WO2015184875A1 - 一种双选信道的补偿方法、系统及相关装置 - Google Patents

一种双选信道的补偿方法、系统及相关装置 Download PDF

Info

Publication number
WO2015184875A1
WO2015184875A1 PCT/CN2015/073627 CN2015073627W WO2015184875A1 WO 2015184875 A1 WO2015184875 A1 WO 2015184875A1 CN 2015073627 W CN2015073627 W CN 2015073627W WO 2015184875 A1 WO2015184875 A1 WO 2015184875A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time domain
signals
fractional
domain signal
Prior art date
Application number
PCT/CN2015/073627
Other languages
English (en)
French (fr)
Inventor
沙学军
李勇
梅林�
包红强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15802852.2A priority Critical patent/EP3154231B1/en
Publication of WO2015184875A1 publication Critical patent/WO2015184875A1/zh
Priority to US15/369,462 priority patent/US10104666B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • H04L27/26522Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators using partial FFTs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7105Joint detection techniques, e.g. linear detectors
    • H04B1/71055Joint detection techniques, e.g. linear detectors using minimum mean squared error [MMSE] detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0681Space-time coding characterised by the signaling adapting space time parameters, i.e. modifying the space time matrix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, system, and related apparatus for compensating a dual-select channel.
  • Time and frequency selective fading channels real-time dual-select channels (hereinafter referred to as “dual-selected channels") are recent research hotspots, such as underwater acoustic communication, low-orbit satellite communication, digital video broadcasting (DVB), microwave Worldwide Interoperability for Microwave Access (WiMAX), etc.
  • the channels used in these communication applications are dual-select channels, and the effect of dual-selective fading channels on communication quality is huge. How to compensate for dual-select channels? It has become an urgent problem to be solved.
  • one method in the prior art is to apply partial Fast Fourier Transform (FFT) demodulation to an Orthogonal Frequency Division Multiplexing (OFDM) system.
  • FFT Fast Fourier Transform
  • OFDM Orthogonal Frequency Division Multiplexing
  • another method is proposed to apply partial FFT demodulation to a hybrid carrier system, and the performance is greatly improved, but the complexity is high, which is limited in practical applications.
  • MMSE Minimum Mean Square Error
  • Embodiments of the present invention provide a method, a system, and a related apparatus for compensating a dual-select channel, and an optimized method is applied to a channel equalization channel compensation method and a partial FFT transform in a communication system, thereby improving System performance.
  • a first aspect of the embodiments of the present invention provides a communications device, including:
  • a signal receiving unit configured to receive a plurality of time domain signals transmitted by the transmitting end, where the plurality of time domain signals are weighted and fractionated by the transmitting end based on the plurality of different modulation orders ⁇
  • the plurality of to-be-transmitted signals obtained by the Fourier transform are a plurality of useful signals added with a transmission pilot sequence
  • a fractional signal obtaining unit configured to perform partial fast Fourier transform processing, channel compensation processing, and ⁇ -1 order weighting for each of the plurality of time domain signals received by the signal receiving unit Fractional Fourier transform processing to obtain a corresponding fractional domain signal;
  • An extraction calculation unit configured to extract a received pilot sequence of the fractional domain signal respectively corresponding to the plurality of time domain signals acquired by the fractional signal obtaining unit, and calculate the extracted received pilot sequence and the transmitted pilot sequence Mean square error
  • a selection determining unit configured to select, in the mean square error calculated by the extraction calculation unit according to the fractional domain signals corresponding to the plurality of time domain signals, a first modulation order of the fractional domain signal corresponding to the minimum mean square error, and Determining a corresponding channel compensation parameter in the first modulation order;
  • An order sending unit configured to send the first modulation order obtained by the selection determining unit to the transmitting end, so that the transmitting end transmits a useful signal according to the first modulation order;
  • a channel compensation unit configured to perform channel compensation by using a channel compensation parameter determined by the selection determining unit.
  • the communications device further includes:
  • a prefix processing unit configured to remove, before the fractional signal obtaining unit obtains the fractional domain signal, a prefix of the plurality of time domain signals received by the signal receiving unit, where the prefix of the time domain signal is that the transmitting end a segment of the signal included in the original time domain signal, copied and placed to the cyclic prefix before the original time domain signal;
  • the fractional signal obtaining unit is specifically configured to perform a partial fast Fourier transform process, channel compensation, for each of the plurality of time domain signals of the prefix-removed plurality of time domain signals obtained by the prefix processing unit. Processing, and weighted fractional Fourier transform processing of ⁇ -1 order to obtain the corresponding fractional domain signal.
  • the score signal obtaining unit specifically includes:
  • the fast Fourier transform unit configured to divide the time domain signal received by the signal receiving unit or the useful signal of length M in the time domain signal of the prefix removed by the prefix processing unit into Q block signals Filling each block signal with zeros, so that the length of each block signal is M; respectively performing Fourier transform on each block signal after zero-padding to obtain a frequency domain signal of each block, where Q is greater than Or equal to 2;
  • a compensation unit configured to perform channel compensation on a frequency domain signal of each block obtained by the frequency domain transform unit by using different channel compensation matrices, and superimposing frequency domain signals of each of the compensated blocks to obtain compensation Frequency domain signal;
  • the fractional domain transform unit is configured to perform a weighted fractional Fourier transform of the ⁇ -1 order on the frequency domain signal compensated by the compensation unit to obtain a fractional domain signal.
  • the channel compensation parameter includes a channel compensation corresponding to a frequency domain signal of each block a matrix, the selection determining unit, specifically comprising:
  • a selecting unit configured to: in the mean square error respectively calculated by the extraction calculating unit according to the fractional domain signals corresponding to the plurality of time domain signals, select a first modulation order of the fractional domain signal corresponding to the minimum mean square error;
  • a block number determining unit configured to determine a block number Q used when performing a partial fast Fourier transform process when the fractional domain signal corresponding to the first modulation order is obtained;
  • a compensation matrix calculation unit configured to calculate a channel compensation matrix corresponding to the frequency domain signal of each block:
  • H q is the frequency domain channel matrix of the qth block; the above (.) H represents the conjugate transpose of the matrix or vector.
  • a second aspect of the embodiments of the present invention provides a communications device, including:
  • a time domain signal acquiring unit configured to perform, by using a plurality of different modulation orders ⁇ , a plurality of time domain signals obtained by performing weighted fractional Fourier transform processing on the plurality of to-be-transmitted signals; and the plurality of to-be-sent signals are added Transmitting a plurality of useful signals of the pilot sequence;
  • a sending unit configured to transmit the multiple time domain signals to the receiving end, so that the receiving end selects a first modulation order of the plurality of modulation orders ⁇ according to the plurality of time domain signals;
  • a transmitting unit configured to receive the first modulation order returned by the receiving end, and transmit the useful signal according to the first modulation order.
  • the time domain signal acquiring unit is specifically configured to perform a weighted fraction of - ⁇ order on a plurality of fractional domain signals based on a plurality of different modulation orders ⁇
  • the Fourier transform yields multiple time domain signals.
  • the sending unit specifically includes:
  • a prefix adding unit configured to add a prefix to the time domain signal, where the prefix refers to a cyclic prefix that copies and places a segment of the signal included in the time domain signal before the time domain signal;
  • the signal sending unit is configured to transmit the time domain signal after the prefix adding unit adds the prefix to the receiving end.
  • a third aspect of the embodiments of the present invention provides a compensation system for a dual-select channel, including a first communication device and a second communication device, where:
  • the first communication device is a communication device according to the first aspect of the embodiment of the present invention, or the first to third possible implementation manners of the first aspect
  • the second communication device Is a communication device as described in the second aspect of the embodiments of the present invention or the first or second possible implementation of the second aspect.
  • a fourth aspect of the embodiments of the present invention provides a method for compensating a dual-select channel, including:
  • the plurality of to-be-transmitted signals are a plurality of useful signals to which a transmission pilot sequence is added;
  • the method further includes:
  • the prefix of the time domain signal is a cyclic prefix that the transmitting end copies and places a segment of the signal included in the original time domain signal before the original time domain signal;
  • the time domain signal of each of the plurality of time domain signals with the prefix removed is subjected to partial fast Fourier transform processing, channel compensation processing, and weighted fractional Fourier transform processing of ⁇ -1 order to obtain corresponding Fractional domain signal.
  • the time domain signal or the time when the prefix is removed is subjected to partial fast Fourier transform processing, channel compensation processing, and weighted fractional Fourier transform processing of ⁇ -1 order to obtain a fractional domain signal, which specifically includes:
  • each block signal is zero-padded, so that the length of each block signal is M; Performing Fourier transform on each block signal after zero padding to obtain a frequency domain signal of each block, the Q being greater than or equal to 2;
  • the channel compensation parameter includes a channel compensation corresponding to a frequency domain signal of each block a matrix, the determining the corresponding channel compensation parameter in the first modulation order, specifically:
  • H q is the frequency domain channel matrix of the qth block; the above (.) H represents the conjugate transpose of the matrix or vector.
  • a fifth aspect of the embodiments of the present invention provides a method for compensating a dual-selection signal, including:
  • the multiple time domains obtained by performing weighted fractional Fourier transform processing on multiple to-be-transmitted signals respectively according to multiple different modulation orders ⁇ Signals including:
  • a plurality of time domain signals are obtained by performing a weighted fractional Fourier transform of - ⁇ order on a plurality of fractional domain signals to be transmitted based on a plurality of different modulation orders ⁇ .
  • the transmitting the multiple time domain signals to the receiving end Specifically, including:
  • the prefix refers to a cyclic prefix that copies and places a segment of the signal included in the time domain signal before the time domain signal;
  • the receiving end obtains the optimal parameters used in the channel compensation and signal modulation process based on the minimum mean square error of the transmitted pilot sequence and the received pilot sequence, that is, the modulation order and the channel compensation parameters such as the channel compensation matrix, such that
  • the embodiment of the invention uses an optimized method to apply the band-balanced channel compensation method and partial FFT transform in the communication system, thereby improving the performance of the system.
  • FIG. 1 is a schematic structural diagram of a communication device according to Embodiment 1 of the device of the present invention.
  • FIG. 2 is a schematic structural diagram of another communication device according to Embodiment 1 of the device of the present invention.
  • FIG. 3 is a schematic structural diagram of a communication device according to Embodiment 2 of the device of the present invention.
  • FIG. 4 is a schematic structural diagram of a communication device according to Embodiment 3 of the device of the present invention.
  • FIG. 5 is a flowchart of a method for compensating a dual-select channel according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for performing frequency domain transform processing, channel compensation processing, and ⁇ -1 order demodulation processing to obtain a fractional domain signal in a method for compensating a dual-selection channel according to an embodiment of the present invention
  • FIG. 7 is a flowchart of another method for compensating a dual-select channel according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a method for implementing a dual-select channel compensation in a receiving end and a transmitting end according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a transmitting end adding a prefix to a time domain signal in an application embodiment of the present invention.
  • FIG. 10 is a diagram showing a correspondence relationship between a signal error rate and a signal-to-noise ratio after a compensation method using a dual-selection channel in a plurality of systems according to an embodiment of the present invention.
  • a communication device which is a compensation device for a dual-selection signal, and a schematic structural diagram is shown in FIG. 1 and includes:
  • the signal receiving unit 10 is configured to receive a plurality of time domain signals transmitted by the transmitting end, wherein the plurality of time domain signals transmitted by the transmitting end are respectively sent by the transmitting end to the plurality of to-be-transmitted signals based on the plurality of different modulation orders ⁇
  • the plurality of to-be-transmitted signals obtained by the weighted fraction Fourier transform are a plurality of useful signals to which a transmission pilot sequence is added.
  • the transmitting end inserts a preset transmission pilot sequence at a specific position of the plurality of useful signals, and then modulates and transmits the to-be-transmitted signal after the insertion of the transmission pilot sequence.
  • different transmit pilot sequences can be inserted in multiple useful signals.
  • the same transmit pilot sequence can be inserted into multiple useful signals.
  • the fractional signal obtaining unit 11 is configured to sequentially perform partial fast Fourier transform processing, channel compensation processing, and ⁇ -1 order weighting for each of the plurality of time domain signals received by the signal receiving unit 12
  • the fractional Fourier transform process produces a corresponding fractional domain signal.
  • the frequency domain signal can be obtained by performing partial FFT transformation on the time domain signal; and the channel compensation processing is to process the frequency domain signal according to the band MMSE equalization method, specifically multiplying the frequency domain signal by the channel compensation matrix; ⁇ -1
  • the weighted fractional Fourier transform process of the order refers to performing a WFRFT transform of the signal of the signal compensation process to obtain a fractional domain signal.
  • the extraction calculation unit 12 is configured to extract a received pilot sequence of the fractional domain signal respectively corresponding to the plurality of time domain signals acquired by the fractional signal obtaining unit 11, and calculate the extracted received pilot sequence and the transmitted pilot sequence. Mean square error between.
  • the extraction calculation unit 12 extracts the received pilot sequence in contrast to the process in which the transmitting end inserts the transmission pilot sequence, and the extraction calculation unit 12 extracts the received pilot sequence at a specific position of the fractional domain signal.
  • the transmission pilot sequence is already preset in the communication device of the embodiment. After the extraction calculation unit 12 extracts the received pilot sequence, it can directly perform the received pilot sequence and the preset transmission pilot sequence. Calculation of mean square error. And the extraction calculation unit 12 calculates a corresponding mean square error for each of the fractional domain signals corresponding to each time signal.
  • the selection determining unit 13 is configured to select, in the mean square error respectively calculated by the extraction calculation unit 12 according to the fractional domain signals corresponding to the plurality of time domain signals, the first modulation order of the fractional domain signal corresponding to the minimum mean square error, And determining a parameter of the corresponding channel compensation parameter, such as a channel compensation matrix, in the first modulation order;
  • the order sending unit 14 is configured to send the first modulation order obtained by the selection determining unit 13 to the sending end So that the transmitting end transmits a useful signal according to the first modulation order;
  • the channel compensation unit 15 is configured to perform channel compensation by using the channel compensation parameter determined by the selection determining unit 13.
  • the optimal parameters used in the channel compensation and signal modulation process are obtained based on the minimum mean square error of the transmitted pilot sequence and the received pilot sequence.
  • the channel compensation parameters such as the channel compensation matrix, use an optimized method to apply the band-balanced channel compensation method and partial FFT transform to the communication system, thereby improving the performance of the system.
  • the communication device may include, as shown in FIG.
  • the prefix processing unit 16 may be further included, and the fractional signal obtaining unit 11 may be specifically implemented by the partial fast Fourier transform unit 110, the compensation unit 111, and the fractional domain transform unit 112, and the selection determining unit 13 may It is realized by the selection unit 130, the block number determination unit 131, and the compensation matrix calculation unit 132, wherein:
  • the prefix processing unit 16 is configured to remove the prefixes of the plurality of time domain signals received by the signal receiving unit 10 before the fractional signal obtaining unit 11 obtains the fractional domain signal, where the prefix of the time domain signal is The transmitting end copies and places a segment of the signal included in the original time domain signal into a cyclic prefix preceding the original time domain signal.
  • the partial fast Fourier transform unit 110 is configured to divide the time domain signal received by the signal receiving unit 10, or the prefix processing unit 16 obtains the useful signal of length M in the time domain signal with the prefix removed into an average of Q block signals. Filling each block signal with zeros, so that the length of each block signal is M; respectively performing Fourier transform on each block signal after zero-padding to obtain a frequency domain signal of each block, where Q is greater than Or equal to 2;
  • the compensation unit 111 is configured to perform channel compensation on the frequency domain signals of each block obtained by the frequency domain transform unit 110 by using different channel compensation matrices, and superimpose the frequency domain signals of the compensated blocks.
  • the compensated frequency domain signal ;
  • the fractional domain transform unit 112 is configured to perform a weighted fractional Fourier transform of the alpha-1 order on the frequency domain signal compensated by the compensation unit 111 to obtain a fractional domain signal.
  • the selecting unit 130 is configured to select, in the mean square error respectively calculated by the extraction calculating unit 12 according to the fractional domain signals corresponding to the plurality of time domain signals, the first modulation order of the fractional domain signal corresponding to the minimum mean square error .
  • the block number determining unit 131 is configured to determine, in the process of obtaining the fractional domain signal corresponding to the first modulation order, performing a partial fast Fourier transform by the frequency domain transform unit 110 included in the fractional signal obtaining unit 11 The number of blocks Q used in processing.
  • the compensation matrix calculation unit 132 is configured to calculate the channel compensation matrix corresponding to the frequency domain signal of each partition when the channel compensation unit 111 included in the fractional signal obtaining unit 11 performs channel compensation:
  • H q is the frequency domain channel matrix of the qth block; the above (.) H represents the conjugate transpose of the matrix or vector.
  • the prefix of the time domain signal may be removed by the prefix processing unit 16; then, the three units included in the fractional signal obtaining unit 11 are implemented.
  • the time domain signal with the prefix removed is converted into a fractional domain signal; then the extraction calculation unit 12 extracts the received pilot sequence of the fractional domain signal obtained by the fractional domain transform unit 112 in the fractional signal obtaining unit 11, and performs corresponding calculation;
  • the optimized parameters, that is, the first modulation order, the number of blocks, and the channel compensation matrix are obtained by the three units in the selection determining unit 13, and finally the selection unit 130 selects the selection unit 130 in the selection determining unit 13 by the order transmitting unit 14.
  • the first modulation order is sent to the transmitting end, and the number-of-blocks determining unit 131 transmits the determined number of blocks to the frequency domain transform unit 110 for frequency domain transform, and the compensation matrix calculating unit 132 transmits the calculated channel compensation matrix to the channel compensation unit. 15 performs channel compensation.
  • a communication device which is a compensation device for a dual-selection signal.
  • the schematic diagram of the structure is as shown in FIG. 3, including: a memory 20 respectively connected to the bus, a processor 21, and a transmitter 22 and a receiver 23, wherein:
  • the memory 20 can store information such as necessary files for the processor 21 to process data, and the transmitter 22 and the receiver 23 are ports through which the communication device communicates with other devices.
  • the receiver 23 is configured to receive multiple time domain signals transmitted by the transmitting end, where the multiple time domain signals are sent by the transmitting end based on multiple different modulation orders ⁇ Pending
  • the signal is obtained by weighted fractional Fourier transform, and the plurality of to-be-transmitted signals are a plurality of useful signals to which a transmission pilot sequence is added.
  • the transmitting end inserts a preset transmission pilot sequence at a specific position of the plurality of useful signals, and then modulates and transmits the to-be-transmitted signal after the insertion of the transmission pilot sequence.
  • different transmit pilot sequences can be inserted in multiple useful signals.
  • the same transmit pilot sequence can be inserted in multiple useful signals during actual application.
  • the processor 21 is configured to perform partial fast Fourier transform processing, channel compensation processing, and ⁇ -1 order weighted fractional Fourier transform processing on each time domain signal of the plurality of time domain signals to obtain corresponding a fractional domain signal; extracting a received pilot sequence of the fractional domain signal respectively corresponding to the plurality of time domain signals, and calculating a mean square error between the extracted received pilot sequence and the transmitted pilot sequence; And determining, according to the mean square error respectively calculated by the fractional domain signals corresponding to the plurality of time domain signals, selecting a first modulation order of the fractional domain signal corresponding to the minimum mean square error, and determining corresponding to the first modulation order a channel compensation parameter such as a channel compensation matrix; transmitting the first modulation order to the transmitting end, such that the transmitting end transmits a useful signal according to the first modulation order; and using the determined Channel compensation parameters are used for channel compensation.
  • the communication device can obtain the optimal parameters used in the channel compensation and signal modulation process, that is, the modulation order and the channel compensation parameters such as the channel compensation matrix, and the channel compensation method and the part of the band equalization are optimized by an optimized method.
  • the FFT transform is applied in the communication system to improve the performance of the system.
  • the processor 21 performs a partial FFT transform on the time domain signal to obtain a frequency domain signal; and the channel compensation process processes the frequency domain signal according to the band MMSE equalization method, specifically multiplying the frequency domain signal by the channel compensation matrix.
  • the weighted fractional Fourier transform process of the ⁇ -1 order refers to performing a WFRFT transform of the signal of the signal compensation process to obtain a fractional domain signal.
  • the processor 21 reverses the process of extracting the received pilot sequence from the transmitting terminal to insert the transmitted pilot sequence. Specifically, the processor 21 extracts the received pilot sequence at a specific position of the fractional domain signal.
  • the transmitting pilot sequence has been preset in the communication device of the embodiment. After the received pilot sequence is extracted, the mean square error can be directly performed according to the extracted received pilot sequence and the preset transmit pilot sequence. Calculation.
  • the processor 21 is further configured to: after receiving the multiple time domain signals, the prefix of the multiple time domain signals may be separately removed, and the prefix of the time domain signal is The transmitting end copies and places a segment of the signal included in the original time domain signal into a cyclic prefix before the original time domain signal; then the processor 21 performs a series of processing on the time domain signal after the prefix is removed.
  • Frequency domain signal specifically:
  • the processor 21 is specifically configured to divide the received time domain signal, or the useful signal of length M in the time domain signal after the prefix is divided into Q block signals; respectively, zeroing each of the block signals, so that each The length of the block signal is M; respectively performing Fourier transform on each of the padded signals to obtain a frequency domain signal of each block, the Q being greater than or equal to 2; respectively using different channel compensation matrix pairs
  • the frequency domain signal of each block performs channel compensation, and the compensated frequency domain signal of each block is superposed to obtain a compensated frequency domain signal; and the compensated frequency domain signal is weighted by ⁇ -1 order
  • the fractional Fourier transform yields a fractional domain signal.
  • the optimized parameter is determined mainly by the processor 21 according to the fractional domain signals corresponding to the plurality of time domain signals respectively.
  • the calculated mean square error selecting a first modulation order of the fractional domain signal corresponding to the minimum mean square error; determining to perform a partial fast Fourier in the process of obtaining the fractional domain signal corresponding to the first modulation order
  • the number of blocks Q used in the leaf transform process; and the channel compensation matrix corresponding to the frequency domain signal of each block is calculated as:
  • H q is the frequency domain channel matrix of the qth block; the above (.) H represents the conjugate transpose of the matrix or vector.
  • a communication device which is a compensation device for a dual-selection signal, and a schematic structural diagram is shown in FIG. 4, including:
  • the time domain signal acquiring unit 30 is configured to perform, by using a plurality of different modulation orders ⁇ , a plurality of time domain signals obtained by performing weighted fractional Fourier transform processing on the plurality of to-be-transmitted signals, where the plurality of to-be-transmitted signals are It is a plurality of useful signals added with a transmission pilot sequence.
  • the time domain signal acquisition unit 30 is specifically configured to perform a weighted fractional Fourier transform of - ⁇ order on a plurality of fractional domain signals to be transmitted to obtain a plurality of time domain signals based on a plurality of different modulation orders ⁇ .
  • different transmit pilot sequences can be inserted in multiple useful signals. For practical convenience, the same transmit pilot sequence can be inserted in multiple useful signals during actual application.
  • the sending unit 31 is configured to transmit a plurality of time domain signals acquired by the time domain signal acquiring unit 30 to the receiving end, so that the receiving end selects the plurality of modulation orders ⁇ according to the plurality of time domain signals.
  • the first modulation order is configured to transmit a plurality of time domain signals acquired by the time domain signal acquiring unit 30 to the receiving end, so that the receiving end selects the plurality of modulation orders ⁇ according to the plurality of time domain signals.
  • the first modulation order is configured to transmit a plurality of time domain signals acquired by the time domain signal acquiring unit 30 to the receiving end, so that the receiving end selects the plurality of modulation orders ⁇ according to the plurality of time domain signals. The first modulation order.
  • the sending unit 31 may be implemented by a prefix adding unit and a signal sending unit, in particular, a prefix adding unit, configured to add a prefix in the time domain signal, the prefix And a signal sending unit, configured to transmit a time domain signal added by the prefix adding unit to the receiving end, and copying and placing the signal included in the time domain signal to the receiving end .
  • the transmitting unit 32 is configured to receive, by the receiving end, the first modulation order returned according to the multiple time domain signals sent by the sending unit 31, and transmit the useful signal according to the first modulation order, so that the receiving end can
  • the first modulation order optimized according to the foregoing apparatus embodiment 1 is fed back to the communication device in the embodiment, and the performance of the transmission unit 32 when transmitting the useful signal is improved.
  • a communication device which is a compensation device for a dual-selection signal.
  • the structure is similar to that shown in FIG. 3, and includes: a memory, a processor, and a transmitter and a receiver respectively connected to the bus, wherein:
  • the memory can store information such as necessary files for the processor to process data, and the transmitter and receiver are ports through which the communication device communicates with other devices.
  • the processor in this embodiment is configured to perform, by using a plurality of different modulation orders ⁇ , a plurality of time domain signals obtained by performing weighted fractional Fourier transform processing on the plurality of to-be-transmitted signals; the plurality of to-be-transmitted signals Is to add a plurality of useful signals for transmitting the pilot sequence; and controlling the transmitter to transmit the plurality of time domain signals to the receiving end, so that the receiving end selects the plurality of modulations according to the plurality of time domain signals Order a first modulation order in the number ⁇ ; when the receiver receives the first modulation order returned by the receiving end according to the plurality of time domain signals, and transmits a useful signal according to the first modulation order, In this way, the receiving end can feed back the communication device in the embodiment according to the first modulation order optimized in the foregoing device embodiment 1, and improve the performance when transmitting the signal.
  • the processor when the processor obtains multiple time domain signals, the processor is specifically configured to perform multiple-time weighted fractional Fourier transform on the fractional domain signals to be transmitted based on a plurality of different modulation orders ⁇ . Domain signal. And in order to prevent signal interference, the processor may further pre-process multiple time domain signals after obtaining multiple time domain signals, specifically, adding a prefix to the time domain signal, where the prefix refers to Translating and placing a segment of the signal included in the time domain signal to a cyclic prefix preceding the time domain signal; and then transmitting the time domain signal after adding the prefix to the receiving end.
  • the prefix refers to Translating and placing a segment of the signal included in the time domain signal to a cyclic prefix preceding the time domain signal
  • the embodiment of the invention further provides a compensation system for a dual-select channel, comprising a first communication device and a second communication device, wherein:
  • the structure of the first communication device is the same as the structure of the communication device described in the device embodiment 1 or 2
  • the structure of the second communication device is the same as the structure of the communication device described in the device embodiment 3 or 4. I will not repeat them here.
  • the embodiment of the present invention further provides a method for compensating a dual-select channel, which is mainly applied to a system of a hybrid carrier system, an OFDM system, or a single-carrier system, and performs compensation for a dual-select channel when using a dual-select channel for communication.
  • the example is mainly a method performed by the communication receiving end, that is, the communication device in the device embodiment 1 or 2, and the flowchart is as shown in FIG. 5, and includes:
  • Step 101 The receiving end receives multiple time domain signals transmitted by the transmitting end, and the plurality of time domain signals are obtained by the transmitting end performing weighted fractional Fourier transform on the plurality of to-be-transmitted signals respectively based on a plurality of different modulation orders ⁇
  • a plurality of signals to be transmitted are a plurality of useful signals to which a transmission pilot sequence is added.
  • the transmitting end when the transmitting end transmits a signal in the dual-select channel, a preset transmitting pilot sequence is inserted at a specific position of the plurality of useful signals, and then the to-be-transmitted signal obtained after inserting the transmitting pilot sequence is modulated and transmitted.
  • different transmit pilot sequences can be inserted in multiple useful signals.
  • the same transmit pilot sequence can be inserted in multiple useful signals during actual application.
  • the transmitting end performs modulation processing on the transmitted signal by weighted-type fractional Fourier transform (WFRFT), and assumes that the signal to be transmitted is a fractional domain signal of the order ⁇ , and passes through - ⁇ .
  • WFRFT weighted-type fractional Fourier transform
  • Step 102 For each time domain signal in the time domain signal received in the above step 101, the receiving end sequentially performs partial fast Fourier transform processing, channel compensation processing, and ⁇ -1 order weighted fractional Fourier transform processing. Corresponding fractional domain signal.
  • the frequency domain signal can be obtained by performing partial FFT transformation on the time domain signal; and the channel compensation processing is to process the frequency domain signal according to the band MMSE equalization method, specifically multiplying the frequency domain signal by the channel compensation matrix;
  • the weighted fractional Fourier transform process of the -1st order means that the signal after the signal compensation process is subjected to WFRFT transformation of ⁇ -1 order to obtain a fractional domain signal.
  • the receiving end after receiving multiple time domain signals, the receiving end needs to perform pre-processing on multiple time domain signals at least once, and the pre-processing method is performed by the transmitting end.
  • the pre-processing before the transmission of the time domain signal is determined.
  • the pre-processing is a process of prefixing the original time domain signal, and the receiving end needs to remove the prefix of the received time domain signal.
  • the prefix of the time domain signal may be a cyclic prefix in which the transmitting end copies and places a segment of the signal L included in the original time domain signal into the original time domain signal.
  • Step 103 The receiving end extracts a received pilot sequence of the fractional domain signals respectively corresponding to the plurality of time domain signals, and calculates a mean square error between the extracted received pilot sequence and the transmitted pilot sequence. Specifically, the receiving end extracts the received pilot sequence and the transmitting end inserts the transmitting pilot sequence, and the receiving end extracts the received pilot sequence at a specific position of the fractional domain signal.
  • the transmitting pilot sequence is already preset at the receiving end. After the receiving pilot sequence is extracted, the mean square error can be directly calculated according to the extracted receiving pilot sequence and the preset transmitting pilot sequence.
  • Step 104 In the mean square error calculated by the receiving end according to the fractional domain signals corresponding to the plurality of time domain signals, selecting a first modulation order of the fractional domain signal corresponding to the minimum mean square error, and determining the first modulation order The corresponding channel compensation parameters are given.
  • the transmitting end when transmitting a signal, performs modulation processing on multiple to-be-transmitted signals based on a plurality of different modulation orders ⁇ .
  • the weighted fractional Fourier transform is then transmitted through the dual-selection channel, and then the receiving end selects the preferred modulation order and channel compensation parameters by channel estimation.
  • Step 105 The receiving end sends the first modulation order to the transmitting end, so that the transmitting end sends a signal according to the first modulation order; and the receiving end performs channel compensation by using the channel compensation parameter determined in the foregoing step 104.
  • the receiving end When the receiving end performs the above steps 102 and 103 respectively for the plurality of time domain signals, a plurality of mean square errors are obtained; then the receiving end selects the minimum mean square error, and the receiving pilot used for calculating the minimum mean square error is calculated.
  • the first modulation order of the fractional domain signal corresponding to the sequence is used as the optimal modulation order, and is fed back to the transmitting end; and the signal compensation parameters corresponding to different modulation orders are different, and the receiving end is determined according to the selected first modulation order.
  • the number obtains the corresponding channel compensation parameters, such as the signal compensation matrix, and uses the channel compensation parameters in the subsequent channel compensation process.
  • the receiving end obtains the optimal parameters used in the channel compensation and signal modulation process based on the minimum mean square error of the transmitted pilot sequence and the received pilot sequence, that is, the modulation order and the channel.
  • the compensation parameters such as the channel compensation matrix and the like, so that the embodiment of the present invention uses an optimized method to apply the band-balanced channel compensation method and partial FFT transformation in the communication system, thereby improving the performance of the system.
  • the receiving end in order to reduce the interference on the useful signal in the signal received by the receiving end, it is more advantageous to provide system performance.
  • the receiving end may specifically include the following steps. to realise:
  • the time domain signal received in step 101 or the useful signal of length M in the time domain signal after the prefix is removed is divided into Q block signals.
  • Q is greater than or equal to 2;
  • each of the block signals is zero-padded, so that the length of each block signal is M;
  • channel compensation is performed on the frequency domain signals of each block by using different channel compensation matrices, and the compensated frequency domain signals of the respective blocks are superimposed to obtain the compensated frequency domain signals.
  • the weighted fractional Fourier transform of the ⁇ -1 order is mainly performed on the compensated frequency domain signal to obtain a fractional domain signal.
  • the channel compensation parameter determined by the receiving end to perform the foregoing step 104 may include a channel compensation matrix corresponding to the frequency domain signal of each block. Specifically, the receiving end may first determine that when performing partial FFT transformation. When the number of blocks used is Q, it is directly determined that the first modulation order is obtained. The number of blocks Q used in the frequency domain transform processing when the corresponding fractional domain signal is used.
  • the transmitting end when performing frequency domain transform processing on a plurality of time domain signals received by the receiving end (the transmitting end is configured to perform modulation processing on a plurality of to-be-transmitted signals based on different modulation orders ⁇ ),
  • Different block numbers Q are used, that is, the time domain signals obtained based on different modulation orders ⁇ correspond to different block numbers Q, and the correspondence between the modulation order ⁇ and the block number Q may be preset at the receiving end. Then, as long as the receiving end knows the modulation order, the corresponding fractional block can be determined.
  • the channel compensation matrix corresponding to the frequency domain signal of each block is directly calculated as:
  • H q is the frequency domain channel matrix of the qth block; the above (.) H represents the conjugate transpose of the matrix or vector.
  • the embodiment of the present invention provides a method for compensating a dual-select channel, which is mainly applied to a hybrid carrier system, and when a dual-select channel is used for communication, the compensation for the dual-selection channel is mainly implemented by the communication sending end, that is, the foregoing device.
  • Step 201 The transmitting end separately performs a plurality of time domain signals obtained by weighted fractional Fourier transform processing on the plurality of to-be-transmitted signals based on a plurality of different modulation orders ⁇ , where a plurality of to-be-transmitted signals are added with a transmission pilot. Multiple useful signals for the sequence.
  • the transmitting end may perform a weighted fractional Fourier transform of - ⁇ order on the plurality of fractional domain signals to be transmitted to obtain a plurality of time domain signals based on the plurality of different modulation orders ⁇ .
  • Step 202 The transmitting end transmits a plurality of time domain signals to the receiving end, so that the receiving end selects a first modulation order of the plurality of modulation orders ⁇ according to the plurality of time domain signals.
  • the receiving end may follow the foregoing embodiment.
  • the method in steps 101 to 105 obtains the first modulation order and returns it to the transmitting end, and details are not described herein.
  • the transmitting end when the transmitting end transmits the time domain signal, in order to suppress interference between symbols, the transmitting end may first add a prefix in the time domain signal, where the prefix refers to a segment included in the time domain signal. The signal, copied and placed into the cyclic prefix before the time domain signal; then the time domain signal after the prefix is added.
  • Step 203 When the transmitting end receives the first modulation order returned by the receiving end, the first modulation order is the optimal modulation order determined by the receiving end, then in the subsequent useful signal transmission, the transmitting end according to the The first modulation order transmits a useful signal.
  • a channel compensation method is described in the following.
  • a schematic structural diagram of a transmitting end and a receiving end in this embodiment is shown in FIG.
  • the WFRFT module and the parallel/serial conversion module are included at the receiving end.
  • the WFRFT module at the receiving end is based on a plurality of different modulation orders ⁇ for a plurality of signals to be transmitted of length M, such as Binary Phase Shift Keying (BSPK) signals or quadrature phase shifts.
  • the Quadrature Phase Shift Keying (QPSK) signal performs a WFRFT transformation of ⁇ -order to obtain a plurality of time domain signals.
  • the WFRFT module may employ a discrete four-term weighted fractional Fourier transform, specifically:
  • W A 0 ( ⁇ ) I + A 1 ( ⁇ ) F + A 2 ( ⁇ ) ⁇ I + A 3 ( ⁇ ) ⁇ F, where A 0 ( ⁇ ) ⁇ A 3 ( ⁇ ) are weighting coefficients defined as follows:
  • I is an M ⁇ M unit matrix
  • F is an M ⁇ M discrete Fourier transform matrix
  • exp(.) represents an e-exponential operator
  • is the permutation matrix, which has only one element non-zero for each column and column, and F and ⁇ can be expressed as follows:
  • W - ⁇ is abbreviated as W -1
  • W -1 W H
  • W ⁇ the matrix of the transformation order
  • a cyclic prefix of length L cp is added to the time domain signal after the parallel/serial conversion, And the duration of the cyclic prefix can be set to be greater than the maximum channel delay spread; then the time domain signal after the prefix is added is transmitted in the dual channel.
  • the parallel/serial conversion module copies and stores a segment of the signal included in the signal D of length M, that is, the last segment of the signal length of L cp signal samples, when the cyclic prefix is added.
  • the receiving end includes a serial/parallel conversion module, a partial FFT module, a channel compensation module, a WFRFT module, a parameter optimization control module, a channel estimation module, and a pilot extraction module.
  • the receiving end of the serial/parallel conversion module After receiving the time domain signal, the receiving end of the serial/parallel conversion module first removes the prefix added by the transmitting end, and the time domain signal can be expressed as:
  • H t is the time domain matrix form of the time-varying channel, assuming H t is a M ⁇ M circular convolution matrix; [H t ] k , (kl)
  • h kl represents the time domain impulse response
  • n Gaussian white noise. Since there is noise interference when the signal is transmitted on the dual channel, the signal processed by the receiver at the default is the noise-added signal.
  • the partial FFT module performs Fourier transform on each block signal to obtain a frequency domain signal of each block, and the obtained frequency domain signal of the qth block can be expressed as:
  • Y q is a column vector of length M
  • F is still the M ⁇ M Fourier transform matrix mentioned above.
  • the channel compensation module uses the band equalization MMSE method to perform channel compensation processing on the frequency domain signals of the respective blocks obtained by the processing of the partial FFT module by using different channel compensation matrices.
  • the channel compensation matrix for the frequency domain signal of the qth block is G q , where G q is a matrix of M ⁇ M, and a frequency domain signal of one block can be expressed as:
  • the frequency domain signals of the compensated blocks are superimposed to obtain the compensated frequency domain signal.
  • the WFRFT module will compensate the frequency domain signal Performing the weighted fractional Fourier transform of ⁇ -1 order to obtain the original ⁇ -order fractional domain signal, which can be expressed as:
  • H q Fi q H t
  • M,: , k 1, 2, ..., M denotes a matrix of all elements of the (kP)
  • P is a constant, and generally takes a value of P ⁇ M, and the P selection is related to the Doppler size.
  • the channel compensation matrix of the qth block of the frequency domain signal can be expressed as:
  • I 2P+1 represents the unit matrix of (2P+1) ⁇ (2P+1)
  • h k is The kth column element
  • N 0 is the noise power, assuming that the noise power is estimable
  • G q,k represents the M ⁇ 1 column vector, Express The kth element.
  • equation (5) can be expressed as:
  • the channel compensation matrix corresponding to the frequency domain signal of each block can be expressed as:
  • the pilot extraction module extracts the received pilot sequence in the fractional domain signal obtained by the WFRFT module and transmits it to the parameter optimization control module.
  • the channel estimation module connected to the pilot extraction module is for estimating channel information, including parameters such as Doppler, channel gain and multipath delay, when the parameter optimization control module selects an optimized modulation order and channel compensation parameters. Will be used.
  • the parameter optimization control module determines the first modulation order and the number of blocks Q corresponding to one of the received pilot sequences according to the following optimization method, and then obtains the channel compensation matrix of the frequency domain signals of the respective blocks according to the above formula (13).
  • the parameter optimization control module feeds back the obtained first modulation order to the WFRFT module of the transmitting end and the receiving end, so that the transmitting end and the receiving end WFRFT module perform weighting according to the first modulation order when processing the signal later.
  • Fractional Fourier transform; and the obtained fractional block Q is transmitted to the partial FFT module of the receiving end, so that the partial FFT is used for segmentation in the subsequent frequency domain transform processing; the calculated channel compensation matrix is transmitted Channel compensation mode for the receiving end
  • the block is such that the channel compensation module processes in accordance with the calculated channel compensation matrix in a subsequent channel compensation process.
  • T represents a transpose of a matrix or a vector
  • H represents a conjugate transpose of a matrix or a vector
  • b represents a numerical value a modulo the value b
  • W ⁇ is a weight matrix of ⁇ - order
  • the element representing the mth row and the nth column of the matrix [.] m:n,: represents a matrix of all elements of the extraction matrix from m rows to n rows, and 0 1 ⁇ N represents an all-zero vector of 1 ⁇ N, 1 1 ⁇ N represents an all-one vector of 1 ⁇ N, and diag(B) represents a diagonal matrix composed of vector B, Represents the upper bound of the value.
  • the method of the present invention is applied to an OFDM system, if the method of the embodiment of the present invention is applied to a hybrid carrier system (assuming that the optimal modulation order is 0.5) In the medium, the bit error rate can be significantly reduced, and the communication quality is improved.
  • the error can be significantly reduced when the signal to noise ratio is greater than 20 dB. rate.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Read only memory (ROM), random access memory (RAM), magnetic or optical disk, and the like.

Abstract

一种双选信道的补偿方法、系统及相关装置,应用于通信技术领域。本发明实施例中,接收端会基于发送导频序列和接收导频序列的最小均方误差,得到在信道补偿和信号调制过程中的所用的最优的参数,即调制阶数和信道补偿参数比如信道补偿矩阵,这样本发明实施例用一种优化的方法将带状均衡的信道补偿方法和部分FFT变换应用在通信系统中,提升了系统的性能。

Description

一种双选信道的补偿方法、系统及相关装置
本申请要求于2014年06月06日提交中国专利局、申请号为201410250710.X、发明名称为“一种双选信道的补偿方法、系统及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及双选信道的补偿方法、系统及相关装置。
背景技术
时间和频率选择性衰落信道,即时频双选信道(以下简称“双选信道”)是近来研究的热点,例如水声通信、低轨卫星通信、数字视频广播(Digital video broadcasting,DVB)、微波存取全球互通(Worldwide Interoperability for Microwave Access,WiMAX)等,这些通信应用领域传输时的信道均为双选信道,而双选衰落信道对通信质量的影响是巨大的,如何对双选信道进行补偿已经成为迫切需要解决的问题。
为了进行双选信道的补偿,现有技术中一种方法是将部分快速傅里叶变换(Fast Fourier Transform,FFT)解调应用到了正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中,但是由于OFDM系统在快速时变的双选信道下,会受到由于多普勒影响引起的载波间的干扰的影响。为此现有的另一种方法中,提出了将部分FFT解调应用到混合载波系统中,性能有了较大的提高,但是复杂度很高,在实际应用中会受到限制。而另外一种方法中利用了双选信道的性质,将带状最小均方差(Minimum Mean Square Error,MMSE)均衡方法应用到OFDM系统中,降低了计算的复杂度,但是在误码率性能上又不是很理想。
发明内容
本发明实施例提供双选信道的补偿方法、系统及相关装置,采用一种优化的方法将带状均衡的信道补偿方法和部分FFT变换应用在通信系统中,提升了 系统的性能。
本发明实施例第一方面提供一种通信设备,包括:
信号接收单元,用于接收发送端传输的多个时域信号,所述多个时域信号是所述发送端基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换得到的,所述多个待发送信号是添加了发送导频序列的多个有用信号;
分数信号获得单元,用于对所述信号接收单元接收的所述多个时域信号中的每一时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到对应的分数域信号;
提取计算单元,用于提取所述分数信号获得单元获取的所述多个时域信号分别对应的分数域信号的接收导频序列,并计算所述提取的接收导频序列与发送导频序列之间的均方误差;
选择确定单元,用于在所述提取计算单元根据多个时域信号对应的分数域信号分别计算的均方误差中,选择最小均方误差所对应的分数域信号的第一调制阶数,及确定所述第一调制阶数下相应的信道补偿参数;
阶数发送单元,用于将所述选择确定单元得到的第一调制阶数发送给所述发送端,以使得所述发送端根据所述第一调制阶数传输有用信号;
信道补偿单元,用于利用所述选择确定单元确定的信道补偿参数进行信道补偿。
本发明实施例第一方面的第一种可能实现方式中,通信设备还包括:
前缀处理单元,用于在所述分数信号获得单元得到分数域信号之前,分别将所述信号接收单元接收的多个时域信号的前缀去掉,所述时域信号的前缀是所述发送端将原始时域信号中包括的一段信号,复制并放置到所述原始时域信号前的循环前缀;
则所述分数信号获得单元,具体用于对所述前缀处理单元得到的去掉前缀的多个时域信号中的每一去掉前缀的时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到对应的分数域信号。
结合本发明实施例第一方面或第一方面的第一种可能实现方式,在本发明 实施例第一方面的第二种可能实现方式中,所述分数信号获得单元,具体包括:
部分快速傅里叶变换单元,用于将所述信号接收单元接收的时域信号,或所述前缀处理单元得到的去掉前缀的时域信号中长度为M的有用信号平均分成Q个分块信号;分别对各个分块信号补零,使得所述各个分块信号的长度为M;分别对补零后的各个分块信号进行傅里叶变换得到各分块的频域信号,所述Q大于或等于2;
补偿单元,用于分别使用不同的信道补偿矩阵对所述频域变换单元得到的各分块的频域信号进行信道补偿,将进行所述补偿后的各分块的频域信号叠加得到补偿后的频域信号;
分数域变换单元,用于对所述补偿单元补偿后的频域信号进行α-1阶的加权分数傅里叶变换得到分数域信号。
结合本发明实施例第一方面的第二种可能实现方式,在本发明实施例第一方面的第三种可能实现方式中,所述信道补偿参数包括各分块的频域信号对应的信道补偿矩阵,则所述选择确定单元,具体包括:
选择单元,用于在所述提取计算单元根据多个时域信号对应的分数域信号分别计算的均方误差中,,选择最小均方误差所对应的分数域信号的第一调制阶数;
分块数确定单元,用于确定在得到所述第一调制阶数对应的分数域信号时,进行部分快速傅里叶变换处理时所用的分块数Q;
补偿矩阵计算单元,用于计算所述各分块的频域信号对应的信道补偿矩阵为:
Figure PCTCN2015073627-appb-000001
其中,zk=[I](k-P)|M:(k+P)|M,:,k=1,2,...,M,用于表示M×M的单位矩阵I的第(k-P)|M行到(k+P)|M的所有元素组成的矩阵;
Figure PCTCN2015073627-appb-000002
所述I2P+1为(2P+1)*(2P+1)的单位矩阵;hk是是
Figure PCTCN2015073627-appb-000003
的第k列元素,k=1,2,……,M;N0为噪声功率;
Figure PCTCN2015073627-appb-000004
其中,
Figure PCTCN2015073627-appb-000005
Hq是第q个分块的频域信道矩阵;上述(.)H表示矩阵或者向量的共轭转置。
本发明实施例第二方面提供一种通信设备,包括:
时域信号获取单元,用于基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换处理得到的多个时域信号;所述多个待发送信号是添加了发送导频序列的多个有用信号;
发送单元,用于传输所述多个时域信号给接收端,以使得所述接收端根据所述多个时域信号选择所述多个调制阶数α中的第一调制阶数;
传输单元,用于接收所述接收端返回的所述第一调制阶数,根据所述第一调制阶数传输有用信号。
本发明实施例第二方面的第一种可能实现方式中,所述时域信号获取单元具体用于基于多个不同的调制阶数α,对多个分数域信号进行-α阶的加权分数傅里叶变换得到多个时域信号。
结合本发明实施例第二方面或第二方面的第一种可能实现方式,在本发明实施例第二方面的第二种可能实现方式中,所述发送单元,具体包括:
前缀添加单元,用于在所述时域信号中添加前缀,所述前缀是指将所述时域信号中包括的一段信号,复制并放置到所述时域信号前的循环前缀;
信号发送单元,用于传输所述前缀添加单元添加前缀后的时域信号给接收端。
本发明实施例第三方面提供一种双选信道的补偿系统,包括第一通信设备和第二通信设备,其中:
所述第一通信设备是如本发明实施例第一方面,或第一方面的第一种到第三种可能实现方式中任一种可能实现方式所述的通信设备,所述第二通信设备是如本发明实施例第二方面,或第二方面的第一种或第二种可能实现方式所述的通信设备。
本发明实施例第四方面提供一种双选信道的补偿方法,包括:
接收发送端传输的多个时域信号,所述多个时域信号是所述发送端基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换得到的,所述多个待发送信号是添加了发送导频序列的多个有用信号;
对所述多个时域信号中的每一时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到对应的分数域信号;
提取所述多个时域信号分别对应的分数域信号的接收导频序列,并计算所述提取的接收导频序列与发送导频序列之间的均方误差;
在根据所述多个时域信号对应的分数域信号分别计算的均方误差中,,选择最小均方误差所对应的分数域信号的第一调制阶数,及确定所述第一调制阶数下相应的信道补偿参数;
将所述第一调制阶数发送给所述发送端,以使得所述发送端根据所述第一调制阶数发送有用信号;利用所述确定的信道补偿参数进行信道补偿。
本发明实施例第四方面的第一种可能实现方式中,所述接收发送端传输的时域信号之后,还包括:
将所述时域信号的前缀去掉,所述时域信号的前缀是所述发送端将原始时域信号中包括的一段信号,复制并放置到所述原始时域信号前的循环前缀;
则对去掉前缀的多个时域信号中的每一去掉前缀的时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到对应的分数域信号。
结合本发明实施例第四方面或第四方面的第一种可能实现方式,在本发明实施例第四方面的第二种可能实现方式中,所述对所述时域信号或去掉前缀的时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到分数域信号,具体包括:
将所述时域信号或去掉前缀的时域信号中长度为M的有用信号平均分成Q个分块信号;分别对各个分块信号补零,使得所述各个分块信号的长度为M;分别对补零后的各个分块信号进行傅里叶变换得到各分块的频域信号,所述Q大于或等于2;
分别使用不同的信道补偿矩阵对所述各分块的频域信号进行信道补偿,将 进行所述补偿后的各分块的频域信号叠加得到补偿后的频域信号;
对所述补偿后的频域信号进行α-1阶的加权分数傅里叶变换得到分数域信号。
结合本发明实施例第四方面的第二种可能实现方式,在本发明实施例第四方面的第三种可能实现方式中,所述信道补偿参数包括各分块的频域信号对应的信道补偿矩阵,则所述确定所述第一调制阶数下相应的信道补偿参数,具体包括:
确定在得到所述第一调制阶数对应的分数域信号时,进行部分快速傅里叶变换处理时所用的分块数Q;
计算所述各分块的频域信号对应的信道补偿矩阵为:
Figure PCTCN2015073627-appb-000006
其中,zk=[I](k-P)|M:(k+P)|M,:,k=1,2,...,M,用于表示M×M的单位矩阵I的第(k-P)|M行到(k+P)|M的所有元素组成的矩阵;
Figure PCTCN2015073627-appb-000007
所述I2P+1为(2P+1)*(2P+1)的单位矩阵;hk是是
Figure PCTCN2015073627-appb-000008
的第k列元素,k=1,2,……,M;N0为噪声功率;
Figure PCTCN2015073627-appb-000009
其中,
Figure PCTCN2015073627-appb-000010
Hq是第q个分块的频域信道矩阵;上述(.)H表示矩阵或者向量的共轭转置。
本发明实施例第五方面提供一种双选信号的补偿方法,包括:
基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换处理得到的多个时域信号;所述多个待发送信号是添加了发送导频序列的多个有用信号;
传输所述多个时域信号给接收端,以使得所述接收端根据所述多个时域信号选择所述多个调制阶数α中的第一调制阶数;
接收所述接收端返回的所述第一调制阶数,根据所述第一调制阶数传输有用信号。
在本发明实施例第五方面的第一种可能实现方式中,所述基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换处理得到的多个时域信号,具体包括:
基于多个不同的调制阶数α,对多个待发送的分数域信号进行-α阶的加权分数傅里叶变换得到多个时域信号。
结合本发明实施例第五方面或第五方面的第一种可能实现方式,在本发明实施例第五方面的第二种可能实现方式中,所述传输所述多个时域信号给接收端,具体包括:
在所述时域信号中添加前缀,所述前缀是指将所述时域信号中包括的一段信号,复制并放置到所述时域信号前的循环前缀;
传输所述添加前缀后的时域信号给所述接收端。
接收端会基于发送导频序列与接收导频序列的最小均方误差,得到在信道补偿和信号调制过程中的所用的最优的参数,即调制阶数和信道补偿参数比如信道补偿矩阵,这样本发明实施例用一种优化的方法将带状均衡的信道补偿方法和部分FFT变换应用在通信系统中,提升了系统的性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明设备实施例一提供的一种通信设备的结构示意图;
图2是本发明设备实施例一提供的另一种通信设备的结构示意图;
图3是本发明设备实施例二提供的一种通信设备的结构示意图;
图4是本发明设备实施例三提供的一种通信设备的结构示意图;
图5是本发明实施例提供的一种双选信道的补偿方法的流程图;
图6是本发明实施例提供双选信道的补偿方法中进行频域变换处理,信道补偿处理,及α-1阶的解调处理得到分数域信号的方法流程图;
图7是本发明实施例提供的另一种双选信道的补偿方法的流程图;
图8是本发明应用实施例中接收端和发送端在实现双选信道补偿方法的结构示意图;
图9是本发明应用实施例中发送端在时域信号中添加前缀的结构示意图;
图10是本发明应用实施例中,在多个系统下采用双选信道的补偿方法后,信号误码率与信噪比的对应关系图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排它的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明设备实施例一
提供一种通信设备,该通信设备是双选信号的补偿装置,结构示意图如图1所示,包括:
信号接收单元10,用于接收发送端传输的多个时域信号,其中,发送端传输的多个时域信号是发送端基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换得到的,该多个待发送信号是添加了发送导频序列的多个有用信号。
具体地,发送端在多个有用信号的特定位置分别插入预置的发送导频序列,然后对插入发送导频序列后的待发送信号进行调制发送。这里在多个有用信号中可以插入不同的发送导频序列,为了计算方便,在实际应用过程中,在 多个有用信号中可以插入相同的发送导频序列。
分数信号获得单元11,用于对所述信号接收单元12接收的多个时域信号中的每一时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到对应的分数域信号。
这里对时域信号进行部分FFT变换后可以得到频域信号;而信道补偿处理是按照带状MMSE均衡方法对频域信号进行处理,具体是用信道补偿矩阵与频域信号相乘;α-1阶的加权分数傅里叶变换处理在本实施例中,是指对信号补偿处理后的信号进行α-1阶的WFRFT变换得到分数域信号。
提取计算单元12,用于提取所述分数信号获得单元11获取的多个时域信号分别对应的分数域信号的接收导频序列,并计算所述提取的接收导频序列与发送导频序列之间的均方误差。
提取计算单元12提取接收导频序列与发送端插入发送导频序列的过程相反,则提取计算单元12会在分数域信号的特定位置提取得到接收导频序列。而发送导频序列已经预置在本实施例的通信设备中的,当提取计算单元12提取了接收导频序列后,就可以直接根据提取的接收导频序列和预置的发送导频序列进行均方误差的计算。且提取计算单元12针对每一时间信号对应的分数域信号,都会计算得到一个对应的均方误差。
选择确定单元13,用于在上述提取计算单元12根据多个时域信号对应的分数域信号分别计算的均方误差中,选择最小均方误差所对应的分数域信号的第一调制阶数,及确定所述第一调制阶数下相应的信道补偿参数比如信道补偿矩阵等参数;阶数发送单元14,用于将所述选择确定单元13得到的第一调制阶数发送给所述发送端,以使得所述发送端根据所述第一调制阶数发送有用信号;
信道补偿单元15,用于利用所述选择确定单元13确定的信道补偿参数进行信道补偿。
可见,在本实施例的通信设备中,会基于发送导频序列与接收导频序列的最小均方误差,得到在信道补偿和信号调制过程中的所用的最优的参数,即调制阶数和信道补偿参数比如信道补偿矩阵,这样用一种优化的方法将带状均衡的信道补偿方法和部分FFT变换应用在通信系统中,提升了系统的性能。
参考图2所示,在一个具体的实施例中,通信设备除了可以包括如图1所示 的结构外,还可以包括前缀处理单元16,且其中的分数信号获得单元11具体可以通过部分快速傅里叶变换单元110、补偿单元111和分数域变换单元112来实现,且选择确定单元13可以通过选择单元130、分块数确定单元131和补偿矩阵计算单元132来实现,其中:
前缀处理单元16,用于在所述分数信号获得单元11得到分数域信号之前,分别将所述信号接收单元10接收的多个时域信号的前缀去掉,所述时域信号的前缀是所述发送端将原始时域信号中包括的一段信号,复制并放置到所述原始时域信号前的循环前缀。
部分快速傅里叶变换单元110,用于将所述信号接收单元10接收的时域信号,或前缀处理单元16得到去掉前缀的时域信号中长度为M的有用信号平均分成Q个分块信号;分别对各个分块信号补零,使得所述各个分块信号的长度为M;分别对补零后的各个分块信号进行傅里叶变换得到各分块的频域信号,所述Q大于或等于2;
补偿单元111,用于分别使用不同的信道补偿矩阵对所述频域变换单元110得到的各分块的频域信号进行信道补偿,将进行所述补偿后的各分块的频域信号叠加得到补偿后的频域信号;
分数域变换单元112,用于对所述补偿单元111补偿后的频域信号进行α-1阶的加权分数傅里叶变换得到分数域信号。
选择单元130,用于在所述提取计算单元12根据多个时域信号对应的分数域信号分别计算的均方误差中,,选择最小均方误差所对应的分数域信号的第一调制阶数。
分块数确定单元131,用于确定在得到所述第一调制阶数对应的分数域信号的过程中,由上述分数信号获得单元11中包括的频域变换单元110进行部分快速傅里叶变换处理时所用的分块数Q。
补偿矩阵计算单元132,用于计算上述分数信号获得单元11中包括的信道补偿单元111进行信道补偿时,各分块的频域信号对应的信道补偿矩阵为:
Figure PCTCN2015073627-appb-000011
其中,zk=[I](k-P)|M:(k+P)|M,:,k=1,2,...,M,用于表示M×M的单位矩阵 I的第(k-P)|M行到(k+P)|M的所有元素组成的矩阵;
Figure PCTCN2015073627-appb-000012
所述I2P+1为(2P+1)*(2P+1)的单位矩阵;hk是是
Figure PCTCN2015073627-appb-000013
的第k列元素,k=1,2,……,M;N0为噪声功率;
Figure PCTCN2015073627-appb-000014
其中,
Figure PCTCN2015073627-appb-000015
Hq是第q个分块的频域信道矩阵;上述(.)H表示矩阵或者向量的共轭转置。
这样,在本实施例中,当信号接收单元10接收到时域信号后,可以先由前缀处理单元16将时域信号的前缀去掉;然后由分数信号获取单元11中包括的三个单元实现了将去掉前缀的时域信号转换为分数域信号;然后提取计算单元12会提取分数信号获得单元11中的分数域变换单元112得到的分数域信号的接收导频序列,并进行相应地计算;然后再由选择确定单元13中的三个单元来得到优化的参数,即第一调制阶数、分块数和信道补偿矩阵;最后由阶数发送单元14将选择确定单元13中选择单元130选择的第一调制阶数发送给发送端,分块数确定单元131将确定的分块数传送给频域变换单元110进行频域变换,补偿矩阵计算单元132将计算的信道补偿矩阵传送给信道补偿单元15进行信道补偿。
本发明设备实施例二
提供一种通信设备,该通信设备是双选信号的补偿装置,结构示意图如图3所示,包括:分别连接到总线上的存储器20、处理器21和发射机22和接收机23,其中:
存储器20可以储存处理器21处理数据的必要文件等信息,发射机22和接收机23是通信设备与其它设备通信的端口。
本实施例中,接收机23,用于接收发送端传输的多个时域信号,其中,所述多个时域信号是所述发送端基于多个不同的调制阶数α,分别对多个待发送 信号进行加权分数傅里叶变换得到的,所述多个待发送信号是添加了发送导频序列的多个有用信号。具体地,发送端会在多个有用信号的特定位置分别插入预置的发送导频序列,然后对插入发送导频序列后的待发送信号进行调制发送。这里在多个有用信号中可以插入不同的发送导频序列,为了计算方便,在实际应用过程中,在多个有用信号中可以插入相同的发送导频序列。
处理器21,用于对所述多个时域信号中每一时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到对应的分数域信号;提取所述多个时域信号分别对应的分数域信号的接收导频序列,并计算所述提取的接收导频序列与发送导频序列之间的均方误差;在所述处理器21根据多个时域信号对应的分数域信号分别计算的均方误差中,选择最小均方误差所对应的分数域信号的第一调制阶数,及确定所述第一调制阶数下相应的信道补偿参数比如信道补偿矩阵等参数;将所述第一调制阶数发送给所述发送端,以使得所述发送端根据所述第一调制阶数传输有用信号;且利用所述确定的信道补偿参数进行信道补偿。这样通信设备可以得到在信道补偿和信号调制过程中的所用的最优的参数,即调制阶数和信道补偿参数比如信道补偿矩阵,用一种优化的方法将带状均衡的信道补偿方法和部分FFT变换应用在通信系统中,提升了系统的性能。
其中,处理器21对时域信号进行部分FFT变换后可以得到频域信号;而信道补偿处理是按照带状MMSE均衡方法对频域信号进行处理,具体是用信道补偿矩阵与频域信号相乘;α-1阶的加权分数傅里叶变换处理在本实施例中,是指对信号补偿处理后的信号进行α-1阶的WFRFT变换得到分数域信号。
处理器21在提取接收导频序列与发送端插入发送导频序列的过程相反,具体地,处理器21会在分数域信号的特定位置提取得到接收导频序列。而发送导频序列已经预置在本实施例的通信设备中的,当提取了接收导频序列后,就可以直接根据提取的接收导频序列和预置的发送导频序列进行均方误差的计算。
在一个具体的实施例中,处理器21,还用于在接收机接收到多个时域信号后,可以先分别将所述多个时域信号的前缀去掉,所述时域信号的前缀是所述发送端将原始时域信号中包括的一段信号,复制并放置到所述原始时域信号前的循环前缀;然后处理器21会对去掉前缀后的时域信号进行一系列处理后得到 频域信号,具体地:
处理器21,具体用于将接收的时域信号,或去掉前缀后的时域信号中长度为M的有用信号平均分成Q个分块信号;分别对各个分块信号补零,使得所述各个分块信号的长度为M;分别对补零后的各个分块信号进行傅里叶变换得到各分块的频域信号,所述Q大于或等于2;分别使用不同的信道补偿矩阵对所述各分块的频域信号进行信道补偿,将进行所述补偿后的各分块的频域信号叠加得到补偿后的频域信号;对所述补偿后的频域信号进行α-1阶的加权分数傅里叶变换得到分数域信号。
然后处理器21在提取了分数域信号的接收导频序列,并进行相应地计算后,在确定出优化的参数,主要是在所述处理器21根据多个时域信号对应的分数域信号分别计算的均方误差中,,选择最小均方误差所对应的分数域信号的第一调制阶数;确定在得到所述第一调制阶数对应的分数域信号的过程中,进行部分快速傅里叶变换处理时所用的分块数Q;并计算各分块的频域信号对应的信道补偿矩阵为:
Figure PCTCN2015073627-appb-000016
其中,zk=[I](k-P)|M:(k+P)|M,:,k=1,2,...,M,用于表示M×M的单位矩阵I的第(k-P)|M行到(k+P)|M的所有元素组成的矩阵;
Figure PCTCN2015073627-appb-000017
所述I2P+1为(2P+1)*(2P+1)的单位矩阵;hk是是
Figure PCTCN2015073627-appb-000018
的第k列元素,k=1,2,……,M;N0为噪声功率;
Figure PCTCN2015073627-appb-000019
其中,
Figure PCTCN2015073627-appb-000020
Hq是第q个分块的频域信道矩阵;上述(.)H表示矩阵或者向量的共轭转置。
本发明设备实施例三
提供一种通信设备,该通信设备是双选信号的补偿装置,结构示意图如图4所示,包括:
时域信号获取单元30,用于基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换处理得到的多个时域信号;所述多个待发送信号是是添加了发送导频序列的多个有用信号。该时域信号获取单元30具体用于基于多个不同的调制阶数α,对多个待发送的分数域信号进行-α阶的加权分数傅里叶变换得到多个时域信号。这里在多个有用信号中可以插入不同的发送导频序列,为了计算方便,在实际应用过程中,在多个有用信号中可以插入相同的发送导频序列。
发送单元31,用于传输所述时域信号获取单元30获取的多个时域信号给接收端,以使得所述接收端根据所述多个时域信号选择所述多个调制阶数α中的第一调制阶数。
在具体的实施例中,为了防止信号干扰,该发送单元31可以通过前缀添加单元和信号发送单元来实现,具体地,前缀添加单元,用于在所述时域信号中添加前缀,所述前缀是指将所述时域信号中包括的一段信号,复制并放置到所述时域信号前的循环前缀;信号发送单元,用于传输所述前缀添加单元添加前缀后的时域信号给接收端。
传输单元32,用于接收所述接收端根据所述发送单元31发送的多个时域信号返回的所述第一调制阶数,根据所述第一调制阶数传输有用信号,这样接收端可以按照上述设备实施例一中得到优化的第一调制阶数反馈给本实施例中的通信设备,提升了传输单元32在传输有用信号时的性能。
本发明设备实施例四
提供一种通信设备,该通信设备是双选信号的补偿装置,结构示意图与上述如图3类似,包括:分别连接到总线上的存储器、处理器和发射机和接收机,其中:
存储器可以储存处理器处理数据的必要文件等信息,发射机和接收机是通信设备与其它设备通信的端口。
本实施例中的处理器,用于基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换处理得到的多个时域信号;所述多个待发送信号是是添加了发送导频序列的多个有用信号;并控制发射机传输所述多个时域信号给接收端,以使得所述接收端根据所述多个时域信号选择所述多个调制阶 数α中的第一调制阶数;当接收机接收到所述接收端根据所述多个时域信号返回的所述第一调制阶数,并根据所述第一调制阶数传输有用信号,这样接收端可以按照上述设备实施例一中得到优化的第一调制阶数反馈给本实施例中的通信设备,提升了在传输信号时的性能。
其中,处理器在得到多个时域信号时,具体用于基于多个不同的调制阶数α,对多个待发送的分数域信号进行-α阶的加权分数傅里叶变换得到多个时域信号。且为了防止信号干扰,处理器还可以在得到多个时域信号后,对多个时域信号先进行预处理,具体地,在所述时域信号中添加前缀,所述前缀是指将所述时域信号中包括的一段信号,复制并放置到所述时域信号前的循环前缀;然后传输所述添加前缀后的时域信号给接收端。
本发明实施例还提供一种双选信道的补偿系统,包括第一通信设备和第二通信设备,其中:
所述第一通信设备的结构如上述设备实施例一或二中所述的通信设备的结构,所述第二通信设备的结构如上述设备实施例三或四中所述的通信设备的结构,在此不进行赘述。
本发明实施例还提供一种双选信道的补偿方法,主要应用于混合载波系统、OFDM系统或是单载波系统等系统中,采用双选信道进行通信时,对双选信道的补偿,本实施例主要是由通信接收端即上述设备实施例一或二中的通信设备所执行的方法,流程图如图5所示,包括:
步骤101,接收端接收发送端传输的多个时域信号,多个时域信号是发送端基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换得到的,多个待发送信号是添加了发送导频序列的多个有用信号。
可以理解,发送端在双选信道中传输信号时,会在多个有用信号的特定位置分别插入预置的发送导频序列,然后对插入发送导频序列后得到的待发送信号进行调制发送。这里在多个有用信号中可以插入不同的发送导频序列,为了计算方便,在实际应用过程中,在多个有用信号中可以插入相同的发送导频序列。具体地,本实施例中,发送端会通过加权分数傅里叶变换(Weighted-type fractional Fourier transform,WFRFT)对待发送信号进行调制处理,假设待发送信号为α阶的分数域信号,经过-α阶的WFRFT变换后得到时域信号。
步骤102,对上述步骤101中接收的时域信号中的每一时域信号,接收端依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到对应的分数域信号。
其中,这里对时域信号进行部分FFT变换后可以得到频域信号;而信道补偿处理是按照带状MMSE均衡方法对频域信号进行处理,具体是用信道补偿矩阵与频域信号相乘;α-1阶的加权分数傅里叶变换处理在本实施例中,是指对信号补偿处理后的信号进行α-1阶的WFRFT变换得到分数域信号。
且需要说明的是,在一个具体实施例中,接收端在接收到多个时域信号后,需要先对多个时域信号进行至少一次预处理,预处理的具有处理方法是由发送端在发送时域信号之前的预处理来决定,比如预处理是在原始时域信号中加前缀,则接收端需要将接收的时域信号的前缀去掉的处理等。其中,时域信号的前缀可以是发送端将原始时域信号中包括的一段信号L,复制并放置到该原始时域信号前的循环前缀。
步骤103,接收端提取多个时域信号分别对应的分数域信号的接收导频序列,并计算所述提取的接收导频序列与发送导频序列之间的均方误差。具体地,接收端提取接收导频序列与发送端插入发送导频序列的过程相反,接收端会在分数域信号的特定位置提取得到接收导频序列。而发送导频序列已经预置在接收端,当提取了接收导频序列后,就可以直接根据提取的接收导频序列和预置的发送导频序列进行均方误差的计算。
步骤104,在接收端根据多个时域信号对应的分数域信号分别计算的均方误差中,选择最小均方误差所对应的分数域信号的第一调制阶数,及确定第一调制阶数下相应的信道补偿参数。
可以理解,在本实施例中,为了确定较优的调制阶数和信道补偿参数,发送端在发送信号时,会基于多个不同的调制阶数α,对多个待发送信号进行调制处理即加权分数傅里叶变换,然后再分别通过双选信道进行传输,然后由接收端通过信道估计的方法选取较优的调制阶数和信道补偿参数。
步骤105,接收端将第一调制阶数发送给发送端,以使得发送端根据第一调制阶数发送信号;且接收端利用上述步骤104中确定的信道补偿参数进行信道补偿。
当接收端针对多个时域信号分别执行上述步骤102和103后,会得到多个均方误差;然后接收端会选择最小均方误差,并将计算该最小均方误差所使用的接收导频序列所对应的分数域信号的第一调制阶数作为最优的调制阶数,反馈给发送端;且由于不同调制阶数会对应的信号补偿参数不同,接收端会根据选择的第一调制阶数得到相应的信道补偿参数,比如信号补偿矩阵等参数,并在以后的信道补偿过程中使用该信道补偿参数。
可见,在本实施例中,接收端会基于发送导频序列与接收导频序列的最小均方误差,得到在信道补偿和信号调制过程中的所用的最优的参数,即调制阶数和信道补偿参数比如信道补偿矩阵等,这样本发明实施例用一种优化的方法将带状均衡的信道补偿方法和部分FFT变换应用在通信系统中,提升了系统的性能。
参考图6所示,在一个具体的实施例中,为了降低接收端接收的信号中有用信号上受到的干扰,更利于提供系统性能,接收端在执行上述的步骤102时,具体可以包括如下步骤来实现:
A:在进行频域变换处理时,可以先将步骤101中接收的时域信号,或经过至少一次处理后比如去掉前缀后的时域信号中长度为M的有用信号平均分成Q个分块信号,其中,Q大于或等于2;
然后分别对各个分块信号补零,使得各个分块信号的长度为M;
分别对补零后的各个分块信号进行傅里叶变换得到各分块的频域信号,这样在对每一个分块信号进行傅里叶变换后,有用信号的干扰,会部分分配给其它无用信号比如补零部分。
B:在信道补偿处理时,分别使用不同的信道补偿矩阵对各分块的频域信号进行信道补偿,将进行补偿后的各分块的频域信号叠加得到补偿后的频域信号。
C:在进行α-1阶的加权分数傅里叶变换处理时,主要是对补偿后的频域信号进行α-1阶的加权分数傅里叶变换得到分数域信号。
在本实施例的情况下,接收端在执行上述步骤104中确定的信道补偿参数可以包括各分块的频域信号对应的信道补偿矩阵,具体地,接收端可以先确定在进行部分FFT变换时所用的分块数Q时,直接确定在得到上述第一调制阶数 对应的分数域信号时,进行频域变换处理时所用的分块数Q。
其中,在本实施例中,在针对接收端接收的多个时域信号(发送端基于不同调制阶数α,对多个待发送信号进行调制处理后发送的)进行频域变换处理时,可以采用不同的分块数Q,即基于不同调制阶数α得到的时域信号对应不同的分块数Q,且调制阶数α与分块数Q之间的对应关系可以是预置在接收端的,则只要接收端知道了调制阶数,则能确定对应的分数块。
接收端在确定各分块的频域信号对应的信道补偿矩阵时,直接计算各分块的频域信号对应的信道补偿矩阵为:
Figure PCTCN2015073627-appb-000021
其中,zk=[I](k-P)|M:(k+P)|M,:,k=1,2,...,M,用于表示M×M的单位矩阵I的第(k-P)|M行到(k+P)|M的所有元素组成的矩阵;
Figure PCTCN2015073627-appb-000022
所述I2P+1为(2P+1)*(2P+1)的单位矩阵;hk是是
Figure PCTCN2015073627-appb-000023
的第k列元素,k=1,2,……,M;N0为噪声功率;
Figure PCTCN2015073627-appb-000024
其中,
Figure PCTCN2015073627-appb-000025
Hq是第q个分块的频域信道矩阵;上述(.)H表示矩阵或者向量的共轭转置。
本发明实施例提供一种双选信道的补偿方法,主要应用于混合载波系统中,采用双选信道进行通信时,对双选信道的补偿,本实施例主要是由通信发送端即上述设备实施例三或四中的通信设备所执行的方法,流程图如图7所示,包括:
步骤201,发送端基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换处理得到的多个时域信号,这里多个待发送信号是添加了发送导频序列的多个有用信号。
具体地,发送端可以基于多个不同的调制阶数α,对多个待发送的分数域信号进行-α阶的加权分数傅里叶变换得到多个时域信号。
步骤202,发送端传输多个时域信号给接收端,以使得接收端根据多个时域信号选择多个调制阶数α中的第一调制阶数,具体地,接收端可以按照上述实施例中步骤101到105中的方法得到第一调制阶数,并返回给发送端,在此不进行赘述。
其中,在一个具体的实施例中,发送端在传输时域信号时,为了抑制符号间的干扰,发送端可以先在时域信号中添加前缀,该前缀是指将时域信号中包括的一段信号,复制并放置到时域信号前的循环前缀;然后传输添加前缀后的时域信号。
步骤203,当发送端接收到接收端返回的第一调制阶数,该第一调制阶数就是接收端确定的最佳的调制阶数,则在之后的有用信号传输中,发送端会根据该第一调制阶数传输有用信号。
以下以一个具体的实施例来说明本发明实施例的信道补偿方法,在本实施例中发送端和接收端的结构示意图如图8所示,包括:
一、在接收端包括WFRFT模块和并/串转换模块。
(a)接收端的WFRFT模块基于多个而不同的调制阶数α,分别对长度为M的多个待发送信号,比如二进制相移键控(Binary Phase Shift Keying,BSPK)信号或正交相移键控(Quadrature Phase Shift Keying,QPSK)信号进行-α阶的WFRFT变换得到多个时域信号。其中,多个待发送信号是添加了发送导频序列的有用信号,假设待发送信号是在α阶的分数域信号X=(x1,x2,...,xM)T,经过-α阶的WFRFT变换后,得到时域信号D=(d1,d2,...,dM)T,具体可以表示为:
D=WX   (1)
本实施例中,接收端对多个待发送信号进行WFRFT变换后,可以得到多个时域信号,即D1=W-α1X1,D2=W-α2X2,D3=W-α3X3……。
在具体的应用实施例中,WFRFT模块可以采用离散四项加权分数傅里叶变换,具体地:
对于长度为M的离散信号序列X,X的α阶离散四项加权分数傅里叶变换是为Fs α[X]=WαX,其中
Figure PCTCN2015073627-appb-000026
示四项加权分数傅里叶变换,Wα是加权矩阵,在不会引起歧义的情况下,在本发明实施例中,把Wα简记为W。则W=A0(α)I+A1(α)F+A2(α)ΓI+A3(α)ΓF,这里A0(α)~A3(α)是加权系数定义如下:
Figure PCTCN2015073627-appb-000027
I是M×M单位矩阵,F是M×M离散傅里叶变换矩阵,exp(.)表示e指数算子。Γ是置换矩阵,它每一行每一列只有一个元素非零,F和Γ具体可以表如下:
Figure PCTCN2015073627-appb-000028
其中
Figure PCTCN2015073627-appb-000029
另外加权分数傅里叶逆变换可以表示为Fs [X]=WX,其中W表示Wα的逆矩阵,同样在不会引起歧义的情况下,在本发明实施例中,把W简记为W-1,可以证明W是一个酉矩阵,则根据酉矩阵的性质,W-1=WH。并且可以证明矩阵Wα满足变换阶数的可加性,即Wα+β=WαWβ。需要指出的是,本发明提及的混合载波系统是通过WFRFT变换实现的。
(b)对于每个时域信号,并/串转换模块都进行并/串转换后,为了抑制符号间的干扰,在并/串转换后的时域信号中添加长度为Lcp的循环前缀,并且可以设置循环前缀的持续时间大于最大信道延迟扩展;然后将添加前缀后的时域 信号在双选信道中传输。
这里在双选信道下,由于多径效应,每一传播路径上的信号都会有延迟,可以称为信道延迟,这些传播路径中延迟时间最大的即为最大信道延迟扩展。且参考图9所示,并/串转换模块在添加循环前缀时,会将长度为M的信号D中包括的一段信号,即最后一段长度为Lcp个信号采样点的信号,复制并放置到该信号D的前面作为循环前缀。假设时域信号的采样间隔是Tc,则循环前缀的持续时间Tcp=LcpTc
二、在接收端包括串/并转换模块、部分FFT模块、信道补偿模块、WFRFT模块、参数优化控制模块、信道估计模块和导频提取模块。
(a)接收端在接收到时域信号后,接收端的串/并转换模块先将发送端添加的前缀去掉,这时时域信号可以表示为:
R=HtD+n   (2)
其中,R=(r1,r2,...,rM)T;Ht是时变信道的时域矩阵形式,假设Ht是M×M的循环卷积矩阵;[Ht]k,(k-l)|M+1=hk,l,k=1,2,...,M,l=1,2,...,L,这里(k-l)|M表示k-l对M取模的结果,hk.l表示时域脉冲响应;
n是高斯白噪声,由于在双选信道在传输信号时会有噪声的干扰,这里在接收端默认处理的信号都是加了噪声后的信号。
(b)部分FFT模块先将经过串/并转换模块处理后的时域信号R=(r1,r2,...,rM)T,平均分成互不相交的Q个分块信号,然后对每个分块信号进行补零,使得每个分块信号的长度为M,其中第q,(q=1,2,...,Q)个分块信号可以表示为:
Rq=[01×[(q-1)U],(R(1+(q-1)U:qU))T,01×(M-qU)]T,q=1,2,...Q.   (3)
其中,R(1+(q-1)U:qU)表示取时域信号的列向量R的第1+(q-1)U到qU的元素组成列向量,这里U=M/Q,且需要说明的是,Rq是长度为M的列向量信号。
然后部分FFT模块在对各个分块信号进行傅里叶变换得到各个分块的频域信号,则得到的第q个分块的频域信号可以表示为:
Yq=FRq,q=1,2,...Q   (1)
这里Yq是长度为M的列向量,F仍是上文提及的M×M的傅里叶变换矩阵。
(c)信道补偿模块会利用带状均衡MMSE方法,分别用不同的信道补偿矩阵对经过部分FFT模块的处理得到的各个分块的频域信号进行信道补偿处理。
这里假设对第q个分块的频域信号的信道补偿矩阵是Gq,这里Gq是M×M的矩阵,一个分块的频域信号经过信道补偿后可以表示为:
Figure PCTCN2015073627-appb-000030
然后将补偿后的各个分块的频域信号进行叠加得到补偿后的频域信号
Figure PCTCN2015073627-appb-000031
Figure PCTCN2015073627-appb-000032
(d)WFRFT模块将经过补偿后的频域信号
Figure PCTCN2015073627-appb-000033
进行α-1阶的加权分数傅里叶变换得到原始α阶的分数域信号,具体可以表示为:
Figure PCTCN2015073627-appb-000034
以下说明的是信道补偿模块在进行信道补偿时所用到的信道补偿矩阵的表达式:
首先上述公式(3)可以表示成下列矩阵的形式:
Rq=iqR,q=1,2,...,Q   (8)
这里iq=diag([01×[(q-1)M/Q],11×(M/Q),01×(M-qM/Q)]),iq表示M×M的对角矩阵,令S=W-α+1D,由于W=F-1W-α+1,则上述公式(4)可以表示成如下的形式:
Yq=FiqR
=FiqHtWD+Fn
=HqS+Fn,q=1,2,...,Q   (9)
其中,Hq=FiqHtFH表示第q个分块的频域信道矩阵,令zk=[I](k-P)|M:(k+P)|M,:,k=1,2,...,M表示M×M的单位矩阵I的第(k-P)|M行到(k+P)|M的所有元素组成的矩阵。P是常数,一般取值为P<<M,P选择和多普勒大小有关,本发明实施例中,令
Figure PCTCN2015073627-appb-000035
fd是最大多普勒频移,例如,对于M=64,[I]62:2,:表示依次提取矩阵I的第62、63、64、1、2行元素合并组成矩阵。
令Yq,k=zkYq
Figure PCTCN2015073627-appb-000036
为了进一步简化计算,假设下式成立,
Figure PCTCN2015073627-appb-000037
则利用最小均方误差准则,则第q个分块的频域信号的信道补偿矩阵可以表示为:
Figure PCTCN2015073627-appb-000038
这里I2P+1表示(2P+1)×(2P+1)的单位矩阵,hk
Figure PCTCN2015073627-appb-000039
的第k列元素,N0是噪声功率,假设噪声功率是可以估计的,Gq,k表示M×1的列向量,
Figure PCTCN2015073627-appb-000040
Figure PCTCN2015073627-appb-000041
表示
Figure PCTCN2015073627-appb-000042
的第k个元素。
这样公式(5)就可以表示为:
Figure PCTCN2015073627-appb-000043
结合上述公式(5)和(12),则各分块的频域信号对应的信道补偿矩阵可以表示为:
Figure PCTCN2015073627-appb-000044
(e)导频提取模块提取WFRFT模块得到的分数域信号中的接收导频序列并传输给参数优化控制模块。
与导频提取模块连接的信道估计模块是为了估计出信道的信息,包括多普勒、信道增益和多径延迟等参数,这些参数在参数优化控制模块选择优化的调制阶数和信道补偿参数时会用到。
(f)针对接收端接收的多个时域信号(发送端基于不同调制阶数对原始信号进行处理后得到的),分别经过上述的串/并转换模块、部分FFT模块、信道补偿模块、WFRFT模块和导频提取模块后,分别得到一个接收导频序列Z。
参数优化控制模块会将根据如下优化方法确定其中一个接收导频序列对应的第一调制阶数和分块数Q,然后根据上述公式(13)得到各个分块的频域信号的信道补偿矩阵。
Figure PCTCN2015073627-appb-000045
其中,
Figure PCTCN2015073627-appb-000046
表示使得接收导频序列与发送导频序列的均方误差最小的调制阶数和分数块的值,Z()表示取导频序列。
然后,参数优化控制模块会将得到的第一调制阶数反馈给发送端和接收端的WFRFT模块,使得发送端和接收端WFRFT模块在以后对信号进行处理时,按照该第一调制阶数进行加权分数傅里叶变换;并将得到的分数块Q传送给接收端的部分FFT模块,使得部分FFT在以后的频域变换处理过程中使用该分数块Q进行分块;将计算得到的信道补偿矩阵传送给接收端的信道补偿模 块,使得该信道补偿模块在以后的信道补偿过程中按照该计算的信道补偿矩阵进行处理。
上述各个实施例中公式的符号说明如下:(.)T表示矩阵或者向量的转置,(.)H表示矩阵或者向量的共轭转置,符号a|b表示数值a对数值b取模,Wαα阶的加权矩阵,
Figure PCTCN2015073627-appb-000047
表示矩阵的第m行、第n列的元素,[.]m:n,:表示提取矩阵从m行到n行的所有元素组成的矩阵,01×N表示1×N的全零向量,11×N表示1×N的全1向量,diag(B)表示向量B组成的对角矩阵,
Figure PCTCN2015073627-appb-000048
表示数值的上界。
在实际应用实施例中,假设信号长度M=256,带宽B=12kHz,中心频率fc=30kHz,归一化的最大多普勒fdT是0.32,其中fd是最大多普勒频移,T是采样间隔。采用12径的广义非平稳散射模型模拟双选信道,信道延迟扩展是0.9ms,P=3,分块数Q=2。则在按照上述方法进行信道补偿后,最后得到信号误码率(BER)与信噪比(SNR)之间的对应关系如图10所示。
从图10中可以看出,相比较于将本是发明实施例的方法应用于OFDM系统中,如果将本发明实施例的方法应用于混合载波系统(假设得到的最佳调制阶数为0.5)中,可以显著地降低误码率,提高了通信质量。另外相比较于将本是发明实施例的方法应用于传统的单载波系统中,如果将本发明实施例的方法应用于混合载波系统中,可以在信噪比大于20dB时,能够显著降低误码率。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM)、随机存取存储器(RAM)、磁盘或光盘等。
以上对本发明实施例所提供的双选信道的补偿方法、系统及相关装置进行 了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (15)

  1. 一种通信设备,其特征在于,包括:
    信号接收单元,用于接收发送端传输的多个时域信号,所述多个时域信号是所述发送端基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换得到的,所述多个待发送信号是添加了发送导频序列的多个有用信号;
    分数信号获得单元,用于对所述信号接收单元接收的所述多个时域信号中的每一时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到对应的分数域信号;
    提取计算单元,用于提取所述分数信号获得单元获取的所述多个时域信号分别对应的分数域信号的接收导频序列,并计算所述提取的接收导频序列与发送导频序列之间的均方误差;
    选择确定单元,用于在所述提取计算单元根据多个时域信号对应的分数域信号分别计算的均方误差中,选择最小均方误差所对应的分数域信号的第一调制阶数,及确定所述第一调制阶数下相应的信道补偿参数;
    阶数发送单元,用于将所述选择确定单元得到的第一调制阶数发送给所述发送端,以使得所述发送端根据所述第一调制阶数传输有用信号;
    信道补偿单元,用于利用所述选择确定单元确定的信道补偿参数进行信道补偿。
  2. 如权利要求1所述的通信设备,其特征在于,还包括:
    前缀处理单元,用于在所述分数信号获得单元得到分数域信号之前,分别将所述信号接收单元接收的多个时域信号的前缀去掉,所述时域信号的前缀是所述发送端将原始时域信号中包括的一段信号,复制并放置到所述原始时域信号前的循环前缀;
    则所述分数信号获得单元,具体用于对所述前缀处理单元得到的去掉前缀的多个时域信号中的每一去掉前缀的时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到对应的分数域信号。
  3. 如权利要求1或2所述的通信设备,其特征在于,所述分数信号获得单 元,具体包括:
    部分快速傅里叶变换单元,用于将所述信号接收单元接收的时域信号,或所述前缀处理单元得到的去掉前缀的时域信号中长度为M的有用信号平均分成Q个分块信号;分别对各个分块信号补零,使得所述各个分块信号的长度为M;分别对补零后的各个分块信号进行傅里叶变换得到各分块的频域信号,所述Q大于或等于2;
    补偿单元,用于分别使用不同的信道补偿矩阵对所述频域变换单元得到的各分块的频域信号进行信道补偿,将进行所述补偿后的各分块的频域信号叠加得到补偿后的频域信号;
    分数域变换单元,用于对所述补偿单元补偿后的频域信号进行α-1阶的加权分数傅里叶变换得到分数域信号。
  4. 如权利要求3所述的通信设备,其特征在于,所述信道补偿参数包括各分块的频域信号对应的信道补偿矩阵,则所述选择确定单元,具体包括:
    选择单元,用于在所述提取计算单元根据多个时域信号对应的分数域信号分别计算的均方误差中,,选择最小均方误差所对应的分数域信号的第一调制阶数;
    分块数确定单元,用于确定在得到所述第一调制阶数对应的分数域信号时,进行部分快速傅里叶变换处理时所用的分块数Q;
    补偿矩阵计算单元,用于计算所述各分块的频域信号对应的信道补偿矩阵为:
    Figure PCTCN2015073627-appb-100001
    其中,zk=[I](k-P)|M:(k+P)|M,:,k=1,2,...,M,用于表示M×M的单位矩阵I的第(k-P)|M行到(k+P)|M的所有元素组成的矩阵;
    Figure PCTCN2015073627-appb-100002
    所述I2P+1为(2P+1)*(2P+1)的单位矩阵;hk是是
    Figure PCTCN2015073627-appb-100003
    的第k列元素,k=1,2,……,M;N0为噪声功率;
    Figure PCTCN2015073627-appb-100004
    其中,
    Figure PCTCN2015073627-appb-100005
    Hq是第q个分块的频域信道矩 阵;上述(.)H表示矩阵或者向量的共轭转置。
  5. 一种通信设备,其特征在于,包括:
    时域信号获取单元,用于基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换处理得到的多个时域信号;所述多个待发送信号是添加了发送导频序列的多个有用信号;
    发送单元,用于传输所述多个时域信号给接收端,以使得所述接收端根据所述多个时域信号选择所述多个调制阶数α中的第一调制阶数;
    传输单元,用于接收所述接收端返回的所述第一调制阶数,根据所述第一调制阶数传输有用信号。
  6. 如权利要求5所述的通信设备,其特征在于,所述时域信号获取单元具体用于基于多个不同的调制阶数α,对多个分数域信号进行-α阶的加权分数傅里叶变换得到多个时域信号。
  7. 如权利要求5或6所述的通信设备,其特征在于,所述发送单元,具体包括:
    前缀添加单元,用于在所述时域信号中添加前缀,所述前缀是指将所述时域信号中包括的一段信号,复制并放置到所述时域信号前的循环前缀;
    信号发送单元,用于传输所述前缀添加单元添加前缀后的时域信号给接收端。
  8. 一种双选信道的补偿系统,其特征在于,包括第一通信设备和第二通信设备,其中:
    所述第一通信设备是如权利要求1至4任一项所述的通信设备,所述第二通信设备是如权利要求5至7任一项所述的通信设备。
  9. 一种双选信道的补偿方法,其特征在于,包括:
    接收发送端传输的多个时域信号,所述多个时域信号是所述发送端基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换得到的,所述多个待发送信号是添加了发送导频序列的多个有用信号;
    对所述多个时域信号中的每一时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到对应的分数域信 号;
    提取所述多个时域信号分别对应的分数域信号的接收导频序列,并计算所述提取的接收导频序列与发送导频序列之间的均方误差;
    在根据所述多个时域信号对应的分数域信号分别计算的均方误差中,,选择最小均方误差所对应的分数域信号的第一调制阶数,及确定所述第一调制阶数下相应的信道补偿参数;
    将所述第一调制阶数发送给所述发送端,以使得所述发送端根据所述第一调制阶数发送有用信号;利用所述确定的信道补偿参数进行信道补偿。
  10. 如权利要求9所述的方法,其特征在于,所述接收发送端传输的时域信号之后,还包括:
    将所述时域信号的前缀去掉,所述时域信号的前缀是所述发送端将原始时域信号中包括的一段信号,复制并放置到所述原始时域信号前的循环前缀;
    则对去掉前缀的多个时域信号中的每一去掉前缀的时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到对应的分数域信号。
  11. 如权利要求9或10所述的方法,其特征在于,所述对所述时域信号或去掉前缀的时域信号,依次进行部分快速傅里叶变换处理,信道补偿处理,及α-1阶的加权分数傅里叶变换处理得到分数域信号,具体包括:
    将所述时域信号或去掉前缀的时域信号中长度为M的有用信号平均分成Q个分块信号;分别对各个分块信号补零,使得所述各个分块信号的长度为M;分别对补零后的各个分块信号进行傅里叶变换得到各分块的频域信号,所述Q大于或等于2;
    分别使用不同的信道补偿矩阵对所述各分块的频域信号进行信道补偿,将进行所述补偿后的各分块的频域信号叠加得到补偿后的频域信号;
    对所述补偿后的频域信号进行α-1阶的加权分数傅里叶变换得到分数域信号。
  12. 如权利要求11所述的方法,其特征在于,所述信道补偿参数包括各分块的频域信号对应的信道补偿矩阵,则所述确定所述第一调制阶数下相应的信道补偿参数,具体包括:
    确定在得到所述第一调制阶数对应的分数域信号时,进行部分快速傅里叶变换处理时所用的分块数Q;
    计算所述各分块的频域信号对应的信道补偿矩阵为:
    Figure PCTCN2015073627-appb-100006
    其中,zk=[I](k-P)|M:(k+P)|M,:,k=1,2,...,M,用于表示M×M的单位矩阵I的第(k-P)|M行到(k+P)|M的所有元素组成的矩阵;
    Figure PCTCN2015073627-appb-100007
    所述I2P+1为(2P+1)*(2P+1)的单位矩阵;hk是是
    Figure PCTCN2015073627-appb-100008
    的第k列元素,k=1,2,……,M;N0为噪声功率;
    Figure PCTCN2015073627-appb-100009
    其中,
    Figure PCTCN2015073627-appb-100010
    Hq是第q个分块的频域信道矩阵;上述(.)H表示矩阵或者向量的共轭转置。
  13. 一种双选信号的补偿方法,其特征在于,包括:
    基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换处理得到的多个时域信号;所述多个待发送信号是添加了发送导频序列的多个有用信号;
    传输所述多个时域信号给接收端,以使得所述接收端根据所述多个时域信号选择所述多个调制阶数α中的第一调制阶数;
    接收所述接收端返回的所述第一调制阶数,根据所述第一调制阶数传输有用信号。
  14. 如权利要求13所述的方法,其特征在于,所述基于多个不同的调制阶数α,分别对多个待发送信号进行加权分数傅里叶变换处理得到的多个时域信号,具体包括:
    基于多个不同的调制阶数α,对多个待发送的分数域信号进行-α阶的加权分数傅里叶变换得到多个时域信号。
  15. 如权利要求13或14所述的方法,其特征在于,所述传输所述多个时域信号给接收端,具体包括:
    在所述时域信号中添加前缀,所述前缀是指将所述时域信号中包括的一段信号,复制并放置到所述时域信号前的循环前缀;
    传输所述添加前缀后的时域信号给所述接收端。
PCT/CN2015/073627 2014-06-06 2015-03-04 一种双选信道的补偿方法、系统及相关装置 WO2015184875A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15802852.2A EP3154231B1 (en) 2014-06-06 2015-03-04 Doubly-selective channel compensation method, system and related device
US15/369,462 US10104666B2 (en) 2014-06-06 2016-12-05 Method and system for compensating for doubly selective channel and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410250710.XA CN105187339B (zh) 2014-06-06 2014-06-06 一种双选信道的补偿方法、系统及相关装置
CN201410250710.X 2014-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/369,462 Continuation US10104666B2 (en) 2014-06-06 2016-12-05 Method and system for compensating for doubly selective channel and related apparatus

Publications (1)

Publication Number Publication Date
WO2015184875A1 true WO2015184875A1 (zh) 2015-12-10

Family

ID=54766101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073627 WO2015184875A1 (zh) 2014-06-06 2015-03-04 一种双选信道的补偿方法、系统及相关装置

Country Status (4)

Country Link
US (1) US10104666B2 (zh)
EP (1) EP3154231B1 (zh)
CN (1) CN105187339B (zh)
WO (1) WO2015184875A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105871440A (zh) * 2016-06-15 2016-08-17 哈尔滨工业大学 混合载波多天线分量传输的信号接收方法
CN106559126A (zh) * 2015-09-29 2017-04-05 华为技术有限公司 信号发送方法、信号接收方法、发射端及接收端
CN113381834A (zh) * 2021-06-09 2021-09-10 哈尔滨工业大学 一种基于扩展加权分数傅里叶变换的定向调制方法及系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106534008B (zh) * 2016-11-25 2019-08-02 西安烽火电子科技有限责任公司 无线多径信道的功率补偿mmse均衡方法
CN106487731B (zh) * 2016-12-22 2022-11-04 桂林电子科技大学 一种基于小波变换的混合载波调制方法和系统
CN107026811B (zh) * 2017-05-08 2019-09-13 哈尔滨工业大学 基于最小均方误差均衡的混合载波阶数选择方法
CN109391292B (zh) * 2018-12-20 2021-07-16 哈尔滨工业大学 加权分数傅里叶变换域双时隙分集与复用的协同传输方法
CN110389325B (zh) * 2019-07-17 2022-11-04 中北大学 一种旋翼无人机的雷达微多普勒信号提取方法
WO2021080510A1 (en) 2019-10-22 2021-04-29 Nanyang Technological University Method of receiving a transmitted signal over a time-varying channel and receiver thereof
CN111245766B (zh) * 2020-01-19 2023-02-03 哈尔滨工业大学 基于频域双分量扩展加权傅里叶变换的计算分集方法
US10972316B1 (en) * 2020-02-06 2021-04-06 The Aerospace Corporation Channel estimation using a chirp signal and the Fractional Fourier Transform
CN111371531B (zh) * 2020-02-19 2022-09-30 哈尔滨工业大学 基于扩展加权分数傅里叶变换的时域能量交织传输方法
CN111711951B (zh) * 2020-06-15 2022-09-20 哈尔滨工业大学 一种加权分数傅里叶变换域多分量自干扰传输方法
CN113301565B (zh) * 2021-05-25 2023-04-25 哈尔滨工业大学 基于扩展加权分数傅里叶变换的波形多样化安全传输方法及系统
CN113328969B (zh) * 2021-06-04 2022-12-09 中国人民解放军空军工程大学 基于mp-wfrft和人工噪声的多波束定向调制方法及系统
CN113630151B (zh) * 2021-09-18 2022-07-19 哈尔滨工业大学 一种时频联合扩展传输方法
CN114157322B (zh) * 2021-11-16 2023-03-21 山东轻工职业学院 基于加权分数阶傅里叶变换的低截获信号产生方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036770A1 (en) * 2003-10-13 2005-04-21 Nokia Corporation Method for suppressing interference and arrangement for same, and radio communications receiver
CN1859346A (zh) * 2006-04-29 2006-11-08 北京理工大学 基于分数阶傅立叶变换的正交频分复用(ofdm)系统
CN103326976A (zh) * 2013-07-10 2013-09-25 哈尔滨工业大学 基于加权分数傅立叶变换的双弥散信道下的迭代频域最小均方误差均衡方法
CN103414678A (zh) * 2013-08-02 2013-11-27 浙江大学 基于Vector OFDM的双选择性信道的变换域均衡方法
CN103457901A (zh) * 2013-09-12 2013-12-18 哈尔滨工业大学 基于信道感知的混合载波信号传输方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955992A (en) * 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
US7430257B1 (en) * 1998-02-12 2008-09-30 Lot 41 Acquisition Foundation, Llc Multicarrier sub-layer for direct sequence channel and multiple-access coding
US20030219022A1 (en) * 2002-01-28 2003-11-27 Hughes Electronics Method and system for utilizing virtual private network (VPN) connections in a performance enhanced network
US20030191843A1 (en) * 2002-04-04 2003-10-09 Joel Balissat Secure network connection for devices on a private network
US20030193889A1 (en) * 2002-04-11 2003-10-16 Intel Corporation Wireless device and method for interference and channel adaptation in an OFDM communication system
US7548522B2 (en) * 2003-03-27 2009-06-16 Ktfreetel Co., Ltd. Orthogonal frequency division multiplexing wireless communication operable on frequency selective channel, and channel compensation method
US7599420B2 (en) * 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
US8046829B2 (en) * 2004-08-17 2011-10-25 Toshiba America Research, Inc. Method for dynamically and securely establishing a tunnel
US7554983B1 (en) * 2004-12-20 2009-06-30 Packeteer, Inc. Probing hosts against network application profiles to facilitate classification of network traffic
KR100953940B1 (ko) * 2005-06-27 2010-04-22 삼성전자주식회사 직교 주파수 분할 다중화 시스템에서 소프트 핸드오버 영역의 단말을 위한 하향링크 데이터 송수신 방법 및 장치
JP4958565B2 (ja) * 2006-01-06 2012-06-20 パナソニック株式会社 無線通信装置
FR2897734A1 (fr) * 2006-02-23 2007-08-24 France Telecom Procede d'emission avec allocation optimale de puissance emise pour emetteur multi porteuses
US7970899B2 (en) * 2006-03-03 2011-06-28 Barracuda Networks Inc Integrated data flow packet admission and traffic management apparatus
US20080107124A1 (en) * 2006-11-06 2008-05-08 Jordi Ros-Giralt System and method for supporting mobility and multipath packet delivery in ip communications and computer networks across nat and firewall boxes
KR101005233B1 (ko) * 2007-03-14 2010-12-31 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 다중 안테나 시스템에서 간섭 제거 장치 및 방법
KR20090004773A (ko) * 2007-07-06 2009-01-12 엘지전자 주식회사 디지털 방송 시스템 및 데이터 처리 방법
EP2394414B1 (en) * 2009-02-06 2018-10-17 XMedius Solutions Inc. Nat traversal using hole punching
JP5254180B2 (ja) * 2009-10-27 2013-08-07 シャープ株式会社 受信装置、受信方法、通信システムおよび通信方法
CN103733554A (zh) * 2011-08-15 2014-04-16 夏普株式会社 无线发送装置、无线接收装置、程序、集成电路以及无线通信系统
US8972543B1 (en) * 2012-04-11 2015-03-03 Spirent Communications, Inc. Managing clients utilizing reverse transactions
US20130343379A1 (en) * 2012-06-21 2013-12-26 Jonathan Stroud Ethernet-based internal device management
US10411843B2 (en) * 2012-06-25 2019-09-10 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
JPWO2014050449A1 (ja) * 2012-09-25 2016-08-22 シャープ株式会社 基地局および端末
US20150296417A1 (en) * 2012-11-01 2015-10-15 Sharp Kabushiki Kaisha Base station and terminal
US9231918B2 (en) * 2013-02-19 2016-01-05 Cisco Technology, Inc. Use of virtual network interfaces and a websocket based transport mechanism to realize secure node-to-site and site-to-site virtual private network solutions
US9350550B2 (en) * 2013-09-10 2016-05-24 M2M And Iot Technologies, Llc Power management and security for wireless modules in “machine-to-machine” communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036770A1 (en) * 2003-10-13 2005-04-21 Nokia Corporation Method for suppressing interference and arrangement for same, and radio communications receiver
CN1859346A (zh) * 2006-04-29 2006-11-08 北京理工大学 基于分数阶傅立叶变换的正交频分复用(ofdm)系统
CN103326976A (zh) * 2013-07-10 2013-09-25 哈尔滨工业大学 基于加权分数傅立叶变换的双弥散信道下的迭代频域最小均方误差均衡方法
CN103414678A (zh) * 2013-08-02 2013-11-27 浙江大学 基于Vector OFDM的双选择性信道的变换域均衡方法
CN103457901A (zh) * 2013-09-12 2013-12-18 哈尔滨工业大学 基于信道感知的混合载波信号传输方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559126A (zh) * 2015-09-29 2017-04-05 华为技术有限公司 信号发送方法、信号接收方法、发射端及接收端
CN105871440A (zh) * 2016-06-15 2016-08-17 哈尔滨工业大学 混合载波多天线分量传输的信号接收方法
CN113381834A (zh) * 2021-06-09 2021-09-10 哈尔滨工业大学 一种基于扩展加权分数傅里叶变换的定向调制方法及系统
CN113381834B (zh) * 2021-06-09 2022-08-05 哈尔滨工业大学 一种基于扩展加权分数傅里叶变换的定向调制方法及系统

Also Published As

Publication number Publication date
EP3154231A1 (en) 2017-04-12
CN105187339B (zh) 2018-12-07
US20170094665A1 (en) 2017-03-30
US10104666B2 (en) 2018-10-16
CN105187339A (zh) 2015-12-23
EP3154231B1 (en) 2020-05-06
EP3154231A4 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
WO2015184875A1 (zh) 一种双选信道的补偿方法、系统及相关装置
JP4099175B2 (ja) 複数のチャネルを推定する装置及び方法
TW525358B (en) Methods and arrangements in a telecommunications system
EP3497907A1 (en) Localized equalization for channels with intercarrier interference
JP2004519899A (ja) 複雑さが低減したチャンネル応答推定を有するマルチキャリヤ伝送システム
JP2009081535A (ja) 通信装置及び希望波伝送路特性算出方法
US9385908B2 (en) Communication apparatus and communication method
WO2015143621A1 (zh) 导频序列的插入、提取方法和设备
CN107171984A (zh) 一种异步多载波系统频域信道估计方法
JP4388077B2 (ja) 有効なチャネルの評価のための装置および方法ならびにパイロットシーケンスを提供するための装置および方法
US10826662B2 (en) Transmitter and method for formatting transmit data into a frame structure
CN104301282A (zh) 一种超高速移动ofdm系统的ici自适应抑制方法
JP4223007B2 (ja) チャネルのインパルス応答を処理する装置および方法
WO2016092323A1 (en) Estimating data symbols from a filter bank multicarrier (fbmc) signal
JP6110641B2 (ja) 送信元と受信機との間のチャネルインパルス応答を推定する方法及びデバイス
WO2012045244A1 (zh) 低复杂度高性能的信道估计方法及装置
CN112152950B (zh) Ofdm系统中的基于稀疏离散导频的信道估计方法和装置
CN109217954B (zh) 基于双选择衰落信道的低复杂度osdm块均衡方法
CN114422308B (zh) 无线信号传输方法、装置、电子设备及存储介质
JP6306857B2 (ja) 受信装置及びプログラム
CN102904845B (zh) 正交频分复用ofdm系统中的信道估计方法及装置
JP2012105079A (ja) 無線通信システム、送信機および受信機
CN109802910B (zh) 适用于ufmc波形的同步参考信号发送与频偏估计方法
US11240086B2 (en) Method, device and storage medium for transferring, by emitter, flow of samples to receiver by emitter
US20230327930A1 (en) Method and apparatus for pre dft rs and data multiplexed dft-s-ofdm with excess bandwidth shaping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015802852

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015802852

Country of ref document: EP