WO2015190570A1 - 外部共振器型発光装置 - Google Patents

外部共振器型発光装置 Download PDF

Info

Publication number
WO2015190570A1
WO2015190570A1 PCT/JP2015/066924 JP2015066924W WO2015190570A1 WO 2015190570 A1 WO2015190570 A1 WO 2015190570A1 JP 2015066924 W JP2015066924 W JP 2015066924W WO 2015190570 A1 WO2015190570 A1 WO 2015190570A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflectance
grating
optical waveguide
wavelength
light source
Prior art date
Application number
PCT/JP2015/066924
Other languages
English (en)
French (fr)
Inventor
近藤 順悟
山口 省一郎
哲也 江尻
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2016527869A priority Critical patent/JP6629194B2/ja
Publication of WO2015190570A1 publication Critical patent/WO2015190570A1/ja
Priority to US15/375,587 priority patent/US9979157B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29358Multiple beam interferometer external to a light guide, e.g. Fabry-Pérot, etalon, VIPA plate, OTDL plate, continuous interferometer, parallel plate resonator
    • G02B6/29359Cavity formed by light guide ends, e.g. fibre Fabry Pérot [FFP]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1014Tapered waveguide, e.g. spotsize converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1025Extended cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1237Lateral grating, i.e. grating only adjacent ridge or mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region

Definitions

  • the present invention relates to an external resonator type light emitting device.
  • the DBR laser realizes a resonator by forming irregularities on the waveguide surface on the extension of the waveguide of the active layer and configuring a mirror by Bragg reflection. Since this laser is provided with diffraction gratings at both ends of the optical waveguide layer, the light emitted from the active layer propagates through the optical waveguide layer, a part of which is reflected by this diffraction grating, returns to the current injection part, and is amplified. Is done. Since only one wavelength of light reflects in the direction determined from the diffraction grating, the wavelength of the laser light is constant.
  • a diffraction grating is formed on the extension of the waveguide of the active layer, heat generated in the active layer is directly transferred to the diffraction grating portion.
  • the electrons injected with current are injected also into the diffraction grating portion, the refractive index variation becomes large, and there arises a problem that the wavelength varies or the power varies due to the temperature variation. For this reason, the temperature is generally controlled by a Peltier element or the like.
  • an external resonator type semiconductor laser has been developed in which a diffraction grating is a component different from a semiconductor and a resonator is formed externally.
  • This type of laser is a laser with good wavelength stability, temperature stability, and controllability.
  • External resonators include fiber Bragg grating (FBG) and volume hologram grating (VHG).
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-171252 discloses an optical waveguide having SiO 2 , SiO 1-x N x (x is 0.55 to 0.65), or Si and SiN as a core layer, and the optical waveguide Discloses an external cavity laser in which a grating is formed.
  • This is an external cavity laser that keeps the oscillation wavelength constant without precise temperature control.
  • it is a precondition that the temperature change rate of the reflection wavelength of the diffraction grating (temperature coefficient of the Bragg reflection wavelength) is reduced.
  • the power stability can be realized by setting the laser oscillation to the longitudinal mode multimode.
  • Patent Document 2 discloses an external cavity laser using a grating formed in an optical waveguide made of quartz, InP, GaAs, LiNbO 3 , LiTaO 3 , or polyimide resin. This is because the reflectivity at the light exit surface of the semiconductor laser as the light source is the effective reflectivity Re (substantially 0.1 to 38.4%), and the laser oscillation is set to the longitudinal mode multimode. It is described that power stability can be realized.
  • Patent Document 3 Patent Document 3
  • Patent Document 4 Patent No. 5641631.
  • the length of the grating element is generally 1 mm or more, and the wavelength width of the reflectance (full width at half maximum FWHM) is set to 1 nm or less.
  • Patent Document 6 discloses a light source that oscillates a semiconductor laser beam and an external resonator type light emitting device that includes a plurality of Bragg gratings having different periods. The reflection characteristics of the Bragg grating are independent from each other, do not cross each other, and do not have continuous wide wavelength reflection characteristics. Further, in this apparatus, a grating and a phase adjustment region are formed on the light source side, and the idea is that wavelength can be varied by the action of the phase adjustment region to realize excellent wavelength stability even when the temperature changes.
  • An object of the present invention is to provide a structure that improves stability against temperature change in an external resonator type light emitting device using a grating element.
  • the present invention is an external resonator type light emitting device including a light source that oscillates a semiconductor laser beam, and a grating element that constitutes the light source and an external resonator,
  • the light source includes an active layer that oscillates the semiconductor laser light;
  • the grating element includes an optical waveguide having an incident surface on which the semiconductor laser light is incident and an emitting portion that emits outgoing light having a desired wavelength, and a plurality of Bragg gratings formed in the optical waveguide and having different periods.
  • 50% of the maximum value R max of the combined reflectance of the plurality of Bragg gratings is a half-value reflectance R 50
  • the half-value reflectance R 50 is larger than the reflectance R 2 at the emission end of the light source, and the half value reflectance R 50 is 3% or more
  • the combined reflectance said half reflectance R 50 or more to become the wavelength region ⁇ lambda 50 is 10nm or more in succession, and being provided 30nm or less.
  • a plurality of Bragg gratings having different periods (pitch) are provided in the grating element.
  • the resonator lengths of the respective gratings are greatly different, so that the mode hop intervals are greatly different.
  • mode hopping occurs because the mode hop interval is narrowed. It becomes easy and wavelength stability will worsen.
  • the present inventor has made various studies on the wavelength characteristics of the reflectance of a plurality of Bragg gratings having different periods (pitch). Such a study has not been sufficiently performed in a conventional external resonator type light emitting device using a grating element.
  • the combined reflectance obtained by combining the reflectances of a plurality of Bragg gratings having different periods (pitch) is larger than the reflectance at the light emitting end of the light source, and the combined reflectance is the maximum value R max of the combined reflectance. Focusing on the fact that the temperature stability is improved by providing a wavelength region ⁇ 50 that is 50% R 50 or more continuously and over a wide area, the inventors have conceived of expanding this wavelength region.
  • the oscillation of an external cavity laser using a Bragg grating oscillates when the gain obtained by the light reflected by the Bragg grating and returned to the light source is greater than the gain obtained by the light reflected by the emission end of the light source and returned to the light source. Occurs at wavelengths above the threshold.
  • the peak wavelength of the light source gain shifts.
  • the wavelength region ⁇ 50 in which the combined reflectance of the plurality of Bragg gratings is 50% (R 50 ) or more of the maximum value R max is continuous and wide, so that the peak wavelength of the light source gain shifts.
  • FIG. 1 It is a schematic diagram of an external resonator type light emitting device. It is a schematic diagram of another external resonator type light emitting device. It is a schematic diagram of the external resonator type light-emitting device of a comparative example. It is a schematic diagram which shows the other grating element 2B. It is a schematic diagram which shows the other grating element 2C. It is a schematic diagram of another external resonator type light emitting device. It is a schematic diagram which shows laser oscillation conditions. It is a wavelength characteristic figure for demonstrating the concept of this invention. It is a wavelength characteristic figure for demonstrating the concept of this invention. (A), (b) is a graph which shows the example of the reflection characteristic of one Bragg grating, respectively.
  • (A) is a graph which shows the example of the reflective characteristic of one Bragg grating
  • (b) is a graph which shows the example of the characteristic of the synthetic
  • (A), (b) is a graph which shows the example of a characteristic of the composite reflectance of three Bragg gratings, respectively.
  • (A), (b) is a graph which shows the example of the reflection characteristic of one Bragg grating, respectively.
  • (A), (b) is a graph which shows the example of a characteristic of the composite reflectance of two Bragg gratings, respectively.
  • (A), (b), (c) is a schematic diagram which respectively shows the cross section of the grating element which has a ridge type
  • (A), (b), (c) is a schematic diagram which respectively shows the cross section of the grating element which has an optical waveguide whose cross section is trapezoid.
  • (A), (b) is a schematic diagram which respectively shows the cross section of the grating element which has an optical waveguide whose cross section is trapezoid.
  • (A), (b) is a schematic diagram which respectively shows the planar form of the grating element of this invention. It is a perspective view which shows a grating element typically. It is a figure explaining laser oscillation conditions.
  • the external resonator type light emitting device schematically shown in FIG. 1 includes a light source 1 and a grating element 2 that oscillate semiconductor laser light.
  • the light source 1 and the grating element 2 may be mounted on a common substrate (not shown).
  • the light source 1 includes an active layer 3 that oscillates semiconductor laser light.
  • the active layer 3 is provided on the substrate 4.
  • a reflective film 5A is provided on the outer end surface 3a of the active layer 3, and a non-reflective film 5B is formed on the end surface 3b of the active layer 3 on the grating element side.
  • La is the length of the active layer in the optical axis direction.
  • an optical waveguide 7 having an incident surface 7 a on which a semiconductor laser beam is incident and an emission surface 7 b that emits emitted light having a desired wavelength is provided on a support substrate 6.
  • a plurality of Bragg gratings G1, G2, G3, and G4 are formed.
  • the number of Bragg gratings is four, but may be two or more.
  • an intermediate propagation unit 10 without a diffraction grating is provided.
  • Reference numeral 5 ⁇ / b> C denotes a non-reflective film provided on the incident surface side of the optical waveguide 7.
  • an exit side propagation part 9 without a diffraction grating is provided.
  • 5D is a non-reflective film provided on the exit surface side of the optical waveguide 7.
  • the grating element 2A of FIG. 2 is substantially the same as the light emitting device of FIG. However, in the grating element 2A of FIG. 2, two Bragg gratings G1 and G2 are provided between the incident-side propagation part 8 and the emission-side propagation part 9 of the optical waveguide 7, and adjacent Bragg gratings G1 and G2 are provided. The intermediate propagation part 10 without a diffraction grating is provided between the two.
  • FIG. 3 is a schematic diagram showing a light emitting device of a control example.
  • an integral Bragg grating RG is provided between the incident side propagation part 8 and the emission side propagation part 9 of the optical waveguide 7.
  • an intermediate propagation part without a diffraction grating is provided between adjacent Bragg gratings.
  • adjacent Bragg gratings can be provided continuously without an intermediate propagation portion.
  • three Bragg gratings G1, G2, G3 are provided between the incident side propagation part 8 and the emission side propagation part 9 of the optical waveguide 7.
  • No intermediate propagation part without a diffraction grating is provided between the adjacent Bragg gratings G1 and G2 and between G2 and G3, and the adjacent Bragg gratings are continuous.
  • two Bragg gratings G1 and G2 are provided between the incident-side propagation part 8 and the emission-side propagation part 9 of the optical waveguide 7. Between the adjacent Bragg gratings G1 and G2, no intermediate propagation part without a diffraction grating is provided, and adjacent Bragg gratings are continuous.
  • the grating element 2B and the light source 1 constitute an external resonator type light emitting device.
  • a plurality of Bragg gratings having different periods are provided.
  • one or more Bragg gratings having the same period as one of the plurality of Bragg gratings may be provided.
  • FIG. 8 shows the dependence of the gain (gain) of the semiconductor laser light on the wavelength
  • the lower side of FIG. 8 shows an example of the wavelength characteristics of the combined reflectance of the three Bragg gratings G1, G2, and G3. .
  • the periods (pitch) of the plurality of Bragg gratings are different from each other.
  • the wavelength characteristic of the reflectance is different for each Bragg grating.
  • the wavelength characteristics of the reflectivities of the three Bragg gratings G1, G2, and G3 are different.
  • the laser oscillation threshold is set to g th and the half width of the gain is set to ⁇ LDg .
  • the central wavelengths of the reflectivities of the Bragg gratings G1, G2, and G3 are ⁇ G1 , ⁇ G2 , and ⁇ G3 (FIG. 9), and the full width at half maximum of the reflectivity of each Bragg grating is ⁇ G1 , ⁇ G2 , ⁇ G3 , And Further, the reflectance at the outgoing end of the light source and R 2.
  • the maximum value of the combined reflectance of the three Bragg gratings is R max, and the reflectance that is 50% is R 50 .
  • the full width of the wavelength region where the reflectance is R 50 or more is ⁇ 50 , and the center wavelength is ⁇ GC .
  • each Bragg grating G1, G2, G3 is an element for obtaining a synthesized reflection characteristic.
  • the individual reflectivity of each Bragg grating may or may not have a wavelength region larger than the reflectivity R 2 at the light emitting end of the light source.
  • each Bragg grating partially overlap.
  • the reflectivity graphs of the Bragg gratings cross each other at or above the reflectivity of ⁇ G1 , ⁇ G2 , and ⁇ G3 .
  • the oscillation wavelength of the laser light is determined by the wavelength reflected by the grating. If the reflected light from the grating exceeds the gain threshold of the laser, the oscillation condition is satisfied, and the laser oscillation can be preferentially maintained by making the gain larger than the reflected light from the end face of the active layer on the grating element side. Thereby, a laser beam with high wavelength stability can be obtained.
  • the reflectance of the grating is made larger than the reflectance at the end face of the active layer.
  • the gain obtained by the resonator using the grating becomes larger than the gain obtained by the resonator of the original semiconductor laser, and stable laser oscillation can be performed by the resonator using the grating.
  • R 50 is larger than the reflectance R 2 at the output end of the light source.
  • R 50 / R 2 is preferably 1.01 or more, and more preferably 1.05 or more.
  • R 50 / R 2 is preferably 1.2 or more from the viewpoint of further improving the wavelength stability and power stability.
  • the difference between the upper and lower wavelength limits of the continuous wavelength region is preferably 10 nm or more, and more preferably 12 nm or more.
  • the wavelength region ⁇ 50 in which the combined reflectance is the half-value reflectance R 50 or more is continuously provided in the range of 10 nm to 30 nm. This is more preferably 12 ⁇ m or more and more preferably 25 nm or less.
  • the half-value reflectance R 50 is set to 3% or more, which enables stable oscillation.
  • the half-value reflectance R 50 is preferably 5% or more, and more preferably 7% or more.
  • the upper limit of the half-value reflectance R 50 is not particularly limited, but may be 60% or less.
  • the wavelength width (full width at half maximum) of the wavelength region that is 50% of the maximum reflectance of each Bragg grating is preferably 5 nm or more, and more preferably 10 nm or more.
  • the upper limit is preferably 30 nm or less, and more preferably 25 nm or less.
  • the minimum value R Gmin of the reflectance of the grating necessary for laser oscillation in the external resonator mode is the minimum reflectance necessary to satisfy the gain threshold value of the external resonator formed by the semiconductor laser and the grating. .
  • the gain threshold of the external resonator is determined by [Equation (2-1)] described later.
  • the minimum reflectance R Gmin for laser oscillation in the external resonator mode is larger than the reflectance R 2 at the emission end of the semiconductor laser.
  • R Gmin R 2 . Therefore, R 50 is preferably equal to or greater than R Gmin .
  • the full width at half maximum ⁇ 50 can be determined in accordance with the gain curve of the semiconductor laser light source.
  • the interval between the reflection center wavelengths of the Bragg gratings is an important parameter. That is, in a preferred embodiment, it is preferable that the interval between adjacent reflection center wavelengths is as follows. 4 nm ⁇ ⁇ G (n + 1) ⁇ G (n) ⁇ 20 nm
  • ( ⁇ G (n + 1) ⁇ G (n) ) is the interval between the center wavelengths of adjacent gratings on the wavelength axis.
  • n eff is an equivalent refractive index (effective refractive index).
  • ⁇ ⁇ (n + 1) ⁇ n ⁇ is preferably as follows. 1 nm ⁇ ⁇ ⁇ (n + 1) ⁇ n ⁇ ⁇ 5 nm
  • the sum ⁇ ( ⁇ G (n) ) of the full width at half maximum of each Bragg grating is greater than the full width at half maximum ⁇ 50 of the combined reflectance. From the viewpoint of temperature stability and power stability of laser oscillation, the following conditions are preferable. ⁇ 50 ⁇ 0.7 ⁇ ⁇ ( ⁇ G (n) )
  • the number n of the plurality of Bragg gratings is 2 or more.
  • the upper limit is not particularly limited. However, when n is large, the length of the Bragg grating becomes long, and the resonator length of the external resonator becomes long.
  • the length of each Bragg grating is preferably 3 ⁇ m or more, and gratings with the same period may be arranged after gratings with different periods.
  • the reflection characteristic of the synthesized Bragg grating is preferably high in peak flatness from the viewpoint of power stability. For this reason, it has been found that it is preferable to widen the wavelength region ⁇ 70 that is 70% or more with respect to the maximum value R max of the reflectance.
  • the width of this wavelength region ⁇ 70 is preferably 10 nm or more. If this wavelength region is too large, mode hops with large wavelength fluctuations occur and power fluctuations increase, so ⁇ 70 is preferably 25 nm or less.
  • the reflection characteristics of the synthesized grating have a plurality of peaks.
  • the laser oscillation wavelength can be fixed to the peak wavelength.
  • the reflectance does not change greatly. Therefore, even if the mode hops, the wavelength fluctuation becomes small, so that the power fluctuation can be suppressed.
  • the number of the peaks is preferably 3 or more.
  • the arrangement of the plurality of gratings is not particularly limited.
  • a grating having a short period can be arranged on the input side of the light source, and gratings having a long period can be arranged sequentially.
  • the external resonator length gradually increases and decreases in response to a temperature change, so that mode hops can be suppressed.
  • each Bragg grating ⁇ G (n)
  • the lengths of the gratings may be different from each other, and any structure may be used as long as the synthesized grating can satisfy the above conditions.
  • the temperature characteristic of a GaAs semiconductor laser is 0.3 nm / ° C., and when the temperature increases by 10 ° C., the oscillation wavelength shifts to the longer wavelength side by 3 nm.
  • ⁇ LDg varies depending on the semiconductor laser, but is generally in the range of about 4 nm to 10 nm.
  • the temperature operating range can be obtained by dividing the difference in the center wavelength of the gain of the semiconductor laser at T min and T max by the temperature characteristic. This wavelength difference is obtained by adding ⁇ low and ⁇ high to the wavelength region ⁇ 50 and the short wavelength side and long wavelength side of the wavelength region, respectively.
  • ⁇ low and ⁇ high are in a numerical range of 2 nm to 3 nm (see FIG. 8 ).
  • each W 50 is 21 nm and the operating temperature range is about 83 ° C. to about 93 ° C.
  • the operating temperature range is 125 ° C. to 140 ° C.
  • FIG. 6 shows a grating element in which three gratings are formed without spacing.
  • the periods of the Bragg gratings G1, G2, and G3 are 190 nm, 192.5 nm, and 195 nm, respectively, and are shifted by 2.5 nm.
  • the reflection characteristics of each Bragg grating are as shown in FIGS. 10 (a), 10 (b), and 11 (a).
  • the maximum reflectance R max is 16% to 17%, and the full width at half maximum ⁇ 50 is about 18 nm.
  • FIG. 12A shows the characteristics of the composite reflectance when the periods of the gratings G1, G2, and G3 are set to 190 nm, 193 nm, and 196 nm and shifted by 3 nm.
  • the maximum reflectance R max is about 37%
  • R 50 is about 18%
  • the full width at half maximum ⁇ 50 is about 22 nm
  • R 70 is about 24%
  • ⁇ 70 is about 7 nm.
  • FIG. 12B shows the characteristics of the combined reflectance when the periods of the gratings G1, G2, and G3 are set to 190 nm, 191 nm, and 192 nm and shifted by 1 nm.
  • the maximum reflectance R max is about 68%
  • R 50 is about 34%
  • the full width at half maximum ⁇ 50 is about 8.5 nm.
  • R 70 is about 47% and ⁇ 70 is about 7 nm.
  • FIG. 5 shows a grating element in which two Bragg gratings are formed without an interval.
  • the periods of the gratings G1 and G2 are 190 nm and 191 nm, respectively, and are changed by 1 nm.
  • the reflection characteristics of each grating in this case are shown in FIGS. 13 (a) and 13 (b).
  • the maximum reflectance R max is 10% and the full width at half maximum ⁇ 50 is about 23 nm.
  • the maximum reflectance R max is about 30%
  • R 50 is about 13%
  • the full width at half maximum ⁇ 50 is about 13 nm
  • R 70 is about 21% and ⁇ 70 is about 10 nm.
  • the composite reflectance characteristic is as shown in FIG.
  • the maximum reflectance R max is about 18%
  • R 50 is about 9%
  • the full width at half maximum ⁇ 50 is 10 nm
  • R 70 is about 12.6% and ⁇ 70 is about 8 nm.
  • the composite reflectance represents a composite of reflection characteristics of a plurality of gratings.
  • the reflection characteristic of light diffracted by the grating is determined by the structure (depth, period, shape, length) of the grating and the refractive index of the material forming the grating.
  • it can be obtained by numerical calculation. It can also be calculated by electromagnetic field simulation using Coupled-Mode Theory.
  • the reflectance of the grating is represented by a complex number, and in the case of a plurality of gratings, the reflection characteristics synthesized by each position change. That is, the reflection characteristics are changed by changing the grating interval.
  • the optical waveguide 7 is a ridge-type optical waveguide and is provided in the optical material layer.
  • the optical waveguide 7 may be formed on the same surface as the Bragg grating, or may be formed on the opposite surface.
  • the reflectance of the non-reflective layers 5B, 5C, and 5D may be a value smaller than the grating reflectance, and is preferably 0.1% or less. However, as long as the reflectance at the end face is smaller than the grating reflectance, the non-reflective layer may be omitted and a reflective film may be used. If an antireflection layer is not provided on the end surface of the active layer on the grating element side and a reflective film is formed instead, an ordinary semiconductor laser is obtained. In this case, the light source can oscillate independently.
  • an optical material layer 30 is formed on a substrate 6 via a lower buffer layer 13.
  • a pair of ridge grooves 16 are formed in the optical material layer 30, and a ridge-type optical waveguide 15 is formed between the ridge grooves.
  • the Bragg grating may be formed on a flat surface or may be formed on a ridge groove surface. From the viewpoint of reducing the shape variation of the Bragg grating and the ridge groove, it is preferable to provide the Bragg grating and the ridge groove on the opposite side of the optical material layer 30 by forming the Bragg grating on a flat surface.
  • Reference numeral 17 denotes a thin portion
  • 18 denotes an extending portion.
  • An adhesive layer can be provided between the buffer layer 13 and the support substrate 6.
  • the air layer can directly contact the grating.
  • the difference in refractive index can be increased without the presence of a grating groove, and the reflectance can be increased with a short grating length.
  • the upper buffer layer 14 is further formed on the optical material layer 30.
  • an optical material layer 30 is formed on the substrate 6 via the lower buffer layer 13.
  • a pair of ridge grooves 16 are formed in the optical material layer 30, and a ridge-type optical waveguide 15 is formed between the ridge grooves.
  • a ridge groove is provided on the buffer layer 13 side.
  • the Bragg grating may be formed on the flat surface side, or may be formed on the ridge groove surface. From the viewpoint of reducing variations in the shapes of the Bragg grating and the ridge groove, it is preferable to provide the Bragg grating and the ridge groove on the opposite side of the substrate by forming the Bragg grating on a flat surface.
  • Reference numeral 17 denotes a thin portion
  • 18 denotes an extending portion.
  • An adhesive layer can be provided between the buffer layer 13 and the support substrate 6.
  • the optical waveguide is composed of a core made of an optical material, and a clad surrounds the core.
  • the cross section of the core (cross section in the direction perpendicular to the light propagation direction) is a convex figure.
  • the convex figure means that a line segment connecting any two points of the outer contour line of the core cross section is located inside the outer contour line of the core cross section.
  • a convex figure is a general geometric term. Examples of such figures include triangles, quadrangles, hexagons, octagons, and other polygons, circles, ellipses, and the like.
  • a quadrangle having an upper side, a lower side, and a pair of side surfaces is particularly preferable, and a trapezoid is particularly preferable.
  • an optical waveguide 21 made of a core made of an optical material is formed on a substrate 6 via a lower buffer layer 13.
  • a lower buffer layer 13 that functions as a clad exists under the optical waveguide 21.
  • the upper buffer layer is not provided on the side surface and the upper surface of the optical waveguide 11. For this reason, the side surface and upper surface of the optical waveguide 21 are exposed to the atmosphere, and the atmosphere functions as a cladding.
  • the cross-sectional shape of the optical waveguide 21 is a trapezoid, and the upper surface 21a is narrower than the lower surface 21b.
  • An adhesive layer can also be formed between the buffer layer 13 and the support substrate 6.
  • the buffer layer 22 is provided on the substrate 6, and an optical waveguide 21 made of a core made of an optical material is embedded in the buffer layer 22.
  • the buffer layer 22 includes an upper surface covering portion 22b that covers the upper surface of the optical waveguide, a side surface covering portion 22c that covers the side surface of the optical waveguide, and a bottom surface covering portion 22a that covers the bottom surface of the optical waveguide.
  • the buffer layer 22 is provided on the substrate 6, and an optical waveguide 21 ⁇ / b> A made of a core made of an optical material is embedded in the buffer layer 22.
  • the buffer layer 22 has an upper surface covering portion 22b that covers the upper surface of the optical waveguide, a side surface covering portion 22c that covers the side surface of the optical waveguide, and a bottom surface coating diagram 22a that covers the bottom surface of the optical waveguide.
  • an optical waveguide 21 made of a core made of an optical material is formed on the substrate 6 via the lower buffer layer 13.
  • An upper buffer layer 23 that also functions as a cladding is formed on the side surface and the upper surface 21 a of the optical waveguide 21 to cover the optical waveguide 21.
  • the upper buffer layer 23 includes a side surface covering portion 23 b that covers the side surface of the optical waveguide 11 and an upper surface covering portion 23 a that covers the upper surface.
  • an optical waveguide 21A made of a core made of an optical material is formed.
  • the cross-sectional shape of the optical waveguide 21A is a trapezoid, and the lower surface is narrower than the upper surface.
  • the upper cladding layer 23 includes a side surface covering portion 23 b that covers the side surface of the optical waveguide 11 and an upper surface covering portion 23 a that covers the upper surface.
  • the width W of the optical waveguide means the minimum value of the width of the optical waveguide in the cross section.
  • the width W of the optical waveguide is the width of the upper surface
  • the width W of the optical waveguide is the width of the lower surface.
  • an incident-side propagation portion is provided between the incident surface 7a of the optical waveguide 7 and the start point of the Bragg grating, and the end point of the Bragg grating is also provided.
  • an exit side propagation part is provided between the exit surface and the exit surface.
  • the incident side propagation part 8 includes an incident part 8a continuous from the incident surface, a narrow part 8c connected to the Bragg grating, and an optical waveguide width. Has a tapered portion 8b that gradually changes.
  • the width Win of the incident part 8a is made larger than the width Wgr of the narrow part 8c.
  • the optical waveguide width Wout in the output side propagation part is the same as Wgr in the example of FIG. However, W out may be larger or smaller than W gr .
  • the emission side propagation part 9 has a connecting part 9a continuous from the Bragg grating and a tapered part 9c toward the emission end. Optical waveguide width at the tapered portion 9c is gradually reduced toward the optical waveguide width W out at the exit end.
  • the output side propagation part 9 includes a connecting part 9a continuous from the Bragg grating, an emitting part 9c connected to the emitting end part, and a tapered part between the connecting part 9a and the emitting part 9c. 9b.
  • Optical waveguide width at the tapered section 9b is gradually decreased toward the optical waveguide width W out at the exit end.
  • the width W gr of the optical waveguide in the connecting portion 9a is constant, and the width W out of the optical waveguide in the emitting portion 9c is also constant.
  • A is incident light to the grating element
  • B is emitted light from the grating element
  • C is reflected grating light.
  • the length L (see FIGS. 1, 2, and 6) from the outer reflection end of the semiconductor laser to the emission side end of the plurality of Bragg gratings is preferably 1 mm or less, and further to suppress mode hops.
  • L is preferably 700 ⁇ m or less, and most preferably 500 ⁇ m or less.
  • the length L btotal from the start point to the end point of the Bragg grating is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and particularly preferably 100 ⁇ m or less. Further, in order to obtain a light feedback rate necessary for laser oscillation, L btotal is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the length of each Bragg grating is preferably 200 ⁇ m or less. Further, since ⁇ Gn becomes smaller as the length of the grating becomes longer, the length of each Bragg grating is preferably 100 ⁇ m or less in order to increase it. In order to obtain a light feedback rate necessary for laser oscillation, ⁇ Gn is preferably 10 ⁇ m or more.
  • n b is preferably 1.7 or more, and more preferably 1.8 or more.
  • the grating depth t d (see FIG. 19) is preferably 20 nm or more. Further, the grating depth t d is preferably 250nm or less, more preferably 200nm or less.
  • the height (thickness) T s (see FIGS. 16 to 17) of the optical waveguide is preferably 0.5 ⁇ m or more and 3.0 ⁇ m or less from the viewpoint of improving the coupling efficiency of the semiconductor laser.
  • the width W gr (see FIG. 18) of the optical waveguide in the Bragg grating is preferably 0.5 ⁇ m or more and 4 ⁇ m or less from the viewpoint of a single mode waveguide.
  • the distance L g (FIGS. 1, 2 and 6) between the light exit surface of the light source and the incident portion of the optical waveguide may be 0, but the stress due to the thermal expansion due to the temperature change of each element. From the viewpoint of relaxation, the thickness is set to 1 ⁇ m or more and 10 ⁇ m or less. As a result, stable oscillation is possible. Further, although the length L m of the entrance-side transmission unit may be 0, preferably 1 ⁇ 100 [mu] m, more preferably 5 ⁇ 20 [mu] m.
  • the length L a of the light source active layer is preferably 500 ⁇ m or less. Further, L a + L g + L m + L btotal is preferably 1050 ⁇ m or less, and more preferably 800 ⁇ m or less. Further, L a + L g + L m + L btotal is preferably 300 ⁇ m or more.
  • a laser with a highly reliable GaAs-based or InP-based material is suitable.
  • a GaAs laser that oscillates near a wavelength of 1064 nm is used. Since GaAs-based and InP-based lasers have high reliability, a light source such as a one-dimensionally arranged laser array can be realized. It may be a super luminescence diode or a semiconductor optical amplifier (SOA).
  • SOA semiconductor optical amplifier
  • the material and wavelength of the active layer can be selected as appropriate.
  • Non-Patent Document 3 Furukawa Electric Times, January 2000, No. 105, p24-29
  • the optical waveguide can be obtained by, for example, physical processing and molding by cutting with an outer peripheral blade or laser ablation processing.
  • the Bragg grating can be formed by physical or chemical etching as follows.
  • a metal film such as Ni or Ti is formed on a high refractive index substrate, and windows are periodically formed by photolithography to form an etching mask. Thereafter, periodic grating grooves are formed by a dry etching apparatus such as reactive ion etching. Finally, it can be formed by removing the metal mask.
  • one or more metal elements selected from the group consisting of magnesium (Mg), zinc (Zn), scandium (Sc), and indium (In) are provided in order to further improve the optical damage resistance of the optical waveguide.
  • magnesium is particularly preferable.
  • the crystal can contain a rare earth element as a doping component.
  • the rare earth element Nd, Er, Tm, Ho, Dy, and Pr are particularly preferable.
  • the material of the adhesive layer may be an inorganic adhesive, an organic adhesive, or a combination of an inorganic adhesive and an organic adhesive.
  • the optical material layer 30 may be formed by forming a film on a support base by a thin film forming method. Examples of such a thin film forming method include sputtering, vapor deposition, and CVD. In this case, the optical material layer 30 is directly formed on the support substrate, and the above-described adhesive layer does not exist.
  • the specific material of the support substrate is not particularly limited, and examples thereof include glass such as lithium niobate, lithium tantalate, and quartz glass, quartz, and Si.
  • the reflectance of the non-reflective layer needs to be less than or equal to the grating reflectivity, and the film material to be formed on the non-reflective layer is laminated with an oxide such as silicon dioxide, tantalum pentoxide, magnesium fluoride, calcium fluoride, etc. Films and metals can also be used.
  • each end face of the light source element and the grating element may be cut obliquely in order to suppress the end face reflection.
  • the grating element and the support substrate may be bonded together by adhesion or direct bonding.
  • the oscillation condition of the semiconductor laser is determined by gain condition ⁇ phase condition as shown in the following equation.
  • ⁇ a , ⁇ g , ⁇ wg , ⁇ gr are the active layer, the gap between the semiconductor laser and the waveguide, the unprocessed waveguide portion on the input side, and the loss factor of the grating portion, respectively
  • L a , L g and L wg L gr are the active layer, the gap between the semiconductor laser and the waveguide, the length of the grating raw waveguide portion and the grating portion on the input side, and r 1 and r 2 are mirror reflections, respectively.
  • R 2 is the reflectance of the grating
  • C out is the coupling loss between the grating element and the light source
  • ⁇ t g th is the gain threshold of the laser medium
  • ⁇ 1 is the laser side reflecting mirror
  • ⁇ 2 is a phase change amount in the grating portion.
  • the gain condition can be considered only by the grating.
  • phase condition is expressed by the following equation from the equation (2-1). However, ⁇ 1 is zero.
  • the length L total of the Bragg grating is as described above. Making the length L total of the Bragg grating shorter than before is a premise of the design concept in the present embodiment. That is, it is necessary to increase the wavelength interval (longitudinal mode interval) that satisfies the phase condition in order to make mode hopping difficult. For this purpose, it is necessary to shorten the resonator length, and to shorten the length of the grating element.
  • Reducing the length of the grating element reduces the loss and can reduce the laser oscillation threshold. As a result, driving with low current, low heat generation, and low energy is possible.
  • the grating length L total is preferably 5 ⁇ m or more in order to obtain a reflectance of 3% or more, and more preferably 10 ⁇ m or more in order to obtain a reflectance of 5% or more.
  • Example 1 An external resonator type laser module shown in FIG. 6 was produced.
  • the grating element has the structure shown in FIGS. 4 and 15B.
  • a SiO 2 layer to be the lower buffer layer 13 is formed to 1 ⁇ m on the support substrate 6 made of quartz by a sputtering apparatus, and Ta 2 O 5 is formed to a thickness of 1.2 ⁇ m on the optical material.
  • Layer 30 was formed.
  • Ti was formed on the optical material layer, and a grating pattern was produced by an EB drawing apparatus. Thereafter, three gratings G1, G2, and G3 were formed by fluorine-based reactive ion etching using the Ti pattern as a mask.
  • the length of the intermediate propagation unit 10 is 0 ⁇ m.
  • the groove depth t d of the grating was 200 nm.
  • G1 Pitch interval ⁇ 190 nm, length L b 8 ⁇ m
  • G2 pitch interval ⁇ 192.5 nm
  • G3 pitch interval ⁇ 195 nm, length L b 8 ⁇ m
  • a SiO 2 layer to be the upper buffer layer 14 was formed by 0.5 ⁇ m sputtering.
  • both ends were optically polished, both ends were formed with a 0.1% AR coat, and finally a chip was cut to produce a grating element.
  • the element size was 1 mm wide and L wg 500 ⁇ m long.
  • Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer.
  • SLD super luminescence diode
  • the reflection characteristics were evaluated from the characteristics.
  • the measured reflection center wavelength of the grating element was 791 nm, and the maximum reflectance R max was 36%. Further, the full width at half maximum ⁇ 50 was 21 nm, and ⁇ 70 was 20 nm.
  • a laser module was mounted as shown in FIG. 6 in order to evaluate the characteristics of the external resonator type laser using this grating element. It has a GaAs laser structure as a light source element, a highly reflective film on one end face, and a reflectance of 8% on the other exit end face.
  • Light source element specifications Center wavelength: 790nm Output 20mW Half width: 0.1 nm Laser element length 300 ⁇ m
  • the module After mounting the module, it was driven by current control (ACC) without using a Peltier device, and laser oscillation occurred at a temperature of 25 ° C. with a center wavelength of 791 nm, and an output of 13 mW was obtained.
  • ACC current control
  • a module was installed in a thermostat, and the temperature dependence of the laser oscillation wavelength and output fluctuation were measured.
  • the oscillation wavelength was 800 nm at a temperature of 70 ° C., and the power output fluctuation was within 0.5% up to this temperature range.
  • the oscillation wavelength On the low temperature side, the oscillation wavelength was 787 nm at 5 ° C., and the power output fluctuation was within 0.5% up to this temperature range.
  • condensation could occur and measurement could not be performed.
  • Example 1 A light emitting device similar to that in Example 1 was manufactured. However, as for the grating element, one Bragg grating G1 having a pitch interval ⁇ 192.5 nm and a length L b of 25 ⁇ m was formed (see FIG. 3). Groove depth t d of the grating was set to 125 nm.
  • Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer.
  • SLD super luminescence diode
  • the reflection characteristics were evaluated from the characteristics.
  • the reflection center wavelength of the measured grating element was 791 nm, the maximum reflectance R max was 18%, the full width at half maximum ⁇ 50 was 5 nm, and W 70 was 4 nm.
  • a laser module was mounted as shown in FIGS. 6 and 19 in order to evaluate the characteristics of the external resonator type laser using this grating element. It has a GaAs laser structure as a light source element, a highly reflective film on one end face, and a reflectance of 8% on the other exit end face.
  • Light source element specifications Center wavelength: 790nm Output 20mW Half width: 0.1 nm Laser element length 300 ⁇ m
  • the module After mounting the module, it was driven by current control (ACC) without using a Peltier device. As a result, laser oscillation occurred at a temperature of 25 ° C. with a center wavelength of 791 nm, and an output of 15 mW was obtained.
  • a module was installed in a thermostat, and the temperature dependence of the laser oscillation wavelength and output fluctuation were measured. As a result, on the high temperature side, the oscillation wavelength was 795 nm at a temperature of 45 ° C., and the power output fluctuation was within 1% up to this temperature range. However, when this temperature was exceeded, wavelength fluctuations occurred and power output fluctuations were 3%. On the low temperature side, the oscillation wavelength was 789 nm at 15 ° C., and the power output fluctuation was within 1% up to this temperature range. However, at temperatures below this, wavelength fluctuations occurred and power output fluctuations were 3%.
  • Example 2 A light emitting device similar to that in Example 1 was manufactured. However, the following Bragg gratings G1 and G2 were formed for the grating elements (see FIG. 5). The groove depth t d of the grating was 200 nm.
  • G1 Pitch interval ⁇ 191 nm, length L b 6 ⁇ m
  • G2 pitch interval ⁇ 193 nm, length L b 6 ⁇ m
  • Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer.
  • SLD super luminescence diode
  • the reflection characteristics were evaluated from the characteristics.
  • the measured reflection center wavelength of the grating element was 791 nm, and the reflectance was 30%.
  • a laser module was mounted as shown in FIGS. 6 and 19 in order to evaluate the characteristics of the external resonator type laser using this grating element. It has a GaAs laser structure as a light source element, a highly reflective film on one end face, and a reflectance of 8% on the other exit end face.
  • Light source element specifications Center wavelength: 790nm Output 20mW Half width: 0.1 nm Laser element length 300 ⁇ m
  • the oscillation wavelength became 797.5 nm at a temperature of 50 ° C. and a temperature of 58 ° C., and the power output fluctuation was within 0.5% in the temperature range up to 50 ° C.
  • the oscillation wavelength was 785 nm at 5 ° C., and the power output fluctuation was within 0.5% up to this temperature range.
  • condensation could occur and measurement could not be performed.
  • Example 2 A light emitting device similar to that of Example 2 was manufactured.
  • the grating elements are Bragg gratings G1 and G2 having a pitch interval of 191 nm, L b of 6 ⁇ m, a pitch interval of ⁇ 193 nm, and a length of L b of 6 ⁇ m, and the interval between the gratings G1 and G2 is set to 96 nm.
  • Optical characteristics of the grating element are measured by using a super luminescence diode (SLD), which is a broadband wavelength light source, and inputting TE mode light into the grating element and analyzing the output light with an optical spectrum analyzer.
  • SLD super luminescence diode
  • the reflection characteristics were evaluated from the characteristics.
  • the measured reflection characteristics of the grating element had two peaks at wavelengths of 780 nm and 800 nm, and the reflectance was 18%.
  • the full width at half maximum ⁇ 50 was 9 nm, and ⁇ 70 was 8 nm.
  • a laser module was mounted as shown in FIGS. 6 and 19 in order to evaluate the characteristics of the external resonator type laser using this grating element. It has a GaAs laser structure as a light source element, a highly reflective film on one end face, and a reflectance of 8% on the other exit end face.
  • Light source element specifications Center wavelength: 780 nm
  • Half width 0.1 nm
  • Laser element length 300 ⁇ m
  • the temperature was 784 nm at 45 ° C.
  • the oscillation wavelength was 786 nm at 55 ° C.
  • the power output fluctuation was within 0.5% in the temperature range up to 45 ° C.
  • the power output fluctuation was within 1% up to 55 ° C., but when this temperature was exceeded, the wavelength fluctuation occurred and the power output fluctuation became 3% or more.
  • the oscillation wavelength was 776 nm at 5 ° C., and the power output fluctuation was within 0.5% up to this temperature range. However, at temperatures below this temperature, condensation could occur and measurement could not be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

光源1が、半導体レーザ光を発振する活性層3を備える。グレーティング素子2Bが、半導体レーザ光が入射する入射面7aと所望波長の出射光を出射する出射部7bを有する光導波路7、および光導波路7内に形成された複数の互いに周期の異なるブラッググレーティングG1、G2、G3を備える。複数のブラッググレーティングの合成反射率の最大値Rmaxの50%を半値反射率R50としたとき、半値反射率R50が光源の出射端の反射率Rよりも大きく、半値反射率R50が3%以上であり、合成反射率が半値反射率R50以上となる波長領域△λ50が連続して10nm以上、30nm以下設けられている。

Description

外部共振器型発光装置
 本発明は、外部共振器型発光装置に関するものである。
 DBRレーザは、活性層の導波路の延長上の導波路面に凹凸を形成し、ブラッグ反射によるミラーを構成し、共振器を実現している。このレーザは、光導波層の両端に回折格子が設けられているので、活性層で発光した光は光導波層を伝搬し、この回折格子で一部が反射され、電流注入部に戻り、増幅される。回折格子から決められた方向に反射するのは、一つの波長の光だけであるので、レーザ光の波長は一定になる。
 半導体基板中にモノリシックに形成されるDBRレーザは、活性層の導波路の延長上に回折格子が形成されるために、活性層で発生した熱が直接的に回折格子部分に伝熱することや、電流注入された電子が回折格子部分にも注入されることによって屈折率変動が大きくなり、温度変動により波長が変動したりパワーが変動するといった問題がおこる。このため、ペルチェ素子などにより温度制御するのが一般的である。
 また、この応用として、回折格子を、半導体とは異なる部品とし、外部で共振器を形成する、外部共振器型半導体レーザが開発されている。このタイプのレーザは、波長安定性、温度安定性、制御性がよいレーザとなる。外部共振器は、ファイバ・ブラッグ・グレーティング(FBG)や、ボリューム・ホログラム・グレーティング(VHG)がある。
 特許文献1(特開2010―171252)には、SiO、SiO1-x(xは0.55乃至0.65)、あるいはSiとSiNをコア層とする光導波路、およびこの光導波路にグレーティングを形成した外部共振器型レーザが開示されている。これは精密な温度制御なしで発振波長を一定に保つ外部共振器レーザで、このために回折格子の反射波長の温度変化率(ブラッグ反射波長の温度係数)を小さくすることを前提条件としている。その上でレーザ発振を縦モードマルチモードとすることでパワー安定性を実現できることが記載されている。
 特許文献2(特許第3667209)には、石英、InP、GaAs、LiNbO、LiTaO、ポリイミド樹脂とする光導波路に形成したグレーティングを利用した外部共振器型レーザが開示されている。これは、光源である半導体レーザの光射出面における反射率が実効反射率Re(実質的に0.1~38.4%)であり、その上でレーザ発振を縦モードマルチモードとすることでパワー安定性を実現できることが記載されている。
 本出願人は、特許文献3(WO 2014-196553)および特許文献4(特許第5641631)において、温度変化に伴うモードホップを抑制するような外部共振器型発光装置の構造を提案した。
 また、特許文献5記載のように、グレーティング素子中に複数個のブラッググレーティングを設けることによって、広い温度範囲で使用可能とすることが考えられる。この場合、一般的にグレーティング素子の長さが1mm以上であり、反射率の波長幅(半値全幅FWHM)が1nm以下で設定される。これによって、モードホップを抑制した波長安定性が高い外部共振器型レーザが実現できるとされている。
 特許文献6は、半導体レーザ光を発振する光源、および複数の周期の異なるブラッググレーティングを備える外部共振器型発光装置が開示されている。ブラッググレーティングの反射特性は、各々が独立しており、互いに交差することはなく、連続した広い波長の反射特性を有しない。また、本装置では光源側にグレーティングと位相調整領域が形成されており、この位相調整領域の作用によって波長可変させ、温度が変化しても優れた波長安定性を実現するという思想である。
古河電工時報 平成12年1月 第105号 p24-29 Handbook of Semiconductor Lasers and Photonic Integrated Circuit, pp.363-374, 1994,  dited by Y,Suematsu and A.R.Adams
特開2010―171252 特許第3667209 WO 2014-196553 特許第5641631 特開2002―006148 US2003/0108081A1
 しかし、実際には、外部共振器型発光装置全体の温度安定性を向上させることには限界があり、ペルチェ素子などの温度調節機構が必要なことが多い。特に、幅広い温度変化に対して従来の外部共振器型発光装置によって対応することは難しい。このため、レーザ光源の温度変化に対する安定性を一層改善することが望まれる。
 本発明の課題は、グレーティング素子を利用した外部共振器型の発光装置において、温度変化に対する安定性を改善する構造を提供することである。
 本発明は、半導体レーザ光を発振する光源、およびこの光源と外部共振器を構成するグレーティング素子を備える外部共振器型発光装置であって、
 前記光源が、前記半導体レーザ光を発振する活性層を備えており、
 前記グレーティング素子が、前記半導体レーザ光が入射する入射面と所望波長の出射光を出射する出射部を有する光導波路、およびこの光導波路内に形成された複数の互いに周期の異なるブラッググレーティングを備えており、
 前記複数のブラッググレーティングの合成反射率の最大値Rmaxの50%を半値反射率R50としたとき、前記半値反射率R50が前記光源の出射端の反射率Rよりも大きく、前記半値反射率R50が3%以上であり、前記合成反射率が前記半値反射率R50以上となる波長領域△λ50が連続して10nm以上、30nm以下設けられていることを特徴とする。
 本発明では、グレーティング素子中に複数の互いに周期(ピッチ)の異なるブラッググレーティングを設ける。
 ここで、単に複数の周期(ピッチ)の異なるブラッググレーティングを直列に接続して動作させる場合には、各グレーティングによる共振器長が大きく異なるために、モードホップ間隔が大きく異なる。このため、短い共振器でレーザ発振する場合には、温度変化があってもモードホップしにくく波長が安定するが、長い共振器の場合には、モードホップ間隔が狭くなるためにモードホップがしやすくなり、波長安定性が悪くなってしまう。
 このため、本発明者は、複数の周期(ピッチ)の異なるブラッググレーティングの反射率の波長特性について種々検討した。こうした検討は、従来のグレーティング素子を用いた外部共振器型発光装置では十分に行われていなかったものである。
 この検討の過程で、複数の周期(ピッチ)の異なるブラッググレーティングの反射率を合成した合成反射率が光源の出射端の反射率よりも大きく、合成反射率が合成反射率の最大値Rmaxの50%R50以上となる波長領域△λ50を連続かつ広域にわたって設けることによって、温度安定性がよくなることに着目し、この波長領域を拡げることを想到した。
 ブラッググレーティングによる外部共振器型レーザの発振は、ブラッググレーティングで反射して光源に帰還する光が得るゲインが光源の出射端で反射して光源に帰還する光が得るゲインよりも大きく、かつ発振しきい値をこえる波長で起こる。そして、環境温度が変化したときには、光源のゲインのピーク波長がシフトする。このとき、複数のブラッググレーティングの合成反射率が最大値Rmaxの50%(R50)以上となる波長領域△λ50が、連続かつ広域にわたることによって、光源のゲインのピーク波長がシフトしても、そのシフトに対応して、複数のブラッググレーティングが全体として機能し、ブラッググレーティングで反射する光のゲインが光源の出射端で反射する光のゲインを常に上回り、外部共振器型のレーザ発振が可能となる。この結果、装置全体としての温度安定性が著しく改善することを見いだし、本発明に到達した。
外部共振器型発光装置の模式図である。 他の外部共振器型発光装置の模式図である。 対照例の外部共振器型発光装置の模式図である。 他のグレーティング素子2Bを示す模式図である。 他のグレーティング素子2Cを示す模式図である。 他の外部共振器型発光装置の模式図である。 レーザ発振条件を示す模式図である。 本発明の概念を説明するための波長特性図である。 本発明の概念を説明するための波長特性図である。 (a)、(b)は、それぞれ、一つのブラッググレーティングの反射特性例を示すグラフである。 (a)は、一つのブラッググレーティングの反射特性例を示すグラフであり、(b)は、三つのブラッググレーティングの合成反射率の特性例を示すグラフである。 (a)、(b)は、それぞれ、三つのブラッググレーティングの合成反射率の特性例を示すグラフである。 (a)、(b)は、それぞれ、一つのブラッググレーティングの反射特性例を示すグラフである。 (a)、(b)は、それぞれ、二つのブラッググレーティングの合成反射率の特性例を示すグラフである。 (a)、(b)、(c)は、それぞれ、リッジ型光導波路を有するグレーティング素子の横断面を示す模式図である。 (a)、(b)、(c)は、それぞれ、横断面が台形の光導波路を有するグレーティング素子の横断面を示す模式図である。 (a)、(b)は、それぞれ、横断面が台形の光導波路を有するグレーティング素子の横断面を示す模式図である。 (a)、(b)は、それぞれ、本発明のグレーティング素子の平面形態を示す模式図である。 グレーティング素子を模式的に示す斜視図である。 レーザ発振条件を説明する図である。
 図1に模式的に示す外部共振器型発光装置は、半導体レーザ光を発振する光源1とグレーティング素子2とを備えている。光源1とグレーティング素子2とは、図示しない共通基板上にマウントしてもよい。
 光源1は、半導体レーザ光を発振する活性層3を備えている。本実施形態では、活性層3は基体4に設けられている。活性層3の外側端面3aには反射膜5Aが設けられており、活性層3のグレーティング素子側の端面3bには無反射膜5Bが形成されている。Laは活性層の光軸方向の長さである。
 グレーティング素子2では、支持基板6上に半導体レーザ光が入射する入射面7aと所望波長の出射光を出射する出射面7bを有する光導波路7が設けられている。光導波路7内には、複数のブラッググレーティングG1、G2、G3、G4が形成されている。本例ではブラッググレーティングの個数は四個であるが、二個以上であれば良い。隣り合うブラッググレーティングの間には、それぞれ、回折格子のない中間伝搬部10が設けられている。
 光導波路7の入射面7aとブラッググレーティングG1との間には、回折格子のない入射側伝搬部8が設けられており、入射側伝搬部8が活性層3と間隙11を介して対向している。5Cは、光導波路7の入射面側に設けられた無反射膜である。光導波路7の出射面7bとブラッググレーティングG4との間には、回折格子のない出射側伝搬部9が設けられている。5Dは、光導波路7の出射面側に設けられた無反射膜である。
 図2の発光装置は、図1の発光装置とほぼ同様のものである。ただし、図2のグレーティング素子2Aにおいては、光導波路7の入射側伝搬部8と出射側伝搬部9との間に二つのブラッググレーティングG1、G2が設けられており、隣り合うブラッググレーティングG1とG2との間に、回折格子のない中間伝搬部10が設けられている。
 図3は、対照例の発光装置を示す模式図である。本装置のグレーティング素子では、光導波路7の入射側伝搬部8と出射側伝搬部9との間に一体のブラッググレーティングRGが設けられている。
 前述の各例では、隣り合うブラッググレーティングの間に、回折格子のない中間伝搬部を設けた。しかし、隣り合うブラッググレーティングを中間伝搬部なしに連続的に設けることもできる。
 すなわち、図4のグレーティング素子2Bにおいては、光導波路7の入射側伝搬部8と出射側伝搬部9との間に三つのブラッググレーティングG1、G2,G3が設けられている。隣り合うブラッググレーティングG1とG2との間、G2とG3との間に、回折格子のない中間伝搬部が設けられておらず、隣り合うブラッググレーティングが連続している。
 図5のグレーティング素子2Cにおいては、光導波路7の入射側伝搬部8と出射側伝搬部9との間に二つのブラッググレーティングG1、G2が設けられている。隣り合うブラッググレーティングG1とG2との間に、回折格子のない中間伝搬部が設けられておらず、隣り合うブラッググレーティングが連続している。
 図6においては、図1と同様に、グレーティング素子2Bと光源1とによって外部共振器型発光装置を構成している。ただし、図1と同じ部分には同じ符号を付け、その説明は省略する。
 なお、本発明においては、周期が互いに異なるブラッググレーティングを複数設ける。しかし、これらの複数のブラッググレーティングのうちの一つと周期が同一のブラッググレーティングを更に一つまたは複数設けることも可能である。
 以下、本発明の外部共振器型発光装置の動作について更に述べる。
 図8の上側には、半導体レーザ光のゲイン(利得)の波長に対する依存性を示し、図8の下側には、三つのブラッググレーティングG1、G2、G3の合成反射率の波長特性例を示す。
 本発明においては、複数のブラッググレーティングの周期(ピッチ)が互いに異なっている。この結果、反射率の波長特性がブラッググレーティングごとに異なることになる。例えば、図8、図9の例では、三つのブラッググレーティングG1、G2、G3の各反射率の波長特性はそれぞれ異なっている。
 すなわち、図7、図8に示すように,レーザの発振閾値をgthとし、ゲインの半値幅をΔλLDgとする。一方、各ブラッググレーティングG1、G2、G3の反射率の中心波長をλG1、λG2、λG3とし(図9)、各ブラッググレーティングの反射率の半値全幅をΔλG1、ΔλG2、ΔλG3、とする。また、光源の出射端における反射率をRとする。
 また、三つのブラッググレーティングの合成反射率の最大値をRmaxとし、その50%となる反射率をR50とする。また、反射率がR50以上となる波長領域の波長全幅を△λ50とし、その中心波長をλGCとする。
 ここで、複数のブラッググレーティングの合成反射率が光源の出射端の反射率Rより大きい波長領域が存在している。各ブラッググレーティングG1、G2、G3は、合成された反射特性を得るための要素である。各ブラッググレーティングの個別の反射率は、光源の出射端の反射率Rより大きい波長領域があってもよく、なくてもよい。
 なお、本例では、各ブラッググレーティングの隣り合う波長領域ΔλG1、ΔλG2、とΔλG3が一部分で重複していると言える。
 これを言い換えると、各ブラッググレーティングの反射率のグラフが、各々のΔλG1、ΔλG2、ΔλG3となる反射率以上で交差している。
 レーザ光の発振波長は、グレーティングにより反射される波長で決定される。グレーティングによる反射光がレーザのゲイン閾値を上回れば発振条件を満足し、活性層のグレーティング素子側の端面からの反射光よりもゲインを大きくすることにより優先的にレーザ発振を維持することができる。これにより波長安定性の高いレーザ光を得ることができる。
 このためには、グレーティングからの帰還量を大きくすればよく、この観点からグレーティングの反射率は活性層の端面における反射率よりも大きくする。これによりもともとの半導体レーザの共振器で得られるゲインよりもグレーティングによる共振器で得られるゲインの方が大きくなり、グレーティングによる共振器で安定なレーザ発振が可能となる。
 この結果、光源のゲインピーク波長が温度変化に応じてシフトしたときに、複数のブラッググレーティングの合成反射率の波長領域△λ50において発振が確保される。この結果、温度変化に対してレーザ発振する波長が変化してもその波長で安定し、同時にパワー安定性を著しく高めることができる。
 本発明では、R50が、光源の出力端の反射率Rよりも大きい。この観点からは、R50/Rは、1.01以上が好ましく、1.05以上が更に好ましい。R50/Rは、さらに、波長安定性、パワー安定性を高めるという観点で1.2以上が好ましい。
 合成されたブラッググレーティングの反射特性において、前記R50が光源の出射端の反射率R以上で連続する波長領域が存在する。この際、この連続する波長領域の波長上限と下限との差は、10nm以上あることが好ましく、12nm以上であることが更に好ましい。
 また、前記合成反射率が前記半値反射率R50以上となる波長領域△λ50が連続して10nm以上、30nm以下で設けられていることが好ましい。これは12μm以上連続していることが更に好ましく、また、25nm以下連続していることが好ましい。
 半値反射率R50は3%以上とし、これによって安定な発振が可能となる。半値反射率R50は5%以上が好ましく、7%以上が更に好ましい。半値反射率R50の上限は特にないが、60%以下であってもよい。
 △λ50を前記の数値範囲とするために、各ブラッググレーティングの反射率の最大値の50%となる波長領域の波長幅(半値全幅)は、5nm以上が好ましく、さらに10nm以上が一層好ましい。一方、この上限値は30nm以下が好ましく、さらに25nm以下が一層好ましい。
 レーザ発振の波長安定性、およびパワー安定性の温度許容幅を広げるという観点からは、複数のブラッググレーティングの合成反射率の半値全幅W50を大きくすることが好ましい。
 外部共振器モードでレーザ発振するのに必要なグレーティングの反射率の最小値RGminは、半導体レーザとグレーティングにより形成される外部共振器のゲイン閾値を満足するために必要な最低の反射率である。外部共振器のゲイン閾値は、後述する[(2-1)式]により決定される。図7に示す半導体レーザのみの場合と比較して、半導体レーザとグレーティグ素子の結合効率やグレーティング素子部等の損失がゲインを小さくする要因となる。このため外部共振器モードでレーザ発振するための最低の反射率RGminは、半導体レーザの出射端の反射率Rよりも大きい。ただし、結合効率が100%、損失がない場合にはRGmin=Rとなる。したがって、R50はRGmin以上であることが好ましい。
 半値全幅△λ50は、半導体レーザ光源のゲインカーブに対応して決めることができる。
 半値全幅△λ50を所望の数値にするためには、各ブラッググレーティングの反射中心波長の間隔は重要なパラメータである。すなわち、好適な実施形態においては、となり合う反射中心波長の間隔は、以下のようにすることが好ましい。
 
 4nm ≦λG(n+1)-λG(n)≦20nm
 
 ただし、(λG(n+1)-λG(n))は、波長軸で隣接するグレーティングの中心波長の間隔である。
 ブラッググレーティングの周期(ピッチ)の間隔△Λ{(n+1)-n}は以下のように表すことができる。
 
△Λ{(n+1)-n}=1/2neff×{λG(n+1)-λG(n)}
 
 ここで、neffは等価屈折率(実効屈折率)である。
 neffが2であるときには、△Λ{(n+1)-n}は以下のようにすることが好ましい。
 
1nm ≦ △Λ{(n+1)-n} ≦ 5nm
 
 このように、複数の周期(ピッチ)の異なるブラッググレーティングでは、構成する各ブラッググレーティングの半値全幅の和Σ(△λG(n))は、合成反射率の半値全幅△λ50より大きくなる。レーザ発振の温度安定性、パワー安定性の観点では、以下の条件であることが好ましい。
 
△λ50≦ 0.7×Σ(△λG(n)
 
 複数のブラッググレーティングの個数nについては、2以上となる。上限について特に制限はないが、nが大きいとブラッググレーティングの長さが長くなり、外部共振器の共振器長が長くなるために10以下が好ましい。
 各ブラッググレーティングの長さは3μm以上であることが好ましく、異なる周期のグレーティングの後に同じ周期のグレーティングを配置してもよい。
 合成されたブラッググレーティングの反射特性は、パワー安定性の観点でピークの平坦性は高いことが好ましい。このために反射率の最大値Rmaxに対して70%以上となる波長領域△λ70を広くすることがよいことがわかった。この波長領域△λ70の幅は10nm以上であることが好ましい。この波長領域が大きすぎると波長変動の大きなモードホップがおきパワー変動が大きくなるので、△λ70は25nm以下とすることが好ましい。
 波長変動の大きなモードホップを抑制するために、合成されたグレーティングの反射特性は複数のピークを持っていることが好ましい。これによりピークの波長にレーザ発振波長を固定させることができる。また、ピークを複数設けることにより、隣りのピークにモードホップするため反射率も大きく変わらないため、モードホップしても波長変動が小さくなるので、パワー変動を抑えることができる。このような観点で前記ピークの数は3個以上が好ましい。
 また、複数のグレーティングの配置は特に限定はされないが、例えば、光源の入力側に周期の短いグレーティングを配置し、順次長い周期のグレーティングを配置することができる。これにより、温度変化に対応し外部共振器長が徐々に増加、減少するので、モードホップを抑制することができる。
 さらに、各ブラッググレーティングの反射率、△λG(n)は、同じであってもよく、異なっていてもよい。このためグレーティングの長さは各々異なっていてよく、合成したグレーティングが上記の条件を満足できればどのような構造であってよい。
 以下、本発明の作用について更に補足する。
 たとえばGaAs半導体レーザの温度特性は0.3nm/℃であり、10℃温度が上昇すると3nm長波長側に発振波長がシフトする。△λLDgは、半導体レーザによって異なるが一般的に4nmから10nm程度の範囲である。
 温度動作範囲は、TminおよびTmaxにおける半導体レーザのゲインの中心波長の差を温度特性で割ることにより求めることができる。この波長差は、波長領域△λ50とこの波長領域の短波長側、および長波長側にそれぞれ△λlow、および△λhighを加えたものになる。この場合、温度動作範囲は、グレーティング素子の反射波長の温度シフトが0nm/℃の場合に、△T= {△λ50+△λlow+△λhigh}/0.3nm/℃となる。通常のレーザの場合、△λlow、△λhighは、2nmから3nmの数値の範囲である(図参照)。
 たとえば、図6に示すように3個のグレーティングG1、G2、G3を直列に接続したものとする。この場合には、W50はそれぞれ21nmであり、動作温度範囲は約83℃から約93℃となる。
 さらに、グレーティング素子の反射波長の温度シフトが0.1nm/℃の場合には、△T={△λ50+△λlow+△λhigh}/(0.3-0.1)nm/℃となり、図8、図9のときには、動作温度範囲は、125℃から140℃となる。
 好適な実施形態において、図6に、3個のグレーティングを間隔なしで形成したグレーティング素子を示す。各ブラッググレーティングG1、G2、G3の周期は、それぞれ190nm、192.5nm、195nmとし、2.5nmづつシフトされている。この場合には、各ブラッググレーティングの反射特性は、図10(a)、図10(b)、図11(a)に示すようになる。そして,各図に示すように、最大反射率Rmaxは16%~17%となり、半値全幅△λ50は約18nmとなる。
 これらのブラッググレーティングの合成反射率を図11(b)に示す。最大反射率Rmaxは約37%、R50は約18%、半値全幅△λ50は約21nmである。また、R70は約25%であり、△λ70は約20nmである。
 また、各グレーティングG1、G2、G3の各周期を190nm、193nm、196nmとし、3nmづつシフトさせた場合について、合成反射率の特性を図12(a)に示す。この場合には、最大反射率Rmaxは約37%、R50は約18%、半値全幅△λ50は約22nmである。また、R70は約24%であり、△λ70は約7nmである。
 さらに、各グレーティングG1、G2、G3の各周期を190nm、191nm、192nmとし、1nmづつシフトさせた場合の、合成反射率の特性を図12(b)に示す。最大反射率Rmaxは約68%、R50は約34%、半値全幅△λ50は約8.5nmである。また、R70は約47%であり、△λ70は約7nmである。
 次に、ブラッググレーティング2個を間隔なしで形成したグレーティング素子を図5に示す。各グレーティングG1、G2の周期を190nm、191nmとし、1nmづつ変えたものとする。この場合の各グレーティングの反射特性を図13(a)、図13(b)に示す。この場合、最大反射率Rmax10%、半値全幅△λ50約23nmである。
 これらのブラッググレーティングの合成反射率の特性を図14(a)に示す。この場合、最大反射率Rmaxは約30%、R50は約13%、半値全幅△λ50は約13nmである。また、R70は約21%であり、△λ70は約10nmである。
 一方、前記のグレーティング2個についてグレーティングの間隔を
95nmとして形成したグレーティング素子の場合、合成反射率の特性は、図14(b)に示すようになる。この場合、最大反射率Rmaxは約18%、R50は約9%、半値全幅△λ50は10nmである。また、R70は約12.6%であり、△λ70は約8nmである。
 次に、合成反射率の定義および求め方について述べる。
合成反射率は、複数のグレーティングの反射特性を合成したものを現す。グレーティングにより回折する光の反射特性は、グレーティングの構造(深さ、周期、形状、長さ)やこれを形成する材料の屈折率によって決められる。例えば、非特許文献2に示すように数値計算にて求めることができる。また、Coupled-Mode Theoryを利用した電磁界シミュレーションにより計算することができる。
 これらによると、グレーティングの反射率は複素数によって表され、複数のグレーティングの場合は、それぞれの位置によって合成される反射特性が変わることになる。つまり、グレーティングの間隔を変えることによって反射特性が変わることになる。
 好適な実施形態においては、光導波路7はリッジ型光導波路であり、光学材料層に設けられている。この場合、光導波路7は、ブラッググレーティングと同一面に形成されていてもよく、相対する面に形成されていてもよい。
 無反射層5B、5C、5Dの反射率は、グレーティング反射率よりも小さい値であればよく、さらに0.1%以下が好ましい。しかし、端面における反射率がグレーティング反射率よりも小さい値であれば、無反射層はなくてもよく、反射膜であってもよい。活性層のグレーティング素子側の端面に無反射層を設けず、その代わりに反射膜を形成すると、通常の半導体レーザの形態になる。この場合は、光源が単独でレーザ発振できるものとなる。
 好適な実施形態においては、図15(a)に示すように、基板6上に下側バッファ層13を介して光学材料層30が形成されている。光学材料層30には例えば一対のリッジ溝16が形成されており、リッジ溝の間にリッジ型の光導波路15が形成されている。この場合、ブラッググレーティングは平坦面上に形成していてもよく、リッジ溝面に形成していてもよい。ブラッググレーティング、およびリッジ溝の形状ばらつきを低減するという観点では、ブラッググレーティングを平坦面上に形成することによって、ブラッググレーティングとリッジ溝とを光学材料層30の反対側に設けることが好ましい。17は薄肉部であり、18は延在部である。なお、バッファ層13と支持基板6との間に接着層を設けることもできる。
 図15(a)のように上側バッファ層を設けない場合、空気層が直接グレーティングに接することができる。これによりグレーティング溝が有る無しで屈折率差を大きくすることができ、短いグレーティング長で反射率を大きくすることができる。
 また、図15(b)に示す素子では、光学材料層30上に更に上側バッファ層14が形成されている。
 また、図15(c)に示すように、基板6上に下側バッファ層13を介して光学材料層30が形成されている。光学材料層30には例えば一対のリッジ溝16が形成されており、リッジ溝の間にリッジ型の光導波路15が形成されている。本例ではリッジ溝がバッファ層13側に設けられている。この場合、ブラッググレーティングは平坦面側に形成していてもよく、リッジ溝面に形成していてもよい。ブラッググレーティング、およびリッジ溝の形状ばらつきを低減するという観点では、ブラッググレーティングを平坦面上に形成することによって、ブラッググレーティングとリッジ溝とを基板の反対側に設けることが好ましい。17は薄肉部であり、18は延在部である。なお、バッファ層13と支持基板6との間に接着層を設けることもできる。
 好適な実施形態においては、光導波路が、光学材料からなるコアからなり、コアの周りをクラッドが包囲している。このコアの横断面(光の伝搬方向と垂直な方向の断面)形状は凸図形となるようにする。
 凸図形とは、コアの横断面の外側輪郭線の任意の二点を結ぶ線分が、コアの横断面の外側輪郭線の内側に位置することを意味する。凸図形は、一般的な幾何学用語である。このような図形としては、三角形、四角形、六角形、八角形などの多角形、円形、楕円形などを例示できる。四角形としては、特に、上辺と下辺と一対の側面を有する四角形が好ましく、台形が特に好ましい。
 たとえば図16(a)に示すように、基板6上に下側バッファ層13を介して、光学材料よりなるコアからなる光導波路21が形成されている。この光導波路21の下側には、クラッドとして機能する下側バッファ層13が存在している。光導波路11の側面および上面には上側バッファ層が設けられていない。このため、光導波路21の側面および上面は雰囲気に露出しており、雰囲気がクラッドとして機能する。光導波路21の横断面形状は台形であり、上面21aが下面21bよりも狭い。なお、バッファ層13と支持基板6との間に接着層を形成することもできる。
 図16(b)に示す素子では、基板6上にバッファ層22内が設けられており、バッファ層22内に、光学材料よりなるコアからなる光導波路21が埋設されている。バッファ層22は、光導波路の上面を被覆する上面被覆部22b、光導波路の側面を被覆する側面被覆部22cおよび光導波路の底面を被覆する底面被覆部22aを有する。
 図16(c)に示す素子では、基板6上にバッファ層22内か設けられており、バッファ層22内に、光学材料よりなるコアからなる光導波路21Aが埋設されている。バッファ層22は、光導波路の上面を被覆する上面被覆部22b、光導波路の側面を被覆する側面被覆部22cおよび光導波路の底面を被覆する底面被覆図22aを有する。
 また、図17(a)に示す素子では、基板6上に下側バッファ層13を介して、光学材料よりなるコアからなる光導波路21が形成されている。光導波路21の側面および上面21aには、やはりクラッドとして機能する上側バッファ層23が形成され、光導波路21を被覆している。上側バッファ層23は、光導波路11の側面を被覆する側面被覆部23bおよび上面を被覆する上面被覆部23aを有する。
 また、図17(b)に示す素子では、光学材料よりなるコアからなる光導波路21Aが形成されている。光導波路21Aの横断面形状は台形であり、下面が上面よりも狭い。上側クラッド層23は、光導波路11の側面を被覆する側面被覆部23bおよび上面を被覆する上面被覆部23aを有する。
 なお、光導波路の幅Wは、横断面において光導波路の幅の最小値を意味する。光導波路の形状が上面が狭い台形の場合には、光導波路の幅Wは上面の幅であり、光導波路の形状が下面が狭い台形の場合には、光導波路の幅Wは下面の幅である。なお、Wは、Win、Wout、Wgrを包含する概念である。
 好適な実施形態においては、図1、図2に示すように、光導波路7の入射面7aとブラッググレーティングの開始点との間に入射側伝搬部が設けられており、また、ブラッググレーティングの終点と出射面との間に出射側伝搬部が設けられている。
 好適な実施形態においては、たとえば図18(a)、(b)に示すように、入射側伝搬部8は、入射面から連続する入射部8a、ブラッググレーティングにつながる狭幅部8cおよび光導波路幅が徐々に変化するテーパ部8bを有する。入射部8aの幅Winは、狭幅部8cの幅Wgrよりも大きくする。
 また、出射側伝搬部における光導波路幅Woutは、図18(a)の例ではWgrと同じになっている。しかし、Woutは、Wgrより大きくとも良く、小さくとも良い。図18(b)の例では、出射側伝搬部9が、ブラッググレーティングから連続する連結部9aと、出射端部に向かうテーパ部9cとを有している。テーパ部9cにおける光導波路幅は、出射端部における光導波路幅Woutに向かって徐々に小さくなっている。
 図19の斜視図の例では、出射側伝搬部9が、ブラッググレーティングから連続する連結部9aと、出射端部に連結する出射部9cと、連結部9aと出射部9cとの間のテーパ部9bとを有している。テーパ部9bにおける光導波路幅は、出射端部における光導波路幅Woutに向かって徐々に小さくなっている。
 なお、本例では、連結部9aにおける光導波路の幅Wgrが一定であり、出射部9cにおける光導波路の幅Woutも一定である。
 なお、Aはグレーティング素子への入射光であり、Bはグレーティング素子からの出射光であり、Cはグレーティング反射光である。
 モードホップを抑制し、装置の温度安定性を確保するためには、共振器長を短くしてモードホップ間隔を大きくする必要がある。この観点から、半導体レーザの外側反射端から複数ブラッググレーティングの出射側終点までの長さL(図1、図2、図6参照)は、1mm以下が好ましい、さらに、モードホップを抑制するために外部共振器の縦モード間隔を大きくするという観点では、Lは700μm以下が好ましく、500μm以下が最も好ましい。
 上記の関係を満足するために、ブラッググレーティングの始点から終点までの長さLbtotalは、500μm以下が好ましく、300μm以下が更に好ましく、100μm以下が特に好ましい。また、レーザ発振するために必要な光の帰還率を得るためにはLbtotalは、10μm以上が好ましく、20μm以上が更に好ましい。
 共振器長を短くするという観点からは、各ブラッググレーティングの長さは、それぞれ200μm以下であることが好ましい。また、グレーティングの長さが長くなるほど△λGnは小さくなるので、これを大きくするためには各ブラッググレーティングの長さは100μm以下が好ましい。また、レーザ発振するために必要な光の帰還率を得るためには△λGnは、10μm以上が好ましい。
 グレーティング素子の長さを短くし、かつ反射率を半導体レーザの出射端の反射率よりも大きくするには、グレーティングを形成する光導波路部の屈折率nbとクラッド部nの屈折率差を大きくすることが好ましく、nbは1.7以上が好ましく、1.8以上が更に好ましい。
 また、グレーティング反射率を半導体レーザの出射端面よりも大きくするには、グレーティング深さtd(図19参照)は、20nm以上が好ましい。また、グレーティング深さtdは、250nm以下が好ましく、200nm以下が更に好ましい。
 光導波路の高さ(厚さ)T(図16~17参照)は、半導体レーザの結合効率の向上という観点からは、0.5μm以上、3.0μm以下であることが好ましい。
 ブラッググレーティングにおける光導波路の幅Wgr(図18参照)は、シングルモード導波路という観点からは、0.5μm以上、4μm以下が好ましい。
 好適な実施形態においては、光源の出射面と光導波路の入射部との距離L(図1、図2、図6)は、0でも良いが、各素子の温度変化による熱膨張による応力を緩和するという観点で1μm以上、10μm以下とする。これによって安定した発振が可能となる。また、入射側伝搬部の長さLは0でも良いが、1~100μmが好ましく、5~20μmが更に好ましい。
 光源の活性層の長さLは、500μm以下である事が好ましい。
 また、L+L+L+Lbtotalは、1050μm以下が好ましく、800μm以下が更に好ましい。また、L+L+L+Lbtotalは、300μm以上が好ましい。
 光源としては、高い信頼性を有するGaAs系やInP系材料によるレーザが好適である。本願構造の応用として、例えば、非線形光学素子を利用して第2高調波である緑色レーザを発振させる場合は、波長1064nm付近で発振するGaAs系のレーザを用いることになる。GaAs系やInP系のレーザは信頼性が高いため、一次元状に配列したレーザアレイ等の光源も実現可能である。スーパールミネッセンスダイオードや半導体光アンプ(SOA)であってもよい。また、活性層の材質や波長も適宜選択できる。
 なお、半導体レーザとグレーティング素子との組み合わせでパワー安定化を行う方法は、下記に開示されている。
(非特許文献3: 古河電工時報 平成12年1月 第105号 p24-29)
 光導波路は、例えば外周刃による切削加工やレーザアブレーション加工することによって物理的に加工し、成形することによって得られる。
 ブラッググレーティングは以下のようにして物理的、あるいは化学的なエッチングにより形成することができる。
 具体例として、Ni、Tiなどの金属膜を高屈折率基板に成膜し、フォトリソグラフィーにより周期的に窓を形成しエッチング用マスクを形成する。その後、反応性イオンエッチングなどのドライエッチング装置で周期的なグレーティング溝を形成する。最後に金属マスクを除去することにより形成できる。
 光導波路中には、光導波路の耐光損傷性を更に向上させるために、マグネシウム(Mg)、亜鉛(Zn)、スカンジウム(Sc)及びインジウム(In)からなる群より選ばれる1種以上の金属元素を含有させてもよく、この場合、マグネシウムが特に好ましい。また結晶中には、ドープ成分として、希土類元素を含有させることができる。希土類元素としては、特にNd、Er、Tm、Ho、Dy、Prが好ましい。
 接着層の材質は、無機接着剤であってよく、有機接着剤であってよく、無機接着剤と有機接着剤との組み合わせであってよい。
 また、光学材料層30は、支持基体上に薄膜形成法によって成膜して形成してもよい。こうした薄膜形成法としては、スパッタ、蒸着、CVDを例示できる。この場合には、光学材料層30は支持基体に直接形成されており、上述した接着層は存在しない。
 支持基板の具体的材質は特に限定されず,ニオブ酸リチウム、タンタル酸リチウム、石英ガラスなどのガラスや水晶、Siなどを例示することができる。
 無反射層の反射率は、グレーティング反射率以下である必要があり、無反射層に成膜する膜材としては、二酸化珪素、五酸化タンタル、フッ化マグネシウム、フッ化カルシウムなどの酸化物で積層した膜や、金属類も使用可能である。
 また、光源素子、グレーティング素子の各端面は、それぞれ、端面反射を抑制するために斜めカットしていてもよい。また、グレーティング素子と支持基板の接合は、接着固定でもよく、直接接合でもよい。
 以下、図20に示すような構成において、本実施形態の条件の意味について更に述べる。
 ただし、数式は抽象的で理解しにくいので、最初に、従来技術の典型的な形態と本実施形態とを端的に比較し、本実施形態の特徴を述べる。次いで、本実施形態の各条件について述べていくこととする。
 まず、半導体レーザの発振条件は、下式のようにゲイン条件×位相条件で決まる。
Figure JPOXMLDOC01-appb-M000001
 ゲイン条件は、(2-1)式より下式となる。
Figure JPOXMLDOC01-appb-M000002
 ただし、αa、αg、αwg、αgrは、それぞれ、活性層、半導体レーザと導波路間のギャップ、入力側のグレーティング未加工導波路部、グレーティング部の損失係数であり、La、Lg、Lwg Lgrは、それぞれ、活性層、半導体レーザと導波路間のギャップ、入力側のグレーティング未加工導波路部、グレーティング部の長さであり、r1、r2は、ミラー反射率(r2はグレーティングの反射率)であり、Coutは、グレーティング素子と光源との結合損失であり、ζgthは、レーザ媒体のゲイン閾値であり、φ1は、レーザ側反射ミラーによる位相変化量であり、φ2は、グレーティング部での位相変化量である。
 (2-2)式より、レーザ媒体のゲインζtgth(ゲイン閾値)が損失を上回れば、レーザ発振することを表す。レーザ媒体のゲインカーブ(波長依存性)は、半値全幅は50nm以上あり、ブロードな特性をもっている。また、損失部(右辺)は、グレーティングの反射率以外はほとんど波長依存性がないので、ゲイン条件はグレーティングにより決まる。このため、比較表では、ゲイン条件はグレーティングのみで考えることができる。
 一方、位相条件は(2-1)式から、下式のようになる。ただし、φ1については零となる。
Figure JPOXMLDOC01-appb-M000003
 ブラッググレーティングの長さLbtotalは前述したとおりである。ブラッググレーティングの長さLbtotalを従来に比べて短くすることは、本実施形態における設計思想の前提となる。すなわち、モードホップをしにくくするために位相条件を満足する波長間隔(縦モード間隔)を大きくする必要がある。このためには、共振器長を短くする必要がありグレーティング素子の長さを短くする。
 グレーティング素子の長さを短くすることは、損失を小さくすることになりレーザ発振の閾値を低減できる。この結果、低電流、低発熱、低エネルギーで駆動が可能となる。
 また、グレーティングの長さLbtotalは、3%以上の反射率を得るためには、5μm以上が好ましく、5%以上の反射率を得るためには、10μm以上が更に好ましい。
(実施例1)
 図6に示す外部共振器型レーザモジュールを作製した。グレーティング素子は、図4および図15(b)の構造である。
 具体的には、石英からなる支持基板6にスパッタ装置にて下側バッファ層13になるSiO層を1μm成膜し、またその上にTaを1.2μm成膜して光学材料層30を形成した。次に、光学材料層上にTiを成膜して、EB描画装置によりグレーティングパターンを作製した。その後、Tiパターンをマスクにしてフッ素系の反応性イオンエッチングにより、三つのグレーティンクG1、G2、G3を形成した。中間伝搬部10の長さは0μmである。グレーティングの溝深さtは200nmとした。
G1:ピッチ間隔Λ190nm、長さL 8μm
G2:ピッチ間隔Λ192.5nm、長さL 8μm
G3:ピッチ間隔Λ195nm、長さL 8μm
 さらに光導波路を形成するために、上記と同様な方法で反応性イオンエッチングし、幅W3μm、溝深さ1μmのリッジ形状を形成した。最後に上側バッファ層14となるSiO層を0.5μmスパッタにて形成した。
 その後、ダイシング装置にてバー状に切断し、両端面を光学研磨し、両端面を0.1%のARコートを形成し、最後にチップ切断を行いグレーティング素子を作製した。素子サイズは幅1mm、長さLwg500μmとした。
 グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。
 測定したグレーティング素子の反射中心波長は、791nmであり、最大反射率Rmaxは36%であった。また、半値全幅△λ50は21nm、△λ70は20nmであった
 次に、このグレーティング素子を使用した外部共振器型レーザの特性評価のために、図6に示すようにレーザモジュールを実装した。光源素子としてGaAs系レーザ構造を有し、片端面には高反射膜、もう一方の出射端面の反射率は8%であった。
光源素子仕様:
 中心波長:   790nm
 出力      20mW
 半値幅:    0.1nm
 レーザ素子長  300μm
実装仕様:
 L:      0.5μm
 L:     10μm
 モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、温度25℃にて中心波長791nmでレーザ発振し、出力13mWが得られた。次に動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性、出力変動を測定した。その結果、高温側では温度70℃にて発振波長800nmとなり、この温度領域までパワー出力変動が0.5%以内であった。また、低温側では5℃にて発振波長787nmとなり、この温度領域までパワー出力変動が0.5%以内であった。しかし、これ以下の温度では、結露してしまい測定することができなかった。
(比較例1)
 実施例1と同様な発光装置を作製した。ただし、グレーティング素子については、ピッチ間隔Λ192.5nm、長さL25μmの一つのブラッググレーティングG1を形成した(図3参照)。グレーティングの溝深さtは125nmとした。
 グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。
 測定したグレーティング素子の反射中心波長は791nmであり、最大反射率Rmaxは18%であり、半値全幅△λ50は5nm、W70は4nmであった。
 次に、このグレーティング素子を使用した外部共振器型レーザの特性評価のために、図6、図19に示すようにレーザモジュールを実装した。光源素子としてGaAs系レーザ構造を有し、片端面には高反射膜、もう一方の出射端面の反射率は8%であった。
光源素子仕様:
中心波長:   790nm
 出力      20mW
 半値幅:    0.1nm
 レーザ素子長  300μm
実装仕様:
 L:      0.5μm
 L:     10μm
 モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、温度25℃にて中心波長791nmでレーザ発振し、出力15mWが得られた。次に動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性、出力変動を測定した。その結果、高温側では温度45℃にて発振波長795nmとなり、この温度領域までパワー出力変動が1%以内であった。しかし、この温度を超えると波長変動が起こり、パワー出力変動も3%となった。また、低温側では15℃にて発振波長789nmとなり、この温度領域までパワー出力変動が1%以内であった。しかし、これ以下の温度では、波長変動が起こり、パワー出力変動も3%となった。
(実施例2)
 実施例1と同様な発光装置を作製した。
 ただし、グレーティング素子については、以下のブラッググレーティングG1、G2を形成した(図5参照)。グレーティングの溝深さtは200nmとした。
G1:ピッチ間隔Λ191nm、長さL6μm
G2:ピッチ間隔Λ193nm、長さL6μm
 グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。
 測定したグレーティング素子の反射中心波長は、791nmであり、反射率は30%であった。
 次に、このグレーティング素子を使用した外部共振器型レーザの特性評価のために、図6、図19に示すようにレーザモジュールを実装した。光源素子としてGaAs系レーザ構造を有し、片端面には高反射膜、もう一方の出射端面の反射率は8%であった。
光源素子仕様:
 中心波長:   790nm
 出力      20mW
 半値幅:    0.1nm
 レーザ素子長  300μm
実装仕様:
 L:      0.5μm
 L:     10μm
 モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、温度25℃にて中心波長791nmでレーザ発振し、出力15mWが得られた。次に動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性
、出力変動を測定した。
 その結果、高温側では温度50℃にて796nm、温度58℃にて発振波長797.5nmとなり、50℃までの温度領域でパワー出力変動が0.5%以内であった。しかし、これ58℃を超える温度では、波長変動が起こり、パワー出力変動も3%となった。また、低温側では5℃にて発振波長785nmとなり、この温度領域までパワー出力変動が0.5%以内であった。しかし、これ以下の温度では、結露してしまい測定することができなかった。
(比較例2)
 実施例2と同様な発光装置を作製した。グレーティング素子については、ピッチ間隔Λ191nm、L6μm、ピッチ間隔Λ193nm、長さL6μmのブラッググレーティングG1、G2であるが、グレーティングG1とG2の間隔は96nmとした。
 グレーティング素子の光学特性は、広帯域波長光源であるスーパ・ルミネッセンス・ダイオード(SLD)を使用して、グレーティング素子にTEモードの光を入力して出力光を光スペクトルアナライザで分析することにより、その透過特性から反射特性を評価した。
 測定したグレーティング素子の反射特性は、波長780nm、800nmの2つのピークがあり、反射率はそれぞれ18%であった。また、半値全幅△λ50は9nm、△λ70は8nmであった。
 次に、このグレーティング素子を使用した外部共振器型レーザの特性評価のために、図6、図19に示すようにレーザモジュールを実装した。光源素子としてGaAs系レーザ構造を有し、片端面には高反射膜、もう一方の出射端面の反射率は8%であった。
光源素子仕様:
 中心波長:   780nm
 出力      20mW
 半値幅:    0.1nm
 レーザ素子長  300μm
実装仕様:
 L:      0.5μm
 L:     10μm
 モジュール実装後、ペルチェ素子を使用することなく電流制御(ACC)で駆動したところ、温度25℃にて中心波長780nmでレーザ発振し、出力17mWが得られた。次に動作温度範囲を評価するために恒温槽内にモジュールを設置し、レーザ発振波長の温度依存性
、出力変動を測定した。
 その結果、高温側では温度45℃にて784nm、温度55℃にて発振波長786nmとなり、45℃までの温度領域でパワー出力変動が0.5%以内であった。また、55℃まではパワー出力変動は1%以内であったが、この温度を超えると波長変動が起こり、パワー出力変動も3%以上となった。一方、低温側では5℃にて発振波長776nmとなり、この温度領域までパワー出力変動が0.5%以内であった。しかし、これ以下の温度では、結露してしまい測定することができなかった。

Claims (8)

  1.  半導体レーザ光を発振する光源、およびこの光源と外部共振器を構成するグレーティング素子を備える外部共振器型発光装置であって、
     前記光源が、前記半導体レーザ光を発振する活性層を備えており、
     前記グレーティング素子が、前記半導体レーザ光が入射する入射面と所望波長の出射光を出射する出射部を有する光導波路、およびこの光導波路内に形成された複数の互いに周期の異なるブラッググレーティングを備えており、
     前記複数のブラッググレーティングの合成反射率の最大値Rmaxの50%を半値反射率R50としたとき、前記半値反射率R50が前記光源の出射端の反射率Rよりも大きく、前記半値反射率R50が3%以上であり、前記合成反射率が前記半値反射率R50以上となる波長領域△λ50が連続して10nm以上、30nm以下で設けられていることを特徴とする、外部共振器型発光装置。
  2.  前記合成反射率が前記合成反射率の最大値Rmaxの70%以上となる波長領域△λ70が連続して10nm以上、25nm以下設けられていることを特徴とする、請求項1記載の装置。
  3.  前記光源が単独で前記半導体レーザ光を発振することを特徴とする、請求項1または2記載の装置。
  4.  前記光源の前記出射端の反対側の反射端と、前記複数のブラッググレーティングの出射側終点との間隔が1mm以下であり、下記式(1)および式(2)の関係が満足されることを特徴とする、請求項1~3のいずれか一つの請求項に記載の装置。
     
    btotal  ≦300μm    ・・・(1)
      ≦500μm    ・・・(2)
     
    (式(1)において、Lbtotalは、前記複数のブラッググレーティングの開始点から前記出射側終点までの長さである。
     式(2)において、Lは、前記活性層の長さである。)
  5.  前記複数のブラッググレーティングのうち、隣り合う前記ブラッググレーティングが連続していることを特徴とする、請求項1~4のいずれか一つの請求項に記載の装置。
  6.  以下の式(3)を満足することを特徴とする、請求項1~5のいずれか一つの請求項に記載の装置。
     
    △λ50≦ 0.7×Σ(△λG(n))・・・・(3)
     
    (式(3)において、Σ(△λG(n))は、前記各ブラッググレーティングの各反射率が各最大値の50%となる反射率の半値全幅△λG(n)の合計値である。)
  7.  前記ブラッググレーティングを構成する材質の屈折率nが1.7以上であることを特徴とする、請求項1~6のいずれか一つの請求項に記載の装置。
  8.  前記光導波路が、前記複数のブラッググレーティングの開始点と前記入射面との間に入射側伝搬部を有しており、前記入射側伝搬部が、前記光導波路の幅が変化するテーパ部を有することを特徴とする、請求項1~7のいずれか一つの請求項に記載の装置。
PCT/JP2015/066924 2014-06-13 2015-06-11 外部共振器型発光装置 WO2015190570A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016527869A JP6629194B2 (ja) 2014-06-13 2015-06-11 外部共振器型発光装置
US15/375,587 US9979157B2 (en) 2014-06-13 2016-12-12 External-resonator-type light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014122620 2014-06-13
JP2014-122620 2014-06-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/375,587 Continuation US9979157B2 (en) 2014-06-13 2016-12-12 External-resonator-type light-emitting device

Publications (1)

Publication Number Publication Date
WO2015190570A1 true WO2015190570A1 (ja) 2015-12-17

Family

ID=54833656

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/066924 WO2015190570A1 (ja) 2014-06-13 2015-06-11 外部共振器型発光装置
PCT/JP2015/066923 WO2015190569A1 (ja) 2014-06-13 2015-06-11 外部共振器型発光装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066923 WO2015190569A1 (ja) 2014-06-13 2015-06-11 外部共振器型発光装置

Country Status (3)

Country Link
US (2) US10003175B2 (ja)
JP (2) JPWO2015190569A1 (ja)
WO (2) WO2015190570A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022542324A (ja) * 2019-07-29 2022-09-30 ウーハン・テレコミュニケーション・デバイシーズ・カンパニー・リミテッド 光信号出力装置、方法及び記憶媒体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015190569A1 (ja) * 2014-06-13 2017-04-20 日本碍子株式会社 外部共振器型発光装置
US11848539B2 (en) * 2021-02-18 2023-12-19 Ioptis Corp. Narrow linewidth semiconductor laser device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735933A (ja) * 1993-07-19 1995-02-07 Nec Corp 導波路型光デバイスの光導波路と光半導体素子の 結合構造
JPH1084168A (ja) * 1996-07-10 1998-03-31 Northern Telecom Ltd 半導体基板上に個別デバイスをハイブリット集積するための方法および光電子デバイス
JPH10293234A (ja) * 1997-02-21 1998-11-04 Sumitomo Electric Ind Ltd 半導体レーザモジュール
JP2001144370A (ja) * 1999-11-12 2001-05-25 Sumitomo Electric Ind Ltd 外部共振器型半導体レーザ
JP2001185807A (ja) * 1999-12-22 2001-07-06 Sumitomo Electric Ind Ltd ファイバグレーティング半導体レーザ
JP2003298184A (ja) * 2002-03-29 2003-10-17 Anritsu Corp 半導体レーザモジュール及び該半導体レーザモジュールを用いた波長合成器
US20060002443A1 (en) * 2004-06-30 2006-01-05 Gennady Farber Multimode external cavity semiconductor lasers
JP2009088192A (ja) * 2007-09-28 2009-04-23 Sumitomo Electric Ind Ltd 半導体レーザ
JP2010171252A (ja) * 2009-01-23 2010-08-05 Fujitsu Ltd 光送信装置
US20120093178A1 (en) * 2010-10-14 2012-04-19 Electronics And Telecommunications Research Institute Wavelength tunable external cavity laser generating device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128689A (ja) 1973-04-06 1974-12-10
JPS56148880A (en) 1980-04-21 1981-11-18 Nec Corp Single longitudinal mode semiconductor laser
JPH0774426A (ja) * 1993-09-02 1995-03-17 Canon Inc 波長可変レーザ、波長可変フィルタおよび波長選択検出素子
JPH1140883A (ja) 1997-07-22 1999-02-12 Ando Electric Co Ltd 可変波長半導体レーザ光源
US6091744A (en) * 1998-01-14 2000-07-18 Hewlett-Packard Company Wavelength selectable source for wavelength division multiplexed applications
JP2000082864A (ja) 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> レーザ装置
US6301408B1 (en) * 1998-09-24 2001-10-09 Lucent Technologies Inc Tapered optical fiber grating devices with variable index coatings for modifying guide properties of the fundamental mode
DE69928801T2 (de) * 1999-09-21 2006-08-03 Bookham Technology Plc., Towcester Stabilisierte Laserquelle
JP2002006148A (ja) 2000-06-23 2002-01-09 Sumitomo Osaka Cement Co Ltd ファイバグレーティング及びファイバグレーティングの製造方法
JP3667209B2 (ja) 2000-08-01 2005-07-06 住友電気工業株式会社 半導体レーザ
JP2002134833A (ja) 2000-10-23 2002-05-10 Nippon Telegr & Teleph Corp <Ntt> 温度無依存型レーザ
US6693946B2 (en) * 2001-07-05 2004-02-17 Lucent Technologies Inc. Wavelength-tunable lasers
KR100420950B1 (ko) 2001-12-12 2004-03-02 한국전자통신연구원 파장 가변 레이저 광원
JP3729170B2 (ja) * 2002-10-18 2005-12-21 住友電気工業株式会社 半導体レーザ
US7151789B2 (en) * 2002-12-20 2006-12-19 Spectalis Corp External-cavity lasers
WO2005031930A1 (ja) * 2003-09-26 2005-04-07 The Furukawa Electric Co., Ltd. 半導体レーザ装置
JP2006222399A (ja) 2005-02-14 2006-08-24 Hamamatsu Photonics Kk 半導体レーザ装置
JP4608402B2 (ja) * 2005-09-15 2011-01-12 日本電信電話株式会社 波長変換装置および蛍光顕微鏡装置
US20090290613A1 (en) * 2008-05-21 2009-11-26 Applied Optoelectronics, Inc. External cavity laser assembly including external chirped exit reflector for improved linearity
WO2013034813A2 (en) 2011-09-07 2013-03-14 Epicrystals Oy Wavelength conversion unit
US9184564B2 (en) 2013-06-07 2015-11-10 Ngk Insulators, Ltd. External resonator type light emitting system
WO2015079939A1 (ja) * 2013-11-27 2015-06-04 日本碍子株式会社 外部共振器型発光装置
JP5641631B1 (ja) 2014-06-04 2014-12-17 日本碍子株式会社 外部共振器型発光装置
JPWO2015190569A1 (ja) * 2014-06-13 2017-04-20 日本碍子株式会社 外部共振器型発光装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735933A (ja) * 1993-07-19 1995-02-07 Nec Corp 導波路型光デバイスの光導波路と光半導体素子の 結合構造
JPH1084168A (ja) * 1996-07-10 1998-03-31 Northern Telecom Ltd 半導体基板上に個別デバイスをハイブリット集積するための方法および光電子デバイス
JPH10293234A (ja) * 1997-02-21 1998-11-04 Sumitomo Electric Ind Ltd 半導体レーザモジュール
JP2001144370A (ja) * 1999-11-12 2001-05-25 Sumitomo Electric Ind Ltd 外部共振器型半導体レーザ
JP2001185807A (ja) * 1999-12-22 2001-07-06 Sumitomo Electric Ind Ltd ファイバグレーティング半導体レーザ
JP2003298184A (ja) * 2002-03-29 2003-10-17 Anritsu Corp 半導体レーザモジュール及び該半導体レーザモジュールを用いた波長合成器
US20060002443A1 (en) * 2004-06-30 2006-01-05 Gennady Farber Multimode external cavity semiconductor lasers
JP2009088192A (ja) * 2007-09-28 2009-04-23 Sumitomo Electric Ind Ltd 半導体レーザ
JP2010171252A (ja) * 2009-01-23 2010-08-05 Fujitsu Ltd 光送信装置
US20120093178A1 (en) * 2010-10-14 2012-04-19 Electronics And Telecommunications Research Institute Wavelength tunable external cavity laser generating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022542324A (ja) * 2019-07-29 2022-09-30 ウーハン・テレコミュニケーション・デバイシーズ・カンパニー・リミテッド 光信号出力装置、方法及び記憶媒体
JP7376684B2 (ja) 2019-07-29 2023-11-08 ウーハン・テレコミュニケーション・デバイシーズ・カンパニー・リミテッド 光信号出力装置、方法及び記憶媒体

Also Published As

Publication number Publication date
US20170093126A1 (en) 2017-03-30
JPWO2015190569A1 (ja) 2017-04-20
JP6629194B2 (ja) 2020-01-15
US9979157B2 (en) 2018-05-22
US10003175B2 (en) 2018-06-19
WO2015190569A1 (ja) 2015-12-17
US20170093127A1 (en) 2017-03-30
JPWO2015190570A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6125631B2 (ja) 外部共振器型発光装置
JP5936771B2 (ja) 外部共振器型発光装置
JP6554035B2 (ja) グレーティング素子および外部共振器型発光装置
WO2015107960A1 (ja) 外部共振器型発光装置
US9915794B2 (en) Optical device, and optical-device production method
JP5641631B1 (ja) 外部共振器型発光装置
WO2015190570A1 (ja) 外部共振器型発光装置
JP5936777B2 (ja) グレーティング素子および外部共振器型発光装置
JP2011086714A (ja) 波長可変レーザ
JP2017126625A (ja) 外部共振器型発光装置
WO2015190385A1 (ja) 外部共振器型発光装置
WO2016093187A1 (ja) 外部共振器型発光装置
WO2015108197A1 (ja) 外部共振器型発光装置
JP2016171219A (ja) 外部共振器型発光装置
WO2016125746A1 (ja) 光導波路素子および光学デバイス
JP2015039011A (ja) 外部共振器型発光装置
WO2017043222A1 (ja) 光学デバイス
WO2016152730A1 (ja) 外部共振器型発光装置
WO2015087914A1 (ja) 外部共振器型発光装置
JP2015103732A (ja) グレーティング素子および外部共振器型発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15807216

Country of ref document: EP

Kind code of ref document: A1