5a) located at the tip along the tool axis O direction of the entire circumference of the cutting edge 5 of the cutting insert 3 mounted on the tool body 2, and the outer side along the tool radial direction. It is set at a predetermined position in an arc-shaped portion (1/4 arc when the circumference of the cutting edge 5 is 1) with a central angle of 90 ° between the portion located at the end (tool outer diameter edge 5b). ing.
  • the cutting representative point on the cutting edge 5 is a position close to the tool tip edge 5a.
  • the cutting representative point on the cutting edge 5 is a position close to the tool outer diameter edge 5b.
  • the desired cutting type is “R-cutting” which is a combined process of face-cutting and shoulder-cutting
  • the cutting representative points on the cutting edge 5 are the tool tip edge 5a and the outside of the tool. This is an intermediate point 5c located between the radial edge 5b.
  • the cutting representative point is a predetermined position (predetermined range) on the cutting edge 5 that can be determined in advance by a desired cutting process, and in this embodiment, the main component force F1 and the back component force F2 at the cutting representative point are The inclination of the insert axis C is set substantially parallel to the direction of the resultant force F3.
  • first virtual plane VS 1 in the plane refers to the "first virtual plane VS 1 in the plane, relative to the orientation of the resultant force F3 of the main component force F1 and the back component force F2, the direction of extension of the insert axis C, Specifically, “set to be parallel or set to have a predetermined minute angle (that is, set to be parallel)” specifically refers to cutting conditions that can be assumed using the cutting edge rotating milling tool 1.
  • first imaginary plane VS 1 as viewed from the direction of the tangent L2 of the cutting edge 5 passing through the cutting representative point
  • the angle at which the insert axis C is inclined with respect to the direction of the resultant force F3. Within the range of ⁇ 20 °.
  • the angle formed between the two straight lines of the insert axis C and the direction of the resultant force F3 is within a range of ⁇ 20 °, and this is set to “set in parallel or form a predetermined minute angle”. It expresses.
  • the angle is ⁇ 10 °, and more preferably, the angle is ⁇ 5 °, and when the angle is 0 °, the insert axis C is parallel to the direction of the resultant force F3. (Set parallel).
  • the angle at which the insert axis C is inclined with respect to the direction of the resultant force F3 is within a range of ⁇ 20 ° means that the angle formed between the direction of the resultant force F3 and the insert axis C is 20 °.
  • the angle at which the insert axis C is inclined with respect to the direction of the resultant force F3 is within a range of ⁇ 10 ° means that the angle formed between the direction of the resultant force F3 and the insert axis C is 10 ° or less. Refers to that.
  • the angle at which the insert axis C is inclined with respect to the direction of the resultant force F3 is within a range of ⁇ 5 ° means that the angle formed between the direction of the resultant force F3 and the insert axis C is 5 ° or less. Refers to that.
  • the direction in which the insert axis C extends with respect to the direction of the resultant force F3 is not limited to “parallel”, and a slight angle range is provided for the following reason. That is, the direction of the resultant force F3 may vary depending on, for example, the shape of the rake face 12 of the cutting insert 3, the cutting edge processing and wear state of the cutting edge 5, the friction coefficient of the work material, cutting conditions (cutting, feed, etc.). Therefore, it is difficult to set the direction in which the insert axis C extends in parallel with the direction of the resultant force F3. Therefore, as a range where the effect of the present invention can be sufficiently obtained, It is set to form a predetermined minute angle.
  • FIG. 3 and FIG. 4 show the tangent L2 viewed from the direction of the tangent L2 passing through the tool tip edge 5a (cutting representative point in the present embodiment) of the cutting edge 5 of the cutting insert 3 shown in FIG.
  • the direction of the resultant force F3 of the main component force F1 and the back component force F2 is set parallel to the insert axis C or a predetermined minute angle in a direction view (in the plane of the first virtual plane VS 1 perpendicular to the tangent L2) It is set to make.
  • the machining surface MS in this specification refers to a tangent line L2 passing through the cutting representative point of the cutting edge 5 and a virtual straight line along the instantaneous cutting direction at this cutting representative point (indicated by reference numeral L1 in FIG. 1).
  • a virtual plane that is, the above-described second virtual plane VS 2 ) including the tangent of the virtual circle VC
  • a reference is provided by determining the inclination of the insert axis C according to the direction of the resultant force F3 set according to a desired cutting process condition, and is slightly different from the reference angle. It is preferable to provide a swing width (plus or minus angle range).
  • the angle ⁇ is preferably in the range of 45 ° ⁇ 20 °, more preferably in the range of 45 ° ⁇ 5 ° (for example, as shown in the graph of FIG. 17). Range (see angle range corresponding to angle ⁇ when cutting representative point of cutting edge 5 is at tool tip edge 5a).
  • FIG. 5 and 6 are cross sections taken along line EE as seen from a predetermined tool radial direction D passing through the tool tip edge 5a of the cutting edge 5 in the tool radial direction of the cutting edge rotating milling tool 1 shown in FIG. It is.
  • a tool tip edge 5a (cutting representative point) of the cutting edge 5 is tangent L1 (in the instantaneous cutting direction) passing through the tool tip edge 5a in a virtual circle VC formed by rotating in the tool circumferential direction.
  • the reference plane SS is a side section (longitudinal section).
  • an intersection line CL of the reference plane SS and the cutting edge virtual plane VS 0 including the circular cutting edge 5 is formed on the tool axis O projected on the reference plane SS.
  • the angle ARt that is inclined with respect to the angle is, for example, in the range of ⁇ 30 ° to ⁇ 60 °. That is, the angle ARt is an axial rake angle in consideration of an instantaneous cutting direction at the tool tip edge 5a of the cutting edge 5 used for cutting, and specifically, a negative (negative) axial rake angle. ing.
  • the angle ARt is an axial rake angle in consideration of an instantaneous cutting direction at the tool tip edge 5a of the cutting edge 5 used for cutting, and specifically, a negative (negative) axial rake angle.
  • the angle ARt when the angle ARt is ⁇ (minus), it is a negative (negative) axial rake angle, and when it is + (plus), it is positive (positive).
  • Axial rake angle when the angle ARt is ⁇ in FIG. 6, the cross line CL gradually extends forward in the tool rotation direction T from the tool distal end edge 5a toward the tool proximal end side.
  • the angle ARt is +, although not particularly shown, the cross line CL gradually extends toward the rear in the tool rotation direction T from the tool distal end edge 5a toward the tool proximal end side.
  • the reference plane is a virtual plane perpendicular to the instantaneous cutting direction at the tool tip edge 5a of the cutting edge 5.
  • the angle ARn the blade virtual plane VS 0 off relative to the tool axis O is inclined, for example -30 It is in the range of ° to -50 °. That is, the angle ARn is an axial rake angle that does not consider the instantaneous cutting direction as a single cutting insert 3 mounted on the tool body 2, and is a negative (negative) axial rake angle. As shown in FIG. 4, when the angle ARn is ⁇ (minus) in the side view perpendicular to the cutting edge virtual plane VS 0 when looking at the cutting edge rotating milling tool 1 toward the inside in the tool radial direction.
  • Negative (negative) axial rake angle, and + (plus) is positive (positive) axial rake angle.
  • the cutting edge virtual plane VS 0 gradually extends forward in the tool rotation direction T from the tool distal end edge 5a toward the tool proximal end side.
  • the angle ARn is +, although not shown in particular, the cutting edge virtual plane VS 0 gradually extends toward the rear in the tool rotation direction T from the tool distal end edge 5a toward the tool proximal end side.
  • the cutting edge milling tool 1 of the present embodiment has the cutting representative point set at the tool tip edge 5a of the cutting edge 5, as shown in FIG. 4, the machining surface MS (second virtual plane)
  • the inclination angle ⁇ formed between VS 2 ) and the insert axis C is made equal to the ARn.
  • the angle ARt and the angle ARn are angles that do not consider the shape of the rake face 12 adjacent to the cutting edge 5 of the cutting insert 3, and thus can be said to be apparent axial rake angles.
  • the angle ARt is 45 ° ( ⁇ 45 °) of the negative
  • the angle ARn is 30 ° ( ⁇ 30 °) of the negative.
  • the cutting edge tangent L2 of the cutting edge 5 extending toward the outside in the tool radial direction through the tool leading edge 5a with respect to a predetermined tool radial direction D passing through the tool leading edge 5a in the tool radial direction.
  • the angle RR at which is inclined is, for example, in the range of ⁇ 30 ° to ⁇ 75 °. That is, the angle RR is a radial rake angle at the tool tip edge 5a of the cutting edge 5 to be used for cutting, specifically, a negative radial rake angle, which is the angle in the present embodiment. RR is 55 ° ( ⁇ 55 °) of the negative. As shown in FIG.
  • FIG. 11 what is shown by FIG. 11 is a figure which simplifies and shows the angles ARt, ARn, and RR mentioned above.
  • FIG. 13 is a simplified diagram for explaining that the direction of the resultant force F3 of the main component force F1 and the back component force F2 and the direction in which the insert axis C extends are substantially parallel to each other.
  • the cutting representative point on the cutting edge 5 in FIG. 13 is the tool tip edge 5a, as described above, the cutting representative point is the tool outer diameter edge 5b on the cutting edge 5, or the tool leading edge 5a and the tool. It may be an intermediate point 5c between the outer diameter edge 5b (see FIGS. 1 and 4 for the positions of the tool outer diameter edge 5b and the intermediate point 5c on the circumference of the cutting edge 5).
  • the present invention is not limited to the configuration of the cutting edge rotating milling tool 1 used in the description of the present embodiment.
  • the machining surface MS second virtual plane VS 2
  • the insert axis C of the cutting insert 3 is substantially located in a virtual plane perpendicular to the machining surface MS (second virtual plane VS 2 ).
  • the machining surface MS second virtual plane VS 2
  • the machining surface MS second virtual plane VS 2
  • the tool outer diameter edge 5b is parallel to the tool axis O.
  • the insert axis C of the cutting insert 3 is substantially located in a virtual plane perpendicular to the machining surface MS (second virtual plane VS 2 ).
  • the machining surface MS (second virtual plane VS 2 ) with the intermediate point 5c as a reference is an inclined surface that is neither perpendicular nor parallel to the tool axis O.
  • the insert axis C of the cutting insert 3 is substantially located in a virtual plane perpendicular to the machining surface MS (second virtual plane VS 2 ).
  • 14A to 16 schematically show the cutting representative point of the cutting insert 3 and the machining surface MS (second imaginary plane VS 2 ) based on the cutting representative point.
  • 14A and 14B show the case where the cutting representative point of the cutting insert 3 is set to the tool tip edge 5a, and the symbol i shown in the drawing is along the instantaneous cutting direction at the tool tip edge 5a.
  • a virtual straight line L1 (a tangent line L1 passing through the tool tip edge 5a of the virtual circle VC, which is a rotation locus of the tool tip edge 5a along the tool rotation direction T), and a tangent line L2 of the cutting edge 5 passing through the tool tip edge 5a.
  • the inclination angle of cutting is represented on the machining surface MS (second virtual plane VS 2 ) which is a virtual plane including two straight lines.
  • the machining surface MS (second virtual plane VS 2 ) is a virtual plane perpendicular to the tool axis O.
  • the cutting inclination angle i is a tangent line passing through the cutting representative point of the cutting edge 5 (the tool tip edge 5a in FIGS. 14A and 14B) in the machining surface MS (second virtual plane VS 2 ). This is an angle formed between a normal line NL perpendicular to L2 and a virtual straight line L1 (tangent line L1) extending in the instantaneous cutting direction of the cutting representative point.
  • the tangent L1 is a tangent passing through the tool tip edge 5a of the virtual circle VC, which is a rotation locus formed by rotating the tool tip edge 5a, which is a representative cutting point of the cutting edge 5, about the tool axis O.
  • FIG. 15 shows the case where the cutting representative point of the cutting insert 3 is set to the intermediate point 5c.
  • the virtual circle VC which is a rotation locus formed by rotating the intermediate point 5c around the tool axis O, is set when the cutting representative point is set to the tool tip edge 5a.
  • the diameter is larger than the virtual circle VC of FIG.
  • machining surface MS (second imaginary plane VS 2 ), which is a virtual plane including, is an inclined surface that is neither perpendicular nor parallel to the tool axis O.
  • the cutting inclination angle i in FIG. 15 is a method perpendicular to the tangent L2 passing through the cutting representative point (intermediate point 5c in FIG. 15) of the cutting edge 5 in the machining surface MS (second virtual plane VS 2 ).
  • This is an angle formed between the line NL and a virtual straight line L1 (tangent line L1) extending in the instantaneous cutting direction of the cutting representative point.
  • the tangent line L1 in this case is a tangent line passing through the intermediate point 5c of the virtual circle VC, which is a rotation locus formed by rotating the intermediate point 5c, which is the representative cutting point of the cutting edge 5, about the tool axis O. .
  • the machining surface MS (second virtual plane VS 2 ) is parallel to the tool axis O.
  • the cutting inclination angle i is perpendicular to the tangent line L2 passing through the cutting representative point (tool outer diameter edge 5b) of the cutting edge 5 in the machining surface MS (second imaginary plane VS 2 ). This is an angle formed between the normal line NL and a virtual straight line L1 (tangent line L1) extending in the instantaneous cutting direction of the cutting representative point.
  • the inventors of the present invention set the cutting inclination angle i to be in the range of i ⁇ ⁇ 15 °, 15 ° ⁇ i, and the conditions of the present invention (first In the plane of the virtual plane VS 1 , when the insert axis C is substantially parallel to the direction of the resultant force F 3), it has been found that the cutting insert 3 can be stably driven and rotated.
  • the cutting insert 3 is stably driven to rotate and is a state in which the cutting insert 3 continues to rotate about the insert axis C every time every time the cutting insert 3 cuts into the work material during cutting. Pointing.
  • the graph shown in FIG. 17 is a case where a predetermined cutting representative point (cutting representative point on the cutting edge 5 is set as the intermediate point 5c, which is geometrically calculated based on the above-described knowledge.
  • the cutting insert 3 can be easily and stably rotated.
  • the range of an appropriate combination of the angle ARt and the angle RR is shown.
  • the angle ARn shown in this graph is set so that the insert axis C is substantially parallel to the angle ⁇ (the direction of the resultant force F3) with which the insert axis C is inclined with respect to the machining surface MS (second virtual plane VS 2 ). In the example shown in the figure, it is 45 ° ⁇ 5 °. Since the cutting inclination angle i for stably following the cutting insert 3 is in the range of i ⁇ ⁇ 15 ° and 15 ° ⁇ i, these combinations (regions in which the angle ranges overlap each other) The ranges of the angles ARt and RR are determined.
  • the graph shown in FIG. 18 shows the ranges of the angles ARt and RR when the cutting representative points are variously set according to the cutting depth da based on such an idea.
  • the pair of circular surfaces including the mounting surface 4a of the insert mounting seat 4 to which the cutting insert 3 is mounted and one circular surface (mounting surface) 8d of the thrust slide bearing member 8 are both on the insert axis C. It has a vertical planar shape. Specifically, the mounting surface of the insert mounting seat 4 has an axisymmetric shape with the insert axis C as the center.
  • the direction of the insert axis C of the cutting insert 3 attached to the insert mounting seat 4 of the tool body 2 is the cutting representative point.
  • the first virtual plane VS 1 perpendicular to the tangent L2 of the cutting edge 5 passing through the force (cutting force or cutting resistance) received when the cutting edge 5 of the cutting insert 3 cuts into the work material and processes it Since it is set to be parallel to the direction of the resultant force (synthetic cutting force) F3 of the main component force F1 and the back component force F2 (including the cutting edge force or edge force component), the insert axis of the cutting insert 3
  • the rotation shaft (rotation support) 17 located on C is sufficiently suppressed from being pressed from the insert radial direction (that is, from the shear direction of the rotation shaft 17) by the resultant force F3.
  • the resultant force F3 can be efficiently released to the insert mounting seat 4 via the back surface 10 of the cutting insert 3. Thereby, the deformation
  • the load on the rotary shaft 17 of the cutting insert 3 can be reduced stably and significantly.
  • the rotating shaft 17 of the cutting insert 3 is difficult to be pressed from the radial direction of the insert, the force applied to the cutting edge 5 when the cutting insert 3 cuts into the work material and processes the insert mounting seat 4.
  • the cutting insert 3 is driven to rotate stably around the insert axis C.
  • the rotating shaft 17 is used as a rotating support for the cutting insert 3, but the present invention is not limited to this.
  • the cutting insert 3 is used as an outer support in the insert radial direction as a rotating support.
  • a radial bearing (including a radial sliding bearing) that is rotatably supported from the above may be used.
  • the radial bearing (rotating support) is restrained from being pressed from the radial direction of the insert by the resultant force F3, so that the radial bearing is deformed, worn, damaged, and excessive friction torque is generated. Is prevented. “Preventing the generation of excessive friction torque” means that the friction torque increases when the cutting insert 3 is rotatably supported by a rotary support body such as a radial bearing from the outside in the insert radial direction as described above. It means to prevent the phenomenon that it becomes difficult to rotate after passing.
  • the force that presses the rotary shaft 17 of the cutting insert 3 from the insert radial direction can be almost ignored, that is, a strong pressing force does not act on the rotary shaft 17 of the cutting insert 3 by the feed component force F4. Therefore, since the insert axis C extends in the plane of the first virtual plane VS 1 so as to be parallel to the direction of the resultant force F3, the above-described operational effects can be stably obtained.
  • the cutting representative point is set at the tool tip edge 5a on the cutting edge 5, and therefore the insert axis C is gradually inclined toward the tool tip side toward the front in the tool rotation direction T. Therefore, the insert mounting seat 4 has a space for disposing a rotation mechanism (the thrust sliding bearing member 8 in this embodiment) for rotating the cutting insert 3 in a driven manner. Easy to secure. Specifically, with the insert axis C tilted forward in this way, in the multi-blade edge rotating milling tool 1 having a plurality of cutting inserts 3 mounted as in the present embodiment, in the tool circumferential direction. Even in the case where the interval between the adjacent insert mounting seats 4 tends to be narrow, it is possible to easily secure a space for arranging the rotation mechanism.
  • the insert axis C When the cutting representative point is set at the tool outer diameter edge 5b on the cutting edge 5, the insert axis C gradually inclines toward the outer side in the tool radial direction toward the front in the tool rotation direction T. Will extend.
  • the insert axis C When the cutting representative point is set on the cutting edge 5 at an intermediate point 5c located between the tool tip edge 5a and the tool outer diameter edge 5b, the insert axis C is set in the tool rotation direction T. As it goes forward, it may be inclined and extended toward the tool tip side and the outside in the tool radial direction. Even in these cases, it is possible to easily secure a space between the insert mounting seats 4 adjacent to each other in the tool circumferential direction.
  • the driven rotation can be stably performed, so that the machining accuracy of cutting can be stably increased and the tool life can be extended.
  • the cutting representative point on the cutting edge 5 is close to the tool outer diameter edge 5b.
  • the cutting representative point is an arc-shaped portion having a central angle of 90 ° from the tool tip edge 5a to the tool outer diameter edge 5b on the cutting edge 5 (the circumference of the cutting edge 5 is 1). Is set at a predetermined position of 1/4 arc), for example, with respect to the cutting edge rotating milling tool 1 used for face machining, shoulder machining, and combined machining (R machining) thereof.
  • the present invention can be applied.
  • the angle ARt is in the range of ⁇ 30 ° to ⁇ 60 °
  • the angle RR is in the range of ⁇ 30 ° to ⁇ 75 °. Therefore, the cutting insert 3 is used as the work material. Due to the force received by the cutting edge 5 when cutting and machining, the cutting insert 3 is more stably driven and rotated around the insert axis C with respect to the insert mounting seat 4, and the above-described effects become more remarkable.
  • the angles ARt and RR of the present embodiment are derived based on the graph of FIG.
  • the driven rotation of the cutting insert 3 can be stably obtained, and the rake face 12 wears. Etc. are remarkably suppressed, and the effect of extending the tool life can be expected.
  • the cutting insert 3 can be stably combined with the angle ARt. There is a possibility that the effect of driven rotation may be difficult to obtain.
  • the angle RR is smaller than ⁇ 75 °, the cutting force at the time of cutting may increase and chatter vibration may easily occur.
  • the rake face 12 is inclined with respect to the cutting edge virtual plane VS 0 in a longitudinal sectional view including the insert axis C of the cutting insert 3. Since the angle ⁇ is in the range of 35 ° to 50 °, the following effects can be obtained.
  • the insert axis C gradually extends toward the front end side in the tool axis O direction as it goes forward in the tool rotation direction T, so that the apparent axial Even if the cutting insert 3 is mounted on the insert mounting seat 4 with a negative (negative) rake angle (angles ARt, ARn), the substantial axial rake angle is more positive (positive) than the apparent axial rake angle. ) Side, and the sharpness of the cutting edge 5 is stably enhanced, and the cutting edge is not damaged. Further, the insert axis C may be inclined and extended toward the outside in the tool radial direction as it goes forward in the tool rotation direction T.
  • the apparent radial rake angle (angle RR) is negative.
  • the cutting insert 3 is mounted on the insert mounting seat 4 in the (negative) mounting posture, but the substantial radial rake angle is set to be more positive (positive) than the apparent radial rake angle, After all, the sharpness of the cutting edge 5 is stably increased.
  • the same effect as described above can be obtained when the insert axis C extends incline toward the front end side of the tool and the outer side in the tool radial direction as it goes forward in the tool rotation direction T.
  • the angle ⁇ is less than 35 °
  • the cutting edge 5 is not sharp enough to improve the sharpness of the cutting edge 5 sufficiently, and the processing accuracy may not be ensured.
  • the angle ⁇ exceeds 50 ° the blade angle ⁇ may become small, and the blade tip may be damaged.
  • a tapered flank 15 is formed on the outer peripheral surface 11 of the cutting insert 3 so as to gradually incline toward the outside in the insert radial direction from the cutting edge 5 toward the back surface 10 side from the surface 9 along the insert axis C direction.
  • the angle ⁇ at which the flank 15 is inclined with respect to the insert axis C in a longitudinal sectional view including the insert axis C of the cutting insert 3 is in the range of 10 ° to 35 °.
  • the angle ⁇ is less than 10 °, it is difficult to ensure a sufficiently large blade angle ⁇ of the cutting edge 5, and it is difficult to obtain the effect of preventing the cutting edge defect or the like.
  • the angle ⁇ exceeds 35 °, the gap between the flank 15 and the machining surface of the work material becomes narrow, and there is a possibility that the quality of the machining surface cannot be secured due to the biting of chips into the gap. .
  • the rotating shaft (rotary support body) 17 for mounting the cutting insert 3 on the insert mounting seat 4 rotatably is provided, and it is in the insert axis C direction of the rotating shaft 17 with respect to the insert mounting seat 4. Since the position along which it can adjust is provided and the movement along the direction of the insert axis C of the rotary shaft 17 with respect to the insert mounting seat 4 is provided, the following effects can be obtained. That is, the cutting insert 3 is driven to rotate relative to the insert mounting seat 4 while being supported from the inner side in the insert radial direction by the shaft portion 17 a of the rotating shaft 17 inserted through the through hole 14, and the head of the rotating shaft 17. It is retained by the portion 17b.
  • the clearance (clearance) between the head 17b of this rotating shaft 17 and the surface 9 of the cutting insert 3 is adjusted by adjusting the position along the insert axis C direction of the rotating shaft 17 with respect to the insert mounting seat 4. After this adjustment, the movement of the rotary shaft 17 along the insert axis C direction with respect to the insert mounting seat 4 can be restricted by the restricting portion.
  • the rotary shaft 17 can be advanced and retracted in the direction of the insert axis C to finely adjust the position, and then fixed, so that the driven rotation of the cutting insert 3 with respect to the insert mounting seat 4 is more stably maintained.
  • the outer height of the cutting insert 3 in the direction of the insert axis C the distance between the front and back surfaces 9, 10) varies depending on the product, the outer height of each cutting insert 3 is the same.
  • the shaft portion 17a of the rotary shaft 17 inserted through the cutting insert 3 is screwed into the rotary shaft mounting hole 4c (the screw is screwed). Tightening) from the state in which the head portion 17b is in contact with the surface 9 of the cutting insert 3, the head portion is unscrewed (unscrewed) by a predetermined number of rotations (or a predetermined rotation angle). A predetermined amount of clearance is provided between 17b and the surface 9, and in this state, the rotating shaft 17 may be fixed by the restricting portion (the screw hole 7 and the female screw 18).
  • the mounting surface of the insert mounting seat 4 on which the back surface 10 of the cutting insert 3 is seated (the circular surface 8d or mounting surface 4a of the thrust slide bearing member 8) has an axially symmetric shape with the insert axis C as the center (center axis). Therefore, the resultant force F3 transmitted from the cutting insert 3 to the insert mounting seat 4 can be distributed and received over the entire mounting surface of the insert mounting seat 4, and local wear on the mounting surface can be achieved. Thus, the above-described effects can be obtained stably over a long period of time.
  • the mounting surface may be formed in a conical shape, a spherical shape, or a combination of these shapes with the insert axis C as the central axis instead of being formed in a flat shape.
  • the mounting surface of the insert mounting seat 4 has, for example, a concave conical surface shape (or a convex conical surface shape)
  • the back surface 10 of the cutting insert 3 has a convex cone whose center axis is the insert axis C. It is formed in a planar shape (or a concave conical surface).
  • the mounting posture (particularly, the angle RR) of the cutting insert 3 with respect to the insert mounting seat 4 is different from that of the above-described embodiment. .
  • the insert axis C of the cutting insert 3 is the tool rotation. As it goes to the front in the direction T, it gradually extends toward the tool tip side.
  • the present invention is not limited to this, and the insert axis C of the cutting insert 3 may be inclined and extended toward the outer side in the tool radial direction gradually toward the front in the tool rotation direction T.
  • the insert axis C of the cutting insert 3 may be inclined and extended toward the front in the tool rotation direction T and toward the outside in the tool radial direction as it goes forward in the tool rotation direction T.
  • the direction in which the insert axis C is inclined is determined by setting the following cutting representative points.
  • the direction of the inclination of the insert axis C is the cutting representative point. Is not determined uniquely, but for example, it is determined in consideration of the direction of inclination for facilitating the driven rotation of the cutting insert 3.
  • the component force along the main component force direction is defined as the main component force F1
  • the component force along the back component force direction (upward in FIG. 23) that is perpendicular to the main component force direction and goes inward of the insert radial direction is when a component force F2, the first virtual plane VS 1 in the plane, relative to the orientation of the resultant force F3 of the main component force F1 and the back component force F2, the direction of extension of the insert axis C, parallel Or set so as to form a predetermined minute angle.
  • the force that the cutting edge 5 receives when cutting into the work material (the cutting force or the cutting resistance, including the edge force or edge force component).
  • the feed component force F4 which is a component force of the cutting edge 5 in the direction of the tangent L2 passing through the cutting representative point (that is, a component force passing through the cutting representative point and perpendicular to the first virtual plane VS1). Is set to go inward in the tool radial direction.
  • the cutting representative point is set at the tool tip edge 5a as in the above-described embodiment, but this cutting representative point is the cutting edge 5 of the cutting insert 3 attached to the tool body 2.
  • the tool tip edge 5a (representative cutting point) of the cutting edge 5 is tangent L1 (instantaneous cutting direction) passing through the tool tip edge 5a in a virtual circle VC formed by rotating in the tool circumferential direction.
  • L1 instantaneous cutting direction
  • the reference plane SS the reference plane obtained from the trajectory when moving in parallel with the tool axis O toward the tool base end side
  • the reference plane SS and the circular cut A crossing line CL with the cutting edge virtual plane VS 0 including the blade 5 is projected onto the reference plane SS.
  • the angle ARt that is inclined with respect to the tool axis O is, for example, in the range of ⁇ 30 ° to ⁇ 60 °. That is, the angle ARt is an axial rake angle in consideration of an instantaneous cutting direction at the tool tip edge 5a of the cutting edge 5 used for cutting, and specifically, a negative (negative) axial rake angle. ing. In the present embodiment, the angle ARt is set to 50 ° ( ⁇ 50 °) of the negative.
  • the angle ARn the blade virtual plane VS 0 off relative to the tool axis O is inclined, for example -30 It is in the range of ° to -50 °. That is, the angle ARn is an axial rake angle that does not consider the instantaneous cutting direction as a single cutting insert 3 mounted on the tool body 2, and is a negative (negative) axial rake angle.
  • the cutting edge tangent L2 of the cutting edge 5 extending toward the outside in the tool radial direction through the tool tip edge 5a with respect to a predetermined tool radial direction D passing through the tool tip edge 5a in the tool radial direction.
  • the angle RR at which is inclined is, for example, in the range of ⁇ 20 ° to 30 °. That is, the angle RR is a radial rake angle at the tool tip edge 5a of the cutting edge 5 used for cutting. In the present embodiment, the angle RR is 5 ° (+ 5 °) positive (positive). Yes. As shown in FIG.
  • the blade tip tangent L2 is the tool tip edge. As it goes from 5a to the outside in the tool radial direction, it gradually extends forward in the tool rotation direction T.
  • a pair of circular surfaces including the mounting surface 4a of the insert mounting seat 4 to which the cutting insert 3 is mounted and one circular surface (mounting surface) 8d of the thrust slide bearing member 8 are both inserts.
  • the mounting surface of the insert mounting seat 4 is axisymmetric with the insert axis C as the center (center axis).
  • the direction of the insert axis C of the cutting insert 3 mounted on the insert mounting seat 4 of the tool body 2 is the cutting representative point.
  • the first embodiment described above is set so as to be parallel to the direction of the resultant force (synthetic cutting force) F3 of the main component force F1 and the back component force F2 (including the cutting edge force or edge force component). The same effect can be obtained.
  • the angle ARt is in the range of ⁇ 30 ° to ⁇ 60 °
  • the angle RR is in the range of ⁇ 20 ° to 30 °. Therefore, the cutting insert 3 cuts into the work material. Due to the force received by the cutting edge 5 during machining, the cutting insert 3 is more stably driven and rotated around the insert axis C with respect to the insert mounting seat 4, and the above-described effects become more remarkable.
  • the combination of the angle ARt: ⁇ 50 ° and the angle RR: + 5 ° described in the present embodiment is independent of the amount of cut da (specifically, at least da is 0).
  • the cutting insert 3 is in a range in which the driven insert 3 can be stably driven and rotated.
  • the driven rotation of the cutting insert 3 can be stably obtained, and the rake face 12 wears. Etc. are remarkably suppressed, and the effect of extending the tool life can be expected.
  • the angle RR is smaller than ⁇ 20 ° (and larger than ⁇ 30 °), there is a possibility that it is difficult to obtain the effect of stably driving and rotating the cutting insert 3 by the combination with the angle ARt. If the angle RR is larger than 30 °, chatter vibration is likely to occur during cutting, and the outer peripheral surface 11 (flank 15) of the cutting insert 3 is likely to interfere with the work material, and the tool of the tool body 2 There is a risk that it may be difficult to ensure the amount of movement (that is, the feed amount fz) in the tool radial direction per unit rotation around the axis O.
  • the present invention provides (as viewed from the tangential direction L2 passing through the cutting representative point of the cutting edge 5) the first virtual plane VS 1 in a plane substantially in the direction of orientation resultant force F3 of extension of the insert axis C It is only necessary to be parallel, and only with this configuration, the cutting insert 3 can be easily driven and rotated during the cutting process. The driven rotation can be made more reliable and stable by the combination of the angle ARt and the angle RR described above.
  • the insert insert 4 is inserted into the through hole 14 of the cutting insert 3 as a clamping mechanism of the cutting insert for rotatably mounting the cutting insert 3 in the insert circumferential direction with respect to the insert attaching seat 4.
  • a rotation shaft 17 screwed into the rotation shaft mounting hole 4c of the rotation shaft 17 so as to be able to advance and retreat in the direction of the insert axis C, and a restricting portion (screw hole 7 and female screw 18) for restricting the movement of the rotation shaft 17 in the direction of the insert axis C.
  • the present invention is not limited to this.
  • a cylindrical spacer inserted into the through hole 14 of the cutting insert 3 is provided, and one end of the spacer has an insert mounting seat 4.
  • the shaft portion 17a of the rotating shaft 17 is inserted into the spacer and screwed into the rotating shaft mounting hole 4c, and the head portion 17b of the rotating shaft 17 is brought into contact with the other end of the spacer.
  • the cutting insert 3 can be freely rotated on the insert mounting seat 4 using a configuration in which a predetermined clearance (gap) is provided between the head portion 17b of the rotary shaft 17 and the surface 9 of the cutting insert 3. It may be pivotally supported.
  • the cutting representative points of the cutting edge 5 in the cutting insert 3 attached to the cutting edge rotating milling tool 1 are the tool leading edge 5a and the tool outer diameter edge 5b out of the entire circumference of the cutting edge 5.
  • the cutting representative point may be set so as to be located on the outer side along the extending direction of the arc, for example, from the end of the arc of the arcuate portion having the central angle of 90 ° in the cutting edge 5. Good. In this case, the central angle of the arcuate portion is greater than 90 °.

Abstract

 切れ刃(5)のうち工具軸線(O)方向に沿う工具先端縁(5a)が、工具軸線(O)回りの工具周方向に回転して形成される仮想円における工具先端縁(5a)を通る接線を、工具軸線(O)方向に沿う工具基端側に向けて工具軸線(O)に平行に移動させたときの軌跡から得られる仮想平面を基準平面(SS)としたときに、該基準平面(SS)と、切れ刃(5)を含む切れ刃仮想平面(VS)との交差線(CL)が、基準平面(SS)上に投影された工具軸線(O)に対して傾斜する角度ARtが、-30°~-60°の範囲であり、かつ、工具軸線(O)に直交する工具径方向のうち工具先端縁(5a)を通る所定の工具径方向に対して、該工具先端縁(5a)を通り工具径方向の外側へ向かうように延びる切れ刃(5)の刃先接線が傾斜する角度RRが、-30°~-75°の範囲である。

Description

刃先回転式ミーリング工具及びこれを用いた切削方法
 本発明は、工具軸線回りに回転する工具本体の先端外周部に形成されたインサート取付座に、円板状をなす切削インサートがそのインサート軸線回りに回転自在とされて装着された刃先回転式ミーリング工具、及びこれを用いて被削材を切削する切削方法に関するものである。
 本願は、2014年6月18日に日本国に出願された特願2014-125816号に基づき優先権を主張し、その内容をここに援用する。
 従来、耐熱合金などの難削材等を被削材とするミーリング加工(転削加工)に用いられる刃先回転式ミーリング工具(ロータリーミーリング工具)として、例えば下記特許文献1、2に示されるような、工具軸線回りに回転する工具本体の先端外周部に形成されたインサート取付座に、円板状をなし外周縁に切れ刃を備えた切削インサートがそのインサート軸線回りに回転自在とされて装着されたものが知られている。
 刃先回転式ミーリング工具では、切削インサートにおいてインサート軸線方向の両側を向く表裏面のうち、表面が、工具軸線回りに沿う工具回転方向の前方を向くように配置されてすくい面とされ、裏面が、工具回転方向の後方を向くように配置されるとともに、インサート取付座に着座される。
 そして、切削時には、切削インサートが被削材に切り込んで加工する際に切れ刃が受ける力(切削力又は切削抵抗であり、刃先力又はエッジフォースの成分を含む)によって、インサート取付座に対して切削インサートがインサート軸線回りに従動回転するようになっている。これにより、切れ刃の所定部分のみが連続的に切削に供されることが抑制されているとともに、該切れ刃の部分的な切れ味の低下や刃先欠損等を防止するようにしている。
特許第3264540号公報 特表2011-515231号公報
 しかしながら、上記従来の刃先回転式ミーリング工具では、下記の課題を有していた。
 すなわち、特許文献1、2の刃先回転式ミーリング工具では、インサート取付座に装着された切削インサートの切れ刃が被削材に切り込んで加工する際に受ける力によって、切削インサートの回転軸等(特許文献1における軸部32及びボール8や、特許文献2における支承ピン9)が変形、摩耗、破損等するおそれがあった。特に、難削材の重切削加工等において、このような問題が生じやすかった。
 また、この種の刃先回転式ミーリング工具では、インサート取付座に装着された切削インサートをインサート軸線回りに安定して従動回転させることに、改善の余地があった。
 本発明は、このような事情に鑑みてなされたものであって、切削インサートの回転軸等の回転支持体の変形、摩耗、破損等を防止でき、かつ、インサート取付座に装着された切削インサートをインサート軸線回りに安定して従動回転させることができ、これにより、切削の加工精度を安定して高められ、工具寿命を延長できる刃先回転式ミーリング工具及びこれを用いた切削方法を提供することを目的としている。
 このような課題を解決して、前記目的を達成するために、本発明は以下の手段を提案している。
 すなわち、本発明は、工具軸線回りに回転する工具本体の先端外周部に形成されたインサート取付座に、円板状をなす切削インサートがそのインサート軸線回りに回転自在とされて装着された刃先回転式ミーリング工具であって、前記切削インサートは、前記インサート軸線に交差する表裏面と、これら表裏面の周縁同士を接続する外周面と、を有し、前記表裏面のうち、表面が、前記工具軸線回りに沿う工具回転方向の前方を向くように配置され、裏面が、前記工具回転方向の後方を向くように配置されるとともに、前記インサート取付座に着座され、前記表面の周縁には、前記インサート軸線回りに沿って延びる円形状の切れ刃が形成され、前記切れ刃のうち前記工具軸線方向に沿う工具先端縁が、前記工具軸線回りの工具周方向に回転して形成される仮想円における前記工具先端縁を通る接線を、前記工具軸線方向に沿う工具基端側に向けて前記工具軸線に平行に移動させたときの軌跡から得られる仮想平面を基準平面としたときに、該基準平面と、前記切れ刃を含む切れ刃仮想平面との交差線が、前記基準平面上に投影された前記工具軸線に対して傾斜する角度ARtが、-30°~-60°の範囲であり、かつ、前記工具軸線に直交する工具径方向のうち前記工具先端縁を通る所定の工具径方向に対して、該工具先端縁を通り工具径方向の外側へ向かうように延びる前記切れ刃の刃先接線が傾斜する角度RRが、-30°~-75°の範囲であることを特徴とする。
 また本発明は、工具軸線回りに回転する工具本体の先端外周部に形成されたインサート取付座に、円板状をなす切削インサートがそのインサート軸線回りに回転自在とされて装着された刃先回転式ミーリング工具であって、前記切削インサートは、前記インサート軸線に交差する表裏面と、これら表裏面の周縁同士を接続する外周面と、を有し、前記表裏面のうち、表面が、前記工具軸線回りに沿う工具回転方向の前方を向くように配置され、裏面が、前記工具回転方向の後方を向くように配置されるとともに、前記インサート取付座に着座され、前記表面の周縁には、前記インサート軸線回りに沿って延びる円形状の切れ刃が形成され、前記切れ刃のうち前記工具軸線方向に沿う工具先端縁が、前記工具軸線回りの工具周方向に回転して形成される仮想円における前記工具先端縁を通る接線を、前記工具軸線方向に沿う工具基端側に向けて前記工具軸線に平行に移動させたときの軌跡から得られる仮想平面を基準平面としたときに、該基準平面と、前記切れ刃を含む切れ刃仮想平面との交差線が、前記基準平面上に投影された前記工具軸線に対して傾斜する角度ARtが、-30°~-60°の範囲であり、かつ、前記工具軸線に直交する工具径方向のうち前記工具先端縁を通る所定の工具径方向に対して、該工具先端縁を通り工具径方向の外側へ向かうように延びる前記切れ刃の刃先接線が傾斜する角度RRが、-20°~30°の範囲であることを特徴とする。
 また本発明は、工具軸線回りに回転する工具本体の先端外周部に形成されたインサート取付座に、円板状をなす切削インサートがそのインサート軸線回りに回転自在とされて装着された刃先回転式ミーリング工具を用いて被削材を切削する切削方法であって、前記切削インサートは、前記インサート軸線に交差する表裏面と、これら表裏面の周縁同士を接続する外周面と、を有し、前記表裏面のうち、表面を、前記工具軸線回りに沿う工具回転方向の前方を向くように配置し、裏面を、前記工具回転方向の後方を向くように配置するとともに、前記インサート取付座に着座させ、前記表面の周縁には、前記インサート軸線回りに沿って延びる円形状の切れ刃が形成されており、前記インサート軸線に直交するインサート径方向のうち、切削加工時に被削材から前記切削インサートに分布して作用する力を集中荷重とみなしたときの該集中荷重の作用点を通る所定のインサート径方向と、前記切れ刃と、の交点を切削代表点とし、前記切削代表点を通る前記切れ刃の接線に垂直な第1の仮想平面と、前記接線及び前記切削代表点における瞬間的な切削方向に沿う仮想直線を含む第2の仮想平面と、の交線に沿う方向であって、前記工具回転方向の後方に向かう方向を主分力方向とし、切削加工時に被削材から前記切削インサートが受ける力のうち、前記切削代表点における前記主分力方向に沿う分力を主分力とし、該主分力方向に垂直で前記インサート径方向の内側へ向かう背分力方向に沿う分力を背分力としたときに、前記第1の仮想平面の面内で、前記主分力と前記背分力との合力の向きに対して、前記インサート軸線が傾斜する角度を、±20°の範囲内に設定することを特徴とする。
 本発明に係る刃先回転式ミーリング工具を用いた切削方法によれば、工具本体のインサート取付座に装着された切削インサートのインサート軸線の向きが、切削代表点を通る切れ刃の接線に垂直な第1の仮想平面内において、切削インサートの切れ刃が被削材に切り込んで加工する際に受ける力(切削力又は切削抵抗であり、刃先力又はエッジフォースの成分を含む)のうち主分力と背分力との合力(合成切削力)の向きに平行となるように設定されているので、切削インサートのインサート軸線上に位置する回転軸や、該切削インサートをインサート径方向の外側から回転自在に支持するラジアル軸受等の回転支持体が、前記合力によってインサート径方向から(つまり回転軸等の回転支持体のせん断方向から)押圧されるようなことが十分に抑制されるとともに、前記合力を、切削インサートの裏面を介してインサート取付座に効率よく逃がすことが可能となる。これにより、切削インサートの回転軸等の回転支持体の変形、摩耗、破損、過大な摩擦トルクの発生等が防止される。尚、「過大な摩擦トルクの発生の防止」とは、例えば切削インサートをインサート径方向の外側からラジアル軸受等の回転支持体により回転自在に支持する場合に、摩擦トルクが大きくなり過ぎて回転しにくくなる現象を防止することを意味している。
 つまり、刃先回転式ミーリング工具による所望の切削加工(所定の切削条件等)に応じて決定される、切れ刃上の切削代表点に対して、切削加工時に被削材から作用する合力の向きに平行となるように、予めインサート軸線の傾きを決めてやることで、切削インサートの回転支持体への負荷を、安定的かつ顕著に低減できるのである。
 ここで、本明細書でいう「切削代表点」について説明する。
 切削加工時に、工具本体に装着された切削インサートの切れ刃が被削材に切り込んで加工する際に受ける力は、流出する切屑を含めて該切削インサートが被削材と接触する領域全体に分布する荷重(分布荷重)であるが、このような分布荷重により切削インサートが受ける力とモーメント(インサート中心から見たモーメント)に基づいて、前記分布荷重が集中荷重であるとみなした場合(仮定した場合)に、該集中荷重の作用点(分布荷重の重心に相当する点)を通る所定のインサート径方向と、切れ刃との交点を、本明細書では「切削代表点」という。具体的には図12において、切削加工時に被削材から切削インサート3に作用する分布荷重を集中荷重とみなした場合の該集中荷重の作用点Pを通る所定のインサート径方向IDと、円形状をなす切れ刃5との交点5cが、切削代表点である。また切削代表点は、切れ刃のうち切削加工時に切削力の平均的な作用点に最も近くなる点であるともいえる。切削代表点は、切削インサートの切れ刃上に位置するが、切削インサートがインサート軸線回りに従動回転する場合にも、切削インサートとともに回転移動することはなく、工具に対する相対位置は変化しない。尚、例えば工具軸線方向の切込みが変化した場合には、力の作用点が変化するため、それとともに移動する。
 また、「切削代表点における瞬間的な切削方向」とは、この切削代表点において、工具と被削材の間の相対的な瞬間速度の方向であり、主に工具の回転に伴って回転移動する。
 また、「第1の仮想平面の面内で、前記主分力と前記背分力との合力の向きに対して、前記インサート軸線の延在する向きが、平行に設定又は所定の微少角度をなすように設定される(つまり平行となるように設定される)」とは、具体的には、この刃先回転式ミーリング工具を用いた想定し得る切削条件の範囲内において、前記第1の仮想平面の面内で(切削代表点を通る切れ刃の接線方向から見て)、前記合力の向きに対してインサート軸線が傾斜する角度が、±20°の範囲内であることを指す。つまり、インサート軸線と、前記合力の向きとの2直線間に形成される角度が±20°の範囲内であり、これを「平行に設定又は所定の微少角度をなすように設定される」と表している。尚、好ましくは、前記角度は±10°であり、より望ましくは、前記角度は±5°であって、前記角度が0°である場合に、前記合力の向きに対してインサート軸線が平行である(平行に設定される)。
 尚、上述の、前記合力の向きに対してインサート軸線が傾斜する角度が、±20°の範囲内とは、前記合力の向きとインサート軸線との間に形成される角度が、20°以下であることを指す。また、前記合力の向きに対してインサート軸線が傾斜する角度が、±10°の範囲内とは、前記合力の向きとインサート軸線との間に形成される角度が、10°以下であることを指す。また、前記合力の向きに対してインサート軸線が傾斜する角度が、±5°の範囲内とは、前記合力の向きとインサート軸線との間に形成される角度が、5°以下であることを指す。
 また、前記合力の向きに対してインサート軸線の延在する向きを「平行」のみに限定せず、若干の角度範囲を設けているのは、下記の理由による。
 すなわち、前記合力の向きは、例えば切削インサートのすくい面形状、切れ刃の刃先処理及び摩耗状態、被削材の摩擦係数、切削条件(切込み、送り等)などにより変化することが考えられ、そのため当該合力の向きに対してインサート軸線の延在する向きを正確に平行に設定することは困難であるので、本発明による効果が十分に得られる範囲として、「平行に設定又は所定の微少角度をなすように設定される」としている。
 また、上述のように切削インサートの回転軸等の回転支持体がインサート径方向から押圧されにくくなっているので、この切削インサートが被削材に切り込んで加工する際に切れ刃が受ける力によって、インサート取付座に対して該切削インサートがインサート軸線回りに安定して従動回転させられる。
 尚、切れ刃が被削材に切り込む際に受ける力のうち、主分力及び背分力以外の送り分力(切れ刃の切削代表点を通る接線方向へ向かう分力、切削代表点を通り前記第1の仮想平面に直交する向きの分力)については、スラスト滑り軸受部材等の回転機構との間の摩擦力と概ねキャンセルして従動回転を生み出す役割を担っており、切削インサートの回転軸等の回転支持体を押圧する力は該送り分力以外の力に比べて十分に小さいことから、切削インサートの回転支持体をインサート径方向から押圧する力としては概ね無視することができ、つまり送り分力によって切削インサートの回転支持体に強い押圧力が作用することはないので、前記第1の仮想平面の面内でインサート軸線が前記合力の向きに平行となるように延びていることによって、上述の作用効果を安定的に得ることができる。
 また上述のように、切削インサートのインサート軸線の延在する向きと、前記合力の向きとが互いに略平行であることから、具体的にこのインサート軸線は、工具回転方向の前方に向かうに従い漸次工具軸線方向の先端側へ向けて傾斜して延びている(つまり前傾している)か、又は/及び、工具回転方向の前方に向かうに従い漸次工具径方向の外側へ向けて傾斜して延びていることになる。従って、インサート取付座に、この切削インサートを従動回転させるためのスラスト滑り軸受部材等の回転機構を配設するスペースを容易に確保できる。具体的に、このようにインサート軸線が傾斜して延びていることで、特に複数の切削インサートを装着してなる多刃の刃先回転式ミーリング工具において、工具軸線回りに隣り合うインサート取付座同士の間隔が狭くなりがちな場合であっても、前記回転機構を配設するスペースを容易に確保することが可能になる。
 また、本発明に係る刃先回転式ミーリング工具によれば、角度ARtが、-30°~-60°の範囲とされ、かつ、角度RRが、-30°~-75°の範囲とされるので、切削インサートが被削材に切り込んで加工する際に切れ刃が受ける力によって、インサート取付座に対して切削インサートがインサート軸線回りにより安定して従動回転しやすくなり、前述の効果がさらに顕著なものとなる。
 本明細書でいう前記角度ARtとは、切削に用いられる切れ刃の工具先端縁における瞬間的な切削方向を考慮したアキシャルレーキ角である。図6に示される基準平面SSに沿う縦断面視において、角度ARtが-(マイナス)のときは、負(ネガ)のアキシャルレーキ角であり、+(プラス)のときは、正(ポジ)のアキシャルレーキ角である。具体的に、図6において角度ARtが-であるとき、交差線CLは、工具先端縁5aから工具基端側へ向かうに従い漸次工具回転方向Tの前方へ向けて延びる。また、角度ARtが+であるとき、特に図示していないが交差線CLは、工具先端縁5aから工具基端側へ向かうに従い漸次工具回転方向Tの後方へ向けて延びる。尚、角度ARtは、切削インサートの切れ刃に隣接するすくい面形状を考慮していない角度であることから、見かけ上のアキシャルレーキ角であるといえる。図6においては、工具軸線Oが、角度ARt(アキシャルレーキ角)=0°の基準面に一致する。尚、前記基準面とは、切れ刃5の工具先端縁5aにおける瞬間的な切削方向に垂直な仮想平面である。
 また、前記角度RRとは、切削に用いられる切れ刃の工具先端縁におけるラジアルレーキ角である。図1及び図20に示されるように、工具軸線O方向の先端から基端側へ向けて刃先回転式ミーリング工具1、31を見た正面視において、角度RRが-(マイナス)のときは、負(ネガ)のラジアルレーキ角であり、+(プラス)のときは、正(ポジ)のラジアルレーキ角である。具体的に、図1において角度RRが-であるとき、刃先接線L2は、工具先端縁5aから工具径方向の外側へ向かうに従い漸次工具回転方向Tの後方へ向けて延びる。また、図20において角度RRが+であるとき、刃先接線L2は、工具先端縁5aから工具径方向の外側へ向かうに従い漸次工具回転方向Tの前方へ向けて延びる。図1及び図20においては、所定の工具径方向Dが、角度RR(ラジアルレーキ角)=0°の基準面に一致する。
 そして、上述した角度ARtの範囲、かつ角度RRの範囲となるように切削インサートがインサート取付座に装着されることで、切削インサートの従動回転が安定して得られ、すくい面摩耗等が顕著に抑制されて、工具寿命をより延長する効果が期待できる。
 具体的に、角度ARtが上記範囲外である場合(-30°より大きい、又は-60°より小さい場合)には、第1の仮想平面の面内でインサート軸線の向きと前記合力の向きとを互いに平行となるように維持することが難しくなり、前記合力による切削インサートの回転軸(回転支持体)への負荷(インサート径方向からの押圧力)が抑制されにくくなって、上述した効果が安定して得られにくくなるおそれがある。
 また角度RRが、上記範囲外である場合、具体的には角度RRが-30°より大きい場合(かつ-20°より小さい場合)には、上記角度ARtとの組み合わせによって切削インサートを安定的に従動回転させる効果が得られにくくなるおそれがある。また、角度RRが-75°より小さい場合には、切削加工時の切削力が大きくなってびびり振動が生じやすくなるおそれがある。
 また、本発明に係る刃先回転式ミーリング工具によれば、角度ARtが、-30°~-60°の範囲とされ、かつ、角度RRが、-20°~30°の範囲とされるので、切削インサートが被削材に切り込んで加工する際に切れ刃が受ける力によって、インサート取付座に対して切削インサートがインサート軸線回りにより安定して従動回転しやすくなり、前述の効果がさらに顕著なものとなる。
 そして、上述した角度ARtの範囲、かつ角度RRの範囲となるように切削インサートがインサート取付座に装着されることで、切削インサートの従動回転が安定して得られ、すくい面摩耗等が顕著に抑制されて、工具寿命をより延長する効果が期待できる。
 具体的に、角度ARtが上記範囲外である場合(-30°より大きい、又は-60°より小さい場合)には、第1の仮想平面の面内でインサート軸線の向きと前記合力の向きとを互いに平行となるように維持することが難しくなり、前記合力による切削インサートの回転軸への負荷(インサート径方向からの押圧力)が抑制されにくくなって、上述した効果が安定して得られにくくなるおそれがある。
 また角度RRが、-20°より小さい場合(かつ-30°より大きい場合)には、上記角度ARtとの組み合わせによって切削インサートを安定的に従動回転させる効果が得られにくくなるおそれがある。また角度RRが、30°より大きい場合には、切削加工時にびびり振動が生じやすくなったり、切削インサートの外周面(逃げ面)が被削材に干渉しやすくなり工具本体の工具軸線回りの単位回転あたりの工具径方向へ向けた移動量(つまり送り量fz)を確保しにくくなったりするおそれがある。尚、前記送り量fzを確保する目的で切削インサートの外周面の逃げ角を大きくした場合には、切れ刃の刃物角を十分に確保しにくくなって刃先欠損等が生じるおそれがある。
 以上より、本発明によれば、切削インサートの回転軸等の回転支持体の変形、摩耗、破損等を防止でき、かつ、インサート取付座に装着された切削インサートをインサート軸線回りに安定して従動回転させることができ、これにより、切削の加工精度を安定して高められ、工具寿命を延長できるのである。
 また、本発明に係る刃先回転式ミーリング工具において、前記切削インサートの前記表面のうち、前記インサート径方向に沿う前記切れ刃の内側には、該切れ刃から前記インサート径方向の内側へ向かうに従い漸次前記インサート軸線方向に沿う前記表面から前記裏面側へ向けて傾斜するテーパ状のすくい面が形成されていることとしてもよい。
 上述したように、例えば、インサート軸線が工具回転方向の前方に向かうに従い漸次工具軸線方向の先端側へ向けて傾斜して延びている場合には、見かけ上のアキシャルレーキ角(角度AR)が負(ネガ)の装着姿勢でインサート取付座に切削インサートが装着されることになるが、本発明の上記構成によれば、実質的なアキシャルレーキ角は前記見かけ上のアキシャルレーキ角よりも正(ポジ)側に設定されて、切れ刃の切れ味が安定して高められることになる。
 また、インサート軸線が工具回転方向の前方に向かうに従い漸次工具径方向の外側へ向けて傾斜して延びている場合には、見かけ上のラジアルレーキ角(角度RR)が負(ネガ)の装着姿勢でインサート取付座に切削インサートが装着されることになるが、本発明の上記構成によれば、実質的なラジアルレーキ角は前記見かけ上のラジアルレーキ角よりも正(ポジ)側に設定されて、切れ刃の切れ味が安定して高められることになる。
 また、インサート軸線が工具回転方向の前方に向かうに従い漸次工具軸線方向の先端側及び工具径方向の外側へ向けて傾斜して延びている場合にも、上記同様の効果が得られる。
 また、本発明に係る刃先回転式ミーリング工具において、前記切削インサートの前記外周面には、前記切れ刃から前記インサート軸線方向に沿う前記表面から前記裏面側へ向かうに従い漸次前記インサート径方向の外側へ向けて傾斜するテーパ状の逃げ面が形成されていることとしてもよい。
 この場合、上述の装着姿勢でインサート取付座に切削インサートを装着しても、切れ刃の刃物角を大きく確保することができ、刃先欠損等が防止される。
 また、本発明に係る刃先回転式ミーリング工具において、前記切削インサートには、前記インサート軸線上を延びて前記表裏面に開口する貫通孔が形成されており、前記貫通孔よりも小径とされ、該貫通孔内に挿通されて前記インサート取付座に取り付けられる軸部と、前記貫通孔よりも大径とされ、前記表面との間に隙間をあけて配置される頭部と、を有する回転軸が設けられ、前記インサート取付座に対する前記回転軸の前記インサート軸線方向に沿う位置が調整可能であり、前記インサート取付座に対する前記回転軸の前記インサート軸線方向に沿う移動を規制可能な規制部を備えたこととしてもよい。
 この場合、切削インサートは、その貫通孔に挿通された回転軸(回転支持体)の軸部にインサート径方向の内側から支持されつつインサート取付座に対して従動回転し、かつ、回転軸の頭部によって抜け止めされている。そして、インサート取付座に対する回転軸のインサート軸線方向に沿う位置を調整することで、該回転軸の頭部と切削インサートの表面との間の隙間(クリアランス)を所望の値とすることができ、この調整後には、規制部によってインサート取付座に対する回転軸のインサート軸線方向に沿う移動を規制できる。
 すなわちこの構成によれば、例えば、インサート取付座に切削インサートを従動回転可能に支持するスラスト滑り軸受部材等の回転機構を設ける場合に、該回転機構の摩耗(損耗)状況に応じて回転軸をインサート軸線方向に進退して位置を微調整した後、固定でき、よってインサート取付座に対する切削インサートの従動回転がより安定的に維持される。
 また、本発明に係る刃先回転式ミーリング工具において、前記インサート取付座は、前記インサート軸線を中心とする軸対称形状の取付面を有することとしてもよい。
 この場合、インサート取付座の取付面が、インサート軸線を中心(中心軸)とする軸対称形状とされることから、具体的にこの取付面は、例えばインサート軸線に垂直な円形平面状、インサート軸線を中心軸とする円錐面状、球面状や、これら各形状の組み合わせ形状とされる。これにより、切削インサートからインサート取付座に伝達される前記合力を、該インサート取付座の取付面全体で分散して受けることができるとともに、該取付面における局所的な摩耗等が防止されて、上述の作用効果が長期に亘り安定して得られることになる。
 本発明の刃先回転式ミーリング工具及びこれを用いた切削方法によれば、切削インサートの回転軸等の回転支持体の変形、摩耗、破損等を防止でき、かつ、インサート取付座に装着された切削インサートをインサート軸線回りに安定して従動回転させることができ、これにより、切削の加工精度を安定して高められ、工具寿命を延長できる。
本発明の第1実施形態に係る刃先回転式ミーリング工具を示す正面図(刃先回転式ミーリング工具を工具軸線方向から先端面を正面に見た図)である。 図1の刃先回転式ミーリング工具のA矢視を示す側面図である。 図1の刃先回転式ミーリング工具のB矢視を示す側面図である。 図3の要部を拡大して示す図である。 図1の刃先回転式ミーリング工具のE-E断面を示す側断面図である。 図5の要部を拡大して示す図である。 本発明の第1実施形態に係る刃先回転式ミーリング工具の要部の分解斜視図である。 本発明の第1実施形態に係る刃先回転式ミーリング工具の工具本体の先端部を拡大して示す斜視図である。 本発明の第1、第2実施形態に係る刃先回転式ミーリング工具に装着される切削インサートの、インサート軸線方向から表面を正面に見た上面図である。 本発明の第1、第2実施形態に係る刃先回転式ミーリング工具に装着される切削インサートの、インサート径方向から外周面を正面に見た側面図である。 図9Bの切削インサートの側断面図(縦断面図)である。 刃先回転式ミーリング工具に装着した切削インサートの諸角度を示す図である。 切削インサートの切れ刃が被削材に切り込む際に、該切れ刃の部分により切削される切削断面の形状を示す拡大図であり、この切れ刃上の切削代表点を説明する図である。 切削代表点を通る切れ刃の接線に垂直な第1の仮想平面の面内で、主分力と背分力との合力の向きと、インサート軸線の延在する向きとが略平行に設定されることを説明する図である。 切削代表点が工具先端縁(5a)にある場合の、第2の仮想平面(加工面)及び切削の傾斜角を説明する斜視図である。 切削代表点が工具先端縁(5a)にある場合の、第2の仮想平面(加工面)及び切削の傾斜角を説明する斜視図である。 切削代表点が工具先端縁と工具外径端縁との間の中間点(5c)にある場合の、第2の仮想平面(加工面)及び切削の傾斜角を説明する斜視図である。 切削インサートをインサート軸線方向から表面を正面に見た正面図であり、切削代表点を説明する図である。 第1、第2実施形態の刃先回転式ミーリング工具の切削インサートを、安定的に従動回転させるための角度ARt、角度RRを幾何学的に求めるためのグラフであり、切り込み量da=0.5の場合の一例を示している。 本発明の第1、第2実施形態に係る刃先回転式ミーリング工具において、切削インサートを安定して従動回転させるのに適した角度ARtと角度RRの範囲を説明するグラフである。 本発明の第2実施形態に係る刃先回転式ミーリング工具を示す斜視図である。 本発明の第2実施形態に係る刃先回転式ミーリング工具を示す正面図(刃先回転式ミーリング工具を工具軸線方向から先端面を正面に見た図)である。 図20の刃先回転式ミーリング工具のG矢視を示す側面図である。 図20の刃先回転式ミーリング工具を、切削インサートの切れ刃の工具先端縁(切削代表点)を通る接線方向から見た側面図である。 図22の要部を拡大して示す図である。 第2実施形態に係る刃先回転式ミーリング工具の切削インサートのクランプ機構を説明する部分断面図である。
(第1実施形態)
 以下、本発明の第1実施形態に係る刃先回転式ミーリング工具1及びこれを用いた切削方法について、図面を参照して説明する。
 図1~図8に示されるように、本実施形態の刃先回転式ミーリング工具1は、鋼等で形成された工具本体2と、超硬合金等の硬質材料で形成された切削インサート3と、を備えており、工具軸線O回りに回転する工具本体2の先端外周部に形成されたインサート取付座4に、円板状をなす切削インサート3がそのインサート軸線C回りに回転自在とされて、着脱可能に装着される。切削インサート3は円形状の切れ刃5を有する、所謂丸駒インサートであり、該切削インサート3がインサート取付座4に装着された状態で、切れ刃5は工具本体2の先端側及び径方向外側に向けて突出される。
 刃先回転式ミーリング工具1は、その工具本体2の基端部が工作機械(不図示)の主軸に取り付けられ、工具軸線O回りの工具回転方向Tに回転させられて、耐熱合金などの難削材等の被削材の切削加工(特に重切削加工)に供される。この刃先回転式ミーリング工具1は、切削インサート3が被削材に切り込んで加工する際に切れ刃5が受ける力(切削力又は切削抵抗であり、刃先力又はエッジフォースの成分を含む)によって、インサート取付座4に対して該切削インサート3がインサート軸線C回りに従動(受動)的に回転する、ロータリーミーリング工具である。
 ここで、本明細書においては、工具本体2の工具軸線O方向に沿うインサート取付座4側を工具先端側又は単に先端側(図2~図6における下側)といい、工具軸線O方向に沿うインサート取付座4とは反対側(工作機械の主軸側)を工具基端側又は単に基端側(図2~図6における上側)という。また、工具軸線Oに直交する方向を工具径方向といい、工具軸線O回りに周回する方向を工具周方向という。また前記工具周方向のうち、切削時に工具本体2が回転させられる向きを工具回転方向T又は工具回転方向Tの前方といい、工具回転方向T(の前方)とは反対側へ向かう方向を工具回転方向Tの後方という。また、切削インサート3のインサート軸線Cに直交する方向をインサート径方向といい、インサート軸線C回りに周回する方向をインサート周方向という。
 工具本体2は、円柱状又は円盤状をなしており、その中心軸である工具軸線O回りに回転可能とされている。図示の例では、工具本体2は円柱状をなしており、該工具本体2の先端部(刃部)に比べて、該先端部以外の部位(シャンク部)が大径に形成されている。本実施形態では、工具本体2の先端部は、工具先端側へ向かうに従い漸次縮径されて、テーパ状をなしている。
 工具本体2の先端外周部には、工具周方向に間隔をあけて、該先端外周部から凹状に切り欠かれるように複数のチップポケット6が形成されている。これらチップポケット6において、工具回転方向Tを向く壁面には、切削インサート3が着脱可能に装着されるインサート取付座4がそれぞれ形成されている。
 図8において、インサート取付座4には、工具回転方向Tを向く取付面4aと、取付面4aの周縁部から立ち上がる規制面4bと、取付面4aに穿設された回転軸装着穴4cと、該インサート取付座4と切削インサート3との間にクーラント(切削油剤)を噴出するクーラント孔(不図示)と、が形成されている。また図6及び図7に示されるように、本実施形態では、インサート取付座4には、切削インサート3と取付面4aとの間に介装されるシート状のスラスト滑り軸受部材(回転機構)8が設けられている。
 図8において取付面4aは、切削インサート3の形状に対応して略円形平面状に形成されており、具体的にこの取付面4aは、インサート軸線Cを中心とする軸対称形状となっている。尚、本明細書でいう「軸対称形状」とは、厳密に軸対称形状とされている構成を含むのは勿論のこと、概ね軸対称の形状となっている構成をも含んでいる。図3に示される工具本体2の側面視(インサート取付座4の側面視)で、取付面4aは、工具本体2の先端側(図3における下側)に向かうに従い漸次工具回転方向Tの後方へ向かって傾斜している。また本実施形態では、取付面4aは、工具径方向の外側に向かうに従い漸次工具回転方向Tの後方へ向かって傾斜している。
 規制面4bは、取付面4aにおける工具本体2の基端側の端縁から工具回転方向Tの前方へ向けて立ち上がるとともに、工具先端側を向く平面状の壁面とされている。インサート取付座4の取付面4aを正面に見て、規制面4bは直線状に延びている。
 回転軸装着穴4cは、多段円柱穴状をなしており、該回転軸装着穴4cにおいて取付面4aに開口する端部(開口部)の内径は、該開口部以外の部位の内径よりも一段大きくなっている。回転軸装着穴4cのうち前記開口部以外の部位は、雌ネジ加工が施された雌ネジ部とされている。
 また、工具本体2の先端部において工具周方向に隣り合うインサート取付座4同士の間には、該先端部の外周面に開口するとともに、工具径方向に沿うように延びて回転軸装着穴4c内に連通するネジ孔7が形成されている。
 前記クーラント孔は、工具本体2の内部を通して、該工具本体2の基端部に装着される工作機械の主軸に連通されている。また、インサート取付座4の取付面4aを正面に見て、前記クーラント孔の中心軸は、切削インサート3のインサート周方向に沿うように(インサート周方向の接線方向に沿って)延びているとともに、取付面4aに開口された該クーラント孔から噴出するクーラントの向きが、インサート取付座4に対する切削インサート3の従動回転方向に沿うように設定されている。
 図7において、スラスト滑り軸受部材(滑り軸受部材)8は円板状をなしており、その厚さ方向(スラスト滑り軸受部材8の中心軸方向)を向く一対の円形面の中心には、該スラスト滑り軸受部材8を貫通して形成された孔8aが開口している。また、スラスト滑り軸受部材8の外周面の一部には、該スラスト滑り軸受部材8を厚さ方向から見た正面視で直線状に切り欠かれた切り欠き部8bが形成されている。また、スラスト滑り軸受部材8には、該スラスト滑り軸受部材8を厚さ方向に貫通するクーラント流通孔8cが形成されている。
 本実施形態のように、インサート取付座4にスラスト滑り軸受部材8が設けられる場合には、該スラスト滑り軸受部材8において厚さ方向を向く一対の円形面のうち、切削インサート3が着座される一方の円形面8dが、インサート取付座4における取付面とされる。すなわち、インサート取付座4がスラスト滑り軸受部材8を備える場合には、切削インサート3の裏面(工具回転方向Tの後方を向く面)10は、該インサート取付座4のスラスト滑り軸受部材8において工具回転方向Tの前方を向く一方の円形面(取付面)8dに着座されることになる。また、一方の円形面8dは、インサート軸線Cを中心とする軸対称形状とされている。
 スラスト滑り軸受部材8が取付面4a上に配設された状態で、孔8aは回転軸装着穴4cに連通し、クーラント流通孔8cは前記クーラント孔に連通する。また、切り欠き部8bは規制面4bに対向配置されるとともに係止可能とされ、これにより取付面4aに対するスラスト滑り軸受部材8のインサート周方向の回転が規制されるようになっている。
 本実施形態では、切削時に、切削インサート3が被削材に切り込んで加工する際に切れ刃5が受ける力(切削力又は切削抵抗であり、刃先力又はエッジフォースの成分を含む)のみによって、インサート取付座4に対して切削インサート3を従動回転させるのではなく、前記クーラント孔からクーラント流通孔8cを通して噴出するクーラントを該切削インサート3の着座面13に当てることによって、この切削インサート3が所定のインサート周方向へ向けてより従動回転しやすいようにしている。
 尚、本実施形態では、インサート取付座4がスラスト滑り軸受部材8を備えている例について説明したが、これに限定されるものではなく、例えばインサート取付座4が、スラスト滑り軸受部材8の代わりにスラスト転がり軸受部材(転がり軸受部材)を備えていてもよい。この場合、切削インサート3の裏面10は、インサート取付座4のスラスト転がり軸受部材において工具回転方向Tの前方を向く取付面に着座されることになる。さらに、インサート取付座4にこれら軸受部材が設けられておらず、切削インサート3の裏面10が、直接工具本体2の取付面4aに着座されることとしてもよい。
 図9A、図9B及び図10に示されるように、切削インサート3は、インサート軸線Cに交差する(インサート軸線Cに略直交する)表裏面9、10と、これら表裏面9、10の周縁同士を接続する外周面11と、を有している。尚、本明細書でいう「インサート軸線Cに交差する表裏面9、10」とは、インサート軸線Cが表裏面9、10に開口する後述する貫通孔14内に配置されつつも、該インサート軸線Cがこれら表裏面9、10の中心(仮想中心)を貫いている状態を指す。また、外周面11は、表裏面9、10の周縁同士を、インサート軸線C方向に沿うように延びて繋いでいる。
 図1~図6に示されるように、切削インサート3が工具本体2のインサート取付座4に装着された状態で、表裏面9、10のうち、表面9が、工具回転方向Tの前方を向くように配置され、裏面10が、工具回転方向Tの後方を向くように配置されるとともに、インサート取付座4(本実施形態ではインサート取付座4のスラスト滑り軸受部材8)に着座される。
 図9A、図9B及び図10において、表面9の周縁には、インサート周方向に沿って延びる円形状をなし、インサート軸線Cに直交する切れ刃仮想平面VS上に配置された切れ刃5が形成されているとともに、切れ刃5は、表面9における該切れ刃5以外の部位よりもインサート軸線C方向に突出している。
 また図10において、表面9における切れ刃5のインサート径方向の内側には、該切れ刃5からインサート径方向の内側へ向かうに従い漸次インサート軸線C方向に沿う表面9から裏面10側へ向けて傾斜するテーパ状のすくい面12が形成されている。尚、本明細書では、インサート軸線C方向のうち表面9から裏面10側へ向かう方向を、単にインサート軸線C方向に沿う裏面10側ということがある。また、インサート軸線C方向のうち裏面10から表面9側へ向かう方向を、単にインサート軸線C方向に沿う表面9側ということがある。
 図10に示される切削インサート3のインサート軸線Cを含む縦断面視で、切れ刃仮想平面VSに対してすくい面12が傾斜する角度αは、例えば35°~50°の範囲とされている。表面9における切れ刃5及びすくい面12以外の部位は、インサート軸線Cに垂直な平面状をなしている。
 また、裏面10における外周縁部は、該外周縁部以外の部位よりも一段窪まされている。裏面10における前記外周縁部以外の部位は、インサート取付座4の取付面(本実施形態ではスラスト滑り軸受部材8の円形面8d)に着座する着座面13とされている。本実施形態では、着座面13は、インサート取付座4の取付面がインサート軸線Cに垂直な平面状をなしているのに対応して、インサート軸線Cに垂直な平面状をなしている。
 切削インサート3には、インサート軸線C上を延びて表裏面9、10に開口する貫通孔14が形成されている。図9A及び図10において、貫通孔14におけるインサート軸線C方向の両端部は、該両端部以外の部位よりも大径となっている。また図示の例では、貫通孔14の前記両端部以外の部位は、インサート軸線C方向の全体に亘って略一定の内径とされている。
 また、切削インサート3の外周面11には、表面9の外周端縁をなす切れ刃5からインサート軸線C方向に沿う表面9から裏面10側へ向かうに従い漸次インサート径方向の外側へ向けて傾斜するテーパ状の逃げ面15が形成されている。切削インサート3のインサート軸線Cを含む縦断面視で、インサート軸線C(に平行な仮想直線)に対して逃げ面15が傾斜する角度βは、例えば10°~35°の範囲とされている。
 切削インサート3の外周面11において、逃げ面15よりもインサート軸線C方向に沿う裏面10側に位置する部分には、該逃げ面15よりもインサート軸線Cに対する傾斜が緩やかな二番取り面16が形成されている。すなわち、逃げ面15におけるインサート軸線C方向に沿う単位長さあたりのインサート径方向への変位量に比べて、二番取り面16における前記変位量が小さくなっている。また、外周面11におけるインサート軸線C方向に沿う裏面10側の端部は、インサート軸線Cを中心とする円筒面状をなしている。このような構成により、切削インサート3の外周面11は、インサート軸線C方向に沿う表面9から裏面10側へ向かって拡径している。
 また、図10に示される縦断面視で、すくい面12と逃げ面15との間に形成される切れ刃5を中心とする刃物角γは、例えば65°~75°の範囲とされている。
 また図7において、この刃先回転式ミーリング工具1は、切削インサート3をインサート取付座4に回転自在に装着するための切削インサートのクランプ機構として、回転軸(回転支持体)17及び規制部を備えている。回転軸17は、切削インサート3の貫通孔14及びスラスト滑り軸受部材8の孔8aよりも小径とされ、これら貫通孔14内及び孔8a内に挿通されてインサート取付座4に取り付けられる軸部17aと、貫通孔14よりも大径とされ、表面9との間に隙間をあけて配置される頭部17bと、を有している。
 軸部17aにおける頭部17bとは反対側の端部は、該端部以外の部位よりも小径とされているとともに、雄ネジ加工が施された雄ネジ部となっている。軸部17aの雄ネジ部が回転軸装着穴4cの雌ネジ部に螺着されることで、回転軸17がインサート取付座4に対して着脱可能に装着され、前記雌ネジ部に対する前記雄ネジ部のねじ込み量を調整することで、インサート取付座4に対する回転軸17のインサート軸線C方向に沿う位置が調整可能となっている。
 また、工具本体2のネジ孔7にイモネジ18をねじ込み、該イモネジ18の先端を回転軸17の軸部17aに当接させることで、インサート取付座4に対する回転軸17のインサート軸線C方向に沿う移動を規制可能となっており、これらネジ孔7及びイモネジ18を有する規制部が構成されている。尚、本実施形態ではイモネジ18の先端が、軸部17aのうち前記雄ネジ部以外の部位に当接されている(図24を参照)。
 図3~図6に示されるように、本実施形態の例では、インサート取付座4に切削インサート3が装着された状態で、該切削インサート3のインサート軸線Cは、工具回転方向Tの前方に向かうに従い漸次工具先端側へ向けて傾斜して延びている。ただし本発明はこれに限定されるものではなく、切削インサート3のインサート軸線Cは、工具回転方向Tの前方に向かうに従い漸次工具径方向の外側へ向けて傾斜して延びていてもよい。或いは、切削インサート3のインサート軸線Cは、工具回転方向Tの前方に向かうに従い漸次工具回転方向Tの前方かつ工具径方向の外側へ向けて傾斜して延びていてもよい。具体的に、インサート軸線Cが傾斜する向きは、下記の切削代表点が設定されることにより決められることになる。ただし、インサート軸線Cの傾斜の向きは、切削代表点が決定されることにより一義的に決まるわけではなく、例えば切削インサート3をより従動回転させやすくするための傾斜の向きなども考慮して決定される。
 図12~図15に示されるように、インサート軸線Cに直交するインサート径方向のうち、切削加工時に被削材から切削インサート3に分布して作用する力を集中荷重とみなしたとき(集中荷重と近似した場合)の該集中荷重の作用点Pを通る所定のインサート径方向IDと、切れ刃5と、の交点を切削代表点(後述する符号5a、5b、5cのいずれか)とし、この切削代表点を通る切れ刃5の接線L2に垂直な第1の仮想平面VSと、前記接線L2及び前記切削代表点における瞬間的な切削方向に沿う仮想直線L1を含む第2の仮想平面VSと、の交線Lに沿う方向(図13における左右方向)であって、工具回転方向Tの後方に向かう方向(図13における右方向)を主分力方向とし、切削加工時に被削材から切削インサート3が受ける力のうち、前記切削代表点における前記主分力方向に沿う分力を主分力F1とし、該主分力方向に垂直でインサート径方向の内側へ向かう背分力方向(図13における上方向)に沿う分力を背分力F2としたときに、図13に断面図として示される第1の仮想平面VSの面内で、主分力F1と背分力F2との合力F3の向きに対して、インサート軸線Cの延在する向きが、平行に設定又は所定の微少角度をなすように設定されている(つまり略平行に設定されている)。
 尚、図13において符号F4で示される力は、切れ刃5が被削材に切り込んで加工する際に受ける力(切削力又は切削抵抗であり、刃先力又はエッジフォースの成分を含む)のうち、該切れ刃5の前記切削代表点を通る接線L2方向へ向かう分力(つまり前記切削代表点を通り第1の仮想平面VSに直交する向きの分力)であり、この分力を本明細書では送り分力F4と呼ぶ。本実施形態においては、送り分力F4は工具径方向の外側へ向かうように設定されている。
 ここで、本明細書でいう前記「切削代表点」について説明する。
 切削加工時に、工具本体2に装着された切削インサート3の切れ刃5が被削材に切り込んで加工する際に該切削インサート3が受ける力は、被削材に切り込んだ切削インサート3の切り込み領域(図12にハッチングで示される領域、「切削断面」とも呼ばれる)を含む、すくい面12と被削材・切屑の接触領域(一般に切屑は、前記切り込み領域から切削インサート3の略中心方向に向かって、すくい面12上を接触しながら流出する)全体に分布する荷重(分布荷重)であるが、このような分布荷重により切削インサート3が受ける力とモーメント(インサート中心から見たモーメント)に基づいて、前記分布荷重が集中荷重であるとみなした場合(仮定した場合)に、該集中荷重の作用点(分布荷重の重心に相当する点)Pを通る所定のインサート径方向IDと、切れ刃5との交点を、本明細書では「切削代表点」という。具体的には図12において、切削加工時に被削材から切削インサート3に作用する分布荷重を集中荷重とみなした場合の該集中荷重の作用点が符号Pで示されており、該作用点Pを通る所定のインサート径方向IDと、円形状をなす切れ刃5との交点5cが、切削代表点である。また切削代表点は、切れ刃5のうち切削加工時に切削力の平均的な作用点に最も近くなる点であるともいえる。切削代表点は、切削インサート3の切れ刃5上に位置するが、切削インサート3がインサート軸線C回りに従動回転する場合にも、切削インサート3とともに回転移動することはなく、工具に対する相対位置は変化しない。尚、例えば工具軸線O方向の切込みが変化した場合には、力の作用点Pが変化するため、それとともに移動する。
 また、「切削代表点における瞬間的な切削方向」とは、この切削代表点において、工具と被削材の間の相対的な瞬間速度の方向であり、主に工具の回転に伴って回転移動する。
 尚、図12において符号fで表されるものは一刃あたりの送り量に依存する量であり、刃先回転式ミーリング工具1の工具本体2が工具径方向に送りを与えられることで、工具回転方向Tの前方に位置する切削インサート3の切れ刃5(2点鎖線で表される切れ刃5)が被削材を切削した後に、該切れ刃5の工具回転方向Tの後方に位置する別の(現在の)切削インサート3の切れ刃5(実線で表される切れ刃5)が、図12にハッチングで示される領域を切削するようになっている。尚、上記「一刃あたりの送り量に依存する量f」とは、一般にいう送り量fzとは異なるものであり、工具回転位置、インサート軸線Cの取り付け角度にも依存するため、上記のように呼称することとした。
 また切削代表点は、工具本体2に装着された切削インサート3の切れ刃5全周のうち、工具軸線O方向に沿う先端に位置する部分(工具先端縁5a)と、工具径方向に沿う外端に位置する部分(工具外径端縁5b)との間の、中心角90°の円弧状部分(切れ刃5の円周を1とした場合の1/4円弧)における所定位置に設定されている。
 より詳しくは、例えば、刃先回転式ミーリング工具1による所望の切削加工の種類が「正面削り加工」等の場合には、切れ刃5上の切削代表点は、工具先端縁5aに近い位置である。また、所望の切削加工の種類が「肩削り加工」等の場合には、切れ刃5上の切削代表点は、工具外径端縁5bに近い位置である。また、所望の切削加工の種類が、正面削り加工及び肩削り加工の複合加工である「R削り加工」等の場合には、切れ刃5上の切削代表点は、工具先端縁5aと工具外径端縁5bとの間に位置する中間点5cである。
 つまり切削代表点とは、所期する切削加工により予め決定され得る切れ刃5上の所定位置(所定範囲)であり、本実施形態ではこの切削代表点における主分力F1と背分力F2との合力F3の向きに対して、インサート軸線Cの傾きを、略平行に設定するのである。
 ここで、本明細書でいう「第1の仮想平面VSの面内で、主分力F1と背分力F2との合力F3の向きに対して、インサート軸線Cの延在する向きが、平行に設定又は所定の微少角度をなすように設定される(つまり平行となるように設定される)」とは、具体的には、この刃先回転式ミーリング工具1を用いた想定し得る切削条件の範囲内において、前記第1の仮想平面VSの面内で(切削代表点を通る切れ刃5の接線L2方向から見て)、合力F3の向きに対してインサート軸線Cが傾斜する角度が、±20°の範囲内であることを指す。つまり、インサート軸線Cと、合力F3の向きとの2直線間に形成される角度が±20°の範囲内であり、これを「平行に設定又は所定の微少角度をなすように設定される」と表している。尚、好ましくは、前記角度は±10°であり、より望ましくは、前記角度は±5°であって、前記角度が0°である場合に、合力F3の向きに対してインサート軸線Cが平行である(平行に設定される)。
 尚、上述の、合力F3の向きに対してインサート軸線Cが傾斜する角度が、±20°の範囲内とは、合力F3の向きとインサート軸線Cとの間に形成される角度が、20°以下であることを指す。また、合力F3の向きに対してインサート軸線Cが傾斜する角度が、±10°の範囲内とは、合力F3の向きとインサート軸線Cとの間に形成される角度が、10°以下であることを指す。また、合力F3の向きに対してインサート軸線Cが傾斜する角度が、±5°の範囲内とは、合力F3の向きとインサート軸線Cとの間に形成される角度が、5°以下であることを指す。
 また、合力F3の向きに対してインサート軸線Cの延在する向きを「平行」のみに限定せず、若干の角度範囲を設けているのは、下記の理由による。
 すなわち、合力F3の向きは、例えば切削インサート3のすくい面12形状、切れ刃5の刃先処理及び摩耗状態、被削材の摩擦係数、切削条件(切込み、送り等)などにより変化することが考えられ、そのため当該合力F3の向きに対してインサート軸線Cの延在する向きを正確に平行に設定することは困難であるので、本発明による効果が十分に得られる範囲として、「平行に設定又は所定の微少角度をなすように設定される」としている。
 本実施形態の刃先回転式ミーリング工具1では、合力F3とインサート軸線Cとが略平行になることを簡単に説明する都合上、切れ刃5上の切削代表点を工具先端縁5aに設定した一例を用いている。
 すなわち、図1に示される切削インサート3の切れ刃5の工具先端縁5a(本実施形態における切削代表点)を通る接線L2方向から見たものが、図3及び図4であり、この接線L2方向視(接線L2に垂直な第1の仮想平面VSの面内)で、主分力F1と背分力F2との合力F3の向きが、インサート軸線Cに平行に設定又は所定の微少角度をなすように設定されている。
 また、図4において符号MSで示されるものは、この刃先回転式ミーリング工具1により切削加工される被削材の加工面である。
 ここで、本明細書でいう加工面MSとは、切れ刃5の切削代表点を通る接線L2、及びこの切削代表点における瞬間的な切削方向に沿う仮想直線(図1に符号L1で示される仮想円VCの接線)を含む仮想平面(つまり上述した第2の仮想平面VS)を指していて、円板状の切削インサート3によって実際に加工される凹曲面のうち、切削代表点を含む微小範囲を平面状に延展して表した、本発明を説明するための仮想の構成要素(概念)である。そして、図4に示される接線L2方向視で、加工面MS(第2の仮想平面VS)に対してインサート軸線Cが傾斜する角度(傾斜角)θが、例えば20°~70°の範囲である。
 ここで、角度θの範囲については、所望の切削加工条件により設定される合力F3の向きに応じてインサート軸線Cの傾きを決定することで基準を設け、該基準となる角度に対して若干の振り幅(プラスマイナスの角度範囲)を設けることが好ましい。例えば、基準となる角度が45°である場合には、角度θは45°±20°の範囲が好ましく、より望ましくは45°±5°の範囲である(例えば、図17のグラフ中に示される角度ARnの範囲(切れ刃5の切削代表点が工具先端縁5aにある場合の角度θに相当する角度範囲)を参照)。
 また、図5及び図6は、図1に示される刃先回転式ミーリング工具1の工具径方向のうち、切れ刃5の工具先端縁5aを通る所定の工具径方向Dから見たE-E断面である。
 図1において、切れ刃5のうち工具先端縁5a(切削代表点)が、工具周方向に回転して形成される仮想円VCにおける前記工具先端縁5aを通る接線L1(瞬間的な切削方向に沿う仮想直線)を、工具基端側に向けて工具軸線Oに平行に移動させたときの軌跡から得られる仮想平面を基準平面SSとしたときに、この基準平面SSを側断面(縦断面)として表される図5及び図6において、該基準平面SSと、円形状の切れ刃5を含む切れ刃仮想平面VSとの交差線CLが、基準平面SS上に投影された工具軸線Oに対して傾斜する角度ARtが、例えば-30°~-60°の範囲とされている。すなわち、前記角度ARtは、切削に供される切れ刃5の工具先端縁5aにおける瞬間的な切削方向を考慮したアキシャルレーキ角であり、具体的には、負(ネガ)のアキシャルレーキ角となっている。図6に示される基準平面SSに沿う縦断面視において、角度ARtが-(マイナス)のときは、負(ネガ)のアキシャルレーキ角であり、+(プラス)のときは、正(ポジ)のアキシャルレーキ角である。具体的に、図6において角度ARtが-であるとき、交差線CLは、工具先端縁5aから工具基端側へ向かうに従い漸次工具回転方向Tの前方へ向けて延びる。また、角度ARtが+であるとき、特に図示していないが交差線CLは、工具先端縁5aから工具基端側へ向かうに従い漸次工具回転方向Tの後方へ向けて延びる。図6においては、工具軸線Oが、角度ARt(アキシャルレーキ角)=0°の基準面に一致する。尚、前記基準面とは、切れ刃5の工具先端縁5aにおける瞬間的な切削方向に垂直な仮想平面である。
 一方、図3及び図4に示されるように切れ刃仮想平面VSに垂直な工具径方向から見て、工具軸線Oに対して切れ刃仮想平面VSが傾斜する角度ARnは、例えば-30°~-50°の範囲とされている。すなわち、前記角度ARnは、工具本体2に装着された切削インサート3単体としての瞬間的な切削方向を考慮しないアキシャルレーキ角であり、負(ネガ)のアキシャルレーキ角となっている。図4に示されるように、工具径方向の内側へ向けて刃先回転式ミーリング工具1を見て、かつ切れ刃仮想平面VSに垂直な側面視において、角度ARnが-(マイナス)のときは、負(ネガ)のアキシャルレーキ角であり、+(プラス)のときは、正(ポジ)のアキシャルレーキ角である。具体的に、図4において角度ARnが-であるとき、切れ刃仮想平面VSは、工具先端縁5aから工具基端側へ向かうに従い漸次工具回転方向Tの前方へ向けて延びる。また、角度ARnが+であるとき、特に図示していないが切れ刃仮想平面VSは、工具先端縁5aから工具基端側へ向かうに従い漸次工具回転方向Tの後方へ向けて延びる。図4においては、工具軸線Oが、角度ARn(アキシャルレーキ角)=0°の基準面に平行である。
 また本実施形態の刃先回転式ミーリング工具1は、切削代表点を切れ刃5の工具先端縁5aに設定していることから、図4に示されるように、加工面MS(第2の仮想平面VS)とインサート軸線Cとの間に形成される傾斜角θが、前記ARnに等しくされている。
 尚、角度ARt及び角度ARnは、切削インサート3の切れ刃5に隣接するすくい面12形状を考慮していない角度であることから、見かけ上のアキシャルレーキ角であるといえる。
 また本実施形態においては、角度ARtがネガの45°(-45°)とされ、角度ARnがネガの30°(-30°)とされている。
 また図1において、工具径方向のうち工具先端縁5aを通る所定の工具径方向Dに対して、該工具先端縁5aを通り工具径方向の外側へ向かうように延びる切れ刃5の刃先接線L2が傾斜する角度RRは、例えば-30°~-75°の範囲とされている。すなわち、前記角度RRは、切削に供される切れ刃5の工具先端縁5aにおけるラジアルレーキ角であり、具体的には、負(ネガ)のラジアルレーキ角であって、本実施形態ではこの角度RRが、ネガの55°(-55°)となっている。図1に示されるように、工具軸線O方向の先端から基端側へ向けて刃先回転式ミーリング工具1を見た正面視において、角度RRが-(マイナス)のときは、負(ネガ)のラジアルレーキ角であり、+(プラス)のときは、正(ポジ)のラジアルレーキ角である。具体的に、図1において角度RRが-であるとき、刃先接線L2は、工具先端縁5aから工具径方向の外側へ向かうに従い漸次工具回転方向Tの後方へ向けて延びる。また、角度RRが+であるとき、刃先接線L2は、工具先端縁5aから工具径方向の外側へ向かうに従い漸次工具回転方向Tの前方へ向けて延びる(図20を参照)。図1においては、所定の工具径方向Dが、角度RR(ラジアルレーキ角)=0°の基準面に一致する。
 尚、図11に示されるものは、上述した角度ARt、ARn、RRの諸角度を簡略化して示す図である。
 また図13は、上述した主分力F1と背分力F2との合力F3の向きと、インサート軸線Cの延在する向きとが、互いに略平行であることを説明する簡略図である。図13における切れ刃5上の切削代表点は工具先端縁5aとなっているが、上述したように切削代表点は、切れ刃5上の工具外径端縁5bや、工具先端縁5aと工具外径端縁5bとの間の中間点5cであってもよい(切れ刃5円周上の工具外径端縁5b及び中間点5cの位置については、図1及び図4を参照)。
 つまり本発明は、本実施形態で説明に用いた刃先回転式ミーリング工具1の構成に限定されるものではない。具体的に、本実施形態のように切削代表点が工具先端縁5aに設定される場合には、工具先端縁5aを基準とする加工面MS(第2の仮想平面VS)は工具軸線Oに対して垂直であり、切削インサート3のインサート軸線Cは、加工面MS(第2の仮想平面VS)に垂直な仮想平面内に略位置している。一方、切削代表点が工具外径端縁5bに設定される場合には、工具外径端縁5bを基準とする加工面MS(第2の仮想平面VS)は工具軸線Oに対して平行であり、切削インサート3のインサート軸線Cは、加工面MS(第2の仮想平面VS)に垂直な仮想平面内に略位置している。また、切削代表点が中間点5cに設定される場合には、中間点5cを基準とする加工面MS(第2の仮想平面VS)は工具軸線Oに対して垂直でも平行でもない傾斜面とされ、切削インサート3のインサート軸線Cは、加工面MS(第2の仮想平面VS)に垂直な仮想平面内に略位置している。
 図14A~図16は、切削インサート3の切削代表点と、該切削代表点を基準とする加工面MS(第2の仮想平面VS)とを、簡略化して表している。
 図14A及び図14Bは、切削インサート3の切削代表点を工具先端縁5aに設定した場合を表しており、図中に示される符号iは、該工具先端縁5aにおける瞬間的な切削方向に沿う仮想直線L1(工具先端縁5aの工具回転方向Tに沿う回転軌跡である仮想円VCの該工具先端縁5aを通る接線L1)と、切れ刃5の該工具先端縁5aを通る接線L2との2直線を含む仮想平面である加工面MS(第2の仮想平面VS)における、切削の傾斜角を表している。切削代表点が工具先端縁5aに設定される場合には、加工面MS(第2の仮想平面VS)は工具軸線Oに垂直な仮想平面である。
 具体的に、切削の傾斜角iは、この加工面MS(第2の仮想平面VS)内において、切れ刃5の切削代表点(図14A及び図14Bにおいては工具先端縁5a)を通る接線L2に垂直な法線NLと、切削代表点の瞬間的な切削方向に延びる仮想直線L1(接線L1)との間に形成される角度である。尚、接線L1は、切れ刃5の切削代表点である工具先端縁5aが工具軸線O回りに回転して形成される回転軌跡である仮想円VCの該工具先端縁5aを通る接線である。
 また図15は、切削インサート3の切削代表点を中間点5cに設定した場合を表している。切削代表点が中間点5cの場合、該中間点5cが工具軸線O回りに回転して形成される回転軌跡である仮想円VCは、上述の切削代表点が工具先端縁5aに設定された場合の仮想円VCよりも、工具基端側に配置されかつ直径が大きくなる。またこの場合、中間点5cにおける瞬間的な切削方向に沿う仮想直線L1(仮想円VCの中間点5cを通る接線L1)と、切れ刃5の該中間点5cを通る接線L2との2直線を含む仮想平面である加工面MS(第2の仮想平面VS)は、工具軸線Oに対して垂直でも平行でもない傾斜面となる。
 図15における切削の傾斜角iは、この加工面MS(第2の仮想平面VS)内において、切れ刃5の切削代表点(図15においては中間点5c)を通る接線L2に垂直な法線NLと、切削代表点の瞬間的な切削方向に延びる仮想直線L1(接線L1)との間に形成される角度である。尚、この場合の接線L1は、切れ刃5の切削代表点である中間点5cが工具軸線O回りに回転して形成される回転軌跡である仮想円VCの該中間点5cを通る接線である。
 また特に図示していないが、切削インサート3の切削代表点を工具外径端縁5bに設定した場合には、加工面MS(第2の仮想平面VS)は、工具軸線Oに対して平行な仮想平面となり、切削の傾斜角iは、この加工面MS(第2の仮想平面VS)内において、切れ刃5の切削代表点(工具外径端縁5b)を通る接線L2に垂直な法線NLと、切削代表点の瞬間的な切削方向に延びる仮想直線L1(接線L1)との間に形成される角度となる。
 本発明の発明者は、実験結果及びシミュレーション(解析)等に基づいて、この切削の傾斜角iが、i≦-15°、15°≦iの範囲とされ、かつ本発明の条件(第1の仮想平面VSの面内で、インサート軸線Cが合力F3の向きに略平行である)を満たす場合に、切削インサート3が安定して従動回転しやすくなるという知見を得た。
 尚、本明細書でいう、切削インサート3が安定して従動回転する、とは、切削加工中に切削インサート3が被削材に切り込む度に、毎回僅かでもインサート軸線C回りに回転し続ける状態を指している。
 ここで、図17に示されるグラフは、上述した知見に基づいて幾何学的に算出した、所定の切削代表点(切れ刃5上の切削代表点を中間点5cとした場合であり、具体的には工具本体2の被削材に対する工具軸線O方向の切り込み量daが、da=0.5mm)を設定した刃先回転式ミーリング工具において、切削インサート3を安定的に従動回転させやすくするための角度ARtと角度RRとの適切な組合せの範囲を表している。
 このグラフ中に示される角度ARnは、加工面MS(第2の仮想平面VS)に対してインサート軸線Cを傾斜させる角度θ(合力F3の向きに対してインサート軸線Cを略平行に設定する角度)に相当し、図示の例では45°±5°としている。そして、切削インサート3を安定して従動回転させるための切削の傾斜角iがi≦-15°、15°≦iの範囲であることから、これらの組合せ(角度範囲が互いに重なり合う領域)によって、角度ARt、RRの範囲を決定する。
 このような考え方に基づいて、切削代表点が切り込み量daに応じて種々に設定された場合の角度ARt、RRの範囲を求めたものが、図18に示されるグラフである。
 本実施形態で説明した角度ARt:-45°及び角度RR:-55°の組合せは、切り込み量daの大小に係わらず(具体的には少なくともdaが0.5~2.0mmの範囲内において)、切削インサート3を安定的に従動回転させられる範囲にある。
 また図6において、切削インサート3が装着されるインサート取付座4の取付面4a、及びスラスト滑り軸受部材8の一方の円形面(取付面)8dを含む一対の円形面は、ともにインサート軸線Cに垂直な平面状をなしている。具体的に、インサート取付座4の前記取付面は、インサート軸線Cを中心とする軸対称形状となっている。
 以上説明した本実施形態の刃先回転式ミーリング工具1及びこれを用いた切削方法によれば、工具本体2のインサート取付座4に装着された切削インサート3のインサート軸線Cの向きが、切削代表点を通る切れ刃5の接線L2に垂直な第1の仮想平面VS内において、切削インサート3の切れ刃5が被削材に切り込んで加工する際に受ける力(切削力又は切削抵抗であり、刃先力又はエッジフォースの成分を含む)のうち主分力F1と背分力F2との合力(合成切削力)F3の向きに平行となるように設定されているので、切削インサート3のインサート軸線C上に位置する回転軸(回転支持体)17が、前記合力F3によってインサート径方向から(つまり回転軸17のせん断方向から)押圧されるようなことが十分に抑制されるとともに、前記合力F3を、切削インサート3の裏面10を介してインサート取付座4に効率よく逃がすことが可能となる。これにより、切削インサート3の回転軸17の変形、摩耗、破損等が防止される。
 つまり、刃先回転式ミーリング工具1による所望の切削加工(所定の切削条件等)に応じて決定される、切れ刃5上の切削代表点に対して、切削加工時に被削材から作用する合力F3の向きに平行となるように、予めインサート軸線Cの傾きを決めてやることで、切削インサート3の回転軸17への負荷を、安定的かつ顕著に低減できるのである。
 また、切削インサート3の回転軸17がインサート径方向から押圧されにくくなっているので、この切削インサート3が被削材に切り込んで加工する際に切れ刃5が受ける力によって、インサート取付座4に対して該切削インサート3がインサート軸線C回りに安定して従動回転させられる。
 尚、本実施形態においては、回転軸17が切削インサート3の回転支持体として用いられているが、これに限定されるものではなく、例えば回転支持体として、切削インサート3をインサート径方向の外側から回転自在に支持するラジアル軸受(ラジアル滑り軸受を含む)を用いてもよい。この場合も、ラジアル軸受(回転支持体)が、前記合力F3によってインサート径方向から押圧されるようなことが抑制されて、該ラジアル軸受の変形、摩耗、破損、及び過大な摩擦トルクの発生等が防止される。尚、「過大な摩擦トルクの発生の防止」とは、上述のように切削インサート3をインサート径方向の外側からラジアル軸受等の回転支持体により回転自在に支持した場合に、摩擦トルクが大きくなり過ぎて回転しにくくなる現象を防止することを意味している。
 尚、本実施形態の刃先回転式ミーリング工具1及びこれを用いた切削方法においては、切れ刃5が被削材に切り込む際に受ける力のうち、主分力F1及び背分力F2以外の送り分力(切れ刃5の切削代表点を通る接線L2方向へ向かう分力、切削代表点を通り第1の仮想平面VSに直交する向きの分力)F4については、スラスト滑り軸受部材8(回転機構)との間の摩擦力と概ねキャンセルして従動回転を生み出す役割を担っており、切削インサート3の回転軸17を押圧する力は該送り分力F4以外の力に比べて十分に小さいことから、切削インサート3の回転軸17をインサート径方向から押圧する力としては概ね無視することができ、つまり送り分力F4によって切削インサート3の回転軸17に強い押圧力が作用することはないので、第1の仮想平面VSの面内でインサート軸線Cが前記合力F3の向きに平行となるように延びていることによって、上述の作用効果を安定的に得ることができる。
 また本実施形態の例では、切削代表点が切れ刃5上の工具先端縁5aに設定されており、そのため、インサート軸線Cが工具回転方向Tの前方に向かうに従い漸次工具先端側へ向けて傾斜して延びている(つまり前傾している)ので、インサート取付座4に、この切削インサート3を従動回転させるための回転機構(本実施形態ではスラスト滑り軸受部材8)を配設するスペースを容易に確保できる。具体的に、このようにインサート軸線Cが前傾していることで、本実施形態のように複数の切削インサート3を装着してなる多刃の刃先回転式ミーリング工具1において、工具周方向に隣り合うインサート取付座4同士の間隔が狭くなりがちな場合であっても、前記回転機構を配設するスペースを容易に確保することが可能になる。
 尚、切削代表点が切れ刃5上の工具外径端縁5bに設定された場合には、インサート軸線Cは、工具回転方向Tの前方に向かうに従い漸次工具径方向の外側へ向けて傾斜して延びることになる。また切削代表点が、切れ刃5上において、工具先端縁5aと工具外径端縁5bとの間に位置する中間点5cに設定された場合には、インサート軸線Cは、工具回転方向Tの前方に向かうに従い漸次工具先端側及び工具径方向の外側へ向けて傾斜して延びていてもよい。これらの場合においても、やはり工具周方向に隣り合うインサート取付座4同士の間に、スペースを容易に確保することが可能である。
 以上より、本実施形態によれば、切削インサート3の回転軸17等の回転支持体の変形、摩耗、破損等を防止でき、かつ、インサート取付座4に装着された切削インサート3をインサート周方向に安定して従動回転させることができ、これにより、切削の加工精度を安定して高められ、工具寿命を延長できるのである。
 また、本実施形態で説明した刃先回転式ミーリング工具1は、切削インサート3の切れ刃5の切削代表点が、切れ刃5全周のうち、工具軸線O方向に沿う先端に位置する部分(工具先端縁5a)と、工具軸線Oに直交する工具径方向に沿う外端に位置する部分(工具外径端縁5b)との間の、中心角90°の円弧状部分における所定位置に設定されるので、下記の効果を奏する。
 すなわち、例えば、刃先回転式ミーリング工具1による切削加工の種類が「正面削り加工」であれば、切れ刃5上の切削代表点は、工具先端縁5aに近くなる。また、切削加工の種類が「肩削り加工」であれば、切れ刃5上の切削代表点は、工具外径端縁5bに近くなる。
 本実施形態の上記構成によれば、切削代表点が、切れ刃5上における工具先端縁5aから工具外径端縁5bにかけての中心角90°の円弧状部分(切れ刃5の円周を1とした場合の1/4円弧)の所定位置に設定されるので、例えば正面削り加工、肩削り加工、及びこれらの複合加工(R削り加工)等に用いられる刃先回転式ミーリング工具1に対して、本発明を適用可能である。
 また本実施形態では、角度ARtが、-30°~-60°の範囲とされ、かつ、角度RRが、-30°~-75°の範囲とされるので、切削インサート3が被削材に切り込んで加工する際に切れ刃5が受ける力によって、インサート取付座4に対して切削インサート3がインサート軸線C回りにより安定して従動回転しやすくなり、前述の効果がさらに顕著なものとなる。具体的に、本実施形態の角度ARt、RRは、図18のグラフを根拠に導出されたものである。
 そして、上述した角度ARtの範囲、かつ角度RRの範囲となるように切削インサート3がインサート取付座4に装着されることで、切削インサート3の従動回転が安定して得られ、すくい面12摩耗等が顕著に抑制されて、工具寿命をより延長する効果が期待できる。
 具体的に、角度ARtが上記範囲外である場合(-30°より大きい、又は-60°より小さい場合)には、第1の仮想平面VSの面内でインサート軸線Cの向きと前記合力F3の向きとを互いに平行となるように維持することが難しくなり、前記合力F3による切削インサート3の回転軸(回転支持体)17への負荷(インサート径方向からの押圧力)が抑制されにくくなって、上述した効果が安定して得られにくくなるおそれがある。
 また角度RRが、上記範囲外である場合、具体的には角度RRが-30°より大きい場合(かつ-20°より小さい場合)には、上記角度ARtとの組み合わせによって切削インサート3を安定的に従動回転させる効果が得られにくくなるおそれがある。また、角度RRが-75°より小さい場合には、切削加工時の切削力が大きくなってびびり振動が生じやすくなるおそれがある。
 また、切削インサート3の表面9のうち、インサート径方向に沿う切れ刃5の内側には、該切れ刃5からインサート径方向の内側へ向かうに従い漸次インサート軸線C方向に沿う表面9から裏面10側へ向けて傾斜するテーパ状のすくい面12が形成されており、本実施形態では切削インサート3のインサート軸線Cを含む縦断面視で、切れ刃仮想平面VSに対してすくい面12が傾斜する角度αが、35°~50°の範囲とされているので、下記の効果が得られる。
 すなわち本実施形態の例では、上述のように、インサート軸線Cが工具回転方向Tの前方に向かうに従い漸次工具軸線O方向の先端側へ向けて傾斜して延びていることで、見かけ上のアキシャルレーキ角(角度ARt、ARn)が負(ネガ)の装着姿勢で切削インサート3をインサート取付座4に装着しても、実質的なアキシャルレーキ角は前記見かけ上のアキシャルレーキ角よりも正(ポジ)側に設定されて、切れ刃5の切れ味が安定して高められつつ、刃先欠損等も防止されることになる。
 また、インサート軸線Cが工具回転方向Tの前方に向かうに従い漸次工具径方向の外側へ向けて傾斜して延びていてもよく、この場合には、見かけ上のラジアルレーキ角(角度RR)が負(ネガ)の装着姿勢でインサート取付座4に切削インサート3が装着されることになるが、実質的なラジアルレーキ角は前記見かけ上のラジアルレーキ角よりも正(ポジ)側に設定されて、やはり切れ刃5の切れ味が安定して高められることになる。
 また、インサート軸線Cが工具回転方向Tの前方に向かうに従い漸次工具先端側及び工具径方向の外側へ向けて傾斜して延びている場合にも、上記同様の効果が得られる。
 具体的に、角度αが35°未満の場合には、切れ刃5の切れ味を十分に高められるほど刃先が鋭利にはなりにくく、加工精度を確保できないおそれがある。また、角度αが50°を超える場合には、刃物角γが小さくなって刃先欠損等が生じるおそれがある。
 また、切削インサート3の外周面11に、切れ刃5からインサート軸線C方向に沿う表面9から裏面10側へ向かうに従い漸次インサート径方向の外側へ向けて傾斜するテーパ状の逃げ面15が形成されており、本実施形態では切削インサート3のインサート軸線Cを含む縦断面視で、インサート軸線Cに対して逃げ面15が傾斜する角度βが、10°~35°の範囲とされているので、下記の効果が得られる。
 すなわち、上述の装着姿勢で切削インサート3をインサート取付座4に装着しても、切れ刃5の刃物角γを大きく確保することができ、刃先欠損等が防止されることになる。
 具体的に、角度βが10°未満の場合には、切れ刃5の刃物角γを十分に大きく確保することが難しくなり、刃先欠損等を防止する効果が得られにくい。また、角度βが35°を超える場合には、逃げ面15と被削材の加工面との隙間が狭くなり、該隙間への切屑の噛み込み等により加工面品位を確保できなくなるおそれがある。
 また本実施形態では、切削インサート3をインサート取付座4に回転自在に装着するための回転軸(回転支持体)17が設けられており、インサート取付座4に対する回転軸17のインサート軸線C方向に沿う位置が調整可能とされ、インサート取付座4に対する回転軸17のインサート軸線C方向に沿う移動を規制可能な規制部を備えているので、下記の効果が得られる。
 すなわち、切削インサート3は、その貫通孔14に挿通された回転軸17の軸部17aにインサート径方向の内側から支持されつつインサート取付座4に対して従動回転し、かつ、回転軸17の頭部17bによって抜け止めされている。そして、インサート取付座4に対する回転軸17のインサート軸線C方向に沿う位置を調整することで、該回転軸17の頭部17bと切削インサート3の表面9との間の隙間(クリアランス)を所望の値とすることができ、この調整後には、規制部によってインサート取付座4に対する回転軸17のインサート軸線C方向に沿う移動を規制できる。
 この構成によれば、例えば本実施形態のように、インサート取付座4に切削インサート3を従動回転可能に支持するスラスト滑り軸受部材8等の回転機構を設ける場合に、該回転機構の摩耗(損耗)状況に応じて回転軸17をインサート軸線C方向に進退して位置を微調整した後、固定でき、よってインサート取付座4に対する切削インサート3の従動回転がより安定的に維持される。
 またこの構成によれば、例えば切削インサート3のインサート軸線C方向の外形高さ(表裏面9、10同士の間の距離)に製品によるばらつきが生じた場合でも、各切削インサート3の前記外形高さに応じて、インサート取付座4に対する回転軸17の進退位置(ねじ込み量)をそれぞれ調整することで、容易に対応できる。
 尚、具体的に、回転軸17の軸方向への位置調整をするには、例えば、まず切削インサート3に挿通した回転軸17の軸部17aを回転軸装着穴4cにねじ込んでいき(ねじを締め込み)、その頭部17bが切削インサート3の表面9に当接された状態から、所定回転数(又は所定回転角度)だけ回転軸17のねじ込みを戻す(ねじを緩める)ことで、頭部17bと表面9との間に所定量のクリアランスを設け、この状態で規制部(ネジ孔7及びイモネジ18)により回転軸17を固定すればよい。
 また、切削インサート3の裏面10が着座するインサート取付座4の取付面(スラスト滑り軸受部材8の円形面8d又は取付面4a)が、インサート軸線Cを中心(中心軸)とする軸対称形状とされているので、切削インサート3からインサート取付座4に伝達される前記合力F3を、該インサート取付座4の前記取付面全体で分散して受けることができるとともに、該取付面における局所的な摩耗等が防止されて、上述の作用効果が長期に亘り安定して得られることになる。
 尚、前記取付面が平面状に形成される代わりに、インサート軸線Cを中心軸とする円錐面状、球面状や、これら各形状の組み合わせ形状に形成されていてもよく、この場合も同様の効果を奏する。具体的に、インサート取付座4の前記取付面が、例えば凹円錐面状(又は凸円錐面状)とされる場合には、切削インサート3の裏面10がインサート軸線Cを中心軸とする凸円錐面状(又は凹円錐面状)に形成される。
(第2実施形態)
 次に、本発明の第2実施形態に係る刃先回転式ミーリング工具31及びこれを用いた切削方法について、図面を参照して説明する。
 尚、前述の実施形態と同様の構成については、同一名称又は同一符号を用いてその説明を省略する。
 図19~図24に示されるように、本実施形態の刃先回転式ミーリング工具31は、インサート取付座4に対する切削インサート3の装着姿勢(特に角度RR)が、前述の実施形態とは異なっている。
 具体的には、第2実施形態においても、図22及び図23に示されるように、インサート取付座4に切削インサート3が装着された状態で、該切削インサート3のインサート軸線Cは、工具回転方向Tの前方に向かうに従い漸次工具先端側へ向けて傾斜して延びている。ただしこれに限定されるものではなく、切削インサート3のインサート軸線Cは、工具回転方向Tの前方に向かうに従い漸次工具径方向の外側へ向けて傾斜して延びていてもよい。或いは、切削インサート3のインサート軸線Cは、工具回転方向Tの前方に向かうに従い漸次工具回転方向Tの前方かつ工具径方向の外側へ向けて傾斜して延びていてもよい。本実施形態においても、インサート軸線Cが傾斜する向きは、下記の切削代表点が設定されることにより決められるが、前述した実施形態と同様に、インサート軸線Cの傾斜の向きは、切削代表点が決定されることにより一義的に決まるわけではなく、例えば切削インサート3をより従動回転させやすくするための傾斜の向きなども考慮して決定される。
 図12、図20及び図23に示されるように、インサート軸線Cに直交するインサート径方向のうち、切削加工時に被削材から切削インサート3に分布して作用する力を集中荷重とみなしたとき(集中荷重と近似した場合)の該集中荷重の作用点Pを通る所定のインサート径方向IDと、切れ刃5と、の交点を切削代表点とし、この切削代表点を通る切れ刃5の接線L2に垂直な第1の仮想平面VSと、前記接線L2及び前記切削代表点における瞬間的な切削方向に沿う仮想直線L1を含む第2の仮想平面VSと、の交線Lに沿う方向であって、工具回転方向Tの後方に向かう方向(図23における右方向)を主分力方向とし、切削加工時に被削材から切削インサート3が受ける力のうち、前記切削代表点(図23においては符号5a)における前記主分力方向に沿う分力を主分力F1とし、該主分力方向に垂直で前記インサート径方向の内側へ向かう背分力方向(図23における上方向)に沿う分力を背分力F2としたときに、第1の仮想平面VSの面内で、主分力F1と背分力F2との合力F3の向きに対して、インサート軸線Cの延在する向きが、平行に設定又は所定の微少角度をなすように設定されている。
 尚、特に図示していないが、本実施形態においては、切れ刃5が被削材に切り込んで加工する際に受ける力(切削力又は切削抵抗であり、刃先力又はエッジフォースの成分を含む)のうち、該切れ刃5の前記切削代表点を通る接線L2方向へ向かう分力(つまり前記切削代表点を通り第1の仮想平面VSに直交する向きの分力)である送り分力F4は、工具径方向の内側へ向かうように設定されている。
 尚、本実施形態においても前述の実施形態と同様に、切削代表点は工具先端縁5aに設定されているが、この切削代表点は、工具本体2に装着された切削インサート3の切れ刃5全周のうち、工具軸線O方向に沿う先端に位置する部分(工具先端縁5a)と、工具径方向に沿う外端に位置する部分(工具外径端縁5b)との間の、中心角90°の円弧状部分(切れ刃5の円周を1とした場合の1/4円弧)における所定位置に設定されてよい。
 また図20において、切れ刃5のうち工具先端縁5a(切削代表点)が、工具周方向に回転して形成される仮想円VCにおける前記工具先端縁5aを通る接線L1(瞬間的な切削方向に沿う仮想直線)を、工具基端側に向けて工具軸線Oに平行に移動させたときの軌跡から得られる仮想平面を基準平面SSとしたときに、この基準平面SSと、円形状の切れ刃5を含む切れ刃仮想平面VSとの交差線CLが(本実施形態では特に図示していないが、前述の実施形態の図5及び図6を参照)、基準平面SS上に投影された工具軸線Oに対して傾斜する角度ARtが、例えば-30°~-60°の範囲とされている。すなわち、前記角度ARtは、切削に供される切れ刃5の工具先端縁5aにおける瞬間的な切削方向を考慮したアキシャルレーキ角であり、具体的には、負(ネガ)のアキシャルレーキ角となっている。
 尚、本実施形態においては、角度ARtがネガの50°(-50°)とされている。
 一方、図22及び図23に示されるように切れ刃仮想平面VSに垂直な工具径方向から見て、工具軸線Oに対して切れ刃仮想平面VSが傾斜する角度ARnは、例えば-30°~-50°の範囲とされている。すなわち、前記角度ARnは、工具本体2に装着された切削インサート3単体としての瞬間的な切削方向を考慮しないアキシャルレーキ角であり、負(ネガ)のアキシャルレーキ角となっている。
 また図20において、工具径方向のうち工具先端縁5aを通る所定の工具径方向Dに対して、該工具先端縁5aを通り工具径方向の外側へ向かうように延びる切れ刃5の刃先接線L2が傾斜する角度RRは、例えば-20°~30°の範囲とされている。すなわち、前記角度RRは、切削に供される切れ刃5の工具先端縁5aにおけるラジアルレーキ角であり、本実施形態ではこの角度RRが、正(ポジ)の5°(+5°)となっている。図20に示されるように、工具軸線O方向の先端から基端側へ向けて刃先回転式ミーリング工具31を見た正面視において、角度RRが+であるとき、刃先接線L2は、工具先端縁5aから工具径方向の外側へ向かうに従い漸次工具回転方向Tの前方へ向けて延びる。図20においては、所定の工具径方向Dが、角度RR(ラジアルレーキ角)=0°の基準面に一致する。
 また図23及び図24において、切削インサート3が装着されるインサート取付座4の取付面4a、及びスラスト滑り軸受部材8の一方の円形面(取付面)8dを含む一対の円形面は、ともにインサート軸線Cに垂直な平面状をなしており、具体的には、インサート取付座4の前記取付面は、インサート軸線Cを中心(中心軸)とする軸対称形状となっている。
 また、図23に示される切れ刃5の切削代表点(工具先端縁5a)を通る接線L2方向視で、切削インサート3のインサート軸線Cと、加工面MS(第2の仮想平面VS)との間に形成される角度θは、例えば20°~70°の範囲とされている。
 以上説明した第2実施形態の刃先回転式ミーリング工具31及びこれを用いた切削方法においても、工具本体2のインサート取付座4に装着された切削インサート3のインサート軸線Cの向きが、切削代表点を通る切れ刃5の接線L2に垂直な第1の仮想平面VS内において、切削インサート3の切れ刃5が被削材に切り込んで加工する際に受ける力(切削力又は切削抵抗であり、刃先力又はエッジフォースの成分を含む)のうち主分力F1と背分力F2との合力(合成切削力)F3の向きに平行となるように設定されているので、前述した第1実施形態と同様の作用効果が得られる。
 また本実施形態では、角度ARtが、-30°~-60°の範囲とされ、かつ、角度RRが、-20°~30°の範囲とされるので、切削インサート3が被削材に切り込んで加工する際に切れ刃5が受ける力によって、インサート取付座4に対して切削インサート3がインサート軸線C回りにより安定して従動回転しやすくなり、前述の効果がさらに顕著なものとなる。
 ここで、図18に示されるグラフにおいて、本実施形態で説明した角度ARt:-50°及び角度RR:+5°の組合せは、切り込み量daの大小に係わらず(具体的には少なくともdaが0.5~2.0mmの範囲内において)、切削インサート3を安定的に従動回転させられる範囲にある。
 そして、上述した角度ARtの範囲、かつ角度RRの範囲となるように切削インサート3がインサート取付座4に装着されることで、切削インサート3の従動回転が安定して得られ、すくい面12摩耗等が顕著に抑制されて、工具寿命をより延長する効果が期待できる。
 具体的に、角度ARtが上記範囲外である場合(-30°より大きい、又は-60°より小さい場合)には、第1の仮想平面VSの面内でインサート軸線Cの向きと前記合力F3の向きとを互いに平行となるように維持することが難しくなり、前記合力F3による切削インサート3の回転軸17への負荷(インサート径方向からの押圧力)が抑制されにくくなって、上述した効果が安定して得られにくくなるおそれがある。
 また角度RRが、-20°より小さい場合(かつ-30°より大きい場合)には、上記角度ARtとの組み合わせによって切削インサート3を安定的に従動回転させる効果が得られにくくなるおそれがある。また角度RRが、30°より大きい場合には、切削加工時にびびり振動が生じやすくなったり、切削インサート3の外周面11(逃げ面15)が被削材に干渉しやすくなり工具本体2の工具軸線O回りの単位回転あたりの工具径方向へ向けた移動量(つまり送り量fz)を確保しにくくなったりするおそれがある。尚、前記送り量fzを確保する目的で切削インサート3の外周面11の逃げ角を大きくした場合には、切れ刃5の刃物角γを十分に確保しにくくなって刃先欠損等が生じるおそれがある。
 尚、本発明は前述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前述の実施形態では、アキシャルレーキ角である角度ARtと、ラジアルレーキ角である角度RRとの数値範囲の組合せを規定して説明したが、これに限定されるものではない。
 すなわち本発明は、第1の仮想平面VSの面内で(切れ刃5のうち切削代表点を通る接線L2方向から見て)、インサート軸線Cの延在する向きが合力F3の向きに略平行となっていればよく、この構成のみによって、切削加工時に切削インサート3が良好に従動回転しやすくなる作用が得られるようになっている。そして、前述した角度ARtと角度RRとの組合せによって、さらに上記従動回転を確実かつ安定したものにすることができる。
 また前述の実施形態では、インサート取付座4に対して切削インサート3をインサート周方向に回転自在に装着する切削インサートのクランプ機構として、切削インサート3の貫通孔14内に挿通され、インサート取付座4の回転軸装着穴4cにインサート軸線C方向に進退可能に螺着される回転軸17と、該回転軸17のインサート軸線C方向への進退移動を規制する規制部(ネジ孔7及びイモネジ18)と、を備えたものを例に挙げて説明したが、これに限定されるものではない。
 すなわち、前述した切削インサートのクランプ機構とは異なる切削インサートのクランプ機構として、例えば、切削インサート3の貫通孔14内に挿通される筒状のスペーサーを有し、該スペーサーの一端がインサート取付座4に当接され、回転軸17の軸部17aが前記スペーサー内に挿通されて回転軸装着穴4cに螺着されるとともに、該回転軸17の頭部17bが前記スペーサーの他端に当接されることで、回転軸17の頭部17bと切削インサート3の表面9との間に所定のクリアランス(隙間)を設けるように構成したものを用いて、インサート取付座4に切削インサート3を回転自在に軸支してもよい。
 また前述の実施形態では、刃先回転式ミーリング工具1に装着された切削インサート3における切れ刃5の切削代表点が、該切れ刃5全周のうち、工具先端縁5aと工具外径端縁5bとの間の、中心角90°の円弧状部分における所定位置に設定されることとしたが、これに限定されるものではない。すなわち、切削代表点は、切れ刃5のうち、例えば、前記中心角90°の円弧状部分の円弧の端部よりも、該円弧の延在方向に沿う外側に位置して設定されていてもよい。この場合、前記円弧状部分の中心角は90°より大きくなる。
 その他、本発明の趣旨から逸脱しない範囲において、前述の実施形態、変形例及び尚書き等で説明した各構成(構成要素)を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 1、31 刃先回転式ミーリング工具
 2 工具本体
 3 切削インサート
 4 インサート取付座
 4a 取付面
 5 切れ刃
 5a 切れ刃上の工具先端縁(切削代表点)
 5b 切れ刃上の工具外径端縁(切削代表点)
 5c 切れ刃上において、工具先端縁と工具外径端縁との間に位置する中間点(切削代表点)
 7 ネジ孔(規制部)
 8d 一方の円形面(取付面)
 9 表面
 10 裏面
 11 外周面
 12 すくい面
 14 貫通孔
 15 逃げ面
 17 回転軸(回転支持体)
 17a 軸部
 17b 頭部
 18 イモネジ(規制部)
 ARn 角度(アキシャルレーキ角)
 ARt 角度(アキシャルレーキ角)
 C インサート軸線
 CL 交差線
 D 所定の工具径方向
 F1 主分力
 F2 背分力
 F3 合力
 ID 所定のインサート径方向
 L 交線
 L1 接線(切削代表点における瞬間的な切削方向に沿う仮想直線)
 L2 刃先接線(切れ刃の切削代表点を通る接線)
 O 工具軸線
 P 作用点
 RR 角度(ラジアルレーキ角)
 SS 基準平面
 T 工具回転方向
 VC 仮想円
 VS 切れ刃仮想平面
 VS 第1の仮想平面
 VS 第2の仮想平面

Claims (9)

  1.  工具軸線回りに回転する工具本体の先端外周部に形成されたインサート取付座に、円板状をなす切削インサートがそのインサート軸線回りに回転自在とされて装着された刃先回転式ミーリング工具であって、
     前記切削インサートは、
     前記インサート軸線に交差する表裏面と、
     これら表裏面の周縁同士を接続する外周面と、を有し、
     前記表裏面のうち、
     表面が、前記工具軸線回りに沿う工具回転方向の前方を向くように配置され、
     裏面が、前記工具回転方向の後方を向くように配置されるとともに、前記インサート取付座に着座され、
     前記表面の周縁には、前記インサート軸線回りに沿って延びる円形状の切れ刃が形成され、
     前記切れ刃のうち前記工具軸線方向に沿う工具先端縁が、前記工具軸線回りの工具周方向に回転して形成される仮想円における前記工具先端縁を通る接線を、前記工具軸線方向に沿う工具基端側に向けて前記工具軸線に平行に移動させたときの軌跡から得られる仮想平面を基準平面としたときに、該基準平面と、前記切れ刃を含む切れ刃仮想平面との交差線が、前記基準平面上に投影された前記工具軸線に対して傾斜する角度ARtが、-30°~-60°の範囲であり、
     かつ、前記工具軸線に直交する工具径方向のうち前記工具先端縁を通る所定の工具径方向に対して、該工具先端縁を通り工具径方向の外側へ向かうように延びる前記切れ刃の刃先接線が傾斜する角度RRが、-30°~-75°の範囲である刃先回転式ミーリング工具。
  2.  工具軸線回りに回転する工具本体の先端外周部に形成されたインサート取付座に、円板状をなす切削インサートがそのインサート軸線回りに回転自在とされて装着された刃先回転式ミーリング工具であって、
     前記切削インサートは、
     前記インサート軸線に交差する表裏面と、
     これら表裏面の周縁同士を接続する外周面と、を有し、
     前記表裏面のうち、
     表面が、前記工具軸線回りに沿う工具回転方向の前方を向くように配置され、
     裏面が、前記工具回転方向の後方を向くように配置されるとともに、前記インサート取付座に着座され、
     前記表面の周縁には、前記インサート軸線回りに沿って延びる円形状の切れ刃が形成され、
     前記切れ刃のうち前記工具軸線方向に沿う工具先端縁が、前記工具軸線回りの工具周方向に回転して形成される仮想円における前記工具先端縁を通る接線を、前記工具軸線方向に沿う工具基端側に向けて前記工具軸線に平行に移動させたときの軌跡から得られる仮想平面を基準平面としたときに、該基準平面と、前記切れ刃を含む切れ刃仮想平面との交差線が、前記基準平面上に投影された前記工具軸線に対して傾斜する角度ARtが、-30°~-60°の範囲であり、
     かつ、前記工具軸線に直交する工具径方向のうち前記工具先端縁を通る所定の工具径方向に対して、該工具先端縁を通り工具径方向の外側へ向かうように延びる前記切れ刃の刃先接線が傾斜する角度RRが、-20°~30°の範囲である刃先回転式ミーリング工具。
  3.  請求項1又は2に記載の刃先回転式ミーリング工具であって、
     前記切削インサートの前記表面のうち、前記インサート軸線に直交するインサート径方向に沿う前記切れ刃の内側には、該切れ刃から前記インサート径方向の内側へ向かうに従い漸次前記インサート軸線方向に沿う前記表面から前記裏面側へ向けて傾斜するテーパ状のすくい面が形成されている刃先回転式ミーリング工具。
  4.  請求項1~3のいずれか一項に記載の刃先回転式ミーリング工具であって、
     前記切削インサートの前記外周面には、前記切れ刃から前記インサート軸線方向に沿う前記表面から前記裏面側へ向かうに従い漸次前記インサート軸線に直交するインサート径方向の外側へ向けて傾斜するテーパ状の逃げ面が形成されている刃先回転式ミーリング工具。
  5.  請求項1~4のいずれか一項に記載の刃先回転式ミーリング工具であって、
     前記切削インサートには、前記インサート軸線上を延びて前記表裏面に開口する貫通孔が形成されており、
     前記貫通孔よりも小径とされ、該貫通孔内に挿通されて前記インサート取付座に取り付けられる軸部と、前記貫通孔よりも大径とされ、前記表面との間に隙間をあけて配置される頭部と、を有する回転軸が設けられ、
     前記インサート取付座に対する前記回転軸の前記インサート軸線方向に沿う位置が調整可能であり、
     前記インサート取付座に対する前記回転軸の前記インサート軸線方向に沿う移動を規制可能な規制部を備えた刃先回転式ミーリング工具。
  6.  請求項1~5のいずれか一項に記載の刃先回転式ミーリング工具であって、
     前記インサート取付座は、前記インサート軸線を中心とする軸対称形状の取付面を有する刃先回転式ミーリング工具。
  7.  工具軸線回りに回転する工具本体の先端外周部に形成されたインサート取付座に、円板状をなす切削インサートがそのインサート軸線回りに回転自在とされて装着された刃先回転式ミーリング工具を用いて被削材を切削する切削方法であって、
     前記切削インサートは、
     前記インサート軸線に交差する表裏面と、
     これら表裏面の周縁同士を接続する外周面と、を有し、
     前記表裏面のうち、
     表面を、前記工具軸線回りに沿う工具回転方向の前方を向くように配置し、
     裏面を、前記工具回転方向の後方を向くように配置するとともに、前記インサート取付座に着座させ、
     前記表面の周縁には、前記インサート軸線回りに沿って延びる円形状の切れ刃が形成されており、
     前記インサート軸線に直交するインサート径方向のうち、切削加工時に被削材から前記切削インサートに分布して作用する力を集中荷重とみなしたときの該集中荷重の作用点を通る所定のインサート径方向と、前記切れ刃と、の交点を切削代表点とし、
     前記切削代表点を通る前記切れ刃の接線に垂直な第1の仮想平面と、前記接線及び前記切削代表点における瞬間的な切削方向に沿う仮想直線を含む第2の仮想平面と、の交線に沿う方向であって、前記工具回転方向の後方に向かう方向を主分力方向とし、
     切削加工時に被削材から前記切削インサートが受ける力のうち、前記切削代表点における前記主分力方向に沿う分力を主分力とし、該主分力方向に垂直で前記インサート径方向の内側へ向かう背分力方向に沿う分力を背分力としたときに、
     前記第1の仮想平面の面内で、前記主分力と前記背分力との合力の向きに対して、前記インサート軸線が傾斜する角度を、±20°の範囲内に設定する刃先回転式ミーリング工具を用いた切削方法。
  8.  請求項7に記載の刃先回転式ミーリング工具を用いた切削方法であって、
     前記合力の向きに対して、前記インサート軸線が傾斜する角度を、±10°の範囲内に設定する刃先回転式ミーリング工具を用いた切削方法。
  9.  請求項7又は8に記載の刃先回転式ミーリング工具を用いた切削方法であって、
     前記合力の向きに対して、前記インサート軸線が傾斜する角度を、±5°の範囲内に設定する刃先回転式ミーリング工具を用いた切削方法。
PCT/JP2015/063079 2014-06-18 2015-05-01 刃先回転式ミーリング工具及びこれを用いた切削方法 WO2015194272A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/319,171 US10300539B2 (en) 2014-06-18 2015-05-01 Rotating-cutting-edge-type milling tool and cutting method using same
CN201580031995.0A CN106573318B (zh) 2014-06-18 2015-05-01 刀刃旋转式铣削工具及使用该工具的切削方法
KR1020167035774A KR102251915B1 (ko) 2014-06-18 2015-05-01 날끝 회전식 밀링 공구 및 이것을 사용한 절삭 방법
EP15810491.9A EP3159087A4 (en) 2014-06-18 2015-05-01 Rotating cutting edge-type milling tool and cutting method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-125816 2014-06-18
JP2014125816A JP5712319B1 (ja) 2014-06-18 2014-06-18 刃先回転式ミーリング工具及びこれを用いた切削方法

Publications (1)

Publication Number Publication Date
WO2015194272A1 true WO2015194272A1 (ja) 2015-12-23

Family

ID=53277238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063079 WO2015194272A1 (ja) 2014-06-18 2015-05-01 刃先回転式ミーリング工具及びこれを用いた切削方法

Country Status (6)

Country Link
US (1) US10300539B2 (ja)
EP (1) EP3159087A4 (ja)
JP (1) JP5712319B1 (ja)
KR (1) KR102251915B1 (ja)
CN (1) CN106573318B (ja)
WO (1) WO2015194272A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9862039B2 (en) * 2014-08-28 2018-01-09 Richard Theriault Milling tool with rotatable cutting disks
CN106424883B (zh) * 2016-11-09 2019-03-22 哈尔滨理工大学 一种钛合金加工中带有多功能微织结构的球头铣刀
JP2018202551A (ja) * 2017-06-05 2018-12-27 国立大学法人名古屋大学 切削工具、切削装置、及び切削方法
KR102088309B1 (ko) * 2018-09-14 2020-03-12 센트랄테크(주) 회전가능한 절삭 인서트 조립체
KR102088312B1 (ko) * 2018-09-14 2020-03-12 센트랄테크(주) 인서트팁
CN109719331A (zh) * 2019-03-12 2019-05-07 哈尔滨理工大学 一种钛合金加工用交错刃可转位球头铣刀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885766A (en) * 1955-06-06 1959-05-12 Cincinnati Milling Machine Co Face milling cutter
FR1252422A (fr) * 1960-03-26 1961-01-27 Ass Elect Ind Perfectionnement aux outils de coupe
US3329065A (en) * 1965-01-18 1967-07-04 Lockheed Aircraft Corp Rotary cutter and method
JPS56163817A (en) * 1980-03-13 1981-12-16 Briese Leonard A Cutting cartridge
JP2012206243A (ja) * 2011-03-30 2012-10-25 Hitachi Ltd フライス工具
JP2013144356A (ja) * 2012-01-16 2013-07-25 Sandvik Intellectual Property Ab ミーリング工具及びミーリングインサート

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3264540B2 (ja) 1993-01-13 2002-03-11 ダイジ▲ェ▼ット工業株式会社 回転式切削工具
DE4430171C2 (de) * 1994-08-25 1996-08-14 Walter Ag Formschlüssig gesicherte Schneidplatte
SE525496C2 (sv) * 2002-03-21 2005-03-01 Sandvik Ab Verktyg för spånavskiljare bearbetning jämte roterbart skär för dylika verktyg
DE102004006388A1 (de) 2004-02-09 2005-08-25 Aleit Gmbh Wendeplattenfräser
DE202005021474U1 (de) 2005-10-28 2008-04-03 Albert, Bernhard Fräs- und/oder Drehwerkzeug
IL180660A0 (en) 2007-01-11 2007-06-03 Iscar Ltd Cutting tool and cutting insert
BRPI0910392B1 (pt) 2008-03-18 2019-11-12 Franz Josef Pokolm ferramenta de fresagem para usinagem de peças com remoção de aparas
WO2010110009A1 (ja) 2009-03-24 2010-09-30 日立ツール株式会社 刃先交換式回転工具
US9016985B2 (en) 2009-12-22 2015-04-28 Ceramtec Gmbh Clamping system
WO2012043822A1 (ja) 2010-09-30 2012-04-05 株式会社タンガロイ 刃先交換式切削工具
PL2484471T3 (pl) * 2011-02-02 2014-01-31 Ledermann Gmbh & Co Kg Narzędzie do obróbki
SE536647C2 (sv) 2012-09-07 2014-04-29 Sandvik Intellectual Property Fräsverktyg jämte skär härför med växelvis användbara skäreggar
CN202845898U (zh) 2012-09-27 2013-04-03 常州耐之力刀具制造有限公司 硬质合金球头铣刀
CN103769664A (zh) 2012-10-23 2014-05-07 昆山华星模具导向件有限公司 反向旋转立铣刀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885766A (en) * 1955-06-06 1959-05-12 Cincinnati Milling Machine Co Face milling cutter
FR1252422A (fr) * 1960-03-26 1961-01-27 Ass Elect Ind Perfectionnement aux outils de coupe
US3329065A (en) * 1965-01-18 1967-07-04 Lockheed Aircraft Corp Rotary cutter and method
JPS56163817A (en) * 1980-03-13 1981-12-16 Briese Leonard A Cutting cartridge
JP2012206243A (ja) * 2011-03-30 2012-10-25 Hitachi Ltd フライス工具
JP2013144356A (ja) * 2012-01-16 2013-07-25 Sandvik Intellectual Property Ab ミーリング工具及びミーリングインサート

Also Published As

Publication number Publication date
CN106573318B (zh) 2018-11-16
EP3159087A1 (en) 2017-04-26
US20170113287A1 (en) 2017-04-27
JP5712319B1 (ja) 2015-05-07
KR20170021254A (ko) 2017-02-27
US10300539B2 (en) 2019-05-28
JP2016002638A (ja) 2016-01-12
CN106573318A (zh) 2017-04-19
KR102251915B1 (ko) 2021-05-13
EP3159087A4 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
WO2015194272A1 (ja) 刃先回転式ミーリング工具及びこれを用いた切削方法
WO2012117813A1 (ja) ガイドパッド、切削工具本体および切削工具
US10099300B2 (en) Peripheral cutting tool utilizing stick blades
US10926344B2 (en) Taper reamer
JP4816723B2 (ja) インサート
JP5098353B2 (ja) スローアウェイチップおよびこれを用いたスローアウェイ式転削工具
JP2017080864A (ja) 刃先交換式リーマおよびリーマ用インサート
JP4661229B2 (ja) ガンドリル用インサート及びインサート式ガンドリル
JP5050492B2 (ja) 刃振れ調整機構および刃振れ調整機構を備えたスローアウェイ式切削工具
JP6709603B2 (ja) 切削インサートの取り付け機構、刃先回転式ミーリング工具及び刃先回転式ターニング工具
JP4966717B2 (ja) 穴加工工具
JP2006247776A (ja) フライスカッター
JPWO2019244711A1 (ja) エンドミル
JP4846489B2 (ja) 刃先交換式切削工具
JP2014012308A (ja) 刃先交換式切削工具
JP2008254154A (ja) テーパ加工用インサートおよびインサート着脱式テーパ加工用工具
JP2008049416A (ja) 刃先交換式切削工具
JP5560462B2 (ja) 切削工具
JP2014012309A (ja) 刃先交換式切削工具
JP2006130600A (ja) インサート及びフライスカッター
JP2020104221A (ja) スカイビング加工用切削インサートおよび刃先交換式切削工具
JP2010023126A (ja) インサート着脱式テーパ加工用工具
JP2005186181A (ja) ボーリングカッタ
JP2016190314A (ja) 刃先回転式切削工具及び工具本体
JP2012040661A (ja) 鋳抜き穴加工用コアドリル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15319171

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167035774

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015810491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810491

Country of ref document: EP